WO2024024364A1 - 非水電解質二次電池用正極活物質および非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質および非水電解質二次電池 Download PDF

Info

Publication number
WO2024024364A1
WO2024024364A1 PCT/JP2023/023615 JP2023023615W WO2024024364A1 WO 2024024364 A1 WO2024024364 A1 WO 2024024364A1 JP 2023023615 W JP2023023615 W JP 2023023615W WO 2024024364 A1 WO2024024364 A1 WO 2024024364A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite oxide
positive electrode
active material
lithium
electrode active
Prior art date
Application number
PCT/JP2023/023615
Other languages
English (en)
French (fr)
Inventor
浩史 川田
大輝 福留
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024024364A1 publication Critical patent/WO2024024364A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery using the positive electrode active material.
  • Patent Documents 1 and 2 describe, as a positive electrode active material, a mixture of secondary particles formed by agglomerating a large number of primary particles and single particles consisting of one or several (10 or less) primary particles. The technique used is disclosed.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery is a positive electrode active material including a first lithium-containing transition metal composite oxide and a second lithium-containing transition metal composite oxide, the first The second lithium-containing transition metal composite oxide is a secondary particle formed by aggregating primary particles with an average particle size of 0.3 ⁇ m or less, and the second lithium-containing transition metal composite oxide is a secondary particle formed by aggregating primary particles with an average particle size of 0.5 ⁇ m or more.
  • the volume-based median diameter (D50a) of the first lithium-containing transition metal composite oxide is larger than the volume-based median diameter (D50b) of the second lithium-containing transition metal composite oxide (D50a> D50b), the average cross-sectional area (Sb) of the primary particles constituting the second lithium-containing transition metal composite oxide relative to the average cross-sectional area (Sa) of the primary particles constituting the first lithium-containing transition metal composite oxide It is characterized in that the ratio (Sb/Sa) is 80 to 600 (80 ⁇ (Sb/Sa) ⁇ 600).
  • a non-aqueous electrolyte secondary battery according to the present disclosure is characterized by comprising a positive electrode containing the above-described positive electrode active material, a negative electrode, and a non-aqueous electrolyte.
  • a nonaqueous electrolyte secondary battery with high capacity and excellent cycle characteristics can be realized.
  • FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery that is an example of an embodiment.
  • FIG. 1 is a diagram showing a cross section of a particle of a positive electrode active material that is an example of an embodiment.
  • the first composite oxide is a secondary particle formed by agglomerating primary particles with an average particle size of 0.3 ⁇ m or less, and a first composite oxide having an average particle size of 0.5 ⁇ m or more. It has been found that the average cross-sectional area ratio (Sb/Sa) of the primary particles constituting each of the second composite oxide containing primary particles is an important factor in achieving both high capacity and high durability.
  • a cylindrical battery in which the wound electrode body 14 is housed in a cylindrical outer can 16 with a bottom is exemplified, but the outer casing of the battery is not limited to a cylindrical outer can. It may be an exterior can (prismatic battery) or an exterior body (laminate battery) composed of a laminate sheet including a metal layer and a resin layer. Further, the electrode body may be a laminated type electrode body in which a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated with separators interposed therebetween.
  • FIG. 1 is a diagram schematically showing a longitudinal cross section of a nonaqueous electrolyte secondary battery 10 that is an example of an embodiment.
  • the non-aqueous electrolyte secondary battery 10 includes a wound electrode body 14, a non-aqueous electrolyte, and an outer can 16 that houses the electrode body 14 and the non-aqueous electrolyte.
  • the electrode body 14 includes a positive electrode 11 , a negative electrode 12 , and a separator 13 , and has a wound structure in which the positive electrode 11 and the negative electrode 12 are spirally wound with the separator 13 in between.
  • the outer can 16 is a bottomed cylindrical metal container with an opening on one axial side, and the opening of the outer can 16 is closed with a sealing member 17 .
  • the sealing body 17 side of the battery will be referred to as the upper side
  • the bottom side of the outer can 16 will be referred to as the lower side.
  • the positive electrode 11, the negative electrode 12, and the separator 13 that constitute the electrode body 14 are all long strip-shaped bodies, and are wound in a spiral shape so that they are alternately stacked in the radial direction of the electrode body 14.
  • the negative electrode 12 is formed to be one size larger than the positive electrode 11 in order to prevent precipitation of lithium. That is, the negative electrode 12 is formed longer than the positive electrode 11 in the longitudinal direction and the width direction (short direction).
  • the separators 13 are formed to be at least one size larger than the positive electrode 11, and two separators 13 are arranged so as to sandwich the positive electrode 11 therebetween.
  • the electrode body 14 has a positive electrode lead 20 connected to the positive electrode 11 by welding or the like, and a negative electrode lead 21 connected to the negative electrode 12 by welding or the like.
  • Insulating plates 18 and 19 are arranged above and below the electrode body 14, respectively.
  • the positive electrode lead 20 passes through the through hole of the insulating plate 18 and extends toward the sealing body 17, and the negative electrode lead 21 passes through the outside of the insulating plate 19 and extends toward the bottom of the outer can 16.
  • the positive electrode lead 20 is connected by welding or the like to the lower surface of the internal terminal plate 23 of the sealing body 17, and the cap 27, which is the top plate of the sealing body 17 and electrically connected to the internal terminal plate 23, serves as a positive electrode terminal.
  • the negative electrode lead 21 is connected to the bottom inner surface of the outer can 16 by welding or the like, and the outer can 16 serves as a negative electrode terminal.
  • the outer can 16 is a cylindrical metal container with a bottom that is open on one axial side.
  • a gasket 28 is provided between the outer can 16 and the sealing body 17 to ensure airtightness inside the battery and insulation between the outer can 16 and the sealing body 17.
  • the outer can 16 is formed with a grooved part 22 that supports the sealing body 17 and has a part of the side surface protruding inward.
  • the grooved portion 22 is preferably formed in an annular shape along the circumferential direction of the outer can 16, and supports the sealing body 17 on its upper surface.
  • the sealing body 17 is fixed to the upper part of the outer can 16 by the grooved part 22 and the open end of the outer can 16 which is crimped to the sealing body 17 .
  • the sealing body 17 has a structure in which an internal terminal plate 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are laminated in order from the electrode body 14 side.
  • Each member constituting the sealing body 17 has, for example, a disk shape or a ring shape, and each member except the insulating member 25 is electrically connected to each other.
  • the lower valve body 24 and the upper valve body 26 are connected at their respective central portions, and an insulating member 25 is interposed between their respective peripheral portions.
  • the positive electrode 11, negative electrode 12, and separator 13 that make up the electrode body 14, and in particular the positive electrode active material that makes up the positive electrode 11, will be explained in detail.
  • the positive electrode 11 includes a positive electrode core material 30 and a positive electrode mixture layer 31 formed on the surface of the positive electrode core material 30.
  • a foil of a metal such as aluminum or an aluminum alloy that is stable in the potential range of the positive electrode 11, a film in which the metal is disposed on the surface, or the like can be used.
  • An example of the positive electrode core material 30 is an aluminum or aluminum alloy foil having a thickness of 10 ⁇ m to 20 ⁇ m.
  • the positive electrode mixture layer 31 includes a positive electrode active material, a conductive agent, and a binder, and is preferably formed on both sides of the positive electrode core material 30 .
  • the thickness of the positive electrode mixture layer 31 is, for example, 30 ⁇ m to 100 ⁇ m on one side of the positive electrode core material 30.
  • the positive electrode 11 is formed by applying a positive electrode mixture slurry containing a positive electrode active material, a conductive agent, a binder, etc. onto the positive electrode core material 30, drying the coating film, and then compressing it to form the positive electrode mixture layer 31. It can be produced by forming on both sides of the positive electrode core material 30.
  • Examples of the conductive agent included in the positive electrode mixture layer 31 include carbon black such as acetylene black and Ketjen black, and carbon materials such as graphite, carbon nanotubes, carbon nanofibers, and graphene.
  • the content of the conductive agent is, for example, 0.01 to 10 parts by weight, preferably 0.05 to 5 parts by weight, based on 100 parts by weight of the positive electrode active material.
  • binder included in the positive electrode mixture layer 31 examples include fluorine-containing resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide, acrylic resin, and polyolefin. . Furthermore, these resins may be used in combination with carboxymethyl cellulose (CMC) or a salt thereof, polyethylene oxide (PEO), or the like.
  • the content of the binder is, for example, 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the positive electrode active material.
  • FIG. 2 is a diagram schematically showing a particle cross section of the positive electrode active material 32, which is an example of an embodiment.
  • the positive electrode active material 32 includes a first lithium-containing transition metal composite oxide 33 (hereinafter referred to as “first composite oxide 33”) and a second lithium-containing transition metal composite oxide. 34 (hereinafter referred to as “second composite oxide 34").
  • the positive electrode mixture layer 31 of this embodiment contains substantially only the first and second composite oxides 33 and 34 as the positive electrode active material 32.
  • the positive electrode mixture layer may contain a third lithium-containing transition metal composite oxide within a range that does not impair the purpose of the present disclosure.
  • An example of the third composite oxide is a composite oxide that does not satisfy the particle size conditions described below.
  • the first and second composite oxides 33 and 34 are composite oxide particles containing metal elements such as Ni, Co, Mn, and Al in addition to Li.
  • the first and second composite oxides 33 and 34 have, for example, a layered rock salt structure.
  • the layered rock salt structure include a layered rock salt structure belonging to space group R-3m and a layered rock salt structure belonging to space group C2/m. Among these, a layered rock salt structure belonging to space group R-3m is preferred from the viewpoint of high capacity and stability of crystal structure.
  • the first and second composite oxides 33 and 34 have the composition formula Li x Ni y M (1-y) O 2 (0.95 ⁇ x ⁇ 1.40, 0.4 ⁇ y ⁇ 1.0, M is selected from the group consisting of Li, Mn, Co, Ca, Sr, Al, Ti, Zr, Fe, Nb, Ta, W, Mo, Si, Bi, B, P, V, Eu, La, and Sb It is preferable that it is a composite oxide represented by at least one kind. Among these, it is preferable that the metal element M includes at least one selected from the group consisting of Mn, Co, and Al.
  • the first and second composite oxides 33, 34 preferably contain 70 mol% or more, more preferably 80 mol% or more, based on the total number of moles of metal elements excluding Li.
  • Contains Ni Further, as will be described in detail later, the effect of controlling the cross-sectional area ratio of the primary particles constituting each composite oxide is more remarkable when a composite oxide with a high Ni content is used.
  • the Ni content may be 85 mol% or more, or 90 mol% or more based on the total number of moles of metal elements excluding Li.
  • the upper limit of the Ni content is, for example, 95 mol%.
  • the first and second composite oxides 33 and 34 may have substantially the same composition, for example, or may have different compositions from each other as long as the above compositional formula is satisfied.
  • the content of the elements constituting the composite oxide can be measured using an inductively coupled plasma emission spectrometer (ICP-AES), an electron beam microanalyzer (EPMA), an energy dispersive X-ray analyzer (EDX), etc. can.
  • ICP-AES inductively coupled plasma emission spectrometer
  • EPMA electron beam microanalyzer
  • EDX energy dispersive X-ray analyzer
  • the first composite oxide 33 is a secondary particle formed by agglomerating primary particles 35 having an average particle size of 0.3 ⁇ m or less.
  • the second composite oxide 34 includes primary particles of 0.5 ⁇ m or more, and is also called non-agglomerated particles or single particles.
  • the second composite oxide 34 is, for example, a single crystal primary particle without internal grain boundaries.
  • the second composite oxide 34 may contain 10 or less primary particles, or 5 or less primary particles.
  • the crystallinity of the composite oxide can be confirmed using a scanning ion microscope (SICM).
  • the primary particles constituting one particle of the composite oxide are firmly fixed to each other so that they do not fall apart even when a strong force is applied, such as when preparing a positive electrode mixture slurry.
  • the volume-based median diameter (D50a) of the first composite oxide 33 is larger than the volume-based median diameter (D50b) of the second composite oxide 34 (D50a>D50b). That is, in the first composite oxide 33, the particle size of the primary particles 35 constituting the first composite oxide 33 is smaller than the particle size of the primary particles constituting the second composite oxide 34, and The particle size is larger than that of the second composite oxide 34. If this condition is not met, it is not possible to achieve both high capacity and high durability.
  • D50a and D50b of the first and second composite oxides 33 and 34 refer to the particle size at which the cumulative frequency is 50% from the smallest particle size in the volume-based particle size distribution.
  • the particle size distribution of the first and second composite oxides 33 and 34 can be measured using a laser diffraction type particle size distribution measuring device (for example, MT3000II manufactured by Microtrac Bell Co., Ltd.) using water as a dispersion medium.
  • the ratio of D50a of the first composite oxide 33 to D50b of the second composite oxide 34 should be greater than 1.0, but preferably 1.5 to 10 (1.5 ⁇ (D50a/D50b) ⁇ 10).
  • D50a/D50b is more preferably 2.0 to 7.0, particularly preferably 2.5 to 4.0.
  • the D50a of the first composite oxide 33 is, for example, 10 ⁇ m to 30 ⁇ m, preferably 12 ⁇ m to 25 ⁇ m, more preferably 15 ⁇ m to 20 ⁇ m.
  • the D50b of the second composite oxide 34 is, for example, from 0.5 ⁇ m to less than 10 ⁇ m, preferably from 1 ⁇ m to 8 ⁇ m, and more preferably from 3 ⁇ m to 7 ⁇ m.
  • the particle size of the primary particles constituting the first and second composite oxides 33 and 34 is determined by imaging a particle cross section with a scanning electron microscope (SEM) and analyzing the SEM image.
  • SEM scanning electron microscope
  • a positive electrode or a composite oxide is embedded in a resin
  • a cross section is prepared by cross-section polisher (CP) processing, and an image of this cross section is imaged with a SEM.
  • CP cross-section polisher
  • the average particle diameter of the primary particles 35 constituting the first composite oxide 33 is 0.3 ⁇ m or less, more preferably 0.02 ⁇ m to 0.20 ⁇ m, particularly preferably 0.05 ⁇ m to 0.05 ⁇ m. It is 15 ⁇ m.
  • the particle size of the primary particles constituting the second composite oxide 34 is 0.5 ⁇ m or more. In other words, the composite oxide particles containing primary particles with a particle size of 0.5 ⁇ m or more are It is 34.
  • the average particle diameter of the primary particles of the second composite oxide 34 is preferably 0.8 ⁇ m or more, more preferably 0.8 ⁇ m to 4.0 ⁇ m, and particularly preferably 1.0 ⁇ m to 3.0 ⁇ m.
  • the ratio (Sb/Sa) of the average cross-sectional area (Sb) of the primary particles constituting the second composite oxide 34 to the average cross-sectional area (Sa) of the primary particles 35 constituting the first composite oxide 33 is: 80 to 600 (80 ⁇ (Sb/Sa) ⁇ 600). That is, the cross-sectional area of each primary particle of the second composite oxide 34 is on average 80 to 600 times larger than the cross-sectional area of each primary particle 35 of the first composite oxide 33. When this condition is satisfied, a non-aqueous electrolyte secondary battery with high capacity and excellent durability can be realized.
  • the cross-sectional area of the primary particles 35 of the first composite oxide 33 is increased to make Sb/Sa less than 80 without changing the cross-sectional area of the primary particles of the second composite oxide 34, It is thought that the cycle characteristics deteriorate due to the generation of a new surface due to particle cracking during discharge. From the viewpoint of cycle characteristics, it is preferable that the average cross-sectional area (Sa) of the primary particles 35 is small, but if Sa becomes too small, the capacity tends to decrease.
  • the preferred range of Sb/Sa is 100 to 500, more preferably 150 to 400, particularly preferably 200 to 350.
  • the average cross-sectional area (Sa) of the primary particles 35 of the first composite oxide 33 is, for example, 0.001 ⁇ m 2 to 0.050 ⁇ m 2 , preferably 0.005 ⁇ m 2 to 0.025 ⁇ m 2 .
  • the average cross-sectional area (Sb) of the primary particles of the second composite oxide 34 is, for example, 0.50 ⁇ m 2 to 5.0 ⁇ m 2 , preferably 1.0 ⁇ m 2 to 4.0 ⁇ m 2 .
  • the mixing ratio of the first and second composite oxides 33 and 34 is not particularly limited, and the content of the first composite oxide 33 is, for example, 10% to 90% of the total mass of the positive electrode active material 32. However, preferably, the content of the first composite oxide 33 is greater than or equal to the content of the second composite oxide 34.
  • the first composite oxide 33 is preferably contained in an amount of 50% to 90%, more preferably 60% to 85%, based on the total mass of the positive electrode active material 32. If the content of the first composite oxide 33 is within this range, it becomes easy to achieve both high capacity and high durability.
  • the positive electrode active material 32 contains substantially only the first and second composite oxides 33 and 34, the content of the second composite oxide 34 is equal to the amount of the positive electrode active material 32. 10% to 50% of the total mass of is preferable, and 15% to 40% is more preferable.
  • the first and second composite oxides 33 and 34 can be synthesized by the method described in the Examples below.
  • the first composite oxide 33 can be synthesized, for example, by lowering the firing temperature than when synthesizing the second composite oxide 34. Further, when synthesizing the first composite oxide 33, an element that suppresses crystal growth may be added.
  • the particle size and cross-sectional area of the primary particles vary depending on the type of added element. For example, in a lithium-containing transition metal composite oxide containing 80 mol% Ni and 20 mol% Mn with respect to metal elements other than Li, Ca, Sr, Al, Ti, Zr, Fe, Nb, When 0.1 to 1 mo% of Ta, W, Mo, Si, Bi, B, P, V, Eu, La, Sb, etc. are added, the cross-sectional area of the primary particles tends to be smaller than when these are not added. It is in.
  • the mixing ratio of the first and second composite oxides 33 and 34 may change in the thickness direction of the positive electrode mixture layer 31.
  • the positive electrode mixture layer 31 is divided into two equal parts in the thickness direction and defined as a first region and a second region in order from the surface side of the positive electrode 11, the above mixing ratio is set in the first region and the second region. It may be changed.
  • the mixing ratio of the first and second composite oxides 33 and 34 is substantially constant throughout the positive electrode mixture layer 31.
  • the negative electrode 12 includes a negative electrode core material 40 and a negative electrode mixture layer 41 formed on the surface of the negative electrode core material 40.
  • a foil of a metal such as copper or a copper alloy that is stable in the potential range of the negative electrode 12, a film with the metal disposed on the surface, or the like can be used.
  • An example of the negative electrode core material 40 is a copper or copper alloy foil having a thickness of 5 ⁇ m to 15 ⁇ m.
  • the negative electrode mixture layer 41 contains a negative electrode active material and a binder, and is preferably formed on both sides of the negative electrode core material 40 .
  • the thickness of the negative electrode mixture layer 41 is, for example, 30 ⁇ m to 150 ⁇ m on one side of the negative electrode core material 40.
  • the negative electrode 12 is made by applying a negative electrode mixture slurry containing a negative electrode active material, a binder, etc. onto the negative electrode core material 40, drying the coating film, and then compressing the negative electrode mixture layer 41 to form the negative electrode mixture layer 41 on the negative electrode core material 40. It can be produced by forming on both sides.
  • the negative electrode composite material layer 41 generally includes a carbon material that reversibly occludes and releases lithium ions as a negative electrode active material.
  • Suitable examples of the carbon material include natural graphite such as flaky graphite, lumpy graphite, and earthy graphite, and graphite such as artificial graphite such as massive artificial graphite (MAG) and graphitized mesophase carbon microbeads (MCMB).
  • MAG massive artificial graphite
  • MCMB graphitized mesophase carbon microbeads
  • an active material containing at least one of an element that alloys with Li, such as Si and Sn, and a material containing the element may be used.
  • a suitable example of the active material is a Si-containing material in which a fine Si phase is dispersed in an ion conductive phase such as a SiO 2 phase, a silicate phase such as lithium silicate, or an amorphous carbon phase.
  • Graphite and a Si-containing material may be used together as the negative electrode active material.
  • the binder contained in the negative electrode mixture layer 41 PTFE, fluororesin such as PVdF, PAN, polyimide, acrylic resin, polyolefin, styrene-butadiene rubber (SBR), etc. can be used. Further, the negative electrode mixture layer 41 may contain CMC or a salt thereof, polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol (PVA), or the like.
  • the content of the binder is, for example, 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the negative electrode active material. Further, a conductive agent such as carbon black or carbon nanotubes may be added to the negative electrode mixture layer 41.
  • a porous sheet having ion permeability and insulation properties is used.
  • porous sheets include microporous thin films, woven fabrics, and nonwoven fabrics.
  • Suitable materials for the separator 13 include polyolefins such as polyethylene and polypropylene, cellulose, and the like.
  • the separator 13 may have a single layer structure or a multilayer structure. Further, a resin layer with high heat resistance such as aramid resin may be formed on the surface of the separator 13.
  • a filler layer containing an inorganic filler may be formed at the interface between the separator 13 and at least one of the positive electrode 11 and the negative electrode 12.
  • the inorganic filler include oxides and phosphoric acid compounds containing metal elements such as Ti, Al, Si, and Mg.
  • the filler layer can be formed by applying a slurry containing the filler to the surface of the positive electrode 11, the negative electrode 12, or the separator 13.
  • Example 1 [Synthesis of first composite oxide]
  • a composite hydroxide (Ni 0.8 Mn 0.2 (OH) 2 ) containing Ni and Mn at a molar ratio of 8:2 was synthesized by a coprecipitation method.
  • the obtained composite hydroxide was heated in air at 700° C. for 2 hours to convert it into a composite oxide (Ni 0.8 Mn 0.2 O 2 ).
  • the obtained composite oxide (Ni 0.8 Mn 0.2 O 2 ) was mixed with 0.002 mol of WO 3 per 1 mol of Ni and Mn in total, and further 1 mol of Ni, Mn, and W in total.
  • the composite oxide is a secondary particle formed by agglomerating a large number of primary particles, and its composition, D50, and average cross-sectional area (Sa) of the primary particles are as follows. D50: 16.2 ⁇ m Sa: 0.022 ⁇ m 2
  • the mixture was fired from room temperature to 650°C at a heating rate of 2.0°C/min under an oxygen stream with an oxygen concentration of 95% (flow rate of 5 L/min per 1 kg of mixture), and then heated at a heating rate of 1. Firing was performed from 650°C to 870°C at a rate of °C/min.
  • a second composite oxide was obtained.
  • the composite oxide is a particle (non-agglomerated particle) containing one or 10 or less primary particles, and its composition, D50, and average cross-sectional area (Sb) of the primary particles are as follows. D50:5.43 ⁇ m Sb: 2.02 ⁇ m 2
  • the positive electrode active material a mixture of a first composite oxide and a second composite oxide at a mass ratio of 70:30 was used.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode mixture slurry is applied to both sides of the positive electrode core material made of aluminum foil, and after drying and compressing the coating film, the positive electrode core material is cut into a predetermined electrode size, and the positive electrode mixture is coated on both sides of the positive electrode core material. A positive electrode on which a mixture layer was formed was obtained.
  • the negative electrode active material As the negative electrode active material, a mixture of graphite powder and a Si-containing material represented by SiO x at a mass ratio of 95:5 was used. The negative electrode active material, carboxymethylcellulose sodium (CMC-Na), and styrene-butadiene rubber (SBR) dispersion were mixed at a solid content mass ratio of 98:1:1, and the negative electrode was combined using water as a dispersion medium. A slurry of the agent was prepared.
  • CMC-Na carboxymethylcellulose sodium
  • SBR styrene-butadiene rubber
  • the negative electrode mixture slurry is applied to both sides of the negative electrode core material made of copper foil, and after drying and compressing the coating film, the negative electrode core material is cut into a predetermined electrode size, and the negative electrode material is coated on both sides of the negative electrode core material. A negative electrode on which a mixture layer was formed was obtained.
  • Ethylene carbonate (EC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC) were mixed in a volume ratio of 20:5:75 (25°C). LiPF 6 was dissolved in this mixed solvent to a concentration of 1.4 mol/L to prepare a non-aqueous electrolyte.
  • Electrodes were attached to the positive electrode and the negative electrode, respectively, and the positive and negative electrodes were spirally wound through a separator to obtain a wound electrode body.
  • the electrode body was housed in a cylindrical outer can with a bottom, and the negative electrode lead was welded to the inner surface of the bottom of the outer can, and the positive electrode lead was welded to the internal terminal plate of the sealing body. Thereafter, the non-aqueous electrolyte was poured into the outer can, and the opening edge of the outer can was caulked and fixed to the sealing body to produce a cylindrical non-aqueous electrolyte secondary battery.
  • Example 2 In the synthesis of the first composite oxide, by setting the amount of WO 3 added to 0.0025 mol per 1 mol of Ni and Mn in total, the average cross-sectional area (Sa) of the primary particles constituting the secondary particles was reduced to 0. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the thickness was .016 ⁇ m 2 . In this case, the cross-sectional area ratio (Sb/Sa) of the primary particles constituting each composite oxide is 126.3.
  • Example 3 In the synthesis of the first composite oxide, by setting the amount of WO 3 added to 0.005 mol per 1 mol of Ni and Mn in total, the average cross-sectional area (Sa) of the primary particles constituting the secondary particles was reduced to 0. A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the thickness was .009 ⁇ m 2 . In this case, the cross-sectional area ratio (Sb/Sa) of the primary particles constituting each composite oxide is 224.4.
  • Example 4 In the synthesis of the first composite oxide, the amount of WO3 added was 0.005 mol per 1 mol of Ni and Mn in total, and 0.0025 mol of Nb was added per 1 mol of Ni and Mn in total.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the average cross-sectional area (Sa) of the primary particles constituting the secondary particles was 0.006 ⁇ m 2 . In this case, the cross-sectional area ratio (Sb/Sa) of the primary particles constituting each composite oxide is 336.7.
  • the second composite oxide is represented by the compositional formula LiNi 88 Co 9 Mn 3 O 2 , has a D50 of 5.43 ⁇ m, and an average cross-sectional area (Sb) of the primary particles constituting the secondary particles of 3.00 ⁇ m 2
  • Sb average cross-sectional area of the primary particles constituting the secondary particles of 3.00 ⁇ m 2
  • the second composite oxide is represented by the compositional formula LiNi 88 Co 9 Mn 3 O 2 , has a D50 of 5.43 ⁇ m, and an average cross-sectional area (Sb) of the primary particles constituting the secondary particles of 3.00 ⁇ m 2
  • Sb average cross-sectional area of the primary particles constituting the secondary particles of 3.00 ⁇ m 2
  • Sb/Sa cross-sectional area ratio
  • ⁇ Comparative example 1> In the synthesis of the first composite oxide, firing was performed from room temperature to 650°C at a heating rate of 2.0°C/min without adding WO 3 , and then from 650°C to 840°C at a heating rate of 1°C/min. Baked to °C. By doing so, a positive electrode active material and a non-aqueous electrolyte secondary battery were produced in the same manner as in Example 1 except that the average cross-sectional area (Sa) of the primary particles constituting the secondary particles was set to 0.069 ⁇ m 2. . In this case, the cross-sectional area ratio (Sb/Sa) of the primary particles constituting each composite oxide is 29.3.
  • ⁇ Comparative example 2> In the synthesis of the first composite oxide, firing was performed from room temperature to 650°C at a heating rate of 2.0°C/min without adding WO3 , and then from 650°C to 820°C at a heating rate of 1°C/min. Baked to °C. By doing so, a positive electrode active material and a non-aqueous electrolyte secondary battery were produced in the same manner as in Example 1 except that the average cross-sectional area (Sa) of the primary particles constituting the secondary particles was set to 0.027 ⁇ m 2. . In this case, the cross-sectional area ratio (Sb/Sa) of the primary particles constituting each composite oxide is 74.8.
  • Example 1 except that the first composite oxide having a D50 of 11.9 ⁇ m and an average cross-sectional area (Sa) of the primary particles constituting the secondary particles of 0.063 ⁇ m 2 was used alone as the positive electrode active material. In the same manner as above, a positive electrode active material and a nonaqueous electrolyte secondary battery were produced.
  • Capacity retention rate (discharge capacity at 50th cycle/discharge capacity at 1st cycle) x 100
  • the batteries of Examples 1 to 6 all have higher capacity retention rates after the cycle test and have excellent cycle characteristics than the batteries of Comparative Examples 1 to 3. Further, the battery of the example has excellent cycle characteristics while ensuring high capacity, and achieves both high capacity and high durability.
  • Non-aqueous electrolyte secondary battery 11 positive electrode, 12 negative electrode, 13 separator, 14 electrode body, 16 outer can, 17 sealing body, 18, 19 insulating plate, 20 positive electrode lead, 21 negative electrode lead, 22 grooved part, 23 internal terminal plate, 24 lower valve body, 25 insulating member, 26 upper valve body, 27 cap, 28 gasket, 30 positive electrode core material, 31 positive electrode mixture layer, 32 positive electrode active material, 33 first composite oxide, 34 second Composite oxide, 35 primary particles, 40 negative electrode core, 41 negative electrode mixture layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

実施形態の一例である正極活物質32は、第1の複合酸化物33と、第2の複合酸化物34とを含む。第1の複合酸化物33は、平均粒径が0.3μm以下の一次粒子35が凝集してなる二次粒子であり、第2の複合酸化物34は、0.5μm以上の一次粒子を含む。第1の複合酸化物33のD50aは、第2の複合酸化物34のD50bよりも大きい。第1の複合酸化物33を構成する一次粒子35の平均断面積(Sa)に対する、第2の複合酸化物34の平均断面積(Sb)の比率は、80≦(Sb/Sa)≦600の条件を満たす。

Description

非水電解質二次電池用正極活物質および非水電解質二次電池
 本開示は、非水電解質二次電池用正極活物質、および当該正極活物質を用いた非水電解質二次電池に関する。
 非水電解質二次電池の主要構成要素である正極活物質の性状は、電池容量、充放電サイクル特性等の性能に大きな影響を及ぼすことから、正極活物質について様々な検討が行われてきた。例えば、特許文献1,2には、正極活物質として、多数の一次粒子が凝集してなる二次粒子と、1個又は数個(10個以下)の一次粒子からなる単粒子との混合物を用いる技術が開示されている。
特開2022-63677号公報 特開2019-021627号公報
 しかし、本発明者らの検討の結果、正極活物質として単粒子(非凝集粒子とも呼ばれる)を用いた場合には、サイクル特性は向上するものの、容量が大きく低下することが分かった。即ち、特許文献1,2の技術のように、正極活物質として、適当な二次粒子と単粒子を単純に混合したものを用いるだけでは、高容量と高耐久(サイクル特性)を十分に両立することはできない。
 本開示に係る非水電解質二次電池用正極活物質は、第1のリチウム含有遷移金属複合酸化物と、第2のリチウム含有遷移金属複合酸化物とを含む正極活物質であって、第1のリチウム含有遷移金属複合酸化物が、平均粒径が0.3μm以下の一次粒子が凝集してなる二次粒子であり、第2のリチウム含有遷移金属複合酸化物が、0.5μm以上の一次粒子を含み、第1のリチウム含有遷移金属複合酸化物の体積基準のメジアン径(D50a)が、第2のリチウム含有遷移金属複合酸化物の体積基準のメジアン径(D50b)よりも大きく(D50a>D50b)、第1のリチウム含有遷移金属複合酸化物を構成する一次粒子の平均断面積(Sa)に対する、第2のリチウム含有遷移金属複合酸化物を構成する一次粒子の平均断面積(Sb)の比率(Sb/Sa)が、80~600(80≦(Sb/Sa)≦600)であることを特徴とする。
 本開示に係る非水電解質二次電池は、上記正極活物質を含む正極と、負極と、非水電解質とを備えることを特徴とする。
 本開示に係る正極活物質によれば、高容量で、サイクル特性に優れた非水電解質二次電池を実現できる。
実施形態の一例である非水電解質二次電池の断面図である。 実施形態の一例である正極活物質の粒子断面を示す図である。
 上述のように、非水電解質二次電池において、高容量と高耐久を両立することは重要な課題である。本発明者らは、この課題を解決すべく鋭意検討した結果、平均粒径が0.3μm以下の一次粒子が凝集してなる二次粒子である第1の複合酸化物、および0.5μm以上の一次粒子を含む第2の複合酸化物のそれぞれ構成する一次粒子の平均断面積比(Sb/Sa)が、高容量と高耐久を両立する上で重要な因子であることが判明した。
 第1および第2の複合酸化物を構成する一次粒子の平均断面積の関係が、上記の通り、80≦(Sb/Sa)≦600の条件を満たす場合に、高容量で耐久性に優れた非水電解質二次電池を実現できる。かかる効果は、80≦(Sb/Sa)≦600の条件が満たされる場合にのみ特異的に発現する。
 以下、図面を参照しながら、本開示に係る正極活物質および当該正極活物質を用いた非水電解質二次電池の実施形態の一例について詳細に説明する。なお、以下で説明する複数の実施形態および変形例を選択的に組み合わせてなる形態は本開示に含まれている。
 以下では、巻回型の電極体14が有底円筒形状の外装缶16に収容された円筒形電池を例示するが、電池の外装体は円筒形の外装缶に限定されず、例えば、角形の外装缶(角形電池)や、金属層および樹脂層を含むラミネートシートで構成された外装体(ラミネート電池)であってもよい。また、電極体は複数の正極と複数の負極がセパレータを介して交互に積層された積層型の電極体であってもよい。
 図1は、実施形態の一例である非水電解質二次電池10の縦方向断面を模式的に示す図である。図1に示すように、非水電解質二次電池10は、巻回型の電極体14と、非水電解質と、電極体14および非水電解質を収容する外装缶16とを備える。電極体14は、正極11、負極12、およびセパレータ13を有し、正極11と負極12がセパレータ13を介して渦巻き状に巻回された巻回構造を有する。外装缶16は、軸方向一方側が開口した有底円筒形状の金属製容器であって、外装缶16の開口は封口体17によって塞がれている。以下では、説明の便宜上、電池の封口体17側を上、外装缶16の底部側を下とする。
 電極体14を構成する正極11、負極12、およびセパレータ13は、いずれも帯状の長尺体であって、渦巻状に巻回されることで電極体14の径方向に交互に積層される。負極12は、リチウムの析出を防止するために、正極11よりも一回り大きな寸法で形成される。即ち、負極12は、正極11よりも長手方向および幅方向(短手方向)に長く形成される。セパレータ13は、少なくとも正極11よりも一回り大きな寸法で形成され、正極11を挟むように2枚配置される。電極体14は、溶接等により正極11に接続された正極リード20と、溶接等により負極12に接続された負極リード21とを有する。
 電極体14の上下には、絶縁板18,19がそれぞれ配置されている。図1に示す例では、正極リード20が絶縁板18の貫通孔を通って封口体17側に延び、負極リード21が絶縁板19の外側を通って外装缶16の底部側に延びている。正極リード20は封口体17の内部端子板23の下面に溶接等で接続され、内部端子板23と電気的に接続された封口体17の天板であるキャップ27が正極端子となる。負極リード21は外装缶16の底部内面に溶接等で接続され、外装缶16が負極端子となる。
 外装缶16は、上述の通り、軸方向一方側が開口した有底円筒形状の金属製容器である。外装缶16と封口体17の間にはガスケット28が設けられ、電池内部の密閉性および外装缶16と封口体17の絶縁性が確保される。外装缶16には、側面部の一部が内側に張り出した、封口体17を支持する溝入部22が形成されている。溝入部22は、外装缶16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。封口体17は、溝入部22と、封口体17に対して加締められた外装缶16の開口端部とにより、外装缶16の上部に固定されている。
 封口体17は、電極体14側から順に、内部端子板23、下弁体24、絶縁部材25、上弁体26、およびキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば、円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で接続され、各々の周縁部の間には絶縁部材25が介在している。電池に異常が発生して内圧が上昇すると、下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断することにより、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
 以下、電極体14を構成する正極11、負極12、およびセパレータ13について、特に、正極11を構成する正極活物質について詳説する。
 [正極]
 正極11は、正極芯材30と、正極芯材30の表面に形成された正極合剤層31とを備える。正極芯材30には、アルミニウム、アルミニウム合金など正極11の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極芯材30の一例は、厚みが10μm~20μmのアルミニウム又はアルミニウム合金の箔である。正極合剤層31は、正極活物質、導電剤、および結着剤を含み、正極芯材30の両面に形成されることが好ましい。正極合剤層31の厚みは、例えば、正極芯材30の片側で30μm~100μmである。正極11は、例えば、正極芯材30上に正極活物質、導電剤、および結着剤等を含む正極合剤スラリーを塗布し、塗膜を乾燥させた後、圧縮して正極合剤層31を正極芯材30の両面に形成することにより作製できる。
 正極合剤層31に含まれる導電剤としては、アセチレンブラック、ケッチェンブラック等のカーボンブラック、黒鉛、カーボンナノチューブ、カーボンナノファイバー、グラフェン等の炭素材料が例示できる。導電剤の含有量は、例えば、正極活物質100質量部に対して0.01~10質量部であり、好ましくは0.05~5質量部である。
 正極合剤層31に含まれる結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等の含フッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド、アクリル樹脂、ポリオレフィン等が例示できる。また、これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩、ポリエチレンオキシド(PEO)等が併用されてもよい。結着剤の含有量は、例えば、正極活物質100質量部に対して0.1~10質量部であり、好ましくは0.5~5質量部である。
 図2は、実施形態の一例である正極活物質32の粒子断面を模式的に示す図である。図2に示すように、正極活物質32は、第1のリチウム含有遷移金属複合酸化物33(以下、「第1の複合酸化物33」とする)と、第2のリチウム含有遷移金属複合酸化物34(以下、「第2の複合酸化物34」とする)とを含む。本実施形態の正極合剤層31には、正極活物質32として、実質的に第1および第2の複合酸化物33,34のみが含有されている。なお、正極合剤層には、本開示の目的を損なわない範囲で第3のリチウム含有遷移金属複合酸化物が含有されていてもよい。第3の複合酸化物の一例としては、後述する粒径の条件を満たさない複合酸化物が挙げられる。
 第1および第2の複合酸化物33,34は、Liの他に、Ni、Co、Mn、Al等の金属元素を含有する複合酸化物の粒子である。第1および第2の複合酸化物33,34は、例えば、層状岩塩構造を有する。層状岩塩構造としては、空間群R-3mに属する層状岩塩構造、空間群C2/mに属する層状岩塩構造等が例示できる。中でも、高容量化、結晶構造の安定性の観点から、空間群R-3mに属する層状岩塩構造が好ましい。
 第1および第2の複合酸化物33,34は、組成式LiNi(1-y)(0.95≦x≦1.40、0.4≦y≦1.0、MはLi、Mn、Co、Ca、Sr、Al、Ti、Zr、Fe、Nb、Ta、W、Mo、Si、Bi、B、P、V、Eu、La、およびSbからなる群より選択される少なくとも1種)で表される複合酸化物であることが好ましい。中でも、金属元素Mとして、Mn、Co、およびAlからなる群より選択される少なくとも1種を含むことが好ましい。
 第1および第2の複合酸化物33,34は、高容量化等の観点から、Liを除く金属元素の総モル数に対して、好ましくは70モル%以上、より好ましくは80モル%以上のNiを含有する。また、詳しくは後述するが、各複合酸化物を構成する一次粒子の断面積比率の制御による効果は、Ni含有率が高い複合酸化物を用いた場合により顕著である。Niの含有率は、Liを除く金属元素の総モル数に対して、85モル%以上であってもよく、90モル%以上であってもよい。Ni含有率の上限は、例えば、95モル%である。
 第1および第2の複合酸化物33,34は、例えば、実質的に同じ組成であってもよく、上記組成式を満たす範囲で互いに異なる組成を有していてもよい。複合酸化物を構成する元素の含有率は、誘導結合プラズマ発光分光分析装置(ICP-AES)、電子線マイクロアナライザー(EPMA)、又はエネルギー分散型X線分析装置(EDX)等により測定することができる。
 第1の複合酸化物33は、平均粒径が0.3μm以下の一次粒子35が凝集してなる二次粒子である。第2の複合酸化物34は、0.5μm以上の一次粒子を含み、非凝集粒子又は単粒子とも呼ばれる。第2の複合酸化物34は、例えば、内部に粒界を有さない、単結晶の一次粒子である。第2の複合酸化物34には、10個以下、或いは5個以下の一次粒子が含まれていてもよい。複合酸化物の結晶性は、走査型イオン顕微鏡(SICM)を用いて確認できる。なお、複合酸化物の1つの粒子を構成する各一次粒子は、正極合剤スラリーの調製時など、強い力が作用したときでもバラバラにならない強さで互いに固着している。
 第1の複合酸化物33の体積基準のメジアン径(D50a)は、第2の複合酸化物34の体積基準のメジアン径(D50b)よりも大きい(D50a>D50b)。即ち、第1の複合酸化物33は、第1の複合酸化物33を構成する一次粒子35の粒径は第2の複合酸化物34を構成する一次粒子の粒径よりも小さく、粒子全体の粒径は第2の複合酸化物34の粒径よりも大きい。この条件が満たされない場合、高容量と高耐久の両立を図ることはできない。
 第1および第2の複合酸化物33,34のD50a,D50bは、体積基準の粒度分布において頻度の累積が粒径の小さい方から50%となる粒径を意味する。第1および第2の複合酸化物33,34の粒度分布は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製、MT3000II)を用い、水を分散媒として測定できる。
 第2の複合酸化物34のD50bに対する、第1の複合酸化物33のD50aの比率(D50a/D50b)は、1.0より大きければよいが、好ましくは1.5~10(1.5≦(D50a/D50b)≦10)である。1.5≦(D50a/D50b)≦10の条件が満たされる場合、当該条件が満たされない場合と比較して、高容量と高耐久の両立を図ることが容易になる。D50a/D50bは、より好ましくは2.0~7.0、特に好ましくは2.5~4.0である。
 第1の複合酸化物33のD50aは、例えば、10μm~30μmであり、好ましくは12μm~25μm、より好ましくは15μm~20μmである。第2の複合酸化物34のD50bは、例えば、0.5μm~10μm未満であり、好ましくは1μm~8μm、より好ましくは3μm~7μmである。各複合酸化物のD50a,D50bが当該範囲内であり、かつD50a/D50bが上記条件を満たす場合、高容量と高耐久の両立を図ることが容易になる。
 第1および第2の複合酸化物33,34を構成する一次粒子の粒径は、粒子断面を走査型電子顕微鏡(SEM)で撮像し、SEM画像を解析することにより求められる。例えば、正極又は複合酸化物を樹脂中に埋め込み、クロスセクションポリッシャ(CP)加工により断面を作製し、この断面をSEMで撮像する。SEM画像から、ランダムに50個の一次粒子を選択して粒界を観察し、50個の一次粒子それぞれの面積を求め、その面積に相当する円の直径を算出し、その平均値を平均粒径とする。
 第1の複合酸化物33を構成する一次粒子35の平均粒径は、上記の通り、0.3μm以下であり、より好ましくは0.02μm~0.20μm、特に好ましくは0.05μm~0.15μmである。第2の複合酸化物34を構成する一次粒子の粒径は0.5μm以上であり、換言すると、粒径が0.5μm以上の一次粒子を含む複合酸化物粒子が、第2の複合酸化物34である。第2の複合酸化物34の一次粒子の平均粒径は、0.8μm以上が好ましく、0.8μm~4.0μmがより好ましく、1.0μm~3.0μmが特に好ましい。
 第1の複合酸化物33を構成する一次粒子35の平均断面積(Sa)に対する、第2の複合酸化物34を構成する一次粒子の平均断面積(Sb)の比率(Sb/Sa)は、80~600(80≦(Sb/Sa)≦600)である。即ち、第2の複合酸化物34の各一次粒子の断面積は、平均的に、第1の複合酸化物33の各一次粒子35の断面積よりも80~600倍大きい。この条件が満たされる場合に、高容量で耐久性に優れた非水電解質二次電池を実現できる。
 例えば、第2の複合酸化物34の一次粒子の断面積を変化させずに、第1の複合酸化物33の一次粒子35の断面積を大きくしてSb/Saを80未満とした場合、充放電時の粒子割れによる新生表面の発生に起因してサイクル特性が低下すると考えられる。サイクル特性の観点からは、一次粒子35の平均断面積(Sa)は小さい方が好ましいが、Saが小さくなり過ぎると容量の低下傾向が見られる。
 複合酸化物の組成によっても多少異なるが、Sb/Saの好適な範囲は100~500であり、より好ましくは150~400、特に好ましくは200~350である。第1の複合酸化物33の一次粒子35の平均断面積(Sa)は、例えば、0.001μm~0.050μmであり、好ましくは0.005μm~0.025μmである。第2の複合酸化物34の一次粒子の平均断面積(Sb)は、例えば、0.50μm~5.0μmであり、好ましくは1.0μm~4.0μmである。
 第1および第2の複合酸化物33,34の混合比は特に限定されず、第1の複合酸化物33の含有量は、例えば、正極活物質32の総質量の10%~90%であってもよいが、好ましくは、第1の複合酸化物33の含有量は第2の複合酸化物34の含有量以上である。第1の複合酸化物33は、正極活物質32の総質量に対して、50%~90%の量で含まれることが好ましく、60%~85%の量で含まれることがより好ましい。第1の複合酸化物33の含有量が当該範囲内であれば、高容量と高耐久の両立を図ることが容易になる。本実施形態では、正極活物質32として、実質的に第1および第2の複合酸化物33,34のみが含有されているため、第2の複合酸化物34の含有量は、正極活物質32の総質量の10%~50%が好ましく、15%~40%がより好ましい。
 第1および第2の複合酸化物33,34は、後述する実施例に記載の方法で合成できる。第1の複合酸化物33は、例えば、第2の複合酸化物34を合成する場合よりも焼成温度を下げることにより合成できる。また、第1の複合酸化物33を合成する際には、結晶成長を抑えるような元素を添加してもよい。一次粒子の粒径および断面積は、添加元素の種類によって変化する。例えば、Liを除く金属元素に対して、80モル%のNiと、20モル%のMnが含有されるリチウム含有遷移金属複合酸化物において、Ca、Sr、Al、Ti、Zr、Fe、Nb、Ta、W、Mo、Si、Bi、B、P、V、Eu、La、Sb等を0.1~1モ%添加すると、これらを添加しない場合と比べて一次粒子の断面積は小さくなる傾向にある。
 なお、第1および第2の複合酸化物33,34の混合比は、正極合剤層31の厚み方向で変化していてもよい。一例としては、正極合剤層31を厚み方向に2等分し、正極11の表面側から順に第1領域、第2領域と定義した場合に、第1領域と第2領域で上記混合比を変化させてもよい。本実施形態において、第1および第2の複合酸化物33,34の混合比は、正極合剤層31の全域で実質的に一定である。
 [負極]
 負極12は、負極芯材40と、負極芯材40の表面に形成された負極合剤層41とを備える。負極芯材40には、銅、銅合金などの負極12の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極芯材40の一例は、厚みが5μm~15μmの銅又は銅合金の箔である。負極合剤層41は、負極活物質および結着剤を含み、負極芯材40の両面に形成されることが好ましい。負極合剤層41の厚みは、例えば、負極芯材40の片側で30μm~150μmである。負極12は、負極芯材40上に負極活物質、結着剤等を含む負極合剤スラリーを塗布し、塗膜を乾燥させた後、圧縮して負極合剤層41を負極芯材40の両面に形成することにより作製できる。
 負極合材層41には、負極活物質として、一般的に、リチウムイオンを可逆的に吸蔵、放出する炭素材料が含まれる。炭素材料の好適な一例は、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛(MAG)、黒鉛化メソフェーズカーボンマイクロビーズ(MCMB)等の人造黒鉛などの黒鉛である。また、負極活物質として、Si、Sn等のLiと合金化する元素、および当該元素を含有する材料の少なくとも一方を含む活物質が用いられてもよい。当該活物質の好適な一例は、SiO相、リチウムシリケート等のシリケート相、非晶質炭素相などのイオン伝導相中に微細なSi相が分散したSi含有材料である。負極活物質として、黒鉛とSi含有材料が併用されてもよい。
 負極合剤層41に含まれる結着剤には、PTFE、PVdF等の含フッ素樹脂、PAN、ポリイミド、アクリル樹脂、ポリオレフィン、スチレン-ブタジエンゴム(SBR)などを用いることができる。また、負極合剤層41には、CMC又はその塩、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)などが含まれていてもよい。結着剤の含有量は、例えば、負極活物質100質量部に対して0.1~10質量部であり、好ましくは0.5~5質量部である。また、負極合剤層41には、カーボンブラック、カーボンナノチューブ等の導電剤を添加してもよい。
 [セパレータ]
 セパレータ13には、イオン透過性および絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ13の材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン、セルロースなどが好適である。セパレータ13は、単層構造であってもよく、複層構造を有していてもよい。また、セパレータ13の表面には、アラミド樹脂等の耐熱性の高い樹脂層が形成されていてもよい。
 セパレータ13と正極11および負極12の少なくとも一方との界面には、無機物のフィラーを含むフィラー層が形成されていてもよい。無機物のフィラーとしては、例えばTi、Al、Si、Mg等の金属元素を含有する酸化物、リン酸化合物などが挙げられる。フィラー層は、当該フィラーを含有するスラリーを正極11、負極12、又はセパレータ13の表面に塗布して形成することができる。
 以下、実施例により本開示をさらに詳説するが、本開示はこれらの実施例に限定されるものではない。
 <実施例1>
 [第1の複合酸化物の合成]
 まず、NiとMnを8:2のモル比で含む複合水酸化物(Ni0.8Mn0.2(OH))を共沈法で合成した。得られた複合水酸化物を空気中で、700℃で2時間加熱し、複合酸化物(Ni0.8Mn0.2)に変換した。得られた複合酸化物(Ni0.8Mn0.2)に、NiとMnの合計1モルあたり0.002モルのWOを混合し、更に、NiとMnとWの合計1モルあたり1.11モルの水酸化リチウム一水和物(LiOH・HO)を混合し、得られた混合物を焼成した。具体的には、混合物を酸素濃度95%の酸素気流下(混合物1kgあたり5L/minの流量)、昇温速度2.0℃/minで、室温から650℃まで焼成した後、昇温速度1℃/minで、650℃から820℃まで焼成した。第1の複合酸化物を得た。当該複合酸化物は、多数の一次粒子が凝集してなる二次粒子であり、その組成、D50、および一次粒子の平均断面積(Sa)は下記の通りである。
   D50:16.2μm
   Sa:0.022μm
 [第2の複合酸化物の合成]
 まず、NiとMnを8:2のモル比で含む複合水酸化物(Ni0.8Mn0.2(OH))を共沈法で合成した。得られた複合水酸化物を空気中で、700℃で2時間加熱し、複合酸化物(Ni0.8Mn0.2)に変換した。更に、NiとMnの合計1モルあたり1.11モルの水酸化リチウム一水和物(LiOH・HO)を混合し、得られた混合物を焼成した。具体的には、混合物を酸素濃度95%の酸素気流下(混合物1kgあたり5L/minの流量)、昇温速度2.0℃/minで、室温から650℃まで焼成した後、昇温速度1℃/minで、650℃から870℃まで焼成した。第2の複合酸化物を得た。当該複合酸化物は、1個又は10個以下の一次粒子を含む粒子(非凝集粒子)であり、その組成、D50、および一次粒子の平均断面積(Sb)は下記の通りである。
   D50:5.43μm
   Sb:2.02μm
 [正極の作製]
 正極活物質として、第1の複合酸化物と、第2の複合酸化物とを、70:30の質量比で混合したものを用いた。当該正極活物質と、アセチレンブラックと、ポリフッ化ビニリデン(PVdF)とを、98:1:1の質量比で混合し、N-メチル-2-ピロリドン(NMP)を分散媒として正極合剤スラリーを調製した。次に、正極合剤スラリーをアルミニウム箔からなる正極芯材の両面に塗布し、塗膜を乾燥、圧縮した後、正極芯体を所定の電極サイズに裁断して、正極芯材の両面に正極合剤層が形成された正極を得た。
 [負極の作製]
 負極活物質として、黒鉛粉末と、SiOで表されるSi含有材料とを、95:5の質量比で混合したものを用いた。当該負極活物質と、カルボキシメチルセルロースナトリウム(CMC-Na)と、スチレン-ブタジエンゴム(SBR)のディスパージョンとを、98:1:1の固形分質量比で混合し、水を分散媒として負極合剤スラリーを調製した。次に、負極合剤スラリーを銅箔からなる負極芯材の両面に塗布し、塗膜を乾燥、圧縮した後、負極芯体を所定の電極サイズに裁断して、負極芯材の両面に負極合剤層が形成された負極を得た。
 [非水電解液の調製]
 エチレンカーボネート(EC)、メチルエチルカーボネート(MEC)、およびジメチルカーボネート(DMC)を、20:5:75の体積比(25℃)で混合した。この混合溶媒に、1.4mol/Lの濃度となるようにLiPFを溶解させて非水電解液を調製した。
 [非水電解質二次電池の作製]
 上記正極および上記負極にリードをそれぞれ取り付け、セパレータを介して正極および負極を渦巻き状に巻回することにより、巻回型の電極体を得た。当該電極体を有底円筒形状の外装缶に収容し、負極リードの外装缶の底部内面に、正極リードを封口体の内部端子板にそれぞれ溶接した。その後、外装缶に上記非水電解液を注入し、外装缶の開口縁部を封口体にかしめ固定して、円筒形の非水電解質二次電池を作製した。
 <実施例2>
 第1の複合酸化物の合成において、WOの添加量をNiとMnの合計1モルあたり0.0025モルとすることにより、二次粒子を構成する一次粒子の平均断面積(Sa)を0.016μmとしたこと以外は実施例1と同様にして、非水電解質二次電池を作製した。この場合、各複合酸化物を構成する一次粒子の断面積比率(Sb/Sa)は126.3である。
 <実施例3>
 第1の複合酸化物の合成において、WOの添加量をNiとMnの合計1モルあたり0.005モルとすることにより、二次粒子を構成する一次粒子の平均断面積(Sa)を0.009μmとしたこと以外は実施例1と同様にして、非水電解質二次電池を作製した。この場合、各複合酸化物を構成する一次粒子の断面積比率(Sb/Sa)は224.4である。
 <実施例4>
 第1の複合酸化物の合成において、WOの添加量をNiとMnの合計1モルあたり0.005モルとし、さらにNbをNiとMnの合計1モルあたり0.0025添加することにより、二次粒子を構成する一次粒子の平均断面積(Sa)を0.006μmとしたこと以外は実施例1と同様にして、非水電解質二次電池を作製した。この場合、各複合酸化物を構成する一次粒子の断面積比率(Sb/Sa)は336.7である。
 <実施例5>
 第2の複合酸化物として、組成式LiNi88CoMnで表され、D50が5.43μm、二次粒子を構成する一次粒子の平均断面積(Sb)が3.00μmである複合酸化物を用いたこと以外は実施例3と同様にして、非水電解質二次電池を作製した。この場合、各複合酸化物を構成する一次粒子の断面積比率(Sb/Sa)は333.3である。
 <実施例6>
 第2の複合酸化物として、組成式LiNi88CoMnで表され、D50が5.43μm、二次粒子を構成する一次粒子の平均断面積(Sb)が3.00μmである複合酸化物を用いたこと以外は実施例4と同様にして、非水電解質二次電池を作製した。この場合、各複合酸化物を構成する一次粒子の断面積比率(Sb/Sa)は500.0である。
 <比較例1>
 第1の複合酸化物の合成において、WOを添加することなく昇温速度2.0℃/minで、室温から650℃まで焼成した後、昇温速度1℃/minで、650℃から840℃まで焼成した。することにより、二次粒子を構成する一次粒子の平均断面積(Sa)を0.069μmとしたこと以外は実施例1と同様にして、正極活物質および非水電解質二次電池を作製した。この場合、各複合酸化物を構成する一次粒子の断面積比率(Sb/Sa)は29.3である。
 <比較例2>
 第1の複合酸化物の合成において、WOを添加することなく昇温速度2.0℃/minで、室温から650℃まで焼成した後、昇温速度1℃/minで、650℃から820℃まで焼成した。することにより、二次粒子を構成する一次粒子の平均断面積(Sa)を0.027μmとしたこと以外は実施例1と同様にして、正極活物質および非水電解質二次電池を作製した。この場合、各複合酸化物を構成する一次粒子の断面積比率(Sb/Sa)は74.8である。
 <比較例3>
 正極活物質として、D50が11.9μm、二次粒子を構成する一次粒子の平均断面積(Sa)が0.063μmである第1の複合酸化物を単独で用いたこと以外は実施例1と同様にして、正極活物質および非水電解質二次電池を作製した。
 実施例および比較例の各電池について、下記の方法により、初期充電容量、初期放電容量、およびサイクル試験後の容量維持率の評価を行い、その評価結果を正極活物質の物性と共に表1に示した。表1では、実施例1~6をA1~A6とし、比較例1~3をB1~B3とする。
 [充放電容量の評価]
 評価対象の電池について、25℃の温度環境下、0.2Cの電流で電池電圧が4.5Vになるまで定電流充電を行った後、4.5Vで終止電流が0.02Cとなるまで定電圧充電を行った。その後、0.2Cの電流で電池電圧が2.5Vになるまで定電流放電を行った。このときの充放電カーブから、正極活物質1gあたりの充電容量と放電容量を算出した。表1に示す評価結果は、比較例1(B1)の電池の値を100とした場合の相対値である。
 [サイクル特性(容量維持率)の評価]
 上記充放電を50サイクル行い、下記式により容量維持率を算出した。
   容量維持率=(50サイクル目の放電容量/1サイクル目の放電容量)×100
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~6の電池はいずれも、比較例1~3の電池と比較してサイクル試験後の容量維持率が高く、サイクル特性に優れる。また、実施例の電池は、高い容量を確保しつつ、優れたサイクル特性を有し、高容量と高耐久を両立している。
 これに対し、正極活物質として第1の複合酸化物(二次粒子)を単独で用いた比較例3の電池は、充放電容量は高いものの、実施例の電池と比べてサイクル試験後の容量維持率が低い。同様に、一次粒子の平均断面積比率(Sb/Sa)が80未満である正極活物質を用いた比較例1,2の電池についても、サイクル特性の低下が確認された。
 10 非水電解質二次電池、11 正極、12 負極、13 セパレータ、14 電極体、16 外装缶、17 封口体、18,19 絶縁板、20 正極リード、21 負極リード、22 溝入部、23 内部端子板、24 下弁体、25 絶縁部材、26 上弁体、27 キャップ、28 ガスケット、30 正極芯材、31 正極合剤層、32 正極活物質、33 第1の複合酸化物、34 第2の複合酸化物、35 一次粒子、40 負極芯体、41 負極合剤層

Claims (5)

  1.  第1のリチウム含有遷移金属複合酸化物と、第2のリチウム含有遷移金属複合酸化物とを含む正極活物質であって、
     前記第1のリチウム含有遷移金属複合酸化物は、平均粒径が0.3μm以下の一次粒子が凝集してなる二次粒子であり、
     前記第2のリチウム含有遷移金属複合酸化物は、0.5μm以上の一次粒子を含み、
     前記第1のリチウム含有遷移金属複合酸化物の体積基準のメジアン径(D50a)は、前記第2のリチウム含有遷移金属複合酸化物の体積基準のメジアン径(D50b)よりも大きく(D50a>D50b)、
     前記第1のリチウム含有遷移金属複合酸化物を構成する前記一次粒子の平均断面積(Sa)に対する、前記第2のリチウム含有遷移金属複合酸化物を構成する前記一次粒子の平均断面積(Sb)の比率(Sb/Sa)が、80~600(80≦(Sb/Sa)≦600)である、非水電解質二次電池用正極活物質。
  2.  前記第2のリチウム含有遷移金属複合酸化物の体積基準のメジアン径(D50b)に対する、前記第1のリチウム含有遷移金属複合酸化物の体積基準のメジアン径(D50a)の比率(D50a/D50b)が、1.5~10(1.5≦(D50a/D50b)≦10)である、請求項1に記載の非水電解質二次電池用正極活物質。
  3.  前記第1および前記第2のリチウム含有遷移金属複合酸化物は、組成式LiNi(1-y)(0.95≦x≦1.40、0.4≦y≦1.0、MはLi、Mn、Co、Ca、Sr、Al、Ti、Zr、Fe、Nb、Ta、W、Mo、Si、Bi、B、P、V、Eu、La、およびSbからなる群より選択される少なくとも1種)で表される複合酸化物である、請求項1又は2に記載の非水電解質二次電池用正極活物質。
  4.  前記第1のリチウム含有遷移金属複合酸化物は、正極活物質の総質量に対して、50%~90%の量で含まれる、請求項1~3のいずれか一項に記載の非水電解質二次電池用正極活物質。
  5.  請求項1~4のいずれか一項に記載の正極活物質を含む正極と、
     負極と、
     非水電解質と、
     を備える、非水電解質二次電池。
PCT/JP2023/023615 2022-07-29 2023-06-26 非水電解質二次電池用正極活物質および非水電解質二次電池 WO2024024364A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-122196 2022-07-29
JP2022122196 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024024364A1 true WO2024024364A1 (ja) 2024-02-01

Family

ID=89706018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023615 WO2024024364A1 (ja) 2022-07-29 2023-06-26 非水電解質二次電池用正極活物質および非水電解質二次電池

Country Status (1)

Country Link
WO (1) WO2024024364A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086693A (ja) * 2008-09-30 2010-04-15 Hitachi Vehicle Energy Ltd リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
WO2017046858A1 (ja) * 2015-09-14 2017-03-23 株式会社 東芝 非水電解質電池及び電池パック
WO2018061815A1 (ja) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極
WO2021153397A1 (ja) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 二次電池用正極および二次電池
JP2023034701A (ja) * 2021-08-31 2023-03-13 プライムプラネットエナジー&ソリューションズ株式会社 正極活物質およびこれを含む非水電解質二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086693A (ja) * 2008-09-30 2010-04-15 Hitachi Vehicle Energy Ltd リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
WO2017046858A1 (ja) * 2015-09-14 2017-03-23 株式会社 東芝 非水電解質電池及び電池パック
WO2018061815A1 (ja) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極
WO2021153397A1 (ja) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 二次電池用正極および二次電池
JP2023034701A (ja) * 2021-08-31 2023-03-13 プライムプラネットエナジー&ソリューションズ株式会社 正極活物質およびこれを含む非水電解質二次電池

Similar Documents

Publication Publication Date Title
WO2022092182A1 (ja) 非水電解質二次電池
JP7324120B2 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021039751A1 (ja) 非水電解質二次電池
JP2020149821A (ja) 非水電解質二次電池
WO2021059857A1 (ja) 非水電解質二次電池
JP7454559B2 (ja) 非水電解質二次電池用の負極、及び非水電解質二次電池
JP7324119B2 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2023054041A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2022209894A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2021241027A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2021024789A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021019943A1 (ja) 非水電解質二次電池
WO2024024364A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2020189324A1 (ja) 二次電池
WO2024062866A1 (ja) 二次電池用正極活物質および二次電池
WO2023204077A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2024062848A1 (ja) 二次電池用正極活物質および二次電池
WO2024095686A1 (ja) 二次電池用正極および二次電池
WO2023068229A1 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
WO2024004578A1 (ja) 非水電解質二次電池
WO2021220626A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2023074427A1 (ja) 非水電解質二次電池
WO2024004577A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2023276591A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2024070385A1 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846098

Country of ref document: EP

Kind code of ref document: A1