WO2024041439A1 - Fibre continue composite d'aérogel de sio2, procédé de préparation associé et utilisation correspondante - Google Patents

Fibre continue composite d'aérogel de sio2, procédé de préparation associé et utilisation correspondante Download PDF

Info

Publication number
WO2024041439A1
WO2024041439A1 PCT/CN2023/113474 CN2023113474W WO2024041439A1 WO 2024041439 A1 WO2024041439 A1 WO 2024041439A1 CN 2023113474 W CN2023113474 W CN 2023113474W WO 2024041439 A1 WO2024041439 A1 WO 2024041439A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
solution
sio
composite fiber
phenolic resin
Prior art date
Application number
PCT/CN2023/113474
Other languages
English (en)
Chinese (zh)
Inventor
张伟
胡佳丽
魏发云
戴家木
王海楼
李大伟
Original Assignee
南通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通大学 filed Critical 南通大学
Publication of WO2024041439A1 publication Critical patent/WO2024041439A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/12Condensation polymers of aldehydes or ketones
    • C04B26/122Phenol-formaldehyde condensation polymers
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D27/00Details of garments or of their making
    • A41D27/02Linings
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/06Thermally protective, e.g. insulating
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/08Heat resistant; Fire retardant
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D2400/00Functions or special features of garments
    • A41D2400/10Heat retention or warming
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D2500/00Materials for garments
    • A41D2500/50Synthetic resins or rubbers

Definitions

  • the invention belongs to the technical field of composite material preparation and relates to a continuous SiO 2 airgel composite fiber and its preparation method and application.
  • SiO 2 aerogel has a very low thermal conductivity due to its porous, low density, and large specific surface area, and it decomposes without producing toxic gases, so it is considered an ideal thermal insulation material.
  • SiO 2 aerogel has low strength and is easily broken, which limits its application range.
  • it is necessary to go through the steps of hydrolysis, polymerization (gelation), solvent replacement, and hydrophobic modification before drying.
  • SiO 2 aerogel is not prepared at normal temperature and pressure, The machine requirements are high, the cost is increased and industrialization is difficult; however, if SiO 2 aerogel is prepared at normal temperature and pressure, the gelation speed will be very slow during the polymerization stage, which also increases the difficulty of SiO 2 aerogel preparation cycle.
  • SiO 2 aerogel is combined with other flexible materials, its application is not only limited by the form of the substrate that is combined with SiO 2 aerogel, but is also still limited by long preparation cycles or difficulties in industrialization due to high costs.
  • SiO 2 airgel has a certain degree of flexibility.
  • foldability morphological changes and industrialization potential, it can adapt to multiple application scenarios. This can expand the application scope of SiO2 airgel and provide a technical basis for its application in thermal insulation fillers, linings, thermal protective clothing, etc.
  • the present invention aims to provide a continuous SiO 2 airgel composite fiber and its preparation method and application.
  • the continuous SiO 2 airgel composite fiber has excellent thermal insulation properties and flame retardant properties, and is flexible and Good strength.
  • the invention provides a preparation method of continuous SiO 2 airgel composite fiber, which includes the following steps:
  • the silicon source is at least one of trimethoxymethylsilane, tetramethoxysilane, ethyl orthosilicate and water glass.
  • the acidic catalyst is one of oxalic acid, hydrochloric acid, hydrofluoric acid, nitric acid, formic acid and acetic acid;
  • the alkaline catalyst is one of sodium hydroxide, calcium hydroxide and ammonia water.
  • the average weight average molecular weight of the high molecular weight thermosetting phenolic resin in the high molecular weight thermosetting phenolic resin solution is 600.
  • thermosetting phenolic resin in the high molecular weight thermosetting phenolic resin solution is one of F-51B, F-52B and F-44B.
  • step S2 the concentration of the high molecular weight thermosetting phenolic resin in the high molecular weight thermosetting phenolic resin solution is 40wt% to 50wt%, and the high molecular weight thermosetting phenolic resin solution and the SiO 2 airgel precursor solution The volume ratio is (1 ⁇ 2):3.
  • the coagulation bath of the wet spinning is specifically: under the temperature condition of 40°C to 60°C, the coagulation bath is first carried out in an anhydrous ethanol solution containing a silicon source, and then the coagulation is carried out in a sodium sulfate solution containing boric acid. bath.
  • the volume concentration of the silicon source is 10% to 30%; in the sodium sulfate solution containing boric acid, the volume concentration of boric acid is 0.5% to 2%.
  • the winding speed of the virgin silk after wet spinning is 5-50m/min.
  • the hydrophobic modification is specifically carried out by using a n-hexane solution of a hydrophobic modifier, and the hydrophobic modifier is trimethylchlorosilane, hexamethyldisiloxane and One of hexamethyldisilazane, the modification time is 8 to 12 hours.
  • the volume concentration of the hydrophobic modifier is 10% to 20%.
  • drying is using liquid CO 2 supercritical drying and then vacuum drying at 150°C to 180°C for 1 to 2 hours.
  • the invention also provides the above continuous SiO 2 airgel composite fiber or the continuous SiO 2 airgel composite prepared by the above preparation method. Application of fibers in thermal insulation materials or flame retardant materials.
  • the thermal insulation material is a protective clothing lining or thermal insulation felt.
  • the present invention has the following beneficial technical effects:
  • the preparation method provided by the present invention realizes rapid gelation of the precursor solution in the polymerization stage at normal temperature and pressure by adding a high molecular weight thermosetting phenolic resin to the precursor solution and adjusting the pH, and the added phenolic resin increases
  • the spinnability of SiO 2 aerogel has an enhanced and toughening effect, making the SiO 2 aerogel weavable and processable. It is then obtained through wet spinning processing and subsequent hydrophobic modification and supercritical drying.
  • Continuous SiO 2 airgel composite fiber not only has a simple preparation method, but also solves the problems of traditional SiO 2 airgel being easily broken and having low strength.
  • the continuous SiO 2 airgel composite fiber provided by the present invention not only has good thermal insulation properties, but also has certain toughness, strength, corrosion resistance, and no toxic gas is produced when burned.
  • SiO 2 aerogel Since SiO 2 aerogel has excellent thermal stability, and after carbonization of phenolics at high temperatures, it can also play a role in heat insulation and maintain the shape of SiO 2 aerogel fiber.
  • the fiber also has excellent flame retardant effect.
  • Figure 1 is a flow chart of a preparation method of continuous SiO 2 airgel composite fiber provided by the present invention
  • Figure 2 is a stress-elongation curve of the continuous SiO 2 airgel composite fiber prepared in Example 1;
  • Figure 3 is a physical diagram showing that the continuous SiO 2 airgel composite fiber prepared in Example 1 can still maintain fiber shape despite carbonization at high temperatures;
  • Figure 4 is a weight loss curve of the SiO 2 aerogel prepared in Comparative Example 1;
  • Figure 5 is a physical picture of the granular SiO 2 aerogel that cannot form fibers in Comparative Example 1.
  • the present invention provides a method for preparing continuous SiO 2 airgel composite fibers, which includes the following steps:
  • the acidic catalyst can be one of oxalic acid, hydrochloric acid, hydrofluoric acid, nitric acid, formic acid and acetic acid.
  • thermosetting phenolic resin solution Add the high molecular weight thermosetting phenolic resin solution to the SiO 2 airgel precursor solution, stir thoroughly and mix evenly, then add the alkaline catalyst dropwise while stirring at low speed until the pH is 6-7, and let it stand for 2- After 3 hours, use the spinning stock solution for wet spinning to obtain virgin silk;
  • the high molecular weight thermosetting phenolic resin in the high molecular weight thermosetting phenolic resin solution can be one of F-51B, F-52B and F-44B.
  • the alkaline catalyst is one of sodium hydroxide, calcium hydroxide and ammonia.
  • the specific coagulation bath of wet spinning is: under the temperature condition of 40°C to 60°C, first conduct a coagulation bath in an absolute ethanol solution containing a silicon source, and then conduct a coagulation bath in a sodium sulfate solution containing boric acid.
  • the volume concentration of the silicon source is preferably 10% to 30%; in the sodium sulfate solution containing boric acid, the volume concentration of boric acid is preferably 0.5% to 2%.
  • the winding speed of the virgin silk after wet spinning is 5-50m/min.
  • Hydrophobic modification is specifically carried out by using a n-hexane solution of a hydrophobic modifier.
  • the hydrophobic modifier can be one of trimethylchlorosilane, hexamethyldisiloxane and hexamethyldisilazane.
  • the modification time is 8 to 12 hours.
  • the volume concentration of the hydrophobic modifier is 10% to 20%.
  • the drying method specifically uses liquid CO2 supercritical drying and then vacuum drying at 150°C to 180°C for 1 to 2 hours.
  • a phenolic resin reinforced continuous SiO 2 airgel fiber the preparation steps of which are as follows:
  • the spinning stock solution is extruded through the spinneret and passes through two coagulation baths.
  • the coagulation bath temperature is 55°C.
  • the solute is a silicon source and the solvent is anhydrous ethanol.
  • the solute volume concentration is 20%.
  • a sodium sulfate solution with a boric acid content of 1% after passing through the coagulation bath, virgin silk is obtained, and the winding speed of the virgin silk is 20m/min;
  • the drying process is divided into two steps.
  • the first step is supercritical drying with liquid CO2
  • the second step is vacuum drying at 160°C for 1 hour, that is, continuous SiO2 airgel composite fiber.
  • the continuous SiO 2 airgel composite fiber obtained in Example 1 can be formed and has a certain strength. Clamp the fiber on the upper and lower chucks of the tensile testing machine. The distance between the chucks is 10cm. Start the machine until the fiber breaks and stop the stretching movement. Export the data to make a stress-elongation curve.
  • the stress-elongation curve is shown in Figure 2. According to Figure 2, it can be seen that the breaking strength of the fiber is approximately 0.75N, indicating that the fiber has a certain strength and processability.
  • a phenolic resin reinforced continuous SiO 2 airgel fiber the preparation steps of which are as follows:
  • the spinning solution After the spinning solution is extruded through the spinneret, it passes through two coagulation baths.
  • the coagulation bath temperature is 55°C.
  • the solute is silicon source-trimethoxymethylsilane and the solvent is absolute ethanol.
  • the drying process is divided into two steps.
  • the first step is supercritical drying with liquid CO2
  • the second step is vacuum drying at 160°C for 1 hour, that is, continuous SiO2 airgel composite fiber.
  • Example 3 uses water glass as silicon source
  • the spinning solution After the spinning solution is extruded through the spinneret, it passes through two coagulation baths.
  • the coagulation bath temperature is 55°C. They are a mixture of silicon source-water glass and absolute ethanol. The volume concentration of water glass is 20 %, and a sodium sulfate solution with a boric acid content of 1%; after passing through the coagulation bath, virgin silk is obtained, and the winding speed of the virgin silk is 20m/min;
  • the drying process is divided into two steps. The first step is supercritical drying with liquid CO2 , and the second step is vacuum drying at 160°C for 1 hour, that is Continuous SiO 2 airgel composite fibers were obtained.
  • Example 4 uses tetramethoxysilane as the silicon source
  • the drying process is divided into two steps.
  • the first step is supercritical drying with liquid CO2
  • the second step is vacuum drying at 160°C for 1 hour, that is, continuous SiO2 airgel composite fiber.
  • the spinning stock solution is extruded through the spinneret and passes through two coagulation baths.
  • the coagulation bath temperature is 55°C.
  • the solute is a silicon source and the solvent is anhydrous ethanol.
  • the solute volume concentration is 20%. and a sodium sulfate solution with a boric acid content of 1%; however, what is obtained after passing through the coagulation bath is not virgin silk, but a brittle wet gel that cannot be rolled, is not easy to collect, and is very easy to break;
  • the drying process is divided into two steps. The first step is supercritical drying with liquid CO2 , and the second step is vacuum drying at 160°C for 1 hour to obtain are particles.
  • This comparative example provides a SiO 2 airgel fiber, which differs from Example 1 in that there is no backup in the preparation step (1).
  • F-52B type phenolic resin solution that is, in step (2), a certain volume of F-52B type phenolic resin solution is not added to the precursor solution.
  • the SiO 2 airgel fiber obtained in Comparative Example 1 has a low molding rate, very low strength, is brittle, and cannot be subjected to mechanical testing. It is granular and discontinuous as shown in Figure 5. However, its particles have excellent thermal stability.
  • the thermogravimetric curve is shown in Figure 4. According to Figure 4, it can be seen that its weight loss rate at 800°C is higher than 75%.
  • the spinning solution After the spinning solution is extruded through the spinneret, it passes through two coagulation baths.
  • the coagulation bath temperature is 55°C.
  • the solute is a silicon source and the solvent is anhydrous ethanol.
  • the solute volume concentration is 20%.
  • a sodium sulfate solution with a boric acid content of 1% after passing through the coagulation bath, virgin silk is obtained, and the winding speed of the virgin silk is 20m/min;
  • the drying process is divided into two steps.
  • the first step is supercritical drying with liquid CO2
  • the second step is vacuum drying at 160°C for 1 hour, that is, continuous SiO2 airgel composite fiber.
  • This comparative example provides a SiO 2 airgel fiber.
  • the difference from Example 1 is that the pH value range of the mixed sol in step (2) is not 6-7, that is, ammonia water is added in step (2). Finally, adjust the pH of the mixed solution to 4-5 to obtain a mixed sol.
  • the spinning stock solution is extruded through the spinneret and passes through two coagulation baths.
  • the coagulation bath temperature is 55°C.
  • the solute is a silicon source and the solvent is anhydrous ethanol.
  • the solute volume concentration is 20%.
  • a sodium sulfate solution with a boric acid content of 1% after passing through the coagulation bath, virgin silk is obtained, and the winding speed of the virgin silk is 20m/min;
  • the drying process is divided into two steps.
  • the first step is supercritical drying with liquid CO2
  • the second step is vacuum drying at 160°C for 1 hour, that is, continuous SiO2 airgel composite fiber.
  • This comparative example provides a SiO 2 airgel fiber.
  • the difference from Example 1 is that the pH value range of the mixed sol in step (2) is not 6-7, that is, ammonia water is added in step (2). Finally, adjust the pH of the mixed solution to 8-9 to obtain a mixed sol.
  • the preparation period of the SiO2 airgel fibers obtained in Comparative Examples 2 and 3 is 4-6 hours longer than that of Example 1. Because the gel speed is greatly reduced after the pH value changes, the resting time before wet spinning becomes longer, which extends preparation cycle.
  • the prepared phenolic resin-reinforced continuous SiO 2 aerogel fibers not only have good thermal insulation It also has certain toughness, strength, corrosion resistance, no toxic gas is produced when burned, the process is simple, and the cycle is short. Moreover, the fiber also has a flame-retardant effect and can be used in the field of thermal insulation, such as making thermal protective clothing linings and insulation felts, acting as thermal insulation fillers, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention se rapporte au domaine technique de la préparation de matériau composite et concerne une fibre continue composite d'aérogel de SiO2, un procédé de préparation associé et une utilisation correspondante. La méthode de préparation consiste à : S1, mélanger une source de silicium, de l'éthanol et de l'eau jusqu'à l'uniformité, ajouter lentement, goutte à goutte, un catalyseur acide jusqu'à ce que le pH soit égal à 3, agiter le mélange ainsi obtenu pendant 1,5 à 2 h et le laisser reposer pendant 2 à 3 h pour obtenir une solution de précurseur d'aérogel de SiO2 ; S2, ajouter une solution de résine phénolique thermodurcissable de poids moléculaire élevé, ajouter, goutte-à-goutte, un catalyseur basique tout en agitant à une faible vitesse jusqu'à ce que le pH soit situé dans la plage allant de 6 à 7, laisser le mélange reposer pendant 2 à 3 h et le soumettre en tant que solution de filage à un filage humide pour obtenir un filament brut de filage ; et S3, soumettre le filament brut de filage à une modification hydrophobe, puis le tremper dans du n-hexane pendant 12 à 24 h, l'extraire et le sécher pour obtenir une fibre continue composite d'aérogel de SiO2. La fibre continue composite d'aérogel de SiO2 présente de bonnes performances d'isolation thermique et ignifuges, présente également une bonne flexibilité et une bonne résistance et peut être appliquée à la préparation de matériaux de conservation de chaleur et d'isolation thermique ou de matériaux ignifuges.
PCT/CN2023/113474 2022-08-24 2023-08-17 Fibre continue composite d'aérogel de sio2, procédé de préparation associé et utilisation correspondante WO2024041439A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211020541.1 2022-08-24
CN202211020541.1A CN115417620B (zh) 2022-08-24 2022-08-24 一种连续SiO2气凝胶复合纤维及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2024041439A1 true WO2024041439A1 (fr) 2024-02-29

Family

ID=84198543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113474 WO2024041439A1 (fr) 2022-08-24 2023-08-17 Fibre continue composite d'aérogel de sio2, procédé de préparation associé et utilisation correspondante

Country Status (2)

Country Link
CN (1) CN115417620B (fr)
WO (1) WO2024041439A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115417620B (zh) * 2022-08-24 2023-09-15 南通大学 一种连续SiO2气凝胶复合纤维及其制备方法与应用
CN115976689A (zh) * 2023-01-03 2023-04-18 青岛大学 一种海藻多糖复合功能纤维的制备方法
CN116532058B (zh) * 2023-06-26 2023-10-17 北京玻钢院复合材料有限公司 一种无机硅杂化改性酚醛气凝胶及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531521A (zh) * 2012-02-21 2012-07-04 湖北三江航天江北机械工程有限公司 常压干燥制备透波SiO2气凝胶隔热复合材料的方法
WO2013007600A1 (fr) * 2011-07-12 2013-01-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Résine résol modifiée par du polysiloxane, corps moulés et composites pouvant être obtenus à partir de cette résine, et procédés de fabrication de cette résine, de ces corps moulés et de ces composites
CN105463603A (zh) * 2015-12-31 2016-04-06 东华大学 一种SiO2/纤维素韧性气凝胶纤维的制备方法
CN108569912A (zh) * 2018-04-29 2018-09-25 浙江工业大学 一种疏水型二氧化硅气凝胶复合纤维毡材料的制备方法
CN109023941A (zh) * 2018-09-20 2018-12-18 黄勇 一种气凝胶保温纺织复合材料的制备方法
CN112723362A (zh) * 2020-12-31 2021-04-30 山东大学 一种以水玻璃为硅源制备二氧化硅/酚醛树脂复合气凝胶材料的方法
CN113402252A (zh) * 2021-06-30 2021-09-17 河北三棵树涂料有限公司 一种气凝胶改性纤维毡隔热复合材料及其制备方法
US20210332586A1 (en) * 2020-04-28 2021-10-28 Taiwan Aerogel Technology Material Co., Ltd. Method for producing a heat insulating material composed of a hydrophobic aerogel and the application thereof
CN115417620A (zh) * 2022-08-24 2022-12-02 南通大学 一种连续SiO2气凝胶复合纤维及其制备方法与应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102716700B (zh) * 2012-06-18 2014-07-16 南京工业大学 一种高强度耐高温块状C-AlN复合气凝胶的制备方法
US10350576B2 (en) * 2013-10-29 2019-07-16 Wisconsin Alumni Research Foundation Sustainable aerogels and uses thereof
KR101556286B1 (ko) * 2014-11-05 2015-09-30 한양대학교 산학협력단 균질성과 안정성이 우수한 폴리케톤 방사용액 조성물 및 이의 제조방법
TWI565852B (zh) * 2015-05-11 2017-01-11 Acelon Chem & Fiber Corp Preparation of Nano silver blended natural cellulose fibers method
CN105597720B (zh) * 2015-12-31 2018-08-03 东华大学 一种具有光催化性能的连续SiO2/TiO2气凝胶纤维的制备方法
KR20180014480A (ko) * 2016-08-01 2018-02-09 정도연 에어로겔 섬유 및 그의 제조방법
CN110846741B (zh) * 2019-10-09 2020-10-23 清华大学 柔性莫来石纤维气凝胶材料及其制备方法
EP3842384B1 (fr) * 2019-12-23 2023-09-06 Fundación Tecnalia Research & Innovation Procédé de préparation d'aérogels de silice à base de verre soluble et produits associés
CN112661482A (zh) * 2021-01-11 2021-04-16 中广核研究院有限公司 纤维复合气凝胶材料及其制备方法和应用
CN114855291A (zh) * 2021-02-03 2022-08-05 河南爱彼爱和新材料有限公司 一种纤维素/SiO2杂化气凝胶纤维及其制备方法
CN113683812B (zh) * 2021-08-27 2023-04-18 北京宇程科技有限公司 一种阻燃隔热的聚酰亚胺纳米纤维气凝胶及其制备方法
CN114436624B (zh) * 2022-01-05 2023-01-17 江苏恒科新材料有限公司 一种聚酯纳米纤维/二氧化硅复合气凝胶膜及其制备方法
CN114635229B (zh) * 2022-02-25 2023-06-06 江苏恒科新材料有限公司 一种隔热聚酯纳米纤维膜的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013007600A1 (fr) * 2011-07-12 2013-01-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Résine résol modifiée par du polysiloxane, corps moulés et composites pouvant être obtenus à partir de cette résine, et procédés de fabrication de cette résine, de ces corps moulés et de ces composites
CN102531521A (zh) * 2012-02-21 2012-07-04 湖北三江航天江北机械工程有限公司 常压干燥制备透波SiO2气凝胶隔热复合材料的方法
CN105463603A (zh) * 2015-12-31 2016-04-06 东华大学 一种SiO2/纤维素韧性气凝胶纤维的制备方法
CN108569912A (zh) * 2018-04-29 2018-09-25 浙江工业大学 一种疏水型二氧化硅气凝胶复合纤维毡材料的制备方法
CN109023941A (zh) * 2018-09-20 2018-12-18 黄勇 一种气凝胶保温纺织复合材料的制备方法
US20210332586A1 (en) * 2020-04-28 2021-10-28 Taiwan Aerogel Technology Material Co., Ltd. Method for producing a heat insulating material composed of a hydrophobic aerogel and the application thereof
CN112723362A (zh) * 2020-12-31 2021-04-30 山东大学 一种以水玻璃为硅源制备二氧化硅/酚醛树脂复合气凝胶材料的方法
CN113402252A (zh) * 2021-06-30 2021-09-17 河北三棵树涂料有限公司 一种气凝胶改性纤维毡隔热复合材料及其制备方法
CN115417620A (zh) * 2022-08-24 2022-12-02 南通大学 一种连续SiO2气凝胶复合纤维及其制备方法与应用

Also Published As

Publication number Publication date
CN115417620B (zh) 2023-09-15
CN115417620A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2024041439A1 (fr) Fibre continue composite d'aérogel de sio2, procédé de préparation associé et utilisation correspondante
CN106867019B (zh) 一锅法制备SiO2-纤维素复合气凝胶材料的方法
CN106495109B (zh) 一种泡沫状氮化硼块体材料制备方法
CN113831581B (zh) 一种高弹性抗辐射纳米纤维气凝胶材料及其制备方法
CN112694638B (zh) 柔性阻燃气凝胶、其制备方法与应用
CN112919924B (zh) 一种高强度的轻质混凝土及制备方法
CN110615663B (zh) 一种实木纤维/SiO2气凝胶复合保温材料及制备方法
WO2014110891A1 (fr) Procédé de préparation d'aérogel de silice
CN109721060B (zh) 一种防掉粉二氧化硅复合气凝胶及其制备方法
CN112934128A (zh) 一种核壳结构有机无机杂化纳米纤维气凝胶弹性体及其制备与应用
CN112709075A (zh) 一种高强度气凝胶改性的隔热毡及其制备方法
CN106757525A (zh) 一种晶体纤维的生产方法
CN114605696B (zh) 一种二氧化硅/芳纶纳米纤维多功能复合隔热气凝胶的制备方法
CN106048780A (zh) 一种氧化铝基连续纤维的制备方法
CN102108567A (zh) 一种超细氧化镁陶瓷纤维的制备方法
CN108484097B (zh) 一种木质素增强二氧化硅气凝胶毡的制备方法
CN109422520A (zh) 一种碳化硅纤维-二氧化硅气凝胶复合材料的制备方法
CN106592018A (zh) 一种氧化铝纤维元素的溶胶凝胶制备方法
CN110130101B (zh) 一种间位芳纶织物表面功能改性的方法
CN111270411A (zh) 一种氧化铝纤维毯的制备方法
CN111172624A (zh) 一种碳/硅杂化纤维的制备方法及碳硅杂化纤维
CN114835467A (zh) 一种耐高温纤维增强气凝胶复合材料及其制备方法
CN111235644B (zh) 一种用于制备莫来石纤维的纺丝原液及其应用
CN114247391A (zh) 一种耐高温气凝胶绝热复合材料的制备方法
CN113637202A (zh) 一种生物基聚酰亚胺-埃洛石纳米管复合薄膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856529

Country of ref document: EP

Kind code of ref document: A1