WO2024027078A1 - 一种用于多种污染物脱除的燃机催化剂及其制备方法 - Google Patents

一种用于多种污染物脱除的燃机催化剂及其制备方法 Download PDF

Info

Publication number
WO2024027078A1
WO2024027078A1 PCT/CN2022/140151 CN2022140151W WO2024027078A1 WO 2024027078 A1 WO2024027078 A1 WO 2024027078A1 CN 2022140151 W CN2022140151 W CN 2022140151W WO 2024027078 A1 WO2024027078 A1 WO 2024027078A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
gas turbine
salt solution
blank
minutes
Prior art date
Application number
PCT/CN2022/140151
Other languages
English (en)
French (fr)
Inventor
马云龙
王乐乐
姚燕
罗彦佩
鲍强
雷嗣远
方朝君
王凯
杨晓宁
Original Assignee
苏州西热节能环保技术有限公司
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州西热节能环保技术有限公司, 西安热工研究院有限公司 filed Critical 苏州西热节能环保技术有限公司
Publication of WO2024027078A1 publication Critical patent/WO2024027078A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • B01D53/8646Simultaneous elimination of the components
    • B01D53/865Simultaneous elimination of the components characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the present disclosure relates to the technical field of catalyst preparation, and in particular to a gas turbine catalyst used for the removal of various pollutants and a preparation method thereof.
  • the gas turbine pollutants emitted by thermal power plants mainly include NO, NO 2 and CO.
  • Some of the gas turbines emit yellow smoke to varying degrees during the startup stage, causing serious environmental pollution.
  • the phenomenon of yellow smoke during the startup stage of the gas turbine is caused by the lack of main fuel, more diffusion combustion fuel, and high flame temperature under this operating condition.
  • incomplete combustion during the startup stage generates higher concentrations of CO and incomplete combustion.
  • Burning out hydrocarbons, etc. all contributes to a significant increase in the conversion rate of NO to NO 2 , causing a significant increase in the concentration of NO 2 in the flue gas. Since NO 2 gas is reddish-brown, the flue gas becomes yellow-brown after being diluted. At this time, yellow smoke appears in the exhaust gas of the gas turbine power plant.
  • the temperature of the reaction zone of the SCR denitration catalyst is relatively low during the startup phase of the gas turbine, and the effective denitration temperature window of conventional SCR denitration catalysts is 300-420°C.
  • the effective denitration temperature window of conventional SCR denitration catalysts is 300-420°C.
  • the CO composite gas turbine catalyst can realize denitrification and operation during the startup stage of the gas turbine and eliminate the phenomenon of yellow smoke, thereby achieving deep emission reduction of NOx in the gas turbine flue gas and removal of multiple pollutants such as CO.
  • the purpose of this disclosure is to provide a combustion engine catalyst for removing multiple pollutants and a preparation method thereof.
  • embodiments of the present disclosure propose a gas turbine catalyst for the removal of multiple pollutants, including a blank catalyst substrate and an active component loaded on the blank catalyst substrate.
  • the main component of the blank catalyst substrate is TiO 2
  • the active components include V 2 O 5 , MoO 3 , MgO and CoO. Based on the mass of the gas turbine catalyst being 100%, the proportion of V 2 O 5 is 0.5-4% and the proportion of MoO 3 is 1-5 %, the proportion of MgO is 1-3%, and the proportion of CoO is 1-2%.
  • the active component further includes WO 3 , and the proportion of WO 3 is 1-5%.
  • the mass ratio of WO 3 and MoO 3 is 1:2.
  • embodiments of the present disclosure provide a method for preparing the above-mentioned gas turbine catalyst, which includes:
  • the method for measuring the water absorption of a blank catalyst substrate is as follows: sample and dry the blank catalyst substrate and weigh it as m1; soak it in clean water for a period of time, take it out, and vibrate with ultrasonic until no large particles agglomerate, weigh it as m2, and calculate the water absorption rate.
  • w (m2-m1)/m1; determine the concentrations of the first salt solution, the second salt solution and the third salt solution according to the water absorption rate of the blank catalyst substrate.
  • step S1 the soaking time is 2-10 minutes, the ultrasonic vibration time is 2-10 minutes, the drying temperature is 100-150°C, the drying time is 2-4 hours, and the roasting temperature is 400-400°C. 500°C, roasting time is 4-8 hours.
  • step S2 the soaking time is 2-10 minutes, the ultrasonic vibration time is 2-10 minutes, the drying temperature is 100-150°C, the drying time is 2-4 hours, and the roasting temperature is 400-400°C. 500°C, roasting time is 4-8 hours.
  • step S3 the soaking time is 2-10 minutes, the ultrasonic vibration time is 2-10 minutes, the drying temperature is 100-150°C, the drying time is 2-4 hours, and the roasting temperature is 400-400°C. 500°C, roasting time is 4-8 hours.
  • step S3 the reducing atmosphere is an NH 3 atmosphere.
  • step S2 magnesium acetate tetrahydrate is replaced by magnesium nitrate.
  • the third aspect of the embodiment of the present disclosure proposes the application of the above-mentioned gas turbine catalyst in the removal of gas turbine pollutants emitted from thermal power plants.
  • This disclosure ensures its NO removal effect by utilizing a formed blank catalyst matrix whose main component is TiO2 , impregnating and loading different active components such as V, W, Mo, Co, Mg, etc., and adjusting the appropriate component ratio. At the same time, it strengthens its catalytic reduction and catalytic oxidation of NO 2 and CO, thereby obtaining a composite gas turbine catalyst with multiple pollution removal functions.
  • embodiments of the present disclosure propose a gas turbine catalyst for the removal of multiple pollutants, including a blank catalyst substrate and an active component loaded on the blank catalyst substrate.
  • the main component of the blank catalyst substrate is TiO 2 , and the active component
  • the components include V 2 O 5 , MoO 3 , MgO and CoO. Based on the mass of the gas turbine catalyst being 100%, the proportion of V 2 O 5 is 0.5-4%, and the proportion of MoO 3 is 1-5%. The proportion of MgO is 1-3%, and the proportion of CoO is 1-2%.
  • the active component also includes WO 3 , and the proportion of WO 3 is 1-5%.
  • the mass ratio of WO 3 and MoO 3 is about 1:2.
  • the mass of MoO 3 will be more because MoO 3 is used to broaden the adaptable temperature of the catalyst at low temperatures, and WO 3 is used to broaden the adaptable temperature of the catalyst at high temperatures.
  • the main purpose of removing yellow smoke is to remove NO 2 , and the temperature of NO 2 is relatively low during the startup stage of the gas turbine, and more is needed to broaden the adaptable temperature of the catalyst under low temperature conditions. Therefore, the mass ratio of WO 3 and MoO 3 is limited to 1:2, which not only greatly broadens the adaptable temperature of the catalyst at low temperatures, but also broadens the adaptable temperature of the catalyst at high temperatures.
  • embodiments of the present disclosure provide a method for preparing the above-mentioned gas turbine catalyst, including the following steps S1 to S4.
  • a method for preparing a gas turbine catalyst includes the following steps (1) to (4).
  • the reducing atmosphere is an NH 3 atmosphere.
  • MgO and CoO can effectively reduce NO 2 and effectively oxidize CO.
  • the function of MgO is to remove NO 2 in flue gas
  • the function of CoO is to remove CO in flue gas.
  • the mass percentages of MgO and CoO can be adjusted as needed. Normally, the mass ratio of MgO and CoO is 1:1. If more NO2 needs to be removed, the added amount of MgO needs to be more than the added amount of CoO. For example, the mass ratio of MgO to CoO is 2:1. If more CO needs to be removed, the added amount of MgO needs to be less than the added amount of CoO. For example, the mass ratio of MgO to CoO is 1:2.
  • the soaking time is controlled at 2-10 minutes because if it is less than 2 minutes, the load of active ingredients will be less, and the combined removal ability of NO, NO 2 and CO will be weaker; but it does not mean that the longer the soaking time The better. If it is longer than 10 minutes, the active component of a certain oxide will be loaded too much, which will affect the load of other oxides, resulting in a good removal effect of a certain pollutant, but a poor removal effect of other pollutants. .
  • the gas turbine catalyst of the present disclosure also has the function of denitrifying NO 2 and CO, and has the denitrification function at low temperature during the startup stage of the gas turbine, thereby realizing full-load denitrification of the gas turbine.
  • the third aspect of the embodiment of the present disclosure proposes the application of a gas turbine catalyst prepared by the above preparation method in the removal of gas turbine pollutants emitted by thermal power plants.
  • the use of the gas turbine catalyst of the present disclosure can realize the removal of NO 2 during the startup stage of the gas turbine and the removal of NO at low temperatures, solving the "yellow smoke” phenomenon during the startup stage of some gas turbines, as well as the problem that the gas turbine cannot be put into operation during the startup stage. question.
  • the gas turbine catalyst of the present disclosure not only has the catalytic reduction function of NO and NO 2 , but also has the oxidation and decomposition function of CO.
  • the joint removal of NO, NO 2 and CO can be achieved, and the problem of overcoming the problem of It overcomes the complicated process problems caused by the need to remove several gases separately in traditional technology, greatly simplifies the denitrification system, saves the space of the denitrification device reactor, and reduces the resistance generated by the system during the emission reduction process.
  • the preparation method of the gas turbine catalyst of the present disclosure is simple and easy for industrial production.
  • ammonium metavanadate 1000g of ammonium paramolybdate and 123g of ammonium metatungstate, and prepare a salt solution containing V, Mo, and W.
  • the concentration of ammonium metavanadate is 2%, and the concentration of ammonium metatungstate is 2%.
  • the concentration of ammonium molybdate is 4%, and the concentration of ammonium metatungstate is 4%.
  • a blank catalyst substrate is added to the salt solution, soaked for 5 minutes, shaken ultrasonically for 5 minutes, taken out, and dried at 110°C for 2 hours. After drying, take out the sample. Calculate at 400°C for 4 hours.
  • V 2 O 5 , MoO 3 , and WO 3 are generated on the surface of the blank catalyst substrate to obtain the first precursor.
  • Simulated flue gas is used for performance evaluation.
  • the flue gas conditions are NO, NO 2 , CO, O 2 , and H 2 O.
  • N 2 is used as the balance gas and the temperature is 200°C.
  • the evaluation results are shown in Table 1.
  • Simulated flue gas is used for performance evaluation.
  • the flue gas conditions are NO, NO 2 , CO, O 2 , and H 2 O.
  • N 2 is used as the balance gas and the temperature is 200°C.
  • the evaluation results are shown in Table 1.
  • Simulated flue gas is used for performance evaluation.
  • the flue gas conditions are NO, NO 2 , CO, O 2 , and H 2 O.
  • N 2 is used as the balance gas and the temperature is 200°C.
  • the evaluation results are shown in Table 1.
  • Simulated flue gas is used for performance evaluation.
  • the flue gas conditions are NO, NO 2 , CO, O 2 , and H 2 O.
  • N 2 is used as the balance gas and the temperature is 200°C.
  • the evaluation results are shown in Table 1.
  • Table 1 is a comparison of the NO, NO 2 and CO removal rates of the catalysts obtained in Example 1 and Comparative Examples 1 to 3.
  • Example 1 By comparing the NO, NO 2 and CO removal rates of Example 1 and Comparative Example 2, it can be seen that the NO removal rate of Example 1 is slightly lower than that of Comparative Example 2, and the difference is very small. However, the NO 2 and CO removal rates of Example 1 are significantly higher than those of Comparative Example 2. This is because MgO and CoO are not loaded in Comparative Example 2. The function of MgO is to remove NO 2 in flue gas, and the function of CoO is to remove CO in flue gas.
  • Comparing Comparative Example 2 with Comparative Example 1 the NO removal rate of Comparative Example 2 is significantly higher than that of Comparative Example 1. This is because Comparative Example 2 carries more MoO 3 than Comparative Example 1. MoO 3 is used to broaden the catalyst at low temperatures. The adaptation temperature is lower, thus improving the NO removal of the catalyst at low temperatures.
  • Example 1 By comparing the removal rates of NO, NO 2 and CO in Example 1 and Comparative Example 3, it can be seen that the removal rates of NO and NO 2 in Example 1 are slightly lower than those in Comparative Example 3, and the difference is very small. However, the CO removal rate of Example 1 is significantly higher than that of Comparative Example 3. This is because there is no CoO loaded in Comparative Example 3, and the function of CoO is to remove CO in the flue gas.
  • Comparing Comparative Example 3 with Comparative Example 2 the NO 2 removal rate of Comparative Example 3 is significantly higher than that of Comparative Example 2. This is because Comparative Example 3 is loaded with more MgO than Comparative Example 2. The role of MgO is to remove NO2 in the flue gas. of NO 2 , thus improving the removal rate of NO 2 by the catalyst.
  • Comparative Example 3 Compared with Comparative Example 1, Comparative Example 3 has a significantly higher removal rate of NO and NO 2 than Comparative Example 1. This is because Comparative Example 3 loads more MoO 3 and MgO than Comparative Example 1, and MoO 3 is used for It broadens the adaptability temperature of the catalyst at low temperature, thus improving the removal of NO by the catalyst at low temperature.
  • the function of MgO is to remove NO 2 in flue gas, thus improving the NO 2 removal rate of the catalyst.
  • the use of the gas turbine catalyst of the present disclosure can realize the removal of NO 2 during the startup stage of the gas turbine and the removal of NO at low temperatures, solving the "yellow smoke” phenomenon during the startup stage of some gas turbines, as well as the problem that the gas turbine cannot be put into operation during the startup stage. question.
  • the gas turbine catalyst of the present disclosure not only has the catalytic reduction function of NO and NO 2 , but also has the oxidation and decomposition function of CO.
  • the joint removal of NO, NO 2 and CO can be achieved, and the problem of overcoming the problem of It overcomes the complicated process problems caused by the need to remove several gases separately in traditional technology, greatly simplifies the denitrification system, saves the space of the denitrification device reactor, and reduces the resistance generated by the system during the emission reduction process.
  • ammonium metavanadate 1000g of ammonium paramolybdate and 123g of ammonium metatungstate, and prepare a salt solution containing V, Mo, and W.
  • the concentration of ammonium metavanadate is 2%, and the concentration of ammonium metatungstate is 2%.
  • the concentration of ammonium molybdate is 4%, and the concentration of ammonium metatungstate is 4%.
  • a blank catalyst substrate is added to the salt solution, soaked for 5 minutes, shaken ultrasonically for 5 minutes, taken out, and dried at 110°C for 2 hours. After drying, take out the sample. Calculate at 400°C for 4 hours.
  • V 2 O 5 , MoO 3 , and WO 3 are generated on the surface of the blank catalyst substrate to obtain the first precursor.
  • magnesium nitrate prepare a magnesium nitrate solution with a concentration of 6%, add the first precursor to the salt solution, soak for 8 minutes, take it out after ultrasonic vibration for 8 minutes, and dry at 120°C for 2 hours. After drying, take out the sample. By calcining for 4 hours at 450° C., MgO is generated on the surface of the first precursor as the salts decompose, and the second precursor is obtained.
  • the proportion of V 2 O 5 is 2.5%
  • the proportion of WO 3 is 4%
  • the proportion of MoO 3 is 2.5%
  • the proportion of MgO is 2.5%
  • the proportion of CoO The proportion is 2%.
  • Simulated flue gas is used for performance evaluation.
  • the flue gas conditions are NO, NO 2 , CO, O 2 , and H 2 O.
  • N 2 is used as the balance gas and the temperature is 200°C.
  • the evaluation results are shown in Table 2.
  • Simulated flue gas is used for performance evaluation.
  • the flue gas conditions are NO, NO 2 , CO, O 2 , and H 2 O.
  • N 2 is used as the balance gas and the temperature is 200°C.
  • the evaluation results are shown in Table 2.
  • Simulated flue gas is used for performance evaluation.
  • the flue gas conditions are NO, NO 2 , CO, O 2 , and H 2 O.
  • N 2 is used as the balance gas and the temperature is 200°C.
  • the evaluation results are shown in Table 2.
  • Simulated flue gas is used for performance evaluation.
  • the flue gas conditions are NO, NO 2 , CO, O 2 , and H 2 O.
  • N 2 is used as the balance gas and the temperature is 200°C.
  • the evaluation results are shown in Table 2.
  • Table 2 is a comparison of the NO, NO 2 and CO removal rates of the catalysts obtained in Example 2 and Comparative Examples 4 to 6.
  • Example 2 By comparing the NO, NO 2 and CO removal rates of Example 2 and Comparative Example 5, it can be seen that the NO removal rate of Example 2 is slightly lower than that of Comparative Example 5, and the difference is very small. However, the NO 2 and CO removal rates of Example 2 are significantly higher than those of Comparative Example 5. This is because MgO and CoO are not loaded in Comparative Example 5. The function of MgO is to remove NO 2 in flue gas, and the function of CoO is to remove CO in flue gas.
  • Comparing Comparative Example 5 with Comparative Example 4 the NO removal rate of Comparative Example 5 is significantly higher than that of Comparative Example 4. This is because Comparative Example 5 carries more MoO 3 than Comparative Example 4. MoO 3 is used to broaden the catalyst at low temperatures. The adaptation temperature is lower, thus improving the NO removal of the catalyst at low temperatures.
  • Example 2 By comparing the removal rates of NO, NO 2 and CO in Example 2 and Comparative Example 6, it can be seen that the removal rates of NO and NO 2 in Example 2 are slightly lower than those in Comparative Example 6, and the difference is very small. However, the CO removal rate of Example 2 is significantly higher than that of Comparative Example 6. This is because there is no CoO loaded in Comparative Example 6, and the function of CoO is to remove CO in the flue gas.
  • Comparative Example 6 Compared with Comparative Example 6 and Comparative Example 5, the NO 2 removal rate of Comparative Example 6 is significantly higher than that of Comparative Example 5. This is because Comparative Example 6 is loaded with more MgO than Comparative Example 5. The function of MgO is to remove NO2 in the flue gas. of NO 2 , thus improving the removal rate of NO 2 by the catalyst.
  • Comparative Example 6 Compared with Comparative Example 6 and Comparative Example 4, the NO and NO 2 removal rates of Comparative Example 6 are significantly higher than those of Comparative Example 4. This is because Comparative Example 6 loads more MoO 3 and MgO than Comparative Example 4, and MoO 3 is used for It broadens the adaptability temperature of the catalyst at low temperature, thus improving the removal of NO by the catalyst at low temperature.
  • MoO 3 is used for It broadens the adaptability temperature of the catalyst at low temperature, thus improving the removal of NO by the catalyst at low temperature.
  • the function of MgO is to remove NO 2 in flue gas, thus improving the NO 2 removal rate of the catalyst.
  • the use of the gas turbine catalyst of the present disclosure can realize the removal of NO 2 during the startup stage of the gas turbine and the removal of NO at low temperatures, solving the "yellow smoke” phenomenon during the startup stage of some gas turbines, as well as the problem that the gas turbine cannot be put into operation during the startup stage. question.
  • the gas turbine catalyst of the present disclosure not only has the catalytic reduction function of NO and NO 2 , but also has the oxidation and decomposition function of CO.
  • the joint removal of NO, NO 2 and CO can be achieved, and the problem of overcoming the problem of It overcomes the complicated process problems caused by the need to remove several gases separately in traditional technology, greatly simplifies the denitrification system, saves the space of the denitrification device reactor, and reduces the resistance generated by the system during the emission reduction process.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • the terms “one embodiment,” “some embodiments,” “example,” “specific examples,” or “some examples” or the like mean that a particular feature, structure, material, or other feature is described in connection with the embodiment or example.
  • Features are included in at least one embodiment or example of the disclosure.
  • the schematic expressions of the above terms are not necessarily directed to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
  • those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本公开提出一种用于多种污染物脱除的燃机催化剂及其制备方法,燃机催化剂包括空白催化剂基体和负载于空白催化剂基体上的活性组分,空白催化剂基体的主要成分为TiO 2,活性组分包括V 2O 5、WO 3、MoO 3、MgO与CoO。

Description

一种用于多种污染物脱除的燃机催化剂及其制备方法
相关申请的交叉引用
本申请基于申请号为202210940340.7、申请日为2022年8月5日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及催化剂制备技术领域,尤其涉及一种用于多种污染物脱除的燃机催化剂及其制备方法。
背景技术
当前,火电厂排放的燃机污染物的主要包括NO、NO 2、CO,其中部分燃机启动阶段存在不同程度的冒黄烟现象,造成了严重环境污染。根据有关研究,燃机启动阶段中冒黄烟现象的产生是由于该运行工况下主燃料少,扩散燃烧燃料多、火焰温度高,同时启动阶段燃烧不完全而生成的较高浓度的CO、未燃尽碳氢等,均促成NO转NO 2的转化率大幅升高,使烟气中NO 2浓度显著升高。由于NO 2气体为红棕色,被稀释后烟气呈黄褐色,此时燃机电厂排烟出现冒黄烟现象。
同时燃机启动阶段SCR脱硝催化剂反应区温度较低,常规SCR脱硝催化剂的有效脱硝温度窗口为300-420℃。而针对燃机启动阶段,余热锅炉内烟气温度较低,以及脱硝催化剂温度窗口(两级受热面间)烟温较低的问题,需考虑调整催化剂设计选型,以满足200-280℃烟温区间的脱硝反应需要。
综上,常规SCR脱硝催化剂无法满足燃机尾气NO、NO 2和CO的脱除,也无法满足启动阶段低负荷下的运行需求。而目前对NO、NO 2和CO同时催化脱除复合型催化剂制备的研究较少,在国内燃机上亦鲜有应用。
因此,现阶段需要围绕燃机多污染物脱除及脱硝低负荷下投运的难点,通过NO/NO 2/CO脱除配方研发,开发出具有低负荷下高活性、高效脱除NO、NO 2、CO的复合型燃机用催化剂,能够实现燃机启动阶段脱硝投运及消除冒黄烟的现象,从而达到燃机烟气NOx深度减排和CO等多污染物的脱除。
发明内容
本公开的目的在于提供一种用于多种污染物脱除的燃机催化剂及其制备方法。
本公开实施例一方面提出一种用于多种污染物脱除的燃机催化剂,包括空白催化剂基体和负载于空白催化剂基体上的活性组分,所述空白催化剂基体的主要成分为TiO 2,活性组分包括V 2O 5、MoO 3、MgO与CoO,以燃机催化剂的质量为100%计,其中V 2O 5的占比为0.5-4%,MoO 3的占比为1-5%,MgO的占比为1-3%,CoO的占比为1-2%。
在一些实施例中,所述活性组分还包括WO 3,WO 3的占比为1-5%。
在一些实施例中,当WO 3和MoO 3同时存在时,WO 3和MoO 3的质量比为1:2。
本公开实施例另一方面提出一种上述的燃机催化剂的制备方法,包括:
S1,称取偏钒酸氨、仲钼酸氨和偏钨酸氨,基于空白催化剂基体的吸水率,配制第一盐溶液,向第一盐溶液中加入空白催化剂基体,经过浸泡和超声震荡后取出,然后进行干燥、焙烧,空白催化剂基体表面生成V 2O 5、WO 3、MoO 3,得到第一前驱体;
S2,称取乙酸镁四水化合物,基于空白催化剂基体的吸水率,配制第二盐溶液,向第二盐溶液中加入第一前驱体,经过浸泡和超声震荡后取出,然后进行干燥、焙烧,第一前驱体表面生成MgO,得到第二前驱体;
S3,称取硝酸钴六水化合物,基于空白催化剂基体的吸水率,配制第三盐溶液,向第三盐溶液中加入第二前驱体,经过浸泡、超声震荡和干燥后取出,在还原性气氛下焙烧,第二前驱体表面生成CoO,得到燃机催化剂成品。
在一些实施例中,空白催化剂基体的吸水率的测定方法为:取样干燥的空白催化剂基体称重为m1;清水浸泡一段时间取出,超声震荡至无大颗粒凝聚,称重为m2,计算吸水率w=(m2-m1)/m1;根据空白催化剂基体的吸水率,确定第一盐溶液、第二盐溶液和第三盐溶液的浓度。
在一些实施例中,所述步骤S1中,浸泡时间为2-10分钟,超声震荡时间为2-10分钟,干燥温度为100-150℃,干燥时间为2-4小时,焙烧温度为400-500℃,焙烧时间为4-8小时。
在一些实施例中,所述步骤S2中,浸泡时间为2-10分钟,超声震荡时间为2-10分钟,干燥温度为100-150℃,干燥时间为2-4小时,焙烧温度为400-500℃,焙烧时间为4-8小时。
在一些实施例中,所述步骤S3中,浸泡时间为2-10分钟,超声震荡时间为2-10分钟,干燥温度为100-150℃,干燥时间为2-4小时,焙烧温度为400-500℃,焙烧时间为4-8小时。
在一些实施例中,所述步骤S3中,还原性气氛为NH 3气氛。
在一些实施例中,所述步骤S2中,乙酸镁四水化合物替换为硝酸镁。
本公开实施例第三方面提出一种上述的燃机催化剂在火电厂排放的燃机污染物的脱除中的应用。
具体实施方式
下面详细描述本公开的实施例,所描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
本公开通过利用已成型的主要成分为TiO 2的空白催化剂基体,分别浸渍负载V、W、Mo、Co、Mg等不同活性组分,以及调整合适的成分配比,在保证其NO脱除效果的同时,强化其对NO 2和CO的催化还原和催化氧化,从而获得具有多污染脱除功能的复合型燃机用燃机催化剂。
本公开实施例一方面提出一种用于多种污染物脱除的燃机催化剂,包括空白催化剂基体和负载于空白催化剂基体上的活性组分,空白催化剂基体的主要成分为TiO 2,活性组分包括V 2O 5、MoO 3、MgO与CoO,以燃机催化剂的质量为100%计,其中V 2O 5的占比为0.5-4%, MoO 3的占比为1-5%,MgO的占比为1-3%,CoO的占比为1-2%。
在一些具体的实施例中,活性组分还包括WO 3,WO 3的占比为1-5%。
在一些具体的实施例中,当WO 3和MoO 3同时存在时,WO 3和MoO 3的质量比约为1:2。MoO 3的质量会更多一些,是因为MoO 3用于扩宽催化剂在低温下的适应温度,WO 3用于扩宽催化剂在高温下的适应温度,去除冒黄烟现象的主要是要脱除NO 2,而NO 2在燃机启动阶段时温度比较低,需要更多的去扩宽催化剂在低温条件下的适应温度。因此将WO 3和MoO 3的质量比限定为1:2,既大幅度扩宽催化剂在低温下的适应温度,又扩宽了催化剂在高温下的适应温度。
本公开实施例另一方面提出一种上述的燃机催化剂的制备方法,包括如下步骤S1至S4。
S1,称取偏钒酸氨、仲钼酸氨和偏钨酸氨,基于空白催化剂基体的吸水率,配制第一盐溶液,向第一盐溶液中加入空白催化剂基体,经过浸泡和超声震荡后取出,然后进行干燥、焙烧,空白催化剂基体表面生成V 2O 5、WO 3、MoO 3,得到第一前驱体;
S2,称取乙酸镁四水化合物,基于空白催化剂基体的吸水率,配制第二盐溶液,向第二盐溶液中加入第一前驱体,经过浸泡和超声震荡后取出,然后进行干燥、焙烧,第一前驱体表面生成MgO,得到第二前驱体;
S3,称取硝酸钴六水化合物,基于空白催化剂基体的吸水率,配制第三盐溶液,向第三盐溶液中加入第二前驱体,经过浸泡、超声震荡和干燥后取出,在还原性气氛下焙烧,第二前驱体表面生成CoO,得到燃机催化剂成品。
在一些具体的实施例中,燃机催化剂的制备方法,包括如下步骤(1)至(4)。
(1)测定空白催化剂基体的吸水率:取样一小块干燥的空白催化剂基体称重为m1,清水浸泡5分钟后,取出后进行超声震荡,保证无大颗粒凝聚,称重为m2,计算吸水率w=(m2-m1)/m1。根据空白催化剂基体的吸水率,确定第一盐溶液、第二盐溶液和第三盐溶液的浓度。
(2)首先进行主活性成分的浸渍负载:称取一定量的偏钒酸氨、仲钼酸氨和偏钨酸氨,基于空白催化剂基体的吸水率,配制成一定浓度的第一盐溶液,向第一盐溶液中加入空白催化剂基体,浸泡2-10分钟,超声震荡2-10分钟后取出,在100-150℃条件下干燥2-4小时。干燥后,取出试样。在400-500℃条件下,焙烧4-8个小时,从而随着盐类的分解,在空白催化剂基体的表面生成V 2O 5、WO 3、MoO 3等氧化物,得到第一前驱体。V 2O 5为主要的脱硝成分,WO 3和MoO 3可以拓宽催化剂的适应温度。
(3)称取一定量乙酸镁四水化合物或硝酸镁,基于空白催化剂基体的吸水率,配制第二盐溶液,向第二盐溶液中加入第一前驱体,浸泡2-10分钟,超声震荡2-10分钟后取出,在100-150℃条件下干燥2-4小时。干燥后,取出试样。在400-500℃条件下,焙烧4-8个小时。第一前驱体表面生成MgO,得到第二前驱体。
(4)称取一定量的硝酸钴六水化合物,基于空白催化剂基体的吸水率,配制第三盐溶液,向第三盐溶液中加入第二前驱体,浸泡2-10分钟,超声震荡2-10分钟后取出,在100-150℃条件下干燥2-4小时。干燥后,取出试样。在还原性气氛下焙烧,焙烧温度为400-500℃条 件下焙烧4-8个小时。第二前驱体表面生成CoO,得到燃机催化剂成品。
在一些具体的实施例中,还原性气氛为NH 3气氛。
不同的Mg、Co配比,可以起到NO 2的有效还原和CO的有效氧化。MgO的作用在于脱除烟气中的NO 2,CoO的作用在于脱除烟气中的CO。在实际应用中,可根据需要来调节MgO和CoO的质量百分比。通常情况下,MgO和CoO的质量比为1:1。如果需要脱除的NO 2较多,则MgO的添加量需多于CoO的添加量,比如MgO和CoO的质量比为2:1。如果需要脱除的CO较多,则MgO的添加量需少于CoO的添加量,比如MgO和CoO的质量比为1:2。
需要说明的是,浸泡时间控制在2-10分钟,是由于若低于2分钟,则活性成分负载较少,NO、NO 2和CO的联合脱除能力较弱;但也并非浸泡时间越多越好,若高于10分钟,则某一氧化物活性成分负载过多,会影响到其他氧化物的负载,就会导致某一种污染物脱除效果好,但其他污染物脱除效果差。
借助XPS、XRD、XRF等表征手段以及催化剂检测评估研究表明,在200-280℃区间中,本公开的燃机多污染物脱除催化剂的NO脱硝效率达到90%以上;NO 2的脱硝效率为达到80%以上;CO的脱除效率为达到80%以上。本公开的燃机催化剂在脱除NO的同时,还具有脱硝NO 2和CO的功能,且具有在燃机启动阶段低温下的脱硝功能,从而实现燃机的全负荷脱硝。
本公开实施例第三方面提出一种上述制备方法制备出的燃机催化剂在火电厂排放的燃机污染物的脱除中的应用。
采用本公开的燃机催化剂,可实现燃机启动阶段NO 2的脱除以及低温下NO的脱除,解决了部分燃机启动阶段的“冒黄烟”现象,以及燃机启动阶段无法投运的问题。
本公开的燃机催化剂,既具有对NO、NO 2的催化还原功能,又具有对CO的氧化分解功能,采用本公开的燃机催化剂,可实现NO、NO 2和CO的联合脱除,克服了传统技术中需要单独脱除几种气体而导致的工艺复杂的难题,大大简化了脱硝系统,节省了脱硝装置反应器的空间,降低了减排过程中系统所产生的阻力。
本公开的燃机催化剂的制作方法简单,易于工业化生产。
以下通过具体的实施例和对比例来对本公开做进一步阐述。
实施例1
称取82g的偏钒酸氨、1000g的仲钼酸氨和123g的偏钨酸氨,配制成含V、Mo、W的盐溶液,在盐溶液中,偏钒酸氨浓度为2%,仲钼酸氨浓度为4%,偏钨酸氨浓度为4%,向该盐溶液中加入空白催化剂基体,浸泡5分钟,超声震荡5分钟后取出,在110℃条件下干燥2小时。干燥后,取出试样。在400℃条件下,焙烧4个小时,从而随着盐类的分解,在空白催化剂基体的表面生成V 2O 5、MoO 3、WO 3,得到第一前驱体。
称取80g的乙酸镁四水化合物,配制成浓度6%的乙酸镁溶液,向该盐溶液中加入第一前驱体,浸泡5分钟,超声震荡5分钟后取出,在120℃条件下干燥2小时。干燥后,取出试样。在450℃条件下,焙烧4小时,从而随着盐类的分解,在第一前驱体的表面生成MgO, 得到第二前驱体。
称取96g的硝酸钴六水化合物,配制成浓度为6%的硝酸钴盐溶液,向该盐溶液中加入第二前驱体,浸泡3分钟,超声震荡3分钟后取出,在110℃条件下干燥2小时。干燥后,取出试样。在400℃条件下,在NH 3气氛下焙烧4小时,从而随着盐类的分解,在第二前驱体的表面生成CoO,得到燃机催化剂成品。以燃机催化剂的质量为100%计,其中,V 2O 5的占比为1.5%,WO 3的占比为3%,MoO 3的占比为2%,MgO的占比为2%,CoO的占比为1.5%。
采用模拟烟气进行性能评价,烟气条件为NO、NO 2、CO、O 2、H 2O,同时N 2作为平衡气,温度为200℃。评价结果见表1。
对比例1
称取72g的偏钒酸氨、105g的偏钨酸氨,配制成含V、W的盐溶液,在盐溶液中,偏钒酸氨浓度为1.5%,偏钨酸氨浓度为3.4%,向该盐溶液中加入空白催化剂基体,浸泡5分钟,超声震荡5分钟后取出,在110℃条件下干燥2小时。干燥后,取出试样。在400℃条件下,焙烧4小时,从而随着盐类的分解,在空白催化剂基体的表面生成V 2O 5、WO 3,得到燃机催化剂成品,以燃机催化剂的质量为100%计,其中,V 2O 5的占比为2.2%,WO 3的占比为3.7%。
采用模拟烟气进行性能评价,烟气条件为NO、NO 2、CO、O 2、H 2O,同时N 2作为平衡气,温度为200℃。评价结果见表1。
对比例2
称取78g的偏钒酸氨、110g的偏钨酸氨,配制成含V、W的盐溶液,在盐溶液中,偏钒酸氨浓度为1.7%,偏钨酸氨浓度为3.6%,向该盐溶液中加入空白催化剂基体,浸泡5分钟,超声震荡5分钟后取出,在110℃条件下干燥2小时。干燥后,取出试样。在400℃条件下,焙烧4小时,从而随着盐类的分解,在空白催化剂基体的表面生成V 2O 5、WO 3,得到第一前驱体。
称取800g的仲钼酸氨,配制成浓度3%的含Mo的盐溶液,向该盐溶液中加入第一前驱体,浸泡5分钟,超声震荡5分钟后取出,在110℃条件下干燥2小时。干燥后,取出试样。在400℃条件下,焙烧4小时,从而随着盐类的分解,在空白催化剂基体的表面生成MoO 3,得到燃机催化剂成品。以燃机催化剂的质量为100%计,其中,V 2O 5的占比为2.0%,WO 3的占比为3.5%,MoO 3的占比为2.5%。
采用模拟烟气进行性能评价,烟气条件为NO、NO 2、CO、O 2、H 2O,同时N 2作为平衡气,温度为200℃。评价结果见表1。
对比例3
称取85g的偏钒酸氨、115g的偏钨酸氨,配制成含V、W的盐溶液,在盐溶液中,偏钒酸氨浓度为1.9%,偏钨酸氨浓度为3.8%,向该盐溶液中加入空白催化剂基体,浸泡5分钟,超声震荡5分钟后取出,在110℃条件下干燥2小时。干燥后,取出试样。在400℃条件下,焙烧4小时,从而随着盐类的分解,在空白催化剂基体的表面生成V 2O 5、WO 3,得 到第一前驱体。
称取900g的仲钼酸氨,配制成浓度3.5%的含Mo的盐溶液,向该盐溶液中加入第一前驱体,浸泡5分钟,超声震荡5分钟后取出,在110℃条件下干燥2小时。干燥后,取出试样。在400℃条件下,焙烧4小时,从而随着盐类的分解,在空白催化剂基体的表面生成MoO 3,得到第二前驱体。
称取70g的乙酸镁四水化合物,配制成浓度5%的乙酸镁溶液,向该盐溶液中加入第一前驱体,浸泡5分钟,超声震荡5分钟后取出,在120℃条件下干燥2小时。干燥后,取出试样。在450℃条件下,焙烧4小时,从而随着盐类的分解,在第一前驱体的表面生成MgO,得到燃机催化剂成品。以燃机催化剂的质量为100%计,其中,V 2O 5的占比为1.7%,WO 3的占比为3.3%,MoO 3的占比为2.3%,MgO的占比为2.2%。
采用模拟烟气进行性能评价,烟气条件为NO、NO 2、CO、O 2、H 2O,同时N 2作为平衡气,温度为200℃。评价结果见表1。
表1为实施例1和对比例1~3中获得的催化剂对NO、NO 2、CO脱除率对比。
表1
  NO脱除率 NO 2脱除率 CO脱除率
实施例1 80.3% 80.4% 80.5%
对比例1 58.6% 30.6% 40.3%
对比例2 82.7% 32.3% 40.7%
对比例3 81.8% 82.3% 41.2%
通过实施例1与对比例1的NO、NO 2、CO脱除率的比较,可以看出,实施例1的NO、NO 2、CO的脱除率明显高于对比例1。是由于对比例1中没有负载MoO 3、MgO、CoO。MgO的作用在于脱除烟气中的NO 2,CoO的作用在于脱除烟气中的CO。MoO 3用于扩宽催化剂在低温下的适应温度。负载的V 2O 5和WO 3用于NO的脱除,但由于没有负载MoO 3导致催化剂没有扩宽低温下的适应温度,进而影响了低温下NO的脱除。
通过实施例1与对比例2的NO、NO 2、CO脱除率的比较,可以看出,实施例1的NO脱除率略低于对比例2,相差很小。但实施例1的NO 2、CO脱除率明显高于对比例2。是由于对比例2中没有负载MgO、CoO。MgO的作用在于脱除烟气中的NO 2,CoO的作用在于脱除烟气中的CO。
而对比例2与对比例1相比较,对比例2的NO脱除率明显高于对比例1,是由于对比例2较对比例1多负载了MoO 3,MoO 3用于扩宽催化剂在低温下的适应温度,因此提高了催化剂在低温下NO的脱除。
通过实施例1与对比例3的NO、NO 2、CO脱除率的比较,可以看出,实施例1的NO、NO 2的脱除率略低于对比例3,相差很小。但实施例1的CO的脱除率明显高于对比例3。是由于对比例3中没有负载CoO,CoO的作用在于脱除烟气中的CO。
而对比例3与对比例2相比较,对比例3的NO 2脱除率明显高于对比例2,是由于对比 例3较对比例2多负载了MgO,MgO的作用在于脱除烟气中的NO 2,因此提高了催化剂对NO 2的脱除率。
而对比例3与对比例1相比较,对比例3的NO、NO 2脱除率明显高于对比例1,是由于对比例3较对比例1多负载了MoO 3、MgO,MoO 3用于扩宽催化剂在低温下的适应温度,因此提高了催化剂在低温下NO的脱除。MgO的作用在于脱除烟气中的NO 2,因此提高了催化剂对NO 2的脱除率。
采用本公开的燃机催化剂,可实现燃机启动阶段NO 2的脱除以及低温下NO的脱除,解决了部分燃机启动阶段的“冒黄烟”现象,以及燃机启动阶段无法投运的问题。
本公开的燃机催化剂,既具有对NO、NO 2的催化还原功能,又具有对CO的氧化分解功能,采用本公开的燃机催化剂,可实现NO、NO 2和CO的联合脱除,克服了传统技术中需要单独脱除几种气体而导致的工艺复杂的难题,大大简化了脱硝系统,节省了脱硝装置反应器的空间,降低了减排过程中系统所产生的阻力。
实施例2
称取82g的偏钒酸氨、1000g的仲钼酸氨和123g的偏钨酸氨,配制成含V、Mo、W的盐溶液,在盐溶液中,偏钒酸氨浓度为2%,仲钼酸氨浓度为4%,偏钨酸氨浓度为4%,向该盐溶液中加入空白催化剂基体,浸泡5分钟,超声震荡5分钟后取出,在110℃条件下干燥2小时。干燥后,取出试样。在400℃条件下,焙烧4个小时,从而随着盐类的分解,在空白催化剂基体的表面生成V 2O 5、MoO 3、WO 3,得到第一前驱体。
称取370g的硝酸镁,配制成浓度6%的硝酸镁溶液,向该盐溶液中加入第一前驱体,浸泡8分钟,超声震荡8分钟后取出,在120℃条件下干燥2小时。干燥后,取出试样。在450℃条件下,焙烧4小时,从而随着盐类的分解,在第一前驱体的表面生成MgO,得到第二前驱体。
称取100g的硝酸钴六水化合物,配制成浓度为6%的硝酸钴盐溶液,向该盐溶液中加入第二前驱体,浸泡8分钟,超声震荡8分钟后取出,在110℃条件下干燥2小时。干燥后,取出试样。在400℃条件下,在NH 3气氛下焙烧4小时,从而随着盐类的分解,在第二前驱体的表面生成CoO,得到燃机催化剂成品。以燃机催化剂的质量为100%计,V 2O 5的占比为2.5%,WO 3的占比为4%,MoO 3的占比为2.5%,MgO的占比为2.5%,CoO的占比为2%。
采用模拟烟气进行性能评价,烟气条件为NO、NO 2、CO、O 2、H 2O,同时N 2作为平衡气,温度为200℃。评价结果见表2。
对比例4
称取80g的偏钒酸氨、110g的偏钨酸氨,配制成含V、W的盐溶液,在盐溶液中,偏钒酸氨浓度为1.5%,偏钨酸氨浓度为3.4%,向该盐溶液中加入空白催化剂基体,浸泡8分钟,超声震荡8分钟后取出,在110℃条件下干燥2小时。干燥后,取出试样。在400℃条件下,焙烧4小时,从而随着盐类的分解,在空白催化剂基体的表面生成V 2O 5、WO 3,得到燃机催化剂成品,以燃机催化剂的质量为100%计,其中,V 2O 5的占比为3.0%,WO 3的占比为4.5%。
采用模拟烟气进行性能评价,烟气条件为NO、NO 2、CO、O 2、H 2O,同时N 2作为平衡气,温度为200℃。评价结果见表2。
对比例5
称取80g的偏钒酸氨、110g的偏钨酸氨,配制成含V、W的盐溶液,在盐溶液中,偏钒酸氨浓度为1.5%,偏钨酸氨浓度为3.4%,向该盐溶液中加入空白催化剂基体,浸泡8分钟,超声震荡8分钟后取出,在110℃条件下干燥2小时。干燥后,取出试样。在400℃条件下,焙烧4小时,从而随着盐类的分解,在空白催化剂基体的表面生成V 2O 5、WO 3,得到第一前驱体。
称取1100g的仲钼酸氨,配制成浓度4%的含Mo的盐溶液,向该盐溶液中加入第一前驱体,浸泡8分钟,超声震荡8分钟后取出,在110℃条件下干燥2小时。干燥后,取出试样。在400℃条件下,焙烧4小时,从而随着盐类的分解,在空白催化剂基体的表面生成MoO 3,得到燃机催化剂成品。以燃机催化剂的质量为100%计,其中,V 2O 5的占比为2.8%,WO 3的占比为4.2%,MoO 3的占比为3.0%。
采用模拟烟气进行性能评价,烟气条件为NO、NO 2、CO、O 2、H 2O,同时N 2作为平衡气,温度为200℃。评价结果见表2。
对比例6
称取80g的偏钒酸氨、110g的偏钨酸氨,配制成含V、W的盐溶液,在盐溶液中,偏钒酸氨浓度为1.5%,偏钨酸氨浓度为3.4%,向该盐溶液中加入空白催化剂基体,浸泡8分钟,超声震荡8分钟后取出,在110℃条件下干燥2小时。干燥后,取出试样。在400℃条件下,焙烧4小时,从而随着盐类的分解,在空白催化剂基体的表面生成V 2O 5、WO 3,得到第一前驱体。
称取1100g的仲钼酸氨,配制成浓度4%的含Mo的盐溶液,向该盐溶液中加入第一前驱体,浸泡8分钟,超声震荡8分钟后取出,在110℃条件下干燥2小时。干燥后,取出试样。在400℃条件下,焙烧4小时,从而随着盐类的分解,在空白催化剂基体的表面生成MoO 3,得到第二前驱体。
称取370g的硝酸镁,配制成浓度6%的硝酸镁溶液,向该盐溶液中加入第一前驱体,浸泡8分钟,超声震荡8分钟后取出,在120℃条件下干燥2小时。干燥后,取出试样。在450℃条件下,焙烧4小时,从而随着盐类的分解,在第一前驱体的表面生成MgO,得到燃机催化剂成品。以燃机催化剂的质量为100%计,其中,V 2O 5的占比为2.8%,WO 3的占比为4.2%,MoO 3的占比为2.8%,MgO的占比为2.7%。
采用模拟烟气进行性能评价,烟气条件为NO、NO 2、CO、O 2、H 2O,同时N 2作为平衡气,温度为200℃。评价结果见表2。
表2为实施例2和对比例4~6中获得的催化剂对NO、NO 2、CO脱除率对比。
表2
  NO脱除率 NO 2脱除率 CO脱除率
实施例2 85.3% 84.4% 85.5%
对比例4 62.6% 35.6% 42.3%
对比例5 87.7% 38.3% 43.7%
对比例6 86.8% 85.3% 42.2%
通过实施例2与对比例4的NO、NO 2、CO脱除率的比较,可以看出,实施例2的NO、NO 2、CO的脱除率明显高于对比例4。是由于对比例4中没有负载MoO 3、MgO、CoO。MgO的作用在于脱除烟气中的NO 2,CoO的作用在于脱除烟气中的CO。MoO 3用于扩宽催化剂在低温下的适应温度。负载的V 2O 5和WO 3用于NO的脱除,但由于没有负载MoO 3导致催化剂没有扩宽低温下的适应温度,进而影响了低温下NO的脱除。
通过实施例2与对比例5的NO、NO 2、CO脱除率的比较,可以看出,实施例2的NO脱除率略低于对比例5,相差很小。但实施例2的NO 2、CO脱除率明显高于对比例5。是由于对比例5中没有负载MgO、CoO。MgO的作用在于脱除烟气中的NO 2,CoO的作用在于脱除烟气中的CO。
而对比例5与对比例4相比较,对比例5的NO脱除率明显高于对比例4,是由于对比例5较对比例4多负载了MoO 3,MoO 3用于扩宽催化剂在低温下的适应温度,因此提高了催化剂在低温下NO的脱除。
通过实施例2与对比例6的NO、NO 2、CO脱除率的比较,可以看出,实施例2的NO、NO 2的脱除率略低于对比例6,相差很小。但实施例2的CO的脱除率明显高于对比例6。是由于对比例6中没有负载CoO,CoO的作用在于脱除烟气中的CO。
而对比例6与对比例5相比较,对比例6的NO 2脱除率明显高于对比例5,是由于对比例6较对比例5多负载了MgO,MgO的作用在于脱除烟气中的NO 2,因此提高了催化剂对NO 2的脱除率。
而对比例6与对比例4相比较,对比例6的NO、NO 2脱除率明显高于对比例4,是由于对比例6较对比例4多负载了MoO 3、MgO,MoO 3用于扩宽催化剂在低温下的适应温度,因此提高了催化剂在低温下NO的脱除。MgO的作用在于脱除烟气中的NO 2,因此提高了催化剂对NO 2的脱除率。
采用本公开的燃机催化剂,可实现燃机启动阶段NO 2的脱除以及低温下NO的脱除,解决了部分燃机启动阶段的“冒黄烟”现象,以及燃机启动阶段无法投运的问题。
本公开的燃机催化剂,既具有对NO、NO 2的催化还原功能,又具有对CO的氧化分解功能,采用本公开的燃机催化剂,可实现NO、NO 2和CO的联合脱除,克服了传统技术中需要单独脱除几种气体而导致的工艺复杂的难题,大大简化了脱硝系统,节省了脱硝装置反应器的空间,降低了减排过程中系统所产生的阻力。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种用于多种污染物脱除的燃机催化剂,包括空白催化剂基体和负载于空白催化剂基体上的活性组分,所述空白催化剂基体的主要成分为TiO 2,活性组分包括V 2O 5、MoO 3、MgO与CoO,以燃机催化剂的质量为100%计,其中V 2O 5的占比为0.5-4%,MoO 3的占比为1-5%,MgO的占比为1-3%,CoO的占比为1-2%。
  2. 根据权利要求1所述的燃机催化剂,其中,所述活性组分还包括WO 3,所述WO 3的占比为1-5%。
  3. 一种权利要求1或2所述的燃机催化剂的制备方法,其中,包括:
    S1,称取偏钒酸氨、仲钼酸氨和偏钨酸氨,基于空白催化剂基体的吸水率,配制第一盐溶液,向第一盐溶液中加入空白催化剂基体,经过浸泡和超声震荡后取出,然后进行干燥、焙烧,空白催化剂基体表面生成V 2O 5、WO 3、MoO 3,得到第一前驱体;
    S2,称取乙酸镁四水化合物,基于空白催化剂基体的吸水率,配制第二盐溶液,向第二盐溶液中加入第一前驱体,经过浸泡和超声震荡后取出,然后进行干燥、焙烧,第一前驱体表面生成MgO,得到第二前驱体;
    S3,称取硝酸钴六水化合物,基于空白催化剂基体的吸水率,配制第三盐溶液,向第三盐溶液中加入第二前驱体,经过浸泡、超声震荡和干燥后取出,在还原性气氛下焙烧,第二前驱体表面生成CoO,得到燃机催化剂成品。
  4. 根据权利要求3所述的燃机催化剂的制备方法,其中,空白催化剂基体的吸水率的测定方法为:
    取样干燥的空白催化剂基体称重为m1;
    清水浸泡一段时间取出,超声震荡至无大颗粒凝聚,称重为m2,计算吸水率w=(m2-m1)/m1;
    根据空白催化剂基体的吸水率,确定第一盐溶液、第二盐溶液和第三盐溶液的浓度。
  5. 根据权利要求3所述的燃机催化剂的制备方法,其中,所述步骤S1中,浸泡时间为2-10分钟,超声震荡时间为2-10分钟,干燥温度为100-150℃,干燥时间为2-4小时,焙烧温度为400-500℃,焙烧时间为4-8小时。
  6. 根据权利要求3所述的燃机催化剂的制备方法,其中,所述步骤S2中,浸泡时间为2-10分钟,超声震荡时间为2-10分钟,干燥温度为100-150℃,干燥时间为2-4小时,焙烧温度为400-500℃,焙烧时间为4-8小时。
  7. 根据权利要求3所述的燃机催化剂的制备方法,其中,所述步骤S3中,浸泡时间为2-10分钟,超声震荡时间为2-10分钟,干燥温度为100-150℃,干燥时间为2-4小时,焙烧温度为400-500℃,焙烧时间为4-8小时。
  8. 根据权利要求3所述的燃机催化剂的制备方法,其中,所述步骤S3中,还原性气氛为NH 3气氛。
  9. 根据权利要求3所述的燃机催化剂的制备方法,其中,所述步骤S2中,乙酸镁四水化合物替换为硝酸镁。
  10. 一种权利要求1或2所述的燃机催化剂在火电厂排放的燃机污染物的脱除中的应用。
PCT/CN2022/140151 2022-08-05 2022-12-19 一种用于多种污染物脱除的燃机催化剂及其制备方法 WO2024027078A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210940340.7 2022-08-05
CN202210940340.7A CN115282978B (zh) 2022-08-05 2022-08-05 一种用于多种污染物脱除的燃机催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2024027078A1 true WO2024027078A1 (zh) 2024-02-08

Family

ID=83827235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140151 WO2024027078A1 (zh) 2022-08-05 2022-12-19 一种用于多种污染物脱除的燃机催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN115282978B (zh)
WO (1) WO2024027078A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115282978B (zh) * 2022-08-05 2023-05-23 苏州西热节能环保技术有限公司 一种用于多种污染物脱除的燃机催化剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288675A (en) * 1992-02-05 1994-02-22 W. R. Grace & Co.-Conn. SOx control compositions
CN104053503A (zh) * 2012-01-19 2014-09-17 丰田自动车株式会社 排气净化催化剂及其制造方法
CN106423184A (zh) * 2016-10-10 2017-02-22 华北电力大学 一种联合脱除n2o、no和no2的催化剂及制备方法
CN110548518A (zh) * 2019-08-13 2019-12-10 华南理工大学 一种用于净化燃煤有机废气的过渡金属复合催化剂及其制备方法与应用
CN110694610A (zh) * 2019-11-07 2020-01-17 大唐南京环保科技有限责任公司 低温scr平板式脱硝催化剂及其制备方法
CN115282978A (zh) * 2022-08-05 2022-11-04 苏州西热节能环保技术有限公司 一种用于多种污染物脱除的燃机催化剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288675A (en) * 1992-02-05 1994-02-22 W. R. Grace & Co.-Conn. SOx control compositions
CN104053503A (zh) * 2012-01-19 2014-09-17 丰田自动车株式会社 排气净化催化剂及其制造方法
CN106423184A (zh) * 2016-10-10 2017-02-22 华北电力大学 一种联合脱除n2o、no和no2的催化剂及制备方法
CN110548518A (zh) * 2019-08-13 2019-12-10 华南理工大学 一种用于净化燃煤有机废气的过渡金属复合催化剂及其制备方法与应用
CN110694610A (zh) * 2019-11-07 2020-01-17 大唐南京环保科技有限责任公司 低温scr平板式脱硝催化剂及其制备方法
CN115282978A (zh) * 2022-08-05 2022-11-04 苏州西热节能环保技术有限公司 一种用于多种污染物脱除的燃机催化剂及其制备方法

Also Published As

Publication number Publication date
CN115282978B (zh) 2023-05-23
CN115282978A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
JP5844457B2 (ja) 表面堆積型ハニカム状排煙脱硝触媒の製造方法
CN105289641B (zh) 一种钴负载铈锰氧化物催化剂及其制备方法
US8920759B2 (en) Method and apparatus for reducing NOx emissions from a lean burning hydrocarbon fueled power source
CN101204650A (zh) 一种烟气脱硝的铈钛复合氧化物催化剂
CN102553572A (zh) 一种宽活性温度窗口的scr催化剂及其制备方法
CN105771961B (zh) 一种CeO2纳米管担载的脱硝催化剂及其制备方法
JPH09507656A (ja) 流動媒体中の窒素酸化物を低減させる触媒及びその製造方法
WO2024027078A1 (zh) 一种用于多种污染物脱除的燃机催化剂及其制备方法
BR112013021254A2 (pt) sistema de escapamento para um motor de combustão interna de veículo de queima pobre, e, motor de combustão interna de queima pobre
CN102909003A (zh) 催化还原氮氧化物的钒铈钛催化剂及其制备方法和应用
CN105618028A (zh) 一种焦炉烟气脱硝用催化剂及其制备方法
JP5787901B2 (ja) 脱硝触媒用担体、脱硝触媒及び脱硝装置
CN103285854A (zh) 柴油机尾气颗粒物催化剂、及其制备方法和使用方法
CN108554419A (zh) 低温去除柴油机NOx的NH3-SCR催化剂及其制备方法
Karthe et al. Experimental Investigation on Reduction of NOX Emission Using Zeolite Coated Converter in CI Engine
CN101554584B (zh) 氨选择性催化还原氮氧化物成氮气的催化剂及其制备方法
CN108579731A (zh) 一种低温脱硝碳基催化剂的制备方法
CN111939917A (zh) 一种具有良好抗硫性能的dpf催化剂及其制备方法
CN101367046A (zh) 一种用于去除氮氧化物的阴离子修饰催化剂的制备方法
CN114653396B (zh) 一种兼顾低排气背压与高催化效率的dpf催化剂涂覆方法
JP2013180286A (ja) 排ガス処理用脱硝触媒および排ガス処理方法
KR102558168B1 (ko) 암모니아 산화용 촉매 및 이의 제조 방법
CN110665493B (zh) 一种低温抗硫酸氢铵中毒的脱硝催化剂及其制备方法
JP6182036B2 (ja) 排ガス処理用触媒及び排ガス処理装置、並びに排ガス処理用触媒の製造方法
CN113522274B (zh) 一种抗碱金属中毒低温锰基scr脱硝催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953866

Country of ref document: EP

Kind code of ref document: A1