WO2024042767A1 - サーミスタ素子及びその製造方法 - Google Patents

サーミスタ素子及びその製造方法 Download PDF

Info

Publication number
WO2024042767A1
WO2024042767A1 PCT/JP2023/014072 JP2023014072W WO2024042767A1 WO 2024042767 A1 WO2024042767 A1 WO 2024042767A1 JP 2023014072 W JP2023014072 W JP 2023014072W WO 2024042767 A1 WO2024042767 A1 WO 2024042767A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate layer
thermistor
thermistor element
conductive intermediate
electrode layer
Prior art date
Application number
PCT/JP2023/014072
Other languages
English (en)
French (fr)
Inventor
岳洋 米澤
雄亮 細川
和崇 藤原
典明 岩城
翔太 若菜
博樹 佐藤
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2024042767A1 publication Critical patent/WO2024042767A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient

Definitions

  • the present invention relates to a thermistor element suitable for temperature sensors, protection circuits of electronic equipment, etc., and a method for manufacturing the same.
  • Thermistor materials with a spinel structure based on Mn, Co, etc. which are currently the most commonly used thermistor materials, have a large B constant of about 3000 to 4000, which is the temperature coefficient of the thermistor.
  • the present invention was made in view of the above-mentioned problems, and aims to provide a thermistor element equipped with a conductive intermediate layer that can exist stably even at high temperatures, and a method for manufacturing the same.
  • the present invention employs the following configuration to solve the above problems. That is, in the thermistor element according to the first invention, the thermistor element body includes an oxide thermistor material having a perovskite crystal structure, a conductive intermediate layer formed on the thermistor element body, and the conductive intermediate layer. and an electrode layer formed on the conductive intermediate layer, and the conductive intermediate layer is a composite oxide containing Mn.
  • the conductive intermediate layer is a composite oxide containing Mn (manganese)
  • the crystal structure of the composite oxide containing Mn is close to that of a perovskite-type thermistor element, so that the conductive intermediate layer is made of a composite oxide containing Mn (manganese). Adhesion is improved and the conductive intermediate layer can stably exist even at high temperatures.
  • the conductive intermediate layer contains Mn, it is possible to obtain high adhesion with the electrode layer formed of a noble metal, and the electrode layer is formed of a noble metal etc. that requires baking at a high temperature. Even if it is used, it can remain stable even after baking.
  • the oxide thermistor material constituting the thermistor body contains an oxide containing Mn
  • the adhesion with the conductive intermediate layer which is a composite oxide containing Mn is further improved.
  • the complex oxide refers to a substance described as an oxide of two or more types of elements (or the same element with different oxidation numbers).
  • a thermistor element according to a second invention is characterized in that, in the first invention, the composite oxide further contains Y. That is, in this thermistor element, since the composite oxide further contains Y (yttrium), higher conductivity can be obtained by reacting Mn and Y to form the composite oxide. Further, when the oxide thermistor material constituting the thermistor body contains an oxide containing Y, the adhesion with the conductive intermediate layer containing Y is further improved.
  • a thermistor element according to a third invention is characterized in that, in the first or second invention, the composite oxide further contains one or more of Ca, Sr, Ba, and La. That is, in this thermistor element, since the composite oxide further contains one or more of Ca (calcium), Sr (strontium), Ba (barium), and La (lanthanum), Y in the composite oxide
  • the composite oxide further contains one or more of Ca (calcium), Sr (strontium), Ba (barium), and La (lanthanum), Y in the composite oxide
  • the lattice strain is reduced and the electron mobility is improved
  • the carriers are High conductivity can be obtained by increasing the amount.
  • a thermistor element according to a fourth invention is characterized in that the electrode layer contains Pt in any one of the first to third inventions. That is, in this thermistor element, good adhesion with the conductive intermediate layer can be obtained even with a Pt electrode whose electrode layer contains Pt, that is, a Pt electrode layer formed by baking at a high temperature. In addition, in the electrode layer formed of Pt, Pt is difficult to diffuse, the thermistor characteristics are less likely to change, and the electrode layer is less likely to be eaten away by the solder, so that the adhesion of the electrode is maintained even when soldered.
  • the thermistor element according to a fifth invention in any one of the first to fourth inventions, when the content ratio of the Mn to all metal atoms in the conductive intermediate layer is CMn , 0 at. % ⁇ C Mn ⁇ 60at. %. That is, in this thermistor element, when the content ratio of Mn to all metal atoms in the conductive intermediate layer is CMn , 0 at. % ⁇ C Mn ⁇ 60at. %, good adhesion can be obtained.
  • the thermistor element according to the sixth invention in the second invention, when the content ratio of Y to all metal atoms in the conductive intermediate layer is CY , 0 at. % ⁇ C Y ⁇ 60at. %. That is, in this thermistor element, when the content ratio of Y to all metal atoms in the conductive intermediate layer is CY , 0 at. % ⁇ C Y ⁇ 60at. %, it is possible to form a composite oxide with Mn and obtain good conductivity.
  • the conductive intermediate layer contains one or more of Ca, Sr, Ba, and La in a content ratio of 0.001 to all metal atoms. 1 at. % or more. That is, in this thermistor element, the conductive intermediate layer contains one or more of Ca, Sr, Ba, and La at a content ratio of 0.1 at. % or more, good conductivity can be obtained.
  • the method for manufacturing a thermistor element according to the eighth aspect of the invention includes an intermediate layer forming step of forming a conductive intermediate layer of a composite oxide containing Mn on a thermistor element body containing a thermistor material having a perovskite crystal structure; an electrode layer forming step of forming an electrode layer on the conductive intermediate layer, and in the intermediate layer forming step, a Mn-containing dispersion containing a Mn-containing powder, an organic solvent, and a dispersant is applied to the thermistor.
  • a temporary intermediate layer is formed by coating the Mn-containing dispersion on the element body and drying the Mn-containing dispersion, and in the electrode layer forming step, a Pt paste containing Pt is coated on the temporary intermediate layer, and the Pt
  • the method is characterized in that the paste is fired to form the electrode layer and to make the temporary intermediate layer the conductive intermediate layer. That is, in this method for manufacturing a thermistor element, in the intermediate layer forming step, a Mn-containing dispersion containing a Mn-containing powder, an organic solvent, and a dispersant is applied onto the thermistor element, and the Mn-containing dispersion is applied to the thermistor element.
  • the conductive intermediate layer is made of a composite oxide containing Mn
  • the Mn of the temporary intermediate layer and the thermistor material of the thermistor element are reacted at high temperatures during firing to form a conductive intermediate layer of a composite oxide containing Mn.
  • a method for manufacturing a thermistor element according to a ninth invention is characterized in that, in the eighth invention, the Mn-containing dispersion further contains Y. That is, in this method for manufacturing a thermistor element, since the Mn-containing dispersion further contains Y, Mn and Y react and are sintered at the same time during firing, or composite oxide particles of Mn and Y are sintered. A conductive intermediate layer of a composite oxide can be obtained.
  • the Mn-containing dispersion further contains one or more of Ca, Sr, Ba, and La. It is characterized by That is, in this method for manufacturing a thermistor element, since the Mn-containing dispersion further contains one or more of Ca, Sr, Ba, and La, the combination of Mn and Ca, Sr, Ba, and La occurs during firing. One or two or more of these, or Mn and Y and one or two or more of Ca, Sr, Ba, and La react and sinter simultaneously, or Mn and Ca, Sr, Ba, and La. It is possible to obtain a conductive intermediate layer of a composite oxide in which one or more composite oxide particles, or composite oxide particles of one or more of Mn, Y, and Ca, Sr, Ba, and La are sintered. .
  • a conductive intermediate layer of a composite oxide containing Mn is formed on a thermistor element body containing a thermistor material having a perovskite crystal structure, and the conductive intermediate layer is an intermediate electrode layer forming step of forming an electrode layer thereon; in the intermediate electrode layer forming step, a Mn-containing Pt paste containing Mn and Pt is applied onto the thermistor body;
  • the method is characterized in that the conductive intermediate layer and the electrode layer are formed by firing the Pt-containing paste.
  • a Mn-containing Pt paste containing Mn and Pt is applied onto the thermistor body, and the Mn-containing Pt paste is fired to make it conductive. Since the intermediate layer and the electrode layer are formed, the Mn in the Mn-containing Pt paste diffuses to the thermistor element side at high temperatures during firing to form the conductive intermediate layer, and the remaining Pt forms the electrode layer. can.
  • the thermistor element and the manufacturing method thereof according to the present invention since the conductive intermediate layer is a composite oxide containing Mn, the crystal structure of the composite oxide containing Mn is similar to that of a perovskite-type thermistor element. This improves the adhesion of the conductive intermediate layer and allows the conductive intermediate layer to exist stably even at high temperatures. Therefore, it is possible to use an electrode layer made of Pt or the like that requires baking at a high temperature, and a thermistor element with good adhesion and high reliability can be obtained.
  • FIG. 1 is a cross-sectional view showing a thermistor element in an embodiment of the thermistor element and method for manufacturing the same according to the present invention.
  • it is sectional drawing showing the manufacturing method of the thermistor element in order of steps.
  • it is sectional drawing showing another manufacturing method of the thermistor element in order of steps.
  • It is a SEM image which shows the cross section of the thermistor element in Example 4 of the thermistor element and its manufacturing method based on this invention.
  • It is a composition distribution image of La in a cross section of a thermistor element in Example 4 of the present invention.
  • It is a composition distribution image of Y in the cross section of the thermistor element in Example 4 of the present invention.
  • FIGS. 1 to 3 an embodiment of a thermistor element and a method for manufacturing the same according to the present invention will be described with reference to FIGS. 1 to 3.
  • the scale is changed as necessary to make each member recognizable or easily recognizable.
  • the thermistor element 1 of this embodiment includes a thermistor body 2 containing an oxide thermistor material having a perovskite crystal structure, and a conductive intermediate layer 3 formed on the thermistor body 2. and an electrode layer 4 formed on the conductive intermediate layer 3.
  • the conductive intermediate layer 3 is a composite oxide containing Mn.
  • the said composite oxide further contains Y (yttrium). Furthermore, it is more preferable that the composite oxide further contains one or more of Ca, Sr, Ba, and La.
  • the electrode layer 4 contains Pt. That is, the electrode layer 4 is a Pt electrode on which Pt paste is baked.
  • the conductive intermediate layer 3 contains one or more of Ca, Sr, Ba, and La at a content ratio of 0.1 at. % or more is preferable.
  • the content ratios of Ca, Sr, Ba, and La are not particularly limited, but are 10 at. % or less. Note that the conductive intermediate layer 3 does not need to be disposed on the entire surface between the thermistor element body 2 and the electrode layer 4, and the conductive intermediate layer 3 may be disposed discontinuously at a plurality of locations.
  • the thickness of the conductive intermediate layer 3 is preferably 0.1 to 3 ⁇ m.
  • the B constant of the thermistor element 1 of this embodiment is, for example, in the range of 1500 to 4000K.
  • the resistivity of the thermistor element 1 of this embodiment is, for example, in the range of 10 0 to 10 6 ⁇ cm.
  • the method for manufacturing the thermistor element 1 of this embodiment includes forming a conductive intermediate layer 3 of a composite oxide containing Mn on a thermistor body 2 containing a thermistor material having a perovskite crystal structure. and an electrode layer forming step of forming an electrode layer 4 on the conductive intermediate layer 3.
  • a Mn-containing dispersion containing Mn-containing powder, an organic solvent, and a dispersant is applied onto the thermistor body 2, and as shown in FIG. The dispersion is dried to form a temporary intermediate layer 3a.
  • the electrode layer forming step as shown in FIG. 2(b), a Pt paste containing Pt is applied on the temporary intermediate layer 3a, and the Pt paste is fired, as shown in FIG. 2(c).
  • the electrode layer 4 is formed and the temporary intermediate layer 3a is used as the conductive intermediate layer 3.
  • the said Mn containing dispersion liquid further contains Y.
  • the Mn-containing dispersion liquid further contains one or more of Ca, Sr, Ba, and La.
  • the thermistor body 2 is made of, for example, a base material made of various metal oxides and calcium carbonate (CaCO 3 ) as a sintering accelerator and an electrical property modifier, and each metal is mixed in a predetermined molar ratio. The materials are weighed so that the material is mixed, dried, and pre-fired, and then the binder is mixed and formed into a plate shape, which is then fired.
  • a base material made of various metal oxides and calcium carbonate (CaCO 3 ) as a sintering accelerator and an electrical property modifier
  • the above-mentioned Mn-containing dispersion can be prepared, for example, by weighing a material containing at least Mn to a predetermined molar ratio, mixing the resulting powder with an organic solvent such as ethanol and a dispersant, and then using a paint shaker or the like. It is prepared by dispersing it using a dispersing machine. That is, when containing powder of one or more of Y, Ca, Sr, Ba, and La in addition to Mn, these various metals are weighed so that they have a predetermined molar ratio, and the powder is fired. The powder is prepared by mixing and dispersing the powder with an organic solvent and a dispersant.
  • the electrode layer 4 is produced, for example, by applying a Pt paste by printing and firing it. Note that the higher the baking temperature is, the fewer voids are generated at the interface between the electrode layer 4 and the conductive intermediate layer 3.
  • the method includes an intermediate electrode layer forming step of forming the layer 3 and forming the electrode layer 4 on the conductive intermediate layer 3.
  • a Mn-containing Pt paste 4b containing Mn and Pt is applied onto the thermistor body 2, the Mn-containing Pt paste 4b is fired, and the conductive intermediate layer 3 and electrode layer 4 are to form.
  • the Mn-containing Pt paste 4b is produced by adding Mn 2 O 3 to Pt paste, for example.
  • the conductive intermediate layer 3 is a composite oxide containing Mn
  • the crystal structure of the composite oxide containing Mn is close to that of the perovskite-type thermistor element 2.
  • the adhesion between the conductive intermediate layer 3 and the thermistor body is improved, and the conductive intermediate layer 3 can exist stably even at high temperatures.
  • the conductive intermediate layer 3 contains Mn, high adhesion with the electrode layer 4 made of a noble metal can be obtained, and the electrode layer 4 made of a noble metal or the like that requires baking at high temperature can be obtained. 4, it can remain stable even after baking.
  • the oxide thermistor material constituting the thermistor body 2 contains an oxide containing Mn, the adhesion with the conductive intermediate layer 3 which is a composite oxide containing Mn is further improved. Therefore, even if the Pt electrode layer 4 is formed by baking at a high temperature, good adhesion with the conductive intermediate layer 3 can be obtained. Further, in the electrode layer 4 made of Pt, Pt is difficult to diffuse, the thermistor characteristics are less likely to change, and the electrode layer 4 is less likely to be eaten away by the solder, so that the adhesion of the electrode is maintained even when soldered.
  • the formed intermediate layer contains Y
  • Mn and Y may react during heat treatment to form a composite oxide and sinter at the same time, or the Mn compound that has already become a composite oxide with Y may be sintered. By sintering, higher conductivity can be obtained.
  • the oxide thermistor material constituting the thermistor body 2 contains an oxide containing Y
  • the adhesion with the conductive intermediate layer 3 containing Y is further improved.
  • the composite oxide further contains one or more of Ca, Sr, Ba, and La
  • Y in the composite oxide is replaced with at least one of Ca, Sr, Ba, and La.
  • La electron mobility is improved by reducing lattice distortion
  • Ca, Sr, and Ba high conductivity can be obtained by increasing carriers.
  • the conductive intermediate layer 3 contains one or more of Ca, Sr, Ba, and La at a content ratio of 0.1 at. % or more, good conductivity can be obtained.
  • a Mn-containing dispersion containing Mn-containing powder, an organic solvent, and a dispersant is applied onto the thermistor element 2, and the Mn-containing The dispersion is dried to form a temporary intermediate layer 3a, and in an electrode layer forming step, a Pt paste containing Pt is applied on the temporary intermediate layer 3a, and the Pt paste is fired to form an electrode layer 4.
  • the temporary intermediate layer 3a is used as the conductive intermediate layer 3, the Mn of the temporary intermediate layer 3a and the thermistor material of the thermistor body 2 are reacted at high temperature during firing to form a conductive intermediate of a composite oxide containing Mn. It can be layer 3.
  • the Mn-containing dispersion further contains Y, it is possible to obtain a conductive intermediate layer 3 of a composite oxide in which Mn and Y react during firing. Furthermore, since the Mn-containing dispersion further contains one or more of Ca, Sr, Ba, and La, Mn and one or more of Ca, Sr, Ba, and La, Alternatively, Mn and Y and one or more of Ca, Sr, Ba, and La are reacted and sintered at the same time, or Mn and one or more of Ca, Sr, Ba, and La are sintered, or , Mn, Y, and one or more types of composite oxide particles selected from Ca, Sr, Ba, and La can be obtained.
  • a Mn-containing Pt paste 3b containing Mn and Pt is applied onto the thermistor body 2, and the Mn-containing Pt paste 3b Since the conductive intermediate layer 3 and the electrode layer 4 are formed by firing, the Mn in the Mn-containing Pt paste 3b diffuses toward the thermistor body 2 side at the high temperature during firing, forming the conductive intermediate layer 3. At the same time, the remaining Pt can form the electrode layer 4.
  • a base material made of commercially available yttrium oxide (Y 2 O 3 ), chromium oxide (Cr 2 O 3 ), and manganese carbonate (MnCO 3 ), and calcium carbonate Using CaCO 3 ) as a starting material, each material was weighed so that the molar ratio of Y:Cr:Mn:Ca was 79.5:8.5:8.5:3.5. These weighed materials were mixed in a wet ball mill, dried, and then calcined at 1000° C. for 5 hours, followed by mixing 1.5 wt % of polyvinyl alcohol as a binder. This powder was molded into a plate shape with a thickness of 1 mm by uniaxial pressure molding. This was baked at 1500° C. for 24 hours and both sides of the plate material were polished to produce a wafer having a thickness of 0.4 mm that would become the thermistor body.
  • Y 2 O 3 yttrium oxide
  • Cr 2 O 3 chromium oxide
  • MnCO 3 manganese
  • a chip-shaped thermistor element of 0.5 mm x 0.5 mm was obtained by dicing.
  • 3CV coefficient of variation
  • 3CV coefficient of variation
  • a conductive intermediate layer with an average thickness of 0.1 ⁇ m was observed in 5 fields of view, and the composition was Mn: 48 at. %, Y: 17at. %, La: 31at. %, Sr: 5at. %Met.
  • Example 2 Mn 2 O 3 was added to both sides of the wafer (thermistor element) produced in Example 1 in an amount of 5 wt. % added Pt paste (Mn-containing Pt paste) was applied by printing and fired at 1400° C. to form an electrode layer and a conductive intermediate layer at the same time.
  • this conductive intermediate layer is a composite oxide containing elements Y and Ca diffused from the thermistor body in addition to Mn.
  • a chip-shaped thermistor element of 0.5 mm x 0.5 mm was obtained by dicing.
  • 3CV which indicates the variation in resistance value of 20 thermistor elements measured at 25° C., was 4.9%.
  • Example 3 A base material consisting of commercially available lanthanum oxide (La 2 O 3 ), chromium oxide (Cr 2 O 3 ), and manganese carbonate (MnCO 3 ), and calcium carbonate (CaCO 3 ) as a sintering accelerator and an electrical property modifier. Using these as starting materials, each material was weighed so that the molar ratio of La:Cr:Mn:Ca was 7:6:4:3. These weighed materials were mixed in a wet ball mill, dried, and then calcined at 1300° C. for 5 hours. Since La 2 O 3 reacts with moisture in the atmosphere and easily changes to hydroxide, it was weighed within 3 hours after heating at 1000° C. for 2 hours.
  • La 2 O 3 reacts with moisture in the atmosphere and easily changes to hydroxide
  • yttrium oxide Y 2 O 3
  • Y 2 O 3 yttrium oxide
  • This powder was molded into a plate shape with a thickness of 1 mm by uniaxial pressure molding. This was baked at 1600° C. for 24 hours, and the resulting plate material was polished on both sides to produce a wafer having a thickness of 0.4 mm to serve as the thermistor body.
  • a chip-shaped thermistor element of 0.5 mm x 0.5 mm was obtained by dicing.
  • 3CV which indicates the variation in resistance value of 20 thermistor elements measured at 25° C., was 1.3%.
  • an intermediate layer with an average thickness of 1.2 ⁇ m was observed in 5 fields of view, and the composition was Mn: 50 at. %, Y: 6at. %, La: 35at. %, Ca: 9at. %Met.
  • Example 4 1 wt . % added Pt paste (Mn-containing Pt paste) was applied by printing and fired at 1300° C. to form an electrode layer and a conductive intermediate layer at the same time.
  • this conductive intermediate layer is a composite oxide containing elements Y, La, and Ca diffused from the thermistor body in addition to Mn.
  • a chip-shaped thermistor element of 0.5 mm x 0.5 mm was obtained by dicing.
  • 3CV which indicates the variation in resistance value of 20 thermistor elements measured at 25° C., was 3.8%.
  • Example 5 On both sides of the wafer prepared in Example 3 , 1 wt. % added Pt paste (Mn-containing Pt paste) was applied by printing and fired at 1400° C. to form an electrode layer and a conductive intermediate layer at the same time.
  • this conductive intermediate layer is a composite oxide containing elements Y, La, and Ca diffused from the thermistor body in addition to Mn.
  • a chip-shaped thermistor element of 0.5 mm x 0.5 mm was obtained by dicing.
  • 3CV which indicates the variation in resistance value of 20 thermistor elements measured at 25° C., was 2.5%.
  • Example 6 As conductive intermediate layer materials, each material was weighed so that the molar ratio of Y:La:Ba:Mn was 2:7:1:10, and fired at 1200° C. for 5 hours. After coarsely pulverizing the resulting powder in a mortar, 20 wt. % ethanol dispersion (Mn-containing dispersion) was prepared. This dispersion was applied by dip coating to both surfaces of the wafer prepared in Example 3 and dried to form a conductive intermediate layer. Note that this conductive intermediate layer is a composite oxide of Mn, Y, La, and Ca. Thereafter, Pt paste was applied by printing and fired at 1300° C. to form an electrode layer.
  • Mn-containing dispersion 20 wt. % ethanol dispersion
  • a chip-shaped thermistor element of 0.5 mm x 0.5 mm was obtained by dicing.
  • 3CV which indicates the variation in resistance value of 20 thermistor elements measured at 25° C., was 1.8%.
  • an intermediate layer with an average thickness of 0.8 ⁇ m was observed in 5 fields of view, and the composition was Mn: 48 at. %, Y: 11at. %, La: 34at. %, Ba: 4at. %, Cr: 4at. %Met.
  • thermistor element was produced in the same manner as in Example 1 except that no intermediate layer was formed on the wafer (thermistor element) produced in Example 1.
  • 3CV which indicates the variation in resistance value of 20 thermistor chips measured at 25° C., was 7.8%.
  • Table 1 shows the results of evaluating the intermediate layer composition, intermediate layer forming method, and resistance value variation (3CV) for each of the examples and comparative examples of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Thermistors And Varistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

高温でも安定して存在できる導電性中間層を備えたサーミスタ素子及びその製造方法を提供する。本発明に係るサーミスタ素子は、結晶構造がペロブスカイト型の酸化物サーミスタ材料を含むサーミスタ素体2と、サーミスタ素体の上に形成された導電性中間層3と、導電性中間層の上に形成された電極層4とを備え、導電性中間層が、Mnを含む複合酸化物である。このサーミスタ素子の製造方法では、サーミスタ素体上にMnを含む複合酸化物の導電性中間層を形成する中間層形成工程と、導電性中間層の上に電極層を形成する電極層形成工程とを有し、中間層形成工程で、Mn含有分散液をサーミスタ素体の上に塗布し、乾燥させて仮中間層を形成し、電極層形成工程で、Ptを含んだPtペーストを仮中間の層上に塗布し焼成して、電極層を形成すると共に仮中間層を導電性中間層とする。

Description

サーミスタ素子及びその製造方法
 本発明は、温度センサや電子機器の保護回路などに好適なサーミスタ素子及びその製造方法に関する。
 地球温暖化対策の一環として、近年のEV市場の急激な拡大に伴って、高速充電化や、モーターの高出力化、これらに伴うIGBTパワーモジュールの駆動温度の高温化に伴って、その温度をモニタリングするサーミスタにもより高温での動作が要求されている。
 現在最も一般的に用いられているサーミスタ材料であるMnやCoなどをベースとしたスピネル構造のサーミスタ材料では、サーミスタの温度計数であるB定数が3000~4000程度と大きい。
 そのため、スピネル構造のサーミスタ材料では、温度に対する抵抗値の変化が大きすぎ、低温に合わせた特性では高温で抵抗値が下がりすぎることで正確な温度が検出できない。また、高温に合わせた特性では低温での抵抗値が高すぎて正確な温度検知ができない課題がある。
 そこで、特許文献1のように、B定数の小さいペロブスカイト系のサーミスタ材料を用い、絶縁材料との複合構造とすることで低B定数と抵抗値の調整を可能にすることが提案されている。
 しかし、絶縁材料とサーミスタ材料の複合構造となっていることで、電極界面に露出するサーミスタ材料が少なく、電極との電気的接触が減ってしまう問題がある。
 特に、一般的に用いられる貴金属ペーストを印刷、焼き付ける方法ではガラスフリットが用いられており、溶融したガラスフリットがサーミスタ素体と電極の間に介在することで密着性を担保する一方で、電極とサーミスタ素体との直接の接点は非常にわずかである。
 このように、電気的接点が少ない構造同士の接合では良好な電気的特性を得ることはできない。この問題に対して、特許文献2のようにサーミスタ素体と電極との界面に、導電性の中間層を形成することが有効と考えられる。この特許文献2のサーミスタ素子では、導電性の中間層が、電気的に互いに接触したRuO粒による凝集構造を有し、凝集構造の隙間にSiOが介在している。
特許第4183666号公報 特許第6365603号公報
 上記従来の技術には、以下の課題が残されている。
 すなわち、上記特許文献2に記載されているサーミスタ素子では、RuOが900℃程度で昇華してしまい、Ptペースト等の貴金属ペーストを用い高温での焼き付けが必要なPt電極等の貴金属電極では使用することが困難であった。
 本発明は、前述の課題に鑑みてなされたもので、高温でも安定して存在できる導電性中間層を備えたサーミスタ素子及びその製造方法を提供することを目的とする。
 本発明は、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明に係るサーミスタ素子では、結晶構造がペロブスカイト型の酸化物サーミスタ材料を含むサーミスタ素体と、前記サーミスタ素体の上に形成された導電性中間層と、前記導電性中間層の上に形成された電極層とを備え、前記導電性中間層が、Mnを含む複合酸化物であることを特徴とする。
 このサーミスタ素子では、導電性中間層が、Mn(マンガン)を含む複合酸化物であるので、Mnを含む複合酸化物の結晶構造がペロブスカイト型のサーミスタ素体に近いことにより、導電性中間層の密着性が向上すると共に、導電性中間層が高温でも安定して存在することができる。特に、導電性中間層が、Mnを含有していることで、貴金属で形成された電極層との高い密着性を得ることができると共に、高温での焼き付けが必要な貴金属等で電極層を形成する場合でも、焼き付け後も安定して存在することができる。また、サーミスタ素体を構成する酸化物サーミスタ材料が、Mnを含む酸化物を含有している場合、Mnを含む複合酸化物である導電性中間層との密着性がより向上する。
 なお、複合酸化物とは、2種類以上の元素(または酸化数の異なる同元素)の酸化物として表記される物質を示す。
 第2の発明に係るサーミスタ素子では、第1の発明において、前記複合酸化物が、さらにYを含むことを特徴とする。
 すなわち、このサーミスタ素子では、複合酸化物が、さらにY(イットリウム)を含むので、MnとYとが反応して複合酸化物となることで、より高い導電性を得ることができる。また、サーミスタ素体を構成する酸化物サーミスタ材料が、Yを含む酸化物を含有している場合、Yを含む導電性中間層との密着性がより向上する。
 第3の発明に係るサーミスタ素子では、第1又は第2の発明において、前記複合酸化物が、さらにCa,Sr,Ba,Laのうち1種又は2種以上を含むことを特徴とする。
 すなわち、このサーミスタ素子では、複合酸化物が、さらにCa(カルシウム),Sr(ストロンチウム),Ba(バリウム),La(ランタン)のうち1種又は2種以上を含むので、複合酸化物中のYとCa,Sr,Ba,Laのうち少なくとも一種類とが置換することで、Laの場合は格子の歪みが減少することで電子の移動度が向上し、Ca,Sr,Baの場合はキャリアが増加することにより高い導電性を得ることができる。
 第4の発明に係るサーミスタ素子では、第1から第3の発明のいずれかにおいて、前記電極層が、Ptを含有していることを特徴とする。
 すなわち、このサーミスタ素子では、電極層がPtを含有しているPt電極、すなわち高温で焼き付けして形成されたPtの電極層でも、導電性中間層との良好な密着性を得ることができる。また、Ptで形成された電極層は、Ptが拡散し難く、サーミスタ特性の変化が少ないと共に、はんだ食われが少ないことで、はんだ付けしても電極の密着性が保たれる。
 第5の発明に係るサーミスタ素子では、第1から第4の発明のいずれかにおいて、前記導電性中間層の中の全ての金属原子に対する前記Mnの含有割合をCMnとしたとき、0at.%<CMn≦60at.%であることを特徴とする。
 すなわち、このサーミスタ素子では、導電性中間層の中の全ての金属原子に対するMnの含有割合をCMnとしたとき、0at.%<CMn≦60at.%であるので、良好な密着性を得ることができる。
 第6の発明に係るサーミスタ素子では、第2の発明において、前記導電性中間層の中の全ての金属原子に対する前記Yの含有割合をCとしたとき、0at.%<C≦60at.%であることを特徴とする。
 すなわち、このサーミスタ素子では、導電性中間層の中の全ての金属原子に対する前記Yの含有割合をCとしたとき、0at.%<C≦60at.%であるので、Mnとの複合酸化物を形成し良好な導電性を得ることができる。
 第7の発明に係るサーミスタ素子では、第3の発明において、前記導電性中間層が、Ca,Sr,Ba,Laのうち1種又は2種以上を、全ての金属原子に対する含有割合として0.1at.%以上含むことを特徴とする。
 すなわち、このサーミスタ素子では、導電性中間層が、Ca,Sr,Ba,Laのうち1種又は2種以上を、全ての金属原子に対する含有割合として0.1at.%以上含むので、良好な導電性を得ることができる。
 第8の発明に係るサーミスタ素子の製造方法では、結晶構造がペロブスカイト型のサーミスタ材料を含むサーミスタ素体の上にMnを含む複合酸化物の導電性中間層を形成する中間層形成工程と、前記導電性中間層の上に電極層を形成する電極層形成工程とを有し、前記中間層形成工程で、Mnを含んだ粉末と有機溶媒と分散剤とを含有したMn含有分散液を前記サーミスタ素体の上に塗布し、前記Mn含有分散液を乾燥させて仮中間層を形成し、前記電極層形成工程で、Ptを含んだPtペーストを前記仮中間層の上に塗布し、前記Ptペーストを焼成して、前記電極層を形成すると共に前記仮中間層を前記導電性中間層とすることを特徴とする。
 すなわち、このサーミスタ素子の製造方法では、中間層形成工程で、Mnを含んだ粉末と有機溶媒と分散剤とを含有したMn含有分散液をサーミスタ素体の上に塗布し、Mn含有分散液を乾燥させて仮中間層を形成し、電極層形成工程で、Ptを含んだPtペーストを仮中間層の上に塗布し、Ptペーストを焼成して、電極層を形成すると共に仮中間層を導電性中間層とするので、焼成時の高温で仮中間層のMnとサーミスタ素体のサーミスタ材料とを反応させてMnを含んだ複合酸化物の導電性中間層とすることができる。
 第9の発明に係るサーミスタ素子の製造方法では、第8の発明において、前記Mn含有分散液が、さらにYを含んでいることを特徴とする。
 すなわち、このサーミスタ素子の製造方法では、Mn含有分散液が、さらにYを含んでいるので、焼成時にMnとYとが反応と同時に焼結、または、MnとYの複合酸化物粒子が焼結した複合酸化物の導電性中間層を得ることができる。
 第10の発明に係るサーミスタ素子の製造方法では、第8又は第9の発明において、前記Mn含有分散液が、さらにCa,Sr,Ba,Laのうち1種又は2種以上を含んでいることを特徴とする。
 すなわち、このサーミスタ素子の製造方法では、Mn含有分散液が、さらにCa,Sr,Ba,Laのうち1種又は2種以上を含んでいるので、焼成時にMnとCa,Sr,Ba,Laのうち1種又は2種以上、または、MnとYとCa,Sr,Ba,Laのうち1種又は2種以上とが反応と同時に焼結、または、MnとCa,Sr,Ba,Laのうち1種又は2種以上、または、MnとYとCa,Sr,Ba,Laのうち1種又は2種以上の複合酸化物粒子が焼結した複合酸化物の導電性中間層を得ることができる。
 第11の発明に係るサーミスタ素子の製造方法では、結晶構造がペロブスカイト型のサーミスタ材料を含むサーミスタ素体の上にMnを含む複合酸化物の導電性中間層を形成すると共に前記導電性中間層の上に電極層を形成する中間層電極層形成工程を有し、前記中間層電極層形成工程で、MnとPtとを含んだMn含有Ptペーストを前記サーミスタ素体の上に塗布し、前記Mn含有Ptペーストを焼成して、前記導電性中間層及び前記電極層を形成することを特徴とする。
 すなわち、このサーミスタ素子の製造方法では、中間層電極層形成工程で、MnとPtとを含んだMn含有Ptペーストをサーミスタ素体の上に塗布し、Mn含有Ptペーストを焼成して、導電性中間層及び電極層を形成するので、焼成時の高温でMn含有Ptペースト中のMnがサーミスタ素体側に拡散して導電性中間層を形成すると共に、残ったPtが電極層を形成することができる。
 本発明によれば、以下の効果を奏する。
 すなわち、本発明に係るサーミスタ素子及びその製造方法によれば、導電性中間層が、Mnを含む複合酸化物であるので、Mnを含む複合酸化物の結晶構造がペロブスカイト型のサーミスタ素体に近いことにより、導電性中間層の密着性が向上すると共に、導電性中間層が高温でも安定して存在することができる。
 したがって、高温で焼き付けが必要なPt等の電極層を使用することができると共に、密着性が良好で高い信頼性を有したサーミスタ素子が得られる。
本発明に係るサーミスタ素子及びその製造方法の一実施形態において、サーミスタ素子を示す断面図である。 本実施形態において、サーミスタ素子の製造方法を工程順に示す断面図である。 本実施形態において、サーミスタ素子の別の製造方法を工程順に示す断面図である。 本発明に係るサーミスタ素子及びその製造方法の実施例4において、サーミスタ素子の断面を示すSEM画像である。 本発明の実施例4において、サーミスタ素子の断面におけるLaの組成分布画像である。 本発明の実施例4において、サーミスタ素子の断面におけるYの組成分布画像である。 本発明の実施例4において、サーミスタ素子の断面におけるMnの組成分布画像である。 本発明の実施例4において、サーミスタ素子の断面におけるCaの組成分布画像である。 本発明に係るサーミスタ素子及びその製造方法の実施例5において、サーミスタ素子の断面を示すSEM画像である。 本発明の実施例5において、サーミスタ素子の断面におけるMnの組成分布画像である。 本発明の実施例5において、サーミスタ素子の断面におけるLaの組成分布画像である。 本発明の実施例5において、サーミスタ素子の断面におけるYの組成分布画像である。 本発明の実施例5において、サーミスタ素子の断面におけるCaの組成分布画像である。
 以下、本発明に係るサーミスタ素子及びその製造方法の一実施形態を、図1から図3を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能又は認識容易な大きさとするために必要に応じて縮尺を適宜変更している。
  本実施形態のサーミスタ素子1は、図1から図3に示すように、結晶構造がペロブスカイト型の酸化物サーミスタ材料を含むサーミスタ素体2、サーミスタ素体2上に形成された導電性中間層3と、導電性中間層3上に形成された電極層4とを備えている。
 上記導電性中間層3は、Mnを含む複合酸化物である。
 また、上記複合酸化物は、さらにY(イットリウム)を含むことが好ましい。
 さらに、複合酸化物は、さらにCa,Sr,Ba,Laのうち1種又は2種以上を含むことがより好ましい。
 上記電極層4は、Ptを含有している。すなわち、電極層4は、Ptペーストを焼き付けたPt電極である。
 なお、導電性中間層3の中の全ての金属原子に対するMnの含有割合をCMnとしたとき、0at.%<CMn≦60at.%であることが好ましい。
 また、導電性中間層3の中の全ての金属原子に対するYの含有割合をCとしたとき、0at.%<C≦60at.%であることが好ましい。
 さらに、導電性中間層3は、Ca,Sr,Ba,Laのうち1種又は2種以上を、全ての金属原子に対する含有割合として0.1at.%以上含むことが好ましい。Ca,Sr,Ba,Laの含有割合は特に制限はないが、10at.%以下であってもよい。
 なお、導電性中間層3は、サーミスタ素体2と電極層4との間の全面に配置されていなくてもよく、導電性中間層3は非連続に複数の箇所にあってもよい。
 なお、導電性中間層3の厚さは、0.1~3μmであることが好ましい。
 また、本実施形態のサーミスタ素子1のB定数は、例えば1500~4000Kの範囲である。
 さらに、本実施形態のサーミスタ素子1の抵抗率は、例えば10~10Ωcmの範囲である。
 本実施形態のサーミスタ素子1の製造方法は、図2に示すように、結晶構造がペロブスカイト型のサーミスタ材料を含むサーミスタ素体2の上にMnを含む複合酸化物の導電性中間層3を形成する中間層形成工程と、導電性中間層3の上に電極層4を形成する電極層形成工程とを有している。
 上記中間層形成工程では、Mnを含んだ粉末と有機溶媒と分散剤とを含有したMn含有分散液をサーミスタ素体2の上に塗布し、図2の(a)に示すように、Mn含有分散液を乾燥させて仮中間層3aを形成する。
 上記電極層形成工程では、図2の(b)に示すように、Ptを含んだPtペーストを仮中間層3aの上に塗布し、Ptペーストを焼成して、図2の(c)に示すように、電極層4を形成すると共に仮中間層3aを導電性中間層3とする。
 なお、上記Mn含有分散液は、さらにYを含んでいることが好ましい。
 また、Mn含有分散液は、さらにCa,Sr,Ba,Laのうち1種又は2種以上含んでいることがより好ましい。これらはMn化合物と反応して、Mnとの複合酸化物を形成するため、それぞれの酸化物や炭酸塩などでもよいが、反応時に異常粒成長を起こすこともあるため、Mnとの複合酸化物となっていることが好ましい。
 上記サーミスタ素体2は、例えば、各種金属酸化物からなる基材と、焼結促進材及び電気特性調整剤としての炭酸カルシウム(CaCO)とを出発原料として、各金属が所定のモル比となるように各材料を秤量し、これらの材料を混合、乾燥後で仮焼成を行ったのち、バインダを混合したものを板状に成型し、焼成して得られる。
 上記Mn含有分散液は、例えば、少なくともMnを含む材料を所定のモル比となるように秤量し、焼成してできた粉末をエタノール等の有機溶剤と分散剤とを混ぜた後、ペイントシェーカなどの分散機によって分散処理して作製する。
 すなわち、Mnの他にY,Ca,Sr,Ba,Laのうち1種又は2種以上の粉末を含有させる場合は、これら各種金属が所定のモル比になるように秤量し、焼成してできた粉末を有機溶剤と分散剤とを混合、分散して作製する。
 上記電極層4は、例えば、Ptペーストを印刷により塗布し、焼成することで作製する。なお、この焼成の焼き付け温度が高い程、電極層4と導電性中間層3との界面に生じるボイドは減少する。
 また、本実施形態のサーミスタ素子1の別の製造方法は、図3に示すように、結晶構造がペロブスカイト型のサーミスタ材料を含むサーミスタ素体2の上にMnを含む複合酸化物の導電性中間層3を形成すると共に導電性中間層3上に電極層4を形成する中間層電極層形成工程を有している。
 この中間層電極層形成工程では、MnとPtとを含んだMn含有Ptペースト4bをサーミスタ素体2の上に塗布、Mn含有Ptペースト4bを焼成して、導電性中間層3及び電極層4とを形成する。
 上記Mn含有Ptペースト4bは、例えばPtペーストにMnを添加して作製する。
 このように本実施形態のサーミスタ素子1では、導電性中間層3が、Mnを含む複合酸化物であるので、Mnを含む複合酸化物の結晶構造がペロブスカイト型のサーミスタ素体2に近いことにより、導電性中間層3とサーミスタ素体との密着性が向上すると共に、導電性中間層3が高温でも安定して存在することができる。特に、導電性中間層3が、Mnを含有していることで、貴金属で形成された電極層4との高い密着性を得ることができると共に、高温での焼き付けが必要な貴金属等で電極層4を形成する場合でも、焼き付け後も安定して存在することができる。また、サーミスタ素体2を構成する酸化物サーミスタ材料が、Mnを含む酸化物を含有していることで、Mnを含む複合酸化物である導電性中間層3との密着性がより向上する。
 したがって、高温で焼き付けしてPtの電極層4を形成しても、導電性中間層3との良好な密着性を得ることができる。また、Ptで形成された電極層4は、Ptが拡散し難く、サーミスタ特性の変化が少ないと共に、はんだ食われが少ないことで、はんだ付けしても電極の密着性が保たれる。
 また、形成された中間層が、Yを含むので、熱処理時にMnとYとが反応して複合酸化物となると同時に焼結する、または、すでにYとの複合酸化物になっていたMn化合物が焼結することで、より高い導電性を得ることができる。なお、サーミスタ素体2を構成する酸化物サーミスタ材料が、Yを含む酸化物を含有していることで、Yを含む導電性中間層3との密着性がより向上する。
 さらに、複合酸化物が、さらにCa,Sr,Ba,Laのうち1種又は2種以上を含むので、複合酸化物中のYとCa,Sr,Ba,Laのうち少なくとも一種類とが置換することで、Laの場合は格子の歪みが減少することで電子の移動度が向上し、Ca,Sr,Baの場合はキャリアが増加することにより高い導電性を得ることができる。
 なお、導電性中間層3の中の全ての金属原子に対するMnの含有割合をCMnとしたとき、0at.%<CMn≦60at.%であるので、良好な密着性を得ることができる。
 さらに、導電性中間層3の中の全ての金属原子に対するYの含有割合をCとしたとき、0at.%<C≦60at.%であるので、Mnとの複合酸化物を形成し良好な導電性を得ることができる。
 さらに、導電性中間層3が、Ca,Sr,Ba,Laのうち1種又は2種以上を、全ての金属原子に対する含有割合として0.1at.%以上含むので、良好な導電性を得ることができる。
 本実施形態のサーミスタ素子1の製造方法では、中間層形成工程で、Mnを含んだ粉末と有機溶媒と分散剤とを含有したMn含有分散液をサーミスタ素体2の上に塗布し、Mn含有分散液を乾燥させて仮中間層3aを形成し、電極層形成工程で、Ptを含んだPtペーストを仮中間層3aの上に塗布し、Ptペーストを焼成して、電極層4を形成すると共に仮中間層3aを導電性中間層3とするので、焼成時の高温で仮中間層3aのMnとサーミスタ素体2のサーミスタ材料とを反応させてMnを含んだ複合酸化物の導電性中間層3とすることができる。
 また、Mn含有分散液が、さらにYを含んでいるので、焼成時にMnとYとが反応した複合酸化物の導電性中間層3を得ることができる。
 さらに、Mn含有分散液が、さらにCa,Sr,Ba,Laのうち1種又は2種以上を含んでいるので、焼成時にMnとCa,Sr,Ba,Laのうち1種又は2種以上、または、MnとYとCa,Sr,Ba,Laのうち1種又は2種以上とが反応と同時に焼結、または、MnとCa,Sr,Ba,Laのうち1種又は2種以上、または、MnとYとCa,Sr,Ba,Laのうち1種又は2種以上の複合酸化物粒子が焼結した複合酸化物の導電性中間層3を得ることができる。
 本実施形態のサーミスタ素子1の別の製造方法では、中間層電極層形成工程で、MnとPtとを含んだMn含有Ptペースト3bをサーミスタ素体2の上に塗布し、Mn含有Ptペースト3bを焼成して、導電性中間層3及び電極層4を形成するので、焼成時の高温でMn含有Ptペースト3b中のMnがサーミスタ素体2側に拡散して導電性中間層3を形成すると共に、残ったPtが電極層4を形成することができる。
<実施例1>
 まず、市販のイットリウム酸化物(Y),クロム酸化物(Cr)及び炭酸マンガン(MnCO)からなる基材と、焼結促進材及び電気特性調整剤としての炭酸カルシウム(CaCO)とを出発原料として、Y:Cr:Mn:Caのモル比が79.5:8.5:8.5:3.5となるように各材料を秤量した。秤量したこれらの材料を湿式ボールミル混合、乾燥後1000℃で5時間仮焼成を行ったのち、バインダとしてポリビニルアルコールを1.5wt%を混合した。この粉末を一軸加圧成型によって厚さ1mmの板状に成型した。これを、1500℃で24時間焼成して得られた板材と両面研磨して、サーミスタ素体となる厚さが0.4mmのウェハを作製した。
 次に、導電性中間層材料として、Y:La:Sr:Mnのモル比が3:6:1:10となるように各材料を秤量し、1200℃で5時間焼成した。できた粉末を乳鉢で粗粉砕したのち、日油株式会社製SC-0505Kを分散剤として用い、ペイントシェーカによって20wt.%のエタノール分散液(Mn含有分散液)を作製した。この分散液をディップコートによって作製したウェハの両面に塗布、乾燥して導電性中間層を形成した。なお、この導電性中間層は、Mn,Y,La,Srの複合酸化物となっている。この後、Ptペーストを印刷によって塗布し、1300℃で焼成して電極層を形成した。さらに、この後、ダイシングによって0.5mm×0.5mmのチップ状のサーミスタ素子を得た。
 この実施例1において、25℃で測定したサーミスタ素子20個の抵抗値のばらつきを示す3CV(変動係数)は4.4%であった。サーミスタ素子断面をTEM-EDSにて観察した結果、観察した5視野平均で0.1μmの導電性中間層が観察され、組成はMn:48at.%、Y:17at.%、La:31at.%、Sr:5at.%であった。
<実施例2>
 実施例1で作製したウェハ(サーミスタ素体)両面に、MnをPt(白金)に対して5wt.%添加したPtペースト(Mn含有Ptペースト)を印刷によって塗布し、1400℃で焼成して、電極層を形成すると同時に導電性中間層を形成した。なお、この導電性中間層は、Mn以外にサーミスタ素体から拡散した元素Y,Caも含む複合酸化物となっている。この後、ダイシングによって0.5mm×0.5mmのチップ状のサーミスタ素子を得た。
 この実施例2において、25℃で測定したサーミスタ素子20個の抵抗値のばらつきを示す3CVは4.9%であった。素子断面をTEM-EDSにて観察した結果、観察した5視野平均で3μmの導電性中間層が観察され、組成はMn:44at.%、Y:54at.%、Ca:2at.%であった。
<実施例3>
 市販の酸化ランタン(La)、クロム酸化物(Cr)及び炭酸マンガン(MnCO)からなる基材と、焼結促進材及び電気特性調整剤としての炭酸カルシウム(CaCO)とを出発原料として、La:Cr:Mn:Caのモル比が7:6:4:3となるように各材料を秤量した。秤量したこれらの材料を湿式ボールミル混合、乾燥後1300℃で5時間仮焼成を行った。Laは大気中の水分と反応し、容易に水酸化物に変化することから、1000℃、2時間にて加熱後3時間以内に秤量した。仮焼成後の粉末を乳鉢で粗粉砕したのち、市販のイットリウム酸化物(Y)をYがモル比でLaの2倍量になるように秤量し、湿式ボールミル混合した。その後乾燥させ、バインダとしてポリビニルアルコールを粉末の1.5wt.%を混合した。この粉末を一軸加圧成型によって厚さ1mmの板状に成型した。これを、1600℃で24時間焼成して得られた板材を両面研磨して、サーミスタ素体となる厚さが0.4mmのウェハを作製した。
 次に、導電性中間層材料として、Y:La:Ca:Mnのモル比が1:7:2:10となるように各材料を秤量し、1200℃で5時間焼成した。できた粉末を乳鉢で粗粉砕したのち、日油株式会社製SC-0505Kを分散剤としてペイントシェーカを用いて20wt.%のエタノール分散液(Mn含有分散液)を作製した。この分散液をディップコートによって作製したウェハ(サーミスタ素体)の両面に塗布、乾燥して導電性中間層を形成した。なお、この導電性中間層は、Mn,Y,La,Caの複合酸化物となっている。この後、Ptペーストを印刷によって塗布し、1300℃で焼成して電極層を形成した。さらにこの後、ダイシングによって0.5mm×0.5mmのチップ状のサーミスタ素子を得た。
 この実施例3において、25℃で測定したサーミスタ素子20個の抵抗値のばらつきを示す3CVは1.3%であった。素子断面をTEM-EDSにて観察した結果、観察した5視野平均で1.2μmの中間層が観察され、組成はMn:50at.%、Y:6at.%、La:35at.%、Ca:9at.%であった。
<実施例4>
 実施例3で作製したウェハ(サーミスタ素体)両面に、MnをPtに対して1wt.%添加したPtペースト(Mn含有Ptペースト)を印刷によって塗布し、1300℃で焼成して電極層を形成すると同時に導電性中間層を形成した。なお、この導電性中間層は、Mn以外にサーミスタ素体から拡散した元素Y,La,Caも含む複合酸化物となっている。この後、ダイシングによって0.5mm×0.5mmのチップ状のサーミスタ素子を得た。
 この実施例4において、25℃で測定したサーミスタ素子20個の抵抗値のばらつきを示す3CVは3.8%であった。素子断面をTEM-EDSにて観察した結果、観察した5視野平均で0.5μmの導電性中間層が観察され、組成はMn:47at.%、Y:52at.%、La:1at.%であった。
 この実施例4において、サーミスタ素子の断面を示すSEM画像を図4に示す。
 また、この実施例4において、サーミスタ素子の断面におけるLa,Y,Mn,Caの各組成分布画像を図5~図8に示す。
<実施例5>
 実施例3で作製したウェハ両面に、MnをPtに対して1wt.%添加したPtペースト(Mn含有Ptペースト)を印刷によって塗布し、1400℃で焼成して電極層を形成すると同時に導電性中間層を形成した。なお、この導電性中間層は、Mn以外にサーミスタ素体から拡散した元素Y,La,Caも含む複合酸化物となっている。この後、ダイシングによって0.5mm×0.5mmのチップ状のサーミスタ素子を得た。
 この実施例5において、25℃で測定したサーミスタ素子20個の抵抗値のばらつきを示す3CVは2.5%であった。素子断面をTEM-EDSにて観察した結果、観察した5視野平均で0.7μmの中間層が観察され、組成はMn:43at.%、Y:46at.%、La:6at.%、Ca:1at.%、Cr:4at.%であった。
 この実施例5において、サーミスタ素子の断面を示すSEM画像を図9に示す。
 また、この実施例5において、サーミスタ素子の断面におけるMn,La,Y,Caの各組成分布画像を図10~図13に示す。
<実施例6>
 導電性中間層材料として、Y:La:Ba:Mnのモル比が2:7:1:10となるように各材料を秤量し、1200℃で5時間焼成した。できた粉末を乳鉢で粗粉砕したのち、日油株式会社製SC-0505Kを分散剤としてペイントシェーカを用いて20wt.%のエタノール分散液(Mn含有分散液)を作製した。この分散液をディップコートによって、実施例3で作製したウェハ両面に塗布、乾燥して導電性中間層を形成した。なお、この導電性中間層は、Mn,Y,La,Caの複合酸化物となっている。この後、Ptペーストを印刷によって塗布し、1300℃で焼成して電極層を形成した。さらにこの後、ダイシングによって0.5mm×0.5mmのチップ状のサーミスタ素子を得た。
 この実施例6において、25℃で測定したサーミスタ素子20個の抵抗値のばらつきを示す3CVは1.8%であった。素子断面をTEM-EDSにて観察した結果、観察した5視野平均で0.8μmの中間層が観察され、組成はMn:48at.%、Y:11at.%、La:34at.%、Ba:4at.%、Cr:4at.%であった。
<比較例1>
 実施例1で作製したウェハ(サーミスタ素体)に中間層を形成しなかったこと以外実施例1と同様にサーミスタ素子を作製した。
 この比較例1において、25℃で測定したサーミスタチップ20個の抵抗値のばらつきを示す3CVは7.8%であった。
 これらの本発明の各実施例及び比較例について、中間層組成,中間層形成方法及び抵抗値ばらつき(3CV)について評価した結果を、表1に示す。
 これらの評価結果から、比較例1では、抵抗値ばらつき(3CV)が7.8%と大きいのに対し、本発明の実施例はいずれも4.9%以下と小さいことが分かる。このように本発明の実施例では、Ptペースト又はMn含有Ptペーストの焼き付けが可能であり、また導電性中間層の密着性が向上して高い導電性を有していることが分かる。
 なお、実施例2,4及び5では、導電性中間層組成にY,La,Caが含まれているが、これは焼成時にサーミスタ素体からY,La,Caが導電性中間層に熱拡散したものである。
 本発明の技術範囲は上記実施形態および上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 1…サーミスタ素子、2…サーミスタ素体、3…導電性中間層、3a…仮中間層、4…電極層、4a…Ptペースト、4b…Mn含有Ptペースト

 

Claims (11)

  1.  結晶構造がペロブスカイト型の酸化物サーミスタ材料を含むサーミスタ素体と、
     前記サーミスタ素体の上に形成された導電性中間層と、
     前記導電性中間層の上に形成された電極層とを備え、
     前記導電性中間層が、Mnを含む複合酸化物であることを特徴とするサーミスタ素子。
  2.  請求項1に記載のサーミスタ素子において、
     前記複合酸化物が、さらにYを含むことを特徴とするサーミスタ素子。
  3.  請求項1に記載のサーミスタ素子において、
     前記複合酸化物が、さらにCa,Sr,Ba,Laのうち1種又は2種以上を含むことを特徴とするサーミスタ素子。
  4.  請求項1に記載のサーミスタ素子において、
     前記電極層が、Ptを含有していることを特徴とするサーミスタ素子。
  5.  請求項1に記載のサーミスタ素子において、
     前記導電性中間層の中の全ての金属原子に対する前記Mnの含有割合をCMnとしたとき、0at.%<CMn≦60at.%であることを特徴とするサーミスタ素子。
  6.  請求項2に記載のサーミスタ素子において、
     前記導電性中間層の中の全ての金属原子に対する前記Yの含有割合をCとしたとき、0at.%<C≦60at.%であることを特徴とするサーミスタ素子。
  7.  請求項3に記載のサーミスタ素子において、
     前記導電性中間層が、Ca,Sr,Ba,Laのうち1種又は2種以上を、全ての金属原子に対する含有割合として0.1at.%以上含むことを特徴とするサーミスタ素子。
  8.  結晶構造がペロブスカイト型のサーミスタ材料を含むサーミスタ素体の上にMnを含む複合酸化物の導電性中間層を形成する中間層形成工程と、
     前記導電性中間層の上に電極層を形成する電極層形成工程とを有し、
     前記中間層形成工程で、Mnを含んだ粉末と有機溶媒と分散剤とを含有したMn含有分散液を前記サーミスタ素体の上に塗布し、前記Mn含有分散液を乾燥させて仮中間層を形成し、
     前記電極層形成工程で、Ptを含んだPtペーストを前記仮中間層の上に塗布し、前記Ptペーストを焼成して、前記電極層を形成すると共に前記仮中間層を前記導電性中間層とすることを特徴とするサーミスタ素子の製造方法。
  9.  請求項8のサーミスタ素子の製造方法において、
     前記Mn含有分散液が、さらにYを含んでいることを特徴とするサーミスタ素子の製造方法。
  10.  請求項8のサーミスタ素子の製造方法において、
     前記Mn含有分散液が、さらにCa,Sr,Ba,Laのうち1種又は2種以上を含んでいることを特徴とするサーミスタ素子の製造方法。
  11.  結晶構造がペロブスカイト型のサーミスタ材料を含むサーミスタ素体の上にMnを含む複合酸化物の導電性中間層を形成すると共に前記導電性中間層の上に電極層を形成する中間層電極層形成工程を有し、
     前記中間層電極層形成工程で、MnとPtとを含んだMn含有Ptペーストを前記サーミスタ素体の上に塗布し、前記Mn含有Ptペーストを焼成して、前記導電性中間層及び前記電極層を形成することを特徴とするサーミスタ素子の製造方法。

     
PCT/JP2023/014072 2022-08-25 2023-04-05 サーミスタ素子及びその製造方法 WO2024042767A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022134195A JP2024030943A (ja) 2022-08-25 2022-08-25 サーミスタ素子及びその製造方法
JP2022-134195 2022-08-25

Publications (1)

Publication Number Publication Date
WO2024042767A1 true WO2024042767A1 (ja) 2024-02-29

Family

ID=90012944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014072 WO2024042767A1 (ja) 2022-08-25 2023-04-05 サーミスタ素子及びその製造方法

Country Status (2)

Country Link
JP (1) JP2024030943A (ja)
WO (1) WO2024042767A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02165602A (ja) * 1988-12-19 1990-06-26 Murata Mfg Co Ltd 温度抵抗素子
JPH097803A (ja) * 1995-06-15 1997-01-10 Ooizumi Seisakusho:Kk 高温用ガラス封止型サーミスタ
JPH09186002A (ja) * 1995-12-28 1997-07-15 Ooizumi Seisakusho:Kk サーミスタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02165602A (ja) * 1988-12-19 1990-06-26 Murata Mfg Co Ltd 温度抵抗素子
JPH097803A (ja) * 1995-06-15 1997-01-10 Ooizumi Seisakusho:Kk 高温用ガラス封止型サーミスタ
JPH09186002A (ja) * 1995-12-28 1997-07-15 Ooizumi Seisakusho:Kk サーミスタ

Also Published As

Publication number Publication date
JP2024030943A (ja) 2024-03-07

Similar Documents

Publication Publication Date Title
US8035474B2 (en) Semi-conductive ceramic material and NTC thermistor using the same
US10629322B2 (en) Electrically conductive oxide sintered compact, member for electrical conduction, gas sensor, piezoelectric element, and method for producing piezoelectric element
EP3696827B1 (en) Thermistor sintered body and temperature sensor element
WO2024042767A1 (ja) サーミスタ素子及びその製造方法
JPH11251109A (ja) サーミスタ素子およびその製造方法
KR100340668B1 (ko) 적층형 반도체 세라믹 소자 및 적층형 반도체 세라믹소자의 제조 방법
JP6665710B2 (ja) 誘電体組成物及び電子部品
US11776717B2 (en) Ceramic member and electronic device
JP6675050B1 (ja) サーミスタ焼結体および温度センサ素子
TW202410078A (zh) 熱敏電阻元件及其製造方法
CN101268528B (zh) 层叠型正特性热敏电阻
JP7310543B2 (ja) 誘電体組成物および電子部品
JP2004104093A (ja) 負特性サーミスタの製造方法
JP2007230839A (ja) 圧電磁器組成物、積層型圧電素子及びその製造方法
JP2003238248A (ja) 圧電磁器組成物と圧電デバイス
JP6786936B2 (ja) 誘電体組成物及び電子部品
US11387021B2 (en) Ceramic member and electronic device
JP3598177B2 (ja) 電圧非直線性抵抗体磁器
JP6665711B2 (ja) 誘電体組成物及び電子部品
JP6658337B2 (ja) 誘電体組成物及び電子部品
JPH08222468A (ja) セラミック素子とその製造方法
JP2003277142A (ja) 圧電セラミックスおよび圧電アクチュエータ
KR20230090901A (ko) 저저항 ntc 서미스터 후막 제조용 조성물 및 그 제조방법
CN113443908A (zh) 陶瓷组成物、陶瓷烧结体及叠层型陶瓷电子元件
JPH10312907A (ja) サーミスタ素子とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856887

Country of ref document: EP

Kind code of ref document: A1