WO2024046133A1 - 电磁线圈、雾化结构、雾化器及电子雾化装置 - Google Patents

电磁线圈、雾化结构、雾化器及电子雾化装置 Download PDF

Info

Publication number
WO2024046133A1
WO2024046133A1 PCT/CN2023/113458 CN2023113458W WO2024046133A1 WO 2024046133 A1 WO2024046133 A1 WO 2024046133A1 CN 2023113458 W CN2023113458 W CN 2023113458W WO 2024046133 A1 WO2024046133 A1 WO 2024046133A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
atomization
heating element
coil part
liquid
Prior art date
Application number
PCT/CN2023/113458
Other languages
English (en)
French (fr)
Inventor
谢发明
蓝锦
赵沛彪
周瑞龙
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Publication of WO2024046133A1 publication Critical patent/WO2024046133A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/44Coil arrangements having more than one coil or coil segment

Definitions

  • the present application relates to the field of atomization technology, and in particular to an electromagnetic coil, an atomization structure, an atomizer and an electronic atomization device.
  • Electronic atomization devices usually include an atomization medium carrier, an atomization structure and a power supply component.
  • the atomization medium carrier is used to store the aerosol-generating substrate, and the atomization structure is used to heat and atomize the aerosol-generating substrate to form an aerosol-generating substrate.
  • the aerosol is consumed by the smoker, and the power component is used to provide power to the atomizing structure.
  • Electromagnetic heating atomization structures usually include electromagnetic coils used to generate electromagnetic fields.
  • Traditional electromagnetic coils are mostly spiral tubular coils.
  • traditional spiral tubular coils have unbalanced magnetic field intensity in their axial direction, which makes the atomization structure The atomization efficiency is inconsistent, resulting in poor user experience.
  • an electromagnetic coil, an atomization structure, an atomizer and an electronic atomization device are provided.
  • An electromagnetic coil including:
  • the first coil layer is arranged around the set axis
  • the second coil layer includes a first coil part and a second coil part, and the first coil part and the second coil part are wound outside the first coil layer;
  • first coil part and the second coil part are spaced apart from each other at both ends of the first coil layer in the set axial direction.
  • the winding density of at least one of the first coil part and the second coil part increases from an end opposite to each other to an end opposite to each other.
  • the winding density of the first coil part and/or the second coil part is evenly arranged in the set axial direction.
  • the winding density of the first coil layer is evenly arranged in the set axial direction, or,
  • the winding density in the middle part of the first coil layer is lower than the winding density at both ends of the first coil layer.
  • the second coil layer further includes a connecting wire electrically connecting the first coil part and the second coil part.
  • the first coil layer and the second coil layer are formed by winding the same wire around the set axis.
  • An atomization structure including:
  • a heating element located in the housing
  • the electromagnetic coil as described in any of the above embodiments is set outside the housing, and the heating element is configured to generate heat under the action of the alternating magnetic field generated by the electromagnetic coil.
  • the projected length of the heating element is equal to the axial length of the electromagnetic coil.
  • the atomization structure further includes:
  • a mist guide shell is housed in the outer casing and has an air flow channel and a receiving cavity formed inside;
  • a liquid guide member is provided in the accommodation cavity, the liquid guide member has an atomization surface and a liquid suction surface arranged oppositely, and the atomization surface is arranged facing the air flow channel;
  • the heating element is contained in the mist guide shell and is arranged on the atomization surface.
  • the heating element is a sheet-shaped heating element, and the sheet-shaped heating element is disposed on the atomization surface.
  • the sheet-shaped heating element is configured with a fog hole, and the fog-passing hole penetrates both sides of the sheet-shaped heating element in the thickness direction.
  • an overflow channel is formed at a distance between the outer shell and the mist guide shell, and the overflow channel is used to connect the liquid suction surface and the liquid storage chamber.
  • An atomizer including:
  • an atomization medium carrier having a liquid storage chamber for storing an aerosol-generating matrix
  • the above-mentioned atomization structure is coupled with the atomization medium carrier and is used to atomize the aerosol-generating matrix in the atomization liquid storage chamber.
  • An electronic atomization device including:
  • the power component is used to provide electrical energy to the atomizer.
  • Figure 1 is an outline view of an electronic atomization device in an embodiment of the present application
  • Figure 2 is a half-section view at A-A of the electronic atomization device shown in Figure 1;
  • Figure 3 is a partial structural diagram of the electronic atomization device shown in Figure 2;
  • Figure 4 is a schematic structural diagram of an electromagnetic coil in some embodiments of the present application.
  • Figure 5 is a half-section schematic diagram of the electromagnetic coil shown in Figure 4.
  • Figure 6 is an exploded schematic diagram of an atomizer in some embodiments of the present application.
  • Figure 7 is a first combined view of the atomization structure described in Figure 6;
  • Figure 8 is a second partial assembly view of the atomization structure described in Figure 6;
  • Figure 9 is a half-section view of the atomization structure shown in Figure 8.
  • Figure 10 is a partial schematic diagram of the atomization structure in some embodiments of the present application.
  • Figure 11 is another perspective view of the structure shown in Figure 10;
  • Figure 12 is a cross-sectional view at B-B in the structure shown in Figure 11;
  • Figure 13 is a first perspective view of the structure shown in Figure 10 in an exploded state
  • Figure 14 is a second perspective view of the structure shown in Figure 10 in an exploded state
  • FIG. 15 is a top view of the structure shown in FIG. 7 .
  • 1000 electronic atomization device; 100, atomizer; 10, atomization structure; 11, mist guide shell; 11a, shell body; a1, air flow channel; a2, installation channel; a3, transition channel; 11b, sealing sleeve; b.
  • Accommodation cavity b1, first part; b2, second part; b3, third part; 11c, snap-in part; 12, liquid guide; 12a, atomization surface; c, receiving tank; 12b, liquid suction Surface; 12c, protruding column; 12d, base part; 12e, protruding part; 13, heating element; 13a, fog hole; 14, shell; 14a, liquid inlet channel; 14b, flow channel; 14c, air inlet hole; 14d, engaging part; 14e, head; 14f, cylinder part; 15, electromagnetic coil; 15A, first coil layer; 15B, second coil layer; B1, first coil part; B2, second coil part; B3 , connecting wire; 16. First seal; 17. Second seal; 18. Shielding film; 20. Atomized medium carrier; 21. Liquid storage chamber; 22. Suction channel; 200. Power supply component; 201. Power supply Shell; 202, microphone; 203, battery; 204, ventilation hole; X, thickness direction; Y, first direction; Z; set axial direction.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to two or more (including two).
  • multiple groups refers to two or more groups (including two groups).
  • multiple pieces refers to two or more pieces (including two pieces).
  • the inventor of the present application found that the magnetic field intensity at both ends of the spiral tubular coil in the atomizer is nearly half lower than the magnetic field intensity in the middle, and the power induced by the heating element is proportional to the magnetic field intensity of the spiral tubular coil. This means As a result, the power at both ends of the heating element is smaller than that in the middle, and ultimately the temperature at both ends of the heating element is lower than the temperature in the middle.
  • the atomization efficiency of the heating element is inconsistent, and the user experience is not good.
  • an electromagnetic coil, an atomization structure, an atomizer and an electronic atomization device that improve the above defects are provided.
  • FIG 1, Figure 2 and Figure 3 is a schematic structural diagram of an electronic atomization device 1000 provided by some embodiments of the present application.
  • the electronic atomizer 1000 includes an atomizer 100 and a power supply assembly 200.
  • the power supply assembly 200 is used to provide electric energy to the atomizer 100.
  • the atomizer 100 can generate heat and atomize the gas stored in the atomizer 100 when it is powered on. Sol generates matrix.
  • the power supply assembly 200 may include a power supply case 201 and a battery 203 contained in the power supply case 201.
  • the power supply assembly 200 supplies power to the atomizer 100 via its own battery 203.
  • the atomizer 100 is mated with the power supply case 201 to achieve assembly connection with the power supply assembly 200 .
  • the power supply assembly 200 may also include a microphone 202.
  • the microphone 202 is a conventional component in the art and is used to sense air pressure changes to determine whether the gas side needs to use aerosol, that is, whether the user needs to use electronics.
  • the atomizing device 1000 controls the power on and off between the power supply assembly 200 and the atomizer 100. Its specific structure and principle will not be described again here.
  • the power supply assembly 200 is a commonly used component in this field, and its arrangement has various forms, which are not limited here.
  • the atomizer 100 is a device that can atomize an aerosol-generating substrate to form an aerosol when it is powered on.
  • the aerosol-generating substrate is a substance that can be atomized to generate an aerosol.
  • the aerosol-generating substrate includes, but is not limited to, aerosol-generating substrates such as e-liquid and medicinal liquid.
  • the atomizer 100 includes an atomization medium carrier 20 and an atomization structure 10.
  • the atomization medium carrier 20 is matched with the atomization structure 10 (such as snapping, fastening connection, etc.).
  • the atomized medium carrier 20 may include an independently arranged liquid storage chamber 21 and a suction channel 22.
  • the liquid storage chamber 21 is used to store the aerosol-generating substrate, and the suction channel 22 is used to connect the atomization structure 10 and the outside as an atomization structure. 10
  • the generated aerosol flows to the external channel.
  • the liquid storage chamber 21 can be arranged around the suction channel 22, or can be arranged side by side with the suction channel 22, and the specific form is not limited.
  • the atomization structure 10 is connected with both the liquid storage chamber 21 and the suction channel 22, and is used to obtain the aerosol-generating matrix from the liquid storage chamber 21, and can atomize the aerosol-generating matrix and generate aerosol when power is supplied. It is output to the gas side through the suction channel 22.
  • the atomized medium carrier 20 can be used as a suction nozzle for the user.
  • the suction force is exerted on the user side through the suction chamber, the aerosol-generating matrix in the liquid storage chamber 21 can enter the atomization structure 10 and be atomized.
  • the atomization structure 10 is a structure that heats the atomized aerosol-generating substrate. It includes a heating element 13 for heating the atomized aerosol-generating substrate.
  • the heating element 13 can be heated based on the principle of resistive heating. In this case, the heating element 13 can be Heating wire, heating net. Heating element 13 Heating can also be achieved based on the electromagnetic heating principle.
  • the atomization structure 10 can also include an electromagnetic coil 15.
  • the electromagnetic coil 15 can generate an alternating magnetic field when energized, and the heating element 13 produces an induced current under the action of the alternating magnetic field. The atomized aerosol is thereby heated to generate a matrix.
  • the electromagnetic coil 15 involved in the atomization structure 10 in the embodiment of the present application is introduced below.
  • some embodiments of the present application provide an electromagnetic coil 15, including a first coil layer 15A and a second coil layer 15B.
  • the first coil layer 15A is arranged around the set axis Z
  • the second coil layer 15B includes a first coil part B1 and a second coil part B2.
  • the first coil part B1 and the second coil part B2 are both wound outside the first coil layer 15A.
  • the first coil part B1 and the second coil part B2 are spaced apart from each other at both ends of the first coil layer 15A in the set axis Z.
  • the first coil layer 15A, the first coil part B1 and the second coil part B2 are all spiral coil structures.
  • the first coil layer 15A is divided into three sections in the set axial direction Z, namely the first section, the second section and the third section.
  • the first coil part B1 is wound around the first section and the third section.
  • the second coil part B2 is wound on the third section.
  • the electromagnetic coil 15 is divided into a first end, a middle and a second end in the set axial direction Z.
  • the first end includes the first coil part B1 and the first section of the first coil layer 15A
  • the second The end portion includes the second coil portion B2 and the third section of the first coil layer 15A
  • the middle portion includes the second section of the first coil layer 15A.
  • Winding density refers to the number of turns of the coil per unit length.
  • the number of coil turns in the first end is determined by the number of coil turns in the first coil part B1 and the number of coil turns in the first section of the first coil layer 15A
  • the number of coil turns in the second end is The number of coil turns is determined by the number of coil turns of the second coil part B2 and the number of coil turns of the third section of the first coil layer 15A.
  • the number of coil turns in the middle part is determined only by the number of coil turns of the second section of the first coil layer 15A. .
  • the first coil part B1 and the second coil part B2 are respectively wound at both ends of the first coil layer 15A, so that the winding density at the two ends of the electromagnetic coil 15 is higher than that in the middle. Linear density. The greater the winding density, the greater the number of coil turns per unit length, and the stronger the magnetic field intensity generated by the electromagnetic coil 15 per unit length.
  • the inventor of the present application conducted in-depth research and found that due to the spiral structural characteristics of the first coil layer 15A, the magnetic field intensity of the second section is higher than the magnetic field intensity of the first and third sections.
  • the first coil part B1 and the second coil part B2 are respectively wound on the segment, and the first coil part B1 and the second coil part B2 are used to increase the winding density of the electromagnetic coil 15 in the first end region and the second end region.
  • the electromagnetic coil 15 can be made to move in the set axial direction.
  • the magnetic field intensity everywhere on Z is relatively balanced, which helps to make the heating power generated everywhere on the heating element 13 more consistent, and helps ensure the consistency of the atomization efficiency of the atomization structure 10 and improve the user's sense of use.
  • the winding density of at least one of the first coil part B1 and the second coil part B2 increases from an end opposite to each other to an end opposite to each other.
  • the first coil part B1 and/or the The winding density of the second coil part B2 is also configured to increase from the side corresponding to the middle part of the electromagnetic coil 15 to the side corresponding to the end part, which can compensate for the changing pattern of the magnetic field intensity of the first coil layer 15A decreasing from the middle part to both ends.
  • the magnetic field intensity everywhere in the first coil layer 15A can be better balanced, so that the magnetic field intensity everywhere in the electromagnetic coil 15 is more uniform and consistent.
  • the winding density of the first coil part B1 and/or the second coil part B2 is evenly arranged in the set axial direction Z.
  • the winding density is equal, that is, the number of coil turns per unit length is equal.
  • the winding density of the first coil part B1 and/or the second coil part B2 is equally arranged in the set axial direction Z, it increases the number of coils of the electromagnetic coil 15 within the unit length of the first end and the second end.
  • the number of turns, thereby increasing the magnetic field strength at both ends of the electromagnetic coil 15, helps to reduce the difference between the magnetic field strength in the middle of the electromagnetic coil 15 and the magnetic field strength at the ends, and improves the consistency of the heating power of the heating element 13. This further improves the consistency of the atomization efficiency of the atomization structure 10 .
  • the winding densities of the first coil part B1 and the second coil part B2 are configured such that their winding densities increase from one end opposite to each other to an end opposite to each other.
  • the winding densities of the first coil part B1 and the second coil part B2 are equally arranged in the set axial direction Z.
  • the winding density of the first coil part B1 increases gradually from one end facing the second coil part B2 to an end away from the second coil part B2.
  • the winding density of the second coil part B2 is set to The fixed axis is evenly arranged in Z direction.
  • the specific configuration is not limited to any one, as long as it helps to achieve the magnetic field intensity at both ends of the electromagnetic coil 15 and It is sufficient that the magnetic field intensity in the middle part of the electromagnetic coil 15 has good uniformity.
  • the winding density of the first coil part B1 and/or the second coil part B2 can be gradually increased along the set axis Z when the first coil part B1 and the second coil part B2 are wound. , the distance between adjacent coils gradually decreases.
  • the winding density of the first coil part B1 and/or the second coil part B2 can be equally arranged along the set axis Z when winding the first coil part B1 and the second coil part B2.
  • the spacing between adjacent coils can be designed to be equally spaced.
  • the winding density of the first coil layer 15A is evenly configured.
  • the magnetic field intensity of the first coil layer 15A decreases from the middle to both ends along the set axis Z.
  • the first coil part B1 and the second coil part B2 respectively in the two end areas of the first coil layer 15A it helps to compensate for the difference in magnetic field intensity between the middle and both ends of the first coil layer 15A, so that the electromagnetic coil 15
  • the overall magnetic field strength is relatively uniform in the set axis Z.
  • the first coil layer 15A When the winding density of the first coil layer 15A is evenly arranged in the set axial direction Z, the first coil layer 15A can be wound according to an ordinary spiral tubular coil. The winding process is mature and can reduce the manufacturing process of the first coil layer 15A. Difficulty.
  • the winding density in the middle of the first coil layer 15A is lower than the winding density at both ends of the first coil layer 15A.
  • the middle part of the first coil layer 15A may correspond to its second section, and both ends of the first coil layer 15A may correspond to its first and second sections.
  • the difference in magnetic field intensity between the middle part of the first coil layer 15A and its two ends can be reduced.
  • the first coil part B1 and the first coil part B1 can be shortened.
  • the winding length of the second coil part B2 reduces the cost of the electromagnetic coil 15 .
  • the arrangement of the winding densities of the first coil layer 15A, the first coil part B1 and the second coil part B2 is not limited, and the winding densities of the three can be set on the axis respectively.
  • the arrangement of the electromagnetic coil 15 can be equally or unequally arranged upward Z, as long as the overall performance of the electromagnetic coil 15 is that the winding density in the middle of the electromagnetic coil 15 is lower than the winding density at both ends of the electromagnetic coil 15, so that the electromagnetic intensity of the electromagnetic coil 15 can be relatively high. Just make it even.
  • the second coil layer 15B further includes a connecting wire B3 that electrically connects the first coil part B1 and the second coil part B2.
  • the connecting wire B3 may be a wire made of a different material from the first coil part B1 and the second coil part B2, or it may be a wire made of the same material as the first coil part B1 and the second coil part B2. In this case, the first coil part B1 and the second coil part B2 are made of the same material.
  • the second coil part B2 may be wound by the same wire.
  • the first coil part B1 and the second coil part B2 are electrically connected by the connecting wire B3, and the two can be connected in series to an external power supply, which helps to simplify the power supply route.
  • the lengths of the first coil part B1 and the second coil part B2 in the set axial direction Z may be equal or different.
  • the length of the first coil part B1 on the first section may be longer than the second coil part on the second section.
  • the length of B2 When the winding density of the first coil layer 15A is uniformly arranged, the lengths of the first coil part B1 and the second coil part B2 may be equal.
  • the first coil layer 15A and the second coil layer 15B are formed by winding the same wire around the set axis Z.
  • the two ends of the first coil layer 15A in the set axial direction Z are respectively the A end and the B end.
  • the two ends of the first coil part B1 in the set axial direction Z are the C end and D end.
  • the two ends of the second coil part B2 in the set axial direction Z are respectively the E end and the F end.
  • the electromagnetic coil 15 is wound by a wire in a winding manner: winding from end A to end B, then pulling the wire to end C, winding from end C to end D, and then pulling the wire from end D to end E, And wind it from end E to end F.
  • the power supply control of the electromagnetic coil 15 is simpler.
  • the atomization structure 10 in the embodiment of the present application is introduced below.
  • the atomization structure 10 provided in some embodiments of the present application includes a shell 14, a heating body 13 and the electromagnetic coil 15 in the above embodiment.
  • the heating body 13 is arranged in the shell 14, and the electromagnetic coil 15 is set Located outside the housing 14 , the heating element 13 is configured to generate heat under the action of an alternating magnetic field generated by the electromagnetic coil 15 .
  • the shell 14 can be, but is not limited to, plastic parts, ceramic parts, etc.
  • the heating element 13 is a magnetically conductive heating element.
  • the magnetically conductive heating element can be a pure iron heating element, a stainless steel heating element, a low carbon steel heating element, etc.
  • the specific material of the heating element 13 is not limited, as long as it can generate heat under an alternating magnetic field. That’s it.
  • the principle by which the magnetically conductive heating element 13 generates heat under an alternating magnetic field is common knowledge in the art and will not be described again here. It can be understood that on the set axis Z, the projection of the heating element 13 intersects the projection of the electromagnetic coil 15, so that the heating element 13 generates an induced current under the action of the electromagnetic coil 15 to achieve the heating function.
  • the first coil part B1 and the second coil part B2 compensate for the magnetic field intensity difference caused by the magnetic field intensity of the second part b2 of the first coil layer 15A being higher than the magnetic field intensity of the first part b1 and the third part b3, It can be achieved that the magnetic field intensity of the electromagnetic coil 15 is relatively balanced everywhere in the set axis Z, which helps to make the heating power generated everywhere in the heating element 13 more consistent and helps to ensure the atomization efficiency of the atomization structure 10 Consistency improves user experience.
  • the projected length of the heating element 13 is equal to the axial length of the electromagnetic coil 15 .
  • the heating efficiency of the part of the heating element 13 beyond the range of the electromagnetic coil 15 is low, which in turn lowers the temperature rise.
  • the projected length of the heating element 13 is less than the axial length of the electromagnetic coil 15, the part of the electromagnetic coil 15 beyond the heating element 13 cannot act on the heating element 13 to generate heat, and the working efficiency of the electromagnetic coil 15 is low.
  • the projected length of the heating element 13 is equal to the axial length of the electromagnetic coil 15, the working efficiency of the electromagnetic coil 15 and the heating element 13 can reach a better level.
  • the atomization structure 10 further includes a shielding film 18 , and the shielding film 18 is sleeved on the outside of the electromagnetic coil 15 .
  • the shielding film 18 can shield the magnetic field, which can prevent the magnetic field from leaking and reduce the impact on external things.
  • the atomization structure 10 also includes a mist guide shell 11 and a liquid guide member 12.
  • An airflow channel a1 and a receiving cavity are formed in the mist guide shell 11. b.
  • the accommodating cavity b communicates with the air flow channel a1 and the outside of the mist guide shell 11 .
  • the liquid guide member 12 is disposed in the accommodation chamber b.
  • the liquid guide member 12 has an atomization surface 12a and a liquid suction surface 12b that are oppositely arranged.
  • the atomization surface 12a is arranged facing the air flow channel a1.
  • the heating element 13 is contained in the mist guide housing 11 and is arranged on the atomization surface 12a.
  • the liquid guide member 12 refers to a member that can absorb the aerosol-generating matrix and allow the aerosol-generating matrix to diffuse within itself.
  • the liquid-conducting member 12 has micropores inside, and the aerosol-generating matrix can flow between the channels formed by the micropores under the action of capillary force to diffuse inside the liquid-conducting member 12 .
  • the liquid-conducting member 12 may be a high-temperature cotton, ceramic liquid-conducting member, or other components.
  • the liquid suction surface 12b of the liquid guide member 12 is located on the flow path of the aerosol-generating matrix from the liquid storage chamber 21 to the accommodation chamber b.
  • the aerosol-generating matrix passes through the liquid suction surface 12b, it all diffuses to the liquid guide via the liquid suction surface 12b.
  • the liquid guide 12 is configured to be sealingly connected to the accommodating cavity b, and the aerosol-generating matrix that attempts to enter the accommodating cavity b is all absorbed into the liquid guide 12 through the liquid suction surface 12 b without directly passing through the container.
  • the cavity b is placed into the air flow channel a1 to prevent the aerosol-generating matrix in the liquid storage cavity 21 from leaking into the air flow channel a1.
  • the heating element 13 can be snap-connected or tightly connected to the liquid guide 12 or the mist guide shell 11, and the specific form is not limited.
  • the heating element 13 may be located in the air flow channel a1 or in the accommodation cavity b, or may be partially located in the air flow channel a1 and partially in the accommodation cavity b, and is not specifically limited.
  • the liquid guide member 12 may be partially located in the accommodation cavity b and partially extend out of the accommodation cavity b. The part extending out of the accommodation cavity b can extend into the air flow channel a1 or outside the mist guide shell 11 . All the liquid guide members 12 can also be located in the accommodation cavity b. It can be understood that the atomization surface 12a is located in the mist guide shell 11, but it is not limited whether the liquid suction surface 12b is located in the mist guide shell 11. When the heating element 13 and/or the liquid guide 12 are located in the air flow channel a1, they only occupy part of the space of the air flow channel a1 without hindering the flow of gas.
  • the air flow channel a1 is used to communicate with the suction channel 22
  • the accommodation chamber b is used to communicate with the liquid storage chamber 21 .
  • the aerosol-generating matrix stored in the liquid storage chamber 21 can flow to the accommodating chamber b, and is absorbed by the liquid guide 12 when entering/about to enter the accommodating chamber b.
  • the heating element 13 When the gas user side needs to use atomized aerosol, the heating element 13 generates heat and atomizes the aerosol-generating matrix in the liquid guide 12 to form an aerosol.
  • the aerosol enters the suction channel 22 through the air flow channel a1 and is finally used. side used.
  • mist guide shell 11 provides a structure for the heating element 13 to atomize, and the liquid guide 12 absorbs the aerosol-generating substrate, thereby realizing the function of the atomizing structure 10 that can atomize the liquid aerosol-generating substrate.
  • the heating element 13 is a sheet-shaped heating element, and the sheet-shaped heating element is disposed on the atomization surface 12a.
  • the sheet-like heating element has a sheet-like structure, and the size of the sheet-like heating element in the thickness direction X is small and in the shape of a thin sheet.
  • the sheet-like heating element has two surfaces oppositely arranged along its thickness direction At least one of the two surfaces of the sheet-shaped heating element can be in the form of a flat surface, a wavy surface, or other structural forms, and is not limited to being a completely straight plane, and a certain degree of unevenness and undulations are allowed.
  • the sheet-shaped heating element may be a sheet-shaped structure formed by braiding heating wires, or may have an integral structure, and is not specifically limited.
  • the heat W absorbed by the heating element 13 is positively correlated with M* ⁇ T, where M is the mass of the heating element 13 and ⁇ T is the temperature rise per unit time. Under the same power and the same time, if you want to increase ⁇ T, you must either increase M or increase W, which means that the heating efficiency of the heating element 13 must be increased.
  • M ⁇ V ( ⁇ is density, V is volume)
  • the sheet heating element is either taller than the tubular heating element or thicker than the tubular heating element.
  • the atomization structure 10 uses a sheet heating element structure, which has higher heating efficiency than the traditional tubular heating element, helps to increase the heating rate of the atomization structure 10, and has the effect of rapid atomization and low delay. Can improve user experience.
  • the airflow channel a1 extends along the first direction Y that intersects the thickness direction
  • the first direction Y is perpendicular to the thickness direction X.
  • the first direction Y corresponds to the up and down direction
  • the thickness direction X corresponds to the left and right direction.
  • the aerosol-generating matrix enters the liquid guide 12 from the left and right directions, and then the aerosol formed by atomization flows from the up and down direction to the air user side through the air flow channel a1.
  • the layout of the atomization structure 10 is relatively compact.
  • the axial direction of the air flow channel a1 and the arrangement direction of the liquid guide 12 and the sheet-shaped heating element can also be adopted in other ways, which are not limited and repeated here.
  • the liquid-conducting member 12 is a ceramic liquid-conducting member.
  • the ceramic liquid-conducting member may be an alumina ceramic liquid-conducting member, a silicon oxide ceramic liquid-conducting member, an aluminum nitride ceramic liquid-conducting member, a silicon nitride ceramic liquid-conducting member, etc.
  • the porosity of the ceramic liquid-conducting member 12 is 80% or above, which can accelerate the diffusion of the aerosol-generating matrix.
  • Traditional electronic atomization devices 1000 mostly use high-temperature cotton as the liquid-conducting member 12.
  • High-temperature cotton used as the liquid-conducting member 12 is prone to problems of scorching and carbon deposition.
  • the liquid-conducting member 12 is a ceramic liquid-conducting member, and the high melting point of the liquid-conducting member 12 can avoid problems such as scorching and carbon deposition.
  • the atomization surface 12a is recessed away from the sheet heating element along the thickness direction X to form a receiving groove c, and the sheet heating element is disposed in the receiving groove c.
  • the sheet heating element is provided with a receiving groove c, in addition to one surface of the sheet heating element in the thickness direction , in this way, the contact area between the sheet heating element and the atomization surface 12a can be increased, and the heating efficiency of the sheet heating element can be improved.
  • the sheet heating element is configured with a mist passage hole 13 a , and the fog passage hole 13 a penetrates both sides of the sheet heating element in the thickness direction X.
  • the fog hole 13a connects the atomization surface 12a and the airflow channel a1.
  • the aerosol formed by atomization on the atomization surface 12a can quickly flow into the airflow channel a1 through the fog hole 13a, which can speed up the release of aerosol.
  • the atomization structure 10 Able to have higher atomization volume.
  • the number of fog holes 13a can be multiple, and the arrangement is flexible and is not specifically limited.
  • a protruding column 12c is protruding from the atomization surface 12a, and the protruding column 12c is provided correspondingly to the mist passage hole 13a.
  • the protruding pillar 12c and the mist passing hole 13a are arranged correspondingly, which means that the fog passing hole 13a exposes at least part of the protruding pillar 12c.
  • the protruding pillar 12c can be inserted into the fog hole 13a.
  • the path of the atomized aerosol exuded from the protruding pillar 12c to the air flow channel a1 is shorter, which helps to improve the atomization efficiency of the aerosol.
  • the protruding pillar 12c and the mist passage hole 13a can be used as a concave-convex matching structure to achieve rapid positioning and assembly of the sheet heating element and the liquid guide member 12.
  • a protruding post 12c is inserted into a fog hole 13a.
  • only part of the mist passage hole 13a is provided with a protruding pillar 12c.
  • all the mist passage holes 13a are inserted with protrusions 12c.
  • no protrusions 12c are inserted in all the fog passage holes 13a.
  • the protruding pillar 12c is inserted into the mist passing hole 13a, there is a gap between the protruding pillar 12c and the mist passing hole 13a, and this gap is more convenient for the circulation of atomized aerosol.
  • the number of fog holes 13a is multiple, and the distance between any two adjacent fog holes 13a is less than the thickness of the sheet heating element.
  • the thickness of the sheet heating element refers to the projected length of the sheet heating element in the thickness direction X.
  • the spacing distance between two adjacent fog holes 13a refers to the minimum distance between the hole walls of two adjacent fog holes 13a. When the fog holes 13a are circular holes, the distance between two adjacent fog holes 13a is the position between two adjacent quadrant points of the two fog holes 13a.
  • the fog holes 13a will hinder the transmission of current. If the interval between adjacent fog holes 13a is too small, the resistance will be large when the current passes through the heating element between the two fog holes 13a, and the current path will become larger, which is not conducive to Increase the heating rate.
  • all the mist passage holes 13a are arranged in one row along the length direction of the sheet-shaped heating element.
  • one of the sheet-like heating element and the liquid conductor 12 is configured with a positioning recess, and the other is configured with a positioning protrusion.
  • the positioning recess and the positioning protrusion are positioned and matched along the thickness direction X.
  • the positioning recess can be a positioning groove, a positioning hole, etc.
  • the positioning protrusion can be a positioning post, a positioning protrusion, etc., and the specific form is not limited.
  • the sheet heating element and the liquid conductor 12 can be quickly positioned and assembled, which can speed up the assembly efficiency of the atomization structure 10.
  • the positioning concave portion and the positioning convex portion can increase the contact area between the sheet heating element and the liquid conductor 12, thereby improving the atomization efficiency.
  • the mist guide shell 11 includes a shell body 11a and a sealing sleeve 11b.
  • An airflow channel a1 and an installation channel a2 are formed in the shell body 11a.
  • the installation channel a2 penetrates the shell body 11a and Communicated with the air flow channel a1, the sealing sleeve 11b is sealingly coupled to the installation channel a2, and an accommodation cavity b is constructed in the sealing sleeve 11b.
  • the sealing sleeve 11b can be made of plastic and can sealingly connect the liquid guide 12 and the shell body 11a.
  • the sealing sleeve 11b can be made of silicone, rubber, polylauric acid amide, tetrafluoroethylene, polyetheretherketone, polyethylene, polypropylene, polyvinyl fluoride and other materials.
  • the installation channel a2 may be provided through the thickness direction X of the sheet-shaped heating element.
  • the sealing sleeve 11b not only facilitates the installation of the liquid guide member 12, but also enables the sealing installation of the liquid guide member 12 and the mist guide shell 11 to avoid liquid leakage.
  • an overflow channel 14b is formed at a distance between the outer casing 14 and the mist guide shell 11 , and the overflow channel 14b connects the liquid suction surface 12b and the liquid inlet channel 14a.
  • the mist guide shell 11 is accommodated in the outer shell 14, and forms a flow passage 14b with the outer shell 14.
  • the aerosol generating matrix in the liquid storage chamber 21 reaches the liquid suction surface 12b through the flow passage 14b, and then diffuses into the liquid guide member 12. .
  • the housing 14 is arranged to guide the aerosol-generating matrix in the liquid storage chamber 21 to the liquid suction surface 12b.
  • the housing 14 has a liquid inlet channel 14a connected to the liquid storage chamber 21 .
  • the aerosol generating matrix in the liquid storage chamber 21 reaches the liquid suction surface 12b through the liquid inlet channel 14a and the overflow channel 14b.
  • the atomization structure 10 can be coupled with the atomization medium carrier 20 through the shell 14, and the coupling method can be snap connection, fastening connection, etc.
  • the atomization structure 10 further includes a first seal 16 , which is sealingly connected between the housing 14 and the atomization medium carrier 20 to prevent oil leakage from the liquid storage chamber 21 .
  • the atomization structure 10 further includes a second seal 17 , which is sealingly connected between the mist guide shell 11 and the outer shell 14 to prevent gas (mist) leakage from the atomization structure 10 .
  • fastening connections mentioned in the embodiments of this application include threaded connections, riveting, plug connections, etc.
  • the housing 14 is provided with an air inlet 14 c , and the air inlet 14 c connects the air flow channel a1 with the atmosphere.
  • the suction channel 22 When the gas user side needs air, the suction channel 22 generates adsorption force, and the outside atmosphere enters the air flow channel a1 through the air inlet hole 14c and takes away the atomized aerosol, so that the gas user side can easily obtain the aerosol.
  • a vent hole 204 is provided at the bottom of the power supply case 201 , and the vent hole 204 communicates with the air inlet hole 14 c and the atmosphere.
  • the air inlet hole 14c may also be configured to directly communicate with the atmosphere.
  • the accommodation cavity b includes a first part b1, a second part b2 and a third part b3 that are sequentially connected along the thickness direction X.
  • the liquid guide 12 It includes a base part 12d and a protruding part 12e connected along the thickness direction Tract 14b.
  • the atomizing surface 12a is formed on the protruding part 12e
  • the liquid absorbing surface 12b is formed on the base part 12d and faces the third part b3.
  • the third part b3 may be in the form of a hole or a groove, and is not specifically limited.
  • the sealing sleeve 11b can be made of soft material to facilitate the installation of the liquid guide member 12 in the accommodation cavity b.
  • a transition channel a3 is also formed in the mist guide shell 11.
  • the transition channel a3 connects the air flow channel a1 and the air inlet 14c.
  • the transition channel a3 faces one end of the air inlet 14c.
  • the flow area is smaller than the flow area of one end of the transition channel a3 facing the air flow channel a1.
  • the end of transition channel a3 facing the air inlet 14c is the distal end, and the end facing the airflow channel a1 is the proximal end.
  • the flow area of the proximal end is smaller than the flow area of the distal end.
  • the flow area of the transition channel a3 decreases from the end facing the air inlet 14c to the end facing the air flow channel a1.
  • the mist guide shell 11 also includes a snap-in part 11c
  • the shell 14 also includes a snap-in part 14d
  • the snap-in part 11c and the snap-in part 14d card connection.
  • the engaging portion 11c is an engaging convex portion
  • the engaging portion 14d is an engaging concave portion that matches the engaging convex portion.
  • the housing 14 includes a connected head 14e and a barrel 14f.
  • the barrel 14f is arranged on one side of the head 14e.
  • the mist guide shell 11 is at least partially contained in the barrel 14f.
  • a flow passage 14b is formed between the head portion 14f and the mist guide shell 11.
  • the periphery of the barrel portion 14f is used to set the electromagnetic coil 15. In the arrangement direction of the head portion 14e and the barrel portion 14f, the projection of the barrel portion 14f and the electromagnetic coil 15 is The sum of the shadows is located within the projection range of the head 14e.
  • the arrangement direction of the head portion 14e and the barrel portion 14f corresponds to the first direction Y.
  • the electromagnetic coil 15 mentioned below is sleeved on the periphery of the barrel portion 14f.
  • the sum of the projections of the barrel portion 14f and the electromagnetic coil 15 is located within the projection range of the head 14e. That is to say, in the thickness direction The size exceeds the size of the head 14e, thereby contributing to the size of the anti-fog structure 10.
  • liquid inlet channel 14a is provided in the head 14e.
  • the thickness of the sheet heating element is equal to 2 to 3 times the skin depth of the sheet heating element.
  • the formula for calculating skin depth is:
  • is the skin depth
  • is the resistivity
  • ⁇ 0 is the vacuum magnetic permeability
  • ⁇ r is the relative conductivity
  • f is the magnetic field frequency
  • ⁇ , ⁇ 0 and ⁇ r are used for the heating element 13 All materials have known values, and their calculation methods are common knowledge in the field and will not be described again here.
  • the thickness of the sheet-like heating element can be 2 times, 2.5 times, or 3 times its skin depth, etc.
  • the sheet heating element exceeds 2 to 3 times the skin depth, the sheet heating element is too thick and the temperature rises slowly.
  • the thickness of the sheet heating element is less than 2 to 3 times the skin depth, the sheet heating element is too thin, resulting in low heating efficiency and insufficient function during long-term heating.
  • this application also provides an atomizer 100, which includes an atomization medium carrier 20 and the above-mentioned atomization structure 10.
  • the atomization medium carrier 20 has a liquid storage chamber 21 for storing an aerosol-generating substrate.
  • the atomization structure 10 Coupled with the atomization medium carrier 20, it is used to atomize the aerosol-generating matrix in the atomization liquid storage chamber 21.
  • this application also provides an electronic atomization device 1000, which includes an atomizer 100 and a power supply assembly 200.
  • the power supply assembly 200 is used to provide electric energy to the atomizer 100.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Special Spraying Apparatus (AREA)

Abstract

本申请涉及一种电磁线圈(15)、雾化结构(10)、雾化器(100)及电子雾化装置(1000),包括第一线圈层(15A)和第二线圈层(15B)。第一线圈层(15A)沿设定轴向(Z)环绕布置,第二线圈层(15B)包括第一线圈部(B1)和第二线圈部(B2)。第一线圈部(B1)和第二线圈部(B2)绕设于第一线圈层(15A)之外。其中,第(Z)一线圈部(B1)和第二线圈部(B2)间隔设置在第一线圈层(15A)在设定轴向(Z)上的两端。

Description

电磁线圈、雾化结构、雾化器及电子雾化装置
相关申请的交叉引用
本申请引用于2022年09月01日递交的名称为“电磁线圈、雾化结构、雾化器及电子雾化装置”的第202222334073.7号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及雾化技术领域,特别是涉及一种电磁线圈、雾化结构、雾化器及电子雾化装置。
背景技术
电子雾化装置通常包括雾化介质载体、雾化结构及电源组件,雾化介质载体用于储存气溶胶生成基质,雾化结构用于对气溶胶生成基质进行加热并雾化,以形成可供吸食者食用的气雾,电源组件用于向雾化结构供电。
电磁加热式雾化结构通常包括用于产生电磁场的电磁线圈,传统的电磁线圈大多以螺旋管状线圈为主,而传统的螺旋管状线圈在其轴向上存在磁场强度不均衡,使得雾化结构的雾化效率不一致,导致用户使用感不好。
发明内容
基于此,根据本申请的各种实施例,提供了一种电磁线圈、雾化结构、雾化器及电子雾化装置。
一种电磁线圈,包括:
第一线圈层,沿设定轴向环绕布置;
第二线圈层,包括第一线圈部和第二线圈部,所述第一线圈部和所述第二线圈部绕设于所述第一线圈层之外;
其中,所述第一线圈部和所述第二线圈部间隔设置在所述第一线圈层在所述设定轴向上的两端。
在其中一些实施例中,在所述设定轴向上,所述第一线圈部和所述第二线圈部中的至少一者的绕线密度自彼此相对的一端向彼此相背的一端递增,或,
所述第一线圈部和/或所述第二线圈部的绕线密度在所述设定轴向上均等配置。
在其中一些实施例中,在所述设定轴向上,所述第一线圈层的绕线密度均等配置,或,
所述第一线圈层中部的绕线密度低于所述第一线圈层两端的绕线密度。
在其中一些实施例中,所述第二线圈层还包括连接导线,所述连接导线电连接所述第一线圈部和所述第二线圈部。
在其中一些实施例中,所述第一线圈层与所述第二线圈层由同一导线环绕所述设定轴向绕制形成。
一种雾化结构,包括:
外壳;
发热体,位于所述外壳内;
如上述任一项实施例所述的电磁线圈,套设于所述外壳外,发热体被配置为在所述电磁线圈产生的交变磁场作用下发热。
在其中一些实施例中,在所述设定轴向上,所述发热体的投影长度等于所述电磁线圈的轴向长度。
在其中一些实施例中,所述雾化结构还包括:
导雾壳,收容于所述外壳内,且内部形成有气流通道和容置腔;及
导液件,设置于所述容置腔内,所述导液件具有相对设置的雾化面和吸液面,所述雾化面面向所述气流通道布置;
其中,所述发热体收容于所述导雾壳内,且设置于所述雾化面上。
在其中一些实施例中,所述发热体为片状发热体,所述片状发热体设置于所述雾化面上。
在其中一些实施例中,所述片状发热体上构造有过雾孔,所述过雾孔贯通所述片状发热体在所述厚度方向上的两侧。
在其中一些实施例中,所述外壳与所述导雾壳之间间隔形成过流通道,所述过流通道用于连通所述吸液面和储液腔。
一种雾化器,包括:
雾化介质载体,具有用于存储气溶胶生成基质的储液腔;及
上述雾化结构,所述雾化结构与所述雾化介质载体配接,用于雾化储液腔中的气溶胶生成基质。
一种电子雾化装置,包括:
电源组件;及
上述雾化器,所述电源组件用于向所述雾化器提供电能。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一实施例中的电子雾化装置的外形图;
图2为图1所示的电子雾化装置中A-A处的半剖图;
图3为图2所示的电子雾化装置中的局部结构示意图;
图4为本申请一些实施例中的电磁线圈的结构示意图;
图5为图4所示的电磁线圈的半剖示意图;
图6为本申请一些实施例中的雾化器的分解示意图;
图7为图6所述的雾化结构的第一组合图;
图8为图6所述的雾化结构的第二局部组合图;
图9为图8所示的雾化结构的半剖图;
图10为本申请一些实施例中的雾化结构的局部示意图;
图11为图10所示结构的另一方位视图;
图12为图11所示结构中B-B处的剖视图;
图13为图10所示结构的分解状态下的第一视角视图;
图14为图10所示结构的分解状态下的第二视角视图;
图15为图7所示结构的俯视视角视图。
附图标记说明:
1000、电子雾化装置;100、雾化器;10、雾化结构;11、导雾壳;11a、壳本体;a1、气流通道;a2、安装通道;a3、过渡通道;11b、密封套;b、容置腔;b1、第一部分;b2、第二部分;b3、第三部分;11c、卡接部;12、导液件;12a、雾化面;c、收容槽;12b、吸液面;12c、凸柱;12d、基体部;12e、突出部;13、发热体;13a、过雾孔;14、外壳;14a、进液通道;14b、过流通道;14c、进气孔;14d、卡合部;14e、头部;14f、筒部;15、电磁线圈;15A、第一线圈层;15B、第二线圈层;B1、第一线圈部;B2、第二线圈部;B3、连接导线;16、第一密封件;17、第二密封件;18、屏蔽膜;20、雾化介质载体;21、储液腔;22、抽吸通道;200、电源组件;201、电源壳;202、咪头;203、电池;204、通气孔;X、厚度方向;Y、第一方向;Z;设定轴向。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于 覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,若有出现,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,若有出现,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,若有出现,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
本申请发明人深入研究后发现,雾化器中的螺旋管状线圈两端的磁场强度相对中部的磁场强度低了近一半,而发热体感应到的功率与螺旋管状线圈的磁场强度成正比,这就导致发热体两端的功率比中部的功率小,最终导致发热体两端的温度比中间的温度低,发热体的雾化效率不一致,用户使用感不好。为了解决该问题,提供一种改善上述缺陷的电磁线圈、雾化结构、雾化器及电子雾化装置。
请参照图1、图2及图3,为本申请一些实施例提供的电子雾化装置1000的结构示意图。电子雾化装置1000包括雾化器100及电源组件200,电源组件200用于向雾化器100提供电能,雾化器100在通电状态下能够发热并雾化储存在雾化器100中的气溶胶生成基质。
电源组件200可以包括电源壳201和容纳于电源壳201内的电池203,电源组件200经由自身电池203向雾化器100供电。雾化器100与电源壳201配接,以实现与电源组件200的装配连接。
在一些实施例中,电源组件200还可以包括咪头202,咪头202作为本领域中的常规部件,用于感应气压变化以判定用气侧是否需要使用气溶胶,也即用户是否需要使用电子雾化装置1000,并由此控制电源组件200与雾化器100通断电,其具体结构及原理在此不进行赘述。电源组件200为本领域的常用部件,其设置形式多样,具体在此不进行限定。雾化器100是在通电状态下能够雾化气溶胶生成基质形成气溶胶的装置,气溶胶生成基质是在能够被雾化产生气溶胶的物质。具体地,气溶胶生成基质包括但不限于是烟油、药液等气溶胶生成基质。
在一些实施例中,雾化器100包括雾化介质载体20和雾化结构10,雾化介质载体20与雾化结构10相配接(如卡接、紧固连接等)。雾化介质载体20可以包括独立设置的储液腔21和抽吸通道22,储液腔21用于储存气溶胶生成基质,抽吸通道22用于连通雾化结构10及外部,作为雾化结构10所产生的气溶胶流向外部的通道。储液腔21可以围绕抽吸通道22布置,也可以与抽吸通道22并排布置,具体形式不限定。
雾化结构10与储液腔21及抽吸通道22均连通,其用于从储液腔21处获取气溶胶生成基质,并在通电时能够雾化气溶胶生成基质并生成气溶胶,气溶胶经抽吸通道22向用气侧输出。
实际应用中,雾化介质载体20可以作为用户使用的吸嘴。当用气侧经抽吸腔作用抽吸力时,储液腔21内的气溶胶生成基质能够进入雾化结构10并被雾化。
雾化结构10是加热雾化气溶胶生成基质的结构,其包括用于加热雾化气溶胶生成基质的发热体13,发热体13可以基于电阻式加热原理实现加热,此时发热体13可以是发热丝、发热网。发热体13 也可以基于电磁式加热原理实现加热,此时,雾化结构10还可以包括电磁线圈15,电磁线圈15在通电状态下能够产生交变磁场,发热体13在交变磁场作用下生产感应电流,从而加热雾化气溶胶生成基质。
下面对本申请实施例中雾化结构10所涉及到的电磁线圈15进行介绍。
请参照图4和图5,本申请一些实施例中提供了电磁线圈15,包括第一线圈层15A和第二线圈层15B。第一线圈层15A沿设定轴向Z环绕布置,第二线圈层15B包括第一线圈部B1和第二线圈部B2。第一线圈部B1和第二线圈部B2均绕设于第一线圈层15A之外。其中,第一线圈部B1和第二线圈部B2间隔设置在第一线圈层15A在设定轴向Z上的两端。
第一线圈层15A、第一线圈部B1和第二线圈部B2均为螺旋式线圈结构。为便于理解,将第一线圈层15A在设定轴向Z上划分为三个段,分别为第一段、第二段和第三段,第一线圈部B1绕设在第一段,第二线圈部B2绕设在第三段。相应地,电磁线圈15在设定轴向Z上划分为第一端部、中部和第二端部,第一端部包括第一线圈部B1和第一线圈层15A的第一段,第二端部包括第二线圈部B2和第一线圈层15A的第三段,中部包括第一线圈层15A的第二段。
绕线密度是指单位长度内线圈的匝数。在本实施例中,在单位长度内,第一端部内的线圈匝数由第一线圈部B1的线圈匝数和第一线圈层15A的第一段的线圈匝数决定,第二端部内的线圈匝数由第二线圈部B2的线圈匝数和第一线圈层15A的第三段的线圈匝数决定,中部的线圈匝数仅由第一线圈层15A的第二段的线圈匝数决定。
在本实施例中,通过第一线圈层15A的两端分别绕设第一线圈部B1和第二线圈部B2,进而使得电磁线圈15的两个端部的绕线密度高于其中部的绕线密度。绕线密度越大,单位长度内的线圈匝数越多,单位长度内电磁线圈15所产生的磁场强度越强。
本申请发明人深入研究发现,由于第一线圈层15A的螺旋结构特性,其第二段的磁场强度要高于其第一段和第三段的磁场强度,此时在第一段和第三段上分别绕设第一线圈部B1和第二线圈部B2,通过第一线圈部B1和第二线圈部B2来提高电磁线圈15在第一端部区域和第二端部区域的绕线密度,通过提高绕线密度来弥补第一线圈层15A的第二段的磁场强度高于第一段和第三段的磁场强度所带来的磁场强度差,可以使得电磁线圈15在设定轴向Z上的各处的磁场强度较为均衡,有助于使得发热体13各处产生的加热功率较为一致,且有助于确保雾化结构10的雾化效率的一致性,提高用户使用感。
在一些实施例中,在设定轴向Z上,第一线圈部B1和第二线圈部B2中的至少一者的绕线密度自彼此相对的一端向彼此相背的一端递增。
当第一线圈层15A按照相等的绕线密度沿设定轴向Z绕制形成螺旋管状线圈,其磁场强度自其中间向两端逐渐递减,此时,将第一线圈部B1和/或第二线圈部B2的绕线密度也配置为自对应电磁线圈15中部的一侧向对应的端部的一侧递增,可以弥补第一线圈层15A的磁场强度自中部向两端递减的变化规律,能够更好的均衡第一线圈层15A各处的磁场强度,使得电磁线圈15各处磁场强度均匀一致性更好。
在一些实施例中,在设定轴向Z上,第一线圈部B1和/或第二线圈部B2的绕线密度在设定轴向Z上均等配置。
绕线密度相等,即单位长度内的线圈匝数相等。当第一线圈部B1和/或第二线圈部B2的绕线密度在设定轴向Z上均等配置,其增加了电磁线圈15在第一端部和第二端部的单位长度内的线圈匝数,进而提高了电磁线圈15在两个端部的磁场强度,有助于减小电磁线圈15中部的磁场强度与端部的磁场强度的差值,提高发热体13加热功率的一致性,进而提高雾化结构10的雾化效率的一致性。
在一具体实施例中,第一线圈部B1和第二线圈部B2的绕线密度均被配置为自身的绕线密度自彼此相对的一端向彼此相背的一端递增。在另一具体实施例中,第一线圈部B1和第二线圈部B2的绕线密度均在设定轴向Z上均等配置。在另一具体实施例中,第一线圈部B1的绕线密度自彼此面向第二线圈部B2的一端向彼此背离第二线圈部B2的一端递增,第二线圈部B2的绕线密度在设定轴向Z上均等配置。关于第一线圈部B1和第二线圈部B2各自绕线密度的配置情况,主要有以上几种,具体不限定于哪一种,只要有助于实现电磁线圈15两个端部的磁场强度与电磁线圈15的中部的磁场强度均匀性较好的即可。
可以理解地,第一线圈部B1和/或第二线圈部B2的绕线密度沿设定轴向Z上递增的实现方式可以是,在绕制第一线圈部B1和第二线圈部B2时,相邻线圈之间的间隔逐渐递减即可。同理,第一线圈部B1和/或第二线圈部B2的绕线密度沿设定轴向Z上均等配置的实现方式可以是,在绕制第一线圈部B1和第二线圈部B2时,相邻线圈之间的间隔均等距设计即可。
在一些实施例中,在设定轴向Z上,第一线圈层15A的绕线密度均等配置。
当第一线圈层15A的绕线密度在设定轴向Z上均等配置,此时,第一线圈层15A的磁场强度沿设定轴向Z表现为中部向两端递减。此时,通过在第一线圈层15A的两端区域分别绕设第一线圈部B1和第二线圈部B2,有助于弥补第一线圈层15A中部与两端的磁场强度差,使得电磁线圈15整体上的磁场强度在设定轴向Z上较为均匀。
当第一线圈层15A的绕线密度在设定轴向Z上均等配置,第一线圈层15A可以按照普通的螺旋管状线圈进行绕制,绕制工艺成熟,可以降低第一线圈层15A的工艺难度。
在一些实施例中,在设定轴向Z上,第一线圈层15A中部的绕线密度低于第一线圈层15A两端的绕线密度。
第一线圈层15A的中部可以对应于其第二段,第一线圈层15A的两端可以对应于其第一段和第二段。当第一线圈层15A中部的绕线密度低于第一线圈层15A两端的绕线密度,可以降低第一线圈层15A中部与其两端的磁场强度差,如此,可以缩短第一线圈部B1和第二线圈部B2的绕制长度,从而降低电磁线圈15的成本。
需要说明的是,本申请中,对于第一线圈层15A、第一线圈部B1和第二线圈部B2的绕线密度的配置方式不进行限定,三者的绕线密度可以分别在设定轴向Z上均等配置也可以不等配置,只要电磁线圈15整体上的表现为电磁线圈15中部的绕线密度低于电磁线圈15两端的绕线密度,以能够使得电磁线圈15各处电磁强度较为均匀即可。
在一些实施例中,第二线圈层15B还包括连接导线B3,连接导线B3电连接第一线圈部B1和第二线圈部B2。
连接导线B3可以是与第一线圈部B1和第二线圈部B2用材不同的导线,也可以是与第一线圈部B1和第二线圈部B2用材相同的导线,此时第一线圈部B1和第二线圈部B2可以由同一导线绕制形成。
此时,第一线圈部B1和第二线圈部B2由连接导线B3实现电连接,两者可以串联接入外部电源,有助于简化供电路线。
需要说明地,第一线圈部B1和第二线圈部B2在设定轴向Z上的长度可以相等也可以不等。例如,当第一线圈层15A的第一段的绕线密度小于其第二段的绕线密度,则第一段上的第一线圈部B1的长度可以大于第二段上的第二线圈部B2的长度。当第一线圈层15A的绕线密度均等配置时,则第一线圈部B1和第二线圈部B2的长度可以相等。
在一些实施例中,第一线圈层15A与第二线圈层15B由同一导线环绕设定轴向Z绕制形成。
请参照图5,第一线圈层15A在设定轴向Z上的两端分别为A端和B端,第一线圈部B1在设定轴向Z上的两端分别为C端和D端,第二线圈部B2在设定轴向Z上的两端分别为E端和F端。电磁线圈15由一根导线绕制形成的绕制方式可以:从A端绕线至B端,而后拉线至C端,并从C端绕线至D端,而后从D端拉线至E端,并从E端绕线至F端。
当电磁线圈15由一根导线绕制形成,电磁线圈15的供电控制更为简单。
下面对本申请实施例中雾化结构10进行介绍。
请参照图6和图7,本申请一些实施例中提供的雾化结构10包括外壳14、发热体13和上述实施例中的电磁线圈15,发热体13设置在外壳14内,电磁线圈15套设在外壳14外,发热体13被配置为在电磁线圈15产生的交变磁场作用下发热。
外壳14可以但不限于是塑料制件、陶瓷制件等。发热体13为导磁发热体,导磁发热体可以是纯铁发热体、不锈钢发热体、低碳钢发热体等等,发热体13的具体用材不限定,只要能够在交变磁场下能够发热即可。至于导磁发热体13在交变磁场下实现发热的原理为本领域的公知常识,在此不赘述。可以理解地,在设定轴向Z上,发热体13的投影与电磁线圈15的投影相交,以使得发热体13在电磁线圈15的作用下产生感应电流而实现加热功能。
此时,通过第一线圈部B1和第二线圈部B2弥补第一线圈层15A的第二部分b2的磁场强度高于第一部分b1和第三部分b3的磁场强度所带来的磁场强度差,可以实现电磁线圈15在设定轴向Z上的各处的磁场强度较为均衡,如此有助于使得发热体13各处产生的加热功率较为一致,有助于确保雾化结构10的雾化效率的一致性,提高用户使用感。
在一些实施例中,在设定轴向Z上,发热体13的投影长度等于电磁线圈15的轴向长度。
当发热体13的投影长度大于电磁线圈15的轴向长度,发热体13超出电磁线圈15范围外的部分发热效率低,反而拉低了温升。当发热体13的投影长度小于电磁线圈15的轴向长度,电磁线圈15超出发热体13的部分无法作用到发热体13产生热量,电磁线圈15的工作效率低。
因此,当发热体13的投影长度等于电磁线圈15的轴向长度,电磁线圈15和发热体13的工作效率能够达到较佳水平。
在一些实施例中,请参照图8,雾化结构10还包括屏蔽膜18,屏蔽膜18套设在电磁线圈15的外部。屏蔽膜18能够屏蔽磁场,如此可避免磁场外泄,降低对外部事物的影响。
在一些实施例中,请参照图6、图9、图10至图12,雾化结构10还包括导雾壳11及导液件12,导雾壳11内形成有气流通道a1和容置腔b,容置腔b连通气流通道a1及导雾壳11的外部。导液件12设置于容置腔b内,导液件12具有相对设置的雾化面12a和吸液面12b,雾化面12a面向气流通道a1布置。发热体13收容于导雾壳11内,且设置于雾化面12a上。
导液件12是指能够吸收气溶胶生成基质、并允许气溶胶生成基质在自身内部扩散的构件。具体可以是,导液件12内部具有微孔,气溶胶生成基质在毛细力的作用下能够在微孔构成的孔道之间流动,以在导液件12内部扩散。不限地,导液件12可以是高温棉、陶瓷导液件等构件。
导液件12的吸液面12b位于气溶胶生成基质从储液腔21流向容置腔b的流动路径上,当气溶胶生成基质经过吸液面12b时全部经由吸液面12b扩散至导液件12内部。
可理解地,导液件12被配置为与容置腔b密封连接,试图进入容置腔b的气溶胶生成基质全部经吸液面12b吸收至导液件12内部,而不会直接经过容置腔b而进入到气流通道a1内,避免储液腔21内的气溶胶生成基质泄漏到气流通道a1内。
发热体13可以卡接、紧固连接在导液件12上或者导雾壳11上,具体形式不限定。
发热体13可以位于气流通道a1内也可以位于容置腔b,也可以部分位于气流通道a1部分位于容置腔b,具体不限定。导液件12可以部分位于容置腔b,部分伸出容置腔b。伸出容置腔b的部分可以延伸到气流通道a1内或者导雾壳11的外部。导液件12也可以全部位于容置腔b。可理解地,雾化面12a位于导雾壳11内,而至于吸液面12b是否位于导雾壳11内不限定。当发热体13和/或导液件12位于气流通道a1时,仅占用气流通道a1的部分空间,而不会阻碍气体的流动。
气流通道a1用于与抽吸通道22连通,容置腔b用于与储液腔21连通。储液腔21内储存的气溶胶生成基质能够流向容置腔b,并在进入容置腔b/即将进入容置腔b时被导液件12所吸收。当用气侧需要使用雾化的气溶胶时,发热体13发热并雾化导液件12内的气溶胶生成基质形成气溶胶,气溶胶经气流通道a1进入抽吸通道22,最后被用气侧所使用。
此时,通过导雾壳11提供发热体13进行雾化的结构,并通过导液件12吸收气溶胶生成基质,实现了雾化结构10可以雾化液体气溶胶生成基质的功能。
在一些实施例中,发热体13为片状发热体,片状发热体设置于雾化面12a上。
片状发热体呈片状结构,片状发热体在其厚度方向X上的尺寸较小而呈薄片状。片状发热体具有沿其厚度方向X相对设置的两个表面,其中一个表面设置于导液件12的雾化面12a上,另一表面朝向气流通道a1设置。片状发热体的两个表面中的至少一个可以呈平面、波浪面等构造形式,不限定为呈完全平直的平面,允许有一定程度的不平整和起伏。片状发热体可以是由发热丝编织形成的片状结构,也可以呈整体式的结构,具体不限定。
发热体13所吸收的热量W与M*ΔT呈正相关,其中,M为发热体13的质量,ΔT为单位时间的温升。在同等功率及同等时间下,若要提高ΔT,则要么提高M,要么提高W,也就是说要提高发热体13的发热效率。根据M=ρV可知(ρ为密度,V为体积),在与管状发热体保持相同质量M且不扩大横向空间(具体是在管状发热体的径向方向上所占用的空间)的情况下,片状发热体要么比管状发热体高,要么比管状发热体片厚。当发热体13磁感应发热,发热体13的高度越矮,发热效率越 低,发热体13越薄,效率越低,因此片状发热体的发热效率高于管状发热体的发热效率。
此时,雾化结构10使用片状发热体结构,相比传统的管状发热体具有更高的发热效率,有助于提高雾化结构10的升温速率,具有快速雾化和低延迟的效果,能够提高用户使用体验感。
在一些实施例中,气流通道a1沿与厚度方向X相交的第一方向Y延伸设置,容置腔b的一端与气流通道a1连通,另一端沿厚度方向X贯通导雾壳11。在图12所示实施例中,第一方向Y与厚度方向X垂直。在图12中,第一方向Y对应上下方向,厚度方向X对应左右方向。此时,气溶胶生成基质从左右方向进入导液件12,而后雾化形成的气溶胶从上下方向经气流通道a1流向用气侧,雾化结构10的布局较为紧凑。当然,在其他实施例中,气流通道a1的轴向以及导液件12与片状发热体的布置方向还可采取其他方式,在此不限定和赘述。
在一些实施例中,导液件12为陶瓷导液件。具体地,陶瓷导液件可以是氧化铝陶瓷导液件、氧化硅陶瓷导液件、氮化铝陶瓷导液件、氮化硅陶瓷导液件等。可以地,陶瓷导液件12的孔隙率在80%及以上,可加快气溶胶生成基质的扩散。
传统的电子雾化装置1000,多采用高温棉作为导液件12,高温棉作为导液件12容易出现烧焦和积碳的问题。此时,导液件12为陶瓷导液件,导液件12的熔点高可以避免烧焦和积碳等问题。
在一些实施例中,请参照图13,雾化面12a沿厚度方向X背离片状发热体凹陷形成有收容槽c,片状发热体设置在收容槽c内。
片状发热体设置收容槽c时,片状发热体除其在厚度方向X的一个表面与收容槽c贴合外,片状发热体围合其表面设置的侧面也可以与收容槽c贴合,如此可以提高片状发热体与雾化面12a的接触面积,提高片状发热体的发热效率。
在一些实施例中,请参照图13和图14,片状发热体上构造有过雾孔13a,过雾孔13a贯通片状发热体在厚度方向X上的两侧。
过雾孔13a连通雾化面12a与气流通道a1,雾化面12a雾化形成的气溶胶能够通过过雾孔13a快速流动到气流通道a1内,如此可加快气溶胶的释放,雾化结构10能够具备更高的雾化量。过雾孔13a的数量可以有多个,且布置方式灵活,具体不限定。
在一些实施例中,请参照图13,雾化面12a上凸设有凸柱12c,凸柱12c与过雾孔13a对应设置。
凸柱12c与过雾孔13a对应设置是指,过雾孔13a暴露至少部分凸柱12c。可以地,凸柱12c插入过雾孔13a内。
此时,从凸柱12c渗出的雾化后的气溶胶流向气流通道a1的路径更短,有助于提高雾化效率的气溶胶。同时,凸柱12c与过雾孔13a可以作为凹凸配合的结构,实现片状发热体与导液件12的快速定位装配。
可以地,一个凸柱12c插入一个过雾孔13a内。可以地,仅部分过雾孔13a内插设有凸柱12c。可以地,全部过雾孔13a内均插设有凸柱12c。可以地,全部过雾孔13a内均未插设有凸柱12c。进一步可以地,当凸柱12c插入过雾孔13a时,凸柱12c与过雾孔13a之间存在间隙,该间隙更方便流通雾化后的气溶胶。
在一些实施例中,请参照图13和图14,过雾孔13a的数量为多个,任意相邻的两个过雾孔13a之间的间隔距离均小于片状发热体的厚度。
片状发热体的厚度是指片状发热体在其厚度方向X上的投影长度。相邻的两个过雾孔13a之间的间隔距离是指相邻两个过雾孔13a的孔壁之间的最小距离。当过雾孔13a为圆孔,相邻两个过雾孔13a之间的间隔距离的间隔距离则为该两个过雾孔13a的相互邻近的两个象限点之间的位置。
过雾孔13a会阻碍电流的传输,若相邻的过雾孔13a之间的间隔过小,电流经过两个过雾孔13a之间的发热体部分时电阻大,电流路径变大,不利于提高升温速度。
当任意相邻的两个过雾孔13a之间的间隔距离均小于片状发热体的厚度时,电流路径短、且电阻小,升温速度快。
可以地,全部过雾孔13a沿片状发热体的长度方向呈一列布置。
在一些实施例中,片状发热体和导液件12的一者上构造有定位凹部,另一者上构造有定位凸部,定位凹部与定位凸部沿厚度方向X定位配合。
定位凹部可以是定位槽、定位孔等,定位凸部可以是定位柱、定位凸起等,具体形式不限定。
此时,通过定位凹部与定位凸部的定位配合可以实现片状发热体和导液件12快速定位装配,可加快雾化结构10的装配效率。同时,定位凹部与定位凸部可增加片状发热体与导液件12的接触面积,提高雾化效率。
在一些实施例中,请参照图13和图14,导雾壳11包括壳本体11a及密封套11b,壳本体11a内形成有气流通道a1及安装通道a2,安装通道a2贯通壳本体11a、并与气流通道a1连通,密封套11b密封配接于安装通道a2,且密封套11b内构造有容置腔b。
密封套11b可以是塑料制件,能够密封连接导液件12及壳本体11a。具体地,密封套11b可以是硅胶、橡胶、聚十二酰胺、四氟乙烯、聚醚醚酮、聚乙烯、聚丙烯、聚氟乙烯等材料制成。具体可以地,安装通道a2沿片状发热体的厚度方向X贯通设置。
此时,经由密封套11b不仅方便导液件12的安装,也可实现导液件12与导雾壳11的密封安装,避免漏液。
在一些实施例中,请参照图3,外壳14与导雾壳11之间间隔形成过流通道14b,过流通道14b连通吸液面12b及进液通道14a。
导雾壳11收容在外壳14内,并与外壳14形成有过流通道14b,储液腔21内的气溶胶生成基质经过过流通道14b到达吸液面12b,进而扩散至导液件12内部。外壳14的设置能够引导储液腔21内的气溶胶生成基质到达吸液面12b。
在一些实施例中,外壳14具有连通储液腔21的进液通道14a。储液腔21内的气溶胶生成基质经过进液通道14a、过流通道14b到达吸液面12b。
雾化结构10可以通过外壳14与雾化介质载体20相配接,配接方式可以是卡接、紧固连接等。在一些实施例中,雾化结构10还包括第一密封件16,第一密封件16密封连接在外壳14与雾化介质载体20之间,用于防止储液腔21漏油。在一些实施例中,雾化结构10还包括第二密封件17,第二密封件17密封连接在导雾壳11和外壳14之间,用于防止雾化结构10漏(雾)气。
本申请实施例中提及的紧固连接包括螺纹连接、铆接、插销连接等。
在一些实施例中,请参照图3,外壳14上设置有进气孔14c,进气孔14c连通气流通道a1与大气。当用气侧需要用气时,通过抽吸通道22产生吸附力,外界大气经进气孔14c进入气流通道a1并带走雾化的气溶胶,如此可使得用气侧轻松获取到气溶胶。
在图1及图2所示实施例中,在电源壳201的底部设置有通气孔204,通气孔204连通进气孔14c与大气。在其他实施例中,进气孔14c也可以设置为直接与大气连通。
请一并参照图13和图14,在本申请提供的一些实施例中,容置腔b包括沿厚度方向X依次连通的第一部分b1、第二部分b2和第三部分b3,导液件12包括沿厚度方向X连接的基体部12d和突出部12e,基体部12d配接于第二部分b2,突出部12e凸出于基体部12d且配合连接于第一部分b1,第三部分b3连通过流通道14b。雾化面12a形成于突出部12e,吸液面12b形成于基体部12d,并面向第三部分b3。其中,第三部分b3可以是孔的形式或者槽的形式,具体不限定。密封套11b可采用软质材料,以方便导液件12安装于容置腔b内。
在一些实施例中,请参照图3和图12,导雾壳11内还形成有过渡通道a3,过渡通道a3连通气流通道a1及进气孔14c,过渡通道a3面向进气孔14c的一端的流通面积小于过渡通道a3面向气流通道a1的一端的流通面积。
过渡通道a3面向进气孔14c的一端为远端,面向气流通道a1的一端为近端,近端的流通面积小于远端的流通面积,气流从远端流向近端时,气流速度加快,如此可加速气溶胶在气流通道a1内的流动速度,有助于提高雾化结构10的气溶胶提供速度。
具体可以是,过渡通道a3的流通面积自面向进气孔14c的一端向面向气流通道a1的一端递减。
在一些实施例中,请一并参照图3、图6、图10和图15,导雾壳11还包括卡接部11c,外壳14还包括卡合部14d,卡接部11c与卡合部14d卡接。具体地,卡接部11c为卡接凸部,卡合部14d为与卡接凸部配接的卡合凹部。
在一些实施例中,请参照图3,外壳14包括连通的头部14e和筒部14f,筒部14f布置在头部14e的一侧,导雾壳11至少部分收容于筒部14f内,筒部14f与导雾壳11之间形成过流通道14b,筒部14f的外围用于套设电磁线圈15,在头部14e及筒部14f的布置方向上,筒部14f和电磁线圈15的投 影之和位于头部14e的投影范围之内。
在图3所示实施例中,头部14e及筒部14f的布置方向与第一方向Y对应。下文中提及的电磁线圈15套设在筒部14f的外围。且在布置方向上,筒部14f和电磁线圈15的投影之和位于头部14e的投影范围之内,也就是说,在厚度方向X上,电磁线圈15套装在筒部14f后整体尺寸不会超过头部14e的尺寸,进而有助于减雾化结构10的尺寸。
在图3所示实施例中,进液通道14a设置在头部14e内。
在一些实施例中,片状发热体的厚度等于片状发热体的趋肤深度的2~3倍。趋肤深度的计算公式为:
其中,δ为趋肤深度,ρ为电阻率,μ0为真空磁导率,μr为相对电导率,f为磁场频率,ρ、μ0、μr三个参数针对发热体13所采用的材料均为已知值,其计算方式为本领域公知常识,在此不进行赘述。
具体可以地,片状发热体的厚度可以是自身趋肤深度的2倍、2.5倍、或者3倍等。
经证明,当片状发热体的厚度超过2~3倍的趋肤深度,片状发热体太厚而导致升温慢。当片状发热体的厚度低于2~3倍的趋肤深度,片状发热体太薄而导致发热效率低,长时间加热时功能不足。
另外,本申请还提供了一种雾化器100,包括雾化介质载体20及上述雾化结构10,雾化介质载体20具有用于存储气溶胶生成基质的储液腔21,雾化结构10与雾化介质载体20配接,用于雾化储液腔21中的气溶胶生成基质。
另外,本申请还提供了一种电子雾化装置1000,包括雾化器100及电源组件200,电源组件200用于向雾化器100提供电能。
上述雾化器100及电子雾化装置1000,具备上述实施例中的所有有益效果,在此不赘述。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种电磁线圈,包括:
    第一线圈层,沿设定轴向环绕设置;
    第二线圈层,包括第一线圈部和第二线圈部,所述第一线圈部和所述第二线圈部绕设于所述第一线圈层之外;
    其中,所述第一线圈部和所述第二线圈部间隔设置在所述第一线圈层在所述设定轴向上的两端。
  2. 根据权利要求1所述的电磁线圈,其中,在所述设定轴向上,所述第一线圈部和所述第二线圈部中的至少一者的绕线密度自彼此相对的一端向彼此相背的一端递增,或,
    所述第一线圈部和/或所述第二线圈部的绕线密度在所述设定轴向上均等配置。
  3. 根据权利要求1或2所述的电磁线圈,其中,在所述设定轴向上,所述第一线圈层的绕线密度均等配置,或,
    所述第一线圈层中部的绕线密度低于所述第一线圈层两端的绕线密度。
  4. 根据权利要求1-3任一项所述的电磁线圈,其中,所述第二线圈层还包括连接导线,所述连接导线电连接所述第一线圈部和所述第二线圈部。
  5. 根据权利要求1-4任一项所述的电磁线圈,其中,所述第一线圈层与所述第二线圈层由同一导线环绕所述设定轴向绕制形成。
  6. 一种雾化结构,包括:
    外壳;
    发热体,位于所述外壳内;
    如权利要求1至5任一项所述的电磁线圈,套设于所述外壳外,所述发热体被配置为在所述电磁线圈产生的交变磁场作用下发热。
  7. 根据权利要求6所述的雾化结构,其中,在所述设定轴向上,所述发热体的投影长度等于所述电磁线圈的轴向长度。
  8. 根据权利要求6或7所述的雾化结构,其中,所述雾化结构还包括:
    导雾壳,收容于所述外壳内,且内部形成有气流通道和容置腔;及
    导液件,设置于所述容置腔内,所述导液件具有相对设置的雾化面和吸液面,所述雾化面面向所述气流通道布置;
    其中,所述发热体收容于所述导雾壳内,且设置于所述雾化面上。
  9. 根据权利要求8所述的雾化结构,其中,所述发热体为片状发热体,所述片状发热体设置于所述雾化面上。
  10. 根据权利要求9所述的雾化结构,其中,所述片状发热体上构造有过雾孔,所述过雾孔贯通所述片状发热体在厚度方向上的两侧。
  11. 根据权利要求8-10任一项所述的雾化结构,其中,所述外壳与所述导雾壳之间间隔形成过流通道,所述过流通道用于连通所述吸液面和储液腔。
  12. 一种雾化器,包括:
    雾化介质载体,具有用于存储气溶胶生成基质的储液腔;及
    权利要求6至11任一项所述的雾化结构,所述雾化结构与所述雾化介质载体配接,用于雾化所述储液腔中的所述气溶胶生成基质。
  13. 一种电子雾化装置,包括:
    电源组件;及
    如权利要求12所述的雾化器,所述电源组件用于向所述雾化器提供电能。
PCT/CN2023/113458 2022-09-01 2023-08-17 电磁线圈、雾化结构、雾化器及电子雾化装置 WO2024046133A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222334073.7 2022-09-01
CN202222334073.7U CN218551344U (zh) 2022-09-01 2022-09-01 电磁线圈、雾化结构、雾化器及电子雾化装置

Publications (1)

Publication Number Publication Date
WO2024046133A1 true WO2024046133A1 (zh) 2024-03-07

Family

ID=85311825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113458 WO2024046133A1 (zh) 2022-09-01 2023-08-17 电磁线圈、雾化结构、雾化器及电子雾化装置

Country Status (2)

Country Link
CN (1) CN218551344U (zh)
WO (1) WO2024046133A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115413828A (zh) * 2022-09-01 2022-12-02 深圳麦克韦尔科技有限公司 雾化结构、雾化器及电子雾化装置
CN218551344U (zh) * 2022-09-01 2023-03-03 深圳麦克韦尔科技有限公司 电磁线圈、雾化结构、雾化器及电子雾化装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030850A (ja) * 1998-07-13 2000-01-28 Matsushita Electric Ind Co Ltd 熱ローラー装置
JP2004061998A (ja) * 2002-07-31 2004-02-26 Totoku Electric Co Ltd 加熱ローラの電磁誘導加熱用励磁コイル部品および電磁誘導加熱用励磁コイルの巻線方法
CN207492079U (zh) * 2017-09-28 2018-06-15 湖南中烟工业有限责任公司 电子烟及其雾化器
CN114794583A (zh) * 2022-06-02 2022-07-29 深圳麦克韦尔科技有限公司 发热模块、雾化组件及电子雾化器
CN115413828A (zh) * 2022-09-01 2022-12-02 深圳麦克韦尔科技有限公司 雾化结构、雾化器及电子雾化装置
CN218551344U (zh) * 2022-09-01 2023-03-03 深圳麦克韦尔科技有限公司 电磁线圈、雾化结构、雾化器及电子雾化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030850A (ja) * 1998-07-13 2000-01-28 Matsushita Electric Ind Co Ltd 熱ローラー装置
JP2004061998A (ja) * 2002-07-31 2004-02-26 Totoku Electric Co Ltd 加熱ローラの電磁誘導加熱用励磁コイル部品および電磁誘導加熱用励磁コイルの巻線方法
CN207492079U (zh) * 2017-09-28 2018-06-15 湖南中烟工业有限责任公司 电子烟及其雾化器
CN114794583A (zh) * 2022-06-02 2022-07-29 深圳麦克韦尔科技有限公司 发热模块、雾化组件及电子雾化器
CN115413828A (zh) * 2022-09-01 2022-12-02 深圳麦克韦尔科技有限公司 雾化结构、雾化器及电子雾化装置
CN218551344U (zh) * 2022-09-01 2023-03-03 深圳麦克韦尔科技有限公司 电磁线圈、雾化结构、雾化器及电子雾化装置

Also Published As

Publication number Publication date
CN218551344U (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
US12016378B2 (en) Electronic cigarette and atomizer thereof with heating assembly
WO2024046133A1 (zh) 电磁线圈、雾化结构、雾化器及电子雾化装置
WO2024046134A1 (zh) 雾化结构、雾化器及电子雾化装置
US12042601B2 (en) Electronic atomization device and atomization assembly
US11903419B2 (en) Electronic cigarette and heating assembly and heating member thereof
CN221128829U (zh) 电子雾化装置及其雾化器
US20200367564A1 (en) Electronic cigarette and heating assembly and heating member thereof
JP2023178218A (ja) 発熱モジュール、霧化アセンブリ、及び電子霧化装置
WO2021227742A1 (zh) 雾化器及其气溶胶发生装置
CN216019106U (zh) 雾化芯、雾化器和电子雾化装置
US20240016224A1 (en) Electronic vaporization device and vaporizer thereof and vaporization assembly
US20230180854A1 (en) Electronic vaporization device
WO2023019797A1 (zh) 电子雾化装置
US20240041125A1 (en) Vaporizer and electronic vaporization device
CN217487672U (zh) 电子雾化装置及其雾化器和雾化芯
WO2023123250A1 (zh) 发热组件、雾化器及电子雾化装置
CN215531649U (zh) 发热结构、雾化器及电子雾化装置
CN215224796U (zh) 一种改进气流道的气溶胶发生装置
CN218551322U (zh) 雾化结构、雾化器及电子雾化装置
WO2023283961A1 (zh) 电子雾化装置及其雾化器和雾化组件
CN219939717U (zh) 雾化器及电子雾化装置
CN219613033U (zh) 雾化器及电子雾化装置
CN218185252U (zh) 雾化组件及电子雾化装置
CN217771508U (zh) 一种雾化组件、雾化器以及气溶胶产生装置
CN220274904U (zh) 一种电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859167

Country of ref document: EP

Kind code of ref document: A1