WO2023120459A1 - ポリアミド組成物 - Google Patents

ポリアミド組成物 Download PDF

Info

Publication number
WO2023120459A1
WO2023120459A1 PCT/JP2022/046619 JP2022046619W WO2023120459A1 WO 2023120459 A1 WO2023120459 A1 WO 2023120459A1 JP 2022046619 W JP2022046619 W JP 2022046619W WO 2023120459 A1 WO2023120459 A1 WO 2023120459A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamine
polyamide
polyamide composition
unit
acid
Prior art date
Application number
PCT/JP2022/046619
Other languages
English (en)
French (fr)
Inventor
直人 菅井
篤 南谷
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2023569420A priority Critical patent/JPWO2023120459A1/ja
Publication of WO2023120459A1 publication Critical patent/WO2023120459A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • Crystalline polyamides such as nylon 6 and nylon 66 are widely used for industrial parts because of their excellent heat resistance, mechanical properties, moldability, and the like.
  • metal parts are being made of resin, and crystalline polyamides, which are excellent in the above properties, are often used.
  • the performance required of plastic materials is becoming stricter, and materials with better performance in terms of heat resistance, hydrolysis resistance, etc. are required.
  • there is a demand for a material with a high crystallization rate which is the time required for the material to cool and solidify from a molten state.
  • a high crystallization rate can shorten the time required for molding one part, and can improve production efficiency.
  • Patent Document 1 discloses that a polyamide that simultaneously satisfies fluidity, toughness, rigidity, etc. can be obtained by including at least 50 mol% of a diamine unit having a branched structure in the main chain of the polyamide.
  • US Pat. No. 6,200,008 discloses a method for producing polyamide compositions containing diamine units with methyl or ethyl branches.
  • the present invention provides a polyamide composition that is excellent in heat resistance, flame retardancy, moldability, and hydrolysis resistance.
  • the present inventors have conceived the following invention and found that the problems can be solved. That is, the present invention is as follows.
  • the diamine unit (X) contains 0.1 mol% or more and less than 36 mol% of the diamine unit (X1),
  • the diamine unit (X1) has 6 to 10 carbon atoms, and when the carbon atom to which any one amino group is bonded is the 1st position, the carbon atom at the 2nd position has 2 carbon atoms or
  • a polyamide composition which is a structural unit derived from an aliphatic diamine to which 3 alkyl groups are bonded.
  • the diamine unit (X1) is a structural unit derived from at least one diamine selected from the group consisting of 2-ethyl-1,7-heptanediamine and 2-propyl-1,6-hexanediamine.
  • the diamine unit (X2) is a structural unit derived from at least one diamine selected from the group consisting of linear aliphatic diamines and branched aliphatic diamines having a methyl group as a branched chain.
  • the diamine unit (X2) is 1,6-hexanediamine, 1,9-nonanediamine, 1,10-decanediamine, 2-methyl-1,5-pentanediamine, and 2-methyl-1,8 -
  • the dicarboxylic acid unit (Y) contains a structural unit derived from at least one dicarboxylic acid selected from the group consisting of aliphatic dicarboxylic acids, aromatic dicarboxylic acids, and alicyclic dicarboxylic acids.
  • the dicarboxylic acid unit (Y) contains a structural unit derived from at least one dicarboxylic acid selected from the group consisting of terephthalic acid, cyclohexanedicarboxylic acid, and naphthalene dicarboxylic acid, above [1] to [ 9], the polyamide composition according to any one of the above.
  • B1 brominated flame retardant
  • this embodiment an embodiment of the present invention (hereinafter sometimes referred to as "this embodiment") will be described based on an example.
  • the embodiments shown below are examples for embodying the technical idea of the present invention, and the present invention is not limited to the following description.
  • preferred forms of embodiments are indicated herein, and combinations of two or more of the individual preferred forms are also preferred forms.
  • the lower and upper limits thereof can be selectively combined to form a preferred form.
  • a numerical range is described as "XX to YY"
  • unit means "a structural unit derived from”
  • dicarboxylic acid unit means "to a dicarboxylic acid.
  • a "structural unit derived from a diamine” means a “structural unit derived from a diamine”.
  • the polyamide (A) used in this embodiment contains diamine units (X) and dicarboxylic acid units (Y).
  • the diamine unit (X) has 6 to 10 carbon atoms, and when the carbon atom to which any one amino group is bonded is the 1st position, the carbon atom at the 2nd position has 2 carbon atoms or It is characterized by containing a specific amount of a diamine unit (X1) derived from an aliphatic diamine to which three alkyl groups are bonded.
  • the melting point is less lowered.
  • the melting point is less lowered.
  • the melting point is less lowered.
  • the melting point is less lowered.
  • the glass transition temperature the higher the glass transition temperature. Therefore, the glass transition temperature generally tends to be low when a component with high molecular mobility such as a branched chain is contained.
  • the polyamide (A) unexpectedly shows little decrease in the glass transition temperature and exhibits excellent heat resistance.
  • the diamine unit (X) has 6 to 10 carbon atoms, and when the carbon atom to which any one of the amino groups is bonded is the 1st position, the carbon atom at the 2nd position has 2 or 3 carbon atoms. contains a diamine unit (X1) which is a structural unit derived from an aliphatic diamine to which an alkyl group of is bonded.
  • the diamine unit (X1) is assumed to be a linear aliphatic chain with the carbon atoms to which two amino groups are respectively bonded as the carbon atoms at both ends, and any one amino group is bonded to 1
  • It is a structural unit derived from an aliphatic diamine having a structure in which one of the hydrogen atoms on the 2-position carbon atom adjacent to the 2-position carbon atom is substituted with an alkyl group having 2 or 3 carbon atoms.
  • a structural unit derived from an aliphatic diamine having a structure in which one of the hydrogen atoms on the carbon atom at the 2-position is substituted with an alkyl group having 2 or 3 carbon atoms is also referred to as a "branched aliphatic diamine unit".
  • the branched aliphatic diamine unit constituting the diamine unit (X1) preferably has 8 to 10 carbon atoms, more preferably 9 carbon atoms.
  • the number of carbon atoms is within the above range, the polymerization reaction between the dicarboxylic acid and the diamine proceeds favorably, and the physical properties of the polyamide composition are likely to be improved.
  • the alkyl group having 2 or 3 carbon atoms is preferably at least one selected from the group consisting of an ethyl group, a propyl group, and an isopropyl group, More preferably, it is at least one selected from the group consisting of ethyl and propyl groups. If the number of carbon atoms in the alkyl group is 1 or 4 or more, the crystallization rate may not be improved and the heat resistance may be lowered.
  • branched aliphatic diamine used to form the diamine unit (X1) as long as the effects of the present invention are not impaired, a branched chain such as a methyl group ("other branched chain” ).
  • the number of other branched chains is preferably one or less, and more preferably the diamine unit (X1) does not contain other branched chains.
  • Examples of the diamine unit (X1) include 2-ethyl-1,4-butanediamine, 2-ethyl-1,5-pentanediamine, 2-ethyl-1,6-hexanediamine, 2-ethyl-1,7 -heptanediamine, 2-ethyl-1,8-octanediamine, 2-propyl-1,5-pentanediamine, 2-propyl-1,6-hexanediamine, 2-propyl-1,7-heptanediamine, and 2 ,4-diethyl-1,6-hexanediamine. Only one type of these structural units may be contained, or two or more types may be contained.
  • the diamine unit (X1) is a 2-ethyl-1,7- It is preferably a structural unit derived from at least one diamine selected from the group consisting of heptanediamine and 2-propyl-1,6-hexanediamine.
  • the diamine unit (X) contains 0.1 mol % or more and less than 36 mol % of the diamine unit (X1). By making it 0.1 mol % or more, it becomes possible to improve the crystallization speed. By making it less than 36 mol %, the risk of deterioration in heat resistance can be reduced. From the viewpoint of obtaining a polyamide composition having an excellent balance between heat resistance and crystallization rate, the diamine unit (X) is preferably 0.5 mol% or more, more preferably 1 mol% or more, of the diamine unit (X1).
  • the diamine unit (X) is preferably 0.5 to 35 mol%, more preferably 0.5 to 30 mol%, still more preferably 1 to 30 mol%, more preferably 0.5 to 30 mol%, more preferably 0.5 to 30 mol%, more preferably More preferably 3 to 25 mol %, still more preferably 5 to 20 mol %.
  • the diamine unit (X1) is at least one selected from the group consisting of 2-ethyl-1,7-heptanediamine and 2-propyl-1,6-hexanediamine.
  • structural units derived from diamine an example of the content of each structural unit is as follows.
  • the content of structural units derived from 2-ethyl-1,7-heptanediamine in the diamine unit (X) is preferably 0.5 mol% or more, more preferably 2 mol% or more, Also, it is preferably 20 mol % or less, more preferably 16 mol % or less, and even more preferably 10 mol % or less.
  • the content of structural units derived from 2-ethyl-1,7-heptanediamine in diamine units (X) is preferably 0.5 to 20 mol %.
  • the content of structural units derived from 2-propyl-1,6-hexanediamine in the diamine unit (X) is preferably 0.1 mol% or more, more preferably 0.5 mol% or more. It is preferably 5 mol % or less, more preferably 3 mol % or less, and even more preferably 2 mol % or less.
  • the content of structural units derived from 2-propyl-1,6-hexanediamine in diamine units (X) is preferably 0.1 to 5 mol %.
  • the polyamide (A) contains, as the diamine unit (X), a diamine unit other than the diamine unit (X1) (hereinafter also referred to as "diamine unit (X2)").
  • the diamine unit (X2) is preferably derived from a diamine having 6 to 10 carbon atoms, more preferably 8 to 10 carbon atoms, and still more preferably 9 carbon atoms, from the viewpoint of good progress of the polymerization reaction between the dicarboxylic acid and the diamine.
  • the diamine unit (X2) is selected from the group consisting of linear aliphatic diamines, branched aliphatic diamines other than the aliphatic diamines constituting the diamine unit (X1), alicyclic diamines, and aromatic diamines. Structural units derived from at least one diamine are included.
  • Linear aliphatic diamines such as ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8 - octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 1,13-tridecanediamine, 1,14-tetradecanediamine, 1,15- pentadecanediamine, 1,16-hexadecanediamine, 1,17-heptadecanediamine, 1,18-octadecanediamine.
  • Branched aliphatic diamines such as 1,2-propanediamine, 1-butyl-1,2-ethanediamine, 1,1-dimethyl-1,4-butanediamine, 1-ethyl-1,4-butanediamine , 1,2-dimethyl-1,4-butanediamine, 1,3-dimethyl-1,4-butanediamine, 1,4-dimethyl-1,4-butanediamine, 2-methyl-1,3-propanediamine , 2-methyl-1,4-butanediamine, 2,3-dimethyl-1,4-butanediamine, 2-methyl-1,5-pentanediamine, 3-methyl-1,5-pentanediamine, 2-butyl -2-ethyl-1,5-pentanediamine, 2,5-dimethyl-1,6-hexanediamine, 2,4-dimethyl-1,6-hexanediamine, 3,3-dimethyl-1,6-hexanediamine , 2,2-dimethyl-1,6-hexanediamine, 2,2,
  • Alicyclic diamines such as cyclohexanediamine, methylcyclohexanediamine, norbornanedimethylamine, tricyclodecanedimethyldiamine, bis(4-amino-3-ethylcyclohexyl)methane, bis(4-amino-3-ethyl-5- methylcyclohexyl)methane.
  • aromatic diamines examples include p-phenylenediamine, m-phenylenediamine, p-xylylenediamine, m-xylylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 4,4' -diaminodiphenyl ether, 4,4'-methylenedi-2,6-diethylaniline. Only one type of structural unit derived from the diamine may be used, or two or more types thereof may be used.
  • diamine units (X2) structural units derived from at least one diamine selected from the group consisting of linear aliphatic diamines and branched aliphatic diamines having a methyl group are more preferred.
  • the diamine unit (X2) is 1,6-hexanediamine, 1,9-nonanediamine, 1,10-decanediamine, 2-methyl-1,5- Structural units derived from at least one diamine selected from the group consisting of pentanediamine and 2-methyl-1,8-octanediamine are more preferred.
  • the dicarboxylic acid unit (Y) may contain, for example, a structural unit derived from at least one dicarboxylic acid selected from the group consisting of aliphatic dicarboxylic acids, aromatic dicarboxylic acids, and alicyclic dicarboxylic acids.
  • aliphatic dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, dimethylmalonic acid, 2, 2-diethylsuccinic acid, 2,2-dimethylglutaric acid, 2-methyladipic acid, trimethyladipic acid.
  • aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, diphenic acid, 4,4′-biphenyldicarboxylic acid, diphenylmethane-4,4′-dicarboxylic acid, diphenylsulfone-4,4′-dicarboxylic acid, 1, 2-naphthalenedicarboxylic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 1,7-naphthalenedicarboxylic acid, 1,8- Naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2,3-furandicarboxylic acid, 2,4-furandicarboxylic acid, 2,5-furandicarboxylic acid
  • alicyclic dicarboxylic acids examples include 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, cycloheptanedicarboxylic acid, cyclooctanedicarboxylic acid, and cyclodecanedicarboxylic acid. mentioned. Only one kind of structural unit derived from the dicarboxylic acid may be contained, or two or more kinds thereof may be contained.
  • the dicarboxylic acid unit (Y) is a structural unit derived from at least one dicarboxylic acid selected from the group consisting of aromatic dicarboxylic acids and alicyclic dicarboxylic acids. It preferably contains a structural unit derived from at least one dicarboxylic acid selected from the group consisting of terephthalic acid, cyclohexanedicarboxylic acid, and naphthalenedicarboxylic acid.
  • the total content of structural units derived from an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, and an alicyclic dicarboxylic acid in the dicarboxylic acid unit (Y) is from the viewpoint of making it easier to exhibit the effects of the present invention more remarkably. , preferably 80 mol % or more, more preferably 90 mol %, still more preferably 95 mol % or more, and may be 100 mol %. In other words, the total content of structural units derived from an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, and an alicyclic dicarboxylic acid in the dicarboxylic acid unit (Y) is preferably 80 to 100 mol%.
  • the total content of structural units derived from terephthalic acid, cyclohexanedicarboxylic acid, and naphthalenedicarboxylic acid in the dicarboxylic acid unit (Y) is preferably 80 mol% or more, more preferably 90 mol. %, more preferably 95 mol % or more, and may be 100 mol %.
  • the total content of structural units derived from terephthalic acid, cyclohexanedicarboxylic acid and naphthalenedicarboxylic acid in the dicarboxylic acid unit (Y) is preferably 80 to 100 mol%.
  • the molar ratio [diamine unit (X)/dicarboxylic acid unit (Y)] of the diamine unit (X) and the dicarboxylic acid unit (Y) in the polyamide (A) is preferably 45/55 to 55/45.
  • the molar ratio between the diamine units (X) and the dicarboxylic acid units (Y) can be adjusted according to the compounding ratio (molar ratio) between the raw material diamine and the raw material dicarboxylic acid.
  • Total ratio of diamine units (X) and dicarboxylic acid units (Y) in polyamide (A) is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, even more preferably 95 mol% or more, and It may be 100 mol %.
  • the polyamide (A) can have more excellent physical properties than desired. In other words, the total proportion of diamine units (X) and dicarboxylic acid units (Y) in polyamide (A) is preferably 70-100 mol %.
  • the polyamide (A) may further contain aminocarboxylic acid units in addition to the diamine units (X) and the dicarboxylic acid units (Y).
  • aminocarboxylic acid units include structural units derived from lactams such as caprolactam and lauryllactam; aminocarboxylic acids such as 11-aminoundecanoic acid and 12-aminododecanoic acid.
  • the content of the aminocarboxylic acid unit in the polyamide (A) is 40 mol% or less with respect to the total 100 mol% of the diamine unit (X) and the dicarboxylic acid unit (Y) constituting the polyamide (A). Preferably, it is 20 mol % or less. In other words, the content of aminocarboxylic acid units in the polyamide (A) is preferably 0 to 40 mol %.
  • Polyvalent carboxylic acid unit Polyamide (A) is a range that does not impair the effects of the present invention, trimellitic acid, trimesic acid, pyromellitic acid, etc. Polyvalent carboxylic acid with a valence of 3 or more, a structural unit derived from, melt molding is possible can also contain
  • the polyamide (A) may contain structural units derived from a terminal blocker (terminal blocker units).
  • the terminal blocker unit is preferably 1.0 mol% or more, more preferably 2.0 mol% or more, and 10 mol% or less with respect to 100 mol% of the diamine unit (X). preferably 5.0 mol % or less.
  • the terminal blocker unit is preferably 1.0 to 10 mol% with respect to 100 mol% of the diamine unit (X).
  • the content of the terminal blocking agent unit can be set within the above desired range by appropriately adjusting the amount of the terminal blocking agent when charging the polymerization raw material. Considering volatilization of the monomer components during polymerization, the charging amount of the terminal blocker should be finely adjusted so that the desired amount of terminal blocker units are introduced into the resulting polyamide (A). is desirable.
  • the inherent viscosity is measured, and this and the number
  • JP-A-7-228690 the inherent viscosity (intrinsic viscosity) is measured, and this and the number
  • JP-A-7-228690 the inherent viscosity (intrinsic viscosity) is measured, and this and the number
  • a monofunctional compound having reactivity with a terminal amino group or a terminal carboxy group can be used as the terminal blocking agent.
  • Specific examples include monocarboxylic acids, acid anhydrides, monoisocyanates, monoacid halides, monoesters, monoalcohols, and monoamines. From the viewpoint of reactivity and stability of the blocked terminal, monocarboxylic acid is preferable as the terminal blocking agent for the terminal amino group, and monoamine is preferable as the terminal blocking agent for the terminal carboxy group. From the standpoint of ease of handling, etc., monocarboxylic acids are more preferable as terminal blocking agents.
  • the monocarboxylic acid used as a terminal blocking agent is not particularly limited as long as it is reactive with amino groups, and examples thereof include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, and laurin.
  • acids tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, aliphatic monocarboxylic acids such as isobutyric acid; alicyclic monocarboxylic acids such as cyclopentanecarboxylic acid and cyclohexanecarboxylic acid; benzoic acid, toluic acid, aromatic monocarboxylic acids such as ⁇ -naphthalenecarboxylic acid, ⁇ -naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, phenylacetic acid; and any mixture thereof.
  • acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, and stearic acid are preferred in terms of reactivity, stability of blocked ends, and price.
  • benzoic acid are preferred.
  • the monoamine used as the terminal blocking agent is not particularly limited as long as it is reactive with the carboxyl group. Examples include methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, and stearyl. Aliphatic monoamines such as amine, dimethylamine, diethylamine, dipropylamine and dibutylamine; Alicyclic monoamines such as cyclohexylamine and dicyclohexylamine; Aromatic monoamines such as aniline, toluidine, diphenylamine and naphthylamine; is mentioned.
  • the content of the polyamide (A) contained in the total amount of the polyamide composition of the present embodiment is preferably 20 to 60% by mass from the viewpoint of making it easy to ensure good moldability, heat resistance, mechanical strength and chemical resistance. , more preferably 25 to 55% by mass, still more preferably 30 to 50% by mass.
  • Polyamide (A) preferably has an inherent viscosity of 0.5 dl/g or more, more preferably 0.7 dl/g or more, and preferably 2.0 dl/g or less. It is more preferably 5 dl/g or less. In other words, the inherent viscosity of polyamide (A) is preferably between 0.5 and 2.0 dl/g. When the inherent viscosity is within the above range, the polyamide (A) can have more excellent physical properties than desired.
  • the inherent viscosity of the polyamide (A) can be determined by measuring the flowing time of a solution using concentrated sulfuric acid at a concentration of 0.2 g / dl and a temperature of 30 ° C. as a solvent, and more specifically described in the Examples. method.
  • the polyamide (A) preferably has a melting point of 250° C. or higher, more preferably 280° C. or higher. When the melting point is within the above range, a polyamide composition having excellent heat resistance can be obtained.
  • the upper limit of the melting point of the polyamide (A) is not particularly limited, it is preferably 330° C. or less in consideration of moldability. In other words, the melting point of polyamide (A) is preferably 250-330°C.
  • the melting point of the polyamide (A) can be obtained as the peak temperature of the endothermic peak that appears when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimetry (DSC) device. It can be obtained by the method described.
  • the polyamide (A) preferably has a glass transition temperature of 110° C. or higher, more preferably 120° C. or higher. When the glass transition temperature is within the above range, a polyamide composition having excellent heat resistance can be obtained.
  • the upper limit of the glass transition temperature of the polyamide (A) is not particularly limited, it is preferably 180° C. or less, more preferably 160° C. or less from the viewpoint of handleability, and even if it is 150° C. or less. good. In other words, the glass transition temperature of polyamide (A) is preferably 110-180°C.
  • the glass transition temperature of the polyamide (A) can be obtained as the temperature of the inflection point that appears when the temperature is raised at a rate of 20 ° C./min using a differential scanning calorimetry (DSC) device. It can be obtained by the method described in the example.
  • DSC differential scanning calorimetry
  • Polyamide (A) preferably has a crystallization rate of 0.02° C. ⁇ 1 or more, more preferably 0.04° C. ⁇ 1 or more.
  • Polyamide (A) preferably has a terminal amino group content ([NH 2 ]) in its molecular chain of 5 ⁇ mol/g or more, more preferably 10 ⁇ mol/g or more, and 160 ⁇ mol/g or less. is preferably 100 ⁇ mol/g or less, and even more preferably 80 ⁇ mol/g or less. In other words, the terminal amino group content is preferably 5 to 160 ⁇ mol/g. If the amount of terminal amino groups is 5 ⁇ mol/g or more, a much more excellent crystallization rate can be exhibited, and good hydrolysis resistance can be exhibited.
  • a terminal amino group content [NH 2 ]
  • the polyamide composition of the present embodiment contains a fibrous filler (C1) as the filler (C), the adhesion with the fibrous filler (C1) is improved, and the mechanical properties are improved. can be done. If the amount of terminal amino groups is 160 ⁇ mol/g or less, further excellent heat resistance is exhibited, and the melt viscosity during processing of the polyamide composition is improved. In the present invention, the amount of terminal amino groups refers to the amount (unit: ⁇ mol) of terminal amino groups contained in 1 g of polyamide.
  • the amount of terminal amino groups of the polyamide (A) can be determined by titrating a phenol solution in which the polyamide (A) is dissolved with an aqueous hydrochloric acid solution, and more specifically determined by the method described in Examples. be able to.
  • the polyamide (A) preferably has a terminal carboxy group content ([COOH]) of the molecular chain of 2 ⁇ mol/g or more, more preferably 5 ⁇ mol/g or more, and further preferably 10 ⁇ mol/g or more. It is preferably 100 ⁇ mol/g or less, more preferably 80 ⁇ mol/g or less. In other words, the terminal carboxy group content is preferably 2 to 100 ⁇ mol/g. When the amount of terminal carboxy groups is 2 ⁇ mol/g or more, a further excellent crystallization rate is exhibited, and excellent heat resistance is likely to be exhibited.
  • the polyamide composition of the present embodiment contains a fibrous filler (C1) as the filler (C), the adhesion with the fibrous filler (C1) is improved, and the mechanical properties are improved. can be done.
  • the amount of terminal carboxy groups is 100 ⁇ mol/g or less, good hydrolysis resistance can be exhibited. Furthermore, hydrolysis in an acidic environment is suppressed, improving chemical resistance.
  • the amount of terminal carboxy groups refers to the amount (unit: ⁇ mol) of terminal carboxy groups contained in 1 g of polyamide.
  • the amount of terminal carboxyl groups of the polyamide (A) can be obtained by titrating a cresol solution in which the polyamide (A) is dissolved with a potassium hydroxide solution, more specifically the method described in the Examples. can be obtained by
  • Polyamide (A) has a ratio ([NH 2 ]/[COOH]) of a terminal amino group amount ([NH 2 ]) to a terminal carboxy group amount ([COOH]) of the molecular chain of 0.1 or more. more preferably 0.3 or more, preferably 50 or less, more preferably 10 or less, and even more preferably 6 or less.
  • the ratio ([NH 2 ]/[COOH]) is preferably between 0.1 and 50. If the ratio ([NH 2 ]/[COOH]) is 0.1 or more, a much more excellent crystallization rate can be exhibited, and good hydrolysis resistance can be exhibited. If the ratio ([NH 2 ]/[COOH]) is 50 or less, even better heat resistance is exhibited.
  • Polyamide (A) can be produced using any known method for producing polyamides. For example, it can be produced by a method such as a melt polymerization method, a solid phase polymerization method, or a melt extrusion polymerization method using a dicarboxylic acid and a diamine as raw materials. Among these, the solid-phase polymerization method is preferable from the viewpoint of being able to better suppress thermal deterioration during polymerization.
  • polyamide (A) for example, a diamine, a dicarboxylic acid, and, if necessary, a catalyst and a terminal blocking agent are added all at once to produce a nylon salt, and then heat polymerized at a temperature of 200 to 250 ° C. It can be produced by preparing a prepolymer by heating and then solid-phase polymerizing it, or by polymerizing it using a melt extruder. When the final stage of polymerization is carried out by solid phase polymerization, it is preferably carried out under reduced pressure or under inert gas flow. Coloring and gelation can be effectively suppressed. When the final stage of polymerization is carried out using a melt extruder, the polymerization temperature is preferably 370° C. or less. Polymerization under such conditions yields a polyamide (A) with little degradation and little decomposition.
  • Examples of catalysts that can be used when producing polyamide (A) include phosphoric acid, phosphorous acid, hypophosphorous acid, or salts or esters thereof.
  • Examples of the above salts or esters include phosphoric acid, phosphorous acid, or hypophosphorous acid and potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, antimony, and the like.
  • Salt with metal Ammonium salt of phosphoric acid, phosphorous acid or hypophosphite; Ethyl ester, isopropyl ester, butyl ester, hexyl ester, isodecyl ester, octadecyl ester of phosphoric acid, phosphorous acid or hypophosphorous acid , decyl ester, stearyl ester, phenyl ester, and the like.
  • the amount of the catalyst used is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and 1.0% by mass or less with respect to 100% by mass of the total mass of the raw materials. and more preferably 0.5% by mass or less. In other words, the amount of the catalyst used is preferably 0.01 to 1.0% by mass with respect to 100% by mass of the total mass of the raw materials. If the amount of the catalyst used is at least the above lower limit, the polymerization proceeds satisfactorily. Further, when the amount of the catalyst used is equal to or less than the above upper limit, impurities derived from the catalyst are less likely to be generated, and, for example, when the polyamide composition is made into a film, problems due to the above impurities can be prevented.
  • the polyamide composition of this embodiment contains a halogen flame retardant (B).
  • a halogen flame retardant (B) By containing the halogen-based flame retardant (B), a polyamide composition having improved flame retardancy is obtained.
  • the halogen-based flame retardant (B) contained in the polyamide composition of the present embodiment is not particularly limited, and compounds known as flame retardants containing a halogen element can be used, for example, brominated flame retardants (B1), Chlorine-based flame retardants (B2) and the like can be mentioned, and brominated flame retardants (B1) are preferred. These may be used individually by 1 type, and may use 2 or more types together.
  • brominated flame retardant (B1) examples include hexabromocyclododecane, decabromodiphenyl oxide, octabromodiphenyl oxide, tetrabromobisphenol A, bis(tribromophenoxy)ethane, bis(pentabromophenoxy)ethane, tetrabromo Bisphenol A epoxy resin, tetrabromobisphenol A carbonate, ethylene (bistetrabromophthal)imide, ethylenebispentabromodiphenyl, tris(tribromophenoxy)triazine, bis(dibromopropyl)tetrabromobisphenol A, bis(dibromopropyl)tetra Bromobisphenol S, brominated polyphenylene ethers such as poly(di)bromophenylene ether, brominated polystyrenes such as polydibromostyrene
  • brominated flame retardant (B1) from the viewpoint of reducing the amount of corrosive gas generated during melt processing such as extrusion and molding and improving the flame retardancy and mechanical properties of electrical or electronic parts, brominated Polyphenylene ether and brominated polystyrene are preferred, and brominated polystyrene is more preferred.
  • Brominated polystyrene is produced by, for example, polymerizing styrene monomers to produce polystyrene, then brominated the benzene ring of polystyrene, and polymerizing brominated styrene monomers such as bromostyrene, dibromostyrene, and tribromostyrene. It can be manufactured by a method.
  • the bromine content in the brominated polystyrene is preferably 55-75% by mass, more preferably 55-70% by mass.
  • the bromine content is preferably 55-75% by mass, more preferably 55-70% by mass.
  • the amount of bromine required for flame retardancy can be satisfied with a small brominated polystyrene content, and the deterioration of the mechanical properties of the polyamide (A) is also suppressed.
  • a polyamide composition having excellent mechanical properties and heat resistance can be obtained.
  • by setting the bromine content to 75% by mass or less it is difficult to cause thermal decomposition during melt processing such as extrusion and molding, it is possible to suppress gas generation, etc., and a polyamide composition having excellent heat discoloration resistance can be obtained. be able to.
  • Chlorine flame retardant (B2) examples include chlorinated paraffin, chlorinated polyethylene, dodecachloropentacyclooctadeca-7,15-diene (“Dechloran Plus 25” manufactured by Occidental Chemical Co.), het acid anhydride, and the like. mentioned.
  • the polyamide composition of this embodiment preferably contains 5 parts by mass or more and 100 parts by mass or less of the halogen-based flame retardant (B) described above with respect to 100 parts by mass of the polyamide (A), and 10 parts by mass or more and 75 parts by mass. It is more preferably contained in an amount of 30 to 70 parts by mass, and even more preferably 40 to 60 parts by mass.
  • the content of the halogen-based flame retardant (B) is set to 100 parts by mass or less, generation of decomposition gas during melt-kneading, deterioration of fluidity during molding (especially thin-wall fluidity) and molding die Adhesion of contaminants to the surface can be suppressed, and deterioration of mechanical properties and external appearance of molded products can also be suppressed.
  • the total amount thereof should be within the above range.
  • the polyamide composition of this embodiment may further contain a filler (C).
  • a filler (C) By using the filler (C), it is possible to obtain a thin polyamide composition having excellent flame retardancy, heat resistance, moldability, and mechanical strength.
  • filler (C) those having various forms such as fibrous, tabular, needle-like, powdery and cloth-like can be used.
  • inorganic or organic fibrous fillers such as glass fiber, carbon fiber, wholly aromatic polyamide fiber (aramid fiber), liquid crystal polymer (LCP) fiber, gypsum fiber, brass fiber, ceramic fiber, boron whisker fiber, etc.
  • C1 flat fillers such as glass flakes and mica; needle fillers such as potassium titanate whiskers, aluminum borate whiskers, calcium carbonate whiskers, magnesium sulfate whiskers, wollastonite, sepiolite, xonotlite, and zinc oxide whiskers (C2); aluminum nitride, boron nitride, potassium titanate, aluminum silicate (kaolin, clay, pyrophyllite, bentonite), calcium silicate, magnesium silicate (attapulgite), aluminum borate, calcium sulfate, barium sulfate, Magnesium sulfate, asbestos, glass beads, carbon black, graphene, graphite, carbon nanotubes, silicon carbide, sericite, hydrotalcite, montmorillonite, molybdenum disulfide, ultra-high molecular weight polyethylene particles, phenol resin particles, crosslinked styrene resin particles, powder fillers such as crosslinked acrylic resin particles; cloth fillers such as glass cloth; These may be
  • the surface of the filler (C) is coated with polymer compounds such as silane coupling agents, titanium coupling agents, acrylic resins, urethane resins, and epoxy resins for the purpose of enhancing dispersibility and adhesion in the polyamide (A).
  • polymer compounds such as silane coupling agents, titanium coupling agents, acrylic resins, urethane resins, and epoxy resins for the purpose of enhancing dispersibility and adhesion in the polyamide (A).
  • it may be surface-treated with other low-molecular-weight compounds.
  • the fillers (C) at least one selected from the group consisting of fibrous fillers (C1) and acicular fillers (C2) because it is low in cost and gives molded articles with high mechanical strength. is preferred. From the viewpoint of high strength and low cost, the fibrous filler (C1) is preferable, and glass fiber is more preferable.
  • the acicular filler (C2) is preferable from the viewpoint of obtaining a molded article with high surface smoothness.
  • the fibrous filler (C1) and the needle-like filler (C2) are preferably at least one selected from the group consisting of glass fibers, wollastonite, potassium titanate whiskers, calcium carbonate whiskers, and aluminum borate whiskers. , glass fiber and wollastonite are more preferable, and glass fiber is more preferable.
  • the fibrous filler (C1) preferably has an average fiber length of 1 to 10 mm, more preferably 1 to 7 mm, still more preferably 2 to 4 mm. Also, the average fiber diameter of the fibrous filler (C1) is preferably 6 to 20 ⁇ m, more preferably 6 to 15 ⁇ m, from the viewpoint of obtaining mechanical strength.
  • the average fiber length and average fiber diameter of the fibrous filler (C1) are obtained by measuring the fiber length and fiber diameter of 400 arbitrarily selected fibrous fillers (C1) by image analysis using an electron microscope. , can be obtained by calculating the respective average values.
  • the average fiber length and average fiber diameter of the fibrous filler (C1) in the polyamide composition or in the molded article formed by molding the polyamide composition are, for example, the polyamide composition or the molded article in an organic solvent is dissolved, the fibrous filler (C1) is extracted, and it can be determined by image analysis using an electron microscope in the same manner as described above.
  • the cross-sectional shape of the fibrous filler (C1) and the needle-like filler (C2) includes, for example, a circular shape, a rectangular shape, an oval shape close to a rectangle, an elliptical shape, a cocoon shape, and a cocoon shape with a constricted central portion in the longitudinal direction. mentioned. Among them, the cross-sectional shape of the fibrous filler (C1) and the needle-like filler (C2) is preferably circular, rectangular, oval nearly rectangular, elliptical, or cocoon-shaped.
  • the fibrous filler (C1) is glass fiber
  • specific compositions include an E glass composition, a C glass composition, an S glass composition, an alkali-resistant glass composition, and the like.
  • the tensile strength of the glass fiber is arbitrary, but usually 290 kg/mm 2 or more.
  • E glass is preferable from the viewpoint of easy availability.
  • These glass fibers are preferably surface-treated with a silane coupling agent such as ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane.
  • the adhered amount is usually 0.01% by mass or more based on the mass of the glass fiber (the total amount of the glass fiber and the surface treatment agent).
  • the polyamide composition of the present embodiment contains a filler (C)
  • its content is preferably 0.1 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the polyamide (A), and more It is preferably 1 part by mass or more and 180 parts by mass or less, more preferably 5 parts by mass or more and 150 parts by mass or less.
  • the polyamide composition of this embodiment may further contain a flame retardant aid (D).
  • a flame retardant aid D
  • the auxiliary flame retardant (D) together with the halogen-based flame retardant (B)
  • the polyamide composition of the present embodiment and the molded article made thereof can exhibit even better flame retardancy.
  • Examples of the flame retardant aid (D) include antimony oxides such as diantimony trioxide, diantimony tetroxide and diantimony pentoxide; antimony compounds such as antimonates such as sodium antimonate; melamine orthophosphate, pyrophosphate.
  • Melamine compounds such as melamine, melamine borate, and melamine polyphosphate; Tin oxides such as tin monoxide and tin dioxide; Iron oxides such as ferric oxide and ⁇ -iron oxide; Aluminum oxide, silicon oxide (silica), titanium oxide , zirconium oxide, manganese oxide, molybdenum oxide, cobalt oxide, bismuth oxide, chromium oxide, tin oxide, nickel oxide, copper oxide, tungsten oxide and other metal oxides; metal hydroxides such as aluminum hydroxide; aluminum, iron, Metal powders such as titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, tin, antimony, nickel, copper, and tungsten; Metal carbonates such as zinc carbonate, magnesium carbonate, and barium carbonate; Zinc borate, calcium borate, etc. metal borates; zinc stannates such as zinc trioxide; and silicones. However, those corresponding to the filler (C) are excluded. These may
  • At least one selected from the group consisting of antimony-based compounds, melamine-based compounds, metal oxides, metal hydroxides, metal borates, and zinc stannate is preferable.
  • At least one selected from the group consisting of antimony, diantimony pentoxide, sodium antimonate, melamine orthophosphate, melamine pyrophosphate, melamine borate, melamine polyphosphate, aluminum oxide, aluminum hydroxide, zinc borate, and zinc tin trioxide 1 type is more preferable.
  • the flame retardant aid (D) is preferably contained in the polyamide composition of the present embodiment in the form of powder.
  • the upper limit of the average particle size is preferably 30 ⁇ m, more preferably 15 ⁇ m, still more preferably 10 ⁇ m, and particularly preferably 7 ⁇ m.
  • the lower limit of the average particle size of the auxiliary flame retardant (D) is preferably 0.01 ⁇ m.
  • the average particle size is 0.01 to 30 ⁇ m, the resulting polyamide composition has improved flame retardancy.
  • the "average particle size” means the volume average particle size, and the particle size at which the cumulative volume is 50% (50 % particle diameter D50).
  • the content is preferably 1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the polyamide (A), 1 part by mass 25 mass parts or less is more preferable, 3 mass parts or more and 20 mass parts or less is still more preferable, and 3 mass parts or more and 15 mass parts or less is even more preferable.
  • the polyamide composition of this embodiment includes the above-described polyamide (A) and halogen-based flame retardant (B), and optionally used filler (C) and flame retardant aid (D) other additives may be included as needed.
  • additives include, for example, stabilizers such as copper compounds; antioxidants such as hindered phenol-based antioxidants, hindered amine-based antioxidants, phosphorus-based antioxidants, and thio-based antioxidants; colorants; UV absorber; light stabilizer; antistatic agent; heat stabilizer; crystal nucleating agent; plasticizer; lubricant; impact modifiers such as copolymers and rubbers; anti-drip agents such as fluororesins;
  • the content of the other additives is not particularly limited as long as it does not impair the effects of the present invention.
  • 03 to 100 parts by mass is more preferable, 0.05 to 50 parts by mass is more preferable, and 0.1 to 20 parts by mass is even more preferable.
  • the total content of the polyamide (A) and the halogen-based flame retardant (B) in the total amount of the polyamide composition of the present embodiment is preferably 40% by mass or more, more preferably 50% by mass or more, and still more preferably is 60% by mass or more.
  • the polyamide composition of the present embodiment maintains the excellent physical properties of the polyamide (A) and has excellent flame retardancy, moldability and It has hydrolysis resistance.
  • Method for producing polyamide composition There are no particular restrictions on the method for producing the polyamide composition, and the polyamide (A), the halogen-based flame retardant (B), the filler (C) used as necessary, the flame retardant auxiliary (D) and the above additives are uniformly mixed. can be preferably employed.
  • a method of melt-kneading using a single-screw extruder, twin-screw extruder, kneader, Banbury mixer, or the like is preferably adopted.
  • the melt-kneading conditions are not particularly limited, for example, a method of melt-kneading for about 1 to 30 minutes at a temperature in the range of about 10 to 50° C. higher than the melting point of the polyamide can be mentioned.
  • the polyamide composition preferably has a bending strength of 100 MPa or more, more preferably 150 MPa or more. Also, the bending elastic modulus is preferably 2 GPa or more, more preferably 5 GPa or more. When the bending strength and bending elastic modulus are within the above ranges, a polyamide composition having excellent mechanical properties can be obtained.
  • the flexural strength and flexural modulus of the polyamide composition can be determined by performing a bending test after injection molding the polyamide composition into a test piece having a thickness of 4 mm, and more specifically determined by the method described in the Examples. be able to.
  • a molded article made of the above polyamide composition can be provided.
  • the method for producing the molded article is not particularly limited, and known methods can be used. Additives such as a chain extender may be added at the time of molding, and further, treatment such as heat treatment or electron beam cross-linking may be performed after molding.
  • the molded article of the present embodiment can be used as various molded articles of any shape and purpose such as electric parts, electronic parts, automobile parts, industrial parts, faucet parts, fibers, films, sheets, household goods, leisure goods, etc. be able to.
  • Examples of electrical and electronic components include connectors such as FPC connectors, BtoB connectors, card connectors, SMT connectors (coaxial connectors, etc.), memory card connectors; SMT relays; SMT bobbins; sockets such as memory sockets and CPU sockets; , switches such as SMT switches; optical components such as optical fiber components and optical sensors; LED application components such as LED reflectors; .
  • connectors such as FPC connectors, BtoB connectors, card connectors, SMT connectors (coaxial connectors, etc.), memory card connectors; SMT relays; SMT bobbins; sockets such as memory sockets and CPU sockets; , switches such as SMT switches; optical components such as optical fiber components and optical sensors; LED application components such as LED reflectors; .
  • Automotive parts include cooling parts such as thermostat housings, coolant control valve housings, thermal management module housings, radiator tanks, radiator hoses, water outlets, water inlets, water pump housings, rear joints; intercooler tanks, intercooler cases, Intake and exhaust system parts such as turbo duct pipes, EGR cooler cases, resonators, throttle bodies, intake manifolds, tail pipes; fuel delivery pipes, gasoline tanks, quick connectors, canisters, pump modules, fuel pipes, oil strainers, lock nuts, seals Fuel system parts such as lumber; Structural parts such as mount brackets, torque rods, and cylinder head covers; Drive system parts such as bearing retainers, gear tensioners, headlamp actuator gears, throttle valve gears, slide door rollers, and clutch peripheral parts; Air brake tubes Brake system parts such as; wire harness connectors in the engine room, motor parts, sensors, ABS bobbins, combination switches, automotive electrical parts such as in-vehicle switches; sliding door dampers, door mirror stays, door mirror brackets, inner mirror stays, roof rails, engines Mount
  • Examples of industrial parts include gas pipes, oil field mining pipes, hoses, anti-termite cables (communication cables, pass cables, etc.), powder coating parts (inner coating of water pipes, etc.), submarine oil field pipes, pressure hoses, Hydraulic tubes, paint tubes, fuel pump housings and impellers, separators, supercharge ducts, butterfly valves, carrier roller bearings, railway sleeper spring holders, outboard engine covers, generator engine covers, wind power generators blades, irrigation valves, large switches, and monofilaments such as fishing nets (extruded threads).
  • faucet parts include housings for transporting tap water, housings for storing tap water, housings for filter casings, housings for faucets, housings for pipes, bathroom faucets (hot water switching valve, water volume switching valve etc.) housings, sanitary component housings, kitchen faucet housings, water heater housings, valve components (shut-off balls, slides, cylinders) and valve component housings, toilet faucet housings, housings in shower heads, Valve housings for water heaters, joints for residential plumbing (underfloor piping, etc.), joints for bathroom faucets, joints for water pipes, pipe joints, water meter housings, water meter parts (bearings, propellers, pins) and water meters, Gas meter housings, distributor housings, valve/pump housings for household equipment, steam-resistant parts of steam irons, inner containers of electric kettles, parts of dishwashers (washing tanks, washing nozzles, baskets), housings of pumps, pumps Components (e.g.
  • turbine wheels, impellers housings for water supply systems (hot water tanks, etc.), housings for heating systems, housings for cooling systems, water control valves, pressure reducing valves, relief valves, solenoid valves, three-way valves, thermo valves, Hot water temperature sensor, water volume sensor, bathtub adapter, etc.
  • fibers include airbag base fabrics, heat-resistant filters, reinforcing fibers, bristles for brushes, fishing lines, tire cords, artificial turf, carpets, and fibers for seat sheets.
  • Films and sheets include, for example, heat-resistant masking tapes, heat-resistant adhesive tapes such as industrial tapes; cassette tapes, magnetic tapes for data storage for digital data storage, materials for magnetic tapes such as video tapes; food packaging materials such as individual packaging and packaging of processed meat products; and electronic component packaging materials such as packaging for semiconductor packages.
  • Household goods include, for example, valve/pump housings for tea and coffee makers; valve/pump housings for cooking appliances such as rice cookers and steamers; Sliding parts (gears, etc.) of cooking appliances such as rice cookers and steamers; sliding parts of commercial cooking utensils (gears for gear pumps, etc.); steam-resistant parts of commercial cooking utensils (pipes of commercial rice cookers, etc.), etc. is mentioned.
  • Portable goods include, for example, inner soles of sports shoes, frames and grommets of rackets, heads and sleeves of golf clubs, reels and rods of fishing gear, boat screws, bicycle suspensions, gears, saddles, bottle cages, and the like. .
  • the polyamide composition of the present embodiment has excellent heat resistance, flame retardancy and moldability, and excellent hydrolysis resistance, so it is required to produce a large number of parts in a short time.
  • Electric parts and electronic parts It can be suitably used for Specifically, electrical and electronic components including SMT processes, more specifically connectors compatible with SMT, SMT relays, SMT bobbins, sockets, command switches, SMT switches, camera modules, power supply components, sensors, and capacitor base plates. , hard disk parts, resistors, fuse holders, coil bobbins, IC housings and other surface mount parts.
  • the inherent viscosity (dl/g) at a concentration of 0.2 g/dl and a temperature of 30° C. using concentrated sulfuric acid as a solvent was obtained from the following formula.
  • [ln(t 1 /t 0 )]/c
  • represents the inherent viscosity (dl / g)
  • t 0 represents the flow time (seconds) of the solvent (concentrated sulfuric acid)
  • t 1 represents the flow time (seconds) of the sample solution
  • c is the sample Represents the concentration (g/dl) of the sample in solution (ie 0.2 g/dl).
  • the glass transition temperature (° C.) was measured according to ISO 11357-2 (2nd edition, 2013). Specifically, in a nitrogen atmosphere, the sample (polyamide) was heated from 30 ° C. to 340 ° C. at a rate of 20 ° C./min, held at 340 ° C. for 5 minutes to completely melt the sample, and then heated to 20 ° C. /min to 50°C and held at 50°C for 5 minutes. The temperature at the inflection point when the temperature was again raised to 200°C at a rate of 20°C/min was taken as the glass transition temperature (°C).
  • Terminal carboxy group amount ([COOH])
  • the amount of terminal carboxyl groups of the polyamides obtained in Examples and Comparative Examples was obtained by dissolving a solution of 0.5 g of polyamide in 40 mL of cresol with a potentiometric titrator manufactured by Kyoto Electronics Industry Co., Ltd., and adding 0.01 mol/L hydroxylation. It was calculated by titration with an aqueous potassium solution.
  • the amount of terminal carboxyl groups of polyamide is represented by [COOH].
  • ⁇ Polyamide composition> ⁇ Preparation of test piece>> Using an injection molding machine manufactured by Sumitomo Heavy Industries, Ltd. (clamping force: 100 tons, screw diameter: ⁇ 32 mm), using the polyamide compositions obtained in Examples and Comparative Examples, the melting point of the polyamide was 20 The cylinder temperature is set to 30 ° C. higher, and the polyamide compositions of Examples 1 to 8, 11 and Comparative Examples 1, 2, 4, 5 are obtained under the conditions of a mold temperature of 140 ° C., Examples 9, 10 and Comparative Example 3.
  • Table 1 shows the compositions of Examples and Comparative Examples and their measurement results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)

Abstract

ジアミン単位(X)及びジカルボン酸単位(Y)を含むポリアミド(A)と、ハロゲン系難燃剤(B)とを含有し、 前記ジアミン単位(X)は、ジアミン単位(X1)を0.1モル%以上36モル%未満含み、 前記ジアミン単位(X1)が、炭素数が6~10であって、かつ、任意の一方のアミノ基が結合した炭素原子を1位とした際に、2位の炭素原子に炭素数が2又は3のアルキル基が結合した脂肪族ジアミンに由来する構成単位である、ポリアミド組成物。

Description

ポリアミド組成物
 本発明は、分岐鎖を有する特定のジアミン単位と、ジカルボン酸単位とを含むポリアミドおよびハロゲン系難燃剤を含むポリアミド組成物に関する。
 ナイロン6、ナイロン66などに代表される結晶性ポリアミドは、耐熱性、機械特性及び成形性等に優れることから工業用部品に幅広く使用されている。例えば、自動車用途では、軽量化及び設計自由度の観点から金属部品の樹脂化が進められており、上記特性に優れる結晶性ポリアミドが多く使用されている。しかしながら、燃費向上及び環境規制への対応という観点からプラスチック材料に求められる性能は厳しくなってきており、耐熱性、耐加水分解性などの観点でより性能の優れた材料が求められている。
 また、部品の製造コストを下げる観点から、材料が溶融状態から冷えて固化するまでの時間、いわゆる結晶化速度が速い材料が求められている。結晶化速度が速いことで、一つの部品成形にかかる時間を短縮することができ、生産効率を向上させることができる。
 例えば、特許文献1には、ポリアミドの主鎖が分岐構造のジアミン単位を少なくとも50モル%含むことにより、流動性、靭性、及び剛性等を同時に満足するポリアミドを得ることができることが開示されている。また、特許文献2には、メチルもしくはエチル分岐を有するジアミン単位を含む、ポリアミド組成物を製造する方法が開示されている。
特開2011-80055号公報 特表2017-517594号公報
 特許文献1及び2では、ポリアミドを形成するジアミンの主鎖から分岐した置換基として、メチル基、エチル基、n-プロピル基等が記載されている。しかしながら、具体的に例示されているのは、分岐鎖としてメチル基を有するジアミンのみである。いずれの文献にも分岐鎖としてメチル基よりも炭素数が長い置換基を有する、分岐ジアミンを含む具体的な開示はなく、炭素数が2以上の分岐鎖を有することによる効果は明らかになっていない。
 上述のように、結晶化速度が速い材料が求められるとともに、耐熱性等の物性のさらなる向上が求められている。
 そこで本発明は、耐熱性、難燃性及び成形性に優れ、かつ耐加水分解性に優れたポリアミド組成物を提供する。
 上記課題を解決すべく鋭意検討した結果、本発明者らは下記本発明を想到し、当該課題を解決できることを見出した。
 すなわち、本発明は下記のとおりである。
[1]ジアミン単位(X)及びジカルボン酸単位(Y)を含むポリアミド(A)と、ハロゲン系難燃剤(B)とを含有し、
 前記ジアミン単位(X)は、ジアミン単位(X1)を0.1モル%以上36モル%未満含み、
 前記ジアミン単位(X1)が、炭素数が6~10であって、かつ、任意の一方のアミノ基が結合した炭素原子を1位とした際に、2位の炭素原子に炭素数が2又は3のアルキル基が結合した脂肪族ジアミンに由来する構成単位である、ポリアミド組成物。
[2]前記ジアミン単位(X1)が、炭素数が9である前記脂肪族ジアミンに由来する構成単位である、上記[1]に記載のポリアミド組成物。
[3]前記ジアミン単位(X1)が、2-エチル-1,7-ヘプタンジアミン及び2-プロピル-1,6-ヘキサンジアミンからなる群より選ばれる、少なくとも1種のジアミンに由来する構成単位である、上記[1]又は[2]に記載のポリアミド組成物。
[4]前記ジアミン単位(X)は、前記ジアミン単位(X1)を1~20モル%含む、上記[1]~[3]のいずれかに記載のポリアミド組成物。
[5]前記ジアミン単位(X)は、前記ジアミン単位(X1)以外のジアミン単位であるジアミン単位(X2)を更に含み、前記ジアミン単位(X2)が、直鎖状脂肪族ジアミン、前記ジアミン単位(X1)を構成する前記脂肪族ジアミン以外の分岐状脂肪族ジアミン、脂環式ジアミン、及び芳香族ジアミンからなる群より選ばれる、少なくとも1種のジアミンに由来する構成単位である、上記[1]~[4]のいずれかに記載のポリアミド組成物。
[6]前記ジアミン単位(X2)が、直鎖状脂肪族ジアミン及び分岐鎖がメチル基である分岐状脂肪族ジアミンからなる群より選ばれる、少なくとも1種のジアミンに由来する構成単位である、上記[5]に記載のポリアミド組成物。
[7]前記ジアミン単位(X2)が、炭素数6~10のジアミンに由来する構成単位である、上記[5]又は[6]に記載のポリアミド組成物。
[8]前記ジアミン単位(X2)が、1,6-ヘキサンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、2-メチル-1,5-ペンタンジアミン、及び2-メチル-1,8-オクタンジアミンからなる群より選ばれる、少なくとも1種のジアミンに由来する構成単位である、上記[5]~[7]のいずれかに記載のポリアミド組成物。
[9]前記ジカルボン酸単位(Y)が、脂肪族ジカルボン酸、芳香族ジカルボン酸、及び脂環式ジカルボン酸からなる群より選ばれる、少なくとも1種のジカルボン酸に由来する構成単位を含む、上記[1]~[8]のいずれかに記載のポリアミド組成物。
[10]前記ジカルボン酸単位(Y)が、テレフタル酸、シクロヘキサンジカルボン酸、及びナフタレンジカルボン酸からなる群より選ばれる、少なくとも1種のジカルボン酸に由来する構成単位を含む、上記[1]~[9]のいずれかに記載のポリアミド組成物。
[11]前記ハロゲン系難燃剤(B)が、臭素系難燃剤(B1)である、上記[1]~[10]のいずれかに記載のポリアミド組成物。
[12]前記臭素系難燃剤(B1)が、臭素化ポリスチレンである、上記[11]に記載のポリアミド組成物。
[13]充填剤(C)をさらに含有する、上記[1]~[12]のいずれかに記載のポリアミド組成物。
[14]前記ポリアミド(A)100質量部に対して、前記充填剤(C)を0.1質量部以上200質量部以下含有する、上記[13]に記載のポリアミド組成物。
[15]難燃助剤(D)をさらに含有する、上記[1]~[14]のいずれかに記載のポリアミド組成物。
[16]前記ポリアミド(A)100質量部に対して、前記難燃助剤(D)を1質量部以上30質量部以下含有する、上記[15]に記載のポリアミド組成物。
[17]前記難燃助剤(D)が、三酸化二アンチモン、四酸化二アンチモン、五酸化二アンチモン、アンチモン酸ナトリウム、オルソリン酸メラミン、ピロリン酸メラミン、ホウ酸メラミン、ポリリン酸メラミン、酸化アルミニウム、水酸化アルミニウム、ホウ酸亜鉛、及び三酸化スズ亜鉛からなる群より選ばれる少なくとも1種である、上記[15]又は[16]に記載のポリアミド組成物。
[18]上記[1]~[17]のいずれかに記載のポリアミド組成物からなる成形品。
[19]電気部品、又は、電子部品である、上記[18]に記載の成形品。
[20]表面実装部品である、上記[18]又は[19]に記載の成形品。
 本発明によれば、耐熱性、難燃性及び成形性に優れ、かつ耐加水分解性に優れたポリアミド組成物を提供することができる。
 以下、本発明の実施態様(以下、「本実施態様」と称することがある。)の一例に基づいて説明する。ただし、以下に示す実施態様は、本発明の技術思想を具体化するための例示であって、本発明は以下の記載に限定されない。
 また本明細書において、実施態様の好ましい形態を示すが、個々の好ましい形態を2つ以上組み合わせたものもまた、好ましい形態である。数値範囲で示した事項について、いくつかの数値範囲がある場合、それらの下限値と上限値とを選択的に組み合わせて好ましい形態とすることができる。
 本明細書において、「XX~YY」との数値範囲の記載がある場合、「XX以上YY以下」を意味する。
 また、本明細書において、「~単位」(ここで「~」は単量体を示す)とは「~に由来する構成単位」を意味し、例えば「ジカルボン酸単位」とは「ジカルボン酸に由来する構成単位」を意味し、「ジアミン単位」とは「ジアミンに由来する構成単位」を意味する。
<ポリアミド組成物>
[ポリアミド(A)]
 本実施態様において用いられるポリアミド(A)は、ジアミン単位(X)及びジカルボン酸単位(Y)を含む。
 上記ジアミン単位(X)は、炭素数が6~10であって、かつ、任意の一方のアミノ基が結合した炭素原子を1位とした際に、2位の炭素原子に炭素数が2又は3のアルキル基が結合した脂肪族ジアミンに由来するジアミン単位(X1)を、特定量含むことを特徴とする。
 一般に、高分子骨格中に、分岐鎖のような排除体積の大きい成分が含まれると、分子鎖が規則的に配列しにくくなるため、結晶化速度が遅くなる傾向にある。しかし、本実施態様おいて、エチル基又はプロピル基のような炭素数が2又は3のアルキル基を分岐鎖として有するジアミン成分を、特定量含むことで、意外にも、結晶化速度が速くなった。
 また、一般に、ポリアミドは、分岐鎖のような嵩高い置換基を有すると、結晶構造をとりにくくなり、融点が低下する傾向にある。しかし、本実施態様において、上記ポリアミド(A)は、エチル基又はプロピル基のような炭素数が2又は3の比較的嵩高い置換基を分岐鎖として有していても、融点の低下が少なく、優れた耐熱性を発現することができる。
 さらには、ガラス転移温度は、非晶部分の分子運動性が低いほど、高くなる性質である。そのため、ガラス転移温度は、分岐鎖のような分子運動性の高い成分が含まれると、一般に、低くなる傾向にある。しかし、本実施態様において、上記ポリアミド(A)は、意外にも、ガラス転移温度の低下が少なく、優れた耐熱性を発現することができる。
 上記の効果が得られる理由の一つとして、上記ポリアミド(A)に含まれるジアミン単位(X)が有する、分岐鎖の炭素数、分岐鎖の位置、及び分岐鎖の量が、優れた耐熱性を保ったまま結晶化速度の向上に影響していると考えられる。しかし、詳細な理由は不明である。
(ジアミン単位(X))
  〈ジアミン単位(X1)〉
 ジアミン単位(X)は、炭素数が6~10であって、かつ、任意の一方のアミノ基が結合した炭素原子を1位とした際に、2位の炭素原子に炭素数が2又は3のアルキル基が結合した脂肪族ジアミンに由来する構成単位であるジアミン単位(X1)を含む。
 ジアミン単位(X1)は、2つのアミノ基がそれぞれ結合している炭素原子を、両端の炭素原子とする直鎖状の脂肪族鎖を想定した際に、任意の一方のアミノ基が結合した1位の炭素原子に隣接する、2位の炭素原子上の水素原子の1つが、炭素数2又は3のアルキル基によって置換された構造を有する脂肪族ジアミンに由来する構成単位である。以下、上記2位の炭素原子上の水素原子の1つが炭素数2又は3のアルキル基で置換された構造を有する脂肪族ジアミンに由来する構成単位を「分岐状脂肪族ジアミン単位」とも称する。
 ジアミン単位(X1)を構成する分岐状脂肪族ジアミン単位の炭素数は、8~10であることが好ましく、9であることがさらに好ましい。炭素数が上記範囲内であれば、ジカルボン酸とジアミンとの重合反応が良好に進行し、ポリアミド組成物の物性がより向上しやすい。
 ジアミン単位(X1)を構成する分岐状脂肪族ジアミン単位において、炭素数2又は3のアルキル基は、エチル基、プロピル基、及びイソプロピル基からなる群より選ばれる少なくとも1種であることが好ましく、エチル基及びプロピル基からなる群より選ばれる少なくとも1種であることがより好ましい。上記アルキル基の炭素数が1又は4以上であると、結晶化速度が向上せずに、また耐熱性が低下するおそれが生じる。
 ジアミン単位(X1)を形成するために用いる分岐状脂肪族ジアミンは、本発明の効果が損なわれない限りにおいて、上記2位以外の炭素に、メチル基等の分岐鎖(「他の分岐鎖」と称する)を有していてもよい。他の分岐鎖数は、1つ以下であることが好ましく、ジアミン単位(X1)は他の分岐鎖を含まないことがさらに好ましい。
 ジアミン単位(X1)としては、例えば、2-エチル-1,4-ブタンジアミン、2-エチル-1,5-ペンタンジアミン、2-エチル-1,6-ヘキサンジアミン、2-エチル-1,7-ヘプタンジアミン、2-エチル-1,8-オクタンジアミン、2-プロピル-1,5-ペンタンジアミン、2-プロピル-1,6-ヘキサンジアミン、2-プロピル-1,7-ヘプタンジアミン、及び2,4-ジエチル-1,6-ヘキサンジアミンに由来する構成単位が挙げられる。これらの構成単位は1種のみ含まれていてもよいし、2種以上含まれていてもよい。
 中でも、より一層優れた結晶化速度の向上が期待でき、また、得られる成形品の耐加水分解性を優れたものとする観点から、ジアミン単位(X1)が、2-エチル-1,7-ヘプタンジアミン及び2-プロピル-1,6-ヘキサンジアミンからなる群より選ばれる、少なくとも1種のジアミンに由来する構成単位であることが好ましい。
 ジアミン単位(X)は、ジアミン単位(X1)を、0.1モル%以上36モル%未満含む。0.1モル%以上とすることにより結晶化速度の向上が可能となる。36モル%未満とすることにより耐熱性が低下するおそれを低減できる。
 耐熱性と結晶化速度のバランスにより優れたポリアミド組成物とする観点から、ジアミン単位(X)は、ジアミン単位(X1)を、好ましくは0.5モル%以上、より好ましくは1モル%以上、さらに好ましくは3モル%以上、よりさらに好ましくは5モル%以上含み、また、好ましくは35モル%以下、より好ましくは30モル%以下、さらに好ましくは25モル%以下、よりさらに好ましくは20モル%以下、よりさらに好ましくは18モル%以下、よりさらに好ましくは15モル%以下、よりさらに好ましくは10モル%以下含む。
 換言すれば、上記ジアミン単位(X)は、ジアミン単位(X1)を、好ましくは0.5~35モル%、より好ましくは0.5~30モル%、さらに好ましくは1~30モル%、よりさらに好ましくは3~25モル%、よりさらに好ましくは5~20モル%含む。
 また、好ましい本実施態様の一つとして、ジアミン単位(X1)が、2-エチル-1,7-ヘプタンジアミン及び2-プロピル-1,6-ヘキサンジアミンからなる群より選ばれる、少なくとも1種のジアミンに由来する構成単位である場合、各構成単位の含有量の一例は次の通りである。
 ジアミン単位(X)中の2-エチル-1,7-ヘプタンジアミンに由来する構成単位の含有量は、0.5モル%以上であることが好ましく、2モル%以上であることがより好ましく、また、20モル%以下であることが好ましく、16モル%以下であることがより好ましく、10モル%以下であることがさらに好ましい。換言すれば、ジアミン単位(X)中の2-エチル-1,7-ヘプタンジアミンに由来する構成単位の含有量は、好ましくは0.5~20モル%である。
 ジアミン単位(X)中の2-プロピル-1,6-ヘキサンジアミンに由来する構成単位の含有量は、0.1モル%以上であることが好ましく、0.5モル%以上であることがより好ましく、また、5モル%以下であることが好ましく、3モル%以下であることがより好ましく、2モル%以下であることがさらに好ましい。換言すれば、ジアミン単位(X)中の2-プロピル-1,6-ヘキサンジアミンに由来する構成単位の含有量は、好ましくは0.1~5モル%である。
  〈ジアミン単位(X2)〉
 上記ポリアミド(A)は、ジアミン単位(X)として、ジアミン単位(X1)以外のジアミン単位(以下「ジアミン単位(X2)」ともいう。)を含む。
 ジアミン単位(X2)は、ジカルボン酸とジアミンとの重合反応が良好に進行する観点から、好ましくは炭素数6~10、より好ましくは炭素数8~10、さらに好ましくは炭素数9のジアミンに由来する構成単位である。
 ジアミン単位(X2)としては、直鎖状脂肪族ジアミン、ジアミン単位(X1)を構成する脂肪族ジアミン以外の分岐状脂肪族ジアミン、脂環式ジアミン、及び芳香族ジアミンからなる群より選ばれる、少なくとも1種のジアミンに由来する構成単位が挙げられる。
 直鎖状脂肪族ジアミンとして、例えば、エチレンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、1,13-トリデカンジアミン、1,14-テトラデカンジアミン、1,15-ペンタデカンジアミン、1,16-ヘキサデカンジアミン、1,17-ヘプタデカンジアミン、1,18-オクタデカンジアミンが挙げられる。
 分岐状脂肪族ジアミンとして、例えば、1,2-プロパンジアミン、1-ブチル-1,2-エタンジアミン、1,1-ジメチル-1,4-ブタンジアミン、1-エチル-1,4-ブタンジアミン、1,2-ジメチル-1,4-ブタンジアミン、1,3-ジメチル-1,4-ブタンジアミン、1,4-ジメチル-1,4-ブタンジアミン、2-メチル-1,3-プロパンジアミン、2-メチル-1,4-ブタンジアミン、2,3-ジメチル-1,4-ブタンジアミン、2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン、2-ブチル-2-エチル-1,5-ペンタンジアミン、2,5-ジメチル-1,6-ヘキサンジアミン、2,4-ジメチル-1,6-ヘキサンジアミン、3,3-ジメチル-1,6-ヘキサンジアミン、2,2-ジメチル-1,6-ヘキサンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、2-メチル-1,8-オクタンジアミン、3-メチル-1,8-オクタンジアミン、1,3-ジメチル-1,8-オクタンジアミン、1,4-ジメチル-1,8-オクタンジアミン、2,4-ジメチル-1,8-オクタンジアミン、3,4-ジメチル-1,8-オクタンジアミン、4,5-ジメチル-1,8-オクタンジアミン、2,2-ジメチル-1,8-オクタンジアミン、3,3-ジメチル-1,8-オクタンジアミン、4,4-ジメチル-1,8-オクタンジアミン、2-メチル-1,9-ノナンジアミン、5-メチル-1,9-ノナンジアミンが挙げられる。
 脂環式ジアミンとして、例えば、シクロヘキサンジアミン、メチルシクロヘキサンジアミン、ノルボルナンジメチルアミン、トリシクロデカンジメチルジアミン、ビス(4-アミノ-3-エチルシクロヘキシル)メタン、ビス(4-アミノ-3-エチル-5-メチルシクロヘキシル)メタンが挙げられる。
 芳香族ジアミンとして、例えば、p-フェニレンジアミン、m-フェニレンジアミン、p-キシリレンジアミン、m-キシリレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル、4,4'-メチレンジ-2,6-ジエチルアニリンが挙げられる。
 上記ジアミンに由来する構成単位は、1種のみでもよいし、2種以上でもよい。
 上記ジアミン単位(X2)の中でも、直鎖状脂肪族ジアミン及び分岐鎖がメチル基である分岐状脂肪族ジアミンからなる群より選ばれる、少なくとも1種のジアミンに由来する構成単位がより好ましい。本発明の効果をより顕著に発揮しやすい観点から、上記ジアミン単位(X2)は、1,6-ヘキサンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、2-メチル-1,5-ペンタンジアミン、及び2-メチル-1,8-オクタンジアミンからなる群より選ばれる、少なくとも1種のジアミンに由来する構成単位がさらに好ましい。
(ジカルボン酸単位(Y))
 ジカルボン酸単位(Y)としては、任意のジカルボン酸単位を含むことができる。
 ジカルボン酸単位(Y)は、例えば、脂肪族ジカルボン酸、芳香族ジカルボン酸、及び脂環式ジカルボン酸からなる群より選ばれる、少なくとも1種のジカルボン酸に由来する構成単位を含むことができる。
 脂肪族ジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、ジメチルマロン酸、2,2-ジエチルコハク酸、2,2-ジメチルグルタル酸、2-メチルアジピン酸、トリメチルアジピン酸が挙げられる。
 芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、ジフェン酸、4,4’-ビフェニルジカルボン酸、ジフェニルメタン-4,4’-ジカルボン酸、ジフェニルスルホン-4,4’-ジカルボン酸、1,2-ナフタレンジカルボン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、1,6-ナフタレンジカルボン酸、1,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、2,3-フランジカルボン酸、2,4-フランジカルボン酸、2,5-フランジカルボン酸、3,4-フランジカルボン酸が挙げられる。
 脂環式ジカルボン酸としては、例えば、1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、シクロヘプタンジカルボン酸、シクロオクタンジカルボン酸、シクロデカンジカルボン酸が挙げられる。
 上記ジカルボン酸に由来する構成単位は、1種のみ含まれていてもよいし、2種以上含まれていてもよい。
 本発明の効果をより顕著に発揮しやすい観点から、ジカルボン酸単位(Y)は、芳香族ジカルボン酸及び脂環式ジカルボン酸からなる群より選ばれる少なくとも1種のジカルボン酸に由来する構成単位を含むことが好ましく、テレフタル酸、シクロヘキサンジカルボン酸、及びナフタレンジカルボン酸からなる群より選ばれる、少なくとも1種のジカルボン酸に由来する構成単位を含むことがより好ましい。
 ジカルボン酸単位(Y)中の、脂肪族ジカルボン酸、芳香族ジカルボン酸、及び脂環式ジカルボン酸に由来する構成単位の合計含有量は、本発明の効果を更に顕著に発揮させやすくする観点から、好ましくは80モル%以上、より好ましくは90モル%、更に好ましくは95モル%以上であり、100モル%であってもよい。換言すれば、ジカルボン酸単位(Y)中の、脂肪族ジカルボン酸、芳香族ジカルボン酸、及び脂環式ジカルボン酸に由来する構成単位の合計含有量は、好ましくは80~100モル%である。
 また、同様の観点から、ジカルボン酸単位(Y)中の、テレフタル酸、シクロヘキサンジカルボン酸、及びナフタレンジカルボン酸に由来する構成単位の合計含有量は、好ましくは80モル%以上、より好ましくは90モル%、更に好ましくは95モル%以上であり、100モル%であってもよい。換言すれば、ジカルボン酸単位(Y)中の、テレフタル酸、シクロヘキサンジカルボン酸、及びナフタレンジカルボン酸に由来する構成単位の合計含有量は、好ましくは80~100モル%である。
 ポリアミド(A)におけるジアミン単位(X)とジカルボン酸単位(Y)とのモル比[ジアミン単位(X)/ジカルボン酸単位(Y)]は、45/55~55/45であることが好ましい。ジアミン単位(X)とジカルボン酸単位(Y)とのモル比が上記範囲であれば、重合反応が良好に進行し、所望する物性に優れたポリアミド組成物が得られやすい。
 なお、ジアミン単位(X)とジカルボン酸単位(Y)とのモル比は、原料のジアミンと原料のジカルボン酸との配合比(モル比)に応じて調整することができる。
 ポリアミド(A)におけるジアミン単位(X)及びジカルボン酸単位(Y)の合計割合(ポリアミドを構成する全構成単位のモル数に対するジカルボン酸単位(Y)及びジアミン単位(X)の合計モル数の占める割合)は、70モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることがさらに好ましく、95モル%以上であることがよりさらに好ましく、さらには100モル%であってもよい。ジアミン単位(X)及びジカルボン酸単位(Y)の合計割合が上記範囲にあることにより、所望する物性により優れたポリアミド(A)とすることができる。換言すれば、ポリアミド(A)におけるジアミン単位(X)及びジカルボン酸単位(Y)の合計割合は、好ましくは70~100モル%である。
(アミノカルボン酸単位)
 ポリアミド(A)は、ジアミン単位(X)及びジカルボン酸単位(Y)の他に、アミノカルボン酸単位をさらに含んでもよい。
 アミノカルボン酸単位としては、例えば、カプロラクタム、ラウリルラクタム等のラクタム;11-アミノウンデカン酸、12-アミノドデカン酸等のアミノカルボン酸などから誘導される構成単位が挙げられる。ポリアミド(A)におけるアミノカルボン酸単位の含有量は、ポリアミド(A)を構成するジアミン単位(X)とジカルボン酸単位(Y)の合計100モル%に対して、40モル%以下であることが好ましく、20モル%以下であることがより好ましい。換言すれば、ポリアミド(A)におけるアミノカルボン酸単位の含有量は、ポリアミド(A)を構成するジアミン単位(X)とジカルボン酸単位(Y)の合計100モル%に対して、好ましくは0~40モル%である。
(多価カルボン酸単位)
 ポリアミド(A)は、本発明の効果を損なわない範囲で、トリメリット酸、トリメシン酸、ピロメリット酸などの3価以上の多価カルボン酸に由来する構成単位を、溶融成形が可能な範囲で含むこともできる。
(末端封止剤単位)
 ポリアミド(A)は、末端封止剤に由来する構成単位(末端封止剤単位)を含んでもよい。
 末端封止剤単位は、ジアミン単位(X)100モル%に対して、1.0モル%以上であることが好ましく、2.0モル%以上であることがより好ましく、また10モル%以下であることが好ましく、5.0モル%以下であることがより好ましい。換言すれば、末端封止剤単位は、ジアミン単位(X)100モル%に対して、好ましくは1.0~10モル%である。
 末端封止剤単位の含有量が上記範囲にあると、所望する物性に優れたポリアミド(A)が得られやすい。末端封止剤単位の含有量は、重合原料を仕込む際に末端封止剤の量を適宜調整することにより上記所望の範囲内とすることができる。なお、重合時に単量体成分が揮発することを考慮して、得られるポリアミド(A)に所望量の末端封止剤単位が導入されるように末端封止剤の仕込み量を微調整することが望ましい。
 ポリアミド(A)中の末端封止剤単位の含有量を求める方法としては、例えば、特開平7-228690号公報に示されているように、インヘレント粘度(固有粘度)を測定し、これと数平均分子量との関係式から全末端基量を算出し、ここから滴定によって求めたアミノ基量とカルボキシ基量を減じる方法、H-NMRを用い、ジアミン単位(X)と末端封止剤単位のそれぞれに対応するシグナルの積分値に基づいて求める方法などが挙げられ、後者が好ましい。
 末端封止剤としては、末端アミノ基又は末端カルボキシ基との反応性を有する単官能性の化合物を用いることができる。具体的には、モノカルボン酸、酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類、モノアミン等が挙げられる。反応性及び封止末端の安定性などの観点から、末端アミノ基に対する末端封止剤としては、モノカルボン酸が好ましく、末端カルボキシ基に対する末端封止剤としては、モノアミンが好ましい。取り扱いの容易さなどの観点からは、末端封止剤としてはモノカルボン酸がより好ましい。
 末端封止剤として使用されるモノカルボン酸としては、アミノ基との反応性を有するものであれば特に制限はなく、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸;シクロペンタンカルボン酸、シクロヘキサンカルボン酸等の脂環式モノカルボン酸;安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等の芳香族モノカルボン酸;これらの任意の混合物等が挙げられる。これらの中でも、反応性、封止末端の安定性、価格などの点から、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、及び安息香酸からなる群より選ばれる少なくとも1種が好ましい。
 末端封止剤として使用されるモノアミンとしては、カルボキシ基との反応性を有するものであれば特に制限はなく、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン;シクロヘキシルアミン、ジシクロヘキシルアミン等の脂環式モノアミン;アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等の芳香族モノアミン;これらの任意の混合物等が挙げられる。これらの中でも、反応性、高沸点、封止末端の安定性及び価格などの点から、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、シクロヘキシルアミン、及びアニリンからなる群より選ばれる少なくとも1種が好ましい。
 本実施態様のポリアミド組成物全量中に含まれるポリアミド(A)の含有量は、良好な成形性、耐熱性、機械強度及び耐薬品性を確保しやすくする観点から、好ましくは20~60質量%であり、より好ましくは25~55質量%であり、さらに好ましくは30~50質量%である。
(ポリアミド(A)の物性)
 ポリアミド(A)は、インヘレント粘度が0.5dl/g以上であることが好ましく、0.7dl/g以上であることがより好ましく、また、2.0dl/g以下であることが好ましく、1.5dl/g以下であることがより好ましい。換言すれば、ポリアミド(A)のインヘレント粘度は、好ましくは0.5~2.0dl/gである。インヘレント粘度が上記範囲にあることで、所望する物性により優れたポリアミド(A)とすることができる。
 ポリアミド(A)のインヘレント粘度は、濃度0.2g/dl、温度30℃の濃硫酸を溶媒とした溶液の流下時間を測定することで求めることができ、より具体的には実施例に記載した方法により求めることができる。
 ポリアミド(A)は、融点が250℃以上であることが好ましく、280℃以上であることがより好ましい。融点が上記範囲にあることで、耐熱性に優れたポリアミド組成物とすることができる。ポリアミド(A)の融点の上限に特に制限はないが、成形性なども考慮すると、330℃以下であることが好ましい。換言すれば、ポリアミド(A)の融点は、好ましくは250~330℃である。
 ポリアミド(A)の融点は、示差走査熱量分析(DSC)装置を用い、10℃/分の速度で昇温した時に現れる吸熱ピークのピーク温度として求めることができ、より具体的には実施例に記載した方法により求めることができる。
 ポリアミド(A)は、ガラス転移温度が110℃以上であることが好ましく、120℃以上であることがより好ましい。ガラス転移温度が上記範囲にあることで、耐熱性に優れたポリアミド組成物とすることができる。ポリアミド(A)のガラス転移温度の上限に特に制限はないが、取り扱い性などの観点から、180℃以下であることが好ましく、160℃以下であることがより好ましく、150℃以下であってもよい。換言すれば、ポリアミド(A)のガラス転移温度は、好ましくは110~180℃である。
 ポリアミド(A)のガラス転移温度は、示差走査熱量分析(DSC)装置を用い、20℃/分の速度で昇温した時に現れる変曲点の温度として求めることができ、より具体的には実施例に記載した方法により求めることができる。
 ポリアミド(A)は、結晶化速度が0.02℃-1以上であることが好ましく、0.04℃-1以上であることがより好ましい。結晶化速度が上記範囲にあることで、生産性に優れたポリアミド組成物とすることができる。
 結晶化速度は、下式(式1)により求めることができる。
  結晶化速度(℃-1)=1/(融点(℃)-結晶化温度(℃)) (式1)
 ポリアミド(A)は、その分子鎖の末端アミノ基量([NH])が5μmol/g以上であることが好ましく、10μmol/g以上であることがより好ましく、また、160μmol/g以下であることが好ましく、100μmol/g以下であることがより好まく、80μmol/g以下であることがさらに好ましい。換言すれば、上記末端アミノ基量は、好ましくは5~160μmol/gである。
 末端アミノ基量が5μmol/g以上であれば、より一層優れた結晶化速度が発現され、良好な耐加水分解性を発現し得る。また、本実施態様のポリアミド組成物が充填剤(C)として繊維状充填剤(C1)を含有する場合、当該繊維状充填剤(C1)との密着性が良好となり、機械特性を向上させることができる。末端アミノ基量が160μmol/g以下であれば、より一層優れた耐熱性が発現し、また、ポリアミド組成物の加工時の溶融粘度が良好となる。
 本発明において、末端アミノ基量は、ポリアミドが1g中に含有する末端アミノ基の量(単位:μmol)を指す。
 ポリアミド(A)の末端アミノ基量は、ポリアミド(A)を溶解させたフェノール溶液を、塩酸水溶液を用いて滴定することで求めることができ、より具体的には実施例に記載した方法により求めることができる。
 ポリアミド(A)は、その分子鎖の末端カルボキシ基量([COOH])が2μmol/g以上であることが好ましく、5μmol/g以上であることがより好ましく、10μmol/g以上であることがさらに好ましく、また、100μmol/g以下であることが好ましく、80μmol/g以下であることがより好ましい。換言すれば、上記末端カルボキシ基量は、好ましくは2~100μmol/gである。
 末端カルボキシ基量が2μmol/g以上であれば、より一層優れた結晶化速度が発現され、優れた耐熱性が発現しやすくなる。また、本実施態様のポリアミド組成物が充填剤(C)として繊維状充填剤(C1)を含有する場合、当該繊維状充填剤(C1)との密着性が良好となり、機械特性を向上させることができる。末端カルボキシ基量が100μmol/g以下であれば、良好な耐加水分解性が発現し得る。さらに、酸性環境での加水分解が抑制され、耐薬品性が向上する。
 本発明において、末端カルボキシ基量は、ポリアミドが1g中に含有する末端カルボキシ基の量(単位:μmol)を指す。
 ポリアミド(A)の末端カルボキシ基量は、ポリアミド(A)を溶解させたクレゾール溶液を、水酸化カリウム溶液を用いて滴定することで求めることができ、より具体的には実施例に記載した方法により求めることができる。
 ポリアミド(A)は、その分子鎖の末端アミノ基量([NH])と末端カルボキシ基量([COOH])との比([NH]/[COOH])が0.1以上であることが好ましく、0.3以上であることがより好ましく、また、50以下であることが好ましく、10以下であることがより好ましく、6以下であることがさらに好ましい。換言すれば、比([NH]/[COOH])は、好ましくは0.1~50である。
 比([NH]/[COOH])が0.1以上であれば、より一層優れた結晶化速度が発現され、良好な耐加水分解性を発現し得る。比([NH]/[COOH])が50以下であれば、より一層優れた耐熱性が発現される。
(ポリアミド(A)の製造方法)
 ポリアミド(A)は、ポリアミドを製造する方法として知られている任意の方法を用いて製造することができる。例えば、ジカルボン酸とジアミンとを原料とする溶融重合法、固相重合法、溶融押出重合法等の方法により製造することができる。これらの中でも、重合中の熱劣化をより良好に抑制することができるなどの観点から、固相重合法であることが好ましい。
 ポリアミド(A)は、例えば、最初にジアミン、ジカルボン酸、並びに必要に応じて触媒及び末端封止剤を一括して添加してナイロン塩を製造した後、200~250℃の温度において加熱重合してプレポリマーとし、さらに固相重合するか、あるいは溶融押出機を用いて重合することにより製造することができる。重合の最終段階を固相重合により行う場合、減圧下又は不活性ガス流動下に行うのが好ましく、重合温度が200~280℃の範囲内であれば、重合速度が大きく、生産性に優れ、着色及びゲル化を有効に抑制することができる。重合の最終段階を溶融押出機により行う場合の重合温度としては、370℃以下であるのが好ましく、係る条件で重合すると、分解がほとんどなく、劣化の少ないポリアミド(A)が得られる。
 ポリアミド(A)を製造する際に使用することができる触媒としては、例えば、リン酸、亜リン酸、次亜リン酸、又はこれらの塩もしくはエステルなどが挙げられる。上記の塩又はエステルとしては、例えば、リン酸、亜リン酸又は次亜リン酸と、カリウム、ナトリウム、マグネシウム、バナジウム、カルシウム、亜鉛、コバルト、マンガン、錫、タングステン、ゲルマニウム、チタン、アンチモン等の金属との塩;リン酸、亜リン酸又は次亜リン酸のアンモニウム塩;リン酸、亜リン酸又は次亜リン酸のエチルエステル、イソプロピルエステル、ブチルエステル、ヘキシルエステル、イソデシルエステル、オクタデシルエステル、デシルエステル、ステアリルエステル、フェニルエステルなどを挙げることができる。
 上記触媒の使用量は、原料の総質量100質量%に対して、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、また1.0質量%以下であることが好ましく、0.5質量%以下であることがより好ましい。換言すれば、上記触媒の使用量は、原料の総質量100質量%に対して、好ましくは0.01~1.0質量%である。
 触媒の使用量が上記下限以上であれば良好に重合が進行する。また、触媒の使用量が上記上限以下であれば触媒由来の不純物が生じにくくなり、例えばポリアミド組成物をフィルムにした場合に上記不純物による不具合を防ぐことができる。
[ハロゲン系難燃剤(B)]
 本実施態様のポリアミド組成物はハロゲン系難燃剤(B)を含有する。ハロゲン系難燃剤(B)を含有することにより、難燃性が向上したポリアミド組成物となる。
 本実施態様のポリアミド組成物に含まれるハロゲン系難燃剤(B)に特に制限はなく、ハロゲン元素を含む難燃剤として公知の化合物を使用することができ、例えば、臭素系難燃剤(B1)、塩素系難燃剤(B2)などが挙げられ、臭素系難燃剤(B1)が好ましい。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
(臭素系難燃剤(B1))
 臭素系難燃剤(B1)としては、例えば、ヘキサブロモシクロドデカン、デカブロモジフェニルオキサイド、オクタブロモジフェニルオキサイド、テトラブロモビスフェノールA、ビス(トリブロモフェノキシ)エタン、ビス(ペンタブロモフェノキシ)エタン、テトラブロモビスフェノールAエポキシ樹脂、テトラブロモビスフェノールAカーボネート、エチレン(ビステトラブロモフタル)イミド、エチレンビスペンタブロモジフェニル、トリス(トリブロモフェノキシ)トリアジン、ビス(ジブロモプロピル)テトラブロモビスフェノールA、ビス(ジブロモプロピル)テトラブロモビスフェノールS、ポリ(ジ)ブロモフェニレンエーテルなどの臭素化ポリフェニレンエーテル、ポリジブロモスチレン、ポリトリブロモスチレン、架橋臭素化ポリスチレンなどの臭素化ポリスチレン、臭素化架橋芳香族重合体、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、臭素化スチレン-無水マレイン酸重合体、テトラブロモビスフェノールS、トリス(トリブロモネオペンチル)ホスフェート、ポリブロモトリメチルフェニルインダン、トリス(ジブロモプロピル)-イソシアヌレートなどが挙げられる。なお、上記臭素化ポリスチレンは、エポキシアクリレート等を付加した変性臭素化ポリスチレンであってもよい。
 臭素系難燃剤(B1)としては、押出及び成形などの溶融加工時の腐食性ガスの発生量を低下させ、電気部品または電子部品の難燃性及び機械的物性を向上させる観点で、臭素化ポリフェニレンエーテル、臭素化ポリスチレンが好ましく、臭素化ポリスチレンがより好ましい。
 臭素化ポリスチレンは、例えばスチレン単量体を重合してポリスチレンを製造した後、ポリスチレンのベンゼン環を臭素化する方法、ブロモスチレン、ジブロモスチレン、トリブロモスチレンなどの臭素化スチレン単量体を重合する方法により製造することができる。
 臭素化ポリスチレン中の臭素含有量は、55~75質量%が好ましく、55~70質量%がより好ましい。臭素含有量を55質量%以上とすることにより、少ない臭素化ポリスチレンの含有量で難燃化に必要な臭素量を満足させることができ、ポリアミド(A)の機械的物性の低下も抑制され、機械的物性および耐熱性に優れたポリアミド組成物を得ることができる。また、臭素含有量を75質量%以下とすることにより、押出及び成形などの溶融加工時において熱分解を起こし難く、ガス発生などを抑制することができ、耐熱変色性に優れるポリアミド組成物を得ることができる。
(塩素系難燃剤(B2))
 塩素系難燃剤(B2)としては、例えば塩素化パラフィン、塩素化ポリエチレン、ドデカクロロペンタシクロオクタデカ-7,15-ジエン(オキシデンタルケミカル社製「デクロランプラス25」)、無水ヘット酸などが挙げられる。
 本実施態様のポリアミド組成物は、ポリアミド(A)100質量部に対して、上述したハロゲン系難燃剤(B)を、5質量部以上100質量部以下含有することが好ましく、10質量部以上75質量部以下含有することがより好ましく、30質量部以上70質量部以下含有することがさらに好ましく、40質量部以上60質量部以下含有することがよりさらに好ましい。ハロゲン系難燃剤(B)の含有量を5質量部以上とすることにより、難燃性に優れるポリアミド組成物を得ることができる。また、ハロゲン系難燃剤(B)の含有量を100質量部以下とすることにより、溶融混練時の分解ガスの発生、成形加工時の流動性(特に、薄肉流動性)の低下及び成形金型への汚染性物質の付着を抑制することができ、さらに、機械的物性及び成形品外観の低下も抑制することができる。複数種のハロゲン系難燃剤(B)を用いる場合には、それらの合計量が上記範囲に入ればよい。
[充填剤(C)]
 本実施態様のポリアミド組成物は充填剤(C)をさらに含有してもよい。充填剤(C)を用いることにより、薄肉での難燃性、耐熱性、成形性、及び、機械的強度に優れるポリアミド組成物を得ることができる。
 充填剤(C)としては、繊維状、平板状、針状、粉末状、クロス状などの各種形態を有するものを使用することができる。具体的には、ガラス繊維、炭素繊維、全芳香族ポリアミド繊維(アラミド繊維)、液晶ポリマー(LCP)繊維、石膏繊維、黄銅繊維、セラミックス繊維、ボロンウィスカ繊維等の無機又は有機の繊維状充填剤(C1);ガラスフレーク、マイカ等の平板状充填剤;チタン酸カリウムウィスカー、ホウ酸アルミニウムウィスカー、炭酸カルシウムウィスカー、硫酸マグネシウムウィスカー、ワラストナイト、セピオライト、ゾノトライト、酸化亜鉛ウィスカー等の針状充填剤(C2);窒化アルミニウム、窒化ホウ素、チタン酸カリウム、ケイ酸アルミニウム(カオリン、クレー、パイロフィライト、ベントナイト)、ケイ酸カルシウム、ケイ酸マグネシウム(アタパルジャイト)、ホウ酸アルミニウム、硫酸カルシウム、硫酸バリウム、硫酸マグネシウム、アスベスト、ガラスビーズ、カーボンブラック、グラフェン、グラファイト、カーボンナノチューブ、炭化ケイ素、セリサイト、ハイドロタルサイト、モンモリロナイト、二硫化モリブデン、超高分子量ポリエチレン粒子、フェノール樹脂粒子、架橋スチレン系樹脂粒子、架橋アクリル系樹脂粒子等の粉末状充填剤;ガラスクロス等のクロス状充填剤などが挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。
 充填剤(C)の表面は、ポリアミド(A)中への分散性及び接着性を高める目的で、シランカップリング剤、チタンカップリング剤、アクリル樹脂、ウレタン樹脂、エポキシ樹脂等の高分子化合物、又はその他低分子化合物によって表面処理されていてもよい。
 充填剤(C)の中でも、低コストであり、機械的強度が高い成形品が得られることから、繊維状充填剤(C1)及び針状充填剤(C2)からなる群より選ばれる少なくとも1種が好ましい。高強度、低コストの観点からは繊維状充填剤(C1)が好ましく、ガラス繊維がより好ましい。表面平滑性の高い成形品が得られる観点からは針状充填剤(C2)が好ましい。
 繊維状充填剤(C1)及び針状充填剤(C2)としては、ガラス繊維、ワラストナイト、チタン酸カリウムウィスカー、炭酸カルシウムウィスカー、及びホウ酸アルミニウムウィスカーからなる群より選ばれる少なくとも1種が好ましく、ガラス繊維及びワラストナイトからなる群より選ばれる少なくとも1種がより好ましく、ガラス繊維がさらに好ましい。
 繊維状充填剤(C1)の平均繊維長は、好ましくは1~10mm、より好ましくは1~7mm、さらに好ましくは2~4mmである。また、繊維状充填剤(C1)の平均繊維径は、機械的強度を得る観点から、好ましくは6~20μm、より好ましくは6~15μmである。
 繊維状充填剤(C1)の平均繊維長及び平均繊維径は、電子顕微鏡を用いた画像解析により、任意に選択した400本の繊維状充填剤(C1)のそれぞれ繊維長及び繊維径を測定し、それぞれの平均値を算出することにより求めることができる。
 また、ポリアミド組成物中、又は当該ポリアミド組成物を成形してなる成形品中における、繊維状充填剤(C1)の平均繊維長及び平均繊維径は、例えば有機溶媒中でポリアミド組成物又は成形品を溶解させ、繊維状充填剤(C1)を抽出し、上記と同様に電子顕微鏡を用いた画像解析により求めることができる。
 繊維状充填剤(C1)及び針状充填剤(C2)の断面形状としては、例えば円形、長方形、長方形に近い長円形、楕円形、繭型、長手方向の中央部がくびれた繭型等が挙げられる。中でも、繊維状充填剤(C1)及び針状充填剤(C2)の断面形状が、円形、長方形、長方形に近い長円形、楕円形、又は繭型のものが好ましい。
 繊維状充填剤(C1)がガラス繊維であるとき、具体的な組成として、Eガラス組成、Cガラス組成、Sガラス組成、耐アルカリガラス組成等が挙げられる。また、ガラス繊維の引張強さは、任意であるが、通常290kg/mm以上である。中でもEガラスが入手容易である観点から好ましい。これらのガラス繊維は、例えばγ-メタクリルオキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン等のシランカップリング剤で表面処理されていることが好ましく、その付着量はガラス繊維質量(ガラス繊維と表面処理剤との合計量)に対し、通常0.01質量%以上である。
 本実施態様のポリアミド組成物が充填剤(C)を含有する場合、その含有量は、ポリアミド(A)100質量部に対して、好ましくは0.1質量部以上200質量部以下であり、より好ましくは1質量部以上180質量部以下であり、さらに好ましくは5質量部以上150質量部以下である。充填剤(C)の含有量をポリアミド(A)100質量部に対して0.1質量部以上とすることにより、本実施態様のポリアミド組成物の靭性、機械的強度等が向上し、また、充填剤(C)の含有量を200質量部以下とすることにより、成形性に優れるポリアミド組成物が得られる。
[難燃助剤(D)]
 本実施態様のポリアミド組成物は難燃助剤(D)をさらに含有してもよい。難燃助剤(D)をハロゲン系難燃剤(B)と併用することで、本実施態様のポリアミド組成物、及びそれからなる成形品は一層優れた難燃性を発揮することができる。
 難燃助剤(D)としては、例えば三酸化二アンチモン、四酸化二アンチモン、五酸化二アンチモン等の酸化アンチモン、アンチモン酸ナトリウム等のアンチモン酸塩などのアンチモン系化合物;オルソリン酸メラミン、ピロリン酸メラミン、ホウ酸メラミン、ポリリン酸メラミン等のメラミン系化合物;一酸化スズ、二酸化スズ等の酸化スズ;酸化第二鉄、γ酸化鉄等の酸化鉄;酸化アルミニウム、酸化ケイ素(シリカ)、酸化チタン、酸化ジルコニウム、酸化マンガン、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化スズ、酸化ニッケル、酸化銅、酸化タングステン等の金属酸化物;水酸化アルミニウム等の金属水酸化物;アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、スズ、アンチモン、ニッケル、銅、タングステン等の金属粉末;炭酸亜鉛、炭酸マグネシウム、炭酸バリウム等の金属炭酸塩;ホウ酸亜鉛、ホウ酸カルシウム等の金属ホウ酸塩、;三酸化スズ亜鉛等のスズ酸亜鉛;シリコーンなどが挙げられる。但し、充填剤(C)に該当するものは除く。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。
 上記の中でも、アンチモン系化合物、メラミン系化合物、金属酸化物、金属水酸化物、金属ホウ酸塩、及びスズ酸亜鉛からなる群より選ばれる少なくとも1種が好ましく、三酸化二アンチモン、四酸化二アンチモン、五酸化二アンチモン、アンチモン酸ナトリウム、オルソリン酸メラミン、ピロリン酸メラミン、ホウ酸メラミン、ポリリン酸メラミン、酸化アルミニウム、水酸化アルミニウム、ホウ酸亜鉛、及び三酸化スズ亜鉛からなる群より選ばれる少なくとも1種がより好ましい。
 難燃助剤(D)は、粉体状として本実施態様のポリアミド組成物に含有させるのが好ましい。その平均粒径の上限は、30μmが好ましく、15μmがより好ましく、10μmがさらに好ましく、7μmが特に好ましい。一方、難燃助剤(D)の平均粒径の下限は、0.01μmが好ましい。平均粒径が0.01~30μmの場合、得られるポリアミド組成物の難燃性が向上する。
 なお、本明細書において、「平均粒径」とは、体積平均粒径のことであり、レーザー回折式粒度分布測定装置を用いて測定した粒度分布において積算体積が50%となる粒径(50%粒径D50)から求めることができる。
 本実施態様のポリアミド組成物が難燃助剤(D)を含有する場合、その含有量は、ポリアミド(A)100質量部に対して、1質量部以上30質量部以下が好ましく、1質量部以上25質量部以下がより好ましく、3質量部以上20質量部以下がさらに好ましく、3質量部以上15質量部以下がよりさらに好ましい。
[その他の添加剤]
 本実施態様のポリアミド組成物は、上述したポリアミド(A)及びハロゲン系難燃剤(B)、並びに必要に応じて用いられる充填剤(C)及び難燃助剤(D)以外にその他の添加剤を必要に応じて含んでもよい。
 その他の添加剤としては、例えば、銅化合物等の安定剤;ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、リン系酸化防止剤、チオ系酸化防止剤等の酸化防止剤;着色剤;紫外線吸収剤;光安定化剤;帯電防止剤;熱安定剤;結晶核剤;可塑剤;潤滑剤;滑剤;分散剤;酸素吸収剤;硫化水素吸着剤;結晶化遅延剤;α-オレフィン系共重合体、ゴム等の衝撃改質剤;フッ素樹脂等のドリップ防止剤などが挙げられる。
 上記その他の添加剤の含有量は、本発明の効果を損なわない限りにおいて特に限定されないが、ポリアミド(A)100質量部に対して、0.02質量部以上200質量部以下が好ましく、0.03質量部以上100質量部以下がより好ましく、0.05質量部以上50質量部以下がさらに好ましく、0.1質量部以上20質量部以下がよりさらに好ましい。
 本実施態様のポリアミド組成物全量中、ポリアミド(A)、及びハロゲン系難燃剤(B)の合計含有量は、好ましくは40質量%以上であり、より好ましくは50質量%以上であり、さらに好ましくは60質量%以上である。
 本実施態様のポリアミド組成物は、上記ポリアミド(A)及びハロゲン系難燃剤(B)を含むことにより、上記ポリアミド(A)の優れた物性を維持しつつ、優れた難燃性、成形性及び耐加水分解性を有するものである。
(ポリアミド組成物の製造方法)
 ポリアミド組成物の製造方法に特に制限はなく、ポリアミド(A)、ハロゲン系難燃剤(B)、必要に応じて用いられる充填剤(C)、難燃助剤(D)及び上記添加剤を均一に混合することのできる方法を好ましく採用することができる。混合は、通常、単軸押出機、二軸押出機、ニーダー、バンバリーミキサーなどを使用して溶融混練する方法が好ましく採用される。溶融混練条件は特に限定されないが、例えば、ポリアミドの融点よりも10~50℃程度高い温度範囲で、約1~30分間溶融混練する方法が挙げられる。
(ポリアミド組成物の物性)
 ポリアミド組成物は、曲げ強度が100MPa以上であることが好ましく、150MPa以上であることがより好ましい。また、曲げ弾性率が2GPa以上であることが好ましく、5GPa以上であることがより好ましい。曲げ強度および曲げ弾性率が上記範囲にあることで、機械特性に優れたポリアミド組成物とすることができる。
 ポリアミド組成物の曲げ強度および曲げ弾性率は、ポリアミド組成物を4mm厚の試験片に射出成形した後に曲げ試験を行うことによって求めることができ、より具体的には実施例に記載した方法により求めることができる。
<成形体>
 本実施態様の一つとして、上記ポリアミド組成物からなる成形体とすることができる。成形体の製造方法としては、特に制限はなく、公知の方法を用いることができる。また、成形時には、鎖延長剤などの添加剤を加えてもよく、さらには、成形後に加熱処理又は電子線架橋などの処理を施してもよい。
 本実施態様の成形品は、電気部品、電子部品、自動車部品、産業部品、水栓部品、繊維、フィルム、シート、家庭用品、レジャー用品、その他の任意の形状及び用途の各種成形品として使用することができる。
 電気部品および電子部品としては、例えばFPCコネクタ、BtoBコネクタ、カードコネクタ、SMTコネクタ(同軸コネクタ等)、メモリーカードコネクタ等のコネクタ;SMTリレー;SMTボビン;メモリーソケット、CPUソケット等のソケット;コマンドスイッチ、SMTスイッチ等のスイッチ;光ファイバー部品、光センサー等の光学部品;LEDリフレクタ等のLED用途部品;太陽電池基板、LED実装基板、フレキシブルプリント配線板、樹脂成形回路基板等の電子基板などが挙げられる。
 自動車部品としては、例えばサーモスタットハウジング、クーラントコントロールバルブのハウジング、サーマルマネジメントモジュールのハウジング、ラジエータータンク、ラジエーターホース、ウォーターアウトレット、ウォーターインレット、ウォーターポンプハウジング、リアジョイント等の冷却部品;インタークーラータンク、インタークーラーケース、ターボダクトパイプ、EGRクーラーケース、レゾネーター、スロットルボディ、インテークマニホールド、テールパイプ等の吸排気系部品;燃料デリバリーパイプ、ガソリンタンク、クイックコネクタ、キャニスター、ポンプモジュール、燃料配管、オイルストレーナー、ロックナット、シール材等の燃料系部品;マウントブラケット、トルクロッド、シリンダヘッドカバー等の構造部品;ベアリングリテイナー、ギアテンショナー、ヘッドランプアクチュエータギア、スロットルバルブギア、スライドドアローラー、クラッチ周辺部品等の駆動系部品;エアブレーキチューブなどのブレーキ系統部品;エンジンルーム内のワイヤーハーネスコネクタ、モーター部品、センサー、ABSボビン、コンビネーションスイッチ、車載スイッチ等の車載電装部品;スライドドアダンパー、ドアミラーステイ、ドアミラーブラケット、インナーミラーステイ、ルーフレール、エンジンマウントブラケット、エアクリーナーのインレットパイプ、ドアチェッカー、プラチェーン、エンブレム、クリップ、ブレーカーカバー、カップホルダー、エアバック、フェンダー、スポイラー、ラジエーターサポート、ラジエーターグリル、ルーバー、エアスクープ、フードバルジ、バックドア、フューエルセンダーモジュール等の内外装部品などが挙げられる。
 産業部品としては、例えばガスパイプ、油田採掘用パイプ、ホース、防蟻ケーブル(通信ケーブル、パスケーブルなど)、粉体塗装品の塗料部(水道管の内側コーティングなど)、海底油田パイプ、耐圧ホース、油圧チューブ、ペイント用チューブ、燃料ポンプのハウジング及びインペラ、セパレーター、スーパーチャージ用ダクト、バタフライバルブ、搬送機ローラー軸受、鉄道の枕木バネ受け、船外機エンジンカバー、発電機用エンジンカバー、風力発電機のブレード、灌漑用バルブ、大型開閉器(スイッチ)、漁網などのモノフィラメント(押出糸)などが挙げられる。
 水栓部品としては、例えば水道水の運搬用部品のハウジング、水道水の貯蔵用部品のハウジング、フィルターケーシングのハウジング、蛇口のハウジング、パイプのハウジング、浴室水栓(湯水の切換え弁、水量切り替えバルブ等)のハウジング、衛生部品のハウジング、キッチン水栓のハウジング、温水器のハウジング、弁部品(シャットオフボール、スライド、シリンダー)および弁部品ハウジング、トイレ止水栓のハウジング、シャワーヘッド内のハウジング、給湯器のバルブハウジング、住設配管(床下配管等)の継手、浴室水栓の継手、水道配管の継手、パイプジョイント、水道メーターのハウジング、水道メーター部品(軸受、プロペラ、ピン)および水道メーター、ガスメーターのハウジング、分配器のハウジング、家庭用装置のバルブ/ポンプハウジング、スチームアイロンの耐スチーム部品、電気ケトルの内部容器、食器洗い器の部品(洗浄槽、洗浄ノズル、カゴ)、ポンプのハウジング、ポンプ部品(例えばタービン・ホイール、インペラ)、水供給システム(温水タンク等)のハウジング、加熱システムのハウジング、冷却システムのハウジング、水量調節弁、減圧弁、逃がし弁、電磁弁、三方弁、サーモバルブ、湯温センサー、水量センサー、浴槽用アダプタなどが挙げられる。
 繊維としては、例えばエアバック基布、耐熱フィルター、補強繊維、ブラシ用ブリッスル、釣糸、タイヤコード、人工芝、絨毯、座席シート用繊維などが挙げられる。
 フィルム及びシートとしては、例えば耐熱マスキング用テープ、工業用テープ等の耐熱粘着テープ;カセットテープ、デジタルデータストレージ向けデータ保存用磁気テープ、ビデオテープ等の磁気テープ用材料;レトルト食品のパウチ、菓子の個包装、食肉加工品の包装等の食品包装材料;半導体パッケージ用の包装等の電子部品包装材料などが挙げられる。
 家庭用品としては、例えば紅茶及びコーヒーメーカーのバルブ/ポンプハウジング;炊飯器、蒸し器等の調理家電のバルブ/ポンプハウジング;炊飯器、蒸し器等の調理家電の耐スチーム部品(炊飯器の上蓋等);炊飯器、蒸し器等の調理家電の摺動部品(ギア等);業務用調理器具の摺動部品(ギアポンプ用ギア等);業務用調理器具の耐スチーム部品(業務用炊飯器のパイプ等)などが挙げられる。
 レジャー用品としては、例えばスポーツシューズのインナーソール、ラケットのフレーム及びグロメット、ゴルフクラブのヘッド及びスリーブ、釣り具のリール及びロッド、ボートのスクリュー、自転車のサスペンション、ギア、サドル、ボトルケージなどが挙げられる。
 中でも、本実施態様のポリアミド組成物は、耐熱性、難燃性及び成形性に優れ、かつ耐加水分解性に優れるため、短時間に多数の部品を製造することが求められる電気部品および電子部品に好適に用いることができる。具体的には、SMT工程を含む電気部品および電子部品、より具体的にはSMT対応のコネクタ、SMTリレー、SMTボビン、ソケット、コマンドスイッチ、SMTスイッチ、カメラモジュール、電源部品、センサー、コンデンサー座板、ハードディスク部品、抵抗器、ヒューズホルダー、コイルボビン、ICハウジングなどの表面実装部品に好適に用いることができる。
 以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに限定されるものではない。
 実施例及び比較例における各評価は、以下に示す方法に従って行った。
〈ポリアミド〉
・インヘレント粘度
 実施例及び比較例で得られたポリアミドについて、濃硫酸を溶媒とし、濃度0.2g/dl、温度30℃でのインヘレント粘度(dl/g)を下式より求めた。
         η=[ln(t/t)]/c
 上式中、ηはインヘレント粘度(dl/g)を表し、tは溶媒(濃硫酸)の流下時間(秒)を表し、tは試料溶液の流下時間(秒)を表し、cは試料溶液中の試料の濃度(g/dl)(すなわち、0.2g/dl)を表す。
・融点、結晶化温度、ガラス転移温度
 実施例及び比較例で得られたポリアミドの融点、結晶化温度、ガラス転移温度は、株式会社日立ハイテクサイエンス製の示差走査熱量分析装置「DSC7020」を使用して測定した。
 融点及び結晶化温度は、ISO11357-3(2011年第2版)に準拠して測定を行った。具体的には、窒素雰囲気下で、30℃から340℃へ10℃/分の速度で試料(ポリアミド)を加熱し、340℃で5分間保持して試料を完全に融解させた後、10℃/分の速度で50℃まで冷却し、50℃で5分間保持した後、再び10℃/分の速度で340℃まで昇温した。降温した時に現れる発熱ピークのピーク温度を結晶化温度とし、再昇温した時に現れる吸熱ピークのピーク温度を融点(℃)とした。
 ガラス転移温度(℃)は、ISO11357-2(2013年第2版)に準拠して測定を行った。具体的には、窒素雰囲気下で、30℃から340℃へ20℃/分の速度で試料(ポリアミド)を加熱し、340℃で5分間保持して試料を完全に融解させた後、20℃/分の速度で50℃まで冷却し、50℃で5分間保持した。再び20℃/分の速度で200℃まで昇温した時に現れる変曲点の温度をガラス転移温度(℃)とした。
・結晶化速度
 実施例及び比較例で得られたポリアミドの結晶化速度を、下式(式1)により求めた。
  結晶化速度(℃-1)=1/(融点(℃)-結晶化温度(℃)) (式1)
 なお、(式1)中、「融点(℃)」及び「結晶化温度(℃)」は、上記方法による測定値である。また、表1中、結晶化速度の単位を、「℃-1」と同義である「1/℃」と表記する。
・末端アミノ基量([NH])
 実施例及び比較例で得られたポリアミドの末端アミノ基量は、ポリアミド1gをフェノール30mLに溶解させた溶液に指示薬であるチモールブルーを加え、0.01mol/L塩酸水溶液を用いて滴定することで算出した。表1においては、ポリアミドの末端アミノ基量を[NH]で表す。
・末端カルボキシ基量([COOH])
 実施例及び比較例で得られたポリアミドの末端カルボキシ基量は、ポリアミド0.5gをクレゾール40mLに溶解させた溶液を、京都電子工業株式会社製の電位差滴定装置により、0.01mol/L水酸化カリウム水溶液を用いて滴定することで算出した。表1においては、ポリアミドの末端カルボキシ基量を[COOH]で表す。
・比([NH]/[COOH])
 上記で得られた末端アミノ基量([NH])及び末端カルボキシ基量([COOH])の値から比([NH]/[COOH])を算出した。
〈ポリアミド組成物〉
《試験片の作製》
 住友重機械工業株式会社製の射出成形機(型締力:100トン、スクリュー径:φ32mm)を使用し、実施例及び比較例で得られたポリアミド組成物を用いて、ポリアミドの融点よりも20~30℃高いシリンダー温度とし、実施例1~8、11及び比較例1、2、4、5のポリアミド組成物は金型温度140℃の条件下で、実施例9、10及び比較例3のポリアミド組成物は金型温度170℃の条件下で、Tランナー金型を用いてポリアミド組成物を成形し、多目的試験片タイプA1(JIS K7139:2009に記載されたダンベル型の試験片;4mm厚、全長170mm、平行部長さ80mm、平行部幅10mm)を作製した。
・曲げ強度、曲げ弾性率
 上記の方法で作製した多目的試験片タイプA1(4mm厚)を用い、ISO178(2012年第2版)に準拠して、試験速度2mm/分、支点間距離64mmの条件で、万能材料試験機(インストロン社製)を使用して、曲げ強度(MPa)及び曲げ弾性率(GPa)を測定した。
・色相安定性
 上記の方法で作製した多目的試験片タイプA1(4mm厚)を、150℃の熱風乾燥機の中で50時間熱処理した。処理後の試験片の色の変化を目視で観察し、熱処理前の試験片と比較して、下記基準で評価した。「A」及び「B」を合格とし、「C」を不合格とした。
〔評価基準〕
 A:変色なし
 B:わずかに黄変している
 C:明らかに黄変している
・耐熱老化性
 上記の方法で作製した多目的試験片タイプA1(4mm厚)を、150℃の熱風乾燥機の中で50時間熱処理した。処理後の試験片及び熱処理を施していない試験片の分子量を測定し、下式(式2)より分子量変化率を算出した。算出した分子量変化率から、下記基準で評価した。「A」及び「B」を合格とし、「C」を不合格とした。なお、試験片の分子量は、後述の分子量測定のとおり測定した。
  分子量変化率(%)=((熱処理後の分子量-熱処理前の分子量)/(熱処理前の分子量))×100  (式2)
〔評価基準〕
 A:分子量変化率が±10%未満
 B:分子量変化率が±10%以上±20%未満
 C:分子量変化率が±20%以上
・耐加水分解性
 上記の方法で作製した多目的試験片タイプA1(4mm厚)を、耐圧容器中で不凍液(トヨタ自動車株式会社製「スーパーロングライフクーラント」(ピンク)を2倍希釈した水溶液)中に浸漬し、その耐圧容器を130℃に設定した恒温槽中に100時間静置した。取り出した試験片及び浸漬処理を施していない試験片の分子量を測定し、下式(式3)より分子量変化率を算出した。算出した分子量変化率から、下記基準で評価した。「A」及び「B」を合格とし、「C」を不合格とした。なお、試験片の分子量は、後述の分子量測定のとおり測定した。
  分子量変化率(%)=((浸漬処理後の分子量-浸漬処理前の分子量)/(浸漬処理前の分子量))×100  (式3)
〔評価基準〕
 A:分子量変化率が±10%未満
 B:分子量変化率が±10%以上±20%未満
 C:分子量変化率が±20%以上
・分子量測定
 上記多目的試験片タイプA1の分子量は、ゲル浸透クロマトグラフィー(GPC)により標準ポリメチルメタクリレート換算分子量として求めた。具体的には、1,1,1,3,3,3-ヘキサフルオロイソプロパノール(HFIP)1kgに対して0.85gの割合でトリフルオロ酢酸ナトリウムを溶解させたHFIP溶液を溶離液として用い、試料(上記多目的試験片タイプA1)を樹脂換算で1.5mg計量し、3mLの上記溶離液に溶解させた。当該溶液を0.2μmのメンブランフィルターを通して測定サンプルを作製し、以下の条件において測定を行った。
(測定条件)
 装置:HLC-8320GPC(東ソー株式会社製)
 カラム:TSKgel SuperHM-H(東ソー株式会社製)2本を直列に連結した。
 溶離液:10mmol/Lトリフルオロ酢酸ナトリウム/HFIP溶液
 流速:0.5mL/分(リファレンスカラム:0.25mL/分)
 サンプル注入量:30μL
 カラム温度:40℃
 標準ポリメチルメタクリレート:昭和電工株式会社Shodex Standard M-75,アジレント・テクノロジー株式会社Polymethlmethacrylate分子量1010、535 ポリメチルメタクリレート
 検出器:UV(254nm)検出器
・成形性
 前記《試験片の作製》で多目的試験片タイプA1(4mm厚)を作製した際に、試験片にヒケ及びボイドが見られなくなり、かつ金型からの離型がスムーズになされる最短の冷却時間を設定した。冷却時間から、下記基準で評価した。「A」及び「B」を合格とし、「C」を不合格とした。
〔評価基準〕
 A:冷却時間が10秒以内
 B:冷却時間が10秒超15秒以内
 C:冷却時間が15秒超
・難燃性
 UL-94規格の規定に準じて難燃性の評価を行った。
 日精樹脂工業株式会社製の射出成形機(型締力:80トン、スクリュー径:φ26mm)を使用した。実施例及び比較例で得られたポリアミド組成物を用いて、ポリアミドの融点よりも20~30℃高いシリンダー温度とし、実施例1~9、11及び比較例1~3、5のポリアミド組成物は金型温度140℃の条件下で、実施例10及び比較例4のポリアミド組成物は金型温度170℃の条件下で、Tランナー金型を用いてポリアミド組成物を成形した。厚さ0.75mm、幅13mm、長さ125mmの試験片を得た。
 次いで、得られた試験片の上端をクランプで止めて試験片を垂直に固定し、下端に高さ20±1mmの青い所定の炎を10秒間当てて離し、試験片の燃焼時間(1回目)を測定した。消火したら直ちに再び下端に炎を当てて離し、試験片の燃焼時間(2回目)を測定した。5片について同じ測定を繰り返し、1回目の燃焼時間のデータ5個と、2回目の燃焼時間のデータ5個の、計10個のデータを得た。10個のデータの合計をT、10個のデータのうち最大値をMとし、下記評価基準に従って評価した。
 また、接炎中のドリップの有無を目視にて確認した。
〔評価基準〕
 V-0:Tが50秒以下かつMが10秒以下で、クランプまで燃え上がらず、炎のついた溶融物が落ちても12インチ下の綿に着火しなかった。
 V-1:Tが250秒以下かつMが30秒以下で、クランプまで燃え上がらず、炎のついた溶融物が落ちても12インチ下の綿に着火しなかった。
 V-2:Tが250秒以下かつMが30秒以下で、クランプまで燃え上がらず、炎のついた溶融物が落ちて12インチ下の綿に着火した。
 X:前記UL-94のいずれの評価基準も満たさない場合。
・耐ブリスタ性
 住友重機械工業株式会社製の射出成形機(型締力:18トン、スクリュー径:φ18mm)を使用した。実施例及び比較例で得られたポリアミド組成物を用いて、ポリアミドの融点よりも20~30℃高いシリンダー温度とした。実施例1~9、11及び比較例1~3、5のポリアミド組成物は金型温度140℃の条件下で、実施例10及び比較例4のポリアミド組成物は金型温度170℃の条件下で、Tランナー金型を用いてポリアミド組成物を成形(射出成形)した。長さ30mm、幅10mm、厚さ1mmの試験片(シート)を作製した。
 得られた試験片を温度85℃、相対湿度85%の条件で168時間静置した。その後、赤外線加熱炉(山陽精工株式会社製、SMTスコープ)を用いて、試験片に対してリフロー試験を行った。リフロー試験では25℃から60秒をかけて150℃まで昇温し、その後90秒をかけて180℃まで昇温し、さらに60秒をかけてピーク温度まで昇温してピーク温度で20秒間保持した。
 リフロー試験は、ピーク温度を250℃から270℃まで10℃刻みで変化させて行った。リフロー試験終了後、試験片の外観を目視にて観察した。試験片が溶融せず、かつ、ブリスタが発生しない限界の温度を耐ブリスタ温度とし、耐ブリスタ温度が260℃を超える場合を「A」、耐ブリスタ温度が250℃以上260℃以下であった場合を「B」、耐ブリスタ温度が250℃未満であった場合を「C」とすることで、耐ブリスタ性の指標とした。「A」、「B」であれば実用上差し支えないレベルである。
[実施例1]
 テレフタル酸5400g、2-エチル-1,7-ヘプタンジアミン、2-プロピル-1,6-ヘキサンジアミン及び2-メチル-1,8-オクタンジアミンの混合物[4/1/95(モル比)]5260g、安息香酸121g、ジ亜リン酸ナトリウム一水和物10g(原料の総質量に対して0.1質量%)及び蒸留水4.8リットルを内容積40リットルのオートクレーブに入れ、窒素置換した。150℃で30分間撹拌した後、2時間かけてオートクレーブ内部の温度を220℃に昇温した。この時、オートクレーブ内部の圧力は2MPaまで昇圧した。そのまま5時間、圧力を2MPaに保ちながら加熱を続け、水蒸気を徐々に抜いて反応させた。次に、30分かけて圧力を1.3MPaまで下げ、さらに1時間反応させて、プレポリマーを得た。得られたプレポリマーを、100℃、減圧下で12時間乾燥し、2mm以下の粒径まで粉砕した。これを230℃、13Pa(0.1mmHg)にて10時間固相重合し、融点が282℃のポリアミド(A)を得た。
 得られたポリアミド(A)、ハロゲン系難燃剤(B)として、グリシジルメタクリレート変性ポリ臭素化スチレン(Chemtura社製「Firemaster CP-44HF」、臭素含有量64%)、難燃助剤(D)として、三酸化スズ亜鉛(William Blythe社製「Flamtard S」、カタログ値:平均粒径1.4~2.2μm)、熱安定剤として、フェノール系熱安定剤(住友化学株式会社製「SUMILIZER GA-80」)、滑剤として、低分子量ポリオレフィン滑剤(三井化学株式会社製「HiWAX 200P」)、結晶核剤として、タルク(林化成株式会社製「ミクロンホワイト#5000S」)、ドリップ防止剤として、フッ素樹脂粉末(三井・ケマーズフロロプロダクツ株式会社製「テフロン(登録商標) 640J」)を二軸押出機(株式会社プラスチック工学研究所製「BTN-32」)の上流部ホッパーからフィードするとともに、充填剤(C)として、ガラス繊維(セントラルグラスファイバー株式会社製「ECS03-615」、断面形状:円形、カタログ値:平均繊維長3mm、平均繊維径9μm)を押出機下流側のサイドフィード口から表1に示す割合となるようにフィードし、溶融混練して押出し、冷却及び切断することで、ペレット状のポリアミド組成物を得た。
[実施例2]
 ジアミン単位(X)を2-エチル-1,7-ヘプタンジアミン、2-プロピル-1,6-ヘキサンジアミン及び2-メチル-1,8-オクタンジアミンの混合物[5.6/0.4/94(モル比)]としたこと以外は実施例1と同様にして、融点が283℃のポリアミド(A)およびポリアミド組成物を得た。
[実施例3]
 ジアミン単位(X)を2-エチル-1,7-ヘプタンジアミン、2-プロピル-1,6-ヘキサンジアミン及び2-メチル-1,8-オクタンジアミンの混合物[12/3/85(モル比)]としたこと以外は実施例1と同様にして、融点が262℃のポリアミド(A)およびポリアミド組成物を得た。
[実施例4]
 ジアミン単位(X)を2-エチル-1,7-ヘプタンジアミン、2-プロピル-1,6-ヘキサンジアミン及び2-メチル-1,8-オクタンジアミンの混合物[16/4/80(モル比)]としたこと以外は実施例1と同様にして、融点が258℃のポリアミド(A)およびポリアミド組成物を得た。
[実施例5]
 ジアミン単位(X)を2-エチル-1,7-ヘプタンジアミン、2-プロピル-1,6-ヘキサンジアミン、2-メチル-1,8-オクタンジアミン及び1,9-ノナンジアミンの混合物[4/1/20/75(モル比)]としたこと以外は実施例1と同様にして、融点が288℃のポリアミド(A)およびポリアミド組成物を得た。
[実施例6]
 組成を表1に示す割合としたこと以外は実施例5と同様にして、ポリアミド組成物を得た。
[実施例7]
 ジアミン単位(X)として、2-エチル-1,7-ヘプタンジアミン、2-プロピル-1,6-ヘキサンジアミン、2-メチル-1,8-オクタンジアミン及び1,9-ノナンジアミンの混合物[4/1/20/75(モル比)]5380gを用いることにより、末端アミノ基量及び末端カルボキシ基量を表1に示す含有量としたこと以外は、実施例1と同様にして、ポリアミド(A)およびポリアミド組成物を得た。
[実施例8]
 ジアミン単位(X)として、2-エチル-1,7-ヘプタンジアミン、2-プロピル-1,6-ヘキサンジアミン、2-メチル-1,8-オクタンジアミン及び1,9-ノナンジアミンの混合物[4/1/20/75(モル比)]5540gを用いることにより、末端アミノ基量及び末端カルボキシ基量を表1に示す含有量としたこと以外は、実施例1と同様にして、ポリアミド(A)およびポリアミド組成物を得た。
[実施例9]
 ジアミン単位(X)を2-エチル-1,7-ヘプタンジアミン、2-メチル-1,8-オクタンジアミン及び1,9-ノナンジアミンの混合物[0.5/14.5/85(モル比)]としたこと以外は実施例1と同様にして、融点が307℃のポリアミド(A)およびポリアミド組成物を得た。
[比較例1]
 実施例5で得られたポリアミド(A)をそのまま評価に用いた。
[比較例2]
 ジアミン単位(X)を2-メチル-1,8-オクタンジアミン単位のみとしたこと以外は実施例1と同様にして、融点が285℃のポリアミドおよびポリアミド組成物を得た。
[比較例3]
 ジアミン単位(X)を2-メチル-1,8-オクタンジアミン及び1,9-ノナンジアミンの混合物[15/85(モル比)]としたこと以外は実施例1と同様にして、融点が306℃のポリアミドおよびポリアミド組成物を得た。
[実施例10]
 ジカルボン酸単位(Y)を2,6-ナフタレンジカルボン酸7027gとしたこと以外は実施例5と同様にして、融点が283℃のポリアミド(A)およびポリアミド組成物を得た。
[比較例4]
 ジアミン単位(X)を2-メチル-1,8-オクタンジアミン及び1,9-ノナンジアミンの混合物[15/85(モル比)]としたこと以外は実施例10と同様にして、融点が294℃のポリアミドおよびポリアミド組成物を得た。
[実施例11]
 ジアミン単位(X)を2-エチル-1,7-ヘプタンジアミン、2-プロピル-1,6-ヘキサンジアミン、2-メチル-1,8-オクタンジアミン及び1,10-デカンジアミンの混合物[4/1/20/75(モル比)]としたこと以外は実施例1と同様にして、融点が289℃のポリアミド(A)およびポリアミド組成物を得た。
[比較例5]
 ジアミン単位(X)を2-メチル-1,8-オクタンジアミン及び1,10-デカンジアミンの混合物[20/80(モル比)]としたこと以外は実施例1と同様にして、融点が301℃のポリアミドおよびポリアミド組成物を得た。
 実施例及び比較例の組成とそれらの測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記の表1で用いた化合物に関する略号とその化合物内容は、次の表2に示すとおりである。また、表1中の「(EHDA+PHDA)」は、ジアミン単位(X)中のEHDA及びPHDAの配合量(mol%)の合計を表す。
Figure JPOXMLDOC01-appb-T000002
 表1から、実施例1~9と比較例2、3、実施例10と比較例4、実施例11と比較例5を比べると、実施例は結晶化速度が速く、射出成形時の冷却時間が短いことがわかる。すなわち、同じジカルボン酸単位(Y)を含むポリアミドにおいて、ジアミン単位(X1)として2-エチル-1,7-ヘプタンジアミン及び2-プロピル-1,6-ヘキサンジアミンを含んでいると、結晶化速度が速く、生産性に優れることがわかる。また、分岐状脂肪族ジアミンとして、分岐構造がメチル基である2-メチル-1,8-オクタンジアミンのみを含む比較例2~5と比較して、実施例は2-エチル-1,7-ヘプタンジアミン及び2-プロピル-1,6-ヘキサンジアミンを含んでいても、融点及びガラス転移温度の低下は少なく、耐熱性に優れていることがわかる。
 したがって、実施例のポリアミド組成物は、ポリアミド(A)を含むことにより、ポリアミド(A)の優れた物性を維持しつつ、成形性及び耐加水分解性に優れることがわかる。また、実施例のポリアミド組成物は、ハロゲン系難燃剤(B)を含むことで高い難燃性を示しており、耐ブリスタ性にも優れている。
 上記のように、本発明のポリアミド組成物は、ポリアミド(A)の優れた物性を維持しつつ、優れた難燃性、成形性及び耐加水分解性を有するものである。したがって、本発明のポリアミド組成物は、耐熱性、難燃性および耐加水分解性が必要とされる各種成形品として用いることができ、かつ成形品を製造する際の生産性を向上させることが可能となり、非常に有用である。
 なお、本出願は、2021年12月20日付けで出願された日本特許出願(特願2021-206193)に基づいており、その全体が引用により援用される。

Claims (20)

  1.  ジアミン単位(X)及びジカルボン酸単位(Y)を含むポリアミド(A)と、ハロゲン系難燃剤(B)とを含有し、
     前記ジアミン単位(X)は、ジアミン単位(X1)を0.1モル%以上36モル%未満含み、
     前記ジアミン単位(X1)が、炭素数が6~10であって、かつ、任意の一方のアミノ基が結合した炭素原子を1位とした際に、2位の炭素原子に炭素数が2又は3のアルキル基が結合した脂肪族ジアミンに由来する構成単位である、ポリアミド組成物。
  2.  前記ジアミン単位(X1)が、炭素数が9である前記脂肪族ジアミンに由来する構成単位である、請求項1に記載のポリアミド組成物。
  3.  前記ジアミン単位(X1)が、2-エチル-1,7-ヘプタンジアミン及び2-プロピル-1,6-ヘキサンジアミンからなる群より選ばれる、少なくとも1種のジアミンに由来する構成単位である、請求項1又は2に記載のポリアミド組成物。
  4.  前記ジアミン単位(X)は、前記ジアミン単位(X1)を1~20モル%含む、請求項1~3のいずれか1項に記載のポリアミド組成物。
  5.  前記ジアミン単位(X)は、前記ジアミン単位(X1)以外のジアミン単位であるジアミン単位(X2)を更に含み、前記ジアミン単位(X2)が、直鎖状脂肪族ジアミン、前記ジアミン単位(X1)を構成する前記脂肪族ジアミン以外の分岐状脂肪族ジアミン、脂環式ジアミン、及び芳香族ジアミンからなる群より選ばれる、少なくとも1種のジアミンに由来する構成単位である、請求項1~4のいずれか1項に記載のポリアミド組成物。
  6.  前記ジアミン単位(X2)が、直鎖状脂肪族ジアミン及び分岐鎖がメチル基である分岐状脂肪族ジアミンからなる群より選ばれる、少なくとも1種のジアミンに由来する構成単位である、請求項5に記載のポリアミド組成物。
  7.  前記ジアミン単位(X2)が、炭素数6~10のジアミンに由来する構成単位である、請求項5又は6に記載のポリアミド組成物。
  8.  前記ジアミン単位(X2)が、1,6-ヘキサンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、2-メチル-1,5-ペンタンジアミン、及び2-メチル-1,8-オクタンジアミンからなる群より選ばれる、少なくとも1種のジアミンに由来する構成単位である、請求項5~7のいずれか1項に記載のポリアミド組成物。
  9.  前記ジカルボン酸単位(Y)が、脂肪族ジカルボン酸、芳香族ジカルボン酸、及び脂環式ジカルボン酸からなる群より選ばれる、少なくとも1種のジカルボン酸に由来する構成単位を含む、請求項1~8のいずれか1項に記載のポリアミド組成物。
  10.  前記ジカルボン酸単位(Y)が、テレフタル酸、シクロヘキサンジカルボン酸、及びナフタレンジカルボン酸からなる群より選ばれる、少なくとも1種のジカルボン酸に由来する構成単位を含む、請求項1~9のいずれか1項に記載のポリアミド組成物。
  11.  前記ハロゲン系難燃剤(B)が、臭素系難燃剤(B1)である、請求項1~10のいずれか1項に記載のポリアミド組成物。
  12.  前記臭素系難燃剤(B1)が、臭素化ポリスチレンである、請求項11に記載のポリアミド組成物。
  13.  充填剤(C)をさらに含有する、請求項1~12のいずれか1項に記載のポリアミド組成物。
  14.  前記ポリアミド(A)100質量部に対して、前記充填剤(C)を0.1質量部以上200質量部以下含有する、請求項13に記載のポリアミド組成物。
  15.  難燃助剤(D)をさらに含有する、請求項1~14のいずれか1項に記載のポリアミド組成物。
  16.  前記ポリアミド(A)100質量部に対して、前記難燃助剤(D)を1質量部以上30質量部以下含有する、請求項15に記載のポリアミド組成物。
  17.  前記難燃助剤(D)が、三酸化二アンチモン、四酸化二アンチモン、五酸化二アンチモン、アンチモン酸ナトリウム、オルソリン酸メラミン、ピロリン酸メラミン、ホウ酸メラミン、ポリリン酸メラミン、酸化アルミニウム、水酸化アルミニウム、ホウ酸亜鉛、及び三酸化スズ亜鉛からなる群より選ばれる少なくとも1種である、請求項15又は16に記載のポリアミド組成物。
  18.  請求項1~17のいずれか1項に記載のポリアミド組成物からなる成形品。
  19.  電気部品、又は、電子部品である、請求項18に記載の成形品。
  20.  表面実装部品である、請求項18又は19に記載の成形品。
PCT/JP2022/046619 2021-12-20 2022-12-19 ポリアミド組成物 WO2023120459A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023569420A JPWO2023120459A1 (ja) 2021-12-20 2022-12-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021206193 2021-12-20
JP2021-206193 2021-12-20

Publications (1)

Publication Number Publication Date
WO2023120459A1 true WO2023120459A1 (ja) 2023-06-29

Family

ID=86902655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046619 WO2023120459A1 (ja) 2021-12-20 2022-12-19 ポリアミド組成物

Country Status (2)

Country Link
JP (1) JPWO2023120459A1 (ja)
WO (1) WO2023120459A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117209752A (zh) * 2023-10-16 2023-12-12 川化集团有限责任公司 一种无磷无卤阻燃型聚酰胺及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241692A (en) * 1975-09-26 1977-03-31 Dynamit Nobel Ag Clear polyamide
JPH03140327A (ja) * 1989-10-20 1991-06-14 Huels Ag アルコールおよび煮沸水に対し安定な成形材料
WO1993000386A1 (en) * 1991-06-21 1993-01-07 E.I. Du Pont De Nemours And Company Copolyadipamide containing ethyltetramethyleneadipamide units and products prepared therefrom
JP2011080046A (ja) * 2009-09-09 2011-04-21 Asahi Kasei Chemicals Corp ポリアミド組成物、並びにポリアミド組成物を含む成形品及び電気部品
WO2020040282A1 (ja) * 2018-08-24 2020-02-27 株式会社クラレ ポリアミド及びポリアミド組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241692A (en) * 1975-09-26 1977-03-31 Dynamit Nobel Ag Clear polyamide
JPH03140327A (ja) * 1989-10-20 1991-06-14 Huels Ag アルコールおよび煮沸水に対し安定な成形材料
WO1993000386A1 (en) * 1991-06-21 1993-01-07 E.I. Du Pont De Nemours And Company Copolyadipamide containing ethyltetramethyleneadipamide units and products prepared therefrom
JP2011080046A (ja) * 2009-09-09 2011-04-21 Asahi Kasei Chemicals Corp ポリアミド組成物、並びにポリアミド組成物を含む成形品及び電気部品
WO2020040282A1 (ja) * 2018-08-24 2020-02-27 株式会社クラレ ポリアミド及びポリアミド組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117209752A (zh) * 2023-10-16 2023-12-12 川化集团有限责任公司 一种无磷无卤阻燃型聚酰胺及其制备方法和应用

Also Published As

Publication number Publication date
JPWO2023120459A1 (ja) 2023-06-29

Similar Documents

Publication Publication Date Title
TW593542B (en) Polyamide composition
JP7356432B2 (ja) ポリアミド及びポリアミド組成物
JP7141016B2 (ja) ポリアミド組成物
JP6377135B2 (ja) ポリアミド
JP7141017B2 (ja) ポリアミド組成物
WO2020040283A1 (ja) ポリアミド組成物
WO2023120459A1 (ja) ポリアミド組成物
JP2000204239A (ja) ポリアミド組成物
JP7141015B2 (ja) ポリアミド組成物
WO2023120460A1 (ja) ポリアミド組成物
WO2023120458A1 (ja) ポリアミド組成物
WO2023120456A1 (ja) ポリアミド組成物
JP2024095449A (ja) ポリアミド成形体
WO2023120461A1 (ja) ポリアミド組成物
US11898035B2 (en) Polyamide composition, and molded article including same
US11970612B2 (en) Polyamide composition and molded product composed of said polyamide composition
WO2023120457A1 (ja) ポリアミド組成物
WO2023120463A1 (ja) ポリアミド組成物及び成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911161

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023569420

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022911161

Country of ref document: EP

Effective date: 20240722