WO2024046225A1 - 一种酯型光敏聚酰亚胺复合材料、制备方法及半导体装置 - Google Patents

一种酯型光敏聚酰亚胺复合材料、制备方法及半导体装置 Download PDF

Info

Publication number
WO2024046225A1
WO2024046225A1 PCT/CN2023/114882 CN2023114882W WO2024046225A1 WO 2024046225 A1 WO2024046225 A1 WO 2024046225A1 CN 2023114882 W CN2023114882 W CN 2023114882W WO 2024046225 A1 WO2024046225 A1 WO 2024046225A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive polyimide
ester
type photosensitive
dml
composite material
Prior art date
Application number
PCT/CN2023/114882
Other languages
English (en)
French (fr)
Inventor
李金辉
张家林
张国平
孙蓉
Original Assignee
深圳先进电子材料国际创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进电子材料国际创新研究院 filed Critical 深圳先进电子材料国际创新研究院
Publication of WO2024046225A1 publication Critical patent/WO2024046225A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds

Definitions

  • the present application relates to the field of photosensitive polyimide materials, and in particular to an ester-type photosensitive polyimide composite material, a preparation method and a semiconductor device.
  • Polyimide is widely used as surface protective layer, interlayer dielectric layer, etc. in semiconductor devices due to its excellent comprehensive properties.
  • traditional polyimide is not photosensitive. For these applications, it is necessary to first apply a layer of photoresist, pattern it, and then etch it to transfer the pattern to the polyimide. Therefore, photosensitive polyimides with direct patterning capabilities have attracted widespread attention due to their simplified integrated circuit fabrication process and reduced processing costs.
  • dielectric materials including low dielectric constant ( ⁇ 3.5). Due to the development of high-frequency communication and the trend of miniaturization of devices, It will cause problems such as delay, loss, and crosstalk during signal transmission.
  • photosensitive polyimides focus on chemical amplification systems and doped photoinitiators. Although the photosensitivity and resolution are high, the doped small molecules will greatly affect the photosensitive polyimide itself. Mechanical strength and heat resistance. In addition, although the dielectric constant of photosensitive polyimide can be reduced by adding fillers (fluorinated graphene, polyethylene propylene, etc.), large-sized fillers are prone to agglomeration in the photosensitive polyimide matrix, thereby affecting the photosensitivity. The mechanical properties of polyimide will also affect the photosensitive properties of photosensitive polyimide.
  • ester-type photosensitive polyimide composite material which includes the following components:
  • the content of component (B) is 0.5 to 5 parts by mass relative to 100 parts by mass of component (A).
  • the content of component (C) is 5 to 25 parts by mass relative to 100 parts by mass of component (A).
  • the content of component (D) is 0.1 to 1 part by mass relative to 100 parts by mass of component (A).
  • the (B) includes: GC-410, OXE01, benzophenone, methyl o-benzoyl benzoate, 4-benzoyl-4'-methyl diphenyl ketone, Benzophenone derivatives such as dibenzylketone and fluorenone, benzene such as 2,2'-diethoxyacetophenone, 2-hydroxy-2-methylpropiophenone, and 1-hydroxycyclohexyl phenyl ketone Ethyl ketone derivatives, thioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, diethylthioxanthone Thioxanthone derivatives such as xanthone, benzil derivatives such as benzil, benzyldimethyl ketal, benzyl- ⁇ -methoxyethyl ketal, benzoin, benzoin methyl Benzoin derivatives such as ether, 1-phenyl-1,2-
  • the (C) includes: tetraethylene glycol dimethacrylate, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-isopropylimidazole, tetraethylene Phthalic anhydride, hexahydrophthalic anhydride, triethylenetetramine, dimethylaminopropylamine, diethylaminopropylamine, ML-26X, ML-24X, ML-236TMP, 4-methylol 3M6C, ML-MC, ML-TBC, isopropylimidazole, tetrafluorophthalic anhydride, hexahydrophthalic anhydride, triethylenetetramine, dimethylaminopropylamine, diethylaminopropylamine, ML-26X , ML-24X, ML-236TMP, 4-methylol 3M6C, ML-MC, ML-TBC, isopropylimidazole,
  • the (E) includes: N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP) or N,N-dimethylformamide (DMF). ), one or a combination of at least two of tetrahydrofuran, m-cresol, ⁇ -butyrolactone, tetramethylurea, dimethyl sulfoxide, hexamethylphosphate triamide, and chloroform.
  • DMAc N,N-dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • DMF N,N-dimethylformamide
  • the second purpose of this application is to provide a method for preparing the ester-type photosensitive polyimide composite material, which includes the following steps:
  • the fluorinated graphene quantum dot/polyamic acid ester composite solution is coated on the surface of the substrate, and then exposed and developed to form a pattern;
  • the pattern is thermally imidized to obtain the ester-type photosensitive polyimide composite material.
  • the fluorinated graphene quantum dots are dissolved in the solvent, treated with ultrasonic for 30-90 minutes, and then the photoinitiator, the cross-linking agent and the polyamic acid ester are added to obtain the fluorinated graphene quantum dots.
  • the fluorinated graphene quantum dot is prepared by the following method:
  • the fluorocarbon source is placed in an organic solvent, and then subjected to ultrasonic treatment. After standing, the supernatant liquid is taken and centrifuged. After centrifugation, the supernatant liquid is taken out to remove the organic solvent, and finally dried to obtain fluorinated graphene quantum dots.
  • the carbon source includes at least one of fluorinated carbon fiber, fluorinated graphene, fluorinated carbon, and fluorinated carbon nanotubes.
  • the fluorinated graphene quantum dots are dissolved in the solvent, treated with ultrasonic for 30-90 minutes, and then the photoinitiator, the cross-linking agent and the polyamic acid ester are added to obtain the fluorinated graphene quantum dots.
  • the polyamic acid ester is prepared by the following method:
  • the photosensitive polyimide precursor solution is dropped into deionized water to remove unreacted substances, and then the polyamic acid ester is obtained by suction filtration and drying.
  • the dianhydride includes pyromellitic dianhydride, maleic anhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,3,3',4' -Diphenyl ether tetracarboxylic dianhydride, 4,4'-oxydiphthalic anhydride, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride, 3,3',4,4'-diphthalic anhydride Benzophenone tetracarboxylic dianhydride, 3,3,4,4-diphenylsulfone tetracarboxylic dianhydride, 4,4'-terephthalic dianhydride, hexafluorodianhydride, 1,2 -Ethylene bis[1,3-dihydro-1,3-dioxoisobenzofuran-5-carboxylate], bisphenol A dianhydride, glyceryl
  • the diamine includes 4,4'-diaminodiphenyl ether, 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane Alkane, aminopropyl double-capped polydimethylsiloxane, 3,5-diamino-1,2,4-triazole, diaminopyridine, 2-(4-aminophenyl)-5-amino Benzimidazole, 2,2'-bis[4-(4-aminophenoxyphenyl)]propane, 2-amino-4-[(3,4-diaminophenyl)sulfonyl]aniline, 6, 6'-Diamino-3,3'-methylenedibenzoic acid, 1H-indazole-4,7-diamine, 7-nitro-1H-indazole-4-amine, 2,2'- Diamino-4,4'-bisthiazole, 3,6-diaminocarbazole,
  • the organic solvent includes N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP) or N,N-dimethylformamide (DMF), One or a combination of at least two of tetrahydrofuran, m-cresol, ⁇ -butyrolactone, tetramethylurea, dimethyl sulfoxide, hexamethylphosphate triamide, and chloroform.
  • DMAc N,N-dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • DMF N,N-dimethylformamide
  • the step of applying the fluorinated graphene quantum dot/polyamic acid ester composite solution to the surface of a substrate, and then forming a pattern after exposure and development specifically includes the following steps:
  • the spin-coated substrate is soft-baked at 100°C for 3-10 minutes to remove part of the organic solvent to obtain a spin-coated film with a film thickness of 2-5 microns;
  • the exposed substrate is developed to form a pattern of lines.
  • the step of thermally imidizing the pattern to obtain the ester-type photosensitive polyimide composite material specifically includes:
  • the pattern was subjected to thermal imidization treatment using a stepped temperature rise method, which included holding at 100°C for 1 hour, 200°C for 1 hour, 300°C for 1 hour, and 350°C. Incubate for 1 hour at °C, with a heating rate of 2-10°C/minute, then cool to room temperature, peel the pattern off the substrate, and obtain an ester-type photosensitive polyimide composite material with a low dielectric constant.
  • the third object of the present application is to provide a semiconductor device, including a copper wiring and an insulating layer provided on the copper wiring, wherein the insulating layer includes the ester-type photosensitive polyimide composite material.
  • the ester-type photosensitive polyimide and its preparation method provided by this application reduce the dielectric constant by introducing fluorinated graphene quantum dots containing low-polarity fluorine atoms, because fluorine atoms have strong electronegativity and can firmly fixed electrons, thereby reducing the polarizability; small-sized, large-specific-surface-area fluorinated graphene quantum dots are more easily dispersed evenly in the photosensitive polyimide matrix, thereby improving its overall performance and reducing the dielectric constant; and containing fluorine groups
  • the group is hydrophobic and can also prevent the material from reducing its performance due to water absorption.
  • the molecular weight and grafting rate can be controlled by adjusting the proportion of methacrylate groups, reaction temperature, and time to achieve high sensitivity.
  • the ester-type photosensitive polyimide provided in this application has excellent comprehensive properties and can be used in advanced packaging technology with good application prospects.
  • Figure 1 is a flow chart of the preparation method of the ester-type photosensitive polyimide composite material provided by this application.
  • Figure 2 is a step flow chart of the polyamic acid ester preparation method provided by this application.
  • Figure 3 is a flow chart of steps for forming patterns provided by this application.
  • Figure 4 is an XPS pattern of the fluorinated graphene quantum dots provided in Example 1 of the present application.
  • Figure 5 is a TEM image of the fluorinated graphene quantum dots provided in Example 1 of the present application.
  • Figure 6 shows the dielectric constants of the Pure PSPI film and the FCQD-PSPI composite film provided in Example 1 of the present application.
  • Figure 7 is the stress strain curve of the Pure-PSPI film and the FCQD-PSPI composite film provided in Example 1 of the present application.
  • Figure 8 is a PSPI 3D confocal image after exposure to 100mJ/ cm2 provided in Example 1 of the present application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more than two, unless otherwise explicitly and specifically limited.
  • the content of component (B) is 0.5 to 5 parts by mass relative to 100 parts by mass of component (A).
  • the (B) includes benzophenone derivatives, acetophenone derivatives, thioxanthone derivatives, benzil derivatives, benzil derivatives, benzoin derivatives, oximes, N -At least one of arylglycines, peroxides, and aromatic biimidazoles
  • the benzophenone derivatives include GC-410, OXE01, benzophenone, and methyl o-benzoyl benzoate , 4-benzoyl-4'-methylbenzophenone, dibenzylmethylketone, fluorenone and other benzophenone derivatives, 2,2'-diethoxyacetophenone, 2-hydroxy- 2-Methylpropiophenone, 1-hydroxycyclohexylphenylketone;
  • the thioxanthone derivatives include thioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, diethylthioxanthone Ketones; the
  • the content of component (C) is 5 to 25 parts by mass relative to 100 parts by mass of component (A).
  • the (C) includes: tetraethylene glycol dimethacrylate, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-isopropylimidazole, tetrafluoro-phthalate
  • Formic anhydride hexahydrophthalic anhydride, triethylenetetramine, dimethylaminopropylamine, diethylaminopropylamine, ML-26X, ML-24X, ML-236TMP, 4-methylol 3M6C, ML-MC, ML-TBC, isopropylimidazole, tetrafluorophthalic anhydride, hexahydrophthalic anhydride, triethylenetetramine, dimethylaminopropylamine, diethylaminopropylamine, ML-26X, ML-24X, ML-236TMP, 4-methylol 3M6C, ML-MC, ML-TBC, DM-BI25X
  • the content of component (D) is 0.1 to 1 part by mass relative to 100 parts by mass of component (A).
  • P m and V m represent the molar polarizability and molar volume of the atomic groups in the polymer respectively.
  • the (E) includes: N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP) or N,N-dimethylformamide (DMF). ), one or a combination of at least two of tetrahydrofuran, m-cresol, ⁇ -butyrolactone, tetramethylurea, dimethyl sulfoxide, hexamethylphosphate triamide, and chloroform.
  • DMAc N,N-dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • DMF N,N-dimethylformamide
  • ester-type photosensitive polyimide composite material may also include (F) other components, including but not limited to polymerization inhibitors, copper surface adhesives, coupling agents, etc.
  • the ester-type photosensitive polyimide provided by this application reduces the dielectric constant by introducing fluorinated graphene quantum dots containing low-polarity fluorine atoms, because fluorine atoms have strong electronegativity and can firmly fix electrons.
  • fluorinated graphene quantum dots with small size and large specific surface area are more easily dispersed evenly in the photosensitive polyimide matrix, thereby improving its overall performance and reducing the dielectric constant; and the fluorine-containing groups are hydrophobic , and can also prevent the material from reducing its performance due to water absorption.
  • the molecular weight and grafting rate can be controlled by adjusting the proportion of methacrylate groups, reaction temperature, and time to achieve high sensitivity.
  • Another embodiment of the present application also provides a method for preparing an ester-type photosensitive polyimide composite material, which includes the following steps S110 to S130. The implementation of each step is described in detail below.
  • Step S110 Dissolve the fluorinated graphene quantum dots in the solvent, conduct ultrasonic treatment for 30-90 minutes, and then add the photoinitiator, the cross-linking agent and polyamic acid ester to obtain the fluorinated graphene quantum dots/ Polyamic acid ester composite solution.
  • the fluorinated graphene quantum dots are prepared by the following method: placing the fluorinated carbon source in an organic solvent, then ultrasonic treatment, and then centrifuging the supernatant after standing. The supernatant liquid is taken out to remove the organic solvent, and finally dried to obtain fluorinated graphene quantum dots.
  • the carbon source includes at least one of fluorinated carbon fiber, fluorinated graphene, fluorinated carbon, and fluorinated carbon nanotubes.
  • the organic solvent includes N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP) or N,N-dimethylformamide (DMF), One or a combination of at least two of tetrahydrofuran, m-cresol, ⁇ -butyrolactone, tetramethylurea, dimethyl sulfoxide, hexamethylphosphate triamide, and chloroform.
  • DMAc N,N-dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • DMF N,N-dimethylformamide
  • the preparation method of the polyamic acid ester provided in this embodiment includes the following steps S210 to S250. The implementation of each step is described in detail below.
  • Step S210 Mix and react dianhydride, hydroxyethyl methacrylate, pyridine and organic solvent under a nitrogen atmosphere at a temperature of 40-45°C for 2-10 hours to obtain a mixed solution.
  • the dianhydride includes pyromellitic dianhydride, maleic anhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,3,3',4' -Diphenyl ether tetracarboxylic dianhydride, 4,4'-oxydiphthalic anhydride, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride, 3,3',4,4'-diphthalic anhydride Benzophenone tetracarboxylic dianhydride, 3,3,4,4-diphenylsulfone tetracarboxylic dianhydride, 4,4'-terephthalic dianhydride, hexafluorodianhydride, 1,2 -Ethylene bis[1,3-dihydro-1,3-dioxoisobenzofuran-5-carboxylate], bisphenol A dianhydride, glyceryl
  • the organic solvent includes N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP) or N,N-dimethylformamide (DMF), One or a combination of at least two of tetrahydrofuran, m-cresol, ⁇ -butyrolactone, tetramethylurea, dimethyl sulfoxide, hexamethylphosphate triamide, and chloroform.
  • DMAc N,N-dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • DMF N,N-dimethylformamide
  • Step S220 Add diamine to the mixed solution under a nitrogen atmosphere at 0° C. and stir for 5-10 hours to allow a polycondensation reaction to form a hydroxyethyl methacrylate-terminated polyamic acid solution.
  • the diamine includes 4,4'-diaminodiphenyl ether, 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane Alkane, aminopropyl double-capped polydimethylsiloxane, 3,5-diamino-1,2,4-triazole, diaminopyridine, 2-(4-aminophenyl)-5-amino Benzimidazole, 2,2'-bis[4-(4-aminophenoxyphenyl)]propane, 2-amino-4-[(3,4-diaminophenyl)sulfonyl]aniline, 6, 6'-Diamino-3,3'-methylenedibenzoic acid, 1H-indazole-4,7-diamine, 7-nitro-1H-indazole-4-amine, 2,2'- Diamino-4,4'-bisthiazole, 3,6-diaminocarbazole,
  • Step S230 Maintaining the temperature and atmosphere, add trifluoroacetic anhydride to the polyamic acid solution and stir for 0.5-3 hours to cause isoimidation.
  • Step S240 Keep under a nitrogen atmosphere at a temperature of 50-55°C, add hydroxyethyl methacrylate to the isimidized polyamic acid solution and stir for 8-12 hours to form a photosensitive polyimide precursor. body solution.
  • Step S250 Drop the photosensitive polyimide precursor solution into deionized water to remove unreacted substances, and then obtain the polyamic acid ester by suction filtration and drying.
  • polyamic acid ester can be obtained, and the molecular weight and grafting rate can be controlled by adjusting the proportion of methacrylate groups, reaction temperature, and time, thereby achieving high sensitivity.
  • Step S120 Coat the fluorinated graphene quantum dot/polyamic acid ester composite solution on the surface of the substrate, and then form a pattern after exposure and development.
  • FIG 3 is a flow chart of the steps provided in this embodiment for coating the fluorinated graphene quantum dot/polyamic acid ester composite solution on the surface of a substrate, and then forming a pattern after exposure and development. Specifically, it includes the following Steps S310 to S340 are described below, and the specific implementation manner of each step is described in detail below.
  • Step S310 Spin-coat the fluorinated graphene quantum dot/polyamic acid ester composite solution on the substrate surface.
  • Step S320 Soft-bake the spin-coated substrate at 100°C for 3-10 minutes to remove part of the organic solvent to obtain a spin-coated film with a film thickness of 2-5 microns.
  • Step S330 Using the spin-coated film as a reference, perform an exposure process on the substrate.
  • a mask which has a pattern in which the width ratio of the exposed portion and the unexposed portion per 1 ⁇ m is 1:1 within 2 ⁇ m: 2 ⁇ m to 30 ⁇ m: 30 ⁇ m.
  • reduction projection was performed while changing the exposure amount by 50 mJ/cm 2 in the range of 50 to 950 mJ/cm 2 Exposure, perform the exposure process.
  • Step S340 Develop the exposed substrate to form a line pattern.
  • Step S130 Perform thermal imidization treatment on the pattern to obtain the ester-type photosensitive polyimide composite material.
  • the step of thermally imidizing the pattern to obtain the ester-type photosensitive polyimide composite material specifically includes:
  • the pattern was subjected to thermal imidization treatment using a stepped temperature rise method, which included holding at 100°C for 1 hour, 200°C for 1 hour, 300°C for 1 hour, and 350°C. Incubate for 1 hour at °C, with a heating rate of 2-10°C/minute, then cool to room temperature, peel the pattern off the substrate, and obtain an ester-type photosensitive polyimide composite material with a low dielectric constant.
  • the preparation method of ester-type photosensitive polyimide reduces the dielectric constant by introducing fluorinated graphene quantum dots containing low-polarity fluorine atoms, because fluorine atoms have strong electronegativity and can Firmly fix electrons, thereby reducing polarizability; small-sized, large-specific-surface-area fluorinated graphene quantum dots are more easily dispersed evenly in the photosensitive polyimide matrix, thereby improving its overall performance and reducing the dielectric constant; and contain
  • the fluorine group is hydrophobic and can also prevent the material from degrading due to water absorption.
  • the molecular weight and grafting rate can be controlled by adjusting the proportion of methacrylate groups, reaction temperature, and time to achieve high sensitivity.
  • the present application also provides a semiconductor device, including a copper wiring and an insulating layer provided on the copper wiring, wherein the insulating layer includes the ester-type photosensitive polyimide composite material.
  • the ester-type photosensitive polyimide provided by this application reduces the dielectric constant of the photosensitive polyimide from about 3.8 to below 3.0 (2.4) by doping fluorinated graphene quantum dots into the photosensitive polyimide matrix. -2.9), the hydrophobicity and mechanical properties have also been significantly improved, and its tensile strength has increased from 84.5MPa increased to 113.8MPa, the elongation at break increased from 5.24% to 17.5%, the Young's modulus increased from 2.68GPa to 3.02GPa, and the water contact angle increased from 80.8o to 90.6o . Therefore, the photosensitive polymer of the present invention Imide has excellent comprehensive properties and has good application prospects in advanced packaging technology.
  • the polyamic acid ester solution is added dropwise into deionized water to remove unreacted impurities, and the polyamic acid resin is obtained through suction filtration and drying. Then, 21.4 mg of fluorinated graphene quantum dots were added to a brown bottle containing 8.35 g of N-methylpyrrolidone and ultrasonicated for 1 hour. Then, 428 mg of tetraethylene glycol dimethacrylate, 21.4 mg of OXE01, and benzotrimethacrylate were added.
  • Azole 21.4mg, 1,3,5-tris(4-tert-butyl3-hydroxy-2,6-dimethylbenzyl)-1,3,5-triazine-2,4,6-(1H, 21.4 mg of 3H,5H)-trione and 4.28 g of polyamic acid ester were added and shaken on a shaker for 24 hours to form a uniformly dispersed fluorinated graphene quantum dot/polyamic acid ester solution.
  • the exposure amount was changed in the range of 50 to 950 mJ/cm2 by 50 mJ/cm2 each time, and reduction projection exposure was performed, and the exposure process was performed.
  • thermal imidization is carried out under a nitrogen atmosphere, mainly using a step temperature rise method.
  • the temperature rise program is 1 hour at 100°C, 1 hour at 200°C, 1 hour at 300°C, and 1 hour at 350°C.
  • the heating rate 2-10°C/min then cool to room temperature, peel off the composite film from the glass sheet, and obtain fluorinated graphene quantum dots/photosensitive polyimide with high and low dielectric constants.
  • Example 1 The difference between the preparation method of this embodiment and Example 1 is that the amount of fluorinated graphene quantum dots added in step (2) is replaced by 4.28 mg, and finally a photosensitive polyimide is obtained.
  • Example 1 The difference between the preparation method of this embodiment and Example 1 is that the amount of fluorinated graphene quantum dots added in step (2) is replaced with 8.56 mg, and finally a photosensitive polyimide is obtained.
  • Example 1 The difference between the preparation method of this example and Example 1 is that the amount of fluorinated graphene quantum dots added in step (2) is replaced with 12.84 mg, and finally a photosensitive polyimide is obtained.
  • Example 1 The difference between the preparation method of this example and Example 1 is that the added amount of fluorinated graphene quantum dots in (2) is replaced with 32.1 mg, and finally a photosensitive polyimide is obtained.
  • Example 1 The difference between the preparation method of this embodiment and Example 1 is that the amount of fluorinated graphene quantum dots added in step (2) is replaced by 42.8 mg, and finally a photosensitive polyimide is obtained.
  • Example 1 The difference between the preparation method of this example and Example 1 is that the added amount of the photoinitiator in step (2) is replaced with 42.8 mg, and finally a photosensitive polyimide is obtained.
  • Example 1 The difference between the preparation method of this example and Example 1 is that the amount of photoinitiator added in step (2) is replaced with 85.6 mg, and finally a photosensitive polyimide is obtained.
  • Example 1 The difference between the preparation method of this example and Example 1 is that the amount of photoinitiator added in step (2) is replaced with 214 mg, and finally a photosensitive polyimide is obtained.
  • Example 1 The difference between the preparation method of this example and Example 1 is that the added amount of cross-linking agent in step (2) is replaced with 214 mg, and finally the photosensitive polyimide is obtained.
  • the difference between the preparation method of this comparative example and Example 1 is that the prepared fluorinated graphene quantum dots are not added in step (2), and the photosensitive polyimide is finally obtained.
  • the prepared fluorinated graphene quantum dots are uniform in size and below 10 nm, which is beneficial to the dispersion of the fluorinated graphene quantum dots in the photosensitive polyimide matrix.
  • the results are shown in Figure 6. It can be clearly seen that the introduction of fluorinated graphene quantum dots can effectively Reduce the dielectric constant of the photosensitive polyimide film. At 1MHz, the dielectric constant of the photosensitive polyimide was successfully reduced from about 3.8 to less than 3.0.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本申请提供的酯型光敏聚酰亚胺材料及其制备方法,通过引入含有低极性氟原子的氟化石墨烯量子点来降低介电常数,因为氟原子具有强的电负性,可以牢牢的固定电子,从而降低极化率;小尺寸、大比表面积的氟化石墨烯量子点更易在光敏聚酰亚胺基质中均匀分散,从而提高其综合性能,降低介电常数;且含氟基团具有疏水性,还可以防止材料因吸水而导致性能的降低。此外,通过调节甲基丙烯酸酯基团比例、反应温度、时间来控制分子量及接枝率,从而实现其高灵敏度。另外,本申请还提供了一种包括所述酯型光敏聚酰亚胺材料的半导体装置。

Description

一种酯型光敏聚酰亚胺复合材料、制备方法及半导体装置 技术领域
本申请涉及光敏聚酰亚胺材料领域,特别涉及一种酯型光敏聚酰亚胺复合材料、制备方法及半导体装置。
背景技术
聚酰亚胺由于其优异的综合性能而被广泛用作半导体器件的表面保护层、层间介质层等。但是传统的聚酰亚胺不具备光敏性,对于这些应用需要通过先涂覆一层光刻胶,在图案化后再经过刻蚀将图案转移到聚酰亚胺上。因此,具有直接图案化能力的光敏聚酰亚胺由于其简化集成电路制成过程和降低加工成本而受到广泛关注。随着高频通信及集成电路封装尺寸和器件引脚间距的急剧减小,对电介质材料提出了要求:其中包括低介电常数(<3.5),因为高频通信发展以及器件趋向于小型化,会引起信号在传输过程中出现延迟、损耗、串扰等问题。除了低介电常数外,还需要良好的热学性能、力学性能、疏水性、化学惰性等,以保证器件的可靠性。因此亟待低介电常数且同时具有优异综合性能的光敏聚酰亚胺来满足技术的发展需求。
目前大多数光敏聚酰亚胺集中在化学增幅体系和掺杂光引发剂等方面,虽然感光灵敏度、分辨率较高,但是掺杂的小分子很大程度上会影响光敏聚酰亚胺本身的机械强度及耐热性能。此外,虽然可以通过添加填料(氟化石墨烯、聚乙烯丙烯等)来降低光敏聚酰亚胺的介电常数,但是大尺寸的填料在光敏聚酰亚胺基质中容易产生团聚,进而影响光敏聚酰亚胺的力学性能,且还会影响光敏聚酰亚胺的感光性能。
发明内容
鉴于此,有必要针对现有技术中存在的缺陷提供一种低介电常数,同时具有优异的感光性能、力学性能、良好的疏水性及耐热性能的酯型光敏聚酰亚胺复合材料及其制备方法。
为解决上述问题,本申请采用下述技术方案:
本申请目的之一,提供了一种酯型光敏聚酰亚胺复合材料,包括如下成分:
(A)成分:聚酰胺酸酯;
(B)成分:光引发剂;
(C)成分:交联剂;
(D)成分:氟化石墨烯量子点;及
(E)成分:溶剂。
在其中一些实施例中,所述(B)成分含量相对于所述(A)成分100质量份为0.5~5质量份。
在其中一些实施例中,所述(C)成分含量相对于所述(A)成分100质量份为5~25质量份。
在其中一些实施例中,所述(D)成分含量相对于所述(A)成分100质量份为0.1~1质量份。
在其中一些实施例中,所述(B)包括:GC-410、OXE01、二苯甲酮、邻苯甲酰基苯甲酸甲酯、4-苯甲酰基-4’-甲基二苯基酮、二苄基甲酮、芴酮等二苯甲酮衍生物、2,2’-二乙氧基苯乙酮、2-羟基-2-甲基苯丙酮、1-羟基环己基苯基酮等苯乙酮衍生物、噻吨酮、2-甲基噻吨酮、2-异丙基噻吨酮、二乙基噻 吨酮等噻吨酮衍生物、苯偶酰、苯偶酰二甲基缩酮、苯偶酰-β-甲氧基乙基缩酮等苯偶酰衍生物、苯偶姻、苯偶姻甲醚等苯偶姻衍生物、1-苯基-1,2-丁二酮-2-(0-甲氧基羰基)肟、1-苯基-1,2-丙二酮-2-(0-甲氧基羰基)肟、1-苯基-1,2-丙二酮-2-(0-乙氧基羰基)肟、1-苯基-1,2-丙二酮-2-(0-苯甲酰基)肟、1,3-二苯基丙烷三酮-2-(0-乙氧基羰基)肟、1-苯基-3-乙氧基丙烷三酮-2-(0-苯甲酰基)肟等肟类、N-苯基甘氨酸等N-芳基甘氨酸类、过氧化苯甲酰等过氧化物类、芳香族联咪唑类中的至少1种。
在其中一些实施例中,所述(C)包括:二甲基丙烯酸三缩四乙二醇酯,2-乙基-4甲基咪唑、2-苯基咪唑、2-异丙基咪唑、四气邻苯二甲酸酐、六氢邻苯二甲酸酐、三亚乙基四胺、二甲胺基丙胺、二乙胺基丙胺、ML-26X、ML-24X、ML-236TMP、4-methylol 3M6C、ML-MC、ML-TBC、异丙基咪唑、四气邻苯二甲酸酐、六氢邻苯二甲酸酐、三亚乙基四胺、二甲胺基丙胺、二乙胺基丙胺、ML-26X、ML-24X、ML-236TMP、4-methylol 3M6C、ML-MC、ML-TBC、DM-BI25X-F、46DM℃、46DMOIPP、46DMOEP、DML-MBPC、DML-MB℃、DML-℃HP、DML-PC、DML-PCHP、DML-PTBP、DML-34X、DML-EP、DML-POP、DML-℃、dimethylol-Bis-C、dimethylol-Bis℃-P、DML-Bis℃-Z、DML-Bis℃HP-Z、DML-PFP、DML-PSBP、DML-MB25、DML-MTrisPC、DML-Bis25X-34XL、DML-Bis25X-PCHP中的至少1种。
在其中一些实施例中,所述(E)包括:N,N-二甲基乙酰胺(DMAc)、N-甲基-2-吡咯烷酮(NMP)或N,N-二甲基甲酰胺(DMF)、四氢呋喃、间甲酚、γ-丁内酯、四甲基脲、二甲基亚砜、六甲基磷酸三酰胺、三氯甲烷中的一种或至少两种的组合。
本申请目的之二,提供了一种所述的酯型光敏聚酰亚胺复合材料的制备方法,包括下述步骤:
将氟化石墨烯量子点溶于所述溶剂中,超声30-90分钟处理,再加入所述光引发剂、所述交联剂以及聚酰胺酸酯得到氟化石墨烯量子点/聚酰胺酸酯复 合溶液;
将所述氟化石墨烯量子点/聚酰胺酸酯复合溶液涂敷于基底表面,再经曝光、显影后形成图案;
对所述图案进行热亚胺化处理得到所述酯型光敏聚酰亚胺复合材料。
在其中一些实施例中,在将氟化石墨烯量子点溶于所述溶剂中,超声30-90分钟处理,再加入所述光引发剂、所述交联剂以及聚酰胺酸酯得到氟化石墨烯量子点/聚酰胺酸酯复合溶液的步骤中,所述氟化石墨烯量子点通过下述方法制备得到:
将氟化碳源置于有机溶剂中,再进行超声处理,静置后取上层清液进行离心,离心后取出上层清液去除所述有机溶剂,最后干燥得到氟化石墨烯量子点。
在其中一些实施例中,所述碳源包括氟化碳纤维、氟化石墨烯、氟化碳、氟化碳纳米管中的至少1种。
在其中一些实施例中,在将氟化石墨烯量子点溶于所述溶剂中,超声30-90分钟处理,再加入所述光引发剂、所述交联剂以及聚酰胺酸酯得到氟化石墨烯量子点/聚酰胺酸酯复合溶液的步骤中,所述聚酰胺酸酯通过下述方法制备得到:
在氮气氛围下,于40-45℃温度下,将二酐、甲基丙烯酸羟乙酯、吡啶及有机溶剂混合反应2-10小时,得到混合溶液;
在0℃氮气氛围下,在所述混合溶液中加入二胺并搅拌5-10小时,使其进行缩聚反应形成甲基丙烯酸羟乙酯封端的聚酰胺酸溶液;
保持温度及氛围,在所述聚酰胺酸溶液加入三氟乙酸酐并搅拌0.5-3小时使其异酰亚胺化;
保持在氮气氛围下,于50-55℃温度下,在异酰亚胺化的聚酰胺酸溶液中加入甲基丙烯酸羟乙酯并搅拌8-12小时以形成光敏聚酰亚胺前驱体溶液;
将所述光敏聚酰亚胺前驱体溶液滴入到去离子水中以除去未反应的物质,再通过抽滤、干燥得到所述聚酰胺酸酯。
在其中一些实施例中,所述二酐包括均苯四甲酸二酐、马来酸酐、3,3',4,4'-联苯四羧酸二酐、2,3,3',4'-二苯醚四甲酸二酐、4,4'-氧双邻苯二甲酸酐、4,4'-(六氟异亚丙基)二酞酸酐、3,3',4,4'-二苯甲酮四甲酸二酐、3,3,4,4-二苯基砜四羧酸二酸酐、4,4'-对苯二氧双邻苯二甲酸酐、六氟二酐、1,2-亚乙基二[1,3-二氢-1,3-二氧代异苯并呋喃-5-羧酸酯]、双酚A二酐、甘油双(脱水偏苯三酸酯)乙酸酯、2,3,3',4'-联苯四甲酸二酐、对-亚苯基-双苯偏三酸酯二酐、9,9-双(3,4-二羧基苯基)芴二酸酐、4,4'-(乙炔-1,2-二基)二酞酸酐、4,4'-thiodiphthalic anhydride中的至少1种。
在其中一些实施例中,所述二胺包括4,4'-二氨基二苯醚、1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷、氨丙基双封端聚二甲基硅氧烷、3,5-二氨基-1,2,4-三氮唑、二氨基吡啶、2-(4-氨基苯基)-5-氨基苯并咪唑、2,2'-双[4-(4-氨基苯氧基苯基)]丙烷、2-氨基-4-[(3,4-二氨基苯基)磺酰基]苯胺、6,6'-双氨基-3,3'-甲叉基二苯甲酸、1氢-吲唑-4,7-二胺、7-硝基-1H-吲唑-4-胺、2,2'-二氨基-4,4'-双噻唑、3,6-二氨基咔唑、2-(3,6-二氨基-9H-咔唑-9-基)乙酸甲酯、2,5-二氨基苯并噻唑、2,6-苯并噻唑二胺、(6-氨基-4-甲基苯并[D]噻唑-2-基)氨基甲酸叔丁酯、4-甲氧基-1,3-苯并噻唑-2,6-二胺、苯代三聚氰胺、2,4-二氨基-6-(2-氟苯基)-1,3,5-三嗪、2,4-二氨基-6-(4-氯苯基)-1,3,5-三嗪、2,4-二氨基-6-[4-(三氟甲基)苯基]-1,3,5-三嗪、2,4-二氨基-6-(3-氟苯基)-1,3,5-三嗪、2,4-二氨基-6-[3-(三氟甲基)苯基]-1,3,5-三嗪、2,4-二氨基-6-(4-甲基苯基)-1,3,5-三嗪、2,4-二氨基-6-(3,5-二氟苯基)-1,3,5-三嗪、2,4-二氨基-6-(4-溴苯基)-1,3,5-三嗪、2,4-二氨基-6-(4-甲氧苯基)-1,3,5-三嗪、2,3-二氨基酚嗪、甲基胍胺、2,4-二氨基-6-[2-(2-甲基-1-咪唑基)乙基]-1,3,5-噻嗪、4,6-二氨基嘧啶或各种含氮杂环、硅氧烷、硫醚等二 胺中的至少1种。
在其中一些实施例中,所述有机溶剂包括N,N-二甲基乙酰胺(DMAc)、N-甲基-2-吡咯烷酮(NMP)或N,N-二甲基甲酰胺(DMF)、四氢呋喃、间甲酚、γ-丁内酯、四甲基脲、二甲基亚砜、六甲基磷酸三酰胺、三氯甲烷中的一种或至少两种的组合。
在其中一些实施例中,在将所述氟化石墨烯量子点/聚酰胺酸酯复合溶液涂敷于基底表面,再经曝光、显影后形成图案的步骤中,具体包括下述步骤:
将所述氟化石墨烯量子点/聚酰胺酸酯复合溶液旋涂于基底表面;
将经过旋涂的基底于100℃软烤3-10分钟以除去部分有机溶剂,得到膜厚2-5微米的旋涂膜;
以所述旋涂膜为基准,对所述基底进行曝光工序;
对经过曝光的基底进行显影,形成线条的图案。
在其中一些实施例中,在对所述图案进行热亚胺化处理得到所述酯型光敏聚酰亚胺复合材料的步骤中,具体包括:
于氮气氛围下,采用阶梯升温的方式对所述图案进行热亚胺化处理,所述阶梯升温的方式为100℃下保温1小时、200℃下保温1小时、300℃下保温1小时、350℃下保温1小时,升温速率为2-10℃/每分钟,然后冷却至室温,将所述图案从所述基底上剥离下来,得到具有低介电常数酯型光敏聚酰亚胺复合材料。
本申请目的之三,提供了一种半导体装置,包括铜布线和设于所述铜布线上的绝缘层,其中,所述绝缘层包括所述酯型光敏聚酰亚胺复合材料。
本申请采用上述技术方案,其有益效果如下:
本申请提供的酯型光敏聚酰亚胺及其制备方法,通过引入含有低极性氟原子的氟化石墨烯量子点来降低介电常数,因为氟原子具有强的电负性,可以牢牢的固定电子,从而降低极化率;小尺寸、大比表面积的氟化石墨烯量子点更易在光敏聚酰亚胺基质中均匀分散,从而提高其综合性能,降低介电常数;且含氟基团具有疏水性,还可以防止材料因吸水而导致性能的降低。此外,通过调节甲基丙烯酸酯基团比例、反应温度、时间来控制分子量及接枝率,从而实现其高灵敏度。
本申请提供的酯型光敏聚酰亚胺,具有优异的综合性能,可用于在先进封装技术中具有良好的应用前景。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的酯型光敏聚酰亚胺复合材料制备方法的步骤流程图。
图2为本申请提供的所述聚酰胺酸酯制备方法的步骤流程图。
图3为本申请提供的形成图案的步骤流程图。
图4为本申请实施例1提供的氟化石墨烯量子点的XPS图。
图5为本申请实施例1提供的氟化石墨烯量子点的TEM图。
图6为本申请实施例1提供的Pure PSPI薄膜与FCQD-PSPI复合薄膜的介电常数。
图7为本申请实施例1提供的Pure-PSPI薄膜与FCQD-PSPI复合薄膜的应力应变曲线。
图8为本申请实施例1提供的100mJ/cm2曝光后的PSPI 3D共聚焦图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“上”、“下”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。
本申请一实施例提供的一种酯型光敏聚酰亚胺复合材料,包括如下成分:
(A)成分:聚酰胺酸酯;
(B)成分:光引发剂;
(C)成分:交联剂;
(D)成分:氟化石墨烯量子点;及
(E)成分:溶剂。
在其中一些实施例中,所述(B)成分含量相对于所述(A)成分100质量份为0.5~5质量份。
进一步地,所述(B)包括二苯甲酮衍生物、苯乙酮衍生物、噻吨酮衍生物、苯偶酰衍生物、苯偶酰衍生物、苯偶姻衍生物、肟类、N-芳基甘氨酸类、过氧化物类、芳香族联咪唑类中的至少1种,所述二苯甲酮衍生物包括GC-410、OXE01、二苯甲酮、邻苯甲酰基苯甲酸甲酯、4-苯甲酰基-4’-甲基二苯基酮、二苄基甲酮、芴酮等二苯甲酮衍生物、2,2’-二乙氧基苯乙酮、2-羟基-2-甲基苯丙酮、1-羟基环己基苯基酮;所述噻吨酮衍生物包括噻吨酮、2-甲基噻吨酮、2-异丙基噻吨酮、二乙基噻吨酮;所述苯偶酰衍生物包括苯偶酰、苯偶酰二甲基缩酮、苯偶酰-β-甲氧基乙基缩酮;所述苯偶姻衍生物包括苯偶姻、苯偶姻甲醚;所述肟类包括1-苯基-1,2-丁二酮-2-(0-甲氧基羰基)肟、1-苯基-1,2-丙二酮-2-(0-甲氧基羰基)肟、1-苯基-1,2-丙二酮-2-(0-乙氧基羰基)肟、1-苯基-1,2-丙二酮-2-(0-苯甲酰基)肟、1,3-二苯基丙烷三酮-2-(0-乙氧基羰基)肟、1-苯基-3-乙氧基丙烷三酮-2-(0-苯甲酰基)肟;所述N-芳基甘氨酸类包括N-苯基甘氨酸;所述过氧化物类包括过氧化苯甲酰。
在其中一些实施例中,所述(C)成分含量相对于所述(A)成分100质量份为5~25质量份。
进一步地,所述(C)包括:二甲基丙烯酸三缩四乙二醇酯,2-乙基-4甲基咪唑、2-苯基咪唑、2-异丙基咪唑、四气邻苯二甲酸酐、六氢邻苯二甲酸酐、三亚乙基四胺、二甲胺基丙胺、二乙胺基丙胺、ML-26X、ML-24X、ML-236TMP、4-methylol 3M6C、ML-MC、ML-TBC、异丙基咪唑、四气邻苯二甲酸酐、六氢邻苯二甲酸酐、三亚乙基四胺、二甲胺基丙胺、二乙胺基丙胺、ML-26X、 ML-24X、ML-236TMP、4-methylol 3M6C、ML-MC、ML-TBC、DM-BI25X-F、46DM℃、46DMOIPP、46DMOEP、DML-MBPC、DML-MB℃、DML-℃HP、DML-PC、DML-PCHP、DML-PTBP、DML-34X、DML-EP、DML-POP、DML-℃、dimethylol-Bis-C、dimethylol-Bis℃-P、DML-Bis℃-Z、DML-Bis℃HP-Z、DML-PFP、DML-PSBP、DML-MB25、DML-MTrisPC、DML-Bis25X-34XL、DML-Bis25X-PCHP中的至少1种。
在其中一些实施例中,所述(D)成分含量相对于所述(A)成分100质量份为0.1~1质量份。
可以理解,根据克劳修斯-莫所提公式:
公式中Pm和Vm分别代表聚合物中原子基团的摩尔极化率和摩尔体积,通过降低k值可以通过降低Pm或增加Vm来实现。
在其中一些实施例中,所述(E)包括:N,N-二甲基乙酰胺(DMAc)、N-甲基-2-吡咯烷酮(NMP)或N,N-二甲基甲酰胺(DMF)、四氢呋喃、间甲酚、γ-丁内酯、四甲基脲、二甲基亚砜、六甲基磷酸三酰胺、三氯甲烷中的一种或至少两种的组合。
可以理解,本申请上述实施例提供的酯型光敏聚酰亚胺复合材料,还可以包括(F)其他成分,包括但不限于阻聚剂、铜面粘附剂、偶联剂等。
本申请提供的酯型光敏聚酰亚胺,通过引入含有低极性氟原子的氟化石墨烯量子点来降低介电常数,因为氟原子具有强的电负性,可以牢牢的固定电子,从而降低极化率;小尺寸、大比表面积的氟化石墨烯量子点更易在光敏聚酰亚胺基质中均匀分散,从而提高其综合性能,降低介电常数;且含氟基团具有疏水性,还可以防止材料因吸水而导致性能的降低。此外,通过调节甲基丙烯酸酯基团比例、反应温度、时间来控制分子量及接枝率,从而实现其高灵敏度。
请参阅图1,本申请另一实施例还提供了一种酯型光敏聚酰亚胺复合材料的制备方法,包括下述步骤S110至步骤S130,以下详细说明各个步骤的实现方式。
步骤S110:将氟化石墨烯量子点溶于所述溶剂中,超声30-90分钟处理,再加入所述光引发剂、所述交联剂以及聚酰胺酸酯得到氟化石墨烯量子点/聚酰胺酸酯复合溶液。
在其中一些实施例中,所述氟化石墨烯量子点通过下述方法制备得到:将氟化碳源置于有机溶剂中,再进行超声处理,静置后取上层清液进行离心,离心后取出上层清液去除所述有机溶剂,最后干燥得到氟化石墨烯量子点。
在其中一些实施例中,所述碳源包括氟化碳纤维、氟化石墨烯、氟化碳、氟化碳纳米管中的至少1种。
在其中一些实施例中,所述有机溶剂包括N,N-二甲基乙酰胺(DMAc)、N-甲基-2-吡咯烷酮(NMP)或N,N-二甲基甲酰胺(DMF)、四氢呋喃、间甲酚、γ-丁内酯、四甲基脲、二甲基亚砜、六甲基磷酸三酰胺、三氯甲烷中的一种或至少两种的组合。
请参阅图2,本实施例提供的所述聚酰胺酸酯提供的制备方法,包括下述步骤S210至步骤S250,以下详细说明给个步骤的实现方式。
步骤S210:在氮气氛围下,于40-45℃温度下,将二酐、甲基丙烯酸羟乙酯、吡啶及有机溶剂混合反应2-10小时,得到混合溶液。
在其中一些实施例中,所述二酐包括均苯四甲酸二酐、马来酸酐、3,3',4,4'-联苯四羧酸二酐、2,3,3',4'-二苯醚四甲酸二酐、4,4'-氧双邻苯二甲酸酐、4,4'-(六氟异亚丙基)二酞酸酐、3,3',4,4'-二苯甲酮四甲酸二酐、3,3,4,4-二苯基砜四羧酸二酸酐、4,4'-对苯二氧双邻苯二甲酸酐、六氟二酐、1,2-亚乙基二[1,3-二氢-1,3-二氧代异苯并呋喃-5-羧酸酯]、双酚A二酐、甘油双(脱水偏苯三酸酯)乙酸酯、 2,3,3',4'-联苯四甲酸二酐、对-亚苯基-双苯偏三酸酯二酐、9,9-双(3,4-二羧基苯基)芴二酸酐、4,4'-(乙炔-1,2-二基)二酞酸酐、4,4'-thiodiphthalic anhydride中的至少1种。
可以理解,在使用上述二酐之前,还包括对二酐进行处理的步骤,以除去其中杂质。
在其中一些实施例中,所述有机溶剂包括N,N-二甲基乙酰胺(DMAc)、N-甲基-2-吡咯烷酮(NMP)或N,N-二甲基甲酰胺(DMF)、四氢呋喃、间甲酚、γ-丁内酯、四甲基脲、二甲基亚砜、六甲基磷酸三酰胺、三氯甲烷中的一种或至少两种的组合。
步骤S220:在0℃氮气氛围下,在所述混合溶液中加入二胺并搅拌5-10小时,使其进行缩聚反应形成甲基丙烯酸羟乙酯封端的聚酰胺酸溶液。
在其中一些实施例中,所述二胺包括4,4'-二氨基二苯醚、1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷、氨丙基双封端聚二甲基硅氧烷、3,5-二氨基-1,2,4-三氮唑、二氨基吡啶、2-(4-氨基苯基)-5-氨基苯并咪唑、2,2'-双[4-(4-氨基苯氧基苯基)]丙烷、2-氨基-4-[(3,4-二氨基苯基)磺酰基]苯胺、6,6'-双氨基-3,3'-甲叉基二苯甲酸、1氢-吲唑-4,7-二胺、7-硝基-1H-吲唑-4-胺、2,2'-二氨基-4,4'-双噻唑、3,6-二氨基咔唑、2-(3,6-二氨基-9H-咔唑-9-基)乙酸甲酯、2,5-二氨基苯并噻唑、2,6-苯并噻唑二胺、(6-氨基-4-甲基苯并[D]噻唑-2-基)氨基甲酸叔丁酯、4-甲氧基-1,3-苯并噻唑-2,6-二胺、苯代三聚氰胺、2,4-二氨基-6-(2-氟苯基)-1,3,5-三嗪、2,4-二氨基-6-(4-氯苯基)-1,3,5-三嗪、2,4-二氨基-6-[4-(三氟甲基)苯基]-1,3,5-三嗪、2,4-二氨基-6-(3-氟苯基)-1,3,5-三嗪、2,4-二氨基-6-[3-(三氟甲基)苯基]-1,3,5-三嗪、2,4-二氨基-6-(4-甲基苯基)-1,3,5-三嗪、2,4-二氨基-6-(3,5-二氟苯基)-1,3,5-三嗪、2,4-二氨基-6-(4-溴苯基)-1,3,5-三嗪、2,4-二氨基-6-(4-甲氧苯基)-1,3,5-三嗪、2,3-二氨基酚嗪、甲基胍胺、2,4-二氨基-6-[2-(2-甲基-1-咪唑基)乙基]-1,3,5-噻嗪、4,6-二氨基嘧啶或各种含氮杂环、硅氧烷、硫醚等二胺中的至少1种。
步骤S230:保持温度及氛围,在所述聚酰胺酸溶液加入三氟乙酸酐并搅拌0.5-3小时使其异酰亚胺化。
步骤S240:保持在氮气氛围下,于50-55℃温度下,在异酰亚胺化的聚酰胺酸溶液中加入甲基丙烯酸羟乙酯并搅拌8-12小时以形成光敏聚酰亚胺前驱体溶液。
步骤S250:将所述光敏聚酰亚胺前驱体溶液滴入到去离子水中以除去未反应的物质,再通过抽滤、干燥得到所述聚酰胺酸酯。
可以理解,通过上述步骤S210至步骤S250,可以获取聚酰胺酸酯,通过调节甲基丙烯酸酯基团比例、反应温度、时间来控制分子量及接枝率,从而实现其高灵敏度。
步骤S120:将所述氟化石墨烯量子点/聚酰胺酸酯复合溶液涂敷于基底表面,再经曝光、显影后形成图案。
请参阅图3,为本实施例提供的在将所述氟化石墨烯量子点/聚酰胺酸酯复合溶液涂敷于基底表面,再经曝光、显影后形成图案的步骤流程图,具体包括下述步骤S310至步骤S340,以下详细说明各个步骤的具体实现方式。
步骤S310:将所述氟化石墨烯量子点/聚酰胺酸酯复合溶液旋涂于基底表面。
步骤S320:将经过旋涂的基底于100℃软烤3-10分钟以除去部分有机溶剂,得到膜厚2-5微米的旋涂膜。
步骤S330:以所述旋涂膜为基准,对所述基底进行曝光工序。
具体地,以旋涂膜为基准,使用在2μm:2μm~30μm:30μm内每1μm具有曝光部和未曝光部的宽度比为1:1这样的图案的掩模。此外,关于曝光量,以50~950mJ/cm2的范围每次改变50mJ/cm2的同时进行了缩小投影 曝光,进行曝光工序。
步骤S340:对经过曝光的基底进行显影,形成线条的图案。
可以理解,通过上述步骤S310至步骤S340,可以需要的图案。
步骤S130:对所述图案进行热亚胺化处理得到所述酯型光敏聚酰亚胺复合材料。
在其中一些实施例中,在对所述图案进行热亚胺化处理得到所述酯型光敏聚酰亚胺复合材料的步骤中,具体包括:
于氮气氛围下,采用阶梯升温的方式对所述图案进行热亚胺化处理,所述阶梯升温的方式为100℃下保温1小时、200℃下保温1小时、300℃下保温1小时、350℃下保温1小时,升温速率为2-10℃/每分钟,然后冷却至室温,将所述图案从所述基底上剥离下来,得到具有低介电常数酯型光敏聚酰亚胺复合材料。
本申请上述实施例提供的酯型光敏聚酰亚胺的制备方法,通过引入含有低极性氟原子的氟化石墨烯量子点来降低介电常数,因为氟原子具有强的电负性,可以牢牢的固定电子,从而降低极化率;小尺寸、大比表面积的氟化石墨烯量子点更易在光敏聚酰亚胺基质中均匀分散,从而提高其综合性能,降低介电常数;且含氟基团具有疏水性,还可以防止材料因吸水而导致性能的降低。此外,通过调节甲基丙烯酸酯基团比例、反应温度、时间来控制分子量及接枝率,从而实现其高灵敏度。
本申请还提供了一种半导体装置,包括铜布线和设于所述铜布线上的绝缘层,其中,所述绝缘层包括所述酯型光敏聚酰亚胺复合材料。
本申请提供的酯型光敏聚酰亚胺,通过将氟化石墨烯量子点掺杂到光敏聚酰亚胺基质中,将光敏聚酰亚胺的介电常数从3.8左右降低到了3.0以下(2.4-2.9),疏水性及力学性能也得到了显著提高,其拉伸强度从84.5MPa 增大到113.8MPa,断裂伸长率从5.24%升高到17.5%,杨氏模量从2.68GPa提高到3.02GPa,水接触角从80.8o升高到90.6o,因此本发明所述光敏聚酰亚胺具有优异的综合性能,在先进封装技术中具有良好的应用前景。
以下结合具体实施例对本申请上述技术方案进行详细说明。
实施例一
(1)首先,将氟化碳纤维置于1000ml有机溶剂中,再通过超声分散仪对其超声6小时,静置2小时后取上层清液进行离心(3000转,10分钟),取出上层清液去除有机溶剂,最后在80℃下干燥得到氟化石墨烯量子点。
(2)其次,预处理二酐和二胺以除去其中杂质,二胺在60下真空烘箱中处理3小时,二酐在160℃下真空烘箱中处理3小时。然后在45℃下,将1113mg均苯四甲酸二酐(二胺与二酐的摩尔比为0.9~1.05)到10ml N-甲基吡咯烷酮中,同时将0.3089g甲基丙烯酸羟乙酯、0.1869g吡啶加入到10ml N-甲基吡咯烷酮中并加入到二酐溶液中搅拌3小时;待二酐完全溶解后,在0℃下加入1022mg 4,4'-二氨基二苯醚及20ml N-甲基吡咯烷酮并连续搅拌6h以获得甲基丙烯酸羟乙酯封端的聚酰胺酸(PAA)溶液。随后将5.94g三氟乙酸酐加入到30ml N-甲基吡咯烷酮中并逐滴加入到上述溶液中,快速搅拌1.5h得到甲基丙烯酸羟乙酯封端的聚异酰亚胺溶液;再将7.8873g甲基丙烯酸羟乙酯加入到5ml N-甲基吡咯烷酮中缓慢加入到上述溶液,搅拌10h得到聚酰胺酸酯溶液。最后将聚酰胺酸酯溶液逐滴滴入到去离子水中去除未反应杂质,经过抽滤、干燥得到聚酰胺酸树脂。然后将21.4mg氟化石墨烯量子点加入到盛有8.35g N-甲基吡咯烷酮的棕色瓶中超声1h,再将428mg二甲基丙烯酸三缩四乙二醇酯、21.4mg OXE01、苯并三唑21.4mg、1,3,5-三(4-叔丁基3-羟基-2,6-二甲基苄基)-1,3,5-三嗪-2,4,6-(1H,3H,5H)-三酮21.4mg、4.28g聚酰胺酸酯加入到其中并在摇床上振荡24h形成均匀分散的氟化石墨烯量子点/聚酰胺酸酯溶液。
(3)然后,通过旋涂的方式将氟化石墨烯量子点/聚酰胺酸酯复合溶液均匀平铺在干净硅片上,通过以下工序得到图案:
1.将经过旋涂的晶圆基板在热板上100℃软烤3-10分钟除去部分有机溶剂,得到膜厚2-5微米的旋涂膜。
2.以旋涂膜为基准,使用在2μm:2μm~30μm:30μm内每1μm具有曝光部和未曝光部的宽度比为1:1这样的图案的掩模。此外,关于曝光量,以50~950mJ/cm2的范围每次改变50mJ/cm2的同时进行了缩小投影曝光,进行曝光工序。
3.对经过曝光的晶圆进行显影,形成线条的图案。
(4)最后在氮气氛围下进行热亚胺化,主要采用阶梯升温的方式,升温程序为100℃下1小时、200℃下1小时、300℃下1小时、350℃下1小时,升温速率为2-10℃/每分钟,然后冷却至室温,将复合薄膜从玻璃片上剥离下来,得到具有高低介电常数氟化石墨烯量子点/光敏聚酰亚胺。
(5)采用Agilent 4294A阻抗分析仪对所制备的复合薄膜进行介电常数测试,采用3D共聚焦对所制备的复合薄膜进行光刻形貌观察。
实施例二
本实施例的制备方法与实施例一的区别在于,将步骤(2)的氟化石墨烯量子点的添加量替换为4.28mg,最后得到光敏聚酰亚胺。
实施例三
本实施例的制备方法与实施例一的区别在于,将步骤(2)的氟化石墨烯量子点的添加量替换为8.56mg,最后得到光敏聚酰亚胺。
实施例四
本实施例的制备方法与实施例一的区别在于,将步骤(2)的氟化石墨烯量子点的添加量替换为12.84mg,最后得到光敏聚酰亚胺。
实施例五
本实施例的制备方法与实施例一的区别在于,将(2)的氟化石墨烯量子点的添加量替换为32.1mg,最后得到光敏聚酰亚胺。
实施例六
本实施例的制备方法与实施例一的区别在于,将步骤(2)的氟化石墨烯量子点的添加量替换为42.8mg,最后得到光敏聚酰亚胺。
实施例七
本实施例的制备方法与实施例一的区别在于,将步骤(2)的光引发剂的添加量替换为42.8mg,最后得到光敏聚酰亚胺。
实施例八
本实施例的制备方法与实施例一的区别在于,将步骤(2)的光引发剂的添加量替换为85.6mg,最后得到光敏聚酰亚胺。
实施例九
本实施例的制备方法与实施例一的区别在于,将步骤(2)的光引发剂添加量替换为128.4mg,最后得到光敏聚酰亚胺。
实施例十
本实施例的制备方法与实施例一的区别在于,将步骤(2)的光引发剂添加量替换为171.2mg,最后得到光敏聚酰亚胺。
实施例十一
本实施例的制备方法与实施例一的区别在于,将步骤(2)的光引发剂添加量替换为214mg,最后得到光敏聚酰亚胺。
实施例十二
本实施例的制备方法与实施例一的区别在于,将步骤(2)的交联剂添加量替换为214mg,最后得到光敏聚酰亚胺。
实施例十三
本实施例的制备方法与实施例一的区别在于,将步骤(2)的交联剂添加量替换为535mg,最后得到光敏聚酰亚胺。
实施例十四
本实施例的制备方法与实施例一的区别在于,将步骤(2)的交联剂添加量替换为642mg,最后得到光敏聚酰亚胺。
实施例十五
本实施例的制备方法与实施例一的区别在于,将步骤(2)的交联剂添加量替换为856mg,最后得到光敏聚酰亚胺。
实施例十六
本实施例的制备方法与实施例一的区别在于,将步骤(2)的交联剂添加量替换为1070mg,最后得到光敏聚酰亚胺。
对比例一
本对比例的制备方法与实施例一的区别在于,在步骤(2)中未添加所制备的氟化石墨烯量子点,最后得到光敏聚酰亚胺。
上述实施例制备得到的酯型光敏聚酰亚胺复合材料的性能列表
为了分析超声分散仪对氟化石墨烯量子点固有含氟量的影响,对实施例一中所制备的氟化石墨烯量子点进行了XPS分析,其结果如图4所示,可以清楚的看出,采用超声分散仪对氟化碳源进行超声处理不会影响氟化碳源原有的含氟量。为了进一步观察所制备的氟化石墨烯量子点的形貌特征,对实施例一中所制备的氟化石墨烯量子点进行了TEM分析,其结果如图5所示,可以清晰的观察到,采用超声分散仪对氟化碳源进行超声处理后,制备的氟化石墨烯量子点的尺寸均匀,大小在10nm以下,有利于氟化石墨烯量子点在光敏聚酰亚胺基质中的分散。通过对比纯光敏聚酰亚胺薄膜与实施例一中添加氟化石墨烯量子点的复合薄膜的介电常数,结果图6所示,可以清楚的看出,引入氟化石墨烯量子点可以有效的降低光敏聚酰亚胺薄膜的介电常数,在1MHz下,成功将光敏聚酰亚胺的介电常数从3.8左右降低到了3.0以下。通过对比纯光敏聚酰亚胺薄膜(拉伸强度为84.5MPa,断裂伸长率为5.24%,杨氏模量为2.68GPa)与实施例一中添加氟化石墨烯量子点的复合薄膜的力学性能,结果如图7所示,可以清楚的看出,引入氟化石墨烯量子点可以有效的增强光敏聚酰亚胺薄膜的力学性能,拉伸强度增大到113.8MPa,断裂伸长率升高到17.5%,杨氏模量提高到3.02GPa。如图8所示,实施例一中所制备的光敏聚酰亚胺展现出较高的灵敏度,其分辨率可达3微米左右。
可以理解,以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上仅为本申请的较佳实施例而已,仅具体描述了本申请的技术原理,这些描述只是为了解释本申请的原理,不能以任何方式解释为对本申请保护范围的限制。基于此处解释,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进,及本领域的技术人员不需要付出创造性的劳动即可联想到本申请的其他具体实施方式,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种酯型光敏聚酰亚胺复合材料,其特征在于,包括如下成分:
    (A)成分:聚酰胺酸酯;
    (B)成分:光引发剂;
    (C)成分:交联剂;
    (D)成分:氟化石墨烯量子点;及
    (E)成分:溶剂。
  2. 如权利要求1所述的酯型光敏聚酰亚胺复合材料,其特征在于,所述(B)成分含量相对于所述(A)成分100质量份为0.5~5质量份。
  3. 如权利要求1所述的酯型光敏聚酰亚胺复合材料,其特征在于,所述(C)成分含量相对于所述(A)成分100质量份为5~25质量份。
  4. 如权利要求1所述的酯型光敏聚酰亚胺复合材料,其特征在于,所述(D)成分含量相对于所述(A)成分100质量份为0.1~1质量份。
  5. 如权利要求2所述的酯型光敏聚酰亚胺复合材料,其特征在于,所述(B)包括二苯甲酮衍生物、苯乙酮衍生物、噻吨酮衍生物、苯偶酰衍生物、苯偶酰衍生物、苯偶姻衍生物、肟类、N-芳基甘氨酸类、过氧化物类、芳香族联咪唑类中的至少1种,所述二苯甲酮衍生物包括GC-410、OXE01、二苯甲酮、邻苯甲酰基苯甲酸甲酯、4-苯甲酰基-4’-甲基二苯基酮、二苄基甲酮、芴酮等二苯甲酮衍生物、2,2’-二乙氧基苯乙酮、2-羟基-2-甲基苯丙酮、1-羟基环己基苯基酮;所述噻吨酮衍生物包括噻吨酮、2-甲基噻吨酮、2-异丙基噻吨酮、二乙基噻吨酮;所述苯偶酰衍生物包括苯偶酰、苯偶酰二甲基缩酮、苯偶酰-β-甲氧基乙基缩酮;所述苯偶姻衍生物包括苯偶姻、苯偶姻甲醚;所述肟类包括1-苯基-1,2- 丁二酮-2-(0-甲氧基羰基)肟、1-苯基-1,2-丙二酮-2-(0-甲氧基羰基)肟、1-苯基-1,2-丙二酮-2-(0-乙氧基羰基)肟、1-苯基-1,2-丙二酮-2-(0-苯甲酰基)肟、1,3-二苯基丙烷三酮-2-(0-乙氧基羰基)肟、1-苯基-3-乙氧基丙烷三酮-2-(0-苯甲酰基)肟;所述N-芳基甘氨酸类包括N-苯基甘氨酸;所述过氧化物类包括过氧化苯甲酰。
  6. 如权利要求3所述的酯型光敏聚酰亚胺复合材料,其特征在于,所述(C)包括:二甲基丙烯酸三缩四乙二醇酯,2-乙基-4甲基咪唑、2-苯基咪唑、2-异丙基咪唑、四气邻苯二甲酸酐、六氢邻苯二甲酸酐、三亚乙基四胺、二甲胺基丙胺、二乙胺基丙胺、ML-26X、ML-24X、ML-236TMP、4-methylol 3M6C、ML-MC、ML-TBC、异丙基咪唑、四气邻苯二甲酸酐、六氢邻苯二甲酸酐、三亚乙基四胺、二甲胺基丙胺、二乙胺基丙胺、ML-26X、ML-24X、ML-236TMP、4-methylol 3M6C、ML-MC、ML-TBC、DM-BI25X-F、46DM℃、46DMOIPP、46DMOEP、DML-MBPC、DML-MB℃、DML-℃HP、DML-PC、DML-PCHP、DML-PTBP、DML-34X、DML-EP、DML-POP、DML-℃、dimethylol-Bis-C、dimethylol-Bis℃-P、DML-Bis℃-Z、DML-Bis℃HP-Z、DML-PFP、DML-PSBP、DML-MB25、DML-MTrisPC、DML-Bis25X-34XL、DML-Bis25X-PCHP中的至少1种。
  7. 如权利要求1所述的酯型光敏聚酰亚胺复合材料,其特征在于,所述(E)包括:N,N-二甲基乙酰胺(DMAc)、N-甲基-2-吡咯烷酮(NMP)或N,N-二甲基甲酰胺(DMF)、四氢呋喃、间甲酚、γ-丁内酯、四甲基脲、二甲基亚砜、六甲基磷酸三酰胺、三氯甲烷中的一种或至少两种的组合。
  8. 一种如权利要求1所述的酯型光敏聚酰亚胺复合材料的制备方法,其特征在于,包括下述步骤:
    将氟化石墨烯量子点溶于所述溶剂中,超声30-90分钟处理,再加入所述光引发剂、所述交联剂以及聚酰胺酸酯得到氟化石墨烯量子点/聚酰胺酸酯复合溶液;
    将所述氟化石墨烯量子点/聚酰胺酸酯复合溶液涂敷于基底表面,再经曝光、显影后形成图案;
    对所述图案进行热亚胺化处理得到所述酯型光敏聚酰亚胺复合材料。
  9. 如权利要求8所述的酯型光敏聚酰亚胺复合材料的制备方法,其特征在于,在将氟化石墨烯量子点溶于所述溶剂中,超声30-90分钟处理,再加入所述光引发剂、所述交联剂以及聚酰胺酸酯得到氟化石墨烯量子点/聚酰胺酸酯复合溶液的步骤中,所述氟化石墨烯量子点通过下述方法制备得到:
    将氟化碳源置于有机溶剂中,再进行超声处理,静置后取上层清液进行离心,离心后取出上层清液去除所述有机溶剂,最后干燥得到氟化石墨烯量子点。
  10. 如权利要求9所述的酯型光敏聚酰亚胺复合材料的制备方法,其特征在于,所述碳源包括氟化碳纤维、氟化石墨烯、氟化碳、氟化碳纳米管中的至少1种。
  11. 如权利要求8所述的酯型光敏聚酰亚胺复合材料的制备方法,其特征在于,在将氟化石墨烯量子点溶于所述溶剂中,超声30-90分钟处理,再加入所述光引发剂、所述交联剂以及聚酰胺酸酯得到氟化石墨烯量子点/聚酰胺酸酯复合溶液的步骤中,所述聚酰胺酸酯通过下述方法制备得到:
    在氮气氛围下,于40-45℃温度下,将二酐、甲基丙烯酸羟乙酯、吡啶及有机溶剂混合反应2-10小时,得到混合溶液;
    在0-25℃氮气氛围下,在所述混合溶液中加入二胺并搅拌5-10小时,使其进行缩聚反应形成甲基丙烯酸羟乙酯封端的聚酰胺酸溶液;
    保持温度及氛围,在所述聚酰胺酸溶液加入三氟乙酸酐并搅拌0.5-3小时使其异酰亚胺化;
    保持在氮气氛围下,于50-55℃温度下,在异酰亚胺化的聚酰胺酸溶液中加入甲基丙烯酸羟乙酯并搅拌8-12小时以形成光敏聚酰亚胺前驱体溶液;
    将所述光敏聚酰亚胺前驱体溶液滴入到去离子水中以除去未反应的物质,再通过抽滤、干燥得到所述聚酰胺酸酯。
  12. 如权利要求10所述的酯型光敏聚酰亚胺复合材料的制备方法,其特征在于,所述二酐包括均苯四甲酸二酐、马来酸酐、3,3',4,4'-联苯四羧酸二酐、2,3,3',4'-二苯醚四甲酸二酐、4,4'-氧双邻苯二甲酸酐、4,4'-(六氟异亚丙基)二酞酸酐、3,3',4,4'-二苯甲酮四甲酸二酐、3,3,4,4-二苯基砜四羧酸二酸酐、4,4'-对苯二氧双邻苯二甲酸酐、六氟二酐、1,2-亚乙基二[1,3-二氢-1,3-二氧代异苯并呋喃-5-羧酸酯]、双酚A二酐、甘油双(脱水偏苯三酸酯)乙酸酯、2,3,3',4'-联苯四甲酸二酐、对-亚苯基-双苯偏三酸酯二酐、9,9-双(3,4-二羧基苯基)芴二酸酐、4,4'-(乙炔-1,2-二基)二酞酸酐、4,4'-thiodiphthalic anhydride中的至少1种。
  13. 如权利要求10所述的酯型光敏聚酰亚胺复合材料的制备方法,其特征在于,所述二胺包括4,4'-二氨基二苯醚、1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷、氨丙基双封端聚二甲基硅氧烷、3,5-二氨基-1,2,4-三氮唑、二氨基吡啶、2-(4-氨基苯基)-5-氨基苯并咪唑、2,2'-双[4-(4-氨基苯氧基苯基)]丙烷、2-氨基-4-[(3,4-二氨基苯基)磺酰基]苯胺、6,6'-双氨基-3,3'-甲叉基二苯甲酸、1氢-吲唑-4,7-二胺、7-硝基-1H-吲唑-4-胺、2,2'-二氨基-4,4'-双噻唑、3,6-二氨基咔唑、2-(3,6-二氨基-9H-咔唑-9-基)乙酸甲酯、2,5-二氨基苯并噻唑、2,6-苯并噻唑二胺、(6-氨基-4-甲基苯并[D]噻唑-2-基)氨基甲酸叔丁酯、4-甲氧基-1,3-苯并噻唑-2,6-二胺、苯代三聚氰胺、2,4-二氨基-6-(2-氟苯基)-1,3,5-三嗪、2,4-二氨基-6-(4-氯苯基)-1,3,5-三嗪、2,4-二氨基-6-[4-(三氟甲基)苯基]-1,3,5-三嗪、2,4-二氨基-6-(3-氟苯基)-1,3,5-三嗪、2,4-二氨基-6-[3-(三氟甲基)苯基]-1,3,5-三嗪、2,4-二氨基-6-(4-甲基苯基)-1,3,5-三嗪、2,4-二氨基-6-(3,5-二氟苯基)-1,3,5-三嗪、2,4-二氨基-6-(4-溴苯基)-1,3,5-三嗪、2,4-二氨基-6-(4-甲氧苯基)-1,3,5-三嗪、2,3-二氨基酚嗪、甲基胍胺、2,4-二氨基-6-[2-(2-甲基-1-咪唑基)乙基]-1,3,5-噻嗪、4,6-二氨基嘧啶或各种含氮杂环、硅氧烷、硫醚等二胺中的至少1种。
  14. 如权利要求9或11所述的酯型光敏聚酰亚胺复合材料的制备方法,其特征在于,所述有机溶剂包括N,N-二甲基乙酰胺(DMAc)、N-甲基-2-吡咯烷酮(NMP)或N,N-二甲基甲酰胺(DMF)、四氢呋喃、间甲酚、γ-丁内酯、四甲基脲、二甲基亚砜、六甲基磷酸三酰胺、三氯甲烷中的一种或至少两种的组合。
  15. 如权利要求8所述的酯型光敏聚酰亚胺复合材料的制备方法,其特征在于,在将所述氟化石墨烯量子点/聚酰胺酸酯复合溶液涂敷于基底表面,再经曝光、显影后形成图案的步骤中,具体包括下述步骤:
    将所述氟化石墨烯量子点/聚酰胺酸酯复合溶液旋涂于基底表面;
    将经过旋涂的基底于80-120℃软烤3-10分钟以除去部分有机溶剂,得到膜厚2-5微米的旋涂膜;
    以所述旋涂膜为基准,对所述基底进行曝光工序;
    对经过曝光的基底进行显影,形成线条的图案。
  16. 如权利要求8所述的酯型光敏聚酰亚胺复合材料的制备方法,其特征在于,在对所述图案进行热亚胺化处理得到所述酯型光敏聚酰亚胺复合材料的步骤中,具体包括:
    于氮气氛围下,采用阶梯升温的方式对所述图案进行热亚胺化处理,所述阶梯升温的方式为100℃下保温0.5-1.5小时、200℃下保温0.5-1.5小时、300℃下保温0.5-1.5小时、350℃下保温0.5-1.5小时,升温速率为2-10℃/每分钟,然后冷却至室温,将所述图案从所述基底上剥离下来,得到具有低介电常数的酯型光敏聚酰亚胺复合材料。
  17. 一种半导体装置,其特征在于,包括铜布线和设于所述铜布线上的绝缘层,其中,所述绝缘层包含权利要求1-15任一项所述酯型光敏聚酰亚胺复合材料。
PCT/CN2023/114882 2022-09-01 2023-08-25 一种酯型光敏聚酰亚胺复合材料、制备方法及半导体装置 WO2024046225A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211064479.6 2022-09-01
CN202211064479.6A CN115509088A (zh) 2022-09-01 2022-09-01 一种酯型光敏聚酰亚胺复合材料、制备方法及半导体装置

Publications (1)

Publication Number Publication Date
WO2024046225A1 true WO2024046225A1 (zh) 2024-03-07

Family

ID=84501343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114882 WO2024046225A1 (zh) 2022-09-01 2023-08-25 一种酯型光敏聚酰亚胺复合材料、制备方法及半导体装置

Country Status (2)

Country Link
CN (1) CN115509088A (zh)
WO (1) WO2024046225A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115509088A (zh) * 2022-09-01 2022-12-23 深圳先进电子材料国际创新研究院 一种酯型光敏聚酰亚胺复合材料、制备方法及半导体装置
CN116333303B (zh) * 2023-05-25 2023-08-04 明士(北京)新材料开发有限公司 一种抗模压的碱性水性显影的光敏胶膜及其应用
CN117285820B (zh) * 2023-11-16 2024-04-16 乌镇实验室 一种聚酰亚胺高温电介质复合薄膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102375336A (zh) * 2010-08-05 2012-03-14 旭化成电子材料株式会社 感光性树脂组合物、固化浮雕图案的制造方法及半导体装置
CN103613927A (zh) * 2013-11-26 2014-03-05 哈尔滨工业大学 一种聚酰亚胺/氟化石墨烯复合薄膜及其制备方法
CN111995750A (zh) * 2020-07-14 2020-11-27 广东工业大学 一种光敏聚酰亚胺复合材料及其制备方法
CN112029098A (zh) * 2020-08-28 2020-12-04 中国科学院深圳先进技术研究院 一种聚酰亚胺复合材料及其制备方法和应用
US20210125741A1 (en) * 2014-03-20 2021-04-29 Nanotek Instruments, Inc. Graphene Oxide-Filled Polyimide Films and Process
CN115509088A (zh) * 2022-09-01 2022-12-23 深圳先进电子材料国际创新研究院 一种酯型光敏聚酰亚胺复合材料、制备方法及半导体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102375336A (zh) * 2010-08-05 2012-03-14 旭化成电子材料株式会社 感光性树脂组合物、固化浮雕图案的制造方法及半导体装置
CN103613927A (zh) * 2013-11-26 2014-03-05 哈尔滨工业大学 一种聚酰亚胺/氟化石墨烯复合薄膜及其制备方法
US20210125741A1 (en) * 2014-03-20 2021-04-29 Nanotek Instruments, Inc. Graphene Oxide-Filled Polyimide Films and Process
CN111995750A (zh) * 2020-07-14 2020-11-27 广东工业大学 一种光敏聚酰亚胺复合材料及其制备方法
CN112029098A (zh) * 2020-08-28 2020-12-04 中国科学院深圳先进技术研究院 一种聚酰亚胺复合材料及其制备方法和应用
CN115509088A (zh) * 2022-09-01 2022-12-23 深圳先进电子材料国际创新研究院 一种酯型光敏聚酰亚胺复合材料、制备方法及半导体装置

Also Published As

Publication number Publication date
CN115509088A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2024046225A1 (zh) 一种酯型光敏聚酰亚胺复合材料、制备方法及半导体装置
JP5903527B2 (ja) ポリイミド樹脂から製造されたポリイミドフィルム及びこれを含む表示素子用基板
JP2010202729A (ja) フレキシブルデバイス基板用ポリイミド前駆体樹脂組成物及びそれを用いたフレキシブルデバイスの製造方法、フレキシブルデバイス
JP6888660B2 (ja) ポリイミド前駆体を含む樹脂組成物、硬化膜の製造方法及び電子部品
JP2016199662A (ja) ポリイミド前駆体を含む樹脂組成物、それを用いた硬化膜及びパターン硬化膜の製造方法、並びに電子部品
TW202017972A (zh) 用以提高聚醯亞胺膜的接著性的聚醯亞胺前驅物組成物、由上述聚醯亞胺前驅物組成物製備的聚醯亞胺膜及其製備方法以及包括此聚醯亞胺膜的電子裝置
US20210115251A1 (en) Resin composition
JP2001294815A (ja) 低誘電率絶縁膜形成用水性分散液、低誘電率絶縁膜および電子部品
KR101335117B1 (ko) 내열성 수지
JP2624724B2 (ja) ポリイミドシロキサン組成物
JP6288227B2 (ja) フレキシブルデバイス基板形成用ポリイミド前駆体樹脂組成物及びそれを用いたフレキシブルデバイスの製造方法、フレキシブルデバイス
JP7442613B2 (ja) ポリアミド酸組成物、ポリアミド酸組成物の製造方法及びそれを含むポリイミド
CN114891214A (zh) 一种封端离子型负性光敏聚酰亚胺组合物及其制备方法
JP2004285355A (ja) ポリイミド樹脂粉体の製造方法
TWI709614B (zh) 包括氟類樹脂的黑色聚醯亞胺薄膜及其製備方法、包含此聚醯亞胺膜的覆蓋膜以及包含此覆蓋膜的電子裝置
KR100244980B1 (ko) 실록산 폴리이미드 전구체 조성물
JP6733220B2 (ja) 樹脂組成物及びポリイミド樹脂膜
JP3012198B2 (ja) 電気又は電子部品用ポリイミドシロキサン膜の製造方法
WO2013111241A1 (ja) ポリイミド前駆体及びそれを用いた樹脂組成物
TWI827897B (zh) 低介電損失之聚醯亞胺膜
TWI842563B (zh) 黑色聚醯亞胺膜、其製造方法、包括其的覆蓋膜及電子裝置
JP4731648B2 (ja) 絶縁塗料及びその製造方法
TWI750497B (zh) 聚醯亞胺膜、使用其的可撓性裝置以及其製備製程
JP2023054680A (ja) ポリイミド前駆体樹脂組成物及び、これを用いたフレキシブル表示装置及びその製造方法
JP2004269790A (ja) ポリイミド樹脂粉体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859258

Country of ref document: EP

Kind code of ref document: A1