WO2023068229A1 - 非水電解質二次電池用正極及び非水電解質二次電池 - Google Patents

非水電解質二次電池用正極及び非水電解質二次電池 Download PDF

Info

Publication number
WO2023068229A1
WO2023068229A1 PCT/JP2022/038615 JP2022038615W WO2023068229A1 WO 2023068229 A1 WO2023068229 A1 WO 2023068229A1 JP 2022038615 W JP2022038615 W JP 2022038615W WO 2023068229 A1 WO2023068229 A1 WO 2023068229A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
layer
composite oxide
particles
oxide particles
Prior art date
Application number
PCT/JP2022/038615
Other languages
English (en)
French (fr)
Inventor
智季 池田
正嗣 青谷
伸宏 鉾谷
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2023068229A1 publication Critical patent/WO2023068229A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to positive electrodes for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries using the positive electrodes.
  • Patent Documents 1 to 3 disclose a positive electrode for a non-aqueous electrolyte secondary battery using single crystal particles of a lithium-containing transition metal composite oxide and secondary particles obtained by aggregating primary particles as positive electrode active materials. is disclosed.
  • An object of the present disclosure is to provide a positive electrode for a non-aqueous electrolyte secondary battery that contributes to improving the output characteristics of the battery while ensuring a high packing density of the mixture layer.
  • a positive electrode for a non-aqueous electrolyte secondary battery includes a positive electrode core material and a positive electrode mixture layer formed on the surface of the positive electrode core material.
  • the first lithium-containing transition metal composite oxide particles which are non-aggregated particles having a median diameter of 2 to 10 ⁇ m, and the primary particles having an average particle diameter of 50 nm to 2 ⁇ m are aggregated, and the volume-based median diameter is 10 to 30 ⁇ m.
  • the first layer contains at least the first lithium-containing transition metal composite oxide particles, and the content of the first lithium-containing transition metal composite oxide particles is equal to the positive electrode active material contained in the first layer and the second layer contains at least the second lithium-containing transition metal composite oxide particles.
  • a non-aqueous electrolyte secondary battery according to the present disclosure is characterized by including the positive electrode, the negative electrode, and the non-aqueous electrolyte.
  • the positive electrode for a non-aqueous electrolyte secondary battery it is possible to improve the output characteristics of the battery while ensuring a high packing density of the material mixture layer.
  • FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery that is an example of an embodiment
  • FIG. 1 is a cross-sectional view of a positive electrode that is an example of an embodiment
  • FIG. 1 is a cross-sectional view of a negative electrode that is an example of an embodiment
  • the present inventors have found that, as a positive electrode active material, specific non-aggregated particles and specific secondary particles are used in combination, and a secondary particle formed on the core material side of the positive electrode mixture layer. It has been found that by including a large amount of non-aggregated particles in one layer (lower layer), the output characteristics of the battery are effectively improved while ensuring a high packing density of the material mixture layer.
  • a cylindrical battery in which the wound electrode body 14 is housed in a cylindrical outer can 16 with a bottom is exemplified, but the outer casing of the battery is not limited to a cylindrical outer can. It may be an outer can (rectangular battery) or an outer body (laminate battery) composed of a laminate sheet including a metal layer and a resin layer. Further, the electrode body may be a laminated electrode body in which a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated with separators interposed therebetween.
  • FIG. 1 is a diagram schematically showing a cross section of a non-aqueous electrolyte secondary battery 10 that is an example of an embodiment.
  • the non-aqueous electrolyte secondary battery 10 includes a wound electrode body 14, a non-aqueous electrolyte, and an outer can 16 that accommodates the electrode body 14 and the non-aqueous electrolyte.
  • the electrode body 14 has a positive electrode 11 , a negative electrode 12 , and a separator 13 , and has a wound structure in which the positive electrode 11 and the negative electrode 12 are spirally wound with the separator 13 interposed therebetween.
  • the outer can 16 is a bottomed cylindrical metal container that is open on one side in the axial direction. In the following description, for convenience of explanation, the side of the sealing member 17 of the battery will be referred to as the upper side, and the bottom side of the outer can 16 will be referred to as the lower side.
  • the non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • non-aqueous solvents include esters, ethers, nitriles, amides, and mixed solvents of two or more thereof.
  • the non-aqueous solvent may contain a halogen-substituted product obtained by substituting at least part of the hydrogen atoms of these solvents with halogen atoms such as fluorine.
  • non-aqueous solvents include ethylene carbonate (EC), ethylmethyl carbonate (EMC), dimethyl carbonate (DMC), and mixed solvents thereof.
  • Lithium salts such as LiPF 6 are used, for example, as electrolyte salts.
  • the non-aqueous electrolyte is not limited to a liquid electrolyte, and may be a solid electrolyte.
  • the positive electrode 11, the negative electrode 12, and the separator 13, which constitute the electrode assembly 14, are all strip-shaped elongated bodies, and are alternately laminated in the radial direction of the electrode assembly 14 by being spirally wound.
  • the negative electrode 12 is formed with a size one size larger than that of the positive electrode 11 in order to prevent deposition of lithium. That is, the negative electrode 12 is formed longer than the positive electrode 11 in the longitudinal direction and the width direction (transverse direction).
  • the separator 13 is formed to have a size at least one size larger than that of the positive electrode 11, and two separators 13 are arranged so as to sandwich the positive electrode 11 therebetween.
  • the electrode body 14 has a positive electrode lead 20 connected to the positive electrode 11 by welding or the like, and a negative electrode lead 21 connected to the negative electrode 12 by welding or the like.
  • Insulating plates 18 and 19 are arranged above and below the electrode body 14, respectively.
  • the positive electrode lead 20 extends through the through hole of the insulating plate 18 toward the sealing member 17
  • the negative electrode lead 21 extends through the outside of the insulating plate 19 toward the bottom of the outer can 16 .
  • the positive electrode lead 20 is connected to the lower surface of the internal terminal plate 23 of the sealing body 17 by welding or the like, and the cap 27, which is the top plate of the sealing body 17 electrically connected to the internal terminal plate 23, serves as the positive electrode terminal.
  • the negative electrode lead 21 is connected to the inner surface of the bottom of the outer can 16 by welding or the like, and the outer can 16 serves as a negative electrode terminal.
  • the outer can 16 is a bottomed cylindrical metal container that is open on one side in the axial direction.
  • a gasket 28 is provided between the outer can 16 and the sealing member 17 to ensure hermeticity inside the battery and insulation between the outer can 16 and the sealing member 17 .
  • the outer can 16 is formed with a grooved portion 22 that supports the sealing member 17 and has a portion of the side surface projecting inward.
  • the grooved portion 22 is preferably annularly formed along the circumferential direction of the outer can 16 and supports the sealing member 17 on its upper surface.
  • the sealing member 17 is fixed to the upper portion of the outer can 16 by the grooved portion 22 and the open end of the outer can 16 crimped to the sealing member 17 .
  • the sealing body 17 has a structure in which an internal terminal plate 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are layered in order from the electrode body 14 side.
  • Each member constituting the sealing member 17 has, for example, a disk shape or a ring shape, and each member other than the insulating member 25 is electrically connected to each other.
  • the lower valve body 24 and the upper valve body 26 are connected at their central portions, and an insulating member 25 is interposed between their peripheral edge portions.
  • the positive electrode 11, the negative electrode 12, and the separator 13, particularly the positive electrode 11, will be described in detail below.
  • FIG. 2 is a cross-sectional view of the positive electrode 11.
  • the positive electrode 11 includes a positive electrode core material 30 and a positive electrode mixture layer 31 formed on the surface of the positive electrode core material 30 .
  • a foil of a metal such as aluminum or an aluminum alloy that is stable in the potential range of the positive electrode 11, a film having the metal on the surface layer, or the like can be used.
  • An example of the positive electrode core material 30 is an aluminum or aluminum alloy foil with a thickness of 10 to 20 ⁇ m.
  • the positive electrode mixture layer 31 contains a positive electrode active material, a conductive agent, and a binder, and is preferably formed on both sides of the positive electrode core material 30 .
  • Examples of the conductive agent contained in the positive electrode mixture layer 31 include carbon materials such as carbon black, acetylene black, ketjen black, graphite, carbon nanotubes, carbon nanofibers, and graphene.
  • the content of the conductive agent is, for example, 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, per 100 parts by mass of the positive electrode active material.
  • binder contained in the positive electrode mixture layer 31 examples include fluorine-containing resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide, acrylic resin, polyolefin, and the like. Further, these resins may be used in combination with carboxymethyl cellulose (CMC) or salts thereof, polyethylene oxide (PEO), and the like.
  • the content of the binder is, for example, 0.1 to 10 parts by mass, preferably 0.5 to 5 parts by mass, per 100 parts by mass of the positive electrode active material.
  • the positive electrode mixture layer 31 contains a particulate lithium-containing transition metal composite oxide as a positive electrode active material.
  • a lithium-containing transition metal composite oxide is a composite oxide containing Co, Mn, Ni, Al, etc. in addition to Li.
  • Metal elements constituting the lithium-containing transition metal composite oxide include, for example, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Sn , Sb, W, Pb, and Bi. Among them, it is preferable to contain at least one selected from Co, Ni, and Mn.
  • suitable composite oxides include composite oxides containing Ni, Co and Mn and composite oxides containing Ni, Co and Al.
  • the positive electrode mixture layer 31 contains two types of lithium-containing transition metal composite oxide particles having different particle shapes as positive electrode active materials, and is formed on the positive electrode core material 30 side. and a second layer 31b formed on the layer 31a.
  • the positive electrode mixture layer 31 may include a third layer as long as the object of the present disclosure is not impaired, but the positive electrode mixture layer 31 is a lower layer directly formed on the positive electrode core material 30.
  • a two-layer structure including a first layer 31a and a second layer 31b formed directly on the first layer 31a is preferred.
  • the first layer 31a and the second layer 31b each contain the above two types of lithium-containing transition metal composite oxide particles, or contain two types of composite oxide particles, and the mixing ratio is different for each layer. ing.
  • the thickness of the positive electrode mixture layer 31 is, for example, 50 to 150 ⁇ m on one side of the positive electrode core material 30 .
  • the thickness of the first layer 31a may be greater than the thickness of the second layer 31b, but is preferably less than or equal to the thickness of the second layer 31b. Since it is not easy to accurately determine the thickness ratio between the first layer 31a and the second layer 31b, the proportion of each layer in the positive electrode mixture layer 31 is evaluated based on the mass ratio.
  • the second layer 31b covers the entire first layer 31a, and the areas of each layer on the positive electrode core material 30 are substantially the same.
  • the proportion of the first layer 31a in the positive electrode mixture layer 31 is preferably 50% by mass or less.
  • the positive electrode mixture layer 31 includes, as the two types of lithium-containing transition metal composite oxide particles, first lithium-containing transition metal composite oxide particles (first composite oxide particles) that are non-aggregated particles, and average grains and second lithium-containing transition metal composite oxide particles (second composite oxide particles) which are secondary particles formed by agglomeration of primary particles having a diameter of 50 nm to 2 ⁇ m.
  • the first layer 31a contains at least the first composite oxide particles
  • the second layer 31b contains at least the second composite oxide particles.
  • the positive electrode mixture layer 31 may contain only the first and second composite oxide particles as the positive electrode active material, and may include the third lithium-containing transition metal composite oxide as long as the object of the present disclosure is not impaired. may contain particles. Examples of the third lithium-containing transition metal composite oxide particles include composite oxide particles that do not satisfy the particle size conditions described below.
  • the content of the positive electrode active material is, for example, 90% by mass or more with respect to the total mass of the positive electrode mixture layer 31, and may be the same or different between the first layer 31a and the second layer 31b. .
  • the type and content of the conductive agent and binder in the positive electrode mixture layer 31 may be the same or different between the first layer 31a and the second layer 31b.
  • the same type of conductive agent is used in the first layer 31a and the second layer 31b, and the content of the conductive agent is substantially the same.
  • the same kind of binder is used in the first layer 31a and the second layer 31b, and the content of the binder is substantially the same.
  • the volume-based median diameter (hereinafter sometimes referred to as "D50") of the first composite oxide particles is 2 to 10 ⁇ m, preferably 3 to 8 ⁇ m.
  • D50 of the second composite oxide particles is 10 to 30 ⁇ m, preferably 12 to 20 ⁇ m.
  • D50 means the particle size at which the cumulative frequency is 50% from the smaller particle size in the volume-based particle size distribution.
  • the particle size distribution of the composite oxide particles can be measured using a laser diffraction particle size distribution analyzer (eg MT3000II manufactured by Microtrack Bell Co., Ltd.) using water as a dispersion medium.
  • the first composite oxide particles are particles that do not have grain boundaries inside, and are, for example, primary single-crystal particles.
  • the crystallinity of composite oxide particles can be confirmed using a scanning ion microscope.
  • the first composite oxide particles, which are non-aggregated particles may contain 5 or less primary particles.
  • non-agglomerated particles mean particles composed of one primary particle having no grain boundary inside, and particles composed of 5 or less primary particles.
  • the second composite oxide particles are secondary particles formed by aggregation of a large number of primary particles with an average particle size of 50 nm to 2 ⁇ m, preferably 500 nm to 2 ⁇ m. A large number of grain boundaries of primary particles exist in the second composite oxide particles.
  • the primary particles can be confirmed by observing the second composite oxide particles with a scanning electron microscope (SEM). The primary particles adhere to each other with such a strength that they do not come apart even when a strong force is applied during pulverization after synthesizing the second composite oxide particles or during preparation of the positive electrode mixture slurry.
  • the average particle size of the primary particles that make up the second composite oxide particles can be obtained by analyzing the SEM image of the cross section of the particles.
  • the positive electrode 11 is embedded in resin, a cross-section is produced by cross-section polisher (CP) processing, and this cross-section is photographed with an SEM. Randomly select 30 primary particles from the SEM image, observe the grain boundaries, determine the diameter of the circumscribed circle of each of the 30 primary particles, and take the average value as the average particle size.
  • Each lithium-containing transition metal composite oxide particle can be synthesized by the method described in Examples below.
  • the first composite oxide particles are used more when synthesizing a precursor (metal composite hydroxide) containing Ni, Co, Mn, Al, etc. than when synthesizing the second composite oxide particles. It can be synthesized by increasing the pH of the alkaline aqueous solution. Alternatively, it can be synthesized by increasing the calcination temperature of the precursor instead of or in addition to increasing the pH of the alkaline aqueous solution.
  • An example of a suitable pH of the alkaline aqueous solution when synthesizing the first composite oxide particles is 10 to 11, and a suitable example of the firing temperature is 950 to 1100°C.
  • a suitable example of the firing temperature is 950 to 1100°C.
  • an alkaline aqueous solution having a pH of 9 to 10 is used, and the firing temperature is set to 950° C. or less.
  • the main component means the component having the largest mass among the components constituting the composite oxide particles.
  • the composition of each composite oxide particle may be the same or different.
  • the positive electrode mixture layer 31 has a two-layer structure including the first layer 31a containing at least the first composite oxide particles and the second layer 31b containing at least the second composite oxide particles.
  • the content of the first composite oxide particles in the first layer 31a is 80% by mass or more and substantially 100% by mass with respect to the total mass of the positive electrode active material contained in the first layer 31a. good too.
  • the first composite oxide particles which are non-aggregated particles, are less likely to crack during the manufacturing process of the positive electrode 11 than the second composite oxide particles, which are secondary particles. Therefore, the first composite oxide particles bite into the positive electrode core material 30 and the contact area between the positive electrode core material 30 and the positive electrode mixture layer 31 increases. Therefore, by allowing 80% by mass or more of the first composite oxide particles to exist in the first layer 31a, which is the lower layer of the positive electrode mixture layer 31, the electrical resistance between the positive electrode core material 30 and the positive electrode mixture layer 31 is reduced. As a result, it is considered that the output characteristics of the battery are improved.
  • the first layer 31a may contain second composite oxide particles as a positive electrode active material. However, the content thereof should be 20% by mass or less with respect to the total mass of the positive electrode active material contained in the first layer 31a. If the ratio of the first composite oxide particles in the positive electrode active material of the first layer 31a is less than 80% by mass, the effect of reducing the electrical resistance between the positive electrode core material 30 and the positive electrode mixture layer 31 cannot be obtained. Output characteristics cannot be improved.
  • the proportion of the first layer 31a in the positive electrode mixture layer 31 is preferably 5% by mass or more, more preferably 10% by mass or more, relative to the total mass of the positive electrode mixture layer 31.
  • the ratio of the first layer is preferably 5% by mass or more, or 10% by mass or more, the electrical resistance between the positive electrode core material 30 and the positive electrode mixture layer 31 is effectively reduced, and the output characteristics of the battery are improved.
  • the upper limit of the ratio of the first layer 31a is not particularly limited, it is preferably 50% by mass with respect to the total mass of the positive electrode mixture layer 31 from the viewpoint of increasing the capacity.
  • a suitable proportion of the first layer 31a in the positive electrode mixture layer 31 is 5 to 50% by mass, more preferably 10 to 50% by mass. That is, the mass ratio between the first layer 31a and the second layer 31b is preferably 10:90 to 50:50. If the mass ratio of the first layer 31a and the second layer 31b is within the above range, it becomes easy to achieve both a high packing density of the positive electrode mixture layer 31 and excellent output characteristics of the battery.
  • the second layer 31b may contain first composite oxide particles as a positive electrode active material. However, the content thereof is preferably 50% by mass or less with respect to the total mass of the positive electrode active material contained in the second layer 31b.
  • the content of the second composite oxide particles in the second layer 31b is preferably 50% by mass or more with respect to the total mass of the positive electrode active material contained in the second layer 31b. That is, the mass ratio of the first composite oxide particles to the second composite oxide particles in the second layer 31b is preferably 50:50 to 0:100.
  • the content of the second composite oxide particles in the second layer 31b may be 80% by mass or more, or may be substantially 100% by mass.
  • the positive electrode 11 is formed by coating a positive electrode core material 30 with a positive electrode mixture slurry containing a positive electrode active material, a conductive agent, a binder, and the like, drying the coating film, and then compressing the positive electrode mixture layer 31 into a positive electrode material. It can be produced by forming on both sides of the core material 30 .
  • the positive electrode mixture slurry for example, two kinds of slurries with different types of positive electrode active materials are used.
  • the second composite oxide particles are applied on the coating film as the positive electrode active material.
  • the positive electrode mixture layer 31 having a two-layer structure including the first layer 31a and the second layer 31b can be formed.
  • the negative electrode 12 includes a negative electrode core material and a negative electrode mixture layer formed on the surface of the negative electrode core material.
  • a foil of a metal such as copper or a copper alloy that is stable in the potential range of the negative electrode 12, a film in which the metal is arranged on the surface layer, or the like can be used.
  • An example of the negative electrode core material is a copper or copper alloy foil with a thickness of 5 to 15 ⁇ m.
  • the negative electrode mixture layer contains a negative electrode active material and a binder, and is preferably formed on both sides of the negative electrode core material. The thickness of the negative electrode mixture layer is, for example, 30 to 150 ⁇ m on one side of the negative electrode core material.
  • a negative electrode mixture slurry containing a negative electrode active material, a binder, etc. is applied onto the negative electrode core material, the coating film is dried, and then compressed to form negative electrode mixture layers on both sides of the negative electrode core material. It can be produced by
  • the negative electrode mixture layer contains, as a negative electrode active material, for example, a carbon-based active material that reversibly absorbs and releases lithium ions.
  • a carbon-based active material for example, a carbon-based active material that reversibly absorbs and releases lithium ions.
  • Suitable carbon-based active materials are graphite such as natural graphite such as flake graphite, massive graphite and earthy graphite, artificial graphite such as massive artificial graphite (MAG) and graphitized mesophase carbon microbeads (MCMB).
  • a Si-based active material composed of at least one of Si and a Si-containing compound may be used as the negative electrode active material, or a carbon-based active material and a Si-based active material may be used in combination.
  • the binder contained in the negative electrode mixture layer fluorine-containing resins such as PTFE and PVdF, PAN, polyimide, acrylic resin, polyolefin, styrene-butadiene rubber (SBR), and the like can be used.
  • the negative electrode mixture layer may contain CMC or its salt, polyacrylic acid (PAA) or its salt, polyvinyl alcohol (PVA), or the like.
  • the content of the binder is, for example, 0.1 to 10 parts by mass, preferably 0.5 to 5 parts by mass, per 100 parts by mass of the negative electrode active material.
  • a conductive agent such as carbon black, acetylene black, or ketjen black may be added to the negative electrode mixture layer.
  • a porous sheet having ion permeability and insulation is used for the separator 13 .
  • porous sheets include microporous thin films, woven fabrics, and non-woven fabrics.
  • Polyolefins such as polyethylene and polypropylene, cellulose, and the like are suitable for the material of the separator.
  • the separator 13 may have a single layer structure or a multilayer structure.
  • a resin layer having high heat resistance such as aramid resin may be formed on the surface of the separator 13 .
  • a filler layer containing an inorganic filler may be formed at the interface between the separator 13 and at least one of the positive electrode 11 and the negative electrode 12 .
  • inorganic fillers include oxides containing metal elements such as Ti, Al, Si, and Mg, and phosphoric acid compounds.
  • the filler layer can be formed by applying slurry containing the filler to the surfaces of the positive electrode 11 , the negative electrode 12 , or the separator 13 .
  • Example 1 [Synthesis of non-aggregated particles (first lithium-containing transition metal composite oxide particles)] Nickel sulfate, cobalt sulfate, and manganese sulfate were mixed in a predetermined ratio and uniformly mixed in an alkaline aqueous solution of pH 10 to 11 to synthesize a precursor. Next, the precursor and lithium carbonate are mixed and fired at a temperature of 1000° C. for 15 hours or more, and then the fired product is pulverized to obtain first lithium-containing transition metal composite oxide particles that are non-aggregated particles. Obtained.
  • the composition and particle size of the particles are as follows. Composition : LiNi0.5Co0.2Mn0.3O2 _ D50: 4.5 ⁇ m
  • NMP N-methyl-2-pyrrolidone
  • a first lithium-containing transition metal composite oxide that is non-aggregated particles, acetylene black (AB), and polyvinylidene fluoride (PVdF) having an average molecular weight of about 1,100,000 were mixed at a mass ratio of 98:1:1 to prepare a first mixture slurry having a solid content concentration of 70% by mass.
  • the first mixture slurry is prepared in the same manner as the first mixture slurry, except that the second lithium-containing transition metal composite oxide, which is a secondary particle, is used instead of the first lithium-containing transition metal composite oxide. to prepare a second mixture slurry.
  • the first mixture slurry is applied to both sides of the positive electrode core material made of aluminum foil, and then the second mixture slurry is applied onto the coating film of the first mixture slurry, and the coating film is dried and compressed (wire After applying a pressure of 3000 N/m), the positive electrode mixture layer having a two-layer structure including a lower layer (first layer) and an upper layer (second layer) is formed on both sides of the positive electrode core by cutting into a predetermined electrode size. A positive electrode was fabricated. Each mixture slurry was applied so that the mass ratio of the lower layer to the upper layer was 1:1.
  • a negative electrode active material As a negative electrode active material, a mixture of 95 parts by mass of graphite and 5 parts by mass of silicon oxide represented by SiO was used. 100 parts by mass of the negative electrode active material, 1 part by mass of carboxymethyl cellulose (CMC), and water are mixed, and a dispersion of 1.2 parts by mass of solid content of styrene-butadiene rubber (SBR) is mixed. to prepare a negative electrode mixture slurry. Next, the negative electrode mixture slurry is applied to both sides of a negative electrode core material made of copper foil, the coating film is dried and compressed, and then cut into a predetermined electrode size to form negative electrode mixture layers on both sides of the negative electrode core material. A formed negative electrode was produced.
  • CMC carboxymethyl cellulose
  • SBR styrene-butadiene rubber
  • Ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 1:3 (25° C.). 5 parts by mass of vinylene carbonate (VC) was added to 100 parts by mass of the mixed solvent, and LiPF 6 was dissolved to a concentration of 1 mol/L to prepare a non-aqueous electrolyte.
  • Electrode terminals were attached to the positive electrode and the negative electrode, respectively, and the positive electrode and the negative electrode were spirally wound with a separator interposed therebetween to prepare a wound electrode body.
  • the electrode body was housed in a bottomed cylindrical outer can, the negative electrode lead was welded to the bottom inner surface of the outer can, and the positive electrode lead was welded to the internal terminal plate of the sealing body.
  • the above non-aqueous electrolyte was injected into the outer can, and the opening edge of the outer can was crimped and fixed to the sealing member to fabricate a non-aqueous electrolyte secondary battery with a battery capacity of 2500 mAh.
  • Example 2 A positive electrode and a non-aqueous electrolyte secondary battery were prepared in the same manner as in Example 1, except that in the production of the positive electrode, the coating amount of each mixture slurry was changed so that the mass ratio of the upper layer and the lower layer was 90:10. made.
  • Example 1 A positive electrode and a non-aqueous electrolyte secondary battery were prepared in the same manner as in Example 1, except that in the production of the positive electrode, the second mixture slurry was applied onto the positive electrode core material, and then the first mixture slurry was applied. made.
  • Example 2 A positive electrode and a non-aqueous electrolyte secondary battery were prepared in the same manner as in Example 2, except that in the production of the positive electrode, the second mixture slurry was applied onto the positive electrode core material, and then the first mixture slurry was applied. made.
  • Example 3 A positive electrode and a non-aqueous electrolyte secondary battery were produced in the same manner as in Example 1, except that the positive electrode mixture layer was formed using only the second mixture slurry in the production of the positive electrode.
  • Example 4 A positive electrode and a non-aqueous electrolyte secondary battery were produced in the same manner as in Example 1, except that in the production of the positive electrode, the positive electrode mixture layer was formed using only the first mixture slurry.
  • ⁇ Comparative Example 5> A mixture of non-aggregated particles (first lithium-containing transition metal composite oxide particles) and secondary particles (second lithium-containing transition metal composite oxide particles) at a mass ratio of 1:1, and AB , and PVdF were mixed at a mass ratio of 98:1:1, and an appropriate amount of NMP was added as a dispersion medium to prepare a positive electrode mixture slurry having a solid content concentration of 70% by mass.
  • a positive electrode and a non-aqueous electrolyte secondary battery were produced in the same manner as in Example 1, except that the positive electrode mixture layer was formed using only this positive electrode mixture slurry.
  • the DCR of the battery is reduced by using the first composite oxide particles, which are non-aggregated particles, as the positive electrode active material in the lower layer. Since non-agglomerated particles are less likely to crack during the compression process of the positive electrode, by adding non-agglomerated particles to the lower layer, the non-agglomerated particles bite into the core material, reducing the electrical resistance between the mixture layer and the core material. As a result, it is considered that the DCR was kept low.
  • Example and Comparative Examples 2 to 4 it is understood that the packing density of the mixture layer is increased by using the second composite oxide particles, which are secondary particles, for the positive electrode active material. Since secondary particles tend to crack during the positive electrode compression process, it is presumed that when secondary particles are used, the gaps between the particles are clogged with the cracked particles, thereby increasing the packing density. In other words, when the secondary particles are not used, the packing density of the material mixture layer is lowered, and the capacity of the battery cannot be increased. In addition, from Comparative Example 4, when the packing density is low, the DCR tends to increase even when non-aggregated particles are added to the lower layer.
  • the second composite oxide particles which are secondary particles
  • Example 2 it is understood that good output characteristics can be ensured when the mass ratio of the lower layer (lower layer containing non-aggregated particles) to the total mass of the mixture layer is 10% or more.
  • Example 1 and Comparative Example 5 when non-aggregated particles and secondary particles are simply mixed to form a mixture layer having a single-layer structure, a high packing density is obtained, but the output characteristics are greatly reduced. In this case, it is presumed that the electrical resistance between the mixture layer and the core material could not be sufficiently reduced as compared with the case of the example, resulting in an increase in DCR.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

実施形態の一例である非水電解質二次電池用正極において、正極合剤層は、正極活物質として、体積基準のメジアン径が2~10μmの非凝集粒子である第1のリチウム含有遷移金属複合酸化物粒子と、平均粒径が50nm~2μmの一次粒子が凝集してなり、体積基準のメジアン径が10~30μmの二次粒子である第2のリチウム含有遷移金属複合酸化物粒子とを含有し、かつ正極芯材側に形成された第1層と、第1層上に形成された第2層とを有する。第1層は、少なくとも第1の複合酸化物粒子を含有し、当該複合酸化物粒子の含有量は、第1層に含有される正極活物質の総質量に対して80質量%以上である。第2層は、少なくとも第2の複合酸化物粒子を含有する。

Description

非水電解質二次電池用正極及び非水電解質二次電池
 本開示は、非水電解質二次電池用正極、及び当該正極を用いた非水電解質二次電池に関する。
 近年、非水電解質二次電池の車載用途や蓄電用途への普及に伴い、高容量で、かつ出力特性に優れた非水電解質二次電池が求められている。正極は、電池容量、出力特性等を含む電池特性に大きく影響するため、正極について多くの検討がなされてきた。例えば、特許文献1~3には、正極活物質として、リチウム含有遷移金属複合酸化物の単結晶粒子と、一次粒子が凝集してなる二次粒子とを用いた非水電解質二次電池用正極が開示されている。
特開平07-037576号公報 特開2018-045998号公報 特開2020-053386号公報
 非水電解質二次電池において、正極合剤層の高い充填密度を確保して高容量化を図りつつ、出力特性を向上させることは重要な課題である。しかし、一般的に、正極合剤層の充填密度を高くすると、出力特性は低下する傾向にあり、正極合剤層の高い充填密度と、電池の優れた出力特性を両立することは容易ではない。
 本開示の目的は、合剤層の高い充填密度を確保しつつ、電池の出力特性向上に寄与する非水電解質二次電池用正極を提供することである。
 本開示に係る非水電解質二次電池用正極は、正極芯材と、正極芯材の表面に形成された正極合剤層とを備え、正極合剤層は、正極活物質として、体積基準のメジアン径が2~10μmの非凝集粒子である第1のリチウム含有遷移金属複合酸化物粒子と、平均粒径が50nm~2μmの一次粒子が凝集してなり、体積基準のメジアン径が10~30μmの二次粒子である第2のリチウム含有遷移金属複合酸化物粒子とを含有し、かつ正極芯材側に形成された第1層と、第1層上に形成された第2層とを有し、第1層は、少なくとも第1のリチウム含有遷移金属複合酸化物粒子を含有し、当該第1のリチウム含有遷移金属複合酸化物粒子の含有量は、第1層に含有される正極活物質の総質量に対して80質量%以上であり、第2層は、少なくとも第2のリチウム含有遷移金属複合酸化物粒子を含有することを特徴とする。
 本開示に係る非水電解質二次電池は、上記正極と、負極と、非水電解質とを備えることを特徴とする。
 本開示に係る非水電解質二次電池用正極によれば、合剤層の高い充填密度を確保しつつ、電池の出力特性を向上させることができる。
実施形態の一例である非水電解質二次電池の断面図である。 実施形態の一例である正極の断面図である。
 上述のように、非水電解質二次電池において、正極合剤層の高い充填密度と優れた出力特性を両立することは重要な課題である。本発明者らは、この課題を解決すべく鋭意検討した結果、正極活物質として特定の非凝集粒子と特定の二次粒子を併用し、かつ正極合剤層の芯材側に形成される第1層(下層)に非凝集粒子を多く含有させることにより、合剤層の高い充填密度を確保しつつ、電池の出力特性が効果的に改善されることを見出した。
 なお、正極活物質として非凝集粒子のみを用いた場合には、出力特性は向上するものの、正極活物質の充填性の低下により電池容量が低下する。他方、二次粒子のみを用いた場合は、正極の圧縮工程で粒子割れが発生しやすく、粒子同士の隙間が割れた粒子によって閉塞するため、活物質の充填密度は高くなるものの、正極活物質として非凝集粒子のみを用いた場合に比べて出力特性が低下する。また、正極活物質として、非凝集粒子と二次粒子の混合物を用いた場合も、これらの特性を両立することはできない。
 以下、図面を参照しながら、本開示に係る非水電解質二次電池用正極、及び当該正極を用いた非水電解質二次電池の実施形態の一例について詳細に説明する。なお、以下で説明する複数の実施形態及び変形例を選択的に組み合わせることは本開示に含まれている。
 以下では、巻回型の電極体14が有底円筒形状の外装缶16に収容された円筒形電池を例示するが、電池の外装体は円筒形の外装缶に限定されず、例えば、角形の外装缶(角形電池)や、金属層及び樹脂層を含むラミネートシートで構成された外装体(ラミネート電池)であってもよい。また、電極体は複数の正極と複数の負極がセパレータを介して交互に積層された積層型の電極体であってもよい。
 図1は、実施形態の一例である非水電解質二次電池10の断面を模式的に示す図である。図1に示すように、非水電解質二次電池10は、巻回型の電極体14と、非水電解質と、電極体14及び非水電解質を収容する外装缶16とを備える。電極体14は、正極11、負極12、及びセパレータ13を有し、正極11と負極12がセパレータ13を介して渦巻き状に巻回された巻回構造を有する。外装缶16は、軸方向一方側が開口した有底円筒形状の金属製容器であって、外装缶16の開口は封口体17によって塞がれている。以下では、説明の便宜上、電池の封口体17側を上、外装缶16の底部側を下とする。
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、ニトリル類、アミド類、及びこれらの2種以上の混合溶媒等が用いられる。非水溶媒は、これら溶媒の水素原子の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。非水溶媒の一例としては、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、及びこれらの混合溶媒が挙げられる。電解質塩には、例えば、LiPF等のリチウム塩が使用される。非水電解質は、液体電解質に限定されず、固体電解質であってもよい。
 電極体14を構成する正極11、負極12、及びセパレータ13は、いずれも帯状の長尺体であって、渦巻状に巻回されることで電極体14の径方向に交互に積層される。負極12は、リチウムの析出を防止するために、正極11よりも一回り大きな寸法で形成される。即ち、負極12は、正極11よりも長手方向及び幅方向(短手方向)に長く形成される。セパレータ13は、少なくとも正極11よりも一回り大きな寸法で形成され、正極11を挟むように2枚配置される。電極体14は、溶接等により正極11に接続された正極リード20と、溶接等により負極12に接続された負極リード21とを有する。
 電極体14の上下には、絶縁板18,19がそれぞれ配置されている。図1に示す例では、正極リード20が絶縁板18の貫通孔を通って封口体17側に延び、負極リード21が絶縁板19の外側を通って外装缶16の底部側に延びている。正極リード20は封口体17の内部端子板23の下面に溶接等で接続され、内部端子板23と電気的に接続された封口体17の天板であるキャップ27が正極端子となる。負極リード21は外装缶16の底部内面に溶接等で接続され、外装缶16が負極端子となる。
 外装缶16は、上述の通り、軸方向一方側が開口した有底円筒形状の金属製容器である。外装缶16と封口体17の間にはガスケット28が設けられ、電池内部の密閉性及び外装缶16と封口体17の絶縁性が確保される。外装缶16には、側面部の一部が内側に張り出した、封口体17を支持する溝入部22が形成されている。溝入部22は、外装缶16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。封口体17は、溝入部22と、封口体17に対して加締められた外装缶16の開口端部とにより、外装缶16の上部に固定されている。
 封口体17は、電極体14側から順に、内部端子板23、下弁体24、絶縁部材25、上弁体26、及びキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば、円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で接続され、各々の周縁部の間には絶縁部材25が介在している。電池に異常が発生して内圧が上昇すると、下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断することにより、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
 以下、正極11、負極12、及びセパレータ13について、特に正極11について詳説する。
 [正極]
 図2は、正極11の断面図である。図2に示すように、正極11は、正極芯材30と、正極芯材30の表面に形成された正極合剤層31とを備える。正極芯材30には、アルミニウム、アルミニウム合金など正極11の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極芯材30の一例は、厚みが10~20μmのアルミニウム又はアルミニウム合金の箔である。正極合剤層31は、正極活物質、導電剤、及び結着剤を含み、正極芯材30の両面に形成されることが好ましい。
 正極合剤層31に含まれる導電剤としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛、カーボンナノチューブ、カーボンナノファイバー、グラフェン等の炭素材料が例示できる。導電剤の含有量は、例えば、正極活物質100質量部に対して0.01~10質量部であり、好ましくは0.05~5質量部である。
 正極合剤層31に含まれる結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等の含フッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド、アクリル樹脂、ポリオレフィン等が例示できる。また、これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩、ポリエチレンオキシド(PEO)等が併用されてもよい。結着剤の含有量は、例えば、正極活物質100質量部に対して0.1~10質量部であり、好ましくは0.5~5質量部である。
 正極合剤層31には、正極活物質として、粒子状のリチウム含有遷移金属複合酸化物が含まれている。リチウム含有遷移金属複合酸化物は、Liの他に、Co、Mn、Ni、Al等を含有する複合酸化物である。リチウム含有遷移金属複合酸化物を構成する金属元素は、例えばMg、Al、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Sn、Sb、W、Pb、及びBiから選択される少なくとも1種である。中でも、Co、Ni、及びMnから選択される少なくとも1種を含有することが好ましい。好適な複合酸化物の一例としては、Ni、Co、Mnを含有する複合酸化物、Ni、Co、Alを含有する複合酸化物が挙げられる。
 正極合剤層31は、正極活物質として、粒子形状が互いに異なる2種類のリチウム含有遷移金属複合酸化物粒子を含有し、かつ正極芯材30側に形成された第1層31aと、第1層31a上に形成された第2層31bとを有する。本開示の目的を損なわない範囲で、正極合剤層31には第3の層が含まれていてもよいが、正極合剤層31は、正極芯材30上に直接形成された下層である第1層31aと、第1層31a上に直接形成された第2層31bとを含む二層構造であることが好ましい。第1層31aと第2層31bには、上記2種類のリチウム含有遷移金属複合酸化物粒子がそれぞれ含有されているか、又は2種類の複合酸化物粒子が含有され、その混合比が各層で異なっている。
 正極合剤層31の厚みは、例えば、正極芯材30の片側で50~150μmである。第1層31aの厚みは、第2層31bの厚みより大きくてもよいが、好ましくは第2層31bの厚み以下である。第1層31aと第2層31bの厚み比を正確に求めることは容易ではないため、正極合剤層31に占める各層の割合は質量比により評価される。なお、第2層31bは、第1層31aの全域を覆い、正極芯材30上における各層の面積は実質的に同じである。正極合剤層31に占める第1層31aの割合は、50質量%以下であることが好ましい。
 正極合剤層31は、上記2種類のリチウム含有遷移金属複合酸化物粒子として、非凝集粒子である第1のリチウム含有遷移金属複合酸化物粒子(第1の複合酸化物粒子)と、平均粒径が50nm~2μmの一次粒子が凝集してなる二次粒子である第2のリチウム含有遷移金属複合酸化物粒子(第2の複合酸化物粒子)とを含有する。第1層31aは少なくとも第1の複合酸化物粒子を含有し、第2層31bは少なくとも第2の複合酸化物粒子を含有する。
 正極合剤層31には、正極活物質として、第1及び第2の複合酸化物粒子のみが含有されていてもよく、本開示の目的を損なわない範囲で第3のリチウム含有遷移金属複合酸化物粒子が含有されていてもよい。第3のリチウム含有遷移金属複合酸化物粒子の一例としては、後述する粒径の条件を満たさない複合酸化物粒子が挙げられる。正極活物質の含有率は、例えば、正極合剤層31の総質量に対して90質量%以上であり、第1層31aと第2層31bで同じであってもよく、異なっていてもよい。
 正極合剤層31における導電剤、結着剤の種類と含有率は、第1層31aと第2層31bで同じであってもよく、異なっていてもよい。本実施形態では、第1層31aと第2層31bにおいて、同種の導電剤が用いられ、導電剤の含有率が実質的に同じである。また、第1層31aと第2層31bにおいて、同種の結着剤が用いられ、結着剤の含有率が実質的に同じである。
 第1の複合酸化物粒子の体積基準のメジアン径(以下、「D50」という場合がある)は、2~10μmであり、好ましくは3~8μmである。第2の複合酸化物粒子のD50は、10~30μmであり、好ましくは12~20μmである。D50は、体積基準の粒度分布において頻度の累積が粒径の小さい方から50%となる粒径を意味する。複合酸化物粒子の粒度分布は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製、MT3000II)を用い、水を分散媒として測定できる。
 第1の複合酸化物粒子は、内部に粒界を有さない粒子であって、例えば、単結晶の一次粒子である。複合酸化物粒子の結晶性は、走査イオン顕微鏡を用いて確認できる。なお、非凝集粒子である第1の複合酸化物粒子には、5個以下の一次粒子が含まれていてもよい。本明細書において、非凝集粒子とは、内部に粒界を有さない1つの一次粒子で構成される粒子、及び5個以下の一次粒子で構成される粒子を意味するものとする。
 第2の複合酸化物粒子は、平均粒径が50nm~2μm、好ましくは500nm~2μmの一次粒子が多数凝集してなる二次粒子である。第2の複合酸化物粒子には、一次粒子の粒界が多数存在する。一次粒子は、第2の複合酸化物粒子を走査型電子顕微鏡(SEM)で観察することにより確認できる。なお、複数の一次粒子は、第2の複合酸化物粒子の合成後の粉砕時、正極合剤スラリーの調製時など、強い力が作用したときでもバラバラにならない強さで互いに固着している。
 第2の複合酸化物粒子を構成する一次粒子の平均粒径は、粒子断面のSEM画像を解析することにより求められる。例えば、正極11を樹脂中に埋め込み、クロスセクションポリッシャ(CP)加工により断面を作製し、この断面をSEMで撮影する。SEM画像から、ランダムに30個の一次粒子を選択して粒界を観察し、30個の一次粒子それぞれの外接円の直径を求め、その平均値を平均粒径とする。
 各リチウム含有遷移金属複合酸化物粒子は、後述する実施例に記載の方法で合成できる。第1の複合酸化物粒子は、例えば、第2の複合酸化物粒子を合成する場合よりも、Ni、Co、Mn、Al等を含む前駆体(金属複合水酸化物)を合成する際に使用するアルカリ性水溶液のpHを高くすることにより合成できる。或いは、アルカリ性水溶液のpHを高くする代わりに、又はこれに加えて、前駆体の焼成温度を高くすることにより合成できる。
 第1の複合酸化物粒子を合成する際のアルカリ性水溶液の好適なpHの一例は10~11であり、焼成温度の好適な一例は950~1100℃である。第2の複合酸化物粒子を合成する際には、例えば、pHが9~10のアルカリ性水溶液を用い、焼成温度を950℃以下にする。
 各リチウム含有遷移金属複合酸化物粒子は、例えば、空間群R-3mに属する六方晶の結晶構造を有する複合酸化物で構成され、好ましくはLiNiCoMn(0.3<x<0.6、x+y+z=1)、又はLiNiCoAl(0.8<x<0.95、x+y+z=1)を主成分として構成される。ここで、主成分とは、複合酸化物粒子を構成する成分のうち最も質量が多い成分を意味する。なお、各複合酸化物粒子の組成は、互いに同じであってもよく、異なっていてもよい。
 正極合剤層31は、上述のように、少なくとも第1の複合酸化物粒子を含有する第1層31aと、少なくとも第2の複合酸化物粒子を含有する第2層31bとを含む二層構造を有する。第1層31aにおける第1の複合酸化物粒子の含有量は、第1層31aに含有される正極活物質の総質量に対して80質量%以上であり、実質的に100質量%であってもよい。
 非凝集粒子である第1の複合酸化物粒子は、二次粒子である第2の複合酸化物粒子と比べて正極11の製造工程で粒子割れが発生し難い。そのため、第1の複合酸化物粒子が正極芯材30に食い込み、正極芯材30と正極合剤層31の接触面積が増加する。したがって、第1の複合酸化物粒子を正極合剤層31の下層である第1層31aに80質量%以上存在させることで、正極芯材30と正極合剤層31の間の電気抵抗が低減する結果、電池の出力特性が向上すると考えられる。
 第1層31aには、正極活物質として、第2の複合酸化物粒子が含有されていてもよい。但し、その含有量は、第1層31aに含有される正極活物質の総質量に対して20質量%以下とする必要がある。第1層31aの正極活物質に占める第1の複合酸化物粒子の割合が80質量%を下回ると、正極芯材30と正極合剤層31の間の電気抵抗の低減効果が得られず、出力特性の向上を図ることができない。
 正極合剤層31に占める第1層31aの割合は、正極合剤層31の総質量に対して5質量%以上が好ましく、10質量%以上がより好ましい。第1層の割合を5質量%以上、又は10質量%以上とすることで、正極芯材30と正極合剤層31の間の電気抵抗が効果的に低減され、電池の出力特性が改善される。第1層31aの割合の上限値は特に限定されないが、高容量化の観点から、正極合剤層31の総質量に対して50質量%が好ましい。
 正極合剤層31に占める第1層31aの好適な割合は、5~50質量%であり、より好ましくは10~50質量%である。即ち、第1層31aと第2層31bの質量比は、10:90~50:50であることが好ましい。第1層31aと第2層31bの質量比が当該範囲内であれば、正極合剤層31の高い充填密度と、電池の優れた出力特性を両立することが容易になる。
 第2層31bには、正極活物質として、第1の複合酸化物粒子が含有されていてもよい。但し、その含有量は、第2層31bに含有される正極活物質の総質量に対して50質量%以下であることが好ましい。第2層31bにおける第2の複合酸化物粒子の含有量は、第2層31bに含有される正極活物質の総質量に対して50質量%以上であることが好ましい。即ち、第2層31bにおける第1の複合酸化物粒子と第2の複合酸化物粒子の質量比は、50:50~0:100であることが好ましい。第2層31bにおける第2の複合酸化物粒子の含有量は、80質量%以上であってもよく、実質的に100質量%であってもよい。第2層31bに第2の複合酸化物粒子を多く添加することで、正極合剤層31の充填密度が高くなり、電池の高容量化を図ることができる。
 正極11は、正極芯材30上に正極活物質、導電剤、及び結着剤等を含む正極合剤スラリーを塗布し、塗膜を乾燥させた後、圧縮して正極合剤層31を正極芯材30の両面に形成することにより作製できる。正極合剤スラリーには、例えば、正極活物質の種類が異なる2種類のスラリーが用いられる。正極活物質として第1の複合酸化物粒子のみを含有する第1の正極合剤スラリーを正極芯材30上に塗布した後、その塗膜上に、正極活物質として第2の複合酸化物粒子のみを含有する第2の正極合剤スラリーを塗布することにより、第1層31aと第2層31bを含む二層構造の正極合剤層31を形成できる。
 [負極]
 負極12は、負極芯材と、負極芯材の表面に形成された負極合剤層とを備える。負極芯材には、銅、銅合金などの負極12の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極芯材の一例は、厚みが5~15μmの銅又は銅合金の箔である。負極合剤層は、負極活物質及び結着剤を含み、負極芯材の両面に形成されることが好ましい。負極合剤層の厚みは、例えば、負極芯材の片側で30~150μmである。負極12は、負極芯材上に負極活物質、結着剤等を含む負極合剤スラリーを塗布し、塗膜を乾燥させた後、圧縮して負極合剤層を負極芯材の両面に形成することにより作製できる。
 負極合剤層には、負極活物質として、例えば、リチウムイオンを可逆的に吸蔵、放出する炭素系活物質が含まれる。好適な炭素系活物質は、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛(MAG)、黒鉛化メソフェーズカーボンマイクロビーズ(MCMB)等の人造黒鉛などの黒鉛である。また、負極活物質には、Si及びSi含有化合物の少なくとも一方で構成されるSi系活物質が用いられてもよく、炭素系活物質とSi系活物質が併用されてもよい。
 負極合剤層に含まれる結着剤には、PTFE、PVdF等の含フッ素樹脂、PAN、ポリイミド、アクリル樹脂、ポリオレフィン、スチレン-ブタジエンゴム(SBR)などを用いることができる。また、負極合剤層には、CMC又はその塩、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)などが含まれていてもよい。結着剤の含有量は、例えば、負極活物質100質量部に対して0.1~10質量部であり、好ましくは0.5~5質量部である。また、負極合剤層には、カーボンブラック、アセチレンブラック、ケッチェンブラック等の導電剤を添加してもよい。
 [セパレータ]
 セパレータ13には、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン、セルロースなどが好適である。セパレータ13は、単層構造であってもよく、複層構造を有していてもよい。また、セパレータ13の表面には、アラミド樹脂等の耐熱性の高い樹脂層が形成されていてもよい。
 セパレータ13と正極11及び負極12の少なくとも一方との界面には、無機物のフィラーを含むフィラー層が形成されていてもよい。無機物のフィラーとしては、例えばTi、Al、Si、Mg等の金属元素を含有する酸化物、リン酸化合物などが挙げられる。フィラー層は、当該フィラーを含有するスラリーを正極11、負極12、又はセパレータ13の表面に塗布して形成することができる。
 以下、実施例により本開示をさらに詳説するが、本開示はこれらの実施例に限定されるものではない。
 <実施例1>
 [非凝集粒子(第1のリチウム含有遷移金属複合酸化物粒子)の合成]
 硫酸ニッケルと、硫酸コバルトと、硫酸マンガンを所定の割合で混合し、pH10~11のアルカリ性水溶液中で均一に混合して前駆体を合成した。次に、当該前駆体と炭酸リチウムを混合し、1000℃の温度で15時間以上焼成した後、焼成物を粉砕することにより、非凝集粒子である第1のリチウム含有遷移金属複合酸化物粒子を得た。当該粒子の組成、粒径は下記の通りである。
   組成:LiNi0.5Co0.2Mn0.3
   D50:4.5μm
 [二次粒子(第2のリチウム含有遷移金属複合酸化物粒子)の合成]
 上記アルカリ性水溶液のpHを9~10、焼成温度を900℃にそれぞれ変更したこと以外は、第1のリチウム含有遷移金属複合酸化物粒子の場合と同様にして、多数の一次粒子が凝集してなる二次粒子(第2のリチウム含有遷移金属複合酸化物粒子)を得た。当該粒子の組成、粒径は下記の通りである。
   組成:LiNi0.5Co0.2Mn0.3
   一次粒子の平均粒径:1.6μm
   二次粒子のD50:14.1μm
 [正極の作製]
 N-メチル-2-ピロリドン(NMP)中で、非凝集粒子である第1のリチウム含有遷移金属複合酸化物と、アセチレンブラック(AB)と、平均分子量が約110万のポリフッ化ビニリデン(PVdF)とを、98:1:1の質量比で混合し、固形分濃度が70質量%の第1合剤スラリーを調製した。また、第1のリチウム含有遷移金属複合酸化物の代わりに、二次粒子である第2のリチウム含有遷移金属複合酸化物を用いたこと以外は、第1合剤スラリーを調製する場合と同様にして、第2合剤スラリーを調製した。
 第1合剤スラリーをアルミニウム箔からなる正極芯材の両面に塗布し、続いて、第2合剤スラリーを第1合剤スラリーの塗膜上に塗布して、塗膜を乾燥、圧縮(線圧3000N/m)した後、所定の電極サイズに切り取って、正極芯材の両面に、下層(第1層)と上層(第2層)を含む二層構造を有する正極合剤層が形成された正極を作製した。なお、各合剤スラリーは、下層と上層の質量比が1:1となるように塗布した。
 [負極の作製]
 負極活物質として、95質量部の黒鉛と、5質量部のSiOで表される酸化ケイ素との混合物を用いた。100質量部の負極活物質と、1質量部のカルボキシメチルセルロース(CMC)と、水とを混合し、さらに、固形分で1.2質量部のスチレン-ブタジエンゴム(SBR)のディスパージョンを混合して、負極合剤スラリーを調製した。次に、当該負極合剤スラリーを銅箔からなる負極芯材の両面に塗布し、塗膜を乾燥、圧縮した後、所定の電極サイズに切り取って、負極芯材の両面に負極合剤層が形成された負極を作製した。
 [非水電解液の調製]
 エチレンカーボネート(EC)とジメチルカーボネート(DMC)を、1:3の体積比(25℃)で混合した。100質量部の混合溶媒に、ビニレンカーボネート(VC)を5質量部添加し、LiPFを1mol/Lの濃度となるように溶解させて、非水電解液を調製した。
 [電池の作製]
 上記正極及び上記負極にリード端子をそれぞれ取り付け、セパレータを介して正極及び負極を渦巻き状に巻回することにより、巻回型の電極体を作製した。当該電極体を有底円筒形状の外装缶に収容し、負極リードの外装缶の底部内面に溶接し、正極リードを封口体の内部端子板に溶接した。その後、外装缶に上記非水電解質を注入し、外装缶の開口縁部を封口体にかしめ固定して、電池容量2500mAhの非水電解質二次電池を作製した。
 <実施例2>
 正極の作製において、上層と下層の質量比が90:10になるように各合剤スラリーの塗布量を変更したこと以外は、実施例1と同様にして、正極及び非水電解質二次電池を作製した。
 <比較例1>
 正極の作製において、正極芯材上に、第2合剤スラリーを塗布してから、第1合剤スラリーを塗布したこと以外は、実施例1と同様にして正極及び非水電解質二次電池を作製した。
 <比較例2>
 正極の作製において、正極芯材上に、第2合剤スラリーを塗布してから、第1合剤スラリーを塗布したこと以外は、実施例2と同様にして正極及び非水電解質二次電池を作製した。
 <比較例3>
 正極の作製において、第2合剤スラリーのみを用いて正極合剤層を形成したこと以外は、実施例1と同様にして正極及び非水電解質二次電池を作製した。
 <比較例4>
 正極の作製において、第1合剤スラリーのみを用いて正極合剤層を形成したこと以外は、実施例1と同様にして正極及び非水電解質二次電池を作製した。
 <比較例5>
 非凝集粒子(第1のリチウム含有遷移金属複合酸化物粒子)と、二次粒子(第2のリチウム含有遷移金属複合酸化物粒子)とを1:1の質量比で混合したものと、ABと、PVdFとを、98:1:1の質量比で混合し、分散媒としてNMPを適量加えて、固形分濃度が70質量%の正極合剤スラリーを調製した。この正極合剤スラリーのみを用いて正極合剤層を形成したこと以外は、実施例1と同様にして正極及び非水電解質二次電池を作製した。
 実施例及び比較例の各正極、各電池について、下記の方法で性能評価を行った。評価結果を表1に示す。
 [正極合剤層の充填密度]
 正極の厚みと質量を測定して正極合剤層の充填密度を算出した。
 [出力特性]
 電池の出力特性は直流抵抗(DCR)により評価した。初期充放電後の電池を、0.2Itの電流値で電池電圧が4.2Vになるまで定電流充電を行った。さらに、4.2Vで電流が0.05Itになるまで定電圧充電を行った。その後、1.0Itの電流値で10秒間放電して、放電による電圧の降下量を測定し、下記式にてDCRを求めた。
   DCR(mΩ)=(電圧の降下量(mV)/電流値(A))
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例の電池はいずれも、比較例の電池と比べてDCRが低く、出力特性に優れる。また、実施例の正極では合剤層の高い充填密度が確保されている。実施例と比較例1~3より、下層の正極活物質に非凝集粒子である第1の複合酸化物粒子を用いることで、電池のDCRが低減することが理解される。非凝集粒子は正極の圧縮工程で粒子割れが発生し難いため、下層に非凝集粒子を添加することで、非凝集粒子が芯材に食い込み、合剤層と芯材の間の電気抵抗が低減した結果、DCRが低く抑えられたと考えられる。
 また、実施例と比較例2~4より、正極活物質に二次粒子である第2の複合酸化物粒子を用いることで、合剤層の充填密度が高くなることが理解される。二次粒子は正極の圧縮工程で粒子割れが発生しやすいので、二次粒子を用いた場合、粒子同士の隙間が割れた粒子によって閉塞することにより、充填密度が高くなると推察される。言い換えると、二次粒子を用いない場合は、合剤層の充填密度が低下し、電池の高容量化を図ることができない。なお、比較例4より、充填密度が低くなると、下層に非凝集粒子を添加した場合でもDCRが上昇する傾向が見られる。
 また、実施例2より、合剤層の総質量に対する下層(非凝集粒子を含有する下層)の質量比が10%以上であれば、良好な出力特性を確保できることが理解される。実施例1と比較例5より、非凝集粒子と二次粒子を単純混合して単層構造の合剤層を形成した場合は、高い充填密度は得られるものの、出力特性が大きく低下する。この場合、実施例の場合と比較して合剤層と芯材の間の電気抵抗を十分に低減できなかった結果、DCRが上昇したと推察される。
 10 非水電解質二次電池、11 正極、12 負極、13 セパレータ、14 電極体、16 外装缶、17 封口体、18,19 絶縁板、20 正極リード、21 負極リード、22 溝入部、23 内部端子板、24 下弁体、25 絶縁部材、26 上弁体、27 キャップ、28 ガスケット、30 正極芯材、31 正極合剤層、31a 第1層、31b 第2層

Claims (4)

  1.  正極芯材と、前記正極芯材の表面に形成された正極合剤層とを備える非水電解質二次電池用正極であって、
     前記正極合剤層は、正極活物質として、体積基準のメジアン径が2~10μmの非凝集粒子である第1のリチウム含有遷移金属複合酸化物粒子と、平均粒径が50nm~2μmの一次粒子が凝集してなり、体積基準のメジアン径が10~30μmの二次粒子である第2のリチウム含有遷移金属複合酸化物粒子とを含有し、かつ前記正極芯材側に形成された第1層と、前記第1層上に形成された第2層とを有し、
     前記第1層は、少なくとも前記第1のリチウム含有遷移金属複合酸化物粒子を含有し、当該第1のリチウム含有遷移金属複合酸化物粒子の含有量は、前記第1層に含有される正極活物質の総質量に対して80質量%以上であり、
     前記第2層は、少なくとも前記第2のリチウム含有遷移金属複合酸化物粒子を含有する、非水電解質二次電池用正極。
  2.  前記第2層における前記第1のリチウム含有遷移金属複合酸化物粒子と前記第2のリチウム含有遷移金属複合酸化物粒子の質量比は、50:50~0:100である、請求項1に記載の非水電解質二次電池用正極。
  3.  前記正極合剤層に占める前記第1層の割合は、10~50質量%である、請求項1又は2に記載の非水電解質二次電池用正極。
  4.  請求項1~3のいずれか一項に記載の正極と、
     負極と、
     非水電解質と、
     を備える、二次電池。
PCT/JP2022/038615 2021-10-22 2022-10-17 非水電解質二次電池用正極及び非水電解質二次電池 WO2023068229A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021173274 2021-10-22
JP2021-173274 2021-10-22

Publications (1)

Publication Number Publication Date
WO2023068229A1 true WO2023068229A1 (ja) 2023-04-27

Family

ID=86059275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038615 WO2023068229A1 (ja) 2021-10-22 2022-10-17 非水電解質二次電池用正極及び非水電解質二次電池

Country Status (1)

Country Link
WO (1) WO2023068229A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737576A (ja) 1993-07-22 1995-02-07 Matsushita Electric Ind Co Ltd 非水電解液二次電池およびその正極活物質の製造法
JP2018045998A (ja) 2016-09-18 2018-03-22 貴州振華新材料有限公司 球形又は類球形リチウムイオン電池の正極材料、製造方法及び応用
WO2018150843A1 (ja) * 2017-02-14 2018-08-23 パナソニックIpマネジメント株式会社 非水電解質二次電池
JP2020053386A (ja) 2018-09-21 2020-04-02 株式会社田中化学研究所 二次電池用正極活物質及びその製造方法
WO2022044935A1 (ja) * 2020-08-28 2022-03-03 三洋電機株式会社 非水電解質二次電池用正極及び非水電解質二次電池
JP2022112207A (ja) * 2021-01-21 2022-08-02 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737576A (ja) 1993-07-22 1995-02-07 Matsushita Electric Ind Co Ltd 非水電解液二次電池およびその正極活物質の製造法
JP2018045998A (ja) 2016-09-18 2018-03-22 貴州振華新材料有限公司 球形又は類球形リチウムイオン電池の正極材料、製造方法及び応用
WO2018150843A1 (ja) * 2017-02-14 2018-08-23 パナソニックIpマネジメント株式会社 非水電解質二次電池
JP2020053386A (ja) 2018-09-21 2020-04-02 株式会社田中化学研究所 二次電池用正極活物質及びその製造方法
WO2022044935A1 (ja) * 2020-08-28 2022-03-03 三洋電機株式会社 非水電解質二次電池用正極及び非水電解質二次電池
JP2022112207A (ja) * 2021-01-21 2022-08-02 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池

Similar Documents

Publication Publication Date Title
WO2022044935A1 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
JP7324120B2 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
JP7317526B2 (ja) 非水電解質二次電池
WO2021172010A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2021132115A1 (ja) 二次電池用電極、及び二次電池
WO2021039751A1 (ja) 非水電解質二次電池
WO2021059857A1 (ja) 非水電解質二次電池
JPWO2020066255A1 (ja) 二次電池用正極及び二次電池
WO2021241027A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2021024789A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2023068229A1 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
WO2023074427A1 (ja) 非水電解質二次電池
WO2024024364A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2023276479A1 (ja) 非水電解質二次電池用正極および非水電解質二次電池
WO2023204077A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2023053582A1 (ja) 二次電池用正極、及びそれを用いた二次電池
WO2023100766A1 (ja) 非水電解質二次電池
WO2023181848A1 (ja) 非水電解質二次電池
WO2023189467A1 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2021220626A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2023189507A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2023100748A1 (ja) 非水電解質二次電池
WO2021171842A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2022070898A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2023276591A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883533

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023554678

Country of ref document: JP

Kind code of ref document: A