WO2024046146A1 - 一种低成本碱性二次电池正极材料及其制备方法和应用 - Google Patents

一种低成本碱性二次电池正极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2024046146A1
WO2024046146A1 PCT/CN2023/113763 CN2023113763W WO2024046146A1 WO 2024046146 A1 WO2024046146 A1 WO 2024046146A1 CN 2023113763 W CN2023113763 W CN 2023113763W WO 2024046146 A1 WO2024046146 A1 WO 2024046146A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydroxide
layered
manganese dioxide
salt
solution
Prior art date
Application number
PCT/CN2023/113763
Other languages
English (en)
French (fr)
Inventor
上官恩波
刘晴霞
李慧杰
李晶
王明煜
李亮生
徐松
骆力荣
赵梁栋
Original Assignee
河南超力新能源有限公司
超威电源集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南超力新能源有限公司, 超威电源集团有限公司 filed Critical 河南超力新能源有限公司
Publication of WO2024046146A1 publication Critical patent/WO2024046146A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of alkaline secondary battery cathode materials, and specifically relates to a low-cost alkaline secondary battery cathode material and its preparation method and application.
  • zinc-manganese alkaline secondary batteries Compared with other batteries, zinc-manganese alkaline secondary batteries have the advantages of low cost, environmental protection, non-toxicity, and good safety. They have broad application prospects in the energy storage and civilian markets.
  • MnO 2 is a metal oxide, a semiconductor material, and a commonly used cathode material for primary dry batteries.
  • the MnO 2 positive electrode In zinc-manganese alkaline secondary batteries, the MnO 2 positive electrode has problems such as low conductivity (conductivity 10 -5 ⁇ 10 -6 S ⁇ cm -1 ) and poor structural stability, which seriously restricts the use of zinc-manganese alkaline secondary batteries. Wide range of applications of secondary batteries.
  • MnO 2 has a large volume expansion and contraction during the charge and discharge process, and it is easy to generate electrochemically inert low-priced manganese oxides, such as Mn 3 O 4 , etc., causing the structure of the cathode material to be destroyed and the quality of the active material to be reduced, thereby affecting the battery electrochemical properties. Therefore, the capacity performance, rate performance and cycle stability performance of zinc-manganese alkaline secondary batteries are still difficult to meet the needs of practical applications.
  • Zinc-manganese secondary batteries are mainly composed of several main parts such as positive electrode, separator, electrolyte, and negative electrode. Research on the positive electrode focuses on the development of new positive electrode materials and modification of manganese dioxide materials. The rechargeability of modified MnO 2 obtained through physical doping, chemical doping and electrochemical deposition has been greatly improved. Moreover, the reversibility of various crystal forms of MnO 2 has also been improved to a certain extent after modification. However, the practical application of rechargeable zinc-manganese secondary batteries is still limited by its poor cycle stability. Therefore, the development of new cathode materials is still the key to the technological progress of zinc-manganese secondary batteries.
  • the present invention provides a low-cost alkaline secondary battery positive electrode material and a preparation method thereof.
  • the positive electrode material prepared by the method has higher discharge capacity, higher discharge platform and better cycle stability, and can be used to prepare zinc-manganese secondary battery cathodes.
  • the technical solution adopted by the present invention is: a low-cost alkaline secondary battery cathode material, which is characterized in that: the cathode material is composed of manganese dioxide and layered hydroxide [ Nix M y A Z (OH) 2 ] ⁇ [(B a- ) b ⁇ mH 2 O] constitutes a composite cathode material, or consists of manganese dioxide and partially oxidized layered hydroxide [Ni x M y A Z (OH) 2 ] ⁇ [(B a- ) b ⁇ mH 2 O] constitutes a composite cathode material, or a composite cathode material composed of manganese dioxide and layered oxyhydroxide [Ni x M y A Z OOH], or a composite cathode material composed of manganese dioxide, Conductive materials and layered hydroxides [ Nix M y A Z (OH) 2 ] ⁇ [(B a- ) b ⁇
  • layered hydroxide Nix My AZ (OH) 2 ] ⁇ [(B a- ) b ⁇ mH 2 O] or partially oxidized layered hydroxide [Ni
  • the mass percentage of x M y A Z (OH) 2 ] ⁇ [(B a- ) b ⁇ mH 2 O] or layered oxyhydroxide [Ni x M y A Z OOH] is 5%-75 %; preferably 10%-40%.
  • the conductive material is graphene, carbon nanotubes, acetylene black, flake graphite, cobalt oxyhydroxide, One or two types of nitrogen carbide, titanium carbide, niobium carbide or titanium nitride, the mass percentage of this conductive material in the composite cathode material is 0.5%-20%; the manganese dioxide is ⁇ -MnO 2 , one or more of ⁇ -MnO 2 , ⁇ -MnO 2 , ⁇ -MnO 2 or ⁇ -MnO 2 , preferably ⁇ -MnO 2 .
  • a method for preparing low-cost alkaline secondary battery cathode materials characterized in that the manganese dioxide and layered hydroxide [ Nix M y A Z (OH) 2 ] ⁇ [(B a- ) b ⁇
  • the specific preparation process of the composite cathode material composed of mH 2 O] is:
  • Step S1 ball-mill the manganese dioxide precursor and sieve to obtain the manganese dioxide precursor for later use;
  • Step S2 Dissolve soluble nickel salt, soluble bismuth salt or soluble titanium salt, and A metal salt in deionized water to prepare a composite salt solution, dissolve alkaline hydroxide in deionized water to prepare an alkaline solution, and prepare the solution in 15- Add the alkaline solution to the compound salt solution at 50°C, continue stirring until the pH of the suspension reaches 7-11 after the reaction is completed, react the obtained suspension at 50-95°C for 5-48 hours, cool to room temperature, and filter , wash and dry to obtain powder, transfer the obtained powder to a solution made of alkaline hydroxide, phosphate, tungstate, molybdate, chloride salt, fluoride salt, carbonate, metaborate, or boron
  • a solution prepared from one or more of the acid salts treat it at 25-200°C for 1-24h under an inert atmosphere or air condition, filter, wash and dry to obtain a layered hydroxide [ Nix M y A Z (OH) 2 ] ⁇ [(B
  • Step S3 Mix the manganese dioxide precursor obtained in step S1 and the layered hydroxide [ Nix My AZ ( OH ) 2 ] ⁇ [(B a- ) b ⁇ mH 2 O] obtained in step S2 High-energy ball milling is performed to obtain composite cathode materials.
  • a method for preparing low-cost alkaline secondary battery cathode materials characterized in that the manganese dioxide and partially oxidized layered hydroxide [ Nix M y A Z (OH) 2 ] ⁇ [(B a- ) b ⁇ mH 2 O] and the composite cathode material composed of manganese dioxide and layered oxyhydroxide [Ni x M y A Z OOH] are as follows:
  • Step S1 ball-mill the manganese dioxide precursor and sieve to obtain the manganese dioxide precursor for later use;
  • Step S2 Dissolve soluble nickel salt, soluble bismuth salt or soluble titanium salt, and A metal salt in deionized water to prepare a composite salt solution, dissolve alkaline hydroxide in deionized water to prepare an alkaline solution, and prepare the solution in 15- Add the alkaline solution to the compound salt solution at 50°C, continue stirring until the pH of the suspension reaches 7-11 after the reaction is completed, react the obtained suspension at 50-95°C for 5-48 hours, cool to room temperature, and filter , wash and dry to obtain powder, transfer the obtained powder to a solution made of alkaline hydroxide, phosphate, tungstate, molybdate, chloride salt, fluoride salt, carbonate, metaborate, or boron
  • a solution prepared from one or more of the acid salts treat it at 25-200°C for 1-24 hours under an inert atmosphere or air condition, filter, wash, and dry to obtain layered hydroxide, which can be chemically oxidized or electrolyzed.
  • Oxidation method oxidize the layered hydroxide to obtain partially oxidized layered hydroxide [ Nix M y A Z (OH) 2 ] ⁇ [(B a- ) b ⁇ mH 2 O] or fully oxidized Layered oxyhydroxide [Ni x M y A Z OOH];
  • Step S3 combine the manganese dioxide precursor obtained in step S1 and the partially oxidized layered hydroxide [ Nix M y A Z (OH) 2 ] ⁇ [(B a- ) b ⁇ mH 2 O] obtained in step S2 Or the fully oxidized layered oxyhydroxide [ Nix My A Z OOH] is mixed and then subjected to high-energy ball milling to obtain a composite cathode material.
  • a method for preparing low-cost alkaline secondary battery cathode materials characterized by the manganese dioxide, conductive material and layered hydroxide [ Nix M y A Z (OH) 2 ] ⁇ [(B a- ) b ⁇ mH 2 O] or partially oxidized layered hydroxide [ Nix M y A Z (OH) 2 ] ⁇ [(B a- ) b ⁇ mH 2 O] or layered oxyhydroxide [Ni x M y A Z OOH]
  • the specific preparation process of the composite cathode material is as follows:
  • Step S1 ball-mill the manganese dioxide precursor and sieve to obtain the manganese dioxide precursor for later use;
  • Step S2 Dissolve soluble nickel salt, soluble bismuth salt or soluble titanium salt, and A metal salt in deionized water to prepare a composite salt solution, dissolve alkaline hydroxide in deionized water to prepare an alkaline solution, and prepare the solution in 15- Add the alkaline solution to the compound salt solution at 50°C, continue stirring until the pH of the suspension reaches 7-11 after the reaction is completed, and place the obtained suspension at 50- React at 95°C for 5-48 hours. After cooling to room temperature, filter, wash, and dry to obtain powder. Transfer the obtained powder to a mixture of alkaline hydroxide, phosphate, tungstate, molybdate, chloride, and fluorine.
  • Step S3 combine the manganese dioxide precursor obtained in step S1, the conductive material and the layered hydroxide [ Nix M y A Z (OH) 2 ] ⁇ [(B a- ) b ⁇ mH 2 O] obtained in step S2 Or partially oxidized layered hydroxide [ Nix M y A Z (OH) 2 ] ⁇ [(B a- ) b ⁇ mH 2 O] or fully oxidized layered oxyhydroxide [ Nix M y A Z OOH] is evenly dispersed into water or organic solvents, reacted in a normal pressure vessel at 15-90°C, and then the product is dried to obtain a composite cathode material.
  • the soluble nickel salt is one or more of nickel nitrate, nickel sulfate, nickel acetate or nickel chloride;
  • the soluble bismuth salt is bismuth nitrate;
  • the soluble titanium salt is titanium sulfate;
  • the A Metal salts are cerium nitrate, cerium chloride, aluminum nitrate, aluminum chloride, aluminum sulfate, zinc nitrate, zinc sulfate, zinc chloride, calcium acetate, calcium chloride, magnesium acetate, magnesium chloride, cobalt nitrate, cobalt chloride, sulfuric acid
  • the phosphate It is one
  • the carbonate is one or more of potassium carbonate or sodium carbonate
  • the metaborate is one or more of potassium metaborate, sodium metaborate or lithium metaborate
  • the borate is one or more of potassium metaborate, sodium metaborate or lithium metaborate
  • the alkaline hydroxide is one or more of sodium hydroxide, potassium hydroxide or lithium hydroxide
  • An alkaline secondary battery positive plate characterized in that: the alkaline secondary battery positive plate is made from the above-mentioned low-cost alkaline secondary battery positive electrode material.
  • an additive with a mass fraction of 0.5% to 10% is added to the low-cost alkaline secondary battery cathode material, and the additive is chromium oxide, chromium hydroxide, strontium oxide, strontium hydroxide, ytterbium oxide or antimony-doped One or two types of mixed tin oxides.
  • An alkaline secondary battery includes a battery case, a plate group sealed in the battery case, and an electrolyte.
  • the plate group includes a positive plate, a negative plate and a separator, and is characterized in that: the positive plate is made of
  • the electrolyte of the alkaline secondary battery positive plate is an alkaline potassium hydroxide solution, and sodium hexafluoroantimonate is added with a mass fraction of 0.1% to 2%.
  • the alkaline secondary battery cathode material of the present invention is composed of manganese dioxide and layered hydroxide [ Nix M y A Z (OH) 2 ] ⁇ [(B a- ) b ⁇ mH 2 O] forms a composite negative electrode material, and the composite negative electrode material has a three-dimensional structure.
  • Bi or Ti fills the tunnels and layers during the charge and discharge process of MnO 2 , allowing protons and electrons to flow freely between the lattice, suppressing the lattice expansion, and stabilizing the lattice and active sites.
  • the bonding force between the metal and oxygen layers can be enhanced, effectively improving the structural stability and cycle reversibility of the composite cathode material during the charge and discharge process. Electrochemical tests have proven that, compared with uncomposited cathode materials, the composite cathode material prepared in the present invention has higher discharge capacity, higher discharge platform and better cycle stability performance as an alkaline secondary battery cathode active material.
  • Figure 1 is a scanning electron microscope image of the composite cathode material prepared in Example 1;
  • Figure 2 is an element distribution diagram of the composite cathode material prepared in Example 1;
  • Figure 3 is an XRD pattern of the composite cathode material prepared in Example 1;
  • Figure 4 is the discharge curve of the composite cathode material and MnO prepared in Example 1;
  • Figure 5 is a scanning electron microscope image of the composite cathode material prepared in Example 13;
  • Figure 6 is an XRD pattern of the composite cathode material prepared in Examples 13 and 14;
  • Figure 7 is a discharge curve diagram of the composite cathode material and MnO2 prepared in Example 13.
  • the manganese dioxide is then ball milled and sieved to obtain a manganese dioxide precursor for later use.
  • the manganese dioxide precursor and the layered hydroxide prepared above are mixed at a mass ratio of 3:1 and then subjected to high-energy ball milling to obtain a manganese dioxide composite nickel-bismuth multi-component layered hydroxide composite cathode material.
  • the scanning electron microscope, element distribution, XRD pattern and charge-discharge curve of the sample are shown in Figure 1-5.
  • the manganese dioxide is then ball milled and sieved to obtain a manganese dioxide precursor for later use.
  • the manganese dioxide precursor and the partially oxidized layered hydroxide prepared above are mixed at a mass ratio of 2:1 and then subjected to high-energy ball milling to obtain MnO 2 /partially oxidized layered hydroxide composite cathode material.
  • the manganese dioxide is then ball milled and sieved to obtain a manganese dioxide precursor for later use.
  • the manganese dioxide precursor and the layered oxyhydroxide prepared above are mixed at a mass ratio of 4:1 and then subjected to high-energy ball milling to obtain the MnO 2 /layered oxyhydroxide composite cathode material.
  • the obtained powder is transferred to sodium fluoride, sodium phosphate and metabolite with a molar concentration of 3.0 mol/L.
  • sodium borate the molar ratio of sodium fluoride, sodium phosphate and sodium metaborate is 0.2:0.2:1
  • inert gas nitrogen treat at 150°C for 12 hours, filter, wash, and dry to obtain a layer hydroxide.
  • the manganese dioxide is then ball milled and sieved to obtain a manganese dioxide precursor for later use.
  • the manganese dioxide precursor and the layered hydroxide prepared above are mixed at a mass ratio of 5:2 and then subjected to high-energy ball milling to obtain a manganese dioxide composite nickel-bismuth multi-component layered hydroxide composite cathode material.
  • the obtained suspension is reacted at 80°C for 12 hours. After cooling to room temperature, it is filtered, washed, and dried to obtain powder; the obtained powder is transferred to a sodium chloride solution with a molar concentration of 0.5 mol/L, and inert. Under gas nitrogen protection, treat at 150°C for 12 hours, filter, wash, and dry to obtain layered hydroxide.
  • the manganese dioxide precursor, graphene, and the layered hydroxide prepared above were ultrasonically dispersed into the aqueous solution at a mass ratio of 4:1:1, and then After freeze-drying, the MnO 2 /layered hydroxide/graphene composite cathode material can be obtained.
  • the manganese dioxide precursor, acetylene black, and the layered oxyhydroxide prepared in Example 3 are subjected to high-energy ball milling at a mass ratio of 5:2:3 to obtain a MnO 2 /layered oxyhydroxide/acetylene black composite.
  • the manganese dioxide solid powder is ground and sieved to obtain a manganese dioxide precursor for later use. Then, the manganese dioxide precursor, carbon nanotubes and the layered hydroxide prepared in Example 4 are subjected to high-energy ball milling at a mass ratio of 6:1:2 to obtain MnO 2 /layered hydroxide/carbon Nanotube composite cathode material.
  • the manganese dioxide precursor and the above-prepared layered hydroxide/flake graphite composite material are subjected to high-energy ball milling at a mass ratio of 3:4 to obtain the MnO 2 /layered hydroxide/flake graphite composite cathode material.
  • Preparation of the positive plate based on the composite positive electrode material obtained in Examples 1-8 Grind 0.4g of the composite positive electrode material prepared in each example and 0.1g of superconducting carbon black in an agate mortar for 20 minutes, and mix evenly. Then add 0.05g of CMC solution with a mass concentration of 2.5% and 0.05g of a PTFE aqueous solution with a mass concentration of 60% and mix them evenly to form a positive electrode slurry, which is coated on the nickel foam through a slurry die and dried under vacuum at 60°C for 12 hours. The positive plate was obtained by pressing down to 10 seconds at a pressure of 12MPa.
  • Example 1-12 Battery assembly The prepared positive plate and the conventional zinc negative plate were sandwiched with a zinc-nickel battery separator, put into a special simulated battery shell, and the electrolyte (saturated zinc oxide and containing 0.2% hexafluoride) was injected. 6 mol/L KOH solution of sodium antimonate), assembled into a semi-sealed zinc-manganese secondary battery.
  • a special zinc-nickel battery separator is sandwiched between the prepared positive plate and the conventional zinc negative plate, put into a special simulated battery case, inject the electrolyte (6 mol/L KOH solution of saturated zinc oxide), and assemble into a semi-sealed Zinc-manganese secondary battery.
  • Battery performance test The zinc-manganese secondary batteries produced using Specific Examples 1-12 and Comparative Example 1 were activated at 0.2C for capacity performance and cycle stability performance testing. After charging at 0.2C, the battery was left aside for 10 minutes, discharged to 1.0V at 0.2C, and cycled 150 times to determine the capacity performance of the cathode material.
  • the electrical performance test results of zinc-manganese secondary batteries are listed in Table 1.
  • the composite cathode material prepared by the present invention has better cycle stability performance and a higher discharge voltage platform.
  • the improvement in cycle stability performance is mainly attributed to the modification effect of the layered hydroxide material on the structural lattice of the MnO 2 cathode material, especially the presence of a large number of beneficial metal elements and the nano-layered structural form, which greatly reduces the reaction time of the cathode.
  • the deformation during the process inhibits the production of inert irreversible substances, thereby improving the reversible charge and discharge performance of the positive electrode during the charge and discharge process.
  • Doping different excellent cathode additives and improving the properties of the MnO electrode can improve the cycle stability of the cathode.
  • the use of effective electrolyte additive sodium hexafluoroantimonate can improve the overall electrical performance of the battery, which is beneficial to improving the battery discharge platform and capacity.
  • the manganese dioxide is ball milled and sieved to obtain the manganese dioxide precursor.
  • the manganese dioxide precursor and the prepared layered hydroxide are mixed at a mass ratio of 2:1 and then subjected to high-energy ball milling to obtain the manganese dioxide.
  • the manganese dioxide is ball milled and sieved to obtain a manganese dioxide precursor.
  • the manganese dioxide precursor, the prepared part The oxidized layered hydroxide is mixed at a mass ratio of 5:3 and then subjected to high-energy ball milling to obtain the MnO 2 /partially oxidized layered hydroxide composite cathode material.
  • the electrolytic manganese dioxide and the layered oxyhydroxide/carbon nanotube composite material are mixed at a mass ratio of 3:2 and then ball milled to obtain the MnO 2 /layered oxyhydroxide/carbon nanotube composite material composite cathode. Material.
  • Ni/Ti/Sb/Ce/Bi 0.6/0.15/0.1/0.1/0.05 and prepare the molar concentration at room temperature. It is a 1.8mol/L composite salt solution; dissolve the potassium hydroxide solid in deionized water to prepare an alkaline solution with a molar concentration of 2.5mol/L; add the alkaline solution dropwise to the mixture using a peristaltic pump at 25°C. In the salt solution, stir continuously until the pH of the reaction suspension reaches 8.5. After the reaction is completed, react the obtained suspension at 80°C for 12 hours.
  • the manganese dioxide precursor, titanium nitride, and prepared layered oxyhydroxide are ultrasonically dispersed into the aqueous solution at a mass ratio of 5:1:4. , stirred at 50°C for 2 hours, and freeze-dried, the MnO 2 /layered oxyhydroxide/graphene composite cathode material can be obtained.
  • Example 13-19 Battery assembly The prepared positive plate and the conventional zinc negative plate were sandwiched with a special zinc-manganese battery separator, put into a special simulated battery shell, and the electrolyte (saturated zinc oxide and containing 0.2wt% 6 mol/L of sodium fluorantimonate KOH solution), assembled into a semi-sealed zinc-manganese secondary battery.
  • a special zinc-manganese battery separator put into a special simulated battery shell
  • electrolyte saturated zinc oxide and containing 0.2wt% 6 mol/L of sodium fluorantimonate KOH solution
  • a special zinc-manganese battery separator is sandwiched between the prepared positive plate and the conventional zinc negative plate, put into a special simulated battery shell, inject the electrolyte (6 mol/L KOH solution of saturated zinc oxide), and assemble into a semi-sealed Zinc-manganese secondary battery.
  • Battery performance test Batteries produced using Specific Examples 13-21 and Comparative Example 2 were activated at 0.2C for capacity performance and cycle stability testing. After charging at 0.2C, the battery was left aside for 10 minutes, discharged to 1.0V at 0.2C, and cycled 150 times to determine the capacity performance of the cathode material. The battery electrical performance test results are listed in Table 2.
  • the composite cathode material prepared by the present invention has better cycle stability performance and a higher discharge voltage platform.
  • the improvement in cycle stability is mainly attributed to the modification effect of layered hydroxide on the structural lattice of MnO 2 cathode material, especially the presence of a large number of beneficial metal elements and the nano-layered structural form, which greatly reduces the reaction process of the cathode.
  • the deformation in the cathode inhibits the production of inert irreversible substances, thereby improving the reversible charge and discharge performance of the positive electrode during the charge and discharge process.
  • Doping different excellent additives and improving the properties of the MnO electrode can improve the cycle stability performance of the positive electrode.
  • the use of effective electrolyte additive sodium hexafluoroantimonate can improve the overall electrical performance of the battery, which is beneficial to improving the battery discharge platform and capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种低成本碱性二次电池正极材料及其制备方法和应用,属于碱性二次电池技术领域。技术方案要点为:一种低成本碱性二次正极活性材料,由二氧化锰和层状氢氧化物组成复合正极材料,或由二氧化锰和部分氧化的层状氢氧化物组成复合正极材料,或由二氧化锰和层状羟基氧化物组成复合正极材料,或由二氧化锰、导电材料和层状氢氧化物或部分氧化的层状氢氧化物或层状羟基氧化物组成复合正极材料。制备的复合正极材料相对于传统锰电极具有放电平台高,克容量高,循环稳定性好等优点,显著提升了锌锰碱性二次电池的循环稳定性和可逆性,改善了其循环使用寿命。

Description

一种低成本碱性二次电池正极材料及其制备方法和应用 技术领域
本发明属于碱性二次电池正极材料技术领域,具体涉及一种低成本碱性二次电池正极材料及其制备方法和应用。
背景技术
锌锰碱性二次电池与其它电池相比具有成本低、环保无毒、安全性好等优点,在储能和民用市场领域具有广阔的应用前景。MnO2是一种金属氧化物,属于半导体材料,为一次干电池常用的正极材料。在锌锰碱性二次电池中,MnO2正极存在导电率低(电导率为10-5~10-6S·cm-1)、结构稳定性差等问题,这严重制约了锌锰碱性二次电池的广泛应用。MnO2在充放电过程中存在较大的体积膨胀和收缩,并且易生成电化学惰性的低价锰氧化物,如Mn3O4等,致使正极材料结构破坏,活性物质量降低,从而影响电池的电化学性能。因此,锌锰碱性二次电池的容量性能、倍率性能和循环稳定性能仍难以满足实际应用需求。
锌锰二次电池主要由正极、隔膜、电解液、负极等几个主要部分组成,其中对正极的研究集中在新型正极材料开发和二氧化锰材料改性等方面。通过物理掺杂、化学掺杂以及电化学沉积掺杂得到的改性MnO2,其可充性获得较大的改善。而且各种晶型的MnO2在改性后其可逆性也都获得了一定改善。然而可充锌锰二次电池在实际应用中仍受限于其循环稳定性差的缺陷,因此开发新型正极材料仍是该锌锰二次电池技术进步的关键。
发明内容
本发明为克服目前锌锰碱性二次电池MnO2正极材料存在的不足,提供了一种低成本碱性二次电池正极材料及其制备方法,该方法制得的正极材料具有更高的放电容量、更高的放电平台和更好的循环稳定性能,能够用于制备锌锰二次电池正极。
为解决上述技术问题,本发明所采用的技术方案为:一种低成本碱性二次电池正极材料,其特征在于:所述正极材料由二氧化锰和层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]组成复合正极材料,或由二氧化锰和部分氧化的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]组成复合正极材料,或由二氧化锰和层状羟基氧化物[NixMyAZOOH]组成复合正极材料,或由二氧化锰、导电材料和层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或部分氧化的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或层状羟基氧化物[NixMyAZOOH]组成复合正极材料,该复合正极材料具有三维结构、多级孔结构或包覆结构中的一种结构或多种的混合结构,其中M为Bi或Ti,A为Ce、Al、Zn、Ca、Mg、Co、Y、Ga、Sb、Yb或Cu中的一种或两种,Ba-为OH-、Cl-、F-、PO4 3-、SO4 2-、CO3 2-、NO3 -、BO2 -、MoO4 2-或WO4 2-中的一种或多种,0.9≥x≥0.5,0.3≥y≥0.1,0.2≥z≥0.01,x+y+z=1,b>0,m>0。
进一步限定,所述复合正极材料中层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或部分氧化的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或层状羟基氧化物[NixMyAZOOH]所占的质量百分含量为5%-75%;优选为10%-40%。
进一步限定,所述导电材料为石墨烯、碳纳米管、乙炔黑、鳞片石墨、羟基氧化钴、 碳化氮、碳化钛、碳化铌或氮化钛中的一种或两种,该导电材料在复合正极材料中的质量百分含量为0.5%-20%;所述二氧化锰为α-MnO2、β-MnO2、γ-MnO2、δ-MnO2或ε-MnO2中的一种或多种,优选为γ-MnO2
一种低成本碱性二次电池正极材料的制备方法,其特征在于所述二氧化锰和层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]组成复合正极材料的具体制备过程为:
步骤S1,将二氧化锰前驱体球磨处理,过筛得到二氧化锰前驱体备用;
步骤S2,将可溶性镍盐、可溶性铋盐或可溶性钛盐、A金属盐溶于去离子水中配制成复合盐溶液,将碱性氢氧化物溶于去离子水中配制成碱性溶液,于15-50℃将碱性溶液加入到复合盐溶液中,持续搅拌直至反应完成后悬浮液的pH达到7-11,将获得的悬浮液于50-95℃反应5-48h,冷却至室温后,经过滤,洗涤,干燥,得到粉末,将所得粉末转移到由碱性氢氧化物、磷酸盐、钨酸盐、钼酸盐、氯化盐、氟化盐、碳酸盐、偏硼酸盐、或硼酸盐中的一种或多种配制的溶液中,在惰性气氛或空气条件下,于25-200℃处理1-24h,经过滤,洗涤,干燥得到层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O];
步骤S3,将步骤S1得到的二氧化锰前驱体和步骤S2得到的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]混合后进行高能球磨处理得到复合正极材料。
一种低成本碱性二次电池正极材料的制备方法,其特征在于所述二氧化锰和部分氧化的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]组成复合正极材料及二氧化锰和层状羟基氧化物[NixMyAZOOH]组成复合正极材料的具体制备过程为:
步骤S1,将二氧化锰前驱体球磨处理,过筛得到二氧化锰前驱体备用;
步骤S2,将可溶性镍盐、可溶性铋盐或可溶性钛盐、A金属盐溶于去离子水中配制成复合盐溶液,将碱性氢氧化物溶于去离子水中配制成碱性溶液,于15-50℃将碱性溶液加入到复合盐溶液中,持续搅拌直至反应完成后悬浮液的pH达到7-11,将获得的悬浮液于50-95℃反应5-48h,冷却至室温后,经过滤,洗涤,干燥,得到粉末,将所得粉末转移到由碱性氢氧化物、磷酸盐、钨酸盐、钼酸盐、氯化盐、氟化盐、碳酸盐、偏硼酸盐、或硼酸盐中的一种或多种配制的溶液中,在惰性气氛或空气条件下,于25-200℃处理1-24h,经过滤,洗涤,干燥得到层状氢氧化物,通过化学氧化或电解氧化的方法对层状氢氧化物进行氧化处理,获得部分氧化的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或全部氧化的层状羟基氧化物[NixMyAZOOH];
步骤S3,将步骤S1得到二氧化锰前驱体和步骤S2得到的部分氧化的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或全部氧化的层状羟基氧化物[NixMyAZOOH]混合后进行高能球磨处理得到复合正极材料。
一种低成本碱性二次电池正极材料的制备方法,其特征在于所述二氧化锰、导电材料和层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或部分氧化的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或层状羟基氧化物[NixMyAZOOH]组成复合正极材料的具体制备过程为:
步骤S1,将二氧化锰前驱体球磨处理,过筛得到二氧化锰前驱体备用;
步骤S2,将可溶性镍盐、可溶性铋盐或可溶性钛盐、A金属盐溶于去离子水中配制成复合盐溶液,将碱性氢氧化物溶于去离子水中配制成碱性溶液,于15-50℃将碱性溶液加入到复合盐溶液中,持续搅拌直至反应完成后悬浮液的pH达到7-11,将获得的悬浮液于50- 95℃反应5-48h,冷却至室温后,经过滤,洗涤,干燥,得到粉末,将所得粉末转移到由碱性氢氧化物、磷酸盐、钨酸盐、钼酸盐、氯化盐、氟化盐、碳酸盐、偏硼酸盐、或硼酸盐中的一种或多种配制的溶液中,在惰性气氛或空气条件下,于25-200℃处理1-24h,经过滤,洗涤,干燥得到层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O],通过化学氧化或电解氧化的方法对层状氢氧化物进行氧化处理,获得部分氧化的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或全部氧化的层状羟基氧化物[NixMyAZOOH];
步骤S3,将步骤S1得到二氧化锰前驱体、导电材料和步骤S2得到的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或部分氧化的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或全部氧化的层状羟基氧化物[NixMyAZOOH]均匀分散到水或有机溶剂中,于15-90℃在常压容器中进行反应,再对产物进行干燥得到复合正极材料。
进一步限定,所述可溶性镍盐为硝酸镍、硫酸镍、醋酸镍或氯化镍中的一种或多种;所述可溶性铋盐为硝酸铋;所述可溶性钛盐为硫酸钛;所述A金属盐为硝酸铈、氯化铈、硝酸铝、氯化铝、硫酸铝、硝酸锌、硫酸锌、氯化锌、醋酸钙、氯化钙、醋酸镁、氯化镁、硝酸钴、氯化钴、硫酸钴、硝酸钇、硫酸钇、氯化钇、硝酸镓、硫酸锑、氯化锑、硝酸镱、氯化镱、氯化铜、硫酸铜或硝酸铜中的一种或多种;所述磷酸盐为磷酸钾、磷酸氢钠或磷酸钠中的一种或多种;所述钨酸盐为钨酸钾、钨酸钠或钨酸锂中的一种或多种;所述钼酸盐为钼酸钾或钼酸钠中的一种或多种;所述氯化盐为氯化钾或氯化钠中的一种或多种;所述氟化盐为氟化钾或氟化钠中的一种或多种;所述碳酸盐为碳酸钾或碳酸钠中的一种或多种;所述偏硼酸盐为偏硼酸钾、偏硼酸钠或偏硼酸锂中的一种或多种;所述硼酸盐为偏硼酸钾、偏硼酸钠或偏硼酸锂中的一种或多种;所述碱性氢氧化物为氢氧化钠、氢氧化钾或氢氧化锂中的一种或多种。
一种碱性二次电池正极板,其特征在于:所述碱性二次电池正极板由上述低成本碱性二次电池正极材料制得。
进一步限定,所述低成本碱性二次电池正极材料中添加有质量分数为0.5%~10%的添加剂,该添加剂为氧化铬、氢氧化铬、氧化锶、氢氧化锶、氧化镱或锑掺杂氧化锡中的一种或两种。
一种碱性二次电池,包括电池壳体、密封在电池壳体中的极板组和电解液,所述极板组包括正极板、负极板和隔膜,其特征在于:所述正极板采用所述碱性二次电池正极板,其电解液采用的是氢氧化钾碱性溶液,且添加有质量分数0.1%~2%的六氟锑酸钠。
本发明与现有技术相比具有以下优点和有益效果:本发明所述的碱性二次电池正极材料由二氧化锰和层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]组成复合负极材料,该复合负极材料具有立体三维结构。首先,Bi或Ti在MnO2的充放电过程中填充在隧道及层间,使质子和电子可在晶格间自由流动,抑制了晶格膨胀,稳定了晶格和活性位。其次,通过在层状氢氧化物中引入其它元素还可以增强金属与氧层间结合力,有效改善复合正极材料在充放电过程中的结构稳定性与循环可逆性。电化学测试证明,与未复合正极材料相比,本发明制备的复合正极材料作为碱性二次电池正极活性材料具有更高的放电容量,更高的放电平台和更好的循环稳定性能。
附图说明
图1是实施例1制备的复合正极材料的扫描电镜图;
图2是实施例1制备的复合正极材料的元素分布图;
图3是实施例1制备的复合正极材料的XRD图;
图4是实施例1制备的复合正极材料和MnO2的放电曲线;
图5是实施例13制备的复合正极材料的扫描电镜图;
图6是实施例13和14制备的复合正极材料的XRD图;
图7是实施例13制备的复合正极材料和MnO2的放电曲线图。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
MnO2/[Ni0.8Bi0.1Al0.1(OH)2·[(Aa-)b·mH2O](A=Cl-,b=0.1,m=2)复合正极材料的制备:
首先,在通风橱中先将硝酸镍、硝酸铋、氯化铝按摩尔比为Ni/Bi/Al=0.8/0.1/0.1混合后于25℃配制成摩尔浓度为0.5mol/L的复合盐溶液;将氢氧化钾溶于去离子水中配制成摩尔浓度为3mol/L的碱性溶液;于25℃将碱性溶液用蠕动泵滴加到混合盐溶液中,不断搅拌直至反应悬浮液的pH达到7.5。反应完成后将获得的悬浮液于80℃反应20h,冷却至室温后,经过滤,洗涤,干燥,得到粉末;将所得粉末转移到摩尔浓度为0.5mol/L的氯化钠溶液中,在惰性气体氮气保护下,于150℃处理12h,经过滤,洗涤,干燥,得到层状氢氧化物。
然后将二氧化锰球磨处理,过筛得到二氧化锰前驱体备用。将二氧化锰前驱体和上述制备的层状氢氧化物按质量比为3:1混合后进行高能球磨处理,即可获得二氧化锰复合镍铋多元层状氢氧化物复合正极材料。样品的扫描电镜,元素分布,XRD图谱及充放电曲线如图1-5所示。
实施例2
MnO2/部分氧化的层状氢氧化物[Ni0.7Bi0.2Cu0.1(OH)2·[(Aa-)b·mH2O](A=WO4 2-、OH-,n=0.2,m=2)复合正极材料的制备:
首先,在通风橱中先将氯化镍、硝酸铋和氯化铜按摩尔比为Ni/Bi/Cu=0.7/0.2/0.1混合后在室温下配制成摩尔浓度为0.4mol/L的复合盐溶液;将氢氧化钠溶于去离子水中配制成摩尔浓度为2mol/L的碱性溶液;在室温下,将碱性溶液滴加到混合盐溶液中,不断搅拌直至反应悬浮液的pH达到9。反应完成后将获得的悬浮液于90℃反应10h,冷却至室温后,经过滤,洗涤,干燥,得到粉末;将所得粉末转移到摩尔浓度为0.5mol/L的钨酸钠碱性溶液中,在惰性气体氮气保护下,于120℃处理15h,经过滤,洗涤,得到层状氢氧化物样品,然后在氮气保护下,将5g层状氢氧化物样品加入到100mL溶解有5g过硫酸钾和2M氢氧化钾溶液中,搅拌20min,过滤,洗涤,于80℃条件真空干燥5h,得到部分氧化的层状氢氧化物。
然后将二氧化锰球磨处理,过筛得到二氧化锰前驱体备用。将二氧化锰前驱体、上述制备的部分氧化的层状氢氧化物按质量比为2:1混合后进行高能球磨处理,即可获得 MnO2/部分氧化的层状氢氧化物复合正极材料。
实施例3
MnO2/层状羟基氧化物[Ni0.6Bi0.2Sb0.2OOH·[(Aa-)b·mH2O](A=MoO4 2-、OH-,b=0.2,m=2)复合正极材料的制备:
首先,在通风橱中先将硫酸镍、硝酸铋和氯化锑按摩尔比为Ni/Bi/Sb=0.6/0.2/0.2混合后于室温配制成摩尔浓度为1.0mol/L的复合盐溶液;将氢氧化钠溶于去离子水中配制成摩尔浓度为1mol/L的碱性溶液;在室温下,将碱性溶液滴加到混合盐溶液中,不断搅拌直至反应悬浮液的pH达到8.5。反应完成后将获得的悬浮液于60℃反应24h,冷却至室温后,经过滤,洗涤,干燥,得到粉末;将所得粉末转移到摩尔浓度为3mol/L的钼酸钠碱性溶液中,在惰性气体氮气保护下,于180℃处理4h,经过滤,洗涤,干燥,得到层状氢氧化物,然后在氮气保护下,将5g层状氢氧化物加入到100mL溶解有15g过硫酸钾和4M氢氧化钾溶液中,搅拌60min,过滤,洗涤,于80℃条件真空干燥5h,得到层状羟基氧化物。
然后将二氧化锰球磨处理,过筛得到二氧化锰前驱体备用。将二氧化锰前驱体、上述制备得的层状羟基氧化物按质量比为4:1混合后进行高能球磨处理,即可获得MnO2/层状羟基氧化物复合正极材料。
实施例4
MnO2/层状氢氧化物[Ni0.8Bi0.1Ce0.05Zn0.05(OH)2·[(Aa-)b·mH2O](A=F-、PO4 3-、BO2 -,n=0.2,m=2)复合正极材料的制备:
首先,在通风橱中先将醋酸镍、硝酸铋、硝酸铈和氯化锌按摩尔比为Ni/Bi/Ce/Zn=0.8/0.1/0.05/0.05混合后于室温配制成摩尔浓度为2.0mol/L的复合盐溶液;将氢氧化钾溶于去离子水中配制成摩尔浓度为2mol/L的碱性溶液;在室温下,将碱性溶液滴加到混合盐溶液中,不断搅拌直至反应悬浮液的pH达到9。反应完成后将获得的悬浮液于80℃反应12h,冷却至室温后,经过滤,洗涤,干燥,得到粉末;将所得粉末转移到摩尔浓度为3.0mol/L的氟化钠、磷酸钠与偏硼酸钠的混合溶液中(氟化钠、磷酸钠与偏硼酸钠的摩尔比为0.2:0.2:1),在惰性气体氮气保护下,于150℃处理12h,经过滤,洗涤,干燥,得到层状氢氧化物。
然后将二氧化锰球磨处理,过筛得到二氧化锰前驱体备用。将二氧化锰前驱体、上述制备得的层状氢氧化物按质量比为5:2混合后进行高能球磨处理,即可获得二氧化锰复合镍铋多元层状氢氧化物复合正极材料。
实施例5
MnO2/层状氢氧化物[Ni0.8Bi0.1Al0.05Y0.05(OH)2·[(Aa-)n·mH2O](A=Cl-,n=0.2,m=2)/石墨烯复合材料的制备:
先将二氧化锰球磨处理,过筛得到二氧化锰前驱体备用。然后在通风橱中先将硝酸镍、硝酸铋、氯化铝和硝酸钇按摩尔比为Ni/Bi/Al/Y=0.8/0.1/0.05/0.05混合后于25℃配制成摩尔浓度为0.5mol/L的复合盐溶液;将氢氧化钾固体溶于去离子水中配制成摩尔浓度为3mol/L的碱性溶液;于25℃将碱性溶液用蠕动泵逐滴滴加到混合盐溶液中,不断搅拌直至反应悬浮液的pH达到8。反应完成后将获得的悬浮液于80℃反应12h,冷却至室温后,经过滤,洗涤,干燥,得到粉末;将所得粉末转移到摩尔浓度为0.5mol/L的氯化钠溶液中,在惰性气体氮气保护下,于150℃处理12h,经过滤,洗涤,干燥,得到层状氢氧化物。将二氧化锰前驱体、石墨烯、上述制备的层状氢氧化物按质量比为4:1:1超声分散到水溶液中,然后进 行冷冻干燥处理,即可获得MnO2/层状氢氧化物/石墨烯复合正极材料。
实施例6
MnO2/层状羟基氧化物[Ni0.6Bi0.2Sb0.2OOH·[(Aa-)n·mH2O](A=MoO4 2-、OH-,n=0.2,m=2)/乙炔黑复合正极材料的制备:
将二氧化锰固体粉末研磨过筛得到二氧化锰前驱体备用。将二氧化锰前驱体、乙炔黑、实施例3所制备的层状羟基氧化物按质量比为5:2:3进行高能球磨处理,即可获得MnO2/层状羟基氧化物/乙炔黑复合正极材料。
实施例7
MnO2/层状氢氧化物[Ni0.8Bi0.1Ce0.05Zn0.05(OH)2·[(Aa-)n·mH2O](A=F-、PO4 3-、BO2 -,n=0.2,m=2)/碳纳米管复合正极材料的制备:
首先将二氧化锰固体粉末研磨过筛得到二氧化锰前驱体备用。然后将二氧化锰前驱体、碳纳米管和实施例4所制备的层状氢氧化物按质量比为6:1:2进行高能球磨处理,即可获得MnO2/层状氢氧化物/碳纳米管复合正极材料。
实施例8
MnO2/层状氢氧化物[Ni0.8Bi0.1Ce0.06Y0.04(OH)2·(Aa-)n·mH2O](A=Cl-,n=0.2,m=2)/鳞片石墨复合正极材料的制备:
首先,在通风橱中先将醋酸镍、硝酸铋、硝酸铈和硫酸钇按摩尔比为Ni/Bi/Ce/Y=0.8/0.1/0.06/0.04混合后在室温下配成摩尔浓度为2.0mol/L的复合盐溶液;称取鳞片石墨超声分散到复合盐溶液中,其中鳞片石墨和目标制备的层状氢氧化物[Ni0.8Bi0.1Ce0.06Y0.04(OH)2·(Aa-)n·mH2O]的质量比控制为为1:3。将氢氧化钾溶于去离子水中配制成摩尔浓度为2mol/L的碱性溶液;在室温下,将碱性溶液滴加到混合盐溶液中,不断搅拌直至反应悬浮液的pH达到9。反应完成后将获得的悬浮液于80℃反应12h,冷却至室温后,经过滤,洗涤,干燥,得到粉末;将所得粉末转移到摩尔浓度为1.0mol/L的氯化钠的混合溶液中,在惰性气体氮气保护下,于100℃处理4h,经过滤,洗涤,干燥,得到层状氢氧化物/鳞片石墨复合材料。
将二氧化锰固体粉末研磨过筛得到二氧化锰前驱体备用。将二氧化锰前驱体、上述制备层状氢氧化物/鳞片石墨复合材料按质量比为3:4进行高能球磨处理,即可获得MnO2/层状氢氧化物/鳞片石墨复合正极材料。
基于实施例1-8得到的复合正极材料的正极板的制备:将各实施例制备的复合正极材料0.4g和超导炭黑0.1g,在玛瑙研钵中研磨20min,混合均匀。然后加入质量浓度为2.5%的CMC溶液0.05g和质量浓度为60%的PTFE水溶液0.05g混合均匀制成正极浆料,通过拉浆模具涂布至泡沫镍上,经过60℃真空干燥12h后在压力为12MPa下压至10s制得正极板。
实施例9
掺杂5wt%Cr(OH)3正极板的制作:
将上述实施例1中制备的复合正极材料0.375g、氢氧化铬0.025g和超导炭黑0.1g,在玛瑙研钵中研磨20min,混合均匀。然后加入质量浓度为2.5%的CMC溶液0.05g和质量浓度为60%的PTFE水溶液0.05g混合均匀制成正极浆料,通过拉浆模具涂布至泡沫镍上,经过60℃真空干燥12h后在压力为12MPa下压至10s制得正极板。
实施例10
掺杂1wt%Sr(OH)2和2wt%Cr2O3正极板的制作:
将上述实施例2中制备的复合正极材料0.385g、氢氧化锶0.005g、氧化铬0.01g和超导炭黑0.1g,在玛瑙研钵中研磨20min,混合均匀。然后加入质量浓度为2.5%的CMC溶液0.05g和质量浓度为60%的PTFE水溶液0.05g混合均匀制成正极浆料,通过拉浆模具涂布至泡沫镍上,经过60℃真空干燥12h后在压力为12MPa下压至10s制得正极板。
实施例11
掺杂2wt%Cr2O3和和2wt%锑掺杂氧化锡正极板的制作:
将上述实施例3中制备的复合正极材料0.38g、氧化铬0.01g、锑掺杂氧化锡0.01g和超导炭黑0.1g,在玛瑙研钵中研磨20min,混合均匀。然后加入质量浓度为2.5%的CMC溶液0.05g和质量浓度为60%的PTFE水溶液0.05g混合均匀制成正极浆料,通过拉浆模具涂布至泡沫镍上,经过60℃真空干燥12h后在压力为12MPa下压至10s制得正极板。
实施例12
掺杂5wt%YbO正极板的制作:
将上述实施例4中制备的复合正极材料0.375g、氧化镱0.025g和超导炭黑0.1g,在玛瑙研钵中研磨20min,混合均匀。然后加入质量浓度为2.5%的CMC溶液0.05g和质量浓度为60%的PTFE水溶液0.05g混合均匀制成正极浆料,通过拉浆模具涂布至泡沫镍上,经过60℃真空干燥12h后在压力为12MPa下压至10s制得正极板。
实施例1-12电池装配:将制备的正极板与常规锌负极板之间夹隔着锌镍电池专用隔膜,装入特制模拟电池壳中,注入电解液(饱和氧化锌并含0.2%六氟锑酸钠的6mol/L的KOH溶液),组装成半密封的锌锰二次电池。
对比例1
采用商业二氧化锰作活性物质。正极板的制作:将二氧化锰0.4g和超导炭黑0.1g,在玛瑙研钵中研磨20min,混合均匀。然后加入质量浓度为2.5%的CMC溶液0.05g和质量浓度为60%的PTFE水溶液0.05g混合均匀制成正极浆料,通过拉浆模具涂布至泡沫镍上,经过60℃真空干燥12h后在压力为12MPa下压至10s制得正极板。将制备的正极板与常规锌负极板之间夹隔着锌镍电池专用隔膜,装入特制模拟电池壳中,注入电解液(饱和氧化锌的6mol/L的KOH溶液),组装成半密封的锌锰二次电池。
电池性能测试:将采用具体实施例1-12和对比例1制作的锌锰二次电池经0.2C活化后进行容量性能和循环稳定性能测试。0.2C充电后,之后电池搁置10min,0.2C放至1.0V,循环150次测定正极材料的容量性能。锌锰二次电池电性能测试结果列在表1。
表1电池充放电性能测试
从以上测试结果表1和图4可以看出,采用本发明制备的复合正极材料具有较好的循环稳定性能和较高的放电电压平台。循环稳定性能的改进主要归因于层状氢氧化物材料对MnO2正极材料结构晶格的修饰作用,特别是大量有益金属元素的存在和纳米层状的结构形态,极大减少正极在反应的过程中的形变,抑制了惰性不可逆物质的产生,从而改善了正极在充放电过程中的可逆充放性能。掺杂不同优异正极添加剂和对MnO2电极的性质进行改进,可使正极的循环稳定性得到改善。同时,选用有效的电解液添加剂六氟锑酸钠可以改善电池整体的电性能,有利于电池放电平台和容量的提升。
实施例13
MnO2/层状氢氧化物[Ni0.8Ti0.2(OH)2·[(Aa-)n·mH2O](A=NO3 -,n=0.1,m=2)复合正极材料的制备:
首先,将硝酸镍和硫酸钛按摩尔比为Ni/Ti=0.8/0.2混合后于25℃配制成摩尔浓度为0.5mol/L的复合盐溶液;将氢氧化钾溶于去离子水中配制成摩尔浓度为3mol/L的碱性溶液;于25℃将碱性溶液用蠕动泵滴加到混合盐溶液中,不断搅拌直至反应悬浮液的pH达 到9。反应完成后将获得的悬浮液于80℃反应12h,冷却至室温后,经过滤,洗涤,干燥,得到粉末;将所得粉末转移到摩尔浓度为0.5mol/L的硝酸钠溶液中,在惰性气体氮气保护下,于130℃处理1h,经过滤,洗涤,干燥,得到层状氢氧化物。然后将电解二氧化锰前驱体和制得的层状氢氧化物按质量比为3:1混合后进行高能球磨处理,即可获得MnO2/层状氢氧化物[Ni0.8Ti0.2(OH)2·[(Aa-)n·mH2O]复合正极材料。
实施例14
MnO2/层状氢氧化物[Ni0.75Ti0.15Zn0.1(OH)2·[(Aa-)n·mH2O](A=SO4 2-、OH-,n=0.1,m=2)复合正极材料的制备:
首先,将硫酸镍、硫酸钛和硫酸锌按摩尔比为Ni/Ti/Cu=0.7/0.2/0.1混合后于室温配制成摩尔浓度为0.4mol/L的复合盐溶液;将氢氧化钠溶于去离子水中配制成摩尔浓度为2mol/L的碱性溶液;在室温下,将碱性溶液滴加到混合盐溶液中,不断搅拌直至反应悬浮液的pH达到9。反应完成后将获得的悬浮液于90℃反应10h,冷却至室温后,经过滤,洗涤,干燥,得到层状氢氧化物。将二氧化锰球磨处理,过筛得到二氧化锰前驱体,将二氧化锰前驱体、制得的层状氢氧化物按质量比为2:1混合后进行高能球磨处理,即可获得二氧化锰复合镍钛多元层状氢氧化物复合正极材料。
实施例15
MnO2/层状氢氧化物[Ni0.7Ti0.1Co0.1Y0.1(OH)2·[(Aa-)n·mH2O](A=WO4 2-、OH-,n=0.1,m=2)复合正极材料的制备:
首先,将硫酸镍、硫酸钛、硫酸钴和硝酸钇按摩尔比为Ni/Ti/Co/Y=0.7/0.15/0.1/0.05混合后于室温配制成摩尔浓度为1.6mol/L的复合盐溶液;将氢氧化钠溶于去离子水中配制成摩尔浓度为2.5mol/L的碱性溶液;在室温下,将碱性溶液滴加到混合盐溶液中,不断搅拌直至反应悬浮液的pH达到8。反应完成后将获得的悬浮液于60℃反应18h,冷却至室温后,经过滤,洗涤,干燥,得到粉末;将所得粉末转移到摩尔浓度为2mol/L的钨酸钠碱性溶液中,在惰性气体氮气保护下,于120℃处理4h,经过滤,洗涤,干燥,得到层状氢氧化物。将二氧化锰球磨处理,过筛得到二氧化锰前驱体,将二氧化锰前驱体、制得的层状氢氧化物按质量比为1:1混合后进行高能球磨处理,即可获得MnO2/层状氢氧化物复合正极材料。
实施例16
MnO2/部分氧化的层状氢氧化物[Ni0.8Ti0.1Ca0.1(OH)2·[(Aa-)n·mH2O](A=F-、MoO4 3-,n=0.2,m=2)复合正极材料的制备:
首先,将醋酸镍、硫酸钛和氯化钙按摩尔比为Ni/Ti/Ca=0.8/0.1/0.1混合后于室温配成摩尔浓度为2.0mol/L的复合盐溶液;将氢氧化钾溶于去离子水中配制成摩尔浓度为2mol/L的碱性溶液;在室温下,将碱性溶液滴加到混合盐溶液中,不断搅拌直至反应悬浮液的pH达到9,反应完成后将获得的悬浮液于80℃反应12h,冷却至室温后,经过滤,洗涤,干燥,得到粉末;将所得粉末转移到摩尔浓度为3.0mol/L的氟化钠与钼酸钠的混合溶液中(氟化钠与钼酸钠的摩尔比为2:1),在惰性气体氮气保护下,于150℃处理12h,经过滤,洗涤,干燥,得到层状氢氧化物。然后在氮气保护下,将5g层状氢氧化物加入到100mL溶解有5g过硫酸钾和1.0M氢氧化钾溶液中,搅拌30min,过滤,洗涤,于80℃条件真空干燥5h,得到部分氧化的层状氢氧化物。
将二氧化锰球磨处理,过筛得到二氧化锰前驱体。将二氧化锰前驱体、制得的部分 氧化的层状氢氧化物按质量比为5:3混合后进行高能球磨处理,即可获得MnO2/部分氧化的层状氢氧化物复合正极材料。
实施例17
MnO2/层状羟基氧化物[Ni0.8Ti0.1Al0.1OOH·[(Aa-)n·mH2O](A=PO4 3-,n=0.2,m=2)/碳纳米管复合正极材料的制备:
首先,将硝酸镍、硫酸钛和氯化铝按摩尔比为Ni/Ti/Al=0.8/0.1/0.1混合后于25℃配制成摩尔浓度为0.5mol/L的复合盐溶液,然后将碳纳米管超声分散到复合盐溶液中,碳纳米管的质量百分含量约为2.5%;将氢氧化钾固体溶于去离子水中配制成摩尔浓度为3mol/L的碱性溶液;于25℃将碱性溶液用蠕动泵逐滴滴加到混合盐溶液中,不断搅拌直至反悬浮液的pH达到8,反应完成后将获得的悬浮液于80℃反应12h,冷却至室温后,经过滤,洗涤,干燥,得到粉末;将所得粉末转移到摩尔浓度为0.5mol/L的磷酸钠溶液中,在惰性气体氮气保护下,于150℃处理12h,经过滤,洗涤,干燥,得到层状氢氧化物/碳纳米管复合材料。然后在氮气保护下,将5g层状氢氧化物/碳纳米管复合材料加入到100mL溶解有15g过硫酸钾和3M氢氧化钾溶液中,搅拌70min,过滤,洗涤,于60℃条件真空干燥8h,得到层状羟基氧化物/碳纳米管复合材料。最后,将电解二氧化锰和层状羟基氧化物/碳纳米管复合材料按质量比为3:2混合后球磨处理,即可获得MnO2/层状羟基氧化物/碳纳米管复合材料复合正极材料。
实施例18
MnO2/层状羟基氧化物[Ni0.6Ti0.15Sb0.1Ce0.1Bi0.05OOH·[(Aa-)n·mH2O](A=Cl-,n=0.2,m=2)/氮化钛复合正极材料的制备:
首先,将氯化镍、硫酸钛、氯化锑、硝酸铈和硝酸铋按摩尔比为Ni/Ti/Sb/Ce/Bi=0.6/0.15/0.1/0.1/0.05混合后于室温配制成摩尔浓度为1.8mol/L的复合盐溶液;将氢氧化钾固体溶于去离子水中配制成摩尔浓度为2.5mol/L的碱性溶液;于25℃将碱性溶液用蠕动泵逐滴滴加到混合盐溶液中,不断搅拌直至反应悬浮液的pH达到8.5,反应完成后将获得的悬浮液于80℃反应12h,冷却至室温后,经过滤,洗涤,干燥,得到粉末;将所得粉末转移到摩尔浓度为1.0mol/L的氯化钠溶液中,在惰性气体氮气保护下,于120℃处理3h,经过滤,洗涤,干燥,得到层状氢氧化物。然后在氮气保护下,将5g层状氢氧化物加入到100mL溶解有15g过硫酸钾和3M氢氧化钾溶液中,搅拌70min,过滤,洗涤,于60℃条件真空干燥8h,得到层状羟基氧化物。将电解二氧化锰固体粉末研磨过筛得到二氧化锰前驱体备用,将二氧化锰前驱体、氮化钛、制备的层状羟基氧化物按质量比为5:1:4超声分散到水溶液中,于50℃搅拌2h,冷冻干燥后,即可获得MnO2/层状羟基氧化物/石墨烯复合正极材料。
实施例19
掺杂1wt%Sr(OH)2和2wt%Sb掺杂SnO正极板的制作:
将上述实例15中制备的复合正极材料0.385g、氢氧化锶0.005g、锑掺杂氧化锡0.01g和超导炭黑0.1g,在玛瑙研钵中研磨20min,混合均匀。然后加入质量浓度为2.5%的CMC溶液0.05g和质量浓度为60%的PTFE水溶液0.05g混合均匀制成正极浆料,通过拉浆模具涂布至泡沫镍上,经过60℃真空干燥12h后在压力为12MPa下压至10s制得正极板。
实施例13-19电池装配:将制备的正极板与常规锌负极板之间夹隔着锌锰电池专用隔膜,装入特制模拟电池壳中,注入电解液(饱和氧化锌并含0.2wt%六氟锑酸钠的6mol/L 的KOH溶液),组装成半密封的锌锰二次电池。
对比例2
采用商业二氧化锰作活性物质。
采用商业二氧化锰作活性物质。正极板的制作:将二氧化锰0.39g、氧化铋0.01g、超导炭黑0.1g,在玛瑙研钵中研磨20min,混合均匀。然后加入质量浓度为2.5%的CMC溶液0.05g和质量浓度为60%的PTFE水溶液0.05g混合均匀制成正极浆料,通过拉浆模具涂布至泡沫镍上,经过60℃真空干燥12h后在压力为12MPa下压至10s制得正极板。将制备的正极板与常规锌负极板之间夹隔着锌锰电池专用隔膜,装入特制模拟电池壳中,注入电解液(饱和氧化锌的6mol/L的KOH溶液),组装成半密封的锌锰二次电池。
电池性能测试:将采用具体实施例13-21和对比例2制作的电池经0.2C活化后进行容量性能和循环稳定性测试。0.2C充电后,之后电池搁置10min,0.2C放至1.0V,循环150次测定正极材料的容量性能。电池电性能测试结果列在表2。
表2电池充放电性能测试
从以上测试结果表2和图7可以看出,本发明制备的复合正极材料具有较好的循环稳定性能和较高的放电电压平台。循环稳定性能的改进主要归因于层状氢氧化物对MnO2正极材料结构晶格的修饰作用,特别是大量有益金属元素的存在和纳米层状的结构形态,极大减少正极在反应的过程中的形变,抑制了惰性不可逆物质的产生,从而改善了正极在充放电过程中的可逆充放性能。掺杂不同优异添加剂和对MnO2电极的性质进行改进,可使正极的循环稳定性能得到改善。同时,选用有效的电解液添加剂六氟锑酸钠可以改善电池整体的电性能,有利于电池放电平台和容量的提升。
以上实施例描述了本发明的基本原理、主要特征及优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (10)

  1. 一种低成本碱性二次电池正极材料,其特征在于:所述正极材料由二氧化锰和层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]组成复合正极材料,或由二氧化锰和部分氧化的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]组成复合正极材料,或由二氧化锰和层状羟基氧化物[NixMyAZOOH]组成复合正极材料,或由二氧化锰、导电材料和层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或部分氧化的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或层状羟基氧化物[NixMyAZOOH]组成复合正极材料,该复合正极材料具有三维结构、多级孔结构或包覆结构中的一种结构或多种的混合结构,其中M为Bi或Ti,A为Ce、Al、Zn、Ca、Mg、Co、Y、Ga、Sb、Yb或Cu中的一种或两种,Ba-为OH-、Cl-、F-、PO4 3-、SO4 2-、CO3 2-、NO3 -、BO2 -、MoO4 2-或WO4 2-中的一种或多种,0.9≥x≥0.5,0.3≥y≥0.1,0.2≥z≥0.01,x+y+z=1,b>0,m>0。
  2. 根据权利要求1所述的低成本碱性二次电池正极材料,其特征在于:所述复合正极材料中层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或部分氧化的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或层状羟基氧化物[NixMyAZOOH]所占的质量百分含量为5%-75%。
  3. 根据权利要求1所述的低成本碱性二次电池正极材料,其特征在于:所述导电材料为石墨烯、碳纳米管、乙炔黑、鳞片石墨、羟基氧化钴、碳化氮、碳化钛、碳化铌或氮化钛中的一种或两种,该导电材料在复合正极材料中的质量百分含量为0.5%-20%;所述二氧化锰为α-MnO2、β-MnO2、γ-MnO2、δ-MnO2或ε-MnO2中的一种或多种。
  4. 一种权利要求1所述的低成本碱性二次电池正极材料的制备方法,其特征在于所述二氧化锰和层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]组成复合正极材料的具体制备过程为:
    步骤S1,将二氧化锰前驱体球磨处理,过筛得到二氧化锰前驱体备用;
    步骤S2,将可溶性镍盐、可溶性铋盐或可溶性钛盐、A金属盐溶于去离子水中配制成复合盐溶液,将碱性氢氧化物溶于去离子水中配制成碱性溶液,于15-50℃将碱性溶液加入到复合盐溶液中,持续搅拌直至反应完成后悬浮液的pH达到7-11,将获得的悬浮液于50-95℃反应5-48h,冷却至室温后,经过滤,洗涤,干燥,得到粉末,将所得粉末转移到由碱性氢氧化物、磷酸盐、钨酸盐、钼酸盐、氯化盐、氟化盐、碳酸盐、偏硼酸盐、或硼酸盐中的一种或多种配制的溶液中,在惰性气氛或空气条件下,于25-200℃处理1-24h,经过滤,洗涤,干燥得到层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O];
    步骤S3,将步骤S1得到的二氧化锰前驱体和步骤S2得到的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]混合后进行高能球磨处理得到复合正极材料。
  5. 一种权利要求1所述的低成本碱性二次电池正极材料的制备方法,其特征在于所述二氧化锰和部分氧化的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]组成复合正极材料及二氧化锰和层状羟基氧化物[NixMyAZOOH]组成复合正极材料的具体制备过程为:
    步骤S1,将二氧化锰前驱体球磨处理,过筛得到二氧化锰前驱体备用;
    步骤S2,将可溶性镍盐、可溶性铋盐或可溶性钛盐、A金属盐溶于去离子水中配制成复合盐溶液,将碱性氢氧化物溶于去离子水中配制成碱性溶液,于15-50℃将碱性溶液加入到复合盐溶液中,持续搅拌直至反应完成后悬浮液的pH达到7-11,将获得的悬浮液于50-95℃反应5-48h,冷却至室温后,经过滤,洗涤,干燥,得到粉末,将所得粉末转移到由碱性氢氧化物、磷酸盐、钨酸盐、钼酸盐、氯化盐、氟化盐、碳酸盐、偏硼酸盐、或硼酸盐中的一种或多种 配制的溶液中,在惰性气氛或空气条件下,于25-200℃处理1-24h,经过滤,洗涤,干燥得到层状氢氧化物,通过化学氧化或电解氧化的方法对层状氢氧化物进行氧化处理,获得部分氧化的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或全部氧化的层状羟基氧化物[NixMyAZOOH];
    步骤S3,将步骤S1得到二氧化锰前驱体和步骤S2得到的部分氧化的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或全部氧化的层状羟基氧化物[NixMyAZOOH]混合后进行高能球磨处理得到复合正极材料。
  6. 一种权利要求1所述的低成本碱性二次电池正极材料的制备方法,其特征在于所述二氧化锰、导电材料和层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或部分氧化的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或层状羟基氧化物[NixMyAZOOH]组成复合正极材料的具体制备过程为:
    步骤S1,将二氧化锰前驱体球磨处理,过筛得到二氧化锰前驱体备用;
    步骤S2,将可溶性镍盐、可溶性铋盐或可溶性钛盐、A金属盐溶于去离子水中配制成复合盐溶液,将碱性氢氧化物溶于去离子水中配制成碱性溶液,于15-50℃将碱性溶液加入到复合盐溶液中,持续搅拌直至反应完成后悬浮液的pH达到7-11,将获得的悬浮液于50-95℃反应5-48h,冷却至室温后,经过滤,洗涤,干燥,得到粉末,将所得粉末转移到由碱性氢氧化物、磷酸盐、钨酸盐、钼酸盐、氯化盐、氟化盐、碳酸盐、偏硼酸盐、或硼酸盐中的一种或多种配制的溶液中,在惰性气氛或空气条件下,于25-200℃处理1-24h,经过滤,洗涤,干燥得到层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O],通过化学氧化或电解氧化的方法对层状氢氧化物进行氧化处理,获得部分氧化的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或全部氧化的层状羟基氧化物[NixMyAZOOH];
    步骤S3,将步骤S1得到二氧化锰前驱体、导电材料和步骤S2得到的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或部分氧化的层状氢氧化物[NixMyAZ(OH)2]·[(Ba-)b·mH2O]或全部氧化的层状羟基氧化物[NixMyAZOOH]均匀分散到水或有机溶剂中,于15-90℃在常压容器中进行反应,再对产物进行干燥得到复合正极材料。
  7. 根据权利要求4~6中任意一项所述的低成本碱性二次电池正极材料的制备方法,其特征在于:所述可溶性镍盐为硝酸镍、硫酸镍、醋酸镍或氯化镍中的一种或多种;所述可溶性铋盐为硝酸铋;所述可溶性钛盐为硫酸钛;所述A金属盐为硝酸铈、氯化铈、硝酸铝、氯化铝、硫酸铝、硝酸锌、硫酸锌、氯化锌、醋酸钙、氯化钙、醋酸镁、氯化镁、硝酸钴、氯化钴、硫酸钴、硝酸钇、硫酸钇、氯化钇、硝酸镓、硫酸锑、氯化锑、硝酸镱、氯化镱、氯化铜、硫酸铜或硝酸铜中的一种或多种;所述磷酸盐为磷酸钾、磷酸氢钠或磷酸钠中的一种或多种;所述钨酸盐为钨酸钾、钨酸钠或钨酸锂中的一种或多种;所述钼酸盐为钼酸钾或钼酸钠中的一种或多种;所述氯化盐为氯化钾或氯化钠中的一种或多种;所述氟化盐为氟化钾或氟化钠中的一种或多种;所述碳酸盐为碳酸钾或碳酸钠中的一种或多种;所述偏硼酸盐为偏硼酸钾、偏硼酸钠或偏硼酸锂中的一种或多种;所述硼酸盐为偏硼酸钾、偏硼酸钠或偏硼酸锂中的一种或多种;所述碱性氢氧化物为氢氧化钠、氢氧化钾或氢氧化锂中的一种或多种。
  8. 一种碱性二次电池正极板,其特征在于:所述碱性二次电池正极板由权利要求1~3中任意一项所述的低成本碱性二次电池正极材料制得。
  9. 根据权利要求8所述的碱性二次电池正极板,其特征在于:所述低成本碱性二次电池 正极材料中添加有质量分数为0.5%~10%的添加剂,该添加剂为氧化铬、氢氧化铬、氧化锶、氢氧化锶、氧化镱或锑掺杂氧化锡中的一种或两种。
  10. 一种碱性二次电池,包括电池壳体、密封在电池壳体中的极板组和电解液,所述极板组包括正极板、负极板和隔膜,其特征在于:所述正极板采用权利要求8所述的碱性二次电池正极板,其电解液采用的是氢氧化钾碱性溶液,且添加有质量分数0.1%~2%的六氟锑酸钠。
PCT/CN2023/113763 2022-08-31 2023-08-18 一种低成本碱性二次电池正极材料及其制备方法和应用 WO2024046146A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211049383.2 2022-08-31
CN202211049383.2A CN115312732A (zh) 2022-08-31 2022-08-31 一种低成本碱性二次电池正极材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024046146A1 true WO2024046146A1 (zh) 2024-03-07

Family

ID=83865257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113763 WO2024046146A1 (zh) 2022-08-31 2023-08-18 一种低成本碱性二次电池正极材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115312732A (zh)
WO (1) WO2024046146A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115312732A (zh) * 2022-08-31 2022-11-08 河南超力新能源有限公司 一种低成本碱性二次电池正极材料及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156934A (en) * 1991-02-11 1992-10-20 Rbc Universal Ltd. Method of making a rechargable modified manganese dioxide material and related compound and electrode material
CN1627551A (zh) * 2003-12-12 2005-06-15 厦门大学 高能碱性一次电池正极材料及其正极的制备方法
CN1697213A (zh) * 2005-05-31 2005-11-16 四川长虹电器股份有限公司 碱性干电池正极材料和高功率碱性干电池及其制备方法
CN101156266A (zh) * 2005-09-27 2008-04-02 松下电器产业株式会社 碱性干电池
CN101677135A (zh) * 2008-09-18 2010-03-24 中国人民解放军63971部队 一种锌锰液流电池
CN104037406A (zh) * 2014-06-12 2014-09-10 河南师范大学 一种镍基二次电池正极活性材料及其制备方法
CN104701521A (zh) * 2013-12-05 2015-06-10 常州优特科新能源科技有限公司 碱性锌锰贮备式二次电池
JP2017004868A (ja) * 2015-06-12 2017-01-05 エクセルギー・パワー・システムズ株式会社 混合電極を用いたリバーシブル燃料電池
CN111498914A (zh) * 2020-04-24 2020-08-07 四川万邦胜辉新能源科技有限公司 一种镍锰基正极材料前驱体及其正极材料的合成方法
CN115312732A (zh) * 2022-08-31 2022-11-08 河南超力新能源有限公司 一种低成本碱性二次电池正极材料及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156934A (en) * 1991-02-11 1992-10-20 Rbc Universal Ltd. Method of making a rechargable modified manganese dioxide material and related compound and electrode material
CN1627551A (zh) * 2003-12-12 2005-06-15 厦门大学 高能碱性一次电池正极材料及其正极的制备方法
CN1697213A (zh) * 2005-05-31 2005-11-16 四川长虹电器股份有限公司 碱性干电池正极材料和高功率碱性干电池及其制备方法
CN101156266A (zh) * 2005-09-27 2008-04-02 松下电器产业株式会社 碱性干电池
CN101677135A (zh) * 2008-09-18 2010-03-24 中国人民解放军63971部队 一种锌锰液流电池
CN104701521A (zh) * 2013-12-05 2015-06-10 常州优特科新能源科技有限公司 碱性锌锰贮备式二次电池
CN104037406A (zh) * 2014-06-12 2014-09-10 河南师范大学 一种镍基二次电池正极活性材料及其制备方法
JP2017004868A (ja) * 2015-06-12 2017-01-05 エクセルギー・パワー・システムズ株式会社 混合電極を用いたリバーシブル燃料電池
CN111498914A (zh) * 2020-04-24 2020-08-07 四川万邦胜辉新能源科技有限公司 一种镍锰基正极材料前驱体及其正极材料的合成方法
CN115312732A (zh) * 2022-08-31 2022-11-08 河南超力新能源有限公司 一种低成本碱性二次电池正极材料及其制备方法和应用

Also Published As

Publication number Publication date
CN115312732A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
CN107910532B (zh) 一种石墨烯包覆镍钴锰酸锂复合材料的制备方法
CN113644262B (zh) 一种层状大粒径高镍单晶三元正极材料及其制备方法
CN113839038A (zh) MOF衍生的Bi@C纳米复合电极材料及其制备方法
WO2021143375A1 (zh) 无钴层状正极材料及其制备方法和锂离子电池
CN114005978B (zh) 一种无钴正极材料及其制备方法和应用
CN106848315A (zh) 锌镍电池负极材料及其制备方法和使用该负极材料的电池
WO2024046146A1 (zh) 一种低成本碱性二次电池正极材料及其制备方法和应用
CN114361435A (zh) 钠离子电池的纳米级前驱体、复合正极材料及制备方法
EP4234498A1 (en) Doped high-nickel ternary material and preparation method therefor
CN108821345B (zh) Fe2(MoO4)3中空微米球及其可控制备方法和应用
CN111584840A (zh) 碳布负载的碳包覆二硫化镍纳米片复合材料及其制备方法和应用
CN115385380B (zh) 钠离子电池正极材料的制备方法
CN115939370A (zh) 钠离子正极材料及其制备方法、二次电池
JPH1160243A (ja) 水酸化ニッケル、ニッケル酸リチウム及びこれらの製造方法、並びに該ニッケル酸リチウムを用いたリチウムイオン二次電池
CN113644244A (zh) 锂原电池用铬氧化物/氟化碳/高导电性物质复合材料
CN112366297A (zh) 一种层状耐高压正极材料及其合成方法和应用
WO2023130829A1 (zh) 一种锂离子电池正极材料及其制备方法和锂离子电池
CN115043430B (zh) 一种镨元素掺杂的多孔球形铌酸钛材料的制备方法及应用
CN115504525A (zh) P2型层状过渡金属氧化物及其制备方法和应用
CN111446454B (zh) 一种电子化合物作为锂空气电池正极催化剂材料的应用
CN114843459A (zh) 一种五硫化二锑基材料及其制备方法和应用
KR101082116B1 (ko) 비수계 이차전지용 몰리브덴이산화물 및 그의 제조 방법
CN113044893A (zh) 一种对高镍三元材料进行碳包覆改性的方法
CN108682842B (zh) 一种Y掺杂CaMnO3包覆的三元正极材料及其制备方法
CN117673290A (zh) 一种基于硫化层状氢氧化物的碱性二次电池正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859180

Country of ref document: EP

Kind code of ref document: A1