WO2024031542A1 - 一种改性生物基水性聚氨酯及其制备方法和应用 - Google Patents

一种改性生物基水性聚氨酯及其制备方法和应用 Download PDF

Info

Publication number
WO2024031542A1
WO2024031542A1 PCT/CN2022/111803 CN2022111803W WO2024031542A1 WO 2024031542 A1 WO2024031542 A1 WO 2024031542A1 CN 2022111803 W CN2022111803 W CN 2022111803W WO 2024031542 A1 WO2024031542 A1 WO 2024031542A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
bio
water
polyurethane
alkenyl
Prior art date
Application number
PCT/CN2022/111803
Other languages
English (en)
French (fr)
Inventor
刘文杰
魏晓隽
邱贵森
Original Assignee
摩珈(上海)生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 摩珈(上海)生物科技有限公司 filed Critical 摩珈(上海)生物科技有限公司
Priority to CN202280029311.3A priority Critical patent/CN117203258A/zh
Priority to PCT/CN2022/111803 priority patent/WO2024031542A1/zh
Publication of WO2024031542A1 publication Critical patent/WO2024031542A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/83Chemically modified polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/08Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • This application belongs to the technical field of polymer materials, and specifically relates to a modified bio-based water-based polyurethane and its preparation method and application.
  • Polyurethane is a polymer produced by the reaction of polyol and polyisocyanate. It has the characteristics of adjustable hardness, solvent resistance, low temperature resistance, and good adhesion to most materials. It has been widely used in recent years.
  • Water-based polyurethane is a polyurethane system that uses water as the dispersion medium. It not only has the performance characteristics of polyurethane, but also has the advantages of low volatile organic compounds (VOC), no pollution, and non-flammable. With the increasing improvement of environmental protection regulations and people's environmental awareness With the enhancement of water-based polyurethane, people are paying more and more attention to it. The development and application of water-based polyurethane has become an important development direction of the polyurethane industry.
  • water-based polyurethane as a polymer material with excellent performance, is widely used in adhesives, coatings, textiles and other fields.
  • water-based polyurethane has good market prospects in the adhesive industry, such as Dispercoll U54, Dispercoll U53 and Adwel1645 and other water-based polyurethanes.
  • the product has good comprehensive properties, and the adhesives made from it are used in industries such as shoemaking, automobiles, furniture, and card making.
  • water-based polyurethane also has some shortcomings that cannot be ignored, such as low solid content, poor water resistance, and insufficient stability. In order to improve the performance of water-based polyurethane, modifying it is a common idea among researchers.
  • CN103249751A discloses a heat-sealable coating system and a method for joining surfaces.
  • the heat-sealable coating system includes component (I) polyurethane and/or polyurethane-polyurea polymer, and component (II) olefin vinyl acetate copolymer.
  • the glass transition temperature of the polyurethane and/or polyurethane-polyurea polymer is ⁇ 10°C, and the minimum film-forming temperature of the olefin vinyl acetate copolymer is >40°C; the heat-sealable coating system
  • an aqueous dispersion of polyurethane and/or polyurethane-polyurea is first prepared, and then the olefin vinyl acetate copolymer is added to the aqueous dispersion to obtain a water-based heat-sealable coating system, which can be prepared at room temperature.
  • Membrane with good surface bonding strength is first prepared, and then the olefin vinyl acetate copolymer is added to the aqueous dispersion to obtain a water-based heat-sealable coating system, which can be prepared at room temperature.
  • This heat-sealable coating system uses physical blending to prepare a mixed aqueous dispersion of olefin vinyl acetate copolymer-water-based polyurethane.
  • the two aqueous dispersions have poor compatibility, poor stability, and initial viscosity. Knot strength is not easy to build.
  • CN111320726A discloses a water-based polyurethane-polyvinyl acetate emulsion.
  • the raw materials include: 80-120 parts of diisocyanate-terminated prepolymer, 50-250 parts of components that dissolve and dilute the diisocyanate-terminated prepolymer, and small molecule amines 2.5-7 parts of chain extender, 0.05-4 parts of monoamine-based small molecule end-capping agent, 30-120 parts of vinyl acetate, protective colloid, free radical initiator and water.
  • This water-based polyurethane-polyvinyl acetate emulsion is a water-based system prepared by chemical modification method.
  • the monomer has a high glass transition temperature, and polyvinyl acetate is easily hydrolyzed, which affects the later water resistance of the product.
  • CN103031093A discloses a method for preparing a water-based polyurethane acrylate pressure-sensitive adhesive. The steps are as follows: first, use polyol, hydrophilic chain extender, isocyanate monomer and hydroxyl-containing acrylate monomer as raw materials to prepare a water-based polyurethane emulsion. ; Then add acrylates dissolved with a measured amount of initiator into the water-based polyurethane emulsion for reaction to obtain a water-based polyurethane acrylate copolymer emulsion; and finally mix it evenly with the tackifying resin to obtain a water-based polyurethane acrylate pressure-sensitive adhesive emulsion.
  • This water-based polyurethane acrylate pressure-sensitive adhesive combines the advantages of both water-based polyurethane and acrylate to improve mechanical properties and solvent resistance.
  • water-based polyurethane acrylate has poor water resistance and aging resistance, and There are also obvious deficiencies in adhesion at high temperatures.
  • the current physically or chemically modified water-based polyurethane products have great room for improvement in terms of water resistance, stability, adhesion and heat resistance.
  • the current mainstream synthesis process of water-based polyurethane on the market is the acetone method, that is, acetone is used as a solvent during synthesis to reduce the viscosity of the prepolymer. After the emulsion is emulsified, the acetone is distilled under reduced pressure. The waste acetone is removed by the method, and finally the waste acetone is entered into the distillation tower for rectification and reuse.
  • acetone is a Class A hazardous chemical. Its use greatly increases the production cost and safety cost of the factory, making it difficult to meet the development requirements of green and environmental protection.
  • This application provides a modified bio-based water-based polyurethane and its preparation method and application.
  • the thermal activation temperature of the modified bio-based water-based polyurethane can be adjusted and has excellent water resistance.
  • Stability, bonding performance and heat resistance the modified bio-based water-based polyurethane can be prepared by a solvent-free method, fully meets the requirements of green environmental protection in terms of materials and processes, and provides new opportunities for the green industrialization of high-performance polyurethane. direction.
  • this application provides a modified bio-based water-based polyurethane.
  • the raw materials for preparing the modified bio-based water-based polyurethane include the following components in parts by weight:
  • the diisocyanate includes aliphatic diisocyanate containing an odd number of carbon atoms.
  • the water-based polyurethane is obtained through the reaction of bio-based polyol, diisocyanate and reactive emulsifier; on the other hand, the alkenyl-containing monomer under the action of the initiator Polymerize and react with water-based polyurethane to build a three-dimensional chemical bond network structure in the system.
  • the alkenyl-containing monomer under the action of the initiator Polymerize and react with water-based polyurethane to build a three-dimensional chemical bond network structure in the system.
  • free radical polymerization interpenetrating network copolymerization high molecular weight polymers (based on alkenyl-containing monomers) and bio-based polyurethane form a molecular level
  • the composite system is used to obtain high-performance modified bio-based water-based polyurethane.
  • this application uses bio-based polyol, which not only has good crystallization properties and green and environmentally friendly characteristics, but also effectively improves the bonding performance, heat resistance, water resistance and stability of the modified bio-based water-based polyurethane; further Specifically, by compounding an aliphatic diisocyanate containing an odd number of carbon atoms with bio-based polyols and other components, the thermal activation temperature of the modified bio-based water-based polyurethane can be effectively controlled while also helping to reduce polymerization. The symmetry and crystallinity of the material improve the operability of its preparation process.
  • this application uses the design and compounding of raw materials to make the thermal activation temperature of the modified bio-based water-based polyurethane adjustable, and has excellent bonding performance, heat resistance, water resistance and stability, especially in Maintains excellent adhesion after hydrolysis aging treatment and at high temperatures. More importantly, this application uses bio-based raw materials (bio-based polyols or bio-based diisocyanates), which are green and sustainable in terms of materials, and are prepared through a solvent-free process without the use of organic materials such as acetone. Solvent, achieving solvent-free and low VOC emissions.
  • bio-based raw materials bio-based polyols or bio-based diisocyanates
  • the number of carbon atoms in the aliphatic diisocyanate containing an odd number of carbon atoms may be 5, 7, 9, 11, etc.
  • the weight part of the bio-based polyol is 50-150 parts, for example, it can be 60 parts, 70 parts, 80 parts, 90 parts, 100 parts, 110 parts, 120 parts, 130 parts or 140 parts portions etc.
  • the weight part of the diisocyanate is 5-30 parts, for example, it can be 6 parts, 8 parts, 10 parts, 12 parts, 15 parts, 18 parts, 20 parts, 22 parts, 25 parts or 28 parts, etc.
  • the weight part of the reactive emulsifier is 0.1-10 parts, for example, it can be 0.3 parts, 0.5 parts, 0.8 parts, 1 part, 2 parts, 3 parts, 4 parts, 5 parts, 6 parts, 7 parts, 8 parts Or 9 servings etc.
  • the weight part of the alkenyl-containing monomer is 20-200 parts, for example, it can be 30 parts, 40 parts, 50 parts, 60 parts, 70 parts, 80 parts, 90 parts, 100 parts, 110 parts, 120 parts, 130 parts parts, 140 parts, 150 parts, 160 parts, 170 parts, 180 parts or 190 parts, etc.
  • the weight part of the initiator is 0.01-5 parts, for example, it can be 0.03 part, 0.05 part, 0.08 part, 0.1 part, 0.3 part, 0.5 part, 0.7 part, 0.9 part, 1 part, 1.2 part, 1.5 part, 1.8 part serving, 2 servings, 2.5 servings, 3 servings, 3.5 servings, 4 servings or 4.5 servings etc.
  • the hydroxyl value of the bio-based polyol is 28-112 mg KOH/g, for example, it can be 30 mg KOH/g, 40 mg KOH/g, 50 mg KOH/g, 60 mg KOH/g, 70 mg KOH/g, 80 mg KOH /g, 90mg KOH/g, 100mg KOH/g or 110mg KOH/g, etc.
  • the number average molecular weight of the bio-based polyol is 1000-5000, for example, it can be 1200, 1500, 1800, 2000, 2200, 2500, 2800, 3000, 3200, 3500, 3800, 4000, 4200, 4500 or 4800 wait.
  • the bio-based polyol is bio-based polyester polyol and/or bio-based polyether polyol.
  • the bio-based polyol can be purchased through the market, or can be prepared through chemical synthesis methods known in the art.
  • the raw materials for preparing the bio-based polyester polyol include a combination of polybasic acid and small molecule polyol; wherein the polybasic acid includes at least one bio-based polybasic acid, and/or the small molecule polyol Includes at least one bio-based small molecule polyol.
  • the polybasic acid and small molecule polyol used to prepare the bio-based polyester polyol include at least one bio-based raw material (bio-based polybasic acid and/or bio-based small molecule polyol).
  • the bio-based polybasic acid includes any one or at least one of succinic acid, glutaric acid, sebacic acid, undecanedioic acid, dodecanedioic acid, hydrogenated dimer acid or hydrogenated ricinoleic acid. A combination of both.
  • the small molecule polyol also includes petroleum-based small molecule polyol (such as 1,6-hexanediol).
  • petroleum-based small molecule polyol such as 1,6-hexanediol
  • the bio-based small molecule polyol includes any one or a combination of at least two of ethylene glycol, propylene glycol, butylene glycol, pentanediol, glycerol or hydrogenated dimer alcohol.
  • the bio-based polyether polyol includes poly-1,3-propylene glycol ether glycol.
  • the bio-based polyester polyol is prepared by the polycondensation reaction of polybasic acid and small molecule polyol; wherein, the polybasic acid includes at least one bio-based polybasic acid, and/or the small molecule polybasic acid
  • the alcohol includes at least one bio-based small molecule polyol.
  • the raw materials for preparing the bio-based polyester polyol include the following components in parts by weight: 100-200 parts of polybasic acid (for example, 110 parts, 120 parts, 130 parts, 140 parts, 150 parts, 160 parts, 170 parts parts, 180 parts or 190 parts, etc.); small molecule polyols 40-200 parts (such as 50 parts, 60 parts, 70 parts, 80 parts, 90 parts, 100 parts, 110 parts, 120 parts, 130 parts, 140 parts, 150 parts, 160 parts, 170 parts, 180 parts or 190 parts, etc.); and 0.001-0.1 parts of the polycondensation catalyst (such as 0.003 parts, 0.005 parts, 0.007 parts, 0.009 parts, 0.01 parts, 0.02 parts, 0.03 parts, 0.04 parts, 0.05 parts, 0.06 parts, 0.07 parts, 0.08 parts or 0.09 parts, etc.).
  • polybasic acid for example, 110 parts, 120 parts, 130 parts, 140 parts, 150 parts, 160 parts, 170 parts parts, 180 parts or 190 parts, etc.
  • the polycondensation catalyst includes a titanate compound, more preferably tetraisopropyl titanate.
  • the aliphatic diisocyanate containing an odd number of carbon atoms is a linear aliphatic diisocyanate containing an odd number of carbon atoms; preferably, the structure of the aliphatic diisocyanate containing an odd number of carbon atoms is: n represents the number of methylene groups and n is an odd number, such as 3, 5 or 7.
  • the aliphatic diisocyanate containing an odd number of carbon atoms includes 1,5-pentamethylene diisocyanate.
  • the mass percentage of the aliphatic diisocyanate containing an odd number of carbon atoms in the diisocyanate is ⁇ 60%, for example, it can be 65%, 70%, 75%, 80%, 85%, 90%, 95% Or 100% etc.
  • the diisocyanate includes an aliphatic diisocyanate containing an odd number of carbon atoms, and optionally other aliphatic diisocyanates and/or optionally an alicyclic diisocyanate; at the same time, the The mass percentage of the aliphatic diisocyanate containing an odd number of carbon atoms in the diisocyanate is ⁇ 60%, thereby effectively regulating the thermal activation temperature of the modified bio-based water-based polyurethane, reducing the symmetry and crystallinity of the polymer, and imparting improved Bio-based water-based polyurethane has better overall performance.
  • the mass percentage of aliphatic diisocyanate containing an odd number of carbon atoms in the diisocyanate is less than 60%, it will affect the symmetry and crystallinity of the polymer, resulting in excessively high viscosity and difficulty in operation and use.
  • the mass percentage of 1,5-pentamethylene diisocyanate in the diisocyanate is ⁇ 60%, for example, it can be 65%, 70%, 75%, 80%, 85%, 90%, 95% Or 100% etc.
  • the 1,5-pentamethylene diisocyanate (PDI) is bio-based 1,5-pentamethylene diisocyanate.
  • the diisocyanate also includes other aliphatic diisocyanates and/or alicyclic diisocyanates.
  • the other aliphatic diisocyanate includes 1,6-hexamethylene diisocyanate.
  • the alicyclic diisocyanate includes isophorone diisocyanate and/or dicyclohexylmethane diisocyanate.
  • the diisocyanate is an aliphatic diisocyanate containing an odd number of carbon atoms, and is further preferably 1,5-pentamethylene diisocyanate (PDI).
  • PDI 1,5-pentamethylene diisocyanate
  • the thermal activation temperature of the modified bio-based water-based polyurethane is adjustable, thereby making the modified bio-based water-based polyurethane It can be applied to a variety of products with different thermal activation temperature requirements.
  • the thermal activation temperature of the modified bio-based water-based polyurethane is 20-130°C, for example, it can be 30°C, 40°C, 50°C, 60°C, 70°C, 80°C, 90°C, 100°C, 110°C Or 120°C, etc.
  • the reactive emulsifier participates in the preparation of water-based polyurethane.
  • the reactive emulsifier is a nonionic reactive emulsifier and/or a sulfonic acid reactive emulsifier.
  • It can impart water-dispersible properties to the polyurethane and, on the other hand, help improve the hydrolysis resistance of the modified bio-based water-based polyurethane.
  • the reactive emulsifier includes polyethylene glycol monomethyl ether, polyethylene glycol, ethylene oxide-propylene oxide copolymer glycol, polypropylene oxide butylene glycol sodium sulfonate or diaminoethylene glycol. Any one or a combination of at least two of the sodium sulfonates, and more preferably a combination of polyethylene glycol monomethyl ether and sodium diaminoethyl sulfonate.
  • the preparation raw materials include 0.1-5 parts by weight of polyethylene glycol monomethyl ether, for example, it can be 0.3 parts, 0.5 parts, 0.8 parts, 1 part, 1.5 parts, 2 parts, 2.5 parts, or 3 parts , 3.5 parts, 4 parts or 4.5 parts, etc.
  • the preparation raw materials include 0.1-5 parts by weight of sodium diaminoethyl sulfonate, such as 0.3 parts, 0.5 parts, 0.8 parts, 1 part, 1.5 parts, 2 parts, 2.5 parts, or 3 parts. , 3.5 parts, 4 parts or 4.5 parts, etc.
  • the alkenyl-containing monomer includes any one or a combination of at least two of vinyl acetate, tertiary vinyl carbonate, acrylonitrile or acrylate monomers.
  • the tertiary vinyl carbonate includes vinyl neodecanoate.
  • the acrylate monomer includes ethyl acrylate, butyl acrylate, tert-butyl acrylate, isooctyl acrylate, lauryl acrylate, hydroxyethyl acrylate, isobornyl acrylate, methyl methacrylate, methyl methacrylate, Any one or a combination of at least two of butyl acrylate, methyl tert-butyl acrylate, isooctyl methacrylate, lauryl methacrylate, isobornyl methacrylate or hydroxyethyl methacrylate.
  • the alkenyl-containing monomer includes vinyl neodecanoate, and optionally vinyl acetate and/or optionally acrylate monomers.
  • the mass percentage of vinyl neodecanoate in the alkenyl-containing monomer is 15-100%, for example, it can be 20%, 25%, 30%, 35%, 40%, 45%, 50% , 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95%, etc., and more preferably 20-40%.
  • the alkenyl-containing monomer includes vinyl neodecanoate, which is compounded with other components to further improve the hydrolysis resistance of the modified bio-based water-based polyurethane. Weather resistance and heat resistance, etc.
  • the alkenyl-containing monomer includes hydroxyethyl acrylate and/or hydroxyethyl methacrylate, so that the modified bio-based water-based polyurethane contains hydroxyl functional groups and can be used in two-component adhesives.
  • the initiator includes an oxidation-reduction initiating system.
  • the oxidizing agent in the oxidation-reduction initiating system includes any one or a combination of at least two of organic peroxy compounds, hydrogen peroxide or persulfates, and is further preferably organic peroxy compounds.
  • the oxidizing agent includes potassium persulfate, sodium persulfate, ammonium persulfate, tert-butyl hydroperoxide, benzoyl peroxide, lauroyl peroxide, cumene hydroperoxide, and di-tert-butyl peroxide.
  • the reducing agent in the oxidation-reduction initiating system is sodium metabisulfite, sodium bisulfite, ferrous sulfate, sodium dithionite, isoascorbic acid, N,N-dimethylaniline, N,N-diethyl Any one or a combination of at least two of aniline, ferrous pyrophosphate, mercaptan, ferrous chloride or tetraethylene imine, and more preferably sodium dithionite (also known as "insurance powder").
  • the preparation raw materials also include any one or a combination of at least two of catalysts, chain extenders, polymerization inhibitors, cross-linking agents or emulsion polymerization emulsifiers.
  • the preparation raw materials also include 0.001-0.5 parts of catalyst in parts by weight, for example, they can be 0.003 parts, 0.005 parts, 0.007 parts, 0.009 parts, 0.01 parts, 0.03 parts, 0.05 parts, 0.07 parts, 0.09 parts, 0.1 parts parts, 0.2 parts, 0.3 parts or 0.4 parts, etc.
  • the catalyst includes an organic bismuth catalyst, more preferably bismuth neodecanoate.
  • the preparation raw materials also include 0.1-5 parts by weight of chain extender, for example, it can be 0.2 parts, 0.5 parts, 0.8 parts, 1 part, 1.5 parts, 2 parts, 2.5 parts, 3 parts, 3.5 parts , 4 parts or 4.5 parts, etc.
  • the chain extender includes alcohol chain extender and/or amine chain extender, and alcohol chain extender is further preferred.
  • the alcohol chain extender includes any one or a combination of at least two of propylene glycol, dipropylene glycol or diethylene glycol.
  • the preparation raw materials also include 0.0001-0.1 parts by weight of polymerization inhibitor, for example, it can be 0.0003 parts, 0.0005 parts, 0.0007 parts, 0.0009 parts, 0.001 parts, 0.003 parts, 0.005 parts, 0.007 parts, 0.009 parts , 0.01 part, 0.03 part, 0.05 part, 0.07 part or 0.09 part, etc.
  • the polymerization inhibitor includes any one or a combination of at least two of p-hydroxyanisole, p-benzoquinone or hydroquinone.
  • the preparation raw materials also include 0.1-8 parts by weight of cross-linking agent, for example, it can be 0.3 parts, 0.5 parts, 0.8 parts, 1 part, 1.5 parts, 2 parts, 2.5 parts, 3 parts, 3.5 parts , 4 parts, 4.5 parts, 5 parts, 5.5 parts, 6 parts, 6.5 parts, 7 parts or 7.5 parts, etc.
  • the cross-linking agent includes any one or a combination of at least two of glycidyl methacrylate, diacetone acrylamide, ethyl methacrylate acetoacetate or adipic hydrazide, and further preferably diacetone. Combination of acrylamide and adipic hydrazide.
  • the preparation raw materials also include 0.1-5 parts by weight of diacetone acrylamide, for example, it can be 0.3 parts, 0.5 parts, 0.8 parts, 1 part, 1.5 parts, 2 parts, 2.5 parts, 3 parts, 3.5 parts serving, 4 servings or 4.5 servings etc.
  • the preparation raw materials also include 0.1-3 parts by weight of adipic hydrazide, for example, it can be 0.3 parts, 0.5 parts, 0.8 parts, 1 part, 1.2 parts, 1.5 parts, 1.8 parts, 2 parts, 2.2 parts parts, 2.5 parts or 2.8 parts, etc.
  • the preparation raw materials also include 0.01-5 parts by weight of emulsion polymerization emulsifier, for example, it can be 0.05 parts, 0.1 parts, 0.3 parts, 0.5 parts, 0.8 parts, 1 part, 1.5 parts, 2 parts, 2.5 parts serving, 3 servings, 3.5 servings, 4 servings or 4.5 servings etc.
  • the emulsion polymeric emulsifier includes anionic surfactants and/or nonionic surfactants.
  • the emulsion polymerization emulsifier includes allyloxyisomeric alcohol ether sulfate ammonium salt and/or sulfosuccinic acid alkyl alcohol ether ester sodium salt.
  • the preparation raw materials also include a pH adjuster and/or an antifoaming agent.
  • the preparation raw materials also include 0.001-0.5 parts by weight of pH adjuster, for example, it can be 0.003 parts, 0.005 parts, 0.008 parts, 0.01 parts, 0.03 parts, 0.08 parts, 0.1 parts, 0.2 parts, 0.3 parts Or 0.4 parts etc.
  • the preparation raw materials also include 0.001-0.1 parts by weight of defoaming agent, for example, it can be 0.003 parts, 0.005 parts, 0.007 parts, 0.009 parts, 0.01 parts, 0.02 parts, 0.03 parts, 0.04 parts, 0.05 parts , 0.06 parts, 0.07 parts, 0.08 parts or 0.09 parts, etc.
  • the raw materials for preparing the modified bio-based water-based polyurethane include the following components in parts by weight:
  • the structure of the diisocyanate is The mass percentage of aliphatic diisocyanate is ⁇ 60%; and n is an odd number, such as 3, 5 or 7.
  • the preparation raw materials also include water.
  • the quality of water can be adjusted according to process requirements and actual solid content requirements.
  • the modified bio-based water-based polyurethane is an emulsion, and the amount of water is such that the solid content of the emulsion is 40-60%.
  • the solid content can be 42%, 45%, 48%, 50%, 52%, 55%, 58%, etc., and more preferably 45-55%.
  • the mass of the alkenyl-containing monomer is 30-70%, for example, it can be 35%, 40%, or 45%. , 50%, 55%, 60% or 65%, etc.
  • this application provides a method for preparing modified bio-based water-based polyurethane as described in the first aspect, the preparation method comprising the following steps:
  • step (2) Mix the alkenyl monomer-containing polyurethane prepolymer obtained in step (1) with water and emulsify to obtain an alkenyl monomer-containing polyurethane emulsion;
  • step (3) React the alkenyl monomer-containing polyurethane emulsion obtained in step (2) in the presence of an initiator to obtain the modified bio-based water-based polyurethane.
  • the preparation method provided by this application is a solvent-free process, in which the alkenyl-containing monomer plays the role of a reaction medium in the preparation of the polyurethane prepolymer in step (1), so that the preparation method does not require the use of acetone. and other organic solvents, with the characteristics of solvent-free and extremely low VOC emissions.
  • the polyurethane prepolymer forms a polyurethane emulsion after emulsification, and the emulsification process does not require the use of complex and expensive powerful emulsification devices. Free radical polymerization occurs under the action of the initiator, and interpenetrating network copolymerization occurs through free radical polymerization.
  • a high molecular weight polymer (polymerized from alkenyl-containing monomers) and bio-based polyurethane form a molecular-level composite system to form a polymer alloy emulsion with good compatibility and excellent performance, that is, the modified bio-based water-based Polyurethane.
  • the mixed materials in step (1) also include any one or a combination of at least two of catalysts, chain extenders or polymerization inhibitors.
  • the method of mixing and reacting in step (1) includes method A or method B.
  • Method A includes: firstly adding bio-based polyol, diisocyanate, polymerization inhibitor, catalyst, and formula amount of 30-70%. (For example, it can be 35%, 40%, 45%, 50%, 55%, 60% or 65%, etc.) reactive emulsifier, formula amount 10-90% (for example, it can be 15%, 20%, 25%) , 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80% or 85%, etc.) of alkenyl-containing monomers are mixed and carried out in the first stage reaction; then add a chain extender and the remaining formula amount of alkenyl-containing monomer to the system to perform the second stage reaction; then add the remaining formula amount of reactive emulsifier to the system to perform the third stage reaction to obtain the described containing Polyurethane prepolymers of alkenyl monomers;
  • the method B includes: firstly combining bio-based polyol, diisocyanate, polymerization inhibitor, catalyst, reactive emulsifier, formula amount 10-90% (for example, it can be 15%, 20%, 25%, 30%, 35% %, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80% or 85%, etc.) of alkenyl-containing monomers are mixed and carried out in the first stage of reaction; and then added to the system Add a chain extender and the remaining formula amount of the alkenyl group-containing monomer to the second stage of reaction to obtain the polyurethane prepolymer of the alkenyl group-containing monomer.
  • formula amount 10-90% for example, it can be 15%, 20%, 25%, 30%, 35% %, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80% or 85%, etc.
  • the reactive emulsifier includes polyethylene glycol monomethyl ether and sodium diaminoethyl sulfonate.
  • the method of mixing and reacting in step (1) is method A. First, add polyethylene glycol monomethyl ether. Ether participates in the first stage reaction, and sodium diaminoethyl sulfonate is added before the third stage reaction.
  • the temperatures of the first stage reaction and the second stage reaction are independently 55-80°C, for example, they can be 58°C, 60°C, 62°C, 65°C, 68°C, 70°C, 72°C, 75°C. °C or 78°C, etc.
  • the time of the first stage reaction and the second stage reaction is independently 1-4h, for example, it can be 1.25h, 1.5h, 1.75h, 2h, 2.25h, 2.5h, 2.75h, 3h, 3.25 h, 3.5h or 3.75h, etc.
  • the NCO content of the system is ⁇ 0.91%.
  • the NCO content of the system is ⁇ 0.2%.
  • the temperature of the third stage reaction is 40-50°C, for example, it can be 41°C, 43°C, 45°C, 47°C or 49°C.
  • the reaction time of the third stage is 10-60 min, for example, it can be 15 min, 20 min, 25 min, 30 min, 35 min, 40 min, 45 min, 50 min or 55 min, etc.
  • the aqueous phase in step (2) includes water, optionally a cross-linking agent, optionally an emulsion polymerization emulsifier and optionally a defoaming agent.
  • the emulsification method in step (2) includes: adding the alkenyl monomer-containing polyurethane prepolymer into the water phase and dispersing to obtain the alkenyl monomer-containing polyurethane emulsion.
  • the alkenyl monomer-containing polyurethane prepolymer is added to the water phase under stirring conditions.
  • the dispersion is carried out under stirring conditions.
  • the stirring speed is 400-600rpm, for example, it can be 420rpm, 450rpm, 480rpm, 500rpm, 520rpm, 550rpm or 580rpm, etc.
  • the dispersion time is 1-3h, for example, it can be 1.25h, 1.5h, 1.75h, 2h, 2.25h, 2.5h or 2.75h, etc.
  • the reaction temperature in step (3) is 50-60°C, for example, it can be 51°C, 52°C, 53°C, 54°C, 55°C, 56°C, 57°C, 58°C or 59°C, etc.
  • the reaction time in step (3) is 20-90min, for example, it can be 25min, 30min, 35min, 40min, 45min, 50min, 55min, 60min, 65min, 70min, 75min, 80min or 85min, etc.
  • the step of adjusting pH is further included after the reaction in step (3) is completed.
  • the pH is adjusted to a pH value of 6.5-9.0, for example, a pH value of 6.6, 6.8, 7.0, 7.2, 7.5, 7.8, 8.0, 8.2, 8.5 or 8.8, etc.
  • this application provides an application of the modified bio-based water-based polyurethane as described in the first aspect in coatings or adhesives.
  • the present application provides an adhesive, which includes the modified bio-based water-based polyurethane as described in the first aspect.
  • the adhesive further includes any one or a combination of at least two of a thickening agent, a wetting agent, a defoaming agent, a pH adjuster or a curing agent.
  • the modified bio-based water-based polyurethane provided by this application can be adjusted in the range of 20-120°C through the design and mutual compounding of raw materials to form a film. High strength, good weather resistance, no yellowing, good adhesion to different substrates, excellent bonding properties, heat resistance, water resistance, hydrolysis resistance and stability, and high bio-based content, it is green and environmentally friendly High performance water-based polyurethane products.
  • the modified bio-based water-based polyurethane can be prepared using a solvent-free method without the use of complex and expensive equipment.
  • the preparation method can realize a solvent-free process through conventional production equipment, has simple steps, good operability, low preparation cost, and low VOC emission, and fully meets the requirements of energy conservation, emission reduction, and green environmental protection.
  • the modified bio-based water-based polyurethane can be used to prepare high-performance adhesives to meet the different needs of one-component or two-component.
  • the adhesive can quickly establish high initial bonding strength. After complete thermal activation, the instantaneous peel strength of the adhesive is ⁇ 5.5N/mm, and it has excellent bonding performance.
  • the final peeling strength is ⁇ 10N/mm and can reach more than 20N/mm.
  • the adhesive has good water resistance, hydrolysis resistance, aging resistance and heat resistance.
  • the final peel strength after aging treatment is still ⁇ 10N/mm, and it can maintain excellent adhesion at high temperatures of 75°C or even 125°C. It maintains stable bonding performance under harsh environments such as hydrolysis, high temperature, and aging, and has good storage stability. It is an adhesive material with excellent comprehensive performance.
  • the polybasic acids and small molecule polyols used are commercially available chemicals.
  • succinic acid succinic acid, bio-based polybasic acid
  • sebacic acid bio-based polybasic acid
  • DSM DSM
  • Yihai Kerry 1,3-propanediol (bio-based small molecule polyol) was purchased from DuPont
  • 1,6-hexanediol commercially available chemicals.
  • the acid value and hydroxyl value of bio-based polyols are tested by titration, and the number average molecular weight is tested by gel chromatography (GPC).
  • Bio-based content (%) 100% ⁇ bio-based Raw material quality/product quality.
  • bio-based polyol A1 bio-based polyester polyol
  • the preparation raw materials include in parts by weight: 110.92 parts of succinic acid, 135.19 parts of 1,6-hexanediol, and 0.0123 parts of tetraisopropyl titanate; specific preparation Methods as below:
  • bio-based polyol A2 bio-based polyester polyol
  • the preparation raw materials include in parts by weight: 160.59 parts of sebacic acid, 74.83 parts of 1,3-propanediol, and 0.0118 parts of tetraisopropyl titanate; specific preparation method as follows:
  • bio-based polyol A3 bio-based polyester polyol
  • the preparation raw materials include in parts by weight: 122.06 parts of sebacic acid, 54.7 parts of 1,3-propanediol, and 0.00885 parts of tetraisopropyl titanate; specific preparation method as follows:
  • the raw materials involved include:
  • Bio-based polyol Priplast 3238 100% bio-based dimer acid polyester polyol, hydroxyl value 56 mg KOH/g, number average molecular weight 2000, purchased from CRODA;
  • Bio-based polyol ECOPROL H2000 poly1,3-propylene glycol ether glycol, hydroxyl value 56mg KOH/g, number average molecular weight 2000, purchased from SK Chemicals;
  • Aliphatic diisocyanate containing an odd number of carbon atoms 1,5-pentamethylene diisocyanate, PDI;
  • HDI 1,6-hexamethylene diisocyanate
  • IPDI Isophorone diisocyanate
  • Polyethylene glycol monomethyl ether MPEG 1000, hydroxyl value is 56mg KOH/g, number average molecular weight is 1000, functionality is 1;
  • Chain extender 1,3-propanediol (biological method).
  • Vinyl neodecanoate, VV-10 purchased from Hexion;
  • Butyl acrylate, BA was purchased from Sinopharm Reagent;
  • Butyl methacrylate, BMA was purchased from Sinopharm Reagent;
  • HEA Hydroxyethyl acrylate
  • Diacetone acrylamide was purchased from Wuxi Liangxi Fine Chemical Co., Ltd.;
  • Adipic hydrazide, ADH was purchased from Wuxi Liangxi Fine Chemical Co., Ltd.
  • Emulsion polymerization emulsifier (9) Emulsion polymerization emulsifier:
  • Alkyl alcohol ether sulfosuccinate sodium salt, A 102K was purchased from Shanghai Zhongcheng Fine Chemical Co., Ltd.
  • pH adjuster organic amine, AMP-95, purchased from Angus.
  • Defoaming agent BYK 021, purchased from BYK Chemical.
  • a modified bio-based water-based polyurethane and its preparation method The components of the raw materials for preparing the modified bio-based water-based polyurethane are as shown in Table 1, and the dosage units of each component are "parts".
  • the preparation method of the modified bio-based water-based polyurethane includes the following steps:
  • step (1) Add deionized water (185 parts), DAAM, SR-1025 and defoaming agent to a four-necked flask equipped with nitrogen protection, thermometer and mechanical stirring, start stirring, and mix the above raw materials evenly , to obtain the water phase; control the material temperature at 20°C and the stirring speed at 500 rpm.
  • step (1) Drop the polyurethane prepolymer containing alkenyl monomer obtained in step (1) into the water phase within 1 hour, continue to disperse for 2 hours, complete the emulsification, and obtain Polyurethane emulsions containing alkenyl monomers; and
  • step (3) Add the alkenyl monomer-containing polyurethane emulsion obtained in step (2) to a four-necked flask equipped with nitrogen protection, a thermometer, and mechanical stirring, start stirring, rotate at 180 rpm, and control the temperature at 40°C.
  • Add the initiator ( TBHP and insurance powder) were added dropwise to the system within 15 minutes. After the dropwise addition, the reaction was continued at 55°C for 30 minutes. After the reaction, the temperature was lowered to below 40°C, a pH adjuster was added, the pH was adjusted to about 8, ADH was added and stirred evenly. Finally, the material is filtered with a 300-mesh filter to obtain the modified bio-based water-based polyurethane.
  • a modified bio-based water-based polyurethane and its preparation method The components of the raw materials for preparing the modified bio-based water-based polyurethane are as shown in Table 2. The dosage units of each component are "parts”.
  • the preparation method of the modified bio-based water-based polyurethane described in Examples 7-8 includes the following steps:
  • step (2) Add deionized water (105 parts), A 102K and defoaming agent to a four-necked flask equipped with nitrogen protection, thermometer and mechanical stirring, start stirring, and mix the above raw materials evenly to obtain water phase; control the material temperature at 25°C and the stirring speed at 600 rpm. Drop the alkenyl monomer-containing polyurethane prepolymer obtained in step (1) into the water phase within 1 hour, continue to disperse for 2 hours, complete the emulsification, and obtain the alkenyl-containing monomer. Monomeric polyurethane emulsions; and
  • step (3) Add the alkenyl monomer-containing polyurethane emulsion obtained in step (2) to a four-necked flask equipped with nitrogen protection, a thermometer, and mechanical stirring, start stirring, rotate at 200 rpm, and control the temperature to 35°C.
  • Add the initiator ( TBHP and insurance powder) were added dropwise into the system within 15 minutes. After the dropwise addition, the reaction was continued at 50°C for 30 minutes. After the reaction, the temperature was lowered to below 40°C, a pH adjuster was added, and after adjusting the pH to about 8, filter it through a 300-mesh filter. The material is filtered through a mesh to obtain the modified bio-based water-based polyurethane.
  • the preparation method of the modified bio-based water-based polyurethane described in Examples 9-12 is the same as that in Examples 1-6.
  • a modified water-based polyurethane and its preparation method The components of the raw materials for preparing the modified water-based polyurethane are as shown in Table 3. The dosage units of each component are "parts”.
  • the preparation method of the modified water-based polyurethane described in Comparative Examples 1-3 is the same as that in Example 1.
  • the polyurethane prepolymer in Comparative Example 2 is in gel form, and subsequent preparation cannot be carried out, and the modified water-based polyurethane cannot be obtained.
  • a modified water-based polyurethane which is a physical mixed modification system, including 50 parts by weight of Dispercoll U54 (amorphous water-based polyurethane emulsion for adhesives, solid content 50%, thermal activation temperature 50-60°C, scientific Xtron) and 50 parts of DA 102 (vinyl acetate-ethylene copolymer emulsion, solid content 55%, pH value 4.5-6.5, glass transition temperature Tg 0°C). Mix the two emulsions evenly to obtain the modified water-based polyurethane.
  • Dispercoll U54 amorphous water-based polyurethane emulsion for adhesives, solid content 50%, thermal activation temperature 50-60°C, scientific Xtron
  • DA 102 vinyl acetate-ethylene copolymer emulsion, solid content 55%, pH value 4.5-6.5, glass transition temperature Tg 0°C.
  • Viscosity According to the method in GB/T 2794-2013, test the viscosity at 25°C;
  • Particle size The particle size is measured using a Malvern laser particle size analyzer
  • Bio-based content 100% ⁇ bio-based raw material quality/product quality
  • Vinyl content (%) 100% ⁇ mass of alkenyl-containing monomers/dry basis mass of modified bio-based polyurethane;
  • Spline preparation PVC material with a thickness of 4mm and a dioctyl phthalate (DOP) content of 30%.
  • the modified bio-based water-based polyurethane was coated on the substrate with a wire rod.
  • the wet film thickness was 0.1 mm. It was dried at room temperature for 30 minutes before use.
  • PVC splines with a width of 1 cm were stored in a drying cabinet at the required temperature for 1 h, and then the two splines were immediately put together under gentle finger pressure to form an overlapping area of 1 cm ⁇ 1 cm. If two surfaces in contact under these conditions are completely bonded over the entire area and are separated only by significant force immediately after the bond is formed, this temperature range is the thermal activation temperature.
  • An adhesive is a one-component system, including the following components in parts by weight:
  • the modified water-based polyurethane is the modified bio-based water-based polyurethane provided in Examples 1-6, 9-11, Comparative Example 1 and Comparative Example 3-4 respectively;
  • the defoaming agent is BYK 021 (Bi Gram Chemical)
  • the wetting agent is BYK 024 (BYK Chemical)
  • the thickener is polyurethane thickener Vesmody U605 (Wanhua Chemical);
  • the pH regulator is an organic base AMP-95 (An Gus), the amount should be such that the pH value of the adhesive is 8.
  • the preparation method of the adhesive is as follows: according to the formula, add modified water-based polyurethane, defoaming agent, wetting agent and pH regulator, adjust the pH to 8, continue to disperse for 15 minutes, increase the rotation speed to 400rpm, and slowly add the thickener , after complete dispersion, let it stand for defoaming, filter through a 300-mesh filter, and discharge the material to obtain the adhesive.
  • An adhesive is a two-component system, including component A and component B; the component A includes the following components in parts by weight:
  • the modified water-based polyurethane is the modified bio-based water-based polyurethane provided in Examples 7-8 respectively;
  • the defoaming agent is BYK 021 (BYK Chemical), and the wetting agent is BYK 024 (BYK Chemical)
  • the thickener is polyurethane thickener Vesmody U605 (Wanhua Chemical);
  • the pH regulator is organic base AMP-95 (Angus), and its dosage is such that the pH value of the adhesive is 8 shall prevail.
  • the B component is divided into 4 parts of Bayhydur 305 (nonionic modified isocyanate curing agent based on HDI, solid content is 100%, NCO content is 16.2%, Covestro).
  • the preparation method of the adhesive is as follows: according to the formula, add modified water-based polyurethane, defoaming agent, wetting agent and pH regulator, adjust the pH to 8, continue to disperse for 15 minutes, increase the rotation speed to 400rpm, and slowly add the thickener , after complete dispersion, let it stand for defoaming, filter through a 300 mesh filter, and discharge to obtain the A component; slowly add the B component to the A component at a rotation speed of 100 rpm, and after dispersing for 5 minutes, 300 Filter through a mesh filter and discharge to obtain the adhesive.
  • the base material coated with adhesive is allowed to dry at room temperature (usually more than 2 hours), and then two pieces of glued PVC of the same size are laminated, and cut into strips of 25 mm ⁇ 150 mm with a paper knife, and the strips are tested.
  • the modified bio-based water-based polyurethane adhesive described in Example 1 and Comparative Example 3 will be used as follows: After the sample is prepared by the aforementioned method, it is thermally activated for 30 seconds at 130°C and a pressure of 3.5kg/ cm2 , and its T-peel strength is measured with an Instron at a speed of 30cm/min. The instantaneous peel strength is measured within 15 minutes after thermal activation of the sample. The data measured after the sample is heat-activated and left at room temperature for 7 days is the final peel strength.
  • the thermal activation temperature of the modified bio-based water-based polyurethane provided in Example 11 is relatively high (see Table 4 for details). Therefore, after sample preparation using the modified bio-based water-based polyurethane adhesive described in Example 11 according to the aforementioned method, it is heated at 100°C. , thermally activated for 30 seconds under a pressure of 3.5kg/ cm2 , and the T-peel strength was measured with Instron at a speed of 30cm/min. The instantaneous peel strength was measured within 15 minutes after the sample was thermally activated. The sample was measured after the sample was thermally activated and left at room temperature for 7 days. Data are final peel strength.
  • the preparation of the test sample is the same as in (1) for peel strength.
  • the glued area at one end is 25mm ⁇ 25mm on the surface.
  • the other end is not glued into the 25mm ⁇ 25mm composite strip.
  • the PVC is separated at 180 degrees, a 100g weight is hung on one end, and the other end is hung in the blast oven. From room temperature to 125°C, the temperature rise rate is 25°C/h, and the temperature at which the sample is pulled apart and the weight is dropped is recorded. For the sample that has not been pulled apart at 125°C, the degree of peeling of the bonded surface is recorded.
  • Example 1A indicates that the thermal activation temperature in the performance test of the adhesive is 70°C
  • Example 1B indicates that the thermal activation temperature in the adhesive performance test is 100°C
  • the test data of other examples and comparative examples are all obtained under the condition that the thermal activation temperature is 70°C .
  • Example 1A Since the thermal activation temperature of the modified bio-based water-based polyurethane described in Example 1 is 100-120°C, it is not fully activated under the conditions of 70°C and 3.5kg/ cm2 . Therefore, the peel strength of Example 1A is slightly lower. After complete activation at 130°C, the adhesive has high instantaneous peel strength and final peel strength, and has excellent bonding performance, hydrolysis resistance and heat resistance.
  • the modified bio-based water-based polyurethane provided in this application has excellent storage stability, adhesion, hydrolysis resistance and heat resistance.
  • the instantaneous peel strength of the adhesive prepared from the modified bio-based water-based polyurethane is >4.0N/mm.
  • the instantaneous peeling strength of the adhesive after complete thermal activation is 5.5-8.8N/mm, which can quickly Establish a higher initial bonding strength; the final peel strength of the adhesive after complete thermal activation is 9.8-20.6N/mm, with excellent bonding performance.
  • the adhesive has good water resistance, hydrolysis resistance, aging resistance and heat resistance.
  • the final peel strength after aging treatment is 9.8-17.9N/mm, and can maintain excellent resistance at high temperatures of 75°C or even 125°C. It has excellent bonding performance and high storage stability. It still has good fluidity after long-term storage at higher temperatures.
  • the modified bio-based water-based polyurethane is suitable for different adhesive systems.
  • hydroxyl-containing HEA is introduced to obtain a modified bio-based polyurethane containing hydroxyl groups.
  • Water-based polyurethane can prepare high-performance two-component adhesives.
  • the alkenyl-containing monomer contains vinyl neodecanoate, which can be compounded with other components to further improve the comprehensive performance of the modified bio-based water-based polyurethane; if the system does not contain vinyl neodecanoate ( Examples 9-10), will lead to a decrease in the bonding strength, heat resistance and hydrolysis resistance of the modified bio-based water-based polyurethane and adhesive.
  • bio-based polyols, diisocyanates containing odd number of carbon atoms and alkenyl-containing monomers are compounded, and a specific solvent-free process is used to obtain high-performance modified bio-based water-based polyurethane.
  • the content of 1,5-pentamethylene diisocyanate (PDI) containing an odd number of carbon atoms in the diisocyanate of Example 12 is too low, which affects the crystallinity and symmetry of the polymer, causing its viscosity to be too high and difficult to meet the subsequent requirements. testing and usage requirements.
  • PDI 1,5-pentamethylene diisocyanate
  • the modified bio-based water-based polyurethane based on bio-based polyol in this application is not only more green and environmentally friendly, but also has better adhesive properties, heat resistance and hydrolysis resistance. Significant improvement in aging resistance.
  • Comparative Example 2 HDI is used. Its reaction with bio-based polyols will generate gel-like prepolymers, which cannot be subsequently prepared and have poor processability and operability.
  • Comparative Example 3 uses a diisocyanate combined with HDI and IPDI. Its processability is acceptable and a modified water-based polyurethane emulsion can be obtained.
  • Comparative Example 4 is a mixed system of commercially available water-based polyurethane and vinyl acetate-ethylene copolymer emulsion. Although the bonding performance is good, the heat resistance and hydrolysis aging resistance of the adhesive are obviously insufficient, and the storage stability is poor. meet usage requirements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本申请提供一种改性生物基水性聚氨酯及其制备方法和应用,所述改性生物基水性聚氨酯的制备原料以重量份计包括如下组分:生物基多元醇50-150份;二异氰酸酯5-30份;反应型乳化剂0.1-10份;含烯基单体20-200份;和引发剂0.01-5份;其中,所述二异氰酸酯中包括含有奇数个碳原子的脂肪族二异氰酸酯。本申请通过制备原料的设计及相互复配,使所述改性生物基水性聚氨酯的热活化温度可调,成膜强度高,耐候性好,不黄变,对不同基材附着力好,具有优异的粘结性能、耐热性、耐水性、耐水解性和稳定性,而且生物基含量高,采用无溶剂的方法制备而成,是绿色环保的高性能水性聚氨酯产品。

Description

一种改性生物基水性聚氨酯及其制备方法和应用 技术领域
本申请属于聚合物材料技术领域,具体涉及一种改性生物基水性聚氨酯及其制备方法和应用。
背景技术
聚氨酯是由多元醇和多异氰酸酯反应生成的聚合物,具有软硬度可调、耐溶剂、耐低温以及与大多数材料具有良好粘结性等特点,近年来取得了十分广泛的应用。水性聚氨酯是以水为分散介质的聚氨酯体系,在具有聚氨酯性能特点的同时,还具有低挥发性有机化合物(VOC)、无污染和不易燃烧等优点,随着环保法规的日益完善和人们环保意识的增强,水性聚氨酯越来越受到人们的重视,开发并应用水性聚氨酯成为聚氨酯行业的一个重要发展方向。目前,水性聚氨酯作为一种性能优良的高分子材料,被广泛应用于胶粘剂、涂料、纺织等领域,其中,水性聚氨酯在胶粘剂行业具有良好的市场前景,例如Dispercoll U54、Dispercoll U53和Adwel1645等水性聚氨酯产品具有良好的综合性能,其制成的胶粘剂被用于制鞋、汽车、家具、制卡等行业。
随着水性聚氨酯的应用范围的扩大,人们发现水性聚氨酯也存在一些不可忽视的缺点,例如固含量偏低、耐水性不佳、稳定性不足等问题。为了提高水性聚氨酯的性能,对其进行改性是目前研究人员的共通思路。
CN103249751A公开了一种热封性涂料体系和接合表面的方法,所述热封性涂料体系包括组分(I)聚氨酯和/或聚氨酯-聚脲聚合物,组分(II)烯烃乙酸乙烯酯共聚物,其中,所述聚氨酯和/或聚氨酯-聚脲聚合物的玻璃化转变温度≤10℃,所述烯烃乙酸乙烯酯共聚物的最低成膜温度>40℃;所述热封性涂料体系的制备过程中,先制备聚氨酯和/或聚氨酯-聚脲的水性分散体,然后将烯烃乙酸乙烯酯共聚物添加到水性分散体中,得到水性的热封性涂料体系,其在室温下即可成膜,具有良好的表面接合强度。该热封性涂料体系采用物理共混的方式制备烯烃乙酸乙烯酯共聚物-水性聚氨酯的混拼水性分散体,两种水性分散体的相容性不佳,稳定性不好,而且初期的粘结强度不易建立。
CN111320726A公开了一种水性聚氨酯-聚醋酸乙烯酯乳液,原料包括:二异氰酸酯封端的预聚物80-120份,溶解稀释二异氰酸酯封端的预聚物的组分50-250份,小分子胺类扩链剂2.5-7份,单胺基小分子封端剂0.05-4份,醋酸乙烯酯30-120份以及保护胶体、自由基引发剂和水。该水性聚氨酯-聚醋酸乙烯酯乳液是一种化学改性法制备的水性体系,具有较低的活化温度、较好的耐热性和初期强度;但是,配方中只用醋酸乙烯酯作为改性单体,玻璃化转变温度较高,同时聚醋酸乙烯酯容易水解,影响了产品后期的耐水性。
CN103031093A公开了一种水性聚氨酯丙烯酸酯压敏粘合剂的制备方法,步骤如下:首先以多元醇、亲水扩链剂、异氰酸酯单体和含羟基的丙烯酸酯单体为原料,制备水性聚氨酯 乳液;然后向水性聚氨酯乳液中加入溶有计量引发剂的丙烯酸酯类进行反应,得到水性聚氨酯丙烯酸酯共聚乳液;最后与增粘树脂混合均匀,得到水性聚氨酯丙烯酸酯压敏粘合剂乳液。该水性聚氨酯丙烯酸酯压敏粘合剂结合了水性聚氨酯和丙烯酸酯两者的优点,使力学性能、耐溶剂性有所提高,但是,水性聚氨酯丙烯酸酯的耐水性和耐老化性不佳,而且高温下的粘结性也存在明显的不足之处。
总体来看,目前的物理或化学改性的水性聚氨酯产品在耐水性、稳定性、粘结性和耐热性方面都具有很大的提升空间。更为重要的是,目前市场上主流的水性聚氨酯的合成工艺为丙酮法,即在合成时采用丙酮作为溶剂,以降低预聚体的粘度,待乳液乳化完成后再将丙酮采用减压蒸馏的方式脱除,最后将废丙酮进入精馏塔精馏后回用。但是,丙酮属于甲类危险化学品,它的使用大大提高了工厂的生产成本和安全成本,难以满足绿色环保的发展要求。
因此,开发一种兼具优异的耐水性、稳定性、粘结性、耐热性且制备工艺绿色环保的水性聚氨酯产品,是本领域亟待解决的问题。
发明内容
本申请提供了一种改性生物基水性聚氨酯及其制备方法和应用,通过制备原料的设计及复配,使所述改性生物基水性聚氨酯的热活化温度可调,具有优异的耐水性、稳定性、粘结性能和耐热性,所述改性生物基水性聚氨酯可通过无溶剂方法制备得到,在材料和工艺两方面充分满足绿色环保要求,为高性能聚氨酯的绿色产业化提供了新的方向。
第一方面,本申请提供了一种改性生物基水性聚氨酯,所述改性生物基水性聚氨酯的制备原料以重量份计包括如下组分:
Figure PCTCN2022111803-appb-000001
其中,所述二异氰酸酯中包括含有奇数个碳原子的脂肪族二异氰酸酯。
本申请提供的改性生物基水性聚氨酯中,一方面通过生物基多元醇、二异氰酸酯和反应型乳化剂的反应得到水性聚氨酯;另一方面,所述含烯基单体在引发剂的作用下聚合,并与水性聚氨酯进行反应,在体系中构筑三维的化学键网络结构,通过自由基聚合互穿网络共聚的方式将高分子量的聚合物(基于含烯基单体)与生物基聚氨酯形成分子级别的复合体系,得到高性能的改性生物基水性聚氨酯。同时,本申请采用生物基多元醇,不仅具有良好的结晶性能和绿色环保的特点,而且有效提升了所述改性生物基水性聚氨酯的粘结性能、耐热性、耐水性和稳定性;进一步地,通过使用含有奇数个碳原子的脂肪族二异氰酸酯与生物基多元醇等组分进行复配,在有效调控所述改性生物基水性聚氨酯的热活化温度的同时,还有助于降低聚合物的对称性和结晶性,提升其制备工艺的可操作性。因此,本申请通过制备原料的 设计及相互复配,使所述改性生物基水性聚氨酯的热活化温度可调,并具有优异的粘结性能、耐热性、耐水性和稳定性,尤其在水解老化处理后和高温下保持优良的粘结性。更为重要的是,本申请采用生物基的原料(生物基多元醇或生物基二异氰酸酯),在材料上具有绿色可持续的特点,而且通过无溶剂的工艺制备而成,无需使用丙酮等有机溶剂,实现了无溶剂和低VOC排放。
本申请中,所述含有奇数个碳原子的脂肪族二异氰酸酯中的碳原子数目可以为5、7、9、11等。
本申请的制备原料中,所述生物基多元醇的重量份为50-150份,例如可以为60份、70份、80份、90份、100份、110份、120份、130份或140份等。
所述二异氰酸酯的重量份为5-30份,例如可以为6份、8份、10份、12份、15份、18份、20份、22份、25份或28份等。
所述反应型乳化剂的重量份为0.1-10份,例如可以为0.3份、0.5份、0.8份、1份、2份、3份、4份、5份、6份、7份、8份或9份等。
所述含烯基单体的重量份为20-200份,例如可以为30份、40份、50份、60份、70份、80份、90份、100份、110份、120份、130份、140份、150份、160份、170份、180份或190份等。
所述引发剂的重量份为0.01-5份,例如可以为0.03份、0.05份、0.08份、0.1份、0.3份、0.5份、0.7份、0.9份、1份、1.2份、1.5份、1.8份、2份、2.5份、3份、3.5份、4份或4.5份等。
优选地,所述生物基多元醇的羟值为28-112mg KOH/g,例如可以为30mg KOH/g、40mg KOH/g、50mg KOH/g、60mg KOH/g、70mg KOH/g、80mg KOH/g、90mg KOH/g、100mg KOH/g或110mg KOH/g等。
优选地,所述生物基多元醇的数均分子量为1000-5000,例如可以为1200、1500、1800、2000、2200、2500、2800、3000、3200、3500、3800、4000、4200、4500或4800等。
优选地,所述生物基多元醇为生物基聚酯多元醇和/或生物基聚醚多元醇。
本申请中,所述生物基多元醇可通过市场途径购买得到,或可通过本领域已知的化学合成方法制备得到。
优选地,所述生物基聚酯多元醇的制备原料包括多元酸和小分子多元醇的组合;其中,所述多元酸包括至少一种生物基多元酸,和/或,所述小分子多元醇包括至少一种生物基小分子多元醇。
本申请中,制备所述生物基聚酯多元醇的多元酸和小分子多元醇中,包含至少一个生物基原料(生物基多元酸和/或生物基小分子多元醇)。
优选地,所述生物基多元酸包括丁二酸、戊二酸、癸二酸、十一烷二酸、十二烷二酸、氢化二聚酸或氢化蓖麻油酸中的任意一种或至少两种的组合。
优选地,所述小分子多元醇还包括石油基小分子多元醇(例如1,6-己二醇)。
优选地,所述生物基小分子多元醇包括乙二醇、丙二醇、丁二醇、戊二醇、丙三醇或氢化二聚醇中的任意一种或至少两种的组合。
优选地,所述生物基聚醚多元醇包括聚1,3-丙二醇醚二醇。
本申请中,所述生物基聚酯多元醇通过多元酸和小分子多元醇的缩聚反应制备得到;其中,所述多元酸包括至少一种生物基多元酸,和/或,所述小分子多元醇包括至少一种生物基小分子多元醇。
优选地,所述生物基聚酯多元醇的制备原料以重量份计包括如下组分:多元酸100-200份(例如110份、120份、130份、140份、150份、160份、170份、180份或190份等);小分子多元醇40-200份(例如50份、60份、70份、80份、90份、100份、110份、120份、130份、140份、150份、160份、170份、180份或190份等);和缩聚催化剂0.001-0.1份(例如0.003份、0.005份、0.007份、0.009份、0.01份、0.02份、0.03份、0.04份、0.05份、0.06份、0.07份、0.08份或0.09份等)。
优选地,所述缩聚催化剂包括钛酸酯类化合物,进一步优选为钛酸四异丙酯。
优选地,所述含有奇数个碳原子的脂肪族二异氰酸酯为含有奇数个碳原子的直链脂肪族二异氰酸酯;优选地,所述含有奇数个碳原子的脂肪族二异氰酸酯的结构为
Figure PCTCN2022111803-appb-000002
n代表亚甲基的数目且n为奇数,例如可以为3、5或7等。
优选地,所述含有奇数个碳原子的脂肪族二异氰酸酯包括1,5-五亚甲基二异氰酸酯。
优选地,所述二异氰酸酯中含有奇数个碳原子的脂肪族二异氰酸酯的质量百分含量≥60%,例如可以为65%、70%、75%、80%、85%、90%、95%或100%等。
在本申请一优选实施方式中,所述二异氰酸酯包括含有奇数个碳原子的脂肪族二异氰酸酯,以及可选地其他脂肪族二异氰酸酯和/或可选地脂环族二异氰酸酯;同时,所述二异氰酸酯中含有奇数个碳原子的脂肪族二异氰酸酯的质量百分含量≥60%,从而有效调控所述改性生物基水性聚氨酯的热活化温度,降低聚合物的对称性和结晶性,赋予改性生物基水性聚氨酯更好的综合性能。如果二异氰酸酯中含有奇数个碳原子的脂肪族二异氰酸酯的质量百分含量<60%,则会影响聚合物的对称性和结晶性,导致粘度过高,难以操作和使用。
优选地,所述二异氰酸酯中1,5-五亚甲基二异氰酸酯的质量百分含量≥60%,例如可以为65%、70%、75%、80%、85%、90%、95%或100%等。
优选地,所述1,5-五亚甲基二异氰酸酯(PDI)为生物基1,5-五亚甲基二异氰酸酯。
优选地,所述二异氰酸酯中还包括其他脂肪族二异氰酸酯和/或脂环族二异氰酸酯。
优选地,所述其他脂肪族二异氰酸酯包括1,6-六亚甲基二异氰酸酯。
优选地,所述脂环族二异氰酸酯包括异氟尔酮二异氰酸酯和/或二环己基甲烷二异氰酸酯。
优选地,所述二异氰酸酯为含有奇数个碳原子的脂肪族二异氰酸酯,进一步优选为1,5-五亚甲基二异氰酸酯(PDI)。
在本申请一优选实施方式中,,通过特定的含有奇数个碳原子的脂肪族二异氰酸酯的设计,使改性生物基水性聚氨酯的热活化温度可调,从而使所述改性生物基水性聚氨酯能够适用于不同热活化温度要求的多种产品中。
优选地,所述改性生物基水性聚氨酯的热活化温度为20-130℃,例如可以为30℃、40℃、50℃、60℃、70℃、80℃、90℃、100℃、110℃或120℃等。
本申请中,所述反应型乳化剂参与水性聚氨酯的制备,在一优选实施方式中,,所述反应型乳化剂为非离子反应型乳化剂和/或磺酸类反应型乳化剂,一方面能够赋予聚氨酯水可分散的性质,另一方面,有助于提升所述改性生物基水性聚氨酯的耐水解性。
优选地,所述反应型乳化剂包括聚乙二醇单甲醚、聚乙二醇、环氧乙烷-环氧丙烷共聚物二醇、聚环氧丙烷丁二醇磺酸钠或二氨基乙基磺酸钠中的任意一种或至少两种的组合,进一步优选为聚乙二醇单甲醚和二氨基乙基磺酸钠的组合。
优选地,所述制备原料以重量份计包括0.1-5份聚乙二醇单甲醚,例如可以为0.3份、0.5份、0.8份、1份、1.5份、2份、2.5份、3份、3.5份、4份或4.5份等。
优选地,所述制备原料以重量份计包括0.1-5份二氨基乙基磺酸钠,例如可以为0.3份、0.5份、0.8份、1份、1.5份、2份、2.5份、3份、3.5份、4份或4.5份等。
优选地,所述含烯基单体包括醋酸乙烯酯、叔碳酸乙烯酯、丙烯腈或丙烯酸酯类单体中的任意一种或至少两种的组合。
优选地,所述叔碳酸乙烯酯包括新癸酸乙烯酯。
优选地,所述丙烯酸酯类单体包括丙烯酸乙酯、丙烯酸丁酯、丙烯酸叔丁酯、丙烯酸异辛酯、丙烯酸月桂酯、丙烯酸羟乙酯、丙烯酸异冰片酯、甲基丙烯酸甲酯、甲基丙烯酸丁酯、甲酯丙烯酸叔丁酯、甲基丙烯酸异辛酯、甲基丙烯酸月桂酯、甲基丙烯酸异冰片酯或甲基丙烯酸羟乙酯中的任意一种或至少两种的组合。
优选地,所述含烯基单体包括新癸酸乙烯酯,以及可选地醋酸乙烯酯和/或可选地丙烯酸酯类单体。
优选地,所述含烯基单体中新癸酸乙烯酯的质量百分含量为15-100%,例如可以为20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%或95%等,进一步优选为20-40%。
在本申请一优选实施方式中,,所述含烯基单体中包括新癸酸乙烯酯,其与其他组分进行复配,能够进一步提升所述改性生物基水性聚氨酯的耐水解性、耐候性和耐热性等。
优选地,所述含烯基单体中包括丙烯酸羟乙酯和/或甲基丙烯酸羟乙酯,使所述改性生物基水性聚氨酯中含有羟基官能团,能够用于双组份的胶粘剂。
优选地,所述引发剂包括氧化-还原引发体系。
优选地,所述氧化-还原引发体系中的氧化剂包括有机过氧化合物、过氧化氢或过硫酸盐中的任意一种或至少两种的组合,进一步优选为有机过氧化合物。
优选地,所述氧化剂包括过硫酸钾、过硫酸钠、过硫酸氨、叔丁基过氧化氢、过氧化苯 甲酰、过氧化月桂酰、异丙苯过氧化氢、过氧化二叔丁基、过氧化二异丙苯、过氧化苯甲酸叔丁酯、过氧化叔戊酸叔丁基酯、过氧化甲乙酮、过氧化环己酮、过氧化二碳酸二异丙酯、过氧化二碳酸二环己酯或过氧化氢中的任意一种或至少两种的组合。
优选地,所述氧化-还原引发体系中的还原剂为焦亚硫酸钠、亚硫酸氢钠、硫酸亚铁、连二亚硫酸钠、异抗坏血酸、N,N-二甲基苯胺、N,N-二乙基苯胺、焦磷酸亚铁、硫醇、氯化亚铁或四乙烯亚胺中的任意一种或至少两种的组合,进一步优选为连二亚硫酸钠(又称“保险粉”)。
优选地,所述制备原料中还包括催化剂、扩链剂、阻聚剂、交联剂或乳液聚合乳化剂中的任意一种或至少两种的组合。
优选地,所述制备原料以重量份计还包括0.001-0.5份催化剂,例如可以为0.003份、0.005份、0.007份、0.009份、0.01份、0.03份、0.05份、0.07份、0.09份、0.1份、0.2份、0.3份或0.4份等。
优选地,所述催化剂包括有机铋类催化剂,进一步优选为新癸酸铋。
优选地,所述制备原料以重量份计还包括0.1-5份扩链剂,例如可以为0.2份、0.5份、0.8份、1份、1.5份、2份、2.5份、3份、3.5份、4份或4.5份等。
优选地,所述扩链剂包括醇类扩链剂和/或胺类扩链剂,进一步优选醇类扩链剂。
优选地,所述醇类扩链剂包括丙二醇、二丙二醇或二甘醇中的任意一种或至少两种的组合。
优选地,所述制备原料以重量份计还包括0.0001-0.1份阻聚剂,例如可以为0.0003份、0.0005份、0.0007份、0.0009份、0.001份、0.003份、0.005份、0.007份、0.009份、0.01份、0.03份、0.05份、0.07份或0.09份等。
优选地,所述阻聚剂包括对羟基苯甲醚、对苯醌或对苯二酚中的任意一种或至少两种的组合。
优选地,所述制备原料以重量份计还包括0.1-8份交联剂,例如可以为0.3份、0.5份、0.8份、1份、1.5份、2份、2.5份、3份、3.5份、4份、4.5份、5份、5.5份、6份、6.5份、7份或7.5份等。
优选地,所述交联剂包括甲基丙烯酸缩水甘油酯、二丙酮丙烯酰胺、甲基丙烯酸乙酰乙酸乙酯或己二酰肼中的任意一种或至少两种的组合,进一步优选为二丙酮丙烯酰胺和己二酰肼的组合。
优选地,所述制备原料以重量份计还包括0.1-5份二丙酮丙烯酰胺,例如可以为0.3份、0.5份、0.8份、1份、1.5份、2份、2.5份、3份、3.5份、4份或4.5份等。
优选地,所述制备原料以重量份计还包括0.1-3份己二酰肼,例如可以为0.3份、0.5份、0.8份、1份、1.2份、1.5份、1.8份、2份、2.2份、2.5份或2.8份等。
优选地,所述制备原料以重量份计还包括0.01-5份乳液聚合乳化剂,例如可以为0.05份、0.1份、0.3份、0.5份、0.8份、1份、1.5份、2份、2.5份、3份、3.5份、4份或4.5份等。
优选地,所述乳液聚合乳化剂包括阴离子表面活性剂和/或非离子表面活性剂。
优选地,所述乳液聚合乳化剂包括烯丙氧基异构醇醚硫酸酯氨盐和/或磺基琥珀酸烷基醇醚酯钠盐。
优选地,所述制备原料中还包括pH调节剂和/或消泡剂。
优选地,所述制备原料以重量份计还包括0.001-0.5份pH调节剂,例如可以为0.003份、0.005份、0.008份、0.01份、0.03份、0.08份、0.1份、0.2份、0.3份或0.4份等。
优选地,所述制备原料以重量份计还包括0.001-0.1份消泡剂,例如可以为0.003份、0.005份、0.007份、0.009份、0.01份、0.02份、0.03份、0.04份、0.05份、0.06份、0.07份、0.08份或0.09份等。
在本申请一优选实施方式中,,所述改性生物基水性聚氨酯的制备原料以重量份计包括如下组分:
Figure PCTCN2022111803-appb-000003
其中,所述二异氰酸酯的结构为
Figure PCTCN2022111803-appb-000004
的脂肪族二异氰酸酯的质量百分含量≥60%;且n为奇数,例如可以为3、5或7等。
优选地,所述制备原料中还包括水。
本申请中,水的质量可以根据工艺要求和实际的固含量要求进行调整,优选地,所述改性生物基水性聚氨酯为乳液,水的用量以使所述乳液的固含量为40-60%,例如固含量可以为42%、45%、48%、50%、52%、55%、58%等,进一步优选45-55%。
优选地,以所述制备原料中除水之外的组分的总质量为100%计,所述含烯基单体的质量为30-70%,例如可以为35%、40%、45%、50%、55%、60%或65%等。
第二方面,本申请提供一种如第一方面所述的改性生物基水性聚氨酯的制备方法,所述制备方法包括如下步骤:
(1)将生物基多元醇、二异氰酸酯、反应型乳化剂和含烯基单体混合并进行反应,得到含烯基单体的聚氨酯预聚体;
(2)将步骤(1)得到的含烯基单体的聚氨酯预聚体与水相混合并进行乳化,得到含烯基单体的聚氨酯乳液;以及
(3)将步骤(2)得到的含烯基单体的聚氨酯乳液在引发剂的存在下进行反应,得到所述改性生物基水性聚氨酯。
本申请提供的制备方法是一种无溶剂工艺,其中,所述含烯基单体在步骤(1)的聚氨酯预聚体的制备中具有反应介质的作用,从而使所述制备方法无需使用丙酮等有机溶剂,具有无溶剂、极低VOC排放的特点。所述聚氨酯预聚体经过乳化后形成聚氨酯乳液,且所述乳化过程不需要使用复杂昂贵的强力乳化装置,进而在引发剂的作用下发生自由基聚合,通过自由基聚合互穿网络共聚的方式将高分子量的聚合物(含烯基单体聚合而成)与生物基的聚氨酯形成分子级别的复合体系,形成相容性良好、性能优异的高分子合金乳液,即所述改性生物基水性聚氨酯。
优选地,步骤(1)所述混合的物料还包括催化剂、扩链剂或阻聚剂中的任意一种或至少两种的组合。
优选地,步骤(1)所述混合并进行反应的方法包括方法A或方法B,所述方法A包括:首先将生物基多元醇、二异氰酸酯、阻聚剂、催化剂、配方量30-70%(例如可以为35%、40%、45%、50%、55%、60%或65%等)的反应型乳化剂、配方量10-90%(例如可以为15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%或85%等)的含烯基单体混合并进行第一段反应;然后向体系中加入扩链剂和剩余配方量的含烯基单体,进行第二段反应;再向体系中加入剩余配方量的反应型乳化剂进行第三段反应,得到所述含烯基单体的聚氨酯预聚体;
所述方法B包括:首先将生物基多元醇、二异氰酸酯、阻聚剂、催化剂、反应型乳化剂、配方量10-90%(例如可以为15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%或85%等)的含烯基单体混合并进行第一段反应;然后向体系中加入扩链剂和剩余配方量的含烯基单体,进行第二段反应,得到所述含烯基单体的聚氨酯预聚体。
优选地,所述反应型乳化剂包括聚乙二醇单甲醚和二氨基乙基磺酸钠,步骤(1)所述混合并进行反应的方法为方法A,首先加入聚乙二醇单甲醚参与第一段反应,在进行第三段反应前加入二氨基乙基磺酸钠。
优选地,所述第一段反应、第二段反应的温度各自独立地为55-80℃,例如可以为58℃、60℃、62℃、65℃、68℃、70℃、72℃、75℃或78℃等。
优选地,所述第一段反应、第二段反应的时间各自独立地为1-4h,例如可以为1.25h、1.5h、1.75h、2h、2.25h、2.5h、2.75h、3h、3.25h、3.5h或3.75h等。
优选地,方法A中,所述第二段反应完成后,体系的NCO含量<0.91%。
优选地,方法B中,所述第二段反应完成后,体系的NCO含量<0.2%。
优选地,所述第三段反应的温度为40-50℃,例如可以为41℃、43℃、45℃、47℃或49℃等。
优选地,所述第三段反应的时间为10-60min,例如可以为15min、20min、25min、30min、35min、40min、45min、50min或55min等。
优选地,步骤(2)所述水相中包括水、可选地交联剂、可选地乳液聚合乳化剂和可选地消泡剂。
优选地,步骤(2)所述乳化的方法包括:将所述含烯基单体的聚氨酯预聚体加入水相中,分散,得到所述含烯基单体的聚氨酯乳液。
优选地,所述含烯基单体的聚氨酯预聚体在搅拌条件下加入水相中。
优选地,所述分散在搅拌条件下进行。
优选地,所述搅拌的转速为400-600rpm,例如可以为420rpm、450rpm、480rpm、500rpm、520rpm、550rpm或580rpm等。
优选地,所述分散的时间为1-3h,例如可以为1.25h、1.5h、1.75h、2h、2.25h、2.5h或2.75h等。
优选地,步骤(3)所述反应的温度为50-60℃,例如可以为51℃、52℃、53℃、54℃、55℃、56℃、57℃、58℃或59℃等。
优选地,步骤(3)所述反应的时间为20-90min,例如可以为25min、30min、35min、40min、45min、50min、55min、60min、65min、70min、75min、80min或85min等。
优选地,步骤(3)所述反应完成后还包括调节pH的步骤。
优选地,所述调节pH至pH值为6.5-9.0,例如pH值为6.6、6.8、7.0、7.2、7.5、7.8、8.0、8.2、8.5或8.8等。
第三方面,本申请提供一种如第一方面所述的改性生物基水性聚氨酯在涂料或胶粘剂中的应用。
第四方面,本申请提供一种胶粘剂,所述胶粘剂包括如第一方面所述的改性生物基水性聚氨酯。
优选地,所述胶粘剂还包括增稠剂、润湿剂、消泡剂、pH调节剂或固化剂中的任意一种或至少两种的组合。
相对于现有技术,本申请具有以下有益效果:
(1)本申请提供的改性生物基水性聚氨酯,通过制备原料的设计及相互复配,使所述改性生物基水性聚氨酯的热活化温度在20-120℃的范围内可以调节,成膜强度高,耐候性好,不黄变,对不同基材附着力好,具有优异的粘结性能、耐热性、耐水性、耐水解性和稳定性,而且生物基含量高,是绿色环保的高性能水性聚氨酯产品。
(2)本申请通过制备原料和工艺路线的设计,使所述改性生物基水性聚氨酯采用无溶剂的方法制备而成,且无需使用复杂昂贵的设备。所述制备方法通过常规的生产设备即可实现无溶剂工艺,步骤简单,可操作性好,制备成本低,VOC排放低,充分满足节能减排、绿色环保的要求。
(3)本申请通过组分的设计和进一步优化,使所述改性生物基水性聚氨酯能够用于制备 高性能的胶粘剂,满足单组份或双组份的不同需求。所述胶粘剂能够快速建立高的初期粘结强度,热活化完全后胶粘剂的瞬时剥离强度≥5.5N/mm,而且粘结性能优异,最终剥离强度≥10N/mm,可以达到20N/mm以上。所述胶粘剂的耐水性、耐水解性、耐老化性和耐热性好,在老化处理后的最终剥离强度仍然≥10N/mm,能够在75℃、甚至125℃的高温下保持有优良的粘结性能,在水解、高温、老化等苛刻环境下保持稳定的粘结性能,而且储存稳定性好,是综合性能优异的胶粘剂材料。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
本申请以下具体实施方式中,所使用的多元酸、小分子多元醇均为市售化学品,例如琥珀酸(丁二酸,生物基多元酸)购自DSM,癸二酸(生物基多元酸)购自益海嘉里,1,3-丙二醇(生物基小分子多元醇)购自杜邦,1,6-己二醇(石油基小分子多元醇)购自宇部。
本申请以下具体实施方式中,生物基多元醇的酸值和羟值通过滴定法测试得到,数均分子量通过凝胶色谱法(GPC)测试得到,生物基含量(%)=100%×生物基原料质量/产品质量。
制备例1
一种生物基多元醇A1(生物基聚酯多元醇),制备原料以重量份计包括:琥珀酸110.92份,1,6-己二醇135.19份,钛酸四异丙酯0.0123份;具体制备方法如下:
按照配方量,将琥珀酸、1,6-己二醇和钛酸四异丙酯投入反应瓶中,缓慢升温至220℃,反应12h后,抽真空脱除缩合水33.84份和过量的1,6-己二醇13.33份,直至酸值下降至2mg KOH/g以下、羟值为56mg KOH/g时停止反应,得到所述生物基多元醇A1,其数均分子量为2000,生物基含量为55.8%。
制备例2
一种生物基多元醇A2(生物基聚酯多元醇),制备原料以重量份计包括:癸二酸160.59份,1,3-丙二醇74.83份,钛酸四异丙酯0.0118份;具体制备方法如下:
按照配方量,将癸二酸、1,3-丙二醇和钛酸四异丙酯投入反应瓶中,缓慢升温至220℃,反应12h后,抽真空脱除缩合水28.58份和过量的1,3-丙二醇6.81份,直至酸值下降至2mg KOH/g以下、羟值为56mg KOH/g时停止反应,得到所述生物基多元醇A2,其数均分子量为2000,生物基含量为100%。
制备例3
一种生物基多元醇A3(生物基聚酯多元醇),制备原料以重量份计包括:癸二酸122.06份,1,3-丙二醇54.7份,钛酸四异丙酯0.00885份;具体制备方法如下:
按照配方量,将癸二酸、1,3-丙二醇和钛酸四异丙酯投入反应瓶中,缓慢升温至220℃,反应12h后,抽真空脱除缩合水14.29份和过量的1,3-丙二醇3.41份,直至酸值下降至2mg KOH/g以下、羟值为35mg KOH/g时停止反应,得到所述生物基多元醇A3,其数均分子量 为3000,生物基含量为100%。
本申请以下具体实施方式中,所涉及的原料包括:
(1)多元醇:
生物基多元醇A1,制备例1;
生物基多元醇A2,制备例2;
生物基多元醇A3,制备例3;
生物基多元醇Priplast 3238,100%生物基二聚酸聚酯多元醇,羟值为56mg KOH/g,数均分子量为2000,购自CRODA;
生物基多元醇ECOPROL H2000,聚1,3-丙二醇醚二醇,羟值为56mg KOH/g,数均分子量为2000,购自SK化学;
石油基多元醇,聚己二酸1,4-丁二醇酯二醇,XCP-44,羟值为56mg KOH/g,数均分子量为2000,购自旭川化学。
(2)二异氰酸酯:
含有奇数个碳原子的脂肪族二异氰酸酯,1,5-五亚甲基二异氰酸酯,PDI;
1,6-六亚甲基二异氰酸酯,HDI,购自万华化学;
异氟尔酮二异氰酸酯,IPDI,购自万华化学。
(3)反应型乳化剂:
聚乙二醇单甲醚,MPEG 1000,羟值为56mg KOH/g,数均分子量为1000,官能度为1;
二氨基乙基磺酸钠,牌号为A-95,购自赢创化学。
(4)催化剂:新癸酸铋,BICAT 2010,购自美国领先化学。
(5)扩链剂:1,3-丙二醇(生物法)。
(6)阻聚剂:对羟基苯甲醚。
(7)含烯基单体:
醋酸乙烯酯,VAc,购自国药试剂;
新癸酸乙烯酯,VV-10,购自瀚森;
丙烯酸丁酯,BA,购自国药试剂;
甲基丙烯酸丁酯,BMA,购自国药试剂;
丙烯酸羟乙酯,HEA,购自国药试剂;
丙烯酸异辛酯,2-EHA,购自国药试剂。
(8)交联剂:
双丙酮丙烯酰胺,DAAM,购自无锡市梁溪精细化工有限公司;
己二酰肼,ADH,购自无锡市梁溪精细化工有限公司。
(9)乳液聚合乳化剂:
烯丙氧基异构醇醚硫酸酯氨盐,SR-1025,购自日本艾迪科;
磺基琥珀酸烷基醇醚酯钠盐,A 102K,购自上海忠诚精细化工有限公司。
(10)引发剂:
叔丁基过氧化氢,TBHP,70%含量的TBHP水溶液,购自国药试剂;
连二亚硫酸钠,保险粉,购自国药试剂。
(11)pH调节剂:有机胺,AMP-95,购自安格斯。
(12)消泡剂:BYK 021,购自毕克化学。
实施例1-6
一种改性生物基水性聚氨酯及其制备方法,所述改性生物基水性聚氨酯的制备原料的组分如表1所示,各组分的用量单位均为“份”。
表1
Figure PCTCN2022111803-appb-000005
Figure PCTCN2022111803-appb-000006
所述改性生物基水性聚氨酯的制备方法包括如下步骤:
(1)按照配方量,向装有氮气保护、温度计、机械搅拌的四口烧瓶中加入生物基多元醇、MPEG 1000、阻聚剂、催化剂、VV-10和PDI,65℃反应2h,然后加入其他的含烯基单体和扩链剂,65℃继续反应2h,测试体系的NCO含量至反应终点(<0.91%)后,降温至40℃,加入A-95,在45℃继续反应30min,得到含烯基单体的聚氨酯预聚体;
(2)向装有氮气保护、温度计、机械搅拌的四口烧瓶中加入经过除氧处理的去离子水(185份)、DAAM、SR-1025和消泡剂,开启搅拌,将上述原料混合均匀,得到水相;控制料温在20℃,搅拌转速500rpm,将步骤(1)得到的含烯基单体的聚氨酯预聚体在1h内滴入水相中,继续分散2h,完成乳化,得到含烯基单体的聚氨酯乳液;以及
(3)向装有氮气保护、温度计、机械搅拌的四口烧瓶中加入步骤(2)得到的含烯基单体的聚氨酯乳液,开启搅拌,转速180rpm,控温为40℃,将引发剂(TBHP和保险粉)在15min内滴加到体系中,滴加完毕后55℃继续保温反应30min;反应后,降温至40℃以下,加入pH调节剂,调整pH至8左右,加入ADH搅拌均匀,最后用300目滤网过滤出料,得到所述改性生物基水性聚氨酯。
实施例7-12
一种改性生物基水性聚氨酯及其制备方法,所述改性生物基水性聚氨酯的制备原料的组分如表2所示,各组分的用量单位均为“份”。
表2
Figure PCTCN2022111803-appb-000007
Figure PCTCN2022111803-appb-000008
实施例7-8所述改性生物基水性聚氨酯的制备方法包括如下步骤:
(1)按照配方量,向装有氮气保护、温度计、机械搅拌的四口烧瓶中加入生物基多元醇、MPEG 1000、阻聚剂、催化剂、VV-10和PDI,60℃反应2h,然后扩链剂,60℃反应2h后,再加入含羟基的含烯基单体HEA,60℃继续反应至测试体系的NCO含量至反应终点(<0.2%)后,降温至40℃,得到含烯基单体的聚氨酯预聚体;
(2)向装有氮气保护、温度计、机械搅拌的四口烧瓶中加入经过除氧处理的去离子水(105份)、A 102K和消泡剂,开启搅拌,将上述原料混合均匀,得到水相;控制料温在25℃,搅拌转速600rpm,将步骤(1)得到的含烯基单体的聚氨酯预聚体在1h内滴入水相中,继续分散2h,完成乳化,得到含烯基单体的聚氨酯乳液;以及
(3)向装有氮气保护、温度计、机械搅拌的四口烧瓶中加入步骤(2)得到的含烯基单体的聚氨酯乳液,开启搅拌,转速200rpm,控温为35℃,将引发剂(TBHP和保险粉)在15min内滴加到体系中,滴加完毕后50℃继续保温反应30min;反应后,降温至40℃以下,加入pH调节剂,调整pH至8左右后,用300目滤网过滤出料,得到所述改性生物基水性聚氨酯。
实施例9-12所述改性生物基水性聚氨酯的制备方法与实施例1-6相同。
对比例1-3
一种改性水性聚氨酯及其制备方法,所述改性水性聚氨酯的制备原料的组分如表3所示,各组分的用量单位均为“份”。
表3
Figure PCTCN2022111803-appb-000009
Figure PCTCN2022111803-appb-000010
对比例1-3所述改性水性聚氨酯的制备方法与实施例1相同,其中,对比例2中的聚氨酯预聚体呈凝胶状,无法进行后续的制备,无法获得改性水性聚氨酯。
对比例4
一种改性水性聚氨酯,为物理混拼改性体系,以重量份计包括50份Dispercoll U54(胶黏剂用无定型水性聚氨酯乳液,固含量50%,热活化温度为50-60℃,科思创)和50份DA 102(醋酸乙烯酯-乙烯共聚乳液,固含量为55%,pH值为4.5-6.5,玻璃化转变温度T g为0℃)。将两种乳液混合均匀,得到所述改性水性聚氨酯。
对实施例1-12、对比例1和对比例3提供的改性生物基水性聚氨酯进行性能测试,具体内容如下:
(1)固含量:按照GB/T 2793-1995中的方法进行测试;
(2)粘度:按照GB/T 2794-2013中的方法、在25℃下测试粘度;
(3)粒径:采用马尔文激光粒度仪测试粒径;
(4)生物基含量:生物基含量(%)=100%×生物基原料质量/产品质量;
(5)乙烯基含量:乙烯基含量(%)=100%×含烯基单体的质量/改性生物基聚氨酯的干基质量;
(6)热活化温度:按照US4870125中热活化温度测试方法进行测试,具体方法如下:
样条制备:厚度为4mm,邻苯二甲酸二辛酯(DOP)含量为30%的PVC材料。用300目砂纸打磨。将改性生物基水性聚氨酯用线棒涂布于该基材上,湿膜厚度为0.1mm,室温干燥30min后备用。
将宽度为1cm的PVC样条在要求的温度下在干燥柜中保存1h,然后在手指轻压下将两个样条立刻放在一起,形成1cm×1cm的重叠区域。如果在这些条件下接触的两个表面在整个区域内完全结合,并且只有在粘接形成后立即用明显的力将其分离,则该温度范围即为热活化温度。
测试结果如表4所示:
表4
Figure PCTCN2022111803-appb-000011
应用例1
一种胶粘剂,为单组份体系,以重量份计包括如下组分:
Figure PCTCN2022111803-appb-000012
其中,所述改性水性聚氨酯分别为实施例1-6、实施例9-11、对比例1和对比例3-4提供的改性生物基水性聚氨酯;所述消泡剂为BYK 021(毕克化学),所述润湿剂为BYK 024(毕克化学),所述增稠剂为聚氨酯型增稠剂Vesmody U605(万华化学);所述pH调节剂为有机碱AMP-95(安格斯),其用量为使所述胶粘剂的pH值为8为准。
所述胶粘剂的制备方法如下:按照配方量,将改性水性聚氨酯、消泡剂、润湿剂和pH调节剂,调整pH至8,继续分散15min后,提高转速至400rpm,缓慢加入增稠剂,分散完全后,静置消泡,300目滤网过滤,出料,得到所述胶粘剂。
应用例2
一种胶粘剂,为双组份体系,包括A组分和B组分;所述A组分以重量份计包括如下组分:
Figure PCTCN2022111803-appb-000013
其中,所述改性水性聚氨酯分别为实施例7-8提供的改性生物基水性聚氨酯;所述消泡剂为BYK 021(毕克化学),所述润湿剂为BYK 024(毕克化学),所述增稠剂为聚氨酯型增稠剂Vesmody U605(万华化学);所述pH调节剂为有机碱AMP-95(安格斯),其用量为使所述胶粘剂的pH值为8为准。
所述B组分为4份Bayhydur 305(基于HDI的非离子改性异氰酸酯固化剂,固含量为100%,NCO含量为16.2%,科思创)。
所述胶粘剂的制备方法如下:按照配方量,将改性水性聚氨酯、消泡剂、润湿剂和pH调节剂,调整pH至8,继续分散15min后,提高转速至400rpm,缓慢加入增稠剂,分散完全后,静置消泡,300目滤网过滤,出料,得到所述A组分;在转速100rpm的条件下将所述B组分缓慢加入A组分中,分散5min后,300目滤网过滤,出料,得到所述胶粘剂。
对前述胶粘剂进行如下的性能测试:
(1)剥离强度
用0.25mm厚的透明PVC薄板作基材,用裁纸刀切成250mm×300mm的块状,表面用 乙醇擦拭干净。用50μm的RDS涂布棒将待测的胶粘剂涂布在该基材上,涂布长度为150mm。涂有胶粘剂的基材在室温晾干(一般为2h以上),然后将两块同样尺寸的涂胶的PVC复合,用裁纸刀切成25mm×150mm的条状试样,将此条状试样用一个热封机,在70℃、3.5kg/cm 2的压力下热活化30s,用Instron测定其T-剥离强度,速度为30cm/min,样品热活化后15min内测定的为瞬时剥离强度,样品热活化室温放置7天后测定的数据为最终剥离强度。
由于实施例1和对比例3提供的改性生物基水性聚氨酯的热活化温度较高(详见表4),因此,将采用实施例1和对比例3所述改性生物基水性聚氨酯胶粘剂按照前述方法制样后,在130℃、3.5kg/cm 2的压力下热活化30s,用Instron测定其T-剥离强度,速度为30cm/min,样品热活化后15min内测定的为瞬时剥离强度,样品热活化室温放置7天后测定的数据为最终剥离强度。
实施例11提供的改性生物基水性聚氨酯的热活化温度较高(详见表4),因此,将采用实施例11所述改性生物基水性聚氨酯胶粘剂按照前述方法制样后,在100℃、3.5kg/cm 2的压力下热活化30s,用Instron测定其T-剥离强度,速度为30cm/min,样品热活化后15min内测定的为瞬时剥离强度,样品热活化室温放置7天后测定的数据为最终剥离强度。
(2)粘结耐温性能
测试样品的制备同(1)中剥离强度,用裁纸刀将样品切成50mm×25mm条状,其中一端的涂胶面积为表面25mm×25mm,将另一端未涂胶的25mm×25mm的复合PVC分开,呈180度,一端挂上100g砝码,另一端悬挂在鼓风烘箱内。从室温升到125℃,升温速度为25℃/h,记录样品拉开砝码落下的温度,到125℃仍未拉开的样品,则记录粘接面的剥离程度。
(3)耐水解老化性能
将100mL待测的胶粘剂放入密闭的四氟瓶中,置于75℃烘箱中2周,进行加速老化测试。然后按照(1)中剥离强度的测试方法测试加速老化后的瞬时剥离强度和最终剥离强度。
(4)储存稳定性
将100mL待测的胶粘剂放入密闭的四氟瓶中,置于55℃的烘箱中8周,目测考察流动状态,并测试其25℃的粘度。
具体测试结果如表5所示:
表5
Figure PCTCN2022111803-appb-000014
Figure PCTCN2022111803-appb-000015
表5中,“实施例1A”、“实施例11A”、“对比例3A”表示该胶粘剂性能测试中的热活化温度为70℃;“实施例1B”、“对比例3B”表示该胶粘剂性能测试中的热活化温度为130℃;“实施例11B”表示该胶粘剂性能测试中的热活化温度为100℃;其他实施例和对比例的测试数据均在热活化温度为70℃的条件下得到。
由于实施例1所述改性生物基水性聚氨酯的热活化温度为100-120℃,其在70℃、3.5kg/cm 2的条件下未活化完全,因此实施例1A的剥离强度略低,在130℃完全活化后,胶粘剂具有高的瞬时剥离强度和最终剥离强度,粘结性能、耐水解性以及耐热性能优异。
结合表5的性能测试数据可知,本申请提供的改性生物基水性聚氨酯具有优异的储存稳定性、粘结性、耐水解性以及耐热性能。通过对组分的设计和进一步优化,所述改性生物基水性聚氨酯制备的胶粘剂的瞬时剥离强度>4.0N/mm,热活化完全后胶粘剂的瞬时剥离强度为5.5-8.8N/mm,能够快速建立较高的初期粘结强度;热活化完全后胶粘剂的最终剥离强度为9.8-20.6N/mm,粘结性能优异。所述胶粘剂的耐水性、耐水解性、耐老化性和耐热性好,在老化处理后的最终剥离强度为9.8-17.9N/mm,能够在75℃、甚至125℃的高温下保持优良的粘结性能,而且储存稳定性高,较高温度下长期储存后仍然具有良好的流动性。
本申请中,通过对含烯基单体的设计,使所述改性生物基水性聚氨酯适用于不同的胶粘剂体系,例如实施例7-8引入含羟基的HEA,得到含有羟基的改性生物基水性聚氨酯,可以制备高性能的双组份胶粘剂。此外,含烯基单体中包含新癸酸乙烯酯,其与其他组分进行复配,能够进一步提升所述改性生物基水性聚氨酯的综合性能;如果体系中不含有新癸酸乙烯酯(实施例9-10),则会导致改性生物基水性聚氨酯及胶粘剂的粘结强度、耐热性和耐水解性降低。
本申请将生物基多元醇、含有奇数个碳原子的二异氰酸酯和含烯基单体进行复配,采用特定的无溶剂工艺,得到高性能的改性生物基水性聚氨酯。实施例12的二异氰酸酯中含有奇数个碳原子的1,5-五亚甲基二异氰酸酯(PDI)含量过低,影响了聚合物的结晶性和对称性,导致其粘度过大,难以满足后续的测试和使用要求。与对比例1使用石油基多元醇制备的改性水性聚氨酯相比,本申请中基于生物基多元醇的改性生物基水性聚氨酯不仅更加绿色环保,而且在粘结性能、耐热性和耐水解耐老化性方面取得显著提高。对比例2中采用HDI,其与生物基多元醇反应会生成凝胶状的预聚体,无法进行后续制备,可加工性和可操作性差。对比例3采用HDI与IPDI组合的二异氰酸酯,其加工性尚可,可以得到改性水性聚氨酯乳液,但其粘结性能、耐热性和耐水解老化性较差,无法获得性能良好的胶粘剂产品。对比例4为市售的水性聚氨酯与醋酸乙烯酯-乙烯共聚物乳液的混拼体系,虽然粘结性能良好,但胶粘剂的耐热性和耐水解老化性存在明显不足,而且储存稳定性差,无法满足使用要求。
申请人声明,本申请通过上述实施例来说明本申请的改性生物基水性聚氨酯及其制备方法和应用,但本申请并不局限于上述实施例,即不意味着本申请必须依赖上述实施例才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。

Claims (14)

  1. 一种改性生物基水性聚氨酯,其制备原料以重量份计包括如下组分:
    Figure PCTCN2022111803-appb-100001
    其中,所述二异氰酸酯中包括含有奇数个碳原子的脂肪族二异氰酸酯。
  2. 根据权利要求1所述的改性生物基水性聚氨酯,其中,所述生物基多元醇的羟值为28-112mg KOH/g;
    优选地,所述生物基多元醇的数均分子量为1000-5000。
  3. 根据权利要求1或2所述的改性生物基水性聚氨酯,其中,所述生物基多元醇为生物基聚酯多元醇和/或生物基聚醚多元醇;
    优选地,所述生物基聚酯多元醇的制备原料包括多元酸和小分子多元醇的组合;其中,所述多元酸包括至少一种生物基多元酸,和/或,所述小分子多元醇包括至少一种生物基小分子多元醇;
    优选地,所述生物基多元酸包括丁二酸、戊二酸、癸二酸、十一烷二酸、十二烷二酸、氢化二聚酸或氢化蓖麻油酸中的任意一种或至少两种的组合;
    优选地,所述生物基小分子多元醇包括乙二醇、丙二醇、丁二醇、戊二醇、丙三醇或氢化二聚醇中的任意一种或至少两种的组合;
    优选地,所述生物基聚醚多元醇包括聚1,3-丙二醇醚二醇。
  4. 根据权利要求1所述的改性生物基水性聚氨酯,其中,所述含有奇数个碳原子的脂肪族二异氰酸酯包括1,5-五亚甲基二异氰酸酯;
    优选地,所述二异氰酸酯中含有奇数个碳原子的脂肪族二异氰酸酯的质量百分含量≥60%;
    优选地,所述反应型乳化剂包括聚乙二醇单甲醚、聚乙二醇、环氧乙烷-环氧丙烷共聚物二醇、聚环氧丙烷丁二醇磺酸钠或二氨基乙基磺酸钠中的任意一种或至少两种的组合;进一步优选为聚乙二醇单甲醚和二氨基乙基磺酸钠的组合。
  5. 根据权利要求1所述的改性生物基水性聚氨酯,其中,所述含烯基单体包括醋酸乙烯酯、叔碳酸乙烯酯、丙烯腈或丙烯酸酯类单体中的任意一种或至少两种的组合;
    优选地,所述叔碳酸乙烯酯包括新癸酸乙烯酯;
    优选地,所述丙烯酸酯类单体包括丙烯酸乙酯、丙烯酸丁酯、丙烯酸叔丁酯、丙烯酸异辛酯、丙烯酸月桂酯、丙烯酸羟乙酯、丙烯酸异冰片酯、甲基丙烯酸甲酯、甲基丙烯酸丁酯、甲酯丙烯酸叔丁酯、甲基丙烯酸异辛酯、甲基丙烯酸月桂酯、甲基丙烯酸异冰片酯或甲基丙烯酸羟乙酯中的任意一种或至少两种的组合;
    优选地,所述含烯基单体中新癸酸乙烯酯的质量百分含量为20-100%。
  6. 根据权利要求1所述的改性生物基水性聚氨酯,其中,所述引发剂包括氧化-还原引发体系;
    优选地,所述氧化-还原引发体系中的氧化剂包括有机过氧化合物、过氧化氢或过硫酸盐或中的任意一种或至少两种的组合;
    优选地,所述氧化-还原引发体系中的还原剂为焦亚硫酸钠、亚硫酸氢钠、硫酸亚铁、连二亚硫酸钠、异抗坏血酸、N,N-二甲基苯胺、N,N-二乙基苯胺、焦磷酸亚铁、硫醇、氯化亚铁或四乙烯亚胺中的任意一种或至少两种的组合。
  7. 根据权利要求1-6任一项所述的改性生物基水性聚氨酯,其中,所述制备原料中还包括催化剂、扩链剂、阻聚剂、交联剂或乳液聚合乳化剂中的任意一种或至少两种的组合;
    优选地,所述制备原料以重量份计还包括0.001-0.5份催化剂;
    优选地,所述催化剂包括有机铋类催化剂;
    优选地,所述制备原料以重量份计还包括0.1-5份扩链剂;
    优选地,所述扩链剂包括醇类扩链剂,进一步优选包括丙二醇、二丙二醇或二甘醇中的任意一种或至少两种的组合;
    优选地,所述制备原料以重量份计还包括0.0001-0.1份阻聚剂;
    优选地,所述阻聚剂包括对羟基苯甲醚、对苯醌或对苯二酚中的任意一种或至少两种的组合;
    优选地,所述制备原料以重量份计还包括0.1-8份交联剂;
    优选地,所述交联剂包括甲基丙烯酸缩水甘油酯、二丙酮丙烯酰胺、甲基丙烯酸乙酰乙酸乙酯或己二酰肼中的任意一种或至少两种的组合;
    优选地,所述制备原料以重量份计还包括0.01-5份乳液聚合乳化剂;
    优选地,所述乳液聚合乳化剂包括阴离子表面活性剂和/或非离子表面活性剂。
  8. 根据权利要求1-6任一项所述的改性生物基水性聚氨酯,其中,所述制备原料中还包括pH调节剂和/或消泡剂;
    优选地,所述制备原料以重量份计还包括0.01-0.5份pH调节剂;
    优选地,所述制备原料以重量份计还包括0.001-0.1份消泡剂;
    优选地,所述制备原料中还包括水。
  9. 一种如权利要求1-8任一项所述的改性生物基水性聚氨酯的制备方法,其包括如下步骤:
    (1)将生物基多元醇、二异氰酸酯、反应型乳化剂和含烯基单体混合并进行反应,得到含烯基单体的聚氨酯预聚体;
    (2)将步骤(1)得到的含烯基单体的聚氨酯预聚体与水相混合并进行乳化,得到含烯基单体的聚氨酯乳液;以及
    (3)将步骤(2)得到的含烯基单体的聚氨酯乳液在引发剂的存在下进行反应,得到所述改性生物基水性聚氨酯。
  10. 根据权利要求9所述的制备方法,其中,步骤(1)所述混合的物料还包括催化剂、扩链剂或阻聚剂中的任意一种或至少两种的组合;
    优选地,步骤(1)所述混合并进行反应的方法包括方法A或方法B;
    其中,所述方法A包括:首先将生物基多元醇、二异氰酸酯、阻聚剂、催化剂、配方量30-70%的反应型乳化剂、配方量10-90%的含烯基单体混合并进行第一段反应;然后向体系中加入扩链剂和剩余配方量的含烯基单体,进行第二段反应;再向体系中加入剩余配方量的反应型乳化剂进行第三段反应,得到所述含烯基单体的聚氨酯预聚体;
    所述方法B包括:首先将生物基多元醇、二异氰酸酯、阻聚剂、催化剂、反应型乳化剂、配方量10-90%的含烯基单体混合并进行第一段反应;然后向体系中加入扩链剂和剩余配方量的含烯基单体,进行第二段反应,得到所述含烯基单体的聚氨酯预聚体。
  11. 根据权利要求10所述的制备方法,其中,所述第一段反应、第二段反应的温度各自独立地为55-80℃;
    优选地,所述第一段反应、第二段反应的时间各自独立地为1-4h;
    优选地,所述第三段反应的温度为40-50℃;
    优选地,所述第三段反应的时间为10-60min。
  12. 根据权利要求9所述的制备方法,其中,步骤(2)所述水相中包括水、可选地交联剂、可选地乳液聚合乳化剂和可选地消泡剂;
    优选地,步骤(2)所述乳化的方法包括:将所述含烯基单体的聚氨酯预聚体加入水相中,分散,得到所述含烯基单体的聚氨酯乳液;
    优选地,步骤(3)所述反应的温度为50-60℃;
    优选地,步骤(3)所述反应的时间为20-90min;
    优选地,步骤(3)所述反应完成后还包括调节pH的步骤。
  13. 一种如权利要求1-8任一项所述的改性生物基水性聚氨酯在涂料或胶粘剂中的应用。
  14. 一种胶粘剂,其包括如权利要求1-8任一项所述的改性生物基水性聚氨酯;
    优选地,所述胶粘剂还包括增稠剂、润湿剂、消泡剂、pH调节剂或固化剂中的任意一种或至少两种的组合。
PCT/CN2022/111803 2022-08-11 2022-08-11 一种改性生物基水性聚氨酯及其制备方法和应用 WO2024031542A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280029311.3A CN117203258A (zh) 2022-08-11 2022-08-11 一种改性生物基水性聚氨酯及其制备方法和应用
PCT/CN2022/111803 WO2024031542A1 (zh) 2022-08-11 2022-08-11 一种改性生物基水性聚氨酯及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111803 WO2024031542A1 (zh) 2022-08-11 2022-08-11 一种改性生物基水性聚氨酯及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024031542A1 true WO2024031542A1 (zh) 2024-02-15

Family

ID=88983686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111803 WO2024031542A1 (zh) 2022-08-11 2022-08-11 一种改性生物基水性聚氨酯及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN117203258A (zh)
WO (1) WO2024031542A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1556145A (zh) * 2003-12-31 2004-12-22 中国化工建设总公司常州涂料化工研究 聚氨酯-丙烯酸酯水分散性树脂及其制备
CN101638464A (zh) * 2009-09-01 2010-02-03 陕西科技大学 一种聚氨酯-聚丙烯酸酯微乳液的制备方法
CN102516465A (zh) * 2011-11-19 2012-06-27 烟台万华聚氨酯股份有限公司 高弹性水性聚氨酯-丙烯酸酯复合树脂及其制备和应用
CN107759741A (zh) * 2017-11-21 2018-03-06 鹤山市河本聚脂化工有限公司 无溶剂自交联改性水性聚氨酯树脂及其制备方法和应用
CN109266267A (zh) * 2018-09-27 2019-01-25 长春工业大学 一种新型丙烯酸酯改性水性聚氨酯粘结剂
CN110317301A (zh) * 2019-06-24 2019-10-11 常熟巴德富科技有限公司 一种核壳型聚氨酯-丙烯酸乳液及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1556145A (zh) * 2003-12-31 2004-12-22 中国化工建设总公司常州涂料化工研究 聚氨酯-丙烯酸酯水分散性树脂及其制备
CN101638464A (zh) * 2009-09-01 2010-02-03 陕西科技大学 一种聚氨酯-聚丙烯酸酯微乳液的制备方法
CN102516465A (zh) * 2011-11-19 2012-06-27 烟台万华聚氨酯股份有限公司 高弹性水性聚氨酯-丙烯酸酯复合树脂及其制备和应用
CN107759741A (zh) * 2017-11-21 2018-03-06 鹤山市河本聚脂化工有限公司 无溶剂自交联改性水性聚氨酯树脂及其制备方法和应用
CN109266267A (zh) * 2018-09-27 2019-01-25 长春工业大学 一种新型丙烯酸酯改性水性聚氨酯粘结剂
CN110317301A (zh) * 2019-06-24 2019-10-11 常熟巴德富科技有限公司 一种核壳型聚氨酯-丙烯酸乳液及其制备方法和应用

Also Published As

Publication number Publication date
CN117203258A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
JP5828605B1 (ja) 水分散性ポリウレタン樹脂とアクリレートモノマーのグラフト共重合による水性エマルションの製造方法
WO2001046328A1 (fr) Compositions de polymeres acryliques, rubans adhesifs acryliques et leurs procedes de production
JP5915707B2 (ja) 粘着付与樹脂エマルジョンおよびアクリルエマルジョン型粘・接着剤組成物
JPH11256033A (ja) 自己架橋性ポリウレタンポリアクリレートハイブリッド分散液
JP2007023068A (ja) 両面粘着テープ及び両面粘着テープの製造方法
CN105295781A (zh) 一种水性压敏胶及其制备方法和用途
JPH0881671A (ja) 二液型水性接着剤
JP2019505616A (ja) 粘着材料用の水性ポリマー分散液
WO2011048205A1 (en) Aqueous hybrid polyurethane-acrylic adhesives
JPH10176006A (ja) 非イオン水性ポリウレタン分散液及びその製造方法
JP4130718B2 (ja) ウレタン−アクリル水分散体とその製造方法
CN112226189A (zh) 一种双组分水性粘合剂
JP2007211074A (ja) エマルジョン型粘着剤組成物の製造方法、及び粘着剤組成物
WO2002000792A1 (en) A polymer dispersion comprising particles of polyurethane and a copolymer or terpolymer produced by emulsion polymerisation of olefinically unsaturated monomers
JP2008179683A (ja) 水性粘着剤組成物および粘着シート
JP2001207151A (ja) 感熱性粘着剤組成物および感熱性粘着シート又はラベル
CN111320726A (zh) 水性聚氨酯-聚醋酸乙烯酯乳液、制备方法、包括其的水性真空吸塑胶及制备方法
JP2008239839A (ja) 粘着シート
JPH11199847A (ja) 接着剤組成物
WO2024031542A1 (zh) 一种改性生物基水性聚氨酯及其制备方法和应用
JP2003261763A (ja) 水性エマルジョン組成物及びこれを含有する水性接着剤組成物又は水性塗料用プライマー組成物
CN105219323A (zh) 革用蓖麻油基聚氨酯-丙烯腈复合乳液粘合剂及其制备方法
JP3272022B2 (ja) 組成物および接着剤
JP4615690B2 (ja) 水性樹脂エマルジョン組成物
JP3459301B2 (ja) ブチルアクリレートと(メト)アクリル酸とから形成された共重合体を基礎とする感圧接着剤分散液の製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280029311.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954509

Country of ref document: EP

Kind code of ref document: A1