WO2024026983A1 - 一种正极材料及其制备方法和应用 - Google Patents

一种正极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2024026983A1
WO2024026983A1 PCT/CN2022/118778 CN2022118778W WO2024026983A1 WO 2024026983 A1 WO2024026983 A1 WO 2024026983A1 CN 2022118778 W CN2022118778 W CN 2022118778W WO 2024026983 A1 WO2024026983 A1 WO 2024026983A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode material
heat treatment
preparation
positive electrode
coating agent
Prior art date
Application number
PCT/CN2022/118778
Other languages
English (en)
French (fr)
Inventor
汪乾
阮丁山
李长东
刘伟健
刘更好
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024026983A1 publication Critical patent/WO2024026983A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of new energy materials, and specifically relates to a cathode material and its preparation method and application.
  • Lithium-ion batteries are widely used in new energy vehicles, mobile equipment, energy storage power stations and other fields because of their high operating voltage and excellent cycle performance. With the continuous development of technology, people have also put forward higher requirements for lithium-ion batteries. The design and development of electrode materials with higher capacity, high power, high energy density and good cycle stability have become one of the research hotspots in the field of new energy. .
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention proposes a method for preparing a cathode material.
  • the resulting cathode material has higher structural stability at its surface interface and grain boundaries, thereby having higher stability for high-pressure use.
  • the invention also provides a cathode material prepared by the above preparation method.
  • the present invention also provides an application of the above-mentioned positive electrode material in a secondary battery.
  • a method for preparing a cathode material which includes the following steps:
  • a preparation method of cathode material including the following steps:
  • the heat treatment includes a first heat treatment and a second heat treatment
  • the temperature of the first heat treatment is 550°C to 750°C;
  • the temperature of the second heat treatment is 250°C to 550°C;
  • the M is selected from at least one of B, W, Nb, Mo, Sb, Sr, Sn and Mo;
  • the N is selected from at least one of Ni, Co, Mn, Zr, Al, Mg, Ti, Sr, W, Y, Zn, La, Ce and F;
  • the M-containing coating agent forms Li e M f O g or an M-containing oxide, where 1 ⁇ e ⁇ 5, 1 ⁇ f ⁇ 10, and 1 ⁇ g ⁇ 10;
  • the N-containing coating agent forms Li e N f O g or an N-containing oxide, where 1 ⁇ e ⁇ 5, 1 ⁇ f ⁇ 10, and 1 ⁇ g ⁇ 10.
  • Grain boundaries are the interfaces between grains of the same structure but with different orientations; they are difficult to observe with the naked eye or even with the help of conventional scanning electron microscopy and other measures.
  • grain boundaries are fragile parts. During long-term cycles or even high-voltage charge and discharge processes, cracks can easily occur at the grain boundaries, eventually leading to the disintegration and failure of the cathode material. It is difficult to achieve microscopic control of grain boundaries with traditional technology.
  • the invention is provided with a primary heat treatment (high temperature platform) of 550°C to 750°C and a second heat treatment (low temperature platform) of 250°C to 550°C.
  • the coating agent containing M is a low melting point coating agent or can
  • the M-containing coating agent transforms into a liquid phase or forms on the surface of the cathode material body and is easily infiltrated.
  • the compound at the grain boundary diffuses (shallow doping) into the material along the grain boundary and/or surface layer, forming a quasi-in-situ grain boundary strengthening layer (Li e M f O g ) while achieving surface doping; it can be seen from the type of N that the N-containing coating agent has a higher melting point. Under the first heat treatment (high temperature platform), the N-containing coating agent will not melt to form a liquid phase.
  • the low-temperature platform promotes the formation of an island-shaped coating layer of Li e N f O g on the surface of the cathode material body by the high melting point N-containing coating agent (a continuous coating layer will not be formed), thereby improving the ionic conductivity of the resulting cathode material.
  • the synergistic effect of the two coating agents prevents the resulting cathode material from accelerating the structural decay of the fresh surface due to the formation of intragranular cracks at the grain boundaries, thereby avoiding the formation of a disordered surface reconstruction layer of the cathode material, and ultimately improves the surface properties of the resulting cathode material. Structural stability at the interface and grain boundaries, thereby improving the performance of the resulting cathode material under high pressure.
  • the M is selected from at least one of B, W, Nb, Mo, Sb, Sr, and Sn.
  • the M is selected from at least one of B, W and Nb.
  • the N is selected from at least one of Zr, Mg, Ti and F.
  • the M-containing coating agent includes at least one of B 2 O 3 , WO 3 , Nb 2 O 5 and H 3 BO 3 .
  • the N-containing coating agent includes at least one of TiO 2 , MgO, LiF and ZrO 2 .
  • the cathode material body includes at least one of a polycrystalline material, a quasi-single crystal material, and a single crystal material.
  • the time of the first heat treatment is 0.5h to 5h.
  • the time of the second heat treatment is 3h to 8h.
  • the second heat treatment (low temperature platform) has a relatively long holding time, which promotes the high melting point N-containing coating agent to form an island-shaped coating layer (Li e N f O g ) on the surface of the cathode material body. It mainly reacts with the residual lithium on the surface of the cathode material body. Residual lithium is an unavoidable presence of the cathode material and has a negative impact on the performance of the cathode material. Therefore, the preparation method provided by the invention can also remove the residual lithium on the surface of the cathode material. Lithium is used to improve the overall performance of the resulting cathode material.
  • the preparation method of the cathode material body includes mixing a precursor and a lithium source, sintering, and crushing.
  • the lithium source includes at least one of LiOH and Li 2 CO 3 .
  • the lithium source includes at least one of micropowder LiOH, coarse particle LiOH, battery grade Li 2 CO 3 , quasi-battery grade Li 2 CO 3 , and industrial Li 2 CO 3 .
  • the sintering temperature is 750 ⁇ 1050°C.
  • the molar ratio of lithium in the lithium source and transition metal in the precursor is 1 to 1.1:1.
  • Li lithium source
  • the sintering atmosphere includes oxygen.
  • the volume concentration of oxygen is 22-99.99%.
  • the preparation method further includes adding additives during the mixing process.
  • the additives include Ni, Co, Mn, Zr, Al, Mg, Ti, Sr, W, Y, Mo, Sb, Nb, Sn, Zn, La, Ce, B and F at least one element in .
  • the elements in the above-mentioned additives form strong chemical bonds with the oxygen in the cathode material itself, stabilizing the lattice structure and improving the high-voltage performance of the resulting cathode material.
  • the preparation method further includes screening, removing iron and packaging the cathode material.
  • the positive electrode material includes a positive electrode material body, and the surface of the positive electrode material body has grain boundaries;
  • a first coating is at least one of Li e M f O g and an M-containing oxide, and the first coating is concentrated at the grain boundary;
  • the second coating is distributed on the surface of the cathode material body.
  • R is an element in the additive. The presence of R ensures the improvement of high-voltage performance after doping of the cathode material, while avoiding the reduction of the gram capacity of the resulting cathode material.
  • the first coating is also concentrated in the gaps between primary particles in the polycrystalline material. Since the gaps are also fragile parts of the polycrystalline material, the first coating concentrated in the gaps also has the function of hindering the penetration of electrolyte and improving the bonding force between primary particles, thereby improving the high voltage of the resulting cathode material. Performance has a positive impact.
  • the application of the cathode material in secondary batteries is proposed.
  • the test voltage of the secondary battery is 2.8-4.25V.
  • Figure 1 is an SEM image of the cathode material obtained in Example 1;
  • Figure 2 is an SEM image of the cathode material obtained in Example 1;
  • Figure 3 is an SEM image of the cathode material obtained in Comparative Example 1.
  • This embodiment discloses a method for preparing a cathode material. The specific steps are:
  • Ni 0.70 Co 0.05 Mn 0.25 (OH) 2 precursor with fine powder LiOH, ZrO 2 and Al 2 O 3 evenly, and then sinter at high temperature in an oxygen atmosphere.
  • Ni 0.70 Co 0.05 Mn 0.25 (OH) 2 and LiOH are fed according to the molar ratio of Li/(Ni+Co+Mn) to 1.05.
  • the addition amounts of additives ZrO 2 and Al 2 O 3 are 4000ppm and 1000ppm respectively (based on In ZrO 2 /Al 2 O 3 , Zr/Al accounts for the mass of the precursor).
  • the oxygen volume concentration during the sintering process is 95%, and the sintering temperature is 915°C.
  • the sintered product undergoes coarse crushing pretreatment and enters the next process. After coarse crushing, the particle size D v 50 is controlled at 8 ⁇ 0.5 ⁇ m.
  • step S2 Mix the crushed and pretreated material in step S1 with the low melting point coating agent B 2 O 3 (a coating agent containing M, M is B) and the high melting point coating agent TiO 2 (a coating agent containing N, N Ti), mix evenly, and then perform secondary sintering.
  • the added amounts of the coating agents B 2 O 3 and TiO 2 are 1000 ppm and 1500 ppm respectively (based on the mass of the cathode material body obtained in step S1 as B/Ti in B 2 O 3 /TiO 2 ).
  • the sintered product is screened, iron removed, and packaged to obtain the finished product.
  • the M-containing coating agent generates compounds that easily infiltrate the grain boundaries (the gaps between the primary balls on the surface of the secondary balls) and diffuse into the material along the grain boundaries and/or surface layers (shallow doping), forming a quasi-in-situ crystal structure. Surface doping is achieved simultaneously with the boundary strengthening layer (Li e M f O g ).
  • Figure 2 is an overall schematic diagram of the coating effect of the cathode material in this embodiment.
  • An island-shaped coating layer is formed on the surface of the cathode material body.
  • This embodiment discloses a method for preparing a cathode material. The specific steps are:
  • Ni 0.82 Co 0.06 Mn 0.12 (OH) 2 and LiOH are fed according to the molar ratio of Li/(Ni+Co+Mn) to 1.03.
  • the addition amounts of additives Y 2 O 3 and Sb 2 O 3 are 2000ppm and 2000ppm respectively ( Calculated based on Y/Sb accounting for the precursor mass in Y 2 O 3 /Sb 2 O 3 ).
  • the oxygen volume concentration during the sintering process is 98%, and the sintering temperature is 840°C.
  • the sintered product undergoes coarse crushing pretreatment and enters the next process. After coarse crushing, the particle size D v 50 is controlled at 10 ⁇ 0.5 ⁇ m.
  • step S2 Mix the material after crushing and pretreatment in step S1 evenly with WO 3 which is easy to react with the residual lithium on the surface of the cathode material and the high melting point M-containing coating agent MgO, and then perform secondary sintering.
  • the added amounts of the coating agents WO 3 and MgO are 1500ppm and 1000ppm respectively (based on the mass of the positive electrode material accounted for by W/Mg in WO 3 /MgO).
  • the sintered product is screened, iron removed, and packaged to obtain the finished product.
  • This embodiment discloses a method for preparing a cathode material. The specific steps are:
  • Ni 0.55 Co 0.12 Mn 0.33 (OH) 2 and Li 2 CO 3 are fed according to the molar ratio of Li/(Ni+Co+Mn) of 1.06.
  • the addition amounts of additives MO 3 and La 2 O 3 are 2500ppm and 1000ppm respectively.
  • the oxygen volume concentration during the sintering process is 22%, and the sintering temperature is 950°C.
  • the sintered product undergoes coarse crushing pretreatment and enters the next process. After coarse crushing, the particle size D v 50 is controlled at 4.5 ⁇ 0.5 ⁇ m.
  • step S2 Mix the material after crushing and pretreatment in step S1 evenly with Nb 2 O 5 and high-melting point coating agent LiF that are easy to react with the residual lithium on the surface of the cathode material, and then perform secondary sintering.
  • the added amounts of the coating agents Nb 2 O 5 and LiF are 1500ppm and 1000ppm respectively (based on the mass of the positive electrode material accounted for by Nb/F in Nb 2 O 5 /LiF).
  • the sintered product is screened, iron removed, and packaged to obtain the finished product.
  • This embodiment discloses a method for preparing a cathode material. The specific steps are:
  • Ni 0.60 Co 0.07 Mn 0.33 (OH) 2 and Li 2 CO 3 are fed according to the molar ratio of Li/(Ni+Co+Mn) to 1.07.
  • the addition amounts of additives CeO 2 and ZnO are 1500ppm and 1200ppm respectively (based on CeO 2 /Ce/Zn in ZnO accounts for the mass of the precursor).
  • the oxygen concentration during sintering is 40%, and the sintering temperature is 930°C.
  • the sintered product undergoes coarse crushing pretreatment and enters the next process. After coarse crushing, the particle size D v 50 is controlled at 5.5 ⁇ 0.5 ⁇ m.
  • step S2 Mix the crushed and pretreated material in step S1 with the low melting point coating agent H 3 BO 3 and the high melting point coating agent ZrO 2 evenly, and then perform secondary sintering.
  • the added amounts of coating agents H 3 BO 3 and ZrO 2 are 800ppm and 1500ppm respectively (based on the mass of positive electrode material accounted for by B/Zr in H 3 BO 3 /ZrO 2 ).
  • the sintered product is screened, iron removed, and packaged to obtain the finished product.
  • This comparative example discloses a preparation method of a cathode material.
  • the difference from Example 1 is that no low melting point coating agent B 2 O 3 is added and the remaining conditions are the same.
  • Figure 3 is an SEM image of the island-like coating formed in Comparative Example 1.
  • This comparative example discloses a method for preparing a cathode material.
  • the difference from Example 2 is that the low-temperature platform in step S2 is not included, and the remaining conditions are the same.
  • This test example tested the charge and discharge detection results of the cathode materials of Examples 1 to 4 and Comparative Examples 1 to 2.
  • the test results are shown in Table 1.
  • the test method is to use N-methylpyrrolidone as the solvent, mix the cathode material, acetylene black and PVDF in a mass ratio of 9.2..0.5..0.3 to form a slurry, and then apply the slurry on the aluminum foil and drum it at 80°C. After air drying for 8 hours, vacuum drying was performed at 120°C for 12 hours to obtain the positive electrode.
  • the battery was assembled in an argon-protected glove box.
  • the cathode was a lithium metal sheet
  • the separator was a polypropylene film
  • the electrolyte was 1MLiPF 6 -EC/DMC (1:1, v/v)
  • a 2032 button battery case was used.
  • the electrochemical performance of the obtained button cell was tested, and the capacity retention rate was calculated as the ratio of the charging gram specific capacity in the Nth week to the charging gram specific capacity in the first week.
  • the specific test mechanism is: discharge at a rate of 0.1C at 2.8-4.25V, then cycle for 100 cycles at a rate of 1C/1C at 2.8-4.25V, and record the cycle capacity retention rate after 100 cycles.
  • Example 1 203 91.3% 197 96.4%
  • Example 2 214 92.6 209 95.2
  • Example 3 186 90.7 178 97.2
  • Example 4 202 89.7 193 96.1 Comparative example 1 195 87.7 184 88.4 Comparative example 2 202 87.3 188 86.2
  • the present invention adopts the setting of high-temperature and low-temperature platforms.
  • the high-temperature platform promotes the transformation of the M coating agent into a liquid phase or the formation of easily infiltrating grain boundary compounds on the surface of the cathode material and along the grain boundaries and/or surface layers.
  • the material diffuses internally to form a quasi-in-situ grain boundary strengthening layer (Li e M f O g ) while simultaneously achieving surface doping;
  • the low-temperature platform has a relatively long holding time, which promotes the formation of island-like coatings on the surface by the high-melting-point coating agent.
  • the coating improves the ionic conductivity of the cathode material, thereby improving the performance of the cathode material.
  • Comparative Example 1 there is no low-melting point coating agent, so it is impossible to form a quasi-in-situ grain boundary strengthening layer (Li e M f O g ) while simultaneously achieving surface doping; Comparative Example 2 does not include the setting of a low-temperature platform, so it is impossible to This promotes the formation of an island-like coating layer on the surface of the high-melting-point coating agent, thereby affecting the performance of the cathode material.
  • a quasi-in-situ grain boundary strengthening layer Li e M f O g

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种正极材料及其制备方法和应用,包括以下步骤:将正极材料本体、含M的包覆剂和含N的包覆剂混合后进行热处理;所述热处理包括第一次热处理和第二次热处理;所述第一次热处理的温度为550℃~750℃;所述第二次热处理的温度为250℃~550℃;所述M选自B、W、Nb、Mo、Sb、Sr、Sn和Mo中的至少一种;所述N选自Ni、Co、Mn、Zr、Al、Mg、Ti、Sr、W、Y、Zn、La、Ce和F中的至少一种;所述热处理后含M的包覆剂形成LieMfOg或含M的氧化物。本发明制备方法制备的正极材料能够提升正极材料的表界面以及晶界处的结构稳定性,从而提升正极材料的使用稳定性。

Description

一种正极材料及其制备方法和应用 技术领域
本发明属于新能源材料技术领域,具体涉及一种正极材料及其制备方法和应用。
背景技术
锂离子电池因其具有较高的工作电压和出色的循环性能,在新能源汽车、移动设备、储能电站等领域受到广泛应用。随着技术的不断发展,人们对锂离子电池也提出更高的要求,设计研发具有更高容量、高功率、高能量密度、循环稳定性好的电极材料已经成为新能源领域的研究热点之一。
目前,对传统锂离子电池正极材料进行改性,在保证其安全性及稳定性的前提下,将正极材料充电至更高的电压、提供更多的容量是高能量密度锂离子电池发展的重要技术路线。然而,将正极材料充电至更高电压或脱出更多的锂离子后,材料会出现晶体结构破、颗粒结构破坏、气体析出、过渡金属溶解、表界面副反应增加等不良后果,导致材料出现容量衰减、电化学性能变差、安全性能降低等失效现象。
因此,提供一种正极材料以提升正极材料的在高压条件下的使用的稳定性是目前的当务之急。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种正极材料的制备方法,所得正极材料的表界面以及晶界处的结构稳定性较高,从而具有较高的高压使用稳定性。
本发明还提供一种上述制备方法制得的正极材料。
本发明还提供一种上述正极材料在二次电池中的应用。
根据本发明的第一方面实施例,提出了一种正极材料的制备方法,包括以下步骤:
一种正极材料的制备方法,包括以下步骤:
将正极材料本体、含M的包覆剂和含N的包覆剂混合后进行热处理;
所述热处理包括第一次热处理和第二次热处理;
所述第一次热处理的温度为550℃~750℃;
所述第二次热处理的温度为250℃~550℃;
所述M选自B、W、Nb、Mo、Sb、Sr、Sn和Mo中的至少一种;
所述N选自Ni、Co、Mn、Zr、Al、Mg、Ti、Sr、W、Y、Zn、La、Ce和F中的至少一种;
所述热处理后含M的包覆剂形成Li eM fO g或含M的氧化物,其中1≤e≤5,1≤f≤10,1≤g≤10;
所述热处理后含N的包覆剂形成Li eN fO g或含N的氧化物,其中1≤e≤5,1≤f≤10,1≤g≤10。
根据本发明实施例的一种正极材料的制备方法,至少具有以下有益效果:
晶界是结构相同而取向不同晶粒之间的界面;肉眼甚至借助常规的扫描电镜等措施都难以观测。在正极材料中,晶界是脆弱部位,在长期循环、甚至高压充放电过程中,容易从晶界处产生裂纹,最终导致正极材料的解体、失效。传统技术难以实现对晶界处的微观调控。
本发明设置有一次热处理(高温平台)550℃~750℃和第二次热处理(低温平台)250℃~550℃,根据M的种类可知,含M的包覆剂为低熔点包覆剂或能与正极材料本体表面(主要是残锂)发生反应的化合物,第一次热处理(高温平台)550℃~750℃下,含M的包覆剂转变成液相或者在正极材料本体表面生成容易浸润晶界(二次球表面一次球间的缝隙)的化合物并沿晶界和(或)表层向材料内部扩散(浅表掺杂),形成类原位的晶界强化层(Li eM fO g)的同时实现表面掺杂;由N的种类可知,含N的包覆剂熔点较高,在第一次热处理(高温平台)下,含N的包覆剂不会熔融形成液相。低温平台起到促进高熔点含N的包覆剂在正极材料本体表面形成材质为Li eN fO g岛状包覆层(不会形成连续的包覆层),提高所得正极材料的离子电导。两种包覆剂协同作用,避免了所得正极材料因晶界形成晶内裂纹而加速新鲜表面的结构衰退,进而避免了正极材料无序表面重构层的形成,最终提高了所得正极材料的表界面以及晶界处的结构稳定性,从而提升所得正极材料的高压下的使用效能。
根据本发明的一些优选地实施例,所述M选自B、W、Nb、Mo、Sb、Sr、Sn中的至少一种。
根据本发明的一些优选的实施例,所述M选自B、W和Nb中的至少一种。
根据本发明的一些优选的实施例,所述N选自Zr、Mg、Ti和F中的至少一种。
根据本发明的一些优选地实施例,所述含M的包覆剂包括B 2O 3、WO 3、Nb 2O 5和H 3BO 3中的至少一种。
根据本发明的一些优选地实施例,所述含N的包覆剂包括TiO 2、MgO、LiF和ZrO 2中的至少一种。
根据本发明的一些实施例,所述正极材料本体包括多晶材料、类单晶材料和单晶材料中的至少一种。
根据本发明的一些实施例,所述第一次热处理的时间为0.5h~5h。
根据本发明的一些实施例,所述第二次热处理的时间为3h~8h。
第二次热处理(低温平台)保温时间相对较长,起到促进高熔点含N的包覆剂在正极材料本体表面形成岛状包覆层(Li eN fO g)。主要是与正极材料本体表面的残锂发生反应,残锂是正极材料无法避免的存在,且对正极材料的性能有负向影响,因此本发明提供的制备方法还可通过清除正极材料表面的残锂以提升所得正极材料的综合性能。
根据本发明的一些实施例,所述正极材料本体的制备方法包括将前驱体和锂源混合后烧结,破碎。
根据本发明的一些实施例,所述锂源包括LiOH和Li 2CO 3中的至少一种。
根据本发明的一些实施例,所述锂源包括微粉LiOH、粗颗粒LiOH、电池级Li 2CO 3、准电池级Li 2CO 3、工业Li 2CO 3中的至少一种。
根据本发明的一些实施例,所述烧结的温度为750~1050℃。
根据本发明的一些实施例,所述锂源中锂和所述前驱体中过渡金属的摩尔比为1~1.1:1。
所述烧结过程中,Li(锂源)会发生挥发,且部分以残锂的形式存在正极材料本体表面,因此需要保证锂源稍过量。
根据本发明的一些实施例,所述烧结的气氛包括氧气。
根据本发明的一些实施例,所述氧气的体积浓度为22~99.99%。
根据本发明的一些实施例,所述制备方法还包括在混合过程中加入添加剂。
根据本发明的一些实施例,所述添加剂中包括Ni、Co、Mn、Zr、Al、Mg、Ti、Sr、W、Y、Mo、Sb、Nb、Sn、Zn、La、Ce、B和F中的至少一种元素。
上述添加剂中的元素与正极材料本体中的氧形成较强的化学键合的作用,稳定了晶格结构,提升所得正极材料的高电压性能。
根据本发明的一些实施例,所述制备方法还包括对所述正极材料进行过筛、除铁和包装。
根据本发明的第二方面实施例,提出了一种所述制备方法制得的一种正极材料,
所述正极材料包括正极材料本体,所述正极材料本体表面具有晶界;
第一包覆物,所述第一包覆物为Li eM fO g和含M的氧化物中的至少一种,所述第一包覆物集中于所述晶界处;
第二包覆物,所述第二包覆物分布于所述正极材料本体表面。
根据本发明的一些实施例,所述正极材料为LiNi xCo yMn zRaO 2@M bN c,0<x≤1,0≤y≤0.3,0≤z≤0.6,0.001≤a≤0.01,0.001≤b≤0.005,0.001≤c≤0.008,x+y+z+a=1。
R为所述添加剂中的元素,R的存在保证正极材料的掺杂后高压性能的提升,同时避免了所得正极材料克容量的降低。
当所述正极材料本体为多晶材料时,所述第一包覆物还集中于所述多晶材料中一次颗粒间的缝隙处。由于所述缝隙也是多晶材料的脆弱部位,因此集中于所述缝隙中的第一包覆物,也具有阻碍电解液渗透、提升一次颗粒间粘结力等作用,为提升所得正极材料的高压性能起到了正向影响。
根据本发明的第三方面实施例,提出了所述正极材料在二次电池中的应用。
根据本发明的一些实施例,所述二次电池的测试电压为2.8~4.25V。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为实施例1所得正极材料的SEM图;
图2为实施例1所得正极材料的SEM图;
图3为对比例1所得正极材料的SEM图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制,实施例中所使用的材料、试剂等,如无特殊说明,均可从商业途径得到的试剂和材料。
实施例1
本实施例公开了一种正极材料的制备方法,具体步骤为:
S1.将Ni 0.70Co 0.05Mn 0.25(OH) 2前驱体,与微粉LiOH、ZrO 2、Al 2O 3混合均匀后,在有氧气氛下高温烧结。其中Ni 0.70Co 0.05Mn 0.25(OH) 2与LiOH按照Li/(Ni+Co+Mn)的摩尔比为1.05进行投料、添加剂ZrO 2和Al 2O 3的添加量分别为为4000ppm和1000ppm(以ZrO 2/Al 2O 3中Zr/Al占前驱体质量计)。烧结过程中的氧气体积浓度为95%,烧结温度为915℃。烧结产物经过粗破碎预处理进入下道工序,经粗破碎后粒度D v50控制在8±0.5μm。
S2.将步骤S1破碎预处理后的材料与低熔点包覆剂B 2O 3(含M的包覆剂,M为B)和高熔点包覆剂TiO 2(含N的包覆剂,N为Ti)混合均匀,再进行二次烧结。其中包覆剂B 2O 3和TiO 2的添加量分别为1000ppm和1500ppm(以B 2O 3/TiO 2中B/Ti占步骤S1所得正极材料本 体的质量计)。二次烧结过程中高温平台T1=550℃,保温时间2h;低温平台T2=450℃,保温时间6h。烧结后的产物经过过筛、除铁、包装即得成品。
包覆剂对晶界进行浸润的效果如图1所示;
含M的包覆剂生成容易浸润晶界(二次球表面一次球间的缝隙)的化合物并沿晶界和(或)表层向材料内部扩散(浅表掺杂),形成类原位的晶界强化层(Li eM fO g)的同时实现表面掺杂。
图2为本实施例中正极材料包覆效果的整体示意图。
正极材料本体表面形成岛状包覆层。
实施例2
本实施例公开了一种正极材料的制备方法,具体步骤为:
S1.将Ni 0.82Co 0.06Mn 0.12(OH) 2前驱体,与粗颗粒LiOH、添加剂Y 2O 3、Sb 2O 3混合均匀后,
在有氧气氛下高温烧结。其中Ni 0.82Co 0.06Mn 0.12(OH) 2与LiOH按照Li/(Ni+Co+Mn)的摩尔比为1.03进行投料、添加剂Y 2O 3和Sb 2O 3的添加量分别为2000ppm和2000ppm(以Y 2O 3/Sb 2O 3中Y/Sb占前驱体质量计)。烧结过程中的氧气体积浓度为98%,烧结温度为840℃。烧结产物经过粗破碎预处理进入下道工序,经粗破碎后粒度D v50控制在10±0.5μm。
S2.将步骤S1破碎预处理后的材料与易于与正极材料表面残余锂发生反应的WO 3和高熔点含M的包覆剂MgO混合均匀,再进行二次烧结。其中包覆剂WO 3和MgO的添加量分别为1500ppm和1000ppm(以WO 3/MgO中W/Mg占正极材料质量计)。二次烧结过程中高温平台T1=750℃,保温时间0.5h;低温平台T2=400℃,保温时间5h。烧结后的产物经过过筛、除铁、包装即得成品。
实施例3
本实施例公开了一种正极材料的制备方法,具体步骤为:
S1.将Ni 0.55Co 0.12Mn 0.33(OH) 2前驱体,与电池级Li 2CO 3、添加剂MO 3、La 2O 3混合均匀后,
在有氧气氛下高温烧结。其中Ni 0.55Co 0.12Mn 0.33(OH) 2与Li 2CO 3按照Li/(Ni+Co+Mn)的摩尔比为1.06进行投料、添加剂MO 3和La 2O 3的添加量分别为2500ppm和1000ppm(以MO 3/La 2O 3中M/La占前驱体质量计)。烧结过程中的氧气体积浓度为22%,烧结温度为950℃。烧结产物经过粗破碎预处理进入下道工序,经粗破碎后粒度D v50控制在4.5±0.5μm。
S2.将步骤S1破碎预处理后的材料与易于与正极材料表面残余锂发生反应的Nb 2O 5和高熔点包覆剂LiF混合均匀,再进行二次烧结。其中包覆剂Nb 2O 5和LiF的添加量分别为1500ppm和1000ppm(以Nb 2O 5/LiF中Nb/F占正极材料质量计)。二次烧结过程中高温平台T1=700℃,保温时间1h;低温平台T2=550℃,保温时间6h。烧结后的产物经过过筛、除铁、包装即得 成品。
实施例4
本实施例公开了一种正极材料的制备方法,具体步骤为:
S1.将Ni 0.60Co 0.07Mn 0.33(OH) 2前驱体,与工业Li 2CO 3、添加剂CeO 2、ZnO混合均匀后,
在有氧气氛下高温烧结。其中Ni 0.60Co 0.07Mn 0.33(OH) 2与Li 2CO 3按照Li/(Ni+Co+Mn)的摩尔比为1.07进行投料、添加剂CeO 2和ZnO的添加量分别为1500ppm和1200ppm(以CeO 2/ZnO中Ce/Zn占前驱体质量计)。烧结过程中的氧气浓度为40%,烧结温度为930℃。烧结产物经过粗破碎预处理进入下道工序,经粗破碎后粒度D v50控制在5.5±0.5μm。
S2.将步骤S1破碎预处理后的材料与低熔点包覆剂H 3BO 3和高熔点包覆剂ZrO 2混合均匀,再进行二次烧结。其中包覆剂H 3BO 3和ZrO 2的添加量分别为800ppm和1500ppm(以H 3BO 3/ZrO 2中B/Zr占正极材料质量计)。二次烧结过程中高温平台T1=600℃,保温时间3h;低温平台T2=450℃,保温时间7h。烧结后的产物经过过筛、除铁、包装即得成品。
对比例1
本对比例公开了一种正极材料的制备方法,和实施例1的区别在于没有添加低熔点包覆剂B 2O 3其余条件相同。
图3为对比例1中形成岛状包覆的SEM图。
对比例1中包覆剂对晶界没有形成浸润。
对比例2
本对比例公开了一种正极材料的制备方法,和实施例2的区别在于不包括步骤S2中的低温平台,其余条件相同。
测试例1
本测试例测试了实施例1~4和对比例1~2的正极材料的充放电检测结果,测试结果如表1所示。测试方法为以N-甲基吡咯烷酮为溶剂,按照质量比9.2︰0.5︰0.3的比例将正极材料、乙炔黑和PVDF混合均匀形成浆料,再将浆料涂覆于铝箔上,经80℃鼓风干燥8h后,于120℃真空干燥12h,得正极。在氩气保护的手套箱中装配电池,负极为金属锂片,隔膜为聚丙烯膜,电解液为1MLiPF 6-EC/DMC(1︰1,v/v),采用2032型扣式电池壳。对所得扣式电池进行电化学性能检测,容量保持率的计算方法为第N周充电克比容量与第一周充电克比容量之比。具体测试机制为:在2.8~4.25V下以0.1C进行倍率放电,随后在2.8~4.25V下以1C/1C的倍率循环100圈,记录100圈后的循环容量保持率。
表1性能测试结果
  0.1C放电比容 首效(%) 1C放电比容量 100周环容量保
  量(mAh/g)   (mAh/g) 持率
实施例1 203 91.3% 197 96.4%
实施例2 214 92.6 209 95.2
实施例3 186 90.7 178 97.2
实施例4 202 89.7 193 96.1
对比例1 195 87.7 184 88.4
对比例2 202 87.3 188 86.2
实施例1~4中本发明通过高温和低温平台的设置,高温平台促进M的包覆剂转变成液相或者在正极材料表面发生形成容易浸润晶界化合物并沿晶界和(或)表层向材料内部扩散,形成类原位的晶界强化层(Li eM fO g)的同时实现表面掺杂;低温平台保温时间相对较长,起到促进高熔点包覆剂在表面形成岛状包覆层,提高正极材料的离子电导,从而提升正极材料的使用效能。对比例1中没有低熔点包覆剂,因此无法形成类原位的晶界强化层(Li eM fO g)的同时实现表面掺杂;对比例2中不包括低温平台的设置,因此无法实现促进高熔点包覆剂在表面形成岛状包覆层,从而影响了正极材料的使用效能。
上面结合附图对本发明实施例作了详细说明,但本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (10)

  1. 一种正极材料的制备方法,其特征在于,包括以下步骤:
    将正极材料本体、含M的包覆剂和含N的包覆剂混合后进行热处理;
    所述热处理包括第一次热处理和第二次热处理;
    所述第一次热处理的温度为550℃~750℃;
    所述第二次热处理的温度为250℃~550℃;
    所述M选自B、W、Nb、Mo、Sb、Sr、Sn和Mo中的至少一种;
    所述N选自Ni、Co、Mn、Zr、Al、Mg、Ti、Sr、W、Y、Zn、La、Ce和F中的至少一种;
    所述热处理后含M的包覆剂形成Li eM fO g或含M的氧化物,其中1≤e≤5,1≤f≤10,1≤g≤10;
    所述热处理后含N的包覆剂形成Li eN fO g或含N的氧化物,其中1≤e≤5,1≤f≤10,1≤g≤10。
  2. 根据权利要求1所述的正极材料的制备方法,其特征在于,所述第一次热处理的时间为0.5h~5h。
  3. 根据权利要求1所述的正极材料的制备方法,其特征在于,所述第二次热处理的时间为3h~8h。
  4. 根据权利要求1所述的正极材料的制备方法,其特征在于,所述M选自B、W和Nb中的至少一种。
  5. 根据权利要求1所述的正极材料的制备方法,其特征在于,所述N选自Zr、Mg、Ti和F中的至少一种。
  6. 根据权利要求1所述的正极材料的制备方法,其特征在于,所述正极材料本体的制备方法包括将前驱体和锂源混合后烧结,破碎;优选地,所述锂源包括LiOH和Li 2CO 3中的至少一种。
  7. 根据权利要求6所述的正极材料的制备方法,其特征在于,所述制备方法还包括在混合过程中加入添加剂;优选地,所述添加剂的掺杂元素包括Ni、Co、Mn、Zr、Al、Mg、Ti、Sr、W、Y、Mo、Sb、Nb、Sn、Zn、La、Ce、B和F中的至少一种。
  8. 一种如权利要求1~7任一项所述制备方法制得的正极材料,其特征在于,所述正极材料包括正极材料本体,所述正极材料本体表面具有晶界;
    第一包覆物,所述第一包覆物为Li eM fO g和含M的氧化物中的至少一种,所述第一包覆物集中于所述晶界处;
    第二包覆物,所述第二包覆物分布于所述正极材料本体表面。
  9. 根据权利要求8所述的正极材料,其特征在于,所述正极材料具有如下化学式LiNi xCo yMn zRaO 2@M bN c,其中0<x≤1,0≤y≤0.3,0≤z≤0.6,0.001≤a≤0.01,0.001≤b≤0.005,0.001≤c≤0.008,x+y+z+a=1。
  10. 一种如权利要求8或9所述的正极材料在二次电池中的应用。
PCT/CN2022/118778 2022-08-04 2022-09-14 一种正极材料及其制备方法和应用 WO2024026983A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210935577.6A CN115347168A (zh) 2022-08-04 2022-08-04 一种正极材料及其制备方法和应用
CN202210935577.6 2022-08-04

Publications (1)

Publication Number Publication Date
WO2024026983A1 true WO2024026983A1 (zh) 2024-02-08

Family

ID=83949246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118778 WO2024026983A1 (zh) 2022-08-04 2022-09-14 一种正极材料及其制备方法和应用

Country Status (3)

Country Link
CN (1) CN115347168A (zh)
FR (1) FR3138735A1 (zh)
WO (1) WO2024026983A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066275A (zh) * 2013-01-24 2013-04-24 湖南桑顿新能源有限公司 一种球形高电压镍锰酸锂正极材料的制备方法
JP2017107827A (ja) * 2015-11-27 2017-06-15 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池
CN109742376A (zh) * 2019-01-16 2019-05-10 合肥国轩高科动力能源有限公司 一种高镍正极材料及其制备方法
CN110504415A (zh) * 2018-05-17 2019-11-26 宁德时代新能源科技股份有限公司 锂离子电池
CN110808373A (zh) * 2019-09-24 2020-02-18 广东邦普循环科技有限公司 单晶钴酸锂及其制备方法和作为锂电池正极材料的应用
CN112753115A (zh) * 2018-09-28 2021-05-04 株式会社半导体能源研究所 锂离子二次电池正极材料、二次电池、电子设备及车辆、以及锂离子二次电池正极材料的制造方法
CN113224276A (zh) * 2021-04-20 2021-08-06 宁波容百新能源科技股份有限公司 一种锂离子电池正极材料、其制备方法及应用
CN114436347A (zh) * 2022-03-21 2022-05-06 宁波容百新能源科技股份有限公司 一种高镍三元正极材料及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066275A (zh) * 2013-01-24 2013-04-24 湖南桑顿新能源有限公司 一种球形高电压镍锰酸锂正极材料的制备方法
JP2017107827A (ja) * 2015-11-27 2017-06-15 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池
CN110504415A (zh) * 2018-05-17 2019-11-26 宁德时代新能源科技股份有限公司 锂离子电池
CN112753115A (zh) * 2018-09-28 2021-05-04 株式会社半导体能源研究所 锂离子二次电池正极材料、二次电池、电子设备及车辆、以及锂离子二次电池正极材料的制造方法
CN109742376A (zh) * 2019-01-16 2019-05-10 合肥国轩高科动力能源有限公司 一种高镍正极材料及其制备方法
CN110808373A (zh) * 2019-09-24 2020-02-18 广东邦普循环科技有限公司 单晶钴酸锂及其制备方法和作为锂电池正极材料的应用
CN113224276A (zh) * 2021-04-20 2021-08-06 宁波容百新能源科技股份有限公司 一种锂离子电池正极材料、其制备方法及应用
CN114436347A (zh) * 2022-03-21 2022-05-06 宁波容百新能源科技股份有限公司 一种高镍三元正极材料及其制备方法和应用

Also Published As

Publication number Publication date
CN115347168A (zh) 2022-11-15
FR3138735A1 (fr) 2024-02-09

Similar Documents

Publication Publication Date Title
US11121367B2 (en) Modified positive electrode active material, method for preparing the same and electrochemical energy storage device
CN110931768B (zh) 一种高镍类单晶锂离子电池正极材料及制备方法
KR102026918B1 (ko) 이차전지용 양극활물질의 제조방법 및 이에 따라 제조된 이차전지용 양극활물질
KR101777466B1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
US20150079471A1 (en) Lithium-ion battery positive electrode material and preparation method thereof
KR101630209B1 (ko) 양극 활물질, 그를 갖는 리튬이차전지 및 그의 제조 방법
US20230327071A1 (en) Pre-lithiated lithium ion positive electrode material, and preparation method therefor and use thereof
JP2023500117A (ja) リチウムイオン電池のコバルトフリー正極材料、その調製方法およびリチウムイオン電池
JP2020518105A (ja) リチウム金属と無機物複合薄膜の製造方法及びこれを用いたリチウム二次電池負極の前リチウム化方法
TWI678835B (zh) 鋰電池正極材料及其製備方法、應用該正極材料的鋰電池
US20230268488A1 (en) Cathode active material for lithium-ion battery (lib) and preparation method thereof
CN111370677A (zh) 一种高电压类团聚态钴酸锂材料及其制备方法与应用
US20200028169A1 (en) Positive active material, positive electrode plate and lithium-ion secondary battery
WO2023165130A1 (zh) 一种改性的单晶型高镍三元材料及其制备方法与应用
CN111129450A (zh) 锂离子电池的正极材料及制备方法
WO2024026983A1 (zh) 一种正极材料及其制备方法和应用
CN116986572A (zh) 一种改性磷酸锰铁锂正极材料及其制备方法与锂离子电池
CN116495800A (zh) 降低钠离子电池层状正极材料表面残碱含量的方法、钠离子电池正极材料及钠离子电池
CN114388779B (zh) 一种复合三元正极材料及其制备方法、一种锂离子电池
WO2019095615A1 (zh) 具有纳米铆钉结构的正极材料及其制备方法
CN116387510A (zh) 一种正极活性材料、二次电池及用电装置
US20220033276A1 (en) Method for producing positive electrode active substance for non-aqueous electrolyte secondary battery
CN109698325B (zh) 一种锂钴金属氧化物粉末及其制备方法
WO2023184563A1 (zh) 镍钴锰酸锂材料及其制备方法、正极材料和锂离子电池
WO2024109564A1 (zh) 一种高容量长循环的低钴单晶正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953776

Country of ref document: EP

Kind code of ref document: A1