WO2024048430A1 - ワクチン製剤及びその製造方法、並びに魚類細菌感染症の予防方法 - Google Patents

ワクチン製剤及びその製造方法、並びに魚類細菌感染症の予防方法 Download PDF

Info

Publication number
WO2024048430A1
WO2024048430A1 PCT/JP2023/030635 JP2023030635W WO2024048430A1 WO 2024048430 A1 WO2024048430 A1 WO 2024048430A1 JP 2023030635 W JP2023030635 W JP 2023030635W WO 2024048430 A1 WO2024048430 A1 WO 2024048430A1
Authority
WO
WIPO (PCT)
Prior art keywords
fish
bacteria
iron
bacterial
vaccine
Prior art date
Application number
PCT/JP2023/030635
Other languages
English (en)
French (fr)
Inventor
宏明 金辻
Original Assignee
滋賀県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 滋賀県 filed Critical 滋賀県
Publication of WO2024048430A1 publication Critical patent/WO2024048430A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/07Bacillus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Definitions

  • the present invention relates to vaccine preparations, methods for producing the same, methods for preventing fish bacterial infections, and the like. More specifically, an isolated bacterial strain that hardly forms a biofilm (BF, hereinafter abbreviated as "BF") is treated with a low concentration of a bacterial density-sensing substance, a stress substance, or a metal ion and a bacterial density-sensing substance.
  • Components containing BF structures such as polysaccharides, nucleic acids, proteins, density-sensing substances, extracellular polymer substrates, obtained by forming BF again in a liquid medium and culturing in the medium, including substances that adsorb BF.
  • EPS Extracellular Polymeric Substances: EPS, hereinafter abbreviated as "EPS"
  • membrane vesicles produced inside and outside of BF under BF formation conditions, substances contained inside the vesicles, and produced/excreted during the BF formation, maturation, and disintegration process.
  • components, bacterial cells on/in the BF including adherent cells, membrane-forming cells, persistent cells, proliferating cells, stationary cell phase cells, dead cells and components eluted within the dead cells), etc.
  • vaccine preparations for use and injection methods for producing vaccine preparations for immersion and injection, etc.
  • Aquaculture is widely popular because it can increase yields and provide a stable supply at relatively low cost.
  • diseases are likely to occur due to cost-oriented cultivation methods such as overcrowding, and large amounts of antibacterial agents are used to deal with these diseases. Therefore, it is essential to use vaccines to prevent the occurrence of diseases.
  • antibacterial agents are an effective way to deal with diseases in fish farming.
  • sulfisozole (Patent Document 1) and florfenicol have been approved as veterinary drugs as antibacterial agents that are effective against cold water disease in sweetfish. It is used during outbreaks of cold water disease.
  • aquaculture organisms are raised in numbers of tens to hundreds of thousands of fish, large amounts of antibacterial agents are used, and if death cannot be alleviated even after administering the above therapeutic agents, overdosing beyond the prescribed dosage may occur. Cases have occurred that have led to long-term administration for a period longer than specified in the directions for use.
  • a cold water disease vaccine in a dosage form that activates cold water disease bacteria (Patent Document 5), a dosage form of a cold water disease vaccine in which a collagenase solution, which is a toxoid produced by cold water disease bacteria, and FKC of cold water disease bacteria are immersed as a vaccine (Patent Document 6), and an oral cold water disease vaccine.
  • Vaccines in the form of administration (Patent Document 7) and vaccines in the form of immersion in an enzyme-treated solution that improves antigen uptake by treating the culture solution with enzymes have also been invented (Patent Documents 8 and 9).
  • none of the vaccines has been put on the market to date due to problems such as inability to obtain sufficient efficacy by immersion, injection, or oral methods.
  • ingredients derived from mammalian muscle and organ extracts including various enzymes
  • casein casein
  • whey whey
  • soybeans whey
  • soybeans grains
  • yeast ingredients obtained by enzymatic digestion of these ingredients
  • Commercially available media mainly , are commonly used, or ⁇ in-house mixed media'' prepared by mixing multiple commercially available media at a predetermined ratio are used to conduct research on isolated and cultured fish disease bacteria. It is being done.
  • the various fish disease bacteria that can be isolated and/or cultivated using the above-mentioned medium can be said to be strains isolated using the above-mentioned medium, and these isolated strains can be used to cause bacterial pathogens for diseases of aquatic organisms.
  • immunostimulating substances such as oil adjuvants, aluminum hydroxide, aluminum phosphate, fucoidan, alums, killed bacteria of tuberculosis, Gerbu adjuvant, etc.
  • Vaccine development using FKC according to the method is thought to be one of the reasons for the delay.
  • vaccines for fish that are already on the market are limited to streptococcisis for Gram-positive bacteria, and for nodulariasis and Vibrio disease belonging to the Vibrionaceae family for Gram-negative bacteria, and there are no vaccines for bacterial diseases of fish other than these. not exist.
  • most of the vaccines developed for bacterial diseases for fish that have not yet been marketed are based on bacterial cells isolated and normally cultured in commercially available media, or the effectiveness is improved by including adjuvants. Therefore, in order to develop a fish vaccine that has not been commercially available, it is necessary to develop a new culture medium that can produce and contain other antigen groups that cannot be obtained by normal culture when culturing fish disease bacteria. Vaccines that contain many new protective antigens are thought to be highly effective.
  • the present invention provides a culture method using a new medium that makes it possible to produce a large amount of infection-protective antigens against bacteria that cause fish bacterial infections, and a more effective immersion and injection vaccine against fish bacterial infections using this culture method. The purpose is to provide
  • the present inventor used a bacterial strain isolated from a fish bacterial infection-causing bacterium to inoculate and culture it in a medium containing a low concentration of a bacterial density sensing substance, to culture it by adding a stress substance, and to culture it by adding a stress substance.
  • BF can be cultured by adding metal ions, by inoculating and culturing in a medium containing a substance that adsorbs interbacterial density sensing substances, and by culturing in a medium to which any or all of these are added.
  • components and bacterial cells produced/excreted during the formation, maturation, and decay processes of BF such as polysaccharides, nucleic acids, proteins, interbacterial density sensing substances, EPS, and small membranes produced inside and outside of BF under BF formation conditions.
  • BF is formed by adding a low concentration of a bacterial density sensing substance or a stress substance to the medium, or an excess bacterial density sensing substance that promotes BF formation is adsorbed to a low concentration.
  • FKC is a causative agent of a fish bacterial infection and is ineffective when administered as an injection or immersion vaccine (including those using adjuvants) using conventional culture
  • FKC may be cultured in a newly developed medium.
  • the antigen component developed in the present invention can contain various antigens, including those that cannot be obtained through normal culture. These are the antigens that protect against infection, as they are composed of those secreted during the bacterial and stationary phases and those that have different properties (SR Schooling et. al., J. Bacteriol. 5945-5947 (2006)). In some cases, it may be applicable to vaccine development for other fish bacterial diseases.
  • the method of using FKC produced by culturing in a newly developed medium as an antigen is a method using almost the same procedure as normal culture and a medium made of inexpensive materials. Labor and costs remain almost the same. Since this antigen can be used as a simple and low-stress immersion vaccine, the present invention also makes it possible to effectively administer vaccines to small individuals such as small fish and fry, which has been difficult with injection methods. Become.
  • the newly developed culture medium of the present invention allows bacteria to form BF easily, in large quantities, and at low cost in a flask. It contributes as a method for research on industrial applications, etc.
  • the present invention provides the following vaccine formulations, methods for producing the same, and methods for preventing fish bacterial infections.
  • a dipping or injectable vaccine preparation used to prevent fish bacterial infections consisting of biofilm (BF) derived from fish bacterial infections, components produced during the formation, maturation, and disintegration process of BF, and bacterial cells.
  • a vaccine preparation containing at least one member selected from the group as an active ingredient.
  • the vaccine preparation according to [1] wherein the bacterial cells are selected from the group consisting of inactivated bacteria and killed bacteria that cause fish bacterial infections.
  • a method for producing a dipping or injectable vaccine preparation used for the prevention of fish bacterial infections which involves adding a bacterial density sensing substance to bacteria that causes fish bacterial infections, culturing them, and forming and maturing biofilms and/or biofilms.
  • a method for manufacturing a vaccine formulation which is characterized by forming components produced during the disintegration process.
  • the method for producing a vaccine formulation according to [4], wherein the substance that adsorbs the bacterial density sensing substance is activated carbon.
  • a method for preventing fish bacterial infections which includes biofilms derived from bacteria causing fish bacterial infections, components produced during biofilm formation, maturation, and disintegration processes, and/or inactivated bacteria of bacteria causing fish bacterial infections.
  • a method for preventing bacterial infections in fish comprising applying or injecting a solution containing killed bacteria to fish.
  • the prevention method according to [6] wherein the bacteria causing fish bacterial infections is a bacteria that can be isolated and cultured in a general bacterial isolation and culture medium.
  • the preventive method according to [6] or [7] wherein the bacteria causing fish bacterial infections is a bacterium belonging to the phylum Bacteroidetes, to which cold water disease and cold water disease bacteria belong.
  • the method for preventing fish bacterial infections according to [6] wherein the bacteria causing fish bacterial infections are inactivated bacteria.
  • the present invention enables effective vaccine administration against fish bacterial infections by injection and immersion methods.
  • Example 1 the cold water bacterium SG150804 strain was used, and a commercially available interbacterial density sensing substance C4-AHL was added to the culture solution, and the biofilm formation state was visually confirmed when cultured in a 24-well plate for 24 hours.
  • C4-AHL N-butyryl-DL-homoserine lactone A graph comparing the amount of biofilm formed when two strains of cold water bacterium were used in Example 1 and cultured for 24 hours with a bacterial density-sensing substance added to the medium, compared to when cultured normally.
  • Example 2 A graph comparing the amount of biofilm formed when two strains of cold water bacterium were used in Example 1 and cultured for 48 hours with a bacterial density sensing substance added to the medium, compared to when cultured normally.
  • Example 2 in order to verify whether a biofilm is formed when cold water bacterium is cultured under stress, ethanol was added as a stress substance to the culture medium, and the culture solution was stained with crystal violet. A photograph showing the morphology when it was confirmed that the film was formed.
  • Example 3 the attack of sweetfish from Lake Biwa was immunized by immersing it in a solution in which cold water bacterium was cultured and inactivated in a medium containing a bacterial density-sensing substance in an amount that promoted biofilm formation.
  • Example 4 A graph showing the survival rate.
  • Example 4 a culture solution in which cold water bacterium was cultured in a medium containing iron ions and activated carbon powder was stained with crystal violet, and the morphology was confirmed to have artificially formed a biofilm.
  • photograph. A photograph showing whether or not the bacterial mass forming a biofilm in the cold water bacterium culture solution in FIG. 4A in Example 4 had an outer membrane, which is evidence of biofilm formation.
  • Example 5 a graph showing the survival rate of sweetfish from Lake Biwa after being immunized by immersing them in a solution in which cold water disease bacteria was cultured and inactivated in a medium containing iron ions and activated carbon powder. .
  • Example 7 a solution in which cold water bacterium was cultured and inactivated in a medium containing iron ions and activated carbon powder, and a solution in which it was normally cultured and inactivated were mixed with an oil-based adjuvant and injected into sweetfish from Lake Biwa.
  • the present invention provides a medium from which a large amount of BF, components produced/excreted during the formation, maturation, and disintegration processes of BF, and bacterial bodies of bacteria causing fish bacterial infections can be obtained in large quantities, and cultured in this medium. It includes all immersion and injection vaccine preparations containing any of the above-obtained products as an active ingredient.
  • the interbacterial density sensing substance is not particularly limited as long as it controls the formation of BF, and a wide variety of known substances can be used.
  • C4 butyryl: C4, hereinafter abbreviated as “C4”
  • HSL Homoserine Lactone: HSL
  • C5 N-3-Oxo- Pentanoyl
  • C5 N-3-Oxo- Pentanoyl
  • C5 N-3-Oxo-Hexanoil
  • C6 N-3-Oxo-Hexanoil
  • Heptanoil: C7 hereinafter abbreviated as "C7"
  • C8 N3-Oxo-Octanoil
  • the conditions for culturing in a medium containing the above-mentioned bacterial density sensing substance are such that any of BF, components produced/excreted during the formation/maturation/decay process of BF, and bacterial antigens are sufficiently produced;
  • Known conditions can be adopted, but there are no particular limitations, but the concentration at which BF is formed and its retention period are investigated in advance for each bacterial density sensing substance, bacterial species, and strain type, and culture is performed under those conditions.
  • a sufficient amount of antigen can be obtained by
  • the concentration of the bacterial density sensing substance in the medium is 0.00001 to 0.1 ⁇ M.
  • the antigen component can be sufficiently obtained by adding C4-AHL to the medium to a concentration of 0.01 ⁇ M and culturing with shaking at 120 rpm for 24 hours. Good quality can be achieved.
  • the conditions for adding stress substances to the culture medium and culturing should be such that sufficient production of BF, components produced/excreted during the formation, maturation, and decay processes of BF, and bacterial antigens is adopted, and known conditions are adopted. Although not particularly limited, it is possible to obtain a sufficient amount of antigen by investigating in advance the concentration at which BF is formed and its retention period for each stress substance, bacterial species, and strain type, and culturing under those conditions. can.
  • the stress substance is not particularly limited as long as it is a component that forms BF, and a wide variety of known substances can be used.
  • antibacterial agents such as ⁇ -lactams, aminoglycosides, lincomycins, chloramphenicols, macrolides) , ketolides, polypeptides, glycopeptides, tetracyclines, peptides, nucleic acids, polyenes), and semi-synthetic antibiotics such as doxycycline, minocycline, etc.
  • synthetic antibacterial drugs include those broadly classified into pyridonecarboxylic acids (quinolones), new quinolones, oxazolidinones, and sulfa drugs.
  • bacterial toxins examples include substances related to inflammation derived from nuclear organisms (for example, prostaglandins, histamine, lysozyme, leukotrienes, antibodies, complement, etc.), water-soluble substances such as vitamins, metal ions, and preferably iron ions. Alternatively, a mixture of these may be used.
  • cytokines e.g., interleukins, lymphokines, monokines, chemokines, etc.
  • eukaryotic intercellular communication substances examples include substances related to inflammation derived from nuclear organisms (for example, prostaglandins, histamine, lysozyme, leukotrienes, antibodies, complement, etc.), water-soluble substances such as vitamins, metal ions, and preferably iron ions. Alternatively, a mixture of these may be used.
  • the conditions for culturing in a medium containing a substance that serves as an adhesion substrate that adsorbs metal-containing substances (ion bodies) and interbacterial density-sensing substances and increases the formation area of BF are as follows: It is sufficient that the produced/excreted components and bacterial antigens are sufficiently produced, and known conditions can be adopted, including, but not limited to, the type of metal ions and the inter-bacterial density-sensing substance that is adsorbed and the BF. For each type of bacteria and strain, the concentration at which BF is formed and its retention period are investigated in advance for the substance that becomes the adhesion substrate that increases the formation area of BF, and the antigen can be sufficiently obtained by culturing under those conditions. Can be done.
  • iron (III) chloride As the metal ion and powdered activated carbon powder as the substance that becomes the adhesion substrate that increases the BF formation area.
  • iron(III) chloride 375 ⁇ L of 2M sodium hydroxide was added to the liquid medium to make it alkaline
  • iron(III) chloride was added to 200 mL of the liquid medium to make it 1 mM
  • 1 g of commercially available activated carbon powder was added to the above medium.
  • the metal ion is not particularly limited as long as it is a component that promotes the formation of BF, and a wide variety of known metal ions can be used.
  • metal or metalloid ions such as lithium, sodium, potassium, beryllium, magnesium, aluminum, calcium, strontium, barium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc
  • examples include ionic bodies such as gallium, germanium, arsenic, selenium, molybdenum, silver, cadmium, indium, tin, antimony, tungsten, platinum, gold, lead, and bismuth. Alternatively, a mixture of these may be used.
  • iron ions more preferably iron ions of iron (III) chloride, may be used. Iron ions can be supplied into the medium by adding iron-containing substances to the medium.
  • the iron-containing substance is not particularly limited as long as it is a component that forms BF, and a wide variety of known substances can be used.
  • iron foil, iron plate, iron powder, iron particles, iron wire, iron sponge, alloys made by mixing iron with other substances, such as carbon steel, stainless steel, chrome-molybdenum steel, high-tensile steel, etc. and also, for example, iron (III ) Acetylacetonate, iron acrylate, iron azide, triiron mononitride, iron yttrium oxide, ethylene diammonium iron sulfate, iron (II) chloride, iron (III) chloride, iron (III) chlorate, perchloric acid Iron (II), iron (II) perchlorate, iron (III) perchlorate, sodium tetracarbonyl iron (-II), nanocarbonyl iron, pentacarbonyl iron, nonacarbonyl diiron, dodecacarbonyl triiron, iron formate (II), iron ammoni
  • iron(III) oxalate potassium iron(III) oxalate, iron triammonium oxalate, iron(II) hydroxide, iron(III) hydroxide, iron(III) hydroxide iron hydride (II), iron (III) hydride, sugar-containing iron oxides (e.g., sucroferric oxyhydroxide, etc.), iron oligosaccharide compounds (e.g., iron dextran, ferric delisomaltose, etc.), iron stearate, Iron (II) nitrate, iron (III) nitrate, iron sulfamate, iron (II) selenide, iron (III) selenide, iron (II) selenate, triiron monocarbide, iron (II) carbonate, iron carbonate ( II), iron tungstate (II), iron titanium (II) oxide, iron titanium (III) oxide, iron ethoxide (III), ferric acid, barium ferrate
  • examples include iron, iron hypophosphite, iron (II) phosphate, iron (III) phosphate, iron (II) pyrophosphate, iron ammonium pyrophosphate, and ores containing these and their powders.
  • Components other than iron-containing substances that promote the formation of BF may be added to the medium, and a wide variety of known components can be used without particular limitation. Examples include substances containing antibacterial agents, other metals, etc. and their ionic forms, ores containing these, their powders, and processed products. Alternatively, a mixture of these may be used.
  • Activated carbon which is used as a substrate for adsorption and attachment of bacterial density-sensing substances for cultured bacteria, is a substance made up mostly of carbon and composed of oxygen, hydrogen, calcium, etc., and has the property of adsorbing various substances.
  • BF can be formed, and a wide variety of known raw materials can be used as the raw material.
  • raw materials include wood, bamboo, coconut shells, walnut shells, sugar cane, grass, coal, petroleum, animal bones, blood, and minerals. Alternatively, a mixture of these may be used.
  • activated carbon As for the type of activated carbon, a wide variety of known activated carbons can be used as long as it is a porous substance that is mostly composed of carbon and consists of oxygen, hydrogen, calcium, etc.
  • the above-mentioned raw materials are carbonized at approximately 200 to 800°C in an oxygen-free state, or charcoal is used, for example, with dehydrating salts or acids (calcium chloride, magnesium chloride, zinc chloride). , phosphoric acid, sulfuric acid, sodium hydroxide, potassium hydroxide, etc.) and activated by firing at approximately 500 to 700°C in the absence of oxygen to remove chemicals (chemical activation method) , activated by firing at 600 to 1,200° C.
  • charcoal for example, the type of charcoal is black charcoal (charcoal that has been carbonized by in-kiln digestion, has a fixed carbon of 75% or more, and has a degree of refinement of 2 to 8 degrees), white charcoal (charcoal that has been carbonized by outside kiln digestion, and has a degree of refinement of 2 to 8 degrees). charcoal with a fixed carbon content of 85% or more and a refining degree of 0 to 3 degrees), Bincho charcoal (white charcoal made by carbonizing Ubamegashi, which contains oak, and a fixed carbon content of 90% or more and a refining degree of 0 to 3 degrees).
  • activated carbon shapes can be used as long as the activated carbon has the property of adsorbing many substances including carbon.
  • lump charcoal carbonized logs that are not split
  • lump charcoal carbonized logs that are split
  • granular lump charcoal crushed lump charcoal
  • powdered charcoal powdered charcoal
  • briquette charcoal raw material that is molded and carbonized charcoal
  • iron(III) chloride is The amount is about 0.1 to 10mM, preferably 1mM, and in the case of activated carbon powder, it is about 1 to 10g/L, preferably 5g.
  • the culture time is about 24 to 96 hours, preferably about 48 hours.
  • the culture temperature is approximately 5 to 23°C, preferably 15°C.
  • the concentration of at least one active ingredient selected from the group consisting of BF and/or components produced during the formation, maturation, and decay processes of BF and bacterial cells in the vaccine of the present invention, cultured under these favorable conditions is as follows: For example, for cold water disease bacteria, the concentration is about 1 to 2 mg/L.
  • the material other than activated carbon is not particularly limited, as long as it is an adhesion substrate component that increases the adsorption of the bacterial density sensing substance and the formation area of BF, and a wide range of known materials can be used. If it is derived from animals, for example, fur, birds, feathers, secretions from insects, bacteria, synthetic fibers from plants, regenerated fibers derived from animals and plants, and minerals. plastics and fibers made from components contained in petroleum, chemically synthesized substances from such components, and artificially chemically synthesized organic substances, or their chemically modified products (carboxylic Examples include powders or filaments of these substances, such as those to which ion exchange groups such as methyl groups and diethylaminoethyl groups are added.
  • plants for example, fruits, seeds, tubers, powder of plant stems, leaves, roots, flowers, etc., germinated seeds, powder of the outer shell, bran, starch.
  • Examples include chemically modified products with added ion exchange groups and haptenized substances. Alternatively, a mixture of two or more of these may be used.
  • the vaccine preparation for immersion or injection obtained by culturing in the above-mentioned medium contains at least one species selected from the group consisting of BF, components produced/excreted during the formation/maturation/disintegration process of BF, and bacterial cells. Contains as an active ingredient.
  • the vaccine formulation for immersion and injection according to the present invention is a vaccine in the form of immersion and injection using BF, components produced/excreted during the formation, maturation, and disintegration process of BF, and bacterial cells as inactivated antigens
  • the culture solution may be prepared using a medium containing any or all of a bacterial density sensing substance, a stress substance, iron ions, and activated carbon powder, or a mixture of these culture solutions may be used.
  • a culture solution obtained by culturing BF, components produced/excreted during the process of formation, maturation, and decay of BF and bacterial cells and subjected to treatments such as purification and concentration may be used.
  • the basic components contained in this medium are not particularly limited and can be widely used as known ones.
  • filtration is performed from a culture solution obtained by culturing a pathogen of fish bacterial infection by the method described above, or a solution obtained by dispersing this culture solution by a known method. Live bacteria can be removed and obtained by known methods such as sterilization.
  • the bacterial cells can be obtained by a known method such as filtration sterilization. can be obtained by removing.
  • the prepared antigen-containing solution may be subjected to physical treatment (ultraviolet irradiation, The antigen can be inactivated by performing treatments such as acid treatment with a weak acid, treatment with chlorine, mercury, etc.
  • formalin is added to the prepared antigen-containing solution at a volume concentration of 0.01-2.0%, more preferably 0.05-1.0%, and the antigen-containing solution is heated at 4-30°C for 1-2.0%. Inactivation with formalin can be performed by sensitizing for 10 days.
  • an inactivating agent such as formalin may be removed by washing with a buffer solution or the like, or a neutralizing agent may be added for neutralization.
  • a solution may be used in which all the bacterial cells and components around the bacterial cells in the culture solution obtained by culturing by the above-mentioned method are lysed by a known method.
  • the immersion or injection vaccine formulation according to the present invention may contain an adjuvant.
  • adjuvants can be used.
  • animal oils squalene, lanolin, etc.
  • vegetable oils palm oil, castor oil, etc.
  • hydrogenated oils anhydrous mannitol/oleate, oleic acid, polybutene, caprylic acid, liquid paraffin, higher fatty acids.
  • examples include toxins, toxin components derived from microorganisms such as Escherichia coli heat-labile toxin, bentonite, muramyl dipeptide derivatives, and interleukins. Alternatively, a mixture of these may be
  • this immersion vaccine preparation may contain buffering agents, tonicity agents, preservatives, antibacterial agents, antioxidants, pH adjusters, dispersants, fragrances, coloring agents, antifoaming agents, etc., depending on the purpose and use. Agents and the like may be added as appropriate.
  • buffers such as citrate, tartrate, acetate, carbonate, trishydroxymethylaminomethane, HEPES, and phosphate.
  • antiseptic agents include chlorobutanol, sorbic acid, phenoxyethanol, benzyl alcohol, phenethyl alcohol, thimerosal, dehydroacetic acid, paraoxybenzoic acid esters, various preservatives, antibiotics, and synthetic antibacterial agents. Agents etc. can be used.
  • antioxidant for example, ascorbic acid, sulfites, erythorbic acid (isoascorbic acid), catechin, tea extract (green tea polyphenol), etc. can be used.
  • pH adjusting agents include acids such as hydrochloric acid, citric acid, acetic acid, carbonic acid, boric acid, phosphoric acid, and sulfuric acid, and alkali metals such as potassium hydroxide, calcium hydroxide, sodium hydroxide, and magnesium hydroxide.
  • alkali metals such as potassium hydroxide, calcium hydroxide, sodium hydroxide, and magnesium hydroxide.
  • hydroxides, alkali metal carbonates or bicarbonates such as sodium carbonate, alkali metal acetates such as sodium acetate, alkali metal citrates such as sodium citrate, bases such as trometamol, diisopropanolamine, monoethanolamine, Ethylenediaminetetraacetic acid (EDTA), etc.
  • EDTA Ethylenediaminetetraacetic acid
  • Suitable examples of the dispersant include sodium carboxymethylcellulose, hydroxypropylmethylcellulose, polysorbate 80, polyvinylpyrrolidone, and the like.
  • Suitable examples of aromatics include citrus flavors of citrus fruits such as oranges, lemons, limes, and grapefruits, fruit flavors of non-citrus fruits such as apples, bananas, grapes, and peaches, milk, cream, butter, etc. milk flavor of dairy products; beverage flavor of beverages such as coffee, cocoa, black tea, and oolong tea; vanilla flavor such as vanilla; mint flavor of peppermint such as peppermint and spearmint; pepper, cinnamon, ginger, and nutmeg.
  • spice flavors such as cloves, nuts flavors such as almonds and peanuts, meat flavors such as beef, pork, and chicken, meat and seafood flavors such as crabs and shrimp, soups, sauces, soy sauce, matsutake mushrooms, Seasoning flavors such as shiitake mushrooms, alcoholic flavors such as liqueurs and cocktails, etc. can be used.
  • colorants include red cabbage pigment, red radish pigment, acid red (red No. 106), annatto pigment, amaranth (red no. 2), allura red AC (red no. 40), anthocyanin pigment, erythrosin (red 3), indigo carmine (Blue No. 2), turmeric pigment, cacao pigment, caramel pigment, carotene pigment, carotenoid pigment, gardenia pigment, kouryan pigment, cochineal pigment, saffron pigment, sunset yellow FCF (yellow No. 5), perilla Pigment, tartrazine (yellow No. 4), butterfly pigment, chili pepper pigment, copper chlorophyll, copper chlorophyllin sodium paprika pigment, fast green FCF (green no.
  • grape skin pigment flavonoid pigment
  • brilliant blue FCF blue no. 1
  • phloxine Red No. 104
  • safflower pigment red malt pigment, purple sweet potato pigment, purple corn pigment, new coccine (Red No. 102), lac pigment, rose bengal (Red No. 105), and the like
  • grape skin pigment flavonoid pigment
  • brilliant blue FCF blue no. 1
  • phloxine Red No. 104
  • safflower pigment red malt pigment
  • purple sweet potato pigment purple corn pigment
  • new coccine Red No. 102
  • lac pigment rose bengal
  • antifoaming agents include dimethicone, simethicone, silicone emulsion, sorbitan sesquioleate, nonionic substances, and the like.
  • this preparation contains auxiliary ingredients such as light-absorbing pigments (riboflavin, adenine, adenosine, etc.) to aid in preservation and efficacy, chelating agents and reducing agents (vitamin C, citric acid, etc.) for stabilization. acid, etc.), carbohydrates (glucose, sucrose, sorbitol, dextran, starch, mannitol, lactose, etc.), casein digest, various vitamins, and the like.
  • auxiliary ingredients such as light-absorbing pigments (riboflavin, adenine, adenosine, etc.) to aid in preservation and efficacy, chelating agents and reducing agents (vitamin C, citric acid, etc.) for stabilization. acid, etc.), carbohydrates (glucose, sucrose, sorbitol, dextran, starch, mannitol, lactose, etc.), casein digest, various vitamins, and the like.
  • light-absorbing pigments riboflavin, a
  • the dosage form of the vaccine preparation can be any known one and is not particularly limited. For example, it may be used as a liquid preparation.
  • this vaccine preparation may be a mixed vaccine preparation with one or more vaccines against other diseases (or one or more antigens related to other diseases).
  • the present invention is a method for preventing bacterial infections in fish using a dipping or injectable vaccine preparation, in which either BF, components produced/excreted during the formation, maturation, and disintegration process of BF, and bacterial cells are used to prevent bacterial infections in fish.
  • the above-mentioned vaccine preparation can be immunized by placing the breeding water in a container, adding the above-mentioned vaccine preparation, and immersing the fish in the solution, or by injecting the fish intraperitoneally. By immunizing the patient with the virus, the infectious disease can be effectively prevented.
  • Fish to which the present invention is applied are not particularly limited as long as they live in water or water bodies.
  • it can be applied to fish raised in aquaculture facilities, aquariums, etc.
  • a preparation in the form of immersion can be applied to small individuals such as small fish and young fish.
  • the method for immersing fish in the solution according to the present invention is not particularly limited and can be widely used.
  • a container is placed in a place where direct sunlight can be avoided around the aquaculture pond, filled with breeding water, and after adding a vaccine preparation for immersion, fish are immersed in the solution for 1 to 120 minutes while ventilation is maintained. Immunization may be performed by returning the fish to the pond.
  • the immersion time can be set as appropriate, taking into consideration the time that has little effect on fish and provides sufficient effects.
  • the number of times of administration is not particularly limited. For example, it may be immersed once to three times at a time, and further immersed multiple times at intervals of 1 to 60 days depending on the size of the target fish, the degree of vaccine effectiveness, etc. Further, the immersion time and the like may be adjusted as appropriate depending on the immersion interval and the number of immersions.
  • immersion may be performed once for 30 to 120 minutes at a predetermined immersion interval, or for a predetermined period of time. Soaking is carried out 2 to 4 times at intervals of 10 to 30 days, more preferably 2 to 4 times at intervals of 14 to 28 days, most preferably 2 to 3 times at intervals of 14 to 21 days. It's okay.
  • the method of immunizing fish by injection can be any known method and is not particularly limited.
  • immunization may be performed by mixing an equal amount of the above-mentioned vaccine preparation with an adjuvant, injecting 10 to 100 ⁇ L into the abdominal cavity of fish that have been anesthetized with a fish anesthetic in advance, and returning the fish to the aquaculture pond.
  • the injection amount can be appropriately set in consideration of an amount that has little influence on fish and is sufficiently effective.
  • the number of injections is not particularly limited. For example, depending on the size of the target fish, the degree of vaccine effectiveness, etc., multiple injections may be given at intervals of 1 to 60 days after the initial immunization.
  • the infectious disease to be prevented in the present invention is not particularly limited as long as it is a bacterial infectious disease that affects fish. That is, it includes a wide range of bacterial infections of fish.
  • a solution obtained from either BF, components produced/excreted during the formation/maturation/disintegration process of BF, or bacterial cells by the culture method using the above-mentioned medium is used as a vaccine to provide an infectious protective antigen that cannot be obtained by normal culture. Since inoculation is carried out by injection or immersion using a solution containing , there is a possibility that more effective and strong immunity will be formed, and it may be highly effective as a vaccine.
  • Bacterial infections of fish include, for example, Edwardsiella septicemia, Edwardsiella tarda infection, Aeromonas salmonicida infection (mass disease), Aeromonas hydrophila infection, Pseudomonas septicemia, whose causative bacteria belong to the Gamma Proteobacteria group. Red spot disease, red mouth disease, serratiasis, vibrio disease, nodular disease, etc. belong to the Bacteroidetes phylum (Flavobacterium genus). Examples include bacterial kidney disease caused by Gram-positive bacteria, nocardiosis, and streptococcosis.
  • FKC made from a strain of the causative bacteria isolated and normally cultured in an in-house compounded medium made from commercially available ingredients has low vaccine efficacy and hardly forms BF. Therefore, the above-mentioned culture medium that can obtain BF, components produced/excreted during the process of forming, maturing, and disintegrating BF, and bacterial cells may be more effective.
  • the present invention is a method for producing a vaccine preparation for immersion or injection used for the prevention of bacterial infections in fish, in which the antigen is BF, the components produced/excreted during the formation, maturation, and disintegration process of BF, and bacterial cells are cultured in liquid. This includes all methods of producing vaccine preparations for immersion or injection, etc., which include the step of obtaining vaccine preparations.
  • Antigens related to the pathogenicity of fish bacterial infections are used as active ingredients, either BF, components produced/excreted during the formation, maturation, and decay processes of BF, or antigen components obtained by culturing using a culture method that allows bacterial cell formation. It is possible to produce dipping and injectable vaccine formulations containing the same.
  • Example 1 in two strains of Flavobacterium cyclophyllum (Flavobacterium cyclophyllum, hereinafter abbreviated as "cold water disease bacteria"), which is the causative agent of Ayu cold water disease, the concentration of the interbacterial density sensing substance was varied from high to high. It was added to the culture medium at a low concentration and cultured to verify whether it would initiate a reaction that re-forms or suppresses BF.
  • cold water disease bacteria Flavobacterium cyclophyllum, hereinafter abbreviated as "cold water disease bacteria”
  • MCY Moded Cytofaga Yeast-Extract: MCY, hereinafter abbreviated as "MCY"
  • MCY Modified Cytofaga Yeast-Extract
  • pH 7.0 pH 7.0
  • SBF Specific Biofilm Formation
  • FIG. 1A is a visual photograph of the SG150804 strain, which was cultured in a 24-well plate by adding it to the medium at a concentration of 10 ⁇ M or 0.01 ⁇ M, before measuring the amount of BF formed.
  • FIG. 1B is a graph showing the amount of BF formed by each strain after 24 hours of culture
  • FIG. 1C is a graph showing the amount of BF formed by each strain after 48 hours of culture.
  • the horizontal axis represents the concentration of C4-AHL
  • the vertical axis represents the amount of BF formation (SBF), respectively.
  • SG150804 represents the results for the SG150804 strain
  • PH0424 represents the results for the PH0424 strain.
  • Figure 1A shows the state of the SG150804 strain after it was cultured in a C4-AHL supplemented medium. After 24 hours, when C4-AHL was added at a high concentration of 10 ⁇ M, the proliferated bacterial cells were dispersed, and when the C4-AHL was added at a low concentration of 0.01 ⁇ M, the bacterial clumps with swollen gaps appeared on the bottom of the 24-well plate. It was also confirmed that there was a space in the gap between the bulges where the bacteria could not be visually observed. In the control plot (non-additive plot), it was confirmed that the grown bacterial cells grew in a spherical shape, and some were not attached to the bottom surface, while others were dispersed.
  • FIG. 1B and FIG. 2C The amount of BF formed by the PH0424 strain is shown in FIG. 1B and FIG. 2C. As shown in Figure 1B, the ability to form BF was suppressed at a high concentration of 10 ⁇ M of C4-AHL after 24 hours, but not promoted at a low concentration, and as shown in Figure 1C, at a high concentration after 48 hours. was maintained, and promotion began at low concentrations of 0.1-0.01 ⁇ M.
  • Example 2 in order to verify whether a biofilm is formed when cold water blight bacteria is cultured under stress, cold water bacterium forms BF when ethanol is added to the medium as a stress substance and cultured. I verified whether or not.
  • FIG. 2 is a photograph in which the culture solution was dropped onto a slide glass, dried naturally, and then stained with 1% crystal violet to prepare a preparation, and the state of BF formation was visualized by microscopic observation.
  • Example 3 a cold water disease strain was cultured in a medium containing a low-concentration interbacterial density sensing substance (C4-AHL: commercially available product) that forms BF, and a solution prepared by inactivating with formalin was added to Lake Biwa.
  • C4-AHL low-concentration interbacterial density sensing substance
  • the preventive effect against cold water disease was verified when immunizing sweetfish (Plecoglossus altivelis, scientific name: Plecoglossus altivelis) by soaking it.
  • the SG150804 strain was grown in a 1/2 CGY (Casitone Gelatin Yeast-Extract: CGY, hereinafter abbreviated as "1/2 CGY") liquid medium containing 0.01 ⁇ M C4-AHL (Casitone 2.5 g in 1 L of distilled water, yeast extract). 0.5 g of gelatin, 1.5 g of calcium chloride, 0.147 g of calcium chloride) and cultured with stirring at 15°C and 200 rpm for 24 hours. It was activated and used as a vaccine stock solution.
  • 1/2 CGY Cosmetic Gelatin Yeast-Extract: CGY, hereinafter abbreviated as "1/2 CGY”
  • C4-AHL Casitone 2.5 g in 1 L of distilled water, yeast extract
  • Normally cultured FKC for comparison was prepared by culturing the same strain in 200 mL of 1/2 CGY liquid medium at 15°C with stirring at 200 rpm for 24 hours and inactivating it by adding formalin to a concentration of 0.3%. It was used as an FKC vaccine solution.
  • test fish bodies were immunized by the immersion method.
  • antifoaming agent KM-72 antifoaming agent for food additives manufactured by Kurimoto Pharmaceutical Co., Ltd., hereinafter abbreviated as “antifoaming agent”
  • antifoaming agent for food additives manufactured by Kurimoto Pharmaceutical Co., Ltd.
  • antifoaming agent for food additives manufactured by Kurimoto Pharmaceutical Co., Ltd.
  • 60 sweetfish from Lake Biwa average weight 2.0 g
  • they were returned to the breeding tank and raised in groundwater at a water temperature of 17.5° C. for 21 days.
  • the control group was left untreated and reared under the same conditions for the same period of time.
  • Figure 3 shows a vaccine solution and a culture solution in which cold water blight was cultured in a medium supplemented with 0.01 ⁇ M equivalent of C4-AHL, a bacterial density sensing substance, and inactivated by adding 0.3% formalin. It is a graph showing the survival rate when sweetfish from Lake Biwa were immunized by immersion with normally cultured FKC as a comparison object and challenged 21 days after immunization. In the figure, the horizontal axis represents the number of days since the attack, and the vertical axis represents the survival rate (%).
  • AHL-FKC (AHL Adding Culture-FKC, hereinafter abbreviated as "AHL-FKC") is inactivated by culturing in 1/2 CGY medium containing 0.01 ⁇ M C4-AHL.
  • the results of immunization with the antigen by the immersion method are shown for "Normal cultured FKC”
  • the results of the immunization with the inactivated antigen cultured in 1/2 CGY liquid medium and the results of the immunization by the immersion method are shown for the "control group”.
  • the results without immunization are shown, respectively.
  • the survival rates were 7.8% and 18.2% in the case of no treatment (control group) and the case of immunization with the normal cultured FKC immersion vaccine by the immersion method.
  • Example 4 in order to form BF in a cold water bacterium strain isolated from sweetfish from Lake Biwa, iron ions are added as a stress substance and activated carbon powder is added to a medium as a substrate material for adsorption and attachment of a bacterial density sensing substance, and the strain is cultured. A culture method is shown in which BF is formed and the volume of BF formation is significantly expanded.
  • FIG. 4A is a photograph in which the culture solution was dropped onto a slide glass, dried naturally, and then stained with 1% crystal violet to prepare a preparation, and the state of BF formation was visualized by microscopic observation.
  • Figure 4B the culture solution was dropped onto a slide glass coated with gelatin, the bacterial solution was dried by gentle heating with a burner, and the components, bacterial cells, and components in the BF outer membrane were washed away and fixed with acetone.
  • This is a photograph in which preparations were prepared by staining with 1% crystal violet, and the state of formation of the outer membrane of BF was visualized by microscopic observation.
  • Example 5 cold water bacterium was cultured in a 1/2 CGY liquid medium supplemented with iron ions and activated carbon to obtain a large amount of BF, components produced/excreted during the formation, maturation, and decay processes of BF, and bacterial cells.
  • the preventive effect against cold water disease when sweetfish from Lake Biwa is immunized by soaking them in biofilm-formed FKC (BF-FKC: Biofilm-Formed FKC, hereinafter abbreviated as "BF-FKC”) was investigated. It was verified by comparing with the case of immersion.
  • test fish bodies were immunized by immersion or injection.
  • 50 sweetfish (average weight 3.4 g) from Lake Biwa were diluted 100 times with groundwater to a volume of 2 L and 10 ⁇ L of an antifoaming agent was added.
  • the mice were returned to the breeding tank and reared for 14 days in underground water at a water temperature of 17.5°C. Thereafter, the mice were immunized by immersion for the second time under the same conditions, and then reared for an additional 14 days under the same conditions.
  • For the normal culture FKC immersion vaccine 50 sweetfish (average weight 3.4 g) from Lake Biwa were added to a 10-fold diluted solution with groundwater to a volume of 2 L and 10 ⁇ L of an antifoaming agent under aeration. After being immersed for 30 minutes, they were returned to the rearing tank and reared for 21 days in underground water at a water temperature of 17.5°C.
  • For the normally cultured FKC injection vaccine group a mixture of equal amounts of normally cultured FKC and IFA is injected intraperitoneally into the test fish at 50 ⁇ L per fish for 21 days for the same period and under the same conditions as the normally cultured FKC immersion group. bred. The control group was left untreated and reared for the same period and under the same conditions as the normal cultured FKC immersion group.
  • a bacterial challenge solution was prepared using the cold water bacterium SG150804 strain in the same manner as in Example 3. Then, 70 test fish from each area were diluted 4 times with groundwater to 2 L and attacked by immersing them for 30 minutes (1.0 x 10 9 CFU/mL), then placed in the breeding tank. The animals were returned to the water and reared and observed for 21 days in groundwater at a water temperature of 17.5°C. The day of challenge for the 1-time and 2-time immunization groups was the same day.
  • FIG. 5 is a graph showing the survival rate of Lake Biwa sweetfish after challenge when the fish were immunized by immersing them in a BF-FKC solution prepared with the cold water bacterium SG150804 strain.
  • the horizontal axis represents the number of days since the attack, and the vertical axis represents the survival rate (%).
  • BF-FKC immersion shows the results obtained by immunization by immersion in 100-fold diluted BF-FKC vaccine twice at 14-day intervals
  • normal cultured FKC immersion shows the results obtained by immunization in 10-fold diluted normal cultured FKC vaccine.
  • the normal cultured FKC injection group shows the results when the normal cultured FKC injection vaccine mixed with IFA was intraperitoneally injected, and the control group (no treatment) shows the results when no treatment was given. .
  • the survival rate 21 days after challenge in the case of no treatment was 42.9%, and the survival rate in the case of immunization with the 100-fold diluted BF-FKC vaccine by immersion method was 91.6%.
  • the survival rate after 21 days of sweetfish from Lake Biwa immunized with the AHL-FKC immersion vaccine prepared by adding the low-concentration bacterial density sensing substance (commercially available) shown in Example 1 to the culture medium and inactivating it with formalin. was 43.1%
  • the survival rate of Lake Biwa sweetfish similarly immunized with the BF-FKC immersion vaccine after 21 days was 91.6%, which is much more effective than the AHL-FKC immersion vaccine of Example 1.
  • the manufacturing cost of the commercially available BF-FKC immersion vaccine which does not use a bacterial density sensing substance, is much lower, and in terms of effectiveness and manufacturing cost, BF-FKC is better than the vaccine of Example 1. It is a more preferred formulation than the AHL-FKC immersion vaccine.
  • BF-FKC immersion vaccine and conventionally cultured FKC immersion vaccine can be performed with almost the same effort, and furthermore, the efficacy of BF-FKC immersion vaccine is higher than that of conventionally cultured FKC injection vaccine, which is administered by immersion method.
  • the BF-FKC immersion vaccine is superior to the normal cultured FKC injection vaccine because it is a vaccine in a dosage form that causes less stress on fish and is more effective than the normal cultured FKC injection vaccine. shows.
  • Example 6 the stability of the preventive effect of the BF-FKC immersion vaccine was verified.
  • the BF-FKC immersion vaccine produced in the same manner as in Example 4 was used.
  • the BF-FKC immersion vaccine is made by diluting the stock solution 10 times to 2L with groundwater and adding 10 ⁇ L of an antifoaming agent to it. After immunizing 70 fish by immersing them under ventilation for 30 minutes, they were returned to the breeding tank and reared for 21 days in underground water at a water temperature of 17.5°C. The control group was left untreated and reared with the same number of fish, for the same period, and under the same conditions as the BF-FKC immersion vaccine group.
  • a bacterial attack solution was prepared using cold water bacterium SG150804 strain in the same manner as in Example 3, and ayu were immersed for 30 minutes to attack (1.0 to 2.8 x 10 9 CFU/mL), and then returned to the breeding tank. The animals were reared and observed for 21 days in underground water with a water temperature of 17.5°C.
  • the average survival rate 21 days after challenge in the untreated control group was 39.0% (standard deviation: 12.7%), and in the case of immunization with BF-FKC vaccine by immersion method, the survival rate was 39.0% (standard deviation: 12.7%). 83.9%, standard deviation was 7.3%, and all nine tests had significant differences (p ⁇ 0.01) from the control group.
  • Example 7 the preventive effects against cold water disease were compared and verified when BF-FKC and normally cultured FKC were inoculated and immunized into sweetfish from Lake Biwa by injection method.
  • BF-FKC and normally cultured FKC were prepared using cold water bacterium SG150804 strain in the same manner as in Example 4, and each was mixed with IFA in equal amounts.
  • sweetfish from Lake Biwa (average weight 3.4 g) were immunized by injection.
  • a vaccine prepared by mixing equal amounts of BF-FKC or normally cultured FKC with IFA was inoculated intraperitoneally into the test sweetfish at 50 ⁇ L per fish, and then returned to the breeding tank and reared for 21 days in groundwater at a water temperature of 17.5°C. .
  • the control group was left untreated and reared under the same conditions for 21 days.
  • a bacterial solution of the attacking bacteria was prepared by culturing the test bacteria in the same manner as in Example 4.
  • the test fish from each group were then diluted 4 times with groundwater to a volume of 2 L and immersed for 30 minutes for attack (1.0 x 10 9 CFU/mL). After the attack, the animals were returned to the breeding tank and kept in underground water at a water temperature of 17.5°C for 21 days.
  • FIG. 6 is a graph showing the survival rate of sweetfish after challenge when BF-FKC prepared with the cold water bacterium SG150804 strain and normally cultured FKC were immunized with sweetfish from Lake Biwa by injection method.
  • the horizontal axis represents the number of days since the attack, and the vertical axis represents the survival rate (%).
  • BF-FKC injection is the result of immunization by injecting a mixture of equal amounts of BF-FKC and IFA
  • normal cultured FKC injection is the result of injecting with a mixture of equal amounts of normally cultured FKC and IFA.
  • the results are shown for the case of immunization, and the control group (untreated) shows the case of no treatment.
  • the survival rate 21 days after challenge in the case of no treatment was 26.9%, and the survival rate in the case of immunization with the BF-FKC injection vaccine was 94.3%, which is significantly higher.
  • the survival rate when immunized with the normal cultured FKC injection vaccine was 85.1%, with a significant difference (p ⁇ 0.01).
  • This result shows that immunization with BF-FKC injection vaccine has a survival rate 9.2% higher than immunization with normal cultured FKC injection vaccine, which is said to be effective. shown to provide higher preventive efficacy. Therefore, whether BF-FKC is used by the immersion method or the injection method, it is shown to be more effective than the conventionally cultured FKC injection vaccine, which is said to be effective, and shows that cold water disease can be more effectively prevented.

Abstract

本発明は、魚類細菌感染症予防に用いる浸漬用または注射用ワクチン製剤であって、魚類細菌感染症菌に由来するバイオフィルム(BF)、BFを形成・成熟・崩壊過程で産出される成分及び菌体からなる群から選ばれる少なくとも1種を有効成分として含有する、ワクチン製剤を提供するものである。

Description

ワクチン製剤及びその製造方法、並びに魚類細菌感染症の予防方法
 本発明は、ワクチン製剤及びその製造方法、並びに魚類細菌感染症の予防方法、などに関連する。より詳細には、バイオフィルム(Biofilm:BF、以下「BF」と略す。)をほとんど形成しない分離細菌菌株を、低濃度の細菌間密度感知物質、ストレス物質、または金属イオンと細菌間密度感知物質を吸着する物質を含む、液体培地により再びBFを形成させ、その培地で培養して得られるBFの構造物を含む成分、例えば、多糖類、核酸、タンパク質、密度感知物質、細胞外高分子基質(Extracellular Polymeric Substances:EPS、以下「EPSと略す。」、BF形成条件下でBF内外に産生される膜小胞とその小胞内部の含有物質、及びBF形成・成熟・崩壊過程で産出/排出される成分、BF上/内の菌体(接着細胞、膜形成細胞、永生細胞(Persister Cell)、増殖細胞、定常細胞期細胞、死細胞とその死細胞内溶出成分を含む)などと、これらから構成されるBF外膜及びBF外へ排出される成分、を含む溶液を製造できる培地と、これを培養に用いて得た溶液を、魚類に浸漬または注射させる魚類細菌感染症予防方法、浸漬用及び注射用ワクチン製剤、浸漬用及び注射用ワクチン製剤の製造方法などに関連する。
 産業対象水産生物の養殖は、収穫量を増大でき、比較的安価に安定供給できるため、養殖が広く普及している。しかし、これら水産生物の養殖は、過密飼育などのコスト重視の養殖形態により疾病が発生しやすく、その対処のために抗菌剤が多量に用いられている。このため、未然に疾病の発生を予防するにはワクチンの使用が必須となる。
 抗菌剤の使用は、魚類の養殖における疾病に対する対処法として有効であり、例えば、アユの冷水病に効果がある抗菌剤としてスルフィソゾール(特許文献1)とフロルフェニコールが動物用医薬品としての承認を受けており、冷水病の発生時に使用されている。しかし、養殖生物は数万から十万尾単位で飼育するため、抗菌剤の使用量が多く、さらに上記治療薬を投与しても死亡が収まらないと用量に規定された量以上の過剰投与や用法に規定された以上の期間の長期間投与につながる事例が発生してしまう。また、養殖用飼育水中に対する細菌微生物のほとんどに対して抗菌剤との接触の機会があるため、養殖生物には無害な細菌であっても、様々な細菌微生物に耐性菌が出現する可能性があり、排水されるとその耐性菌は人間環境にも影響をおよぼす可能性がある。このことから、抗菌剤に依存しない方法として、アユの冷水病であれば、飼育水を昇温処理して冷水病菌を除菌する方法も開発されている(特許文献2、3)が、費用対効果が高くなってしまうなどのデメリットも大きいため、養殖における疾病対策には抗菌剤よりもワクチンによる予防を行なうことが非常に望ましい。
 このような背景から、水産生物の疾病に対するワクチン開発に対する現場からの要望は強く、例えば、アユの冷水病に対して開発されたワクチンでは、対数増殖期にある冷水病菌を含む培養液にホルマリンを添加して不活化したホルマリン死菌(Formalin Killed Cells:FKC、以下「FKC」と略する。)をワクチンとして浸漬する剤型のワクチン(特許文献4)、ウサギ由来赤血球を組み合わせてアユの免疫系を活性化する剤型の冷水病ワクチン(特許文献5)や、冷水病菌が産生するトキソイドであるコラゲナーゼ液と冷水病菌のFKCをワクチンとして浸漬する剤型の冷水病ワクチン(特許文献6)、経口投与による剤型のワクチン(特許文献7)、培養液を酵素処理することで抗原取り込みを向上させる酵素処理液をワクチンとして浸漬する剤型のワクチンも発明されている(特許文献8、9)が、いずれのワクチンについても、浸漬、注射または経口法によっては十分な効果が得られない等の問題によって、現在までに上市されるに至っていない。また、その他の水産生物の疾病に対するワクチンについても上市された例は非常に限定されている。
 一方、従来から、各種魚病細菌の試験研究においては、哺乳類の筋肉・臓物抽出物(各種酵素を含む)、カゼイン、乳清、大豆、穀物、酵母由来の成分、とこれらを酵素消化した成分、を主とする市販培地が一般的に使用され、または複数の市販培地を所定の比率で混合して作製した「自家配合培地」が用いられて、分離・培養された魚病細菌について研究が行われている。つまり、上述の培地により分離可能及び/または培養可能である各種魚病細菌は上述の培地を用いて分離された菌株であると言い換えることができ、その分離菌株で水産生物の疾病に対する細菌の病原性や各種の表現形質などについて研究されている。このため、各種魚病細菌において、通常培養ではワクチンとしての効果が低い場合、例えば、オイルアジュバント、水酸化アルミニウム、リン酸アルミニウム、フコイダン、ミョウバン類、結核死菌、Gerbuアジュバント、などの免疫刺激物質と混合してワクチンとしての効果の増強を目的とした研究が多く行われている。また、例えば、冷水病では、分離前の自然界に存在する状態が、上述の培地で分離されることにより、病原性や表現形質等が大きく異なっている場合は、宿主の筋肉成分を用いて、表現形質を維持することを目的とした宿主肉エキスを用いた培地(特許文献10)による研究も行われているが、ワクチンとして上市されるには至っていない。
 魚病細菌に対するワクチンの開発が進まない原因として、例えば、アユから分離された冷水病菌株はアユに対して病原性が著しく低下することが知られており、冷水病菌株を通常培養して作製したFKC注射ワクチンを投与したアユ血清と、養殖場などで自然発病したアユの血清中の特異抗体が認識する抗原を比較すると、FKC投与アユ血清は冷水病菌のリポ多糖に多く抗体を産生し、自然発病アユの血清中抗体はリポ多糖とほとんど反応しない(Kintsuji et al.,Fish Pathology,42(2007)159-161)ため、通常培養で作製したFKCには感染防御抗原(感染を防除できる抗原)が乏しいまたは免疫原性が強い(免疫系に認識されやすい)リポ多糖などに対する特異免疫が優先して反応することなどが考えられ、他の魚類のワクチンも同様に、通常培養に依存した培養方法によるFKCを用いるワクチン開発が、その遅滞の原因の一つと考えられる。
 一方で、すでに上市されている魚類用ワクチンは、グラム陽性菌では連鎖球菌症、グラム陰性菌ではビブリオ科に属する類結節症及びビブリオ病に限られ、これら以外の魚類の細菌性疾病に対するワクチンは存在しない。上述したように、他の上市されていない魚類用細菌性疾病に対するワクチン開発のほとんどは、市販培地で分離・通常培養した菌体によるもの、またはアジュバントを含有させることにより効果を向上させるものであるから、上市されていない魚類用ワクチンを開発するには、魚病細菌の培養において、通常培養では得られない他の抗原群を産生・含有させることができる、新たな培地を開発することにより、新たな感染防御抗原を多く含ませることが可能となったワクチンは、高い効果を示すと考えられる。
特開2000-191551 特開2005-287303 特開2005-245318 特開2004-210769 特開2004-352690 特許第6709395号 特開2008-137933 特許第6012013号 特開2021-168607 特開2008-220262
 上述の通り、FKCを用いた浸漬法及び注射法による魚類細菌感染症に対するワクチンを開発するには、その原因菌を通常培養しても感染防御抗原が乏しい場合には、感染防御抗原を多く含む培養液、を得る培地により培養する方法により作製したワクチンを用いる必要がある。そこで、本発明は、魚類細菌感染症原因菌に対する感染防御抗原を、多く産生させることを可能にする新たな培地による培養方法と、この培養方法による魚類細菌感染症に対するより有効な浸漬及び注射ワクチンを提供することを目的とする。
 本発明者は、魚類細菌感染症原因菌から分離された菌株を用い、細菌間密度感知物質を低濃度で加えた培地中に植菌して培養する、ストレス物質を加えて培養する、過剰な金属イオンを加えて培養する、細菌間密度感知物質を吸着する物質を含む培地中に植菌して培養する、及び、これらのいずれかまたはすべてを組み合わせて添加した培地で培養することにより、BF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体、例えば、多糖類、核酸、タンパク質、細菌間密度感知物質、EPS、BF形成条件下でBF内外に産生される膜小胞とその小胞内部の含有物質、及びBF形成・成熟・崩壊過程で産出/排出される成分、BF上/内の菌体[接着細胞、膜形成細胞、永生細胞、増殖細胞、定常細胞期細胞、死細胞とその死細胞内溶出成分を含む]などと、これらから構成されるBF外膜及びBF外へ排出される成分(多糖類、核酸、タンパク質、細菌間密度感知物質、EPS、BF形成条件下でBF内外に産生される膜小胞とその小胞内部の含有物質、及びBF形成・成熟・崩壊過程で産出/排出される成分、BF上/内の菌体[接着細胞、膜形成細胞、永生細胞、増殖細胞、定常細胞期細胞、死細胞とその死細胞内溶出成分を含む]などと、これらから構成されるBF外膜及びBF外へ排出される成分:以下「BF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体」と略す。)を多量に取得できる、上述の新規に開発した培地による製造方法と、これらを不活化した抗原として含有する溶液を用い、魚類を浸漬させるまたは注射することで、ワクチンとしての有効性を大幅に向上できることなどを新規に見いだした。
 そこで、本発明では、低濃度の細菌間密度感知物質やストレス物質を培地に添加することによりBFを形成させる、または、低濃度になるようBF形成を促進する過剰な細菌間密度感知物質を吸着し、付着基体としての機能を有する物質及び金属イオンを過剰に培地に添加した、新規に開発した培地で培養すること、によってBF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体からなる群から選ばれるワクチンの有効成分を含むワクチンの製造方法などを提供し、これらを含有する溶液を用いた魚類に注射または浸漬させる手順を含む魚類細菌感染症予防方法などを提供する。
 したがって、魚類細菌感染症原因菌であって、通常培養で作製したFKCを注射または浸漬ワクチン(アジュバントを使用したものを含む)として投与しても効果が低い場合、新規に開発した培地により培養して作製した溶液を用いることにより、感染防御抗原がBF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体のいずれかが抗原である場合、浸漬用または注射用ワクチンの有効性を大幅に向上できる。
 また、本発明で開発した抗原成分は、通常培養では得られないものを含む多様な抗原、例えば、BF形成における膜小胞(その表面と内部の包含物を含む)は、菌体の対数増殖期や定常期に分泌されるものと、性質が異なるもの(SR Schooling et.al.,J.Bacteriol.5945-5947(2006))などで構成されることから、これらが感染防御抗原であった場合には、他の魚類細菌性疾病のワクチン開発に応用できる可能性がある。
 さらに、本発明により、新規に開発した培地で培養して作製したFKCを抗原とする方法は、通常培養とほぼ同様の手順と安価な材料で作製した培地を用いる方法であり、抗原を作製する労力及びコストはほとんど変わらない。そして、この抗原を簡易かつ低ストレスでの浸漬ワクチンとして用いることが可能となるため、本発明により、注射法などでは難しかった、小型魚類や稚魚などの小さな個体への有効なワクチン投与も可能となる。
 加えて、これまで上市されていない魚病細菌疾病に対する注射ワクチンについて、上述の抗原の提供が可能となり、上述の疾病ワクチンとしての効果の向上にかかる、一つの方法として寄与する。
 そして、本発明で新規に開発した培地は、細菌をフラスコ内でBFを容易に、多量に、安価に、形成させることが可能なことから、これまでBF形成が認められないまたは弱い細菌の特性や産業利用、などに関する研究の一つの方法として寄与する。本発明は、以下のワクチン製剤及びその製造方法、並びに魚類細菌感染症の予防方法を提供するものである。
〔1〕
 魚類細菌感染症予防に用いる浸漬用または注射用ワクチン製剤であって、魚類細菌感染症菌に由来するバイオフィルム(BF)、BFを形成・成熟・崩壊過程で産出される成分及び菌体からなる群から選ばれる少なくとも1種を有効成分として含有する、ワクチン製剤。
〔2〕
 前記菌体が魚類細菌感染症原因菌の不活化菌及び死菌からなる群から選ばれる、〔1〕に記載のワクチン製剤。
〔3〕
 魚類細菌感染症予防に用いる浸漬用または注射用ワクチン製剤の製造方法であって、魚類細菌感染症原因菌に細菌間密度感知物質を加えて培養し、バイオフィルム及び/またはバイオフィルムの形成・成熟・崩壊過程で産出される成分を形成させることを特徴とする、ワクチン製剤の製造方法。
〔4〕
 前記培地がさらに金属イオン及び細菌間密度感知物質を吸着する物質からなる群から選ばれる少なくとも1種を含む、〔3〕に記載のワクチン製剤の製造方法。
〔5〕
 細菌間密度感知物質を吸着する物質が活性炭である、〔4〕に記載のワクチン製剤の製造方法。
〔6〕
 魚類細菌感染症の予防方法であって、魚類細菌感染症原因菌に由来するバイオフィルム、バイオフィルム形成・成熟・崩壊過程で産出される成分及び/または魚類細菌感染症原因菌の不活化菌または死菌を含む溶液を魚類に適用または注射することを含む魚類細菌感染症の予防方法。
〔7〕
 前記魚類細菌感染症原因菌が、一般的な細菌分離・培養用培地で分離・培養可能な細菌である、〔6〕に記載の予防方法。
〔8〕
 前記魚類細菌感染症原因菌が、冷水病及び冷水病菌が属するBacteroidetes門の細菌である〔6〕または〔7〕に記載の予防方法。
〔9〕
 前記魚類細菌感染症原因菌が不活化原因菌である〔6〕に記載の魚類細菌感染症の予防方法。
 本発明により、魚類細菌感染症に対する、注射法及び浸漬法による、有効なワクチン投与が可能となる。
実施例1において、冷水病菌SG150804株を用い、培養液に市販の細菌間密度感知物質C4-AHLを加えて24穴プレートで24時間培養した場合におけるバイオフィルム形成状態を目視確認した場合の写真。C4-AHL:N-ブチリル-DL-ホモセリンラクトン 実施例1において、冷水病菌2菌株を用い、培地に細菌間密度感知物質を加えて24時間培養した場合におけるバイオフィルム形成量を通常培養した時と比較したグラフ。 実施例1において、冷水病菌2菌株を用い、培地に細菌間密度感知物質を加えて48時間培養した場合におけるバイオフィルム形成量を通常培養した時と比較したグラフ。 実施例2において、冷水病菌にストレスを与えて培養した場合において、バイオフィルムを形成するかどうかを検証するため、ストレス物質としてエタノールを培地に加えて培養した培養液をクリスタルバイオレットで染色してバイオフィルムが形成されていることを確認した時の形態を示す写真。 実施例3において、細菌間密度感知物質をバイオフィルムの形成を促進する量を加えた培地で冷水病菌を培養して不活化した溶液中に琵琶湖産アユを浸漬して免疫した場合におけるアユの攻撃後の生残率を示すグラフ。 実施例4において、冷水病菌を鉄イオンと活性炭素粉末を加えた培地で培養した培養液をクリスタルバイオレットで染色して、人為的にバイオフィルムを形成していることを確認した時の形態を示す写真。 実施例4において、図4Aの冷水病菌培養液中にバイオフィルムを形成している菌塊が、バイオフィルムを形成している証拠である外膜が存在するかどうかを確認した写真。 実施例5において、冷水病菌を鉄イオンと活性炭素粉末を加えた培地で培養して不活化した溶液中に琵琶湖産アユを浸漬して免疫した場合におけるアユの攻撃後の生残率を示すグラフ。 実施例7において、冷水病菌を鉄イオンと活性炭素粉末を加えた培地で培養して不活化した溶液、及び通常培養して不活化した溶液を、油性アジュバントと混合して琵琶湖産アユに注射して免疫した場合におけるアユの攻撃後の生残率を示すグラフ。
 <本発明に係る浸漬用ワクチン製剤について>
 本発明は、魚類細菌感染症原因菌のBF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体のいずれかを多量に得ることができる培地であって、この培地で培養して得られたいずれかを有効成分として含有した浸漬用及び注射用ワクチン製剤をすべて包含する。
 細菌間密度感知物質は、BFの形成を制御する物質であればよく、公知のものを広く採用することができ、特に限定されない。例えば、N-3-oxo-butyryl(butyryl:C4、以下「C4」と略す。)-DL-Homoserine Lactone(Homoserine Lactone:HSL、「以下「HSL」と略す」。)、N-3-Oxo-Pentanoil(Pentanoil:C5、以下「C5」と略す。)DL-HSL、N-3-Oxo-Hexanoil(Hexanoil:C6、以下「C6」と略す。)-DL-HSL、N-3-Oxo-Heptanoil(Heptanoil:C7、以下「C7」と略す。)-DL-HSL、N3-Oxo-Octanoil(Octanoil:C8、以下「C8」と略す。)-DL-HSL、N-3-Oxo-Decanoil(Decanoil:C10、以下「C10」と略す。)-DL-HSL、N-3-Oxo-Dodecanoil(Dodecanoil:C12、以下「C12」と略す。)-DL-HSL、N-3-Oxo-(Tetradecanoyl:C14、以下「C14」と略す。)-DL-HSL、N-3-Oxo-Hexadecanoil(Hexadecanoil:C-16、以下「C16」と略す。)-DL-HSL、N-3-hydroxy(Hydoroxy:OH、以下「OH」と略す。)-C4-DL-HSL、N-3-OH-C6-DL-HSL、N-3-OH-C8-DL-HSL、N-3-OH-C10-DL-HSL、N-3-OH-C12-DL-HSL、N-3-OH-C14-DL-HSL、N3-OH-C16-DL-HSL、N-C4-DL-HSL(N-C4-DL-HSL:C4-AHL、以下「C4-AHL」と略す。)、N-C6-HSL、N-C7-DL-HSL、N-C8-DL-HSL、N-C10-DL-HSL、N-C12-DL-HSL、N-3-C14-DL-HSL、N-3-C16-DL-HSL、N-C4-DL-Homocysteine Thiolactone(Homocysteine Thiolactone:HCT、以下「HCT」と略す。)、N-C6-DL-HCT、N-C7-DL-HCT、N-C8-DL-HCT、N-C12DL-HCT、フラノシルホウ酸ジエステル、などが挙げられる。また、これらを混合したものでもよい。さらに、これらの細菌間密度感知物質を産生する細菌を、魚類病原菌と共培養、または密度感知物質が通過する膜で隔絶して、培養してもよい。  
 上述の細菌間密度感知物質を加えた培地で培養する条件は、BF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体抗原のいずれかが十分に産生されればよく、公知の条件を採用することができ、特に限定されないが、細菌間密度感知物質と菌種、菌株の種類ごとに事前にBFを形成する濃度とその保持期間を調べて、その条件により培養することによって抗原を十分に得ることができる。細菌間密度感知物質の培地中の濃度として、0.00001~0.1μMが挙げられる。例えば、好適には冷水病菌SG150804株であれば、C4-AHLを0.01μMになるよう培地に添加して24時間120rpmで振盪培養を行うことにより、抗原成分を十分に得ることができ、その品質を良好なものにできる。
 ストレス物質を培地に加えて培養する条件は、BF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体抗原のいずれかが十分に産生されればよく、公知の条件を採用することができ、特に限定されないが、ストレス物質と菌種、菌株の種類ごとに事前にBFを形成する濃度とその保持期間を調べて、その条件により培養することによって抗原を十分に得ることができる。
 ストレス物質はBFを形成させる成分であればよく、公知のものを広く採用することができ、特に限定されない。例えば、メタノール、エタノール、N-プロパノール、イソプロパノール、1-ブタノール、2-メチル-1-プロパノール、2-ブタノール、2-メチル-2-プロパノール、ペンタノールとその構造異性体、ヘキサノールとその構造異性体、ヘプタノールとその構造異性体、オクタノールとその構造異性体、炭素鎖が8個以上の脂肪族アルコールとその構造異性体・環状構造物・不飽和物・複数不飽和物、エチレングリコールなどの2価以上のアルコールと炭素が4個以上を含むその構造異性体・環状構造物・不飽和物・複数不飽和物・重合構造物、グリセロール、グリセロールを骨格とする脂肪酸とその誘導体類、フェノール類、アンモニア、コール酸、デオキシコール酸、有機酸(酢酸、クエン酸、乳酸、脂肪酸など)、無機酸、次亜塩素酸ナトリウム、塩化ベンザルコニウム、グルコン酸クロルヘキシジン、アクリノール、ヨウ素剤、過酸化水素水、殺菌剤、静菌剤とDNA合成阻害剤を含む抗生物質(例えば、天然抗菌薬(抗生物質)として、例えば、β-ラクタム系、アミノグリコシド系、リンコマイシン系、クロラムフェニコール系、マクロライド系、ケトライド系、ポリペプチド系、グリコペプチド系、テトラサイクリン系、ペプチド系、核酸系、ポリエン系)などの系統に大別されるもの、半合成抗菌薬であって、例えば、ドキシサイクリン、ミノサイクリンなどが、合成抗菌薬であって、例えば、ピリドンカルボン酸(キノロン系)、ニューキノロン系、オキサゾリジノン系、サルファ剤系などに大別されるもの、などが挙げられる。)、酵素、キレート剤、還元剤、防腐剤、細菌由来毒素、細菌由来成分、ホルモン剤、サイトカイン(例えば、インターロイキン、リンフォカイン、モノカイン、ケモカインなど。)などの真核生物細胞間連絡物質、真核生物由来の炎症に関わる物質(例えば、プロスタグランジン、ヒスタミン、リゾチーム、ロイコトリエン、抗体、補体など。)、ビタミンなどの水溶性物質、金属イオン、好適には鉄イオンなどが挙げられる。また、これらを混合したものでもよい。
 金属含有物質(イオン体)と細菌間密度感知物質を吸着するとともにBFの形成面積を増大させる付着基体になる物質を加えた培地で培養する条件は、BF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体抗原が十分に産生されればよく、公知の条件を採用することができ、特に限定されないが、金属イオンの種類、及び細菌間密度感知物質を吸着するとともにBFの形成面積を増大させる付着基体になる物質、ごとに菌種、菌株の種類について、事前にBFを形成する濃度とその保持期間を調べて、その条件により培養することによって抗原を十分に得ることができる。例えば、好適には冷水病菌SG150804株であれば、金属イオンとして塩化鉄(III)を、BFの形成面積を増大させる付着基体になる物質として、粉末状の活性炭粉末を用いるとよい。詳細には、液体培地に2Mの水酸化ナトリウム375μLを加えてアルカリ性とし、塩化鉄(III)を用いて1mMになるよう200mLの液体培地に添加し、さらに市販の活性炭粉末を上述の培地に1gを添加した培地により15℃、48時間、200rpmで撹拌培養を行うことにより、抗原成分を十分に得ることができ、その品質を良好なものにできる。
 金属イオンにはBFの形成を促進する成分であればよく、公知のものを広く採用することができ、特に限定されない。例えば、金属または半金属のイオンであって、例えば、リチウム、ナトリウム、カリウム、ベリリウム、マグネシウム、アルミニウム、カルシウム、ストロンチウム、バリウム、チタニウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ヒ素、セレン、モリブデン、銀、カドミウム、インジウム、錫、アンチモン、タングステン、白金、金、鉛、ビスマス、などのイオン体、などが挙げられる。また、これらを混合したものでもよい。好適には鉄イオン、より好適には、塩化鉄(III)の鉄イオンを用いてもよい。鉄イオンは、鉄含有物質を培地に添加することにより培地中に供給することができる。
 鉄含有物質にはBFを形成させる成分であればよく、公知のものを広く採用することができ、特に限定されない。例えば、鉄箔、鉄板、鉄粉、鉄粒、鉄線、鉄スポンジ、鉄と他の物質を混合した合金、例えば、炭素鋼、ステンレス鋼、クロムモリブデン鋼、ハイテン鋼など、また、例えば鉄(III)アセチルアセトナート、アクリル酸鉄、アジ化鉄、一窒化三鉄、酸化イットリウム鉄、エチレンジアンモニウム硫酸鉄、塩化鉄(II)、塩化鉄(III)、塩素酸鉄(III)、過塩素酸鉄(II)、過塩素酸鉄(II)、過塩素酸鉄(III)、テトラカルボニル鉄(-II)ナトリウム、ナノカルボニル鉄、ペンタカルボニル鉄、ノナカルボニル二鉄、ドデカカルボニル三鉄、ギ酸鉄(II)、クエン酸鉄アンモニウム、クエン酸鉄(I)、クエン酸鉄(II)、クエン酸鉄ナトリウム、グルコン酸鉄、クロム酸鉄(III)、二クロム酸鉄(III)、二ケイ化鉄、二ケイ化鉄、酢酸鉄(II)、酢酸鉄(III)、酸化鉄(II)、酸化鉄(III)、四酸化三鉄、シアン化鉄(II)、シアン化鉄(III)、シアン酸鉄(II)、シクロブタジエン鉄トリカルボニル、チオシアン酸鉄(II)チオシアン酸鉄(III)、酒石酸鉄(II)、酒石酸鉄(III)、シュウ酸アンモニウム鉄、臭化鉄、シュウ酸鉄(II)、シュウ酸鉄(III)、シュウ酸鉄(III)カリウム、三シュウ酸三アンモニウム鉄、水酸化鉄(II)、水酸化鉄(III)、水酸化酸化鉄(III)水素化鉄(II)、水素化鉄(III)、含糖酸化鉄(例えば、スクロオキシ水酸化鉄など。)、鉄オリゴ糖化合物(例えば、鉄デキストラン、デルイソマルトース第二鉄など。)、ステアリン酸鉄、硝酸鉄(II)、硝酸鉄(III)、スルファミン酸鉄、セレン化鉄(II)、セレン化鉄(III)セレン酸鉄(II)、一炭化三鉄、炭酸鉄(II)、炭酸鉄(II)、タングステン酸鉄(II)、酸化チタン鉄(II)、酸化チタン鉄(III)、鉄エトキシド(III)、鉄酸、鉄酸バリウム、鉄酸カリウム、トリフルオロメタンスルホン酸鉄(II)、トリス(2-エチルヘキサン酸)鉄(III)、トリスオキサラト鉄(III)酸カリウム(シュウ酸第二鉄カリウム)、ナフテン酸鉄、酸化ニッケル鉄、乳酸鉄、フェロセン、フッ化鉄(II)フッ化鉄(III)、フマル酸鉄、ヘキサシアニド鉄(II)、ヘキサシアニド鉄(III)、ヘキサシアノ鉄アンモニウム、ペンタカルボニル鉄、メソ-テトラフェニルポルフィリン鉄クロリド、メソ-テトラフェニルポルフィリン鉄-μ-オキソダイマー、テトラフルオロホウ酸フェロセニウム、ヘム鉄類(例えば、フェロヘム、ヘモグロビン、ミオグロビン、ヘモジデリンなど。)、フェリチン、マンガン酸鉄、モリブデン酸鉄(III)ヨウ化鉄(II)、ヨウ化鉄(III)、オルト過ヨウ素酸鉄(II)、ヨウ素酸鉄(II)、ヨウ素酸鉄(III)、硫化鉄、二硫化鉄(II)、四硫化酸三鉄、硫酸アンモニウム鉄(II)、亜硫酸鉄(II)、硫酸鉄(II)、硫酸鉄(III)、硫酸アンモニウム鉄(II)、二リン酸鉄、次亜リン酸鉄、リン酸鉄(II)、リン酸鉄(III)、ピロリン酸鉄(II)、ピロリン酸鉄アンモニウム、などや、これらを含む鉱石とその粉末など、が挙げられる。また、これらの2種以上を混合したものでもよい。
 培地中には、鉄含有物質以外のものであって、BFの形成を促進する成分であれば添加してもよく、公知のものを広く採用することができ、特に限定されない。例えば、抗菌剤、その他の金属、などを含む物質とそのイオン体や、これらを含む鉱石とその粉末、加工品、などが挙げられる。また、これらを混合したものでもよい。
 培養菌の細菌間密度感知物質の吸着及び付着基体として用いる活性炭素には、大部分が炭素を占め、酸素、水素、カルシウムなどからなる物質であって、様々な物質を吸着する性質を有し、BFを形成できる基体成分であればよく、原材料には、公知のものを広く用いることができる。例えば、原材料には、木、竹、椰子殻、胡桃殻、サトウキビ、草、石炭、石油、獣骨、血液、鉱石などが挙げられる。また、これらを混合したものでもよい。
 活性炭素の種類には、大部分が炭素を占め、酸素、水素、カルシウムなどからなる多孔質の物質であれば、公知のものを広く用いることができる。例えば、活性炭であれば、例えば、上記の原材料を、無酸素状態でおよそ200~800℃で炭化させたもの、または木炭を、例えば、脱水性の塩類または酸(塩化カルシウム、塩化マグネシウム、塩化亜鉛、リン酸、硫酸、水酸化ナトリウム、水酸化カリウムなどのアルカリ類など)などと混合して無酸素下でおよそ500~700℃で焼成して賦活し、薬品を除去したもの(薬品賦活法)、酸化性ガス(水蒸気、二酸化炭素など)などを用いて、600~1,200℃で焼成して賦活したもの(ガス賦活法)、などが挙げられる。また、木炭であれば、例えば、その種類が黒炭(窯内消化法により炭化したもので、固定炭素が75%以上、精錬度が2~8度の木炭)、白炭(窯外消化法により炭化したもので、固定炭素が85%以上、精錬度が0~3度の木炭)、備長炭(白炭のうちカシ類を含むウバメガシを炭化したもので、固定炭素が90%以上、精錬度が0~2度の木炭)、オガ炭(黒)(鋸屑・樹皮を原料として窯内消化法によりオガライトを炭化したもので、固定炭素が70%以上、精錬度が2~8度の木炭)、オガ炭(白)(鋸屑・樹皮を原料として窯外消化法によりオガライトを炭化したもので固定炭素が85%以上、精錬度が0~3度の木炭)、その他の木炭(竹炭、マングローブ炭、ヤシ殻炭、石炭など)、などが挙げられる。さらに、炭素分子の化学合成物であって、例えば、グラフェンなどを基本分子構造とするカーボンナノチューブ、カーボンナノベルト、フラーレン、カーボンナノバッドなどが挙げられる。その他、不特定の炭素を含む物体であって、その不特定の炭素を含む素材を約800℃から約950℃に加熱し、水蒸気や空気などの気体中で炭化させる高温炭化法で作製したもの、などでもよい。さらに、これらを混合したものでもよい。
 活性炭素の形状は、炭素を含む多くの物質を吸着する性質を有する炭であれば、公知のものを広く用いることができる。例えば、塊炭(割らない原木を炭化したもの)、塊炭(割った原木を炭化したもの)、顆粒状の塊炭、破砕状の塊炭、粉炭、成型炭(原料を成型して炭化させたオガ炭など)、などが挙げられる。また、これらを混合したものでもよい。
 BF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体抗原を得るためのストレス物質としての鉄イオン、及び活性炭素の培地への添加量としては、塩化鉄(III)は0.1~10mM程度で、好適には1mMであり、活性炭素粉末では、1~10g/L程度で、好適には5gである。培養時間は、24~96時間程度であり、好適には48時間程度である。培養温度は、5~23℃程度で、好適には15℃である。これらの好的条件で培養した、本発明のワクチンにおけるBF及び/またはBFを形成・成熟・崩壊過程で産出される成分及び菌体からなる群から選ばれる少なくとも1種の有効成分の濃度は、例えば、冷水病菌では1~2mg/L程度である。
 活性炭素以外のものには、細菌間密度感知物質の吸着及びBFの形成面積を増大させる付着基体成分であればよく、公知のものを広く採用することができ、特に限定されない。動物由来のものであれば、例えば、動物などの被毛類、鳥羽類、羽毛類や、昆虫類、細菌類などの分泌物類、植物の合成繊維類、動植物由来成分の再生繊維類、鉱物類などを原料とする繊維類、石油などに含まれる成分やその成分を化学合成した物質と人為的に化学合成された有機物質などを原料とするプラスチックや繊維類、またはその化学修飾物(カルボキシメチル基やジエチルアミノエチル基などなどを代表とするイオン交換基などを付加したもの)など、これらの粉体または糸状体などが挙げられる。植物由来のものであれば、例えば、果実、種子、イモ類、植物を構成する幹、葉、根、花などの粉体、種子の発芽した種類、外殻の粉体類、ぬか類、でん粉類、繊維類、これらの植物から抽出した成分と、その化学変化品(加熱品、冷凍品、酸アルカリ処理品など)など、またはその化学修飾産物(カルボキシメチル基やジエチルアミノエチル基などを代表とするイオン交換基などやハプテン化物質などを付加した化学修飾物)などが挙げられる。また、これらの2種以上を混合したものでもよい。
 上述の培地で培養して得た、浸漬用または注射用ワクチン製剤は、少なくとも、BF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体からなる群から選ばれる少なくとも1種を有効成分として含有する。
 本発明に係る浸漬用及び注射用ワクチン製剤では、BF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体を不活化抗原として浸漬及び注射する剤型のワクチンであって、細菌間密度感知物質、ストレス物質、鉄イオン、活性炭素粉末のいずれかまたはすべてを加えた培地で作製した培養液であってもよく、これらの培養液を混合させたものでもよい。また、BF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体が得られる方法で培養した培養液を、精製、濃縮などの処理を行ったものでもよい。なお、この培地に含まれる基礎成分は公知のものを広く採用することができ、特に限定されない。
 培養上清を含む成分ワクチン抗原を用いる場合、例えば、魚類細菌感染症の病原体を上述の方法で培養して得られた培養液、またはこの培養液を公知の方法で分散させた溶液、からろ過滅菌などの公知の方法で生菌を除去し、得ることができる。また、上述の方法で培養して得られた培養液中の菌体と菌体周辺の成分を公知の方法で分散・溶菌させて殺菌させた溶液から、ろ過滅菌などの公知の方法で菌体を除去して、得ることができる。
 抗原を不活化する方法は、公知のものを広く採用でき、特に限定されない。例えば、調製した抗原含有液に対し、物理的処理(紫外線照射、X線照射、熱処理、超音波処理など)、化学的処理(ホルマリンなどによる処理、クロロホルム・アルコールなどによる有機溶媒処理、酢酸などの弱酸による酸処理、塩素・水銀などによる処理)などの処理を施すことにより、抗原を不活化することができる。例えば、調製した抗原含有液にホルマリンを0.01~2.0%、より好適には0.05~1.0%の容量濃度で添加し、抗原含有液を4~30℃で、1~10日間感作することにより、ホルマリンによる不活化を行うことができる。また、例えば、不活化処理後に、緩衝液などで洗浄してホルマリンなどの不活化剤を除去したり、中和剤を添加して中和したりしてもよい。また、例えば、上述の方法で培養して得られた培養液中の菌体と菌体周辺の成分を公知の方法で溶菌させることなどにより、すべて殺菌させた溶液を用いてもよい。
 本発明に係る浸漬または注射用ワクチン製剤は、アジュバントを含有していてもよい。
 アジュバントには、公知のものを広く用いることができる。例えば、動物油(スクアレン、ラノリンなど)又はそれらの硬化油、植物油(パーム油、ヒマシ油等)またはそれらの硬化油、無水マンニトール・オレイン酸エステル、オレイン酸、ポリブテン、カプリル酸、流動パラフィン、高級脂肪酸エステルなどを含む油性アジュバント、アクリル酸コポリマー、アルケニル誘導体ポリマー、PCPP、可溶性酢酸アルミウム、グルコン酸マンガン、グルコン酸カルシウム、グリセロリン酸マンガン、サポニンサリチル酸アルミニウム、水中油型エマルジョン、無水マレイン酸コポリマー、メタクリル酸コポリマー、第四級アンモニウム塩を含有するカチオン脂質などの水溶性アジュバント、カルボキシビニルポリマー、水酸化アルミニウム(ミョウバン)、水酸化ナトリウム、リン酸カルシウム、リン酸アルミニウムなどの沈降性アジュバント、結核菌、ミコバクテリア、コレラ毒素、大腸菌易熱性毒素などの微生物由来毒素成分、その他、ベントナイト、ムラミルジペプチド誘導体、インターロイキンなどが挙げられる。また、これらを混合したものでもよい。
 また、この浸漬用ワクチン製剤は、目的・用途などに応じて、緩衝剤、等張化剤、防腐剤、抗菌剤、抗酸化剤、pH調節剤、分散剤、芳香剤、着色剤、消泡剤などが適宜添加されていてもよい。
 緩衝剤の好適な例として、例えば、クエン酸塩、酒石酸塩、酢酸塩、炭酸塩、トリスヒドロキシメチルアミノメタン、HEPES、リン酸塩、などの緩衝液などを用いることができる。
 防腐を目的とした薬剤の好適な例として、例えば、クロロブタノール、ソルビン酸、フェノキシエタノール、ベンジルアルコール、フェネチルアルコール、チメロサール、デヒドロ酢酸、パラオキシ安息香酸エステル類、その他、各種防腐剤、抗生物質、合成抗菌剤などを用いることができる。
 抗酸化剤の好適な例として、例えば、アスコルビン酸、亜硫酸塩、エリソルビン酸(イソアスコルビン酸)、カテキン、チャ抽出物(緑茶ポリフェノール)、などを用いることができる。
 pH調節剤の好適な例として、例えば、塩酸、クエン酸、酢酸、炭酸、ホウ酸、リン酸、硫酸などの酸、水酸化カリウム、水酸化カルシウム、水酸化ナトリウム、水酸化マグネシウムなどのアルカリ金属水酸化物、炭酸ナトリウムなどのアルカリ金属炭酸塩又は炭酸水素塩、酢酸ナトリウムなどのアルカリ金属酢酸塩、クエン酸ナトリウムなどのアルカリ金属クエン酸塩、トロメタモールなどの塩基、ジイソプロパノールアミン、モノエタノールアミン、エチレンジアミン四酢酸(EDTA)、などを用いることができる。
 分散剤の好適な例として、例えば、カルボキシメチルセルロースナトリウム、ヒドロキシプロピルメチルセルロース、ポリソルベート80、ポリビニルピロリドン、などを用いることができる。
 芳香剤の好適な例として、例えば、オレンジ、レモン、ライム、グレープフルーツなどの柑橘類のシトラス系フレーバー、アップル、バナナ、グレープ、ピーチなどのシトラス系以外のフルーツのフルーツ系フレーバー、ミルク、クリーム、バターなどの乳製品のミルク系フレーバー、コーヒー、ココア、紅茶、ウーロン茶などの嗜好飲料の嗜好飲料系フレーバー、バニラなどのバニラ系フレーバー、ペパーミント、スペアミントなどのハッカのミント系フレーバー、胡椒、シナモン、ジンジャー、ナツメグ、クローブなどのスパイスのスパイス系フレーバー、アーモンド、ピーナッツなどのナッツ類のナッツ系フレーバー、ビーフ、ポーク、チキンなど肉類、カニ、エビなどの水産物の畜肉水産系フレーバー、スープ、ソース、醤油、松茸、椎茸などの調味料系フレーバー、リキュール、カクテルなどの酒類系フレーバー、などを用いることができる。
 着色剤の好適な例として、例えば、アカキャベツ色素、アカダイコン色素、アシッドレッド(赤色106号)、アナトー色素、アマランス(赤色2号)、アルラレッドAC(赤色40号)、アントシアニン色素、エリスロシン(赤色3号)、インジゴカルミン(青色2号)、ウコン色素、カカオ色素、カラメル色素、カロチン色素、カロチノイド色素、クチナシ色素、コウリャン色素、コチニール色素、サフラン色素、サンセットイエローFCF(黄色5号)、シソ色素、タートラジン(黄色4号)、チョウマメ色素、トウガラシ色素、銅クロロフィル、銅クロロフィリンナトリウムパプリカ色素、ファストグリーンFCF(緑色3号)、ブドウ果皮色素、フラボノイド色素、ブリリアントブルーFCF(青色1号)、フロキシン(赤色104号)、紅花色素、紅麹色素、ムラサキイモ色素、ムラサキトウモロコシ色素、ニューコクシン(赤色102号)、ラック色素、ローズベンガル(赤色105号)、などを用いることができる。
 消泡剤の好適な例として、例えば、ジメチコーン、シメチコン、シリコーンエマルション、ソルビタンセスキオレエート、ノニオン系物質などを用いることができる。
 上記の他、本製剤には、補助成分として、例えば、保存・効能の助剤となる光吸収色素(リボフラビン、アデニン、アデノシンなど)、安定化のためのキレート剤・還元剤(ビタミンC、クエン酸など)、炭水化物(グルコース、シュークロース、ソルビトール、デキストラン、デンプン、マンニトール、ラクトース、など)、カゼイン消化物、各種ビタミンなどを含有させてもよい。
 ワクチン製剤の剤型などについては、公知のものを採用でき、特に限定されない。例えば、液体製剤として用いてもよい。
 その他、このワクチン製剤は、他の疾患に対する一または複数のワクチン(または他の疾患に関連する一または複数の抗原)との混合ワクチン製剤であってもよい。
 <本発明に係る魚類細菌感染症予防方法について>
 本発明は、魚類の細菌感染症予防に用いる浸漬用または注射用ワクチン製剤による予防方法であって、BF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体のいずれかを得られる培養方法で培養した溶液を用い、魚類に注射させる手順及び魚類を浸漬させる手順を含む魚類細菌感染症予防方法などをすべて包含する。
 魚類細菌感染症について、例えば、上述のワクチン製剤を容器中に飼育水を入れ、上述のワクチン製剤を添加し、その溶液に魚類を浸漬して免疫すること、または、魚類の腹腔内に注射して免疫すること、により、その感染症を有効に予防することができる。
 本発明の適用対象となる魚類は、水中・水域に生息するものであればよく、特に限定されない。例えば、養殖施設・水槽などで飼育する魚類を適用対象とすることができる。また、本発明のうち、浸漬による剤型の製剤は、小型魚類や稚魚などの小さな個体にも適用可能である。
 本発明に係る溶液中に魚類を浸漬させる方法は、公知のものを広く採用でき、特に限定されない。例えば、養殖池の周辺の直射日光の避けられる場所に容器を設置して飼育水を入れ、浸漬用ワクチン製剤を添加した後、通気しながら、魚類をその溶液中に1~120分間浸漬し、魚類を養殖池に戻すことで免疫を行ってもよい。なお、浸漬時間は、魚類への影響が少なく、かつ、効果を充分に奏する時間を考慮し、適宜設定することができる。
 浸漬投与の場合、その回数なども特に限定されない。例えば、一回当たり一度~三度浸漬し、対象魚類の大きさ、ワクチン効果の度合いなどに応じて、さらに1~60日間隔で複数回浸漬してもよい。また、浸漬間隔・浸漬回数に応じて、浸漬時間などを適宜調整してもよい。
 浸漬投与の場合、例えば、アユなどの小型魚類や稚魚などの小さな個体を適用対象とした場合、30~120分間の一度の浸漬を所定の浸漬間隔で行うようにしてもよく、また、所定時間の浸漬を、10~30日間隔で2~4回、より好適には、14~28日間隔で2~4回、最も好適には、14~21日間隔で2~3回、行うようにしてもよい。
 注射法により魚類を免疫させる方法は公知の方法を採用でき、特に限定されない。例えば、上述のワクチン製剤をアジュバントと等量混合し、あらかじめ魚類用麻酔剤で麻酔した魚類の腹腔内に10~100μLを注射し、魚類を養殖池に戻すことで免疫を行ってもよい。なお、注射量は、魚類への影響が少なく、かつ、効果を充分に奏する量を考慮し、適宜設定することができる。
 注射投与の場合、その回数なども特に限定されない。例えば、対象魚類の大きさ、ワクチン効果の度合いなどに応じて、初回免疫からさらに1~60日間隔で複数回注射接種してもよい。
 本発明において予防対象となる感染症は、魚類が罹患する細菌感染症であればよく、特に限定されない。すなわち、魚類の細菌感染症などが広く包含される。
 例えば、前記細菌感染症で、市販培地や自家配合培地などで分離・通常培養した菌体によるものであって、BF形成能が低下または消失している場合、通常培養ではワクチンとしての効果が得られない場合であってもよい。本発明では前述の培地による培養法でBF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体のいずれかを得られる溶液をワクチンとして、通常培養では得られない感染防御抗原を含む溶液により、注射法または浸漬法で接種を行うため、より有効かつ強力な免疫が形成される可能性があり、ワクチンとしての効果が高い可能性がある。
 魚類の細菌感染症として、例えば、原因菌が、Gamma Proteobacteria鋼に属するエドワージエラ敗血症、エドワジエラ・タルダ感染症、エロモナス・サルモニサイダ感染症(せっそう病)、エロモナス・ハイドロフィラ感染症、シュードモナス敗血病、赤点病、赤口病、セラチア症、ビブリオ病、類結節症などが、Bacteroidetes門(Flavobacterium属)に属する滑走細菌症、細菌性鰓病、カラムナリス病、冷水病(サケ科魚類、アユ、コイ、フナなど)などが、グラム陽性菌である細菌性腎臓病、ノカルジア症、レンサ球菌症などが、挙げられる。
 例えば、前記魚類細菌感染症が冷水病である場合、その原因菌を市販成分で作製した自家配合培地で分離・通常培養した菌株で作製したFKCは、ワクチン効果が低く、BFの形成をほとんど行わない菌株であるため、BF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体が得られる上述の培地の方が、より有効性が高い可能性がある。
 <本発明に係る製造方法について>
 本発明は、魚類細菌感染症予防に用いる浸漬用または注射用ワクチン製剤の製造方法であって、抗原をBF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体を液体培養により得る工程を含む浸漬用または注射用ワクチン製剤製造方法などをすべて包含する。
 魚類細菌感染症の病原に係る抗原をBF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体を形成させる培養方法で培養して得た抗原成分のいずれかを有効成分として含有する浸漬用及び注射用ワクチン製剤を製造することができる。
 以下に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
 実施例1では、アユ冷水病原因菌のフラボバクテリウム サイクロフィラム(フラボバクテリウム サイクロフィラム、以下「冷水病菌」と略す。)の2菌株において、細菌間密度感知物質の濃度を高濃度から低濃度になるように培地に加えて培養し、BFを再び形成または抑制する反応を開始するかどうかを検証した。
 アユから分離した冷水病菌SG150804株とPH0424株(それぞれ2015年及び2004年に分離)をMCY(Modified Cytofaga Yeast-extract:MCY、以下「MCY」と略す。)液体培地(蒸留水1L中にペプトン2g、イーストエクストラクト0.5g、肉エキス0.2g、酢酸ナトリウム0.2g、塩化カルシウム0.2gを含む、pH7.0)200mLに植菌した後、15℃、24時間または、200rpmで撹拌培養した菌液を24穴プレート(2cm/穴)にそれぞれ2mL加えた後、ろ過滅菌した100μMのC4-AHL水溶液を10、1、0.1及び0.01μMになるように加えて15℃、40rpmで24時間または48時間の振盪培養を行った。培養後、各穴を2mLの蒸留水で4回洗浄し、1%クリスタルバイオレットを2mL加えて各穴を染色した。染色後、各穴を2mLの蒸留水で4回洗浄して余分な染色液を除去し、2mLの純エタノールを各穴に加えて30分間静置して染色されたBFを溶解させ、溶解液の585nmの吸光度を測定した。各C4-AHL濃度区の測定値を((AHL添加区-無添加区)/培地だけの区)で計算されるSBF(Specific Biofilm Formation:SBF、以下「SBF」と略す。)量と比較した。
 結果を図1A、図1B及び図1Cに示す。図1AはSG150804株を、培地に10μMまたは0.01μMになるように24穴プレートに添加して培養した、BF形成量測定前の目視写真である。図1Bは24時間培養後、図1Cは48時間培養後の各菌株のBF形成量を示すグラフである。図1B及び図1C中、横軸はC4-AHLの濃度を、縦軸はBF形成量(SBF)を、それぞれ表す。また、SG150804はSG150804株の結果を、PH0424はPH0424株の結果をそれぞれ表す。
 SG150804株のC4-AHL添加培地で培養した後の状態を図1Aに示す。24時間後ではC4-AHL添加量が10μMの高濃度では増殖した菌体は分散しており、0.01μMの低濃度では凝集して隙間が盛り上がった菌塊が24穴プレートの底面に菌が接着して存在したものが、さらにその盛り上がりの隙間に菌体が目視できない空間が、確認された。対照区(無添加区)では、増殖した菌体が球状に増殖して底面に接着していないものと分散したものが確認された。この結果はC4-AHLが高濃度で存在すると増殖した菌体が分散していることから細菌間にBFが形成されていないことを示し、0.01μMでは強い凝集及び接着が認められることから細菌間にBFが形成されていることが目視によっても確認できることを示す。なお、対照区の球状の菌塊は、底面に接着できない菌体が凝集していった可能性が示唆された。次に、SG150804株のBF形成量を図1B及び図1Cに示す。図1Bに示すように、24時間後ではC4-AHLが10μMの高濃度ではBF形成能力は抑制され、0.1~0.01μMの低濃度では促進された。図1Cに示すように、48時間後ではBF形成能力はすべての濃度区で抑制された。この結果は、SG150804株が24時間後にC4-AHLが低濃度で制御していたことを示す。また48時間後にはBF形成能力は消失した。この結果は、24時間までは菌濃度が薄く、添加したC4-AHLが作用してBF形成が促進され、菌濃度が高くなると培地内にSG150804株自身が産生する細菌間密度感知物質の増加によりBF形成能力を抑制している可能性が示唆された。PH0424株のBF形成量を図1B及び図2Cに示す。図1Bに示すように、24時間後ではC4-AHLが10μMの高濃度ではBF形成能力は抑制されたが、低濃度では促進されず、図1Cに示すように48時間後では高濃度では抑制が維持され、0.1~0.01μMの低濃度では促進が開始された。この結果より、菌株によってはC4-AHLの添加により、BF形成能力は抑制されるが、促進にはC4-AHLではない他の自身が産生する細菌間間密度感知物質が必要である可能性が示唆された。また、これらの結果は、SG150804株またはPH0424株のC4-AHLの濃度を0.01μMになるよう添加した培地で24時間または48時間振盪培養することにより、BF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体のいずれかを得られることを示す。
 実施例2では、冷水病菌にストレスを与えて培養した時において、バイオフィルムを形成するかどうかを検証するため、ストレス物質としてエタノールを培地に加えて培養した場合において、冷水病菌がBFを形成するかどうかを検証した。
 1%のエチルアルコールを含むMCY液体培地200mLにSG150804株を植菌した後、15℃、48時間、120rpmで振盪培養した培養液をスライドグラスに滴下し、自然乾燥させてから1%クリスタルバイオレットで染色してプレパラートを作製し、BFの形成状態の確認に供した。
 図2は、培養液をスライドグラスに滴下し、自然乾燥させてから1%クリスタルバイオレットで染色してプレパラートを作製し、BFの形成状態を顕微鏡観察により可視化した写真である。
 図2に示すように、1%エタノールを加えたMCY液体培地で培養することにより、菌体を包含し、紫色に染色されたBFが形成され、このBF内には紫色に染色された菌体より小さな小胞様成分が確認できる。この結果は、エタノールが菌体にストレスを与えたため、培養液中にストレスに対抗するためのBFが形成されたことを表す。したがって、ストレス物質に暴露させることにより人為的にBF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体のいずれかを得られることを示す。ただし、ストレスを与えてBFを形成させる本実施例では、BFの形成量が少なく、浮遊菌体が多かったため、多量にBFを得るには、より過剰なストレスに暴露する等の他の方法を用いることが望ましい。
 実施例3では、冷水病菌株がBFを形成する低濃度の細菌間密度感知物質(C4-AHL:市販品)を加えた培地で培養した菌液をホルマリンで不活化して調製した溶液に琵琶湖産アユ(キュウリウオ目キュウリウオ科魚類、学名「Plecoglossus altivelis」)を浸漬して免疫した場合における冷水病に対する予防効果を検証した。
 SG150804株を、0.01μMのC4-AHLを含む1/2CGY(Casitone Gelatin Yeast-extract:CGY、以下「1/2CGY」と略す。)液体培地(蒸留水1L中にカシトン2.5g、イーストエクストラクト0.5g、ゼラチン1.5g、塩化カルシウム0.147g)200mLに植菌して15℃、200rpmで24時間撹拌培養して培養した後、ホルマリンを0.3%になるように加えて不活化し、ワクチン原液とした。比較対象としての通常培養FKCは、同じ菌株を1/2CGY液体培地200mLで15℃、200rpmで24時間撹拌培養して0.3%になるようホルマリンを加えて不活化したものを浸漬用通常培養FKCワクチン溶液とした。
 次に、供試魚体を浸漬法で免疫した。ワクチン原液を地下水で2Lになるよう10倍希釈した液に消泡剤KM-72(栗本薬品工業株式会社製食品添加物用消泡剤、以下「消泡剤」と略す。)を10μL添加後、琵琶湖産アユ(平均体重2.0g)60尾を、通気下で、30分間浸漬した後、飼育槽に戻し、水温17.5℃の地下水で21日間飼育した。対照群は無処置とし、同じ期間、同条件で飼育した。
 次に、攻撃試験を行った。冷水病菌SG150804株を、200mLの1/2CGY液体培地を用いて15℃、200rpmで48時間撹拌培養し、1Lの1/2CGY液体培地に加えてさらに15℃、200rpmで48時間撹拌培養したものを地下水で2Lになるよう4倍希釈し、消泡剤を10μL添加した液を攻撃菌液とした。希釈したこの攻撃菌液に各区の供試魚65尾を入れて30分間浸漬して攻撃(1.9×10CFU/mL)した後、飼育槽に戻し、水温17.5℃の地下水で21日間飼育観察した。
 結果を図3に示す。図3は、冷水病菌の培養時に細菌間密度感知物質であるC4-AHLを0.01μM当量添加した培地で培養した培養液を0.3%量のホルマリンを添加して不活化したワクチン溶液及び比較対象としての通常培養FKCで浸漬して免疫し、免疫21日後の琵琶湖産アユを攻撃した場合における生残率を示すグラフである。図中、横軸は攻撃した日からの日数を、縦軸は生残率(%)を、それぞれ表す。図中、AHL-FKC(AHL Adding Culture-FKC:AHL-FKC、以下「AHL―FKC」と略す。)は0.01μMのC4-AHLを含む1/2CGY培地で培養して不活化した不活化抗原で浸漬法により免疫した場合の結果を、「通常培養FKC」は、1/2CGY液体培地で培養して不活化した不活化抗原で浸漬法により免疫した場合の結果を、「対照区」は、免疫しなかった場合の結果を、それぞれ示す。
 図3に示すとおり、無処置の場合(対照区)または通常培養FKC浸漬ワクチンで浸漬法により免疫した場合の生残率はそれぞれ7.8%及び18.2%の生残率であったのに対し、AHL-FKC浸漬ではワクチンで浸漬法により免疫した場合の生残率は43.1%で顕著に高く、Fisherの直接確率計算法(片側、p<0.01)により有意差(p<0.01)があった。通常培養FKC浸漬ワクチンで浸漬法により免疫した場合では有意差(p=0.07)はなかった。この結果は、冷水病菌の培養時に、BF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体のいずれかを得ることができる、C4-AHLを0.01μM当量添加した培地で培養した培養液を不活化する手順による製造方法で作製した抗原溶液で、浸漬法により免疫することにより、冷水病を有効に予防できることを示す。
 実施例4では、琵琶湖産アユから分離された冷水病菌株にBFを形成させるため、ストレス物質として鉄イオンを、細菌間密度感知物質の吸着及び付着基体物質として活性炭粉末を培地に加えて培養する方法により、BFを形成させてBFの形成容積を大幅に拡大させる培養方法を示す。
 BFを形成させるための培地には、高圧蒸気滅菌した1/2CGY培地200mLに2Mの水酸化ナトリウム溶液375μLを撹拌しながら加え、ろ過滅菌した100mMの塩化鉄(III)を撹拌しながら1mMになるように加えたのち、乾熱滅菌した市販の活性炭素粉末1gをこの順序で加えた、鉄イオン・活性炭加1/2CGY液体培地を用いた。調製直後の鉄イオン・活性炭加1/2CGY液体培地にSG150804株を植菌して15℃、200rpmで48時間撹拌培養してバイオフィルムの形成状態の確認に供した。
 結果は図4A、図4Bに示す。図4Aは、培養液をスライドグラスに滴下し、自然乾燥させてから1%クリスタルバイオレットで染色してプレパラートを作製し、BFの形成状態を顕微鏡観察により可視化した写真である。図4Bは培養液をゼラチンでコートしたスライドグラスに滴下して、緩やかにバーナーで加熱して菌液を乾燥させ、アセトンでBF外膜内の構成物、菌体や成分を洗い流して固定したものを1%クリスタルバイオレットで染色してプレパラートを作製し、BFの外膜の形成状態を顕微鏡観察により可視化した写真である。
 図4Aに示すように、鉄イオン・活性炭加1/2CGY液体培地で培養することにより、培養液中の活性炭素粒子上にBFを形成して20μm以上になった大きな菌塊を形成しており、さらに、その菌塊の一部は活性炭素粉末の粒子を複数つないで大きな粒子を形成した。この結果はBFの形成容積を大幅に拡大させていることを示す。次に図4Bに示すように、内容物が洗い流された約130μmに膨張したBFの外膜が確認できることを示す。この結果は、活性炭粉末粒子上に形成される菌塊が、明らかに強固な外膜を有するBFであることを示す。さらに、鉄イオン・活性炭加1/2CGY液体培地は、人為的にバイオフィルムを多量に形成させることができる培地であることを示す。
 その他、SG150804菌株をMCY液体培地で培養するとBFをほとんど形成しないが、本菌を鉄イオン・活性炭加1/2CGY液体培地で48時間培養するとBFを形成することから、活性炭粉末の特性によって、細菌間密度感知物質が吸着されてその濃度が低位に保たれること、及び過剰に加えた鉄イオンのストレス効果により、BF形成に寄与していることが示唆された。さらに、BF菌塊の内側に活性炭粒子が存在しているため、BF菌塊の内側に分泌され続ける細菌間密度感知物質についても活性炭粉末の特性によって吸着され、BFの形成容積をより大きく成長している可能性が示唆された。
 実施例5では、冷水病菌を鉄イオン及び活性炭加1/2CGY液体培地で培養して、BF、BFを形成・成熟・崩壊過程で産出/排出される成分及び菌体のいずれかを多量に取得したFKC(BF-FKC:Biofilm Formed FKC、以下「BF―FKC」と略す。)に琵琶湖産アユを浸漬して免疫した場合における冷水病に対する予防効果を、通常培養FKCをアユに注射した場合及び浸漬した場合、と比較して検証した。
 まず、冷水病菌を、実施例4と同様に培養した溶液に、0.3%量のホルマリンを加えて、15℃、200rpmで5日間撹拌し、BF-FKCを作製した。通常培養FKCは実施例3と同様にして作製したものを用いた。注射用の通常培養FKCはフロイントのインコンプリートアジュバント(Incomlete Freund’s Adjuvant:IFA、以下「IFA」と略す。)と等量混合したものを用いた。
 次に、供試魚体を浸漬法または注射法で免疫した。BF-FKC浸漬ワクチン区は、原液を地下水で2Lになるよう100倍希釈した液に消泡剤を10μL添加したものを用い、琵琶湖産アユ(平均体重3.4g)50尾を、通気下で、120分間浸漬して免疫した後、飼育槽に戻し、水温17.5℃の地下水で14日間飼育した。その後、同じ条件で2回目の浸漬を行って免疫し、同条件でさらに14日間飼育した。通常培養FKC浸漬ワクチン区は、原液を地下水で2Lになるよう10倍希釈した液に消泡剤を10μL添加したものを用い、琵琶湖産アユ(平均体重3.4g)50尾を、通気下で、30分間浸漬した後、飼育槽に戻し、水温17.5℃の地下水で21日間飼育した。通常培養FKC注射ワクチン区は、通常培養FKCとIFAを等量混合したものを供試魚の腹腔内に1尾あたり50μL注射して接種し、通常培養FKC浸漬区と同じ期間、同条件で21日間飼育した。対照群は無処置とし、通常培養FKC浸漬区と同じ期間、同条件で飼育した。
 次に、攻撃試験を行った。冷水病菌SG150804株を実施例3と同様にして攻撃菌液を作製した。そして攻撃菌液を地下水で2Lになるよう4倍希釈したものに各区の供試魚70尾を入れて30分間浸漬して攻撃(1.0×10CFU/mL)した後、飼育槽に戻し、水温17.5℃の地下水で21日間飼育観察した。なお、1回及び2回免疫区の攻撃日は同一日とした。
 結果を図5に示す。図5は、冷水病菌SG150804株で作製したBF-FKC溶液中に琵琶湖産アユを浸漬して免疫した場合における琵琶湖産アユの攻撃後の生残率を示すグラフである。図中、横軸は攻撃した日からの日数を、縦軸は生残率(%)を、それぞれ表す。図中、BF-FKC浸漬は100倍希釈したBF-FKCワクチンに14日間隔で2回浸漬して免疫した場合の結果を、通常培養FKC浸漬は10倍希釈した通常培養FKCワクチンに1回浸漬して免疫した場合の結果を、通常培養FKC注射区はIFAと混合した通常培養FKC注射ワクチンを腹腔内に注射した場合の結果を、対照区(無処理)は無処置の場合を、それぞれ表す。
 図5に示すとおり無処置の場合における攻撃21日後の生残率は42.9%であり、100倍希釈BF-FKCワクチンで浸漬法により免疫した場合の生残率は91.6%で、顕著に高く、Fisherの直接確率計算法(片側、p<0.01)により有意差(p<0.01)があった。同法による通常培養FKC浸漬ワクチンでは生残率が55.9%で、p=0.09と有意差はなく、通常培養FKC注射ワクチンでは生残率が90.3%で、p<0.01と有意差があった。この結果は、BF-FKC溶液で浸漬法により免疫する方が、効果があるとされる通常培養FKC注射ワクチンで免疫するより、生残率が1.3%高いことから、BF-FKC浸漬ワクチンは、通常培養注射FKC注射ワクチン以上に冷水病を有効に予防できることを示す。
 また、実施例1に示す低濃度の細菌間密度感知物質(市販品)を培地に加えて培養してホルマリンで不活化したAHL-FKC浸漬ワクチンで免疫した琵琶湖産アユの21日後の生残率は43.1%であり、BF-FKC浸漬ワクチンで同様に免疫した琵琶湖産アユの21日後の生残率は91.6%と、実施例1のAHL-FKC浸漬ワクチンより効果が非常に優れている。そして、製造にかかるコストが市販品の細菌間密度感知物質を用いないBF-FKC浸漬ワクチンの方がはるかに安価であり、効果及び製造コストの面から、BF-FKCの方が実施例1のAHL-FKC浸漬ワクチンより、好適な製剤である。
 さらに、BF-FKC浸漬ワクチンと通常培養FKC浸漬ワクチンの製造は、ほとんど同じ労力で行うことができ、さらに、BF-FKC浸漬ワクチンの効果は、通常培養FKC注射ワクチンよりも高く、浸漬法で投与する剤型のワクチンであることから、魚類に与えるストレスが少なく、そして、通常培養FKC注射ワクチンよりも効果が高いことから、BF-FKC浸漬ワクチンは、通常培養FKC注射ワクチンより、優れていることを示す。
 実施例6では、BF-FKC浸漬ワクチンの予防効果の安定性を検証した。
 BF-FKC浸漬ワクチンは実施例4と同様にして作製したものを用いた。
 次に、BF-FKC浸漬ワクチンの効果のばらつきを調べるため、以下の試験を9回実施した。まず、BF-FKC浸漬ワクチンは、原液を地下水で2Lになるよう10倍希釈した液に消泡剤を10μL添加したものを用い、琵琶湖産アユ(平均体重2.1~4.1g)50~70尾に対して、通気下で、30分間浸漬して免疫した後、飼育槽に戻し、水温17.5℃の地下水で21日間飼育した。対照群は無処置としBF-FKC浸漬ワクチン区と同じ尾数、同じ期間、同じ条件で飼育した。
 次に、攻撃試験を行った。冷水病菌SG150804株を実施例3と同様にして攻撃菌液を作製し、アユを30分間浸漬して攻撃(1.0~2.8×10CFU/mL)した後、飼育槽に戻し、水温17.5℃の地下水で21日間飼育観察した。
 無処置対照区の場合における攻撃21日後の生残率の平均は39.0%(標準偏差:12.7%)であり、BF-FKCワクチンで浸漬法により免疫した場合では、生残率は83.9%、標準偏差は7.3%で、9回のすべての試験で対照区に対してすべて有意差(p<0.01)があった。この結果は、BF-FKC浸漬ワクチンの効果が、供試した少なくとも平均体重2.1g以上の琵琶湖産アユの免疫系の発達状態や、飼育環境などのばらつきにほとんど影響されず、冷水病に対して、安定した高い予防効果を提供することを示す。
 実施例7では、BF-FKCと通常培養FKCを注射法で琵琶湖産アユに接種して免疫した場合における冷水病に対する予防効果を比較して検証した。
 BF-FKCと通常培養FKCは実施例4と同様に冷水病菌SG150804株を用いて作製し、それぞれIFAと等量混合したものを用いた。
 次に、琵琶湖産アユ(平均体重3.4g)を注射法で免疫した。BF-FKCまたは通常培養FKCをIFAと等量混合したワクチンをそれぞれ供試アユの腹腔内に1尾あたり50μLを接種した後、飼育槽に戻し、水温17.5℃の地下水で21日間飼育した。対照群は無処置とし、21日間、同条件で飼育した。
 次に、攻撃試験を行った。攻撃用菌の菌液は、実施例4と同様に供試菌を培養して作製した。そして攻撃菌液を地下水で2Lになるよう4倍希釈したものに各区の供試魚を入れて30分間浸漬して攻撃(1.0×10CFU/mL)を行った。攻撃後は、飼育槽に戻し、水温17.5℃の地下水で21日間飼育観察した。
 結果を図6に示す。図6は、冷水病菌SG150804株で作製したBF-FKCと通常培養FKCを、琵琶湖産アユにより注射法により免疫した場合における攻撃後のアユの生残率を示すグラフである。図中、横軸は攻撃した日からの日数を、縦軸は生残率(%)を、それぞれ表す。図中、BF-FKC注射はBF-FKCとIFAを等量混合したもので注射して免疫した場合の結果を、通常培養FKC注射は通常培養FKCとIFAを等量混合したもので注射して免疫した場合の結果を、対照区(無処理)は無処置の場合を、それぞれ表す。
 図6に示すとおり、無処置の場合における攻撃21日後の生残率は26.9%であり、BF-FKC注射ワクチンにより免疫した場合の生残率は94.3%で、顕著に高く、Fisherの直接確率計算法(片側、p<0.01)により有意差(p<0.01)があった。また、通常培養FKC注射ワクチンにより免疫した場合の生残率は85.1%で、有意差(p<0.01)があった。この結果は、BF-FKC注射ワクチンにより免疫すると、効果があるとされる通常培養FKC注射ワクチンで免疫するより生残率が9.2%高く、注射法で用いてもBF-FKCの方がより高い予防効果を提供することを示す。したがって、BF-FKCは浸漬法でも注射法で用いても、効果があるとされる通常培養FKC注射ワクチンより効果が高いことを示し、冷水病をより有効に予防できることを示す。

Claims (9)

  1.  魚類細菌感染症予防に用いる浸漬用または注射用ワクチン製剤であって、魚類細菌感染症菌に由来するバイオフィルム(BF)、BFを形成・成熟・崩壊過程で産出される成分及び菌体からなる群から選ばれる少なくとも1種を有効成分として含有する、ワクチン製剤。
  2.  前記菌体が魚類細菌感染症原因菌の不活化菌及び死菌からなる群から選ばれる、請求項1に記載のワクチン製剤。
  3.  魚類細菌感染症予防に用いる浸漬用または注射用ワクチン製剤の製造方法であって、魚類細菌感染症原因菌に細菌間密度感知物質を加えて培養し、バイオフィルム及び/またはバイオフィルムの形成・成熟・崩壊過程で産出される成分を形成させることを特徴とする、ワクチン製剤の製造方法。
  4.  前記培地がさらに金属イオン及び細菌間密度感知物質を吸着する物質からなる群から選ばれる少なくとも1種を含む、請求項3に記載のワクチン製剤の製造方法。
  5.  細菌間密度感知物質を吸着する物質が活性炭である、請求項4に記載のワクチン製剤の製造方法。
  6.  魚類細菌感染症の予防方法であって、魚類細菌感染症原因菌に由来するバイオフィルム、バイオフィルム形成・成熟・崩壊過程で産出される成分及び/または魚類細菌感染症原因菌の不活化菌または死菌を含む溶液を魚類に適用または注射することを含む魚類細菌感染症の予防方法。
  7.  前記魚類細菌感染症原因菌が、一般的な細菌分離・培養用培地で分離・培養可能な細菌である、請求項6に記載の予防方法。
  8.  前記魚類細菌感染症原因菌が、冷水病及び冷水病菌が属するBacteroidetes門の細菌である請求項6または請求項7に記載の予防方法。
  9.  前記魚類細菌感染症原因菌が不活化原因菌である請求項6に記載の魚類細菌感染症の予防方法。
PCT/JP2023/030635 2022-08-31 2023-08-25 ワクチン製剤及びその製造方法、並びに魚類細菌感染症の予防方法 WO2024048430A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-137511 2022-08-31
JP2022137511A JP2024033734A (ja) 2022-08-31 2022-08-31 ワクチン製剤及びその製造方法、並びに魚類細菌感染症の予防方法

Publications (1)

Publication Number Publication Date
WO2024048430A1 true WO2024048430A1 (ja) 2024-03-07

Family

ID=90099788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030635 WO2024048430A1 (ja) 2022-08-31 2023-08-25 ワクチン製剤及びその製造方法、並びに魚類細菌感染症の予防方法

Country Status (2)

Country Link
JP (1) JP2024033734A (ja)
WO (1) WO2024048430A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210769A (ja) * 2002-12-18 2004-07-29 Techno Network Shikoku Co Ltd 魚類冷水病ワクチン
JP2004352690A (ja) * 2003-05-30 2004-12-16 Mitaka Seiyaku Kk 魚類冷水病ワクチン
JP2017088532A (ja) * 2015-11-09 2017-05-25 和歌山県 冷水病ワクチン及び冷水病の予防方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210769A (ja) * 2002-12-18 2004-07-29 Techno Network Shikoku Co Ltd 魚類冷水病ワクチン
JP2004352690A (ja) * 2003-05-30 2004-12-16 Mitaka Seiyaku Kk 魚類冷水病ワクチン
JP2017088532A (ja) * 2015-11-09 2017-05-25 和歌山県 冷水病ワクチン及び冷水病の予防方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEVIPAN HÉCTOR A., AVENDAÑO-HERRERA RUBEN: "Different Phenotypes of Mature Biofilm in Flavobacterium psychrophilum Share a Potential for Virulence That Differs from Planktonic State", FRONTIERS IN CELLULAR INFECTION MICROBIOLOGY, FRONTIERS RESEARCH FOUNDATION, CH, vol. 7, 15 March 2017 (2017-03-15), CH , pages 76, XP093145133, ISSN: 2235-2988, DOI: 10.3389/fcimb.2017.00076 *
LEVIPAN HÉCTOR A., QUEZADA JOHAN, AVENDAÑO-HERRERA RUBEN: "Stress Tolerance-Related Genetic Traits of Fish Pathogen Flavobacterium psychrophilum in a Mature Biofilm", FRONTIERS IN MICROBIOLOGY, FRONTIERS MEDIA, LAUSANNE, vol. 9, 23 January 2018 (2018-01-23), Lausanne , pages 18, XP093145139, ISSN: 1664-302X, DOI: 10.3389/fmicb.2018.00018 *

Also Published As

Publication number Publication date
JP2024033734A (ja) 2024-03-13

Similar Documents

Publication Publication Date Title
JP5006886B2 (ja) 広域抗菌スペクトルを有する改変ココナッツ油
JP5756477B2 (ja) クメストロールの生産方法
CN104774776B (zh) 一株耐高温高湿的布拉迪酵母菌及其应用
CN108651710A (zh) 一种高效抑菌复合精油及其制备方法
JP2009055900A (ja) クロレラ抽出物含有物
CN106107413A (zh) 一种生物防腐剂及其制备方法
Gallo et al. Applications of chitosan as a functional food
CN110521763A (zh) 一种海水鱼类用生物保鲜剂及其制备和使用方法
CN104171743A (zh) 一种肉鸡用饲料添加剂及其制备方法
CN106577536A (zh) 一种防草鱼肠炎病的养殖方法
WO2024048430A1 (ja) ワクチン製剤及びその製造方法、並びに魚類細菌感染症の予防方法
CN107823326A (zh) 一种鱼类病原菌抑制剂
KR100862649B1 (ko) 기능성 김과 그의 제조방법
Burrill The bacteria: an account of their nature and effects, together with a systematic description of the species
CN107926771A (zh) 一种脆鱼养殖方法
JP6355512B2 (ja) 不活化ワクチン製剤、並びに感染症予防方法
KR101750288B1 (ko) 귤응애 방제용 조성물 및 그 방제 방법
KR20040013654A (ko) 항 헬리코박터 유산균을 이용한 수산발효 식품 제조방법과그 식품
CN101263868A (zh) 泡菜汁在制备防治猪腹泻药物及饲料添加剂中的应用
JP2008000010A (ja) 耐糖性酵母Zygosaccharomycesrouxiiの発酵液及びその製法
JP7086437B1 (ja) ショウガ加工物の製造方法、及びショウガ加工物
JP7393805B2 (ja) 抗菌性組成物及びその製造方法
KR101242535B1 (ko) 콕시듐 치료 및 예방을 위한 조성물의 제조방법
CN112426522B (zh) 一种黄颡鱼混合细菌灭活疫苗
CN108721594A (zh) 一种鲟鱼病菌抑制剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860192

Country of ref document: EP

Kind code of ref document: A1