WO2024020957A1 - 背光模组及其制造方法、显示装置 - Google Patents

背光模组及其制造方法、显示装置 Download PDF

Info

Publication number
WO2024020957A1
WO2024020957A1 PCT/CN2022/108730 CN2022108730W WO2024020957A1 WO 2024020957 A1 WO2024020957 A1 WO 2024020957A1 CN 2022108730 W CN2022108730 W CN 2022108730W WO 2024020957 A1 WO2024020957 A1 WO 2024020957A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
backlight module
emitting unit
packaging structure
Prior art date
Application number
PCT/CN2022/108730
Other languages
English (en)
French (fr)
Inventor
王肖
张冰
高亮
齐琪
孙吉伟
Original Assignee
京东方科技集团股份有限公司
合肥京东方瑞晟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方瑞晟科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280002414.0A priority Critical patent/CN117795401A/zh
Priority to PCT/CN2022/108730 priority patent/WO2024020957A1/zh
Publication of WO2024020957A1 publication Critical patent/WO2024020957A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a backlight module, a manufacturing method thereof, and a display device.
  • a backlight module is an indispensable part of the display device.
  • a backlight module generally includes: a substrate, a plurality of light-emitting units located on one side of the substrate, a backplane located on one side of the substrate, and a driving circuit board located on the side of the backplane away from the substrate.
  • the driving circuit board can be bound and connected to the substrate through connectors, and is used to light multiple light-emitting units on the substrate.
  • the backplane is a curved backplane
  • the structure in the current backlight module (such as the driver circuit board) is prone to peeling due to the state of the curved surface, resulting in poor product yield.
  • a backlight module, its manufacturing method, and a display device are provided.
  • the technical solution is as follows:
  • a backlight module is provided, and the backlight module includes:
  • a substrate having a light-emitting area and a binding area sequentially arranged along a first direction;
  • a plurality of light-emitting units are located on one side of the substrate and in the light-emitting area.
  • Each light-emitting unit is rectangular, and the orthographic projection of each light-emitting unit on the substrate includes two opposite long sides and two The short side, the extending direction of the long side of each light-emitting unit intersects with the binding side, and the binding side is the side of the substrate where the binding area is provided;
  • a backplane located on the other side of the substrate where the light-emitting unit is not provided;
  • a plurality of first connectors are arranged at intervals along the second direction, and one end of the plurality of first connectors is bound and connected to the binding area, and the second direction intersects the first direction;
  • At least three drive circuit boards are arranged at intervals along the second direction, and each of the drive circuit boards is bound and connected to the other ends of at least two of the first connectors;
  • a plurality of second connectors are arranged at intervals along the second direction, and every two adjacent drive circuit boards are coupled through a second connector.
  • the back plate is a curved back plate, and the curvature radius of the curved back plate is between 700 mm and 2000 mm.
  • the orthographic projection of each light-emitting unit on the substrate is rectangular, and the substrate is rectangular;
  • the angle between the extension direction of the long side of each light-emitting unit and the binding side is greater than or equal to the target angle and less than or equal to 90 degrees.
  • the target angle is the diagonal of the rectangular substrate in a flat state. The angle with the bound edge.
  • the angle between the extension direction of the long side of each light-emitting unit and the binding side is 90 degrees, and the plurality of light-emitting units are arranged in an array.
  • the at least three drive circuit boards are arranged at equal intervals.
  • the binding area is divided into at least three binding sub-areas along the second direction;
  • the number of the binding sub-regions is the same as the number of the first connectors, and each drive circuit board is bound and connected to a corresponding binding sub-region through at least one first connector.
  • the backlight module includes: four drive circuit boards, and each drive circuit board is connected to a target number of adjacent first connectors connected to the binding area, and the target number is greater than or equal to 1.
  • the backlight module further includes: a plurality of packaging structures corresponding to the plurality of light-emitting units;
  • Each packaging structure is located on the side of a corresponding light-emitting unit away from the substrate and covers the light-emitting unit, and the ratio of the length to the height of each packaging structure is greater than or equal to the first ratio and less than or equal to the second ratio;
  • each packaging structure on the substrate is circular
  • the length of each packaging structure is the diameter of the contact surface between the packaging structure and the substrate
  • the height of each packaging structure is the distance between the packaging structure and the substrate. The distance between the vertex of the substrate and the substrate.
  • the first ratio is 1, and the second ratio is 4.5.
  • each package structure is 2 mm, and the height of each package structure is 0.5 mm.
  • the surface of the packaging structure away from the substrate is a curved surface.
  • the material of the packaging structure includes: a protective glue material with high thixotropy, and the material of the packaging structure is a transparent material.
  • the backlight module further includes: a reflective layer;
  • the reflective layer is located on one side of the substrate and has a plurality of openings corresponding to the plurality of light-emitting units. Each light-emitting unit is located in a corresponding opening, and each opening is located on the substrate.
  • the orthographic projections are located within the projection of a package structure on the substrate, and the edge of each package structure is located on the side of the reflective layer away from the substrate;
  • the material of the reflective layer and the material of the packaging structure are of the same type.
  • the material of the reflective layer and the packaging structure are both silicone resin materials.
  • the material of the reflective layer includes: white ink.
  • the drive circuit board includes a printed circuit board
  • the first connection member includes a flip-chip film binding member
  • the second connection member includes a flexible flat cable.
  • the light-emitting unit is a sub-millimeter light-emitting diode or a micro light-emitting diode.
  • the first direction and the second direction are perpendicular to each other.
  • a manufacturing method of a backlight module is provided for manufacturing the backlight module as described in the above aspect, and the method includes:
  • a substrate having a light-emitting area and a binding area sequentially arranged along a first direction;
  • a plurality of light-emitting units are formed on one side of the substrate and in the light-emitting area.
  • Each light-emitting unit is rectangular, and the orthographic projection of each light-emitting unit on the substrate includes two opposite long sides and two oppositely arranged long sides.
  • a plurality of second connecting members are formed and arranged at intervals along the second direction, and each two adjacent drive circuit boards are coupled through one second connecting member.
  • a display device which includes: a power supply component, and the backlight module as described in the above aspect;
  • the power supply component is coupled to the backlight module and used to power the backlight module.
  • Figure 1 is a schematic structural diagram of a backlight module provided by an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of another backlight module provided by an embodiment of the present disclosure.
  • Figure 3 is a schematic structural diagram of yet another backlight module provided by an embodiment of the present disclosure.
  • Figure 4 is a partial structural schematic diagram of a backlight module provided by an embodiment of the present disclosure.
  • Figure 5 is a schematic diagram of the pullout force test results of a first connector provided by an embodiment of the present disclosure
  • Figure 6 is a schematic structural diagram of yet another backlight module provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic cross-sectional view of the structure shown in Figure 6;
  • Figure 8 is a schematic structural diagram of yet another backlight module provided by an embodiment of the present disclosure.
  • Figure 9 is a schematic structural diagram of yet another backlight module provided by an embodiment of the present disclosure.
  • Figure 10 is a schematic structural diagram of yet another backlight module provided by an embodiment of the present disclosure.
  • Figure 11 is a schematic structural diagram of a thrust test of a light-emitting unit provided by an embodiment of the present disclosure
  • Figure 12 is a schematic diagram of a thrust test structure of a packaging structure provided by an embodiment of the present disclosure.
  • Figure 13 is a schematic diagram of a packaging structure provided by an embodiment of the present disclosure when the backplane is in a curved state;
  • Figure 14 is a schematic diagram of a thrust test structure of another packaging structure provided by an embodiment of the present disclosure.
  • Figure 15 is a schematic diagram of a thrust test structure of yet another package structure provided by an embodiment of the present disclosure.
  • Figure 16 is a schematic structural diagram of yet another backlight module provided by an embodiment of the present disclosure.
  • Figure 17 is a flow chart of a manufacturing method of a backlight module provided by an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a display device provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a backlight module provided by an embodiment of the present disclosure. As shown in Figure 1, the backlight module includes:
  • the substrate 01 has a light-emitting area A1 and a bonding area B1 arranged sequentially along the first direction X1.
  • the plurality of light-emitting units 02 are located on one side of the substrate 01 and located in the light-emitting area A1.
  • Each light-emitting unit 02 is a rectangle, and its orthographic projection on the substrate 01 may include two opposite long sides and two short sides, and the extension direction Y1 of the long side of each light-emitting unit 02 intersects with the binding side, that is, Not parallel.
  • the binding edge is the side of the substrate 01 where the binding area B1 is provided.
  • the backlight module recorded in the embodiment of the present disclosure also includes: a backplane 03.
  • the backplane 03 is located on the side of the substrate 01 where the light emitting element 02 is not provided.
  • the back plate 03 can be used to carry and fix the substrate 01 , improve the mechanical strength of the substrate, and keep the substrate in a specific state.
  • the plurality of light-emitting units 02 on the substrate 01 can be lit to emit light.
  • the base plate 01 can be fixed on the back plate 03 through an adhesive layer.
  • multiple light-emitting units 02 can be disposed on one surface of the substrate 01 through a crystal bonding process.
  • the extension direction Y1 of the long sides of the light-emitting units 02 is parallel to the binding edge.
  • the electrodes of the light-emitting unit 02 will inevitably be stressed. The greater the stress, the lower the light-emitting unit 02 will be. The smaller the thrust. In this way, the electrodes of the light-emitting unit 02 are separated from the pads on the substrate 01 , causing the light-emitting unit 02 to peel off from the substrate 01 .
  • stress refers to: when the object is deformed due to external factors (such as the bending external force when the back plate 03 is in a curved surface state), the internal resistance to this external factor is generated in an attempt to restore the object from the deformed position to the pre-deformation position. positional force.
  • Thrust represents the strength and firmness of the connection between an object and other parts in contact with it. The greater the thrust, the greater the connection strength and firmness between the object and other parts in contact with it.
  • the electrode (positive electrode or negative electrode) of the light-emitting unit 02 closest to the edge area of the backplane is subject to stress.
  • the maximum can reach 1*10 7 Newton/square meter (N/m 2 ), so the thrust of the light-emitting unit 02 there is smaller.
  • the angle ⁇ between the extension direction Y1 of the long side and the binding side can be flexibly adjusted. Angle, so that when the substrate 01 provided with multiple light-emitting units 02 is matched with a curved backplane, the stress on the electrodes of the light-emitting unit 02 is effectively reduced, thereby increasing the thrust of the light-emitting unit 02 and preventing the electrodes of the light-emitting unit 02 from breaking. Peeling. That is, the risk of peeling off the light emitting unit 02 can be reliably reduced.
  • the backlight module recorded in the embodiment of the present disclosure also includes: a plurality of first connectors 04 , at least three drive circuit boards 05 , and a plurality of second connectors 06 .
  • the plurality of first connecting members 04 are arranged at intervals along the second direction X2, and one end of the plurality of first connecting members 04 is bound and connected to the binding area B1.
  • the second direction X2 intersects the first direction X1, that is, is not parallel.
  • the second direction X2 shown in FIG. 1 is perpendicular to the first direction X1.
  • the at least three driving circuit boards 05 are arranged at intervals along the second direction X2, and each driving circuit board 05 is bound and connected to the other ends of at least two first connectors 04. That is, the at least three driving circuit boards 05 can be bound and connected to the binding area B1 through the plurality of first connectors 04 .
  • the binding area B1 of the substrate 01 may include a plurality of binding electrodes (not shown in the figure) arranged at intervals along the second direction X2.
  • One end of the plurality of first connectors 04 can be bonded and connected to some of the binding electrodes in the binding area B1 of the substrate 01
  • the driving circuit board 05 can be connected to the binding area B1 of the substrate 01 through at least two first connectors 04 Multiple bonding electrodes in bonding connections.
  • every two adjacent drive circuit boards 05 are coupled through a second connector 06, that is, multiple second connectors 06 can be arranged at intervals along the second direction X2.
  • signals can be transmitted between each driving circuit board 05 through the second connection member 06 .
  • Each driving circuit board 05 can transmit a signal to the binding area B1 through the first connection 04 , and the signal transmitted to the binding area B1 can be used to light up a plurality of light-emitting units 02 provided on one side of the substrate 01 .
  • the backlight module only includes one or at most two drive circuit boards 05 .
  • the drive circuit board 05 needs to be placed on the side of the substrate 01 where the light-emitting unit 02 is not provided, that is, the bending radius of the first connecting member 04 is larger, and the first connector 04 has a larger bending radius. Connector 04 is severely stressed. In this way, the first connecting member 04 is easily separated from the binding area B1, that is, the first connecting member 04 has a greater risk of peeling off.
  • each driving circuit board 05 is bent close to the back plate 03
  • the distance between the end with the greatest degree and the back plate 03 is relatively large.
  • the required length of the first connector 04 for binding and connecting the driving circuit board 05 to the binding area B1 is longer.
  • the length here refers to the overall length of the first connecting member 04 (ie, the length from one end to the other end of the first connecting member 04).
  • each drive circuit board 05 is closer to the backplane 03, and the first connector 04 does not need to be bent more.
  • Large angle, that is, the bending radius can be smaller.
  • the bending radius of the first connecting member 04 may be equivalent to the bending radius of the first connecting member 04 when implementing a planar backplane (here, with reference to Figure 3, the bending radius refers to: A connector 04 is folded from the other end of the binding connection driving circuit board 05 to the other end of the binding connection binding area B1).
  • the force on the first connecting member 04 can be reduced, the separation of the first connecting member 04 from the binding area B1 can be avoided, and the risk of the first connecting member 04 peeling off can be reduced.
  • the distance between the end of each drive circuit board 05 that is closest to the back plate 03 and the most curved degree and the back plate 03 is smaller.
  • the drive circuit board 05 is The required length of the first connector 04 for binding connection of the board 05 to the binding area B1 may be smaller.
  • the distance between each driving circuit board 05 and the back plate 03 is smaller, that is, a smaller gap may exist. In this way, it is also ensured that the overall thickness of the backlight module can be thinner, that is, the overall thickness of the backlight module can be reduced.
  • inventions of the present disclosure provide a backlight module.
  • the backlight module includes a substrate with a light-emitting area and a binding area, a plurality of light-emitting units located on one side of the substrate, a backplane located on the other side of the substrate, and at least three units bound and connected to the binding area through a first connector.
  • a driver circuit board Moreover, the extending direction of the long side of each light-emitting unit is not parallel to the binding side of the binding area.
  • the angle between the long side extension direction of the light-emitting unit and the binding side of the binding area that is, the arrangement of the light-emitting units
  • the risk of the light-emitting unit peeling off the substrate.
  • the risk of the first connecting piece peeling off from the binding area when the backplane is in a curved surface state can be reduced, that is, the risk of the driving circuit board being disconnected from the binding area can be reduced.
  • the back plate 03 may be a curved back plate, and the curvature of the curved back plate may be between 700 mm -1 and 2000 mm -1 .
  • it can be 1500mm -1 .
  • Curvature is generally used as a measure of curved backing to indicate the degree of curvature.
  • Display products using curved backplanes can also be called curved displays. Compared with traditional flat displays, curved displays are more in line with the physiological curvature of the human eye, which can greatly improve the user's sense of wrapping and immersion when watching, allowing users to enjoy the full experience whether they are playing games, watching movies or doing daily work. Better visual experience.
  • the light emitting unit 02 recorded in the embodiment of the present disclosure may be a light emitting diode (LED).
  • the light-emitting diode LED can be a sub-millimeter light-emitting diode (LED), which can also be called a mini-Mini_LED. Or, Micro_LED.
  • FIG. 3 is a schematic structural diagram of yet another backlight module provided by an embodiment of the present disclosure.
  • at least three drive circuit boards 05 recorded in the embodiment of the present disclosure can be arranged at equal intervals. That is, in the second direction X2, the distance d1 between every two adjacent drive circuit boards 05 may be a fixed distance.
  • the equally spaced arrangement means that when the curved backplane is not implemented, that is, when the backplane 03 is not in a curved state, at least three drive circuit boards 05 are arranged at equal intervals. Moreover, the equally spaced arrangement here may mean that when an odd number of drive circuit boards 05 are included, the respective drive circuit boards 05 are equally spaced. If an even number of drive circuit boards 05 are included, the rectangular substrate 01 can be divided into left and right parts according to the central axis in the first direction X1 when the rectangular substrate 01 is in a flat state.
  • An even number of driving circuit boards 05 can be symmetrically distributed in the left and right parts (that is, each part includes the same number of driving circuit boards 05), and the driving circuit boards 05 bound and connected in the binding area B1 of each part can be arranged at equal intervals. cloth, that is, the spacing is a fixed spacing, and the spacing between the two nearest drive circuit boards 05 located in the left and right parts may not be the fixed spacing.
  • binding area B1 can be divided into at least three binding sub-areas B11 along the second direction X2.
  • the number of binding sub-regions B11 is the same as the number of first connectors 04.
  • Each drive circuit board 05 can be bound and connected to a corresponding binding sub-region B11 through at least one first connector 04.
  • each binding sub-region B11 may be equal.
  • at least three binding sub-regions B11 are sequentially arranged along the second direction X2.
  • each driving circuit board 05 can be connected to a target number of adjacent first connectors 04 connected to the binding area B1, and the target number can be greater than or equal to 1.
  • the backlight module shown includes four driving circuit boards 05 .
  • the binding area B1 includes four binding sub-areas B11 arranged sequentially along the second direction X2.
  • each drive circuit board 05 is bound and connected to the corresponding binding sub-region B11 through three adjacent first connectors 04 , that is, the target number is 3.
  • the backlight module may include 12 first connectors 04 arranged at intervals, and three second connectors 06 arranged at intervals.
  • the drive circuit board 05 recorded in the embodiment of the present disclosure may include: a printed circuit board assembly (PCBA).
  • the first connection member 04 may include a chip on film (COF) binding member.
  • the second connection member 06 may include: a flexible flat cable (FFC).
  • the driving circuit board 05 may also include other types of structures, such as flexible printed circuit boards (FPC).
  • the first connector 04 may also include other types of binding connectors, such as chip on glass (COG) binding components.
  • the second connector 06 may also include other types of structures, such as conductive cables.
  • Figure 4 shows a partial structural cross-sectional view of a backlight module. It includes the cross-sectional portion observed from the back and front of the back plate 03, as well as the partially enlarged portion of the edge.
  • each drive circuit board 05 is equivalent.
  • the corresponding position may refer to: the position of the driving circuit board 05 before bending the back plate 03 (that is, the back plate 03 is in a non-bent state) and the position of the driving circuit board 05 after bending the back plate 03 (that is, the back plate 03 is in a bent state).
  • Circuit board 05 is in a similar position.
  • the required bending radius of the first connector 04 (such as COF) can reach about 1.5 millimeters (mm) , before approaching the bending back plate 03, the required bending radius of the first connector 04 when the back plate 03 is in a flat state is 2 mm. In this way, the stress on the first connecting member 04 can be effectively reduced, and the risk of the first connecting member 04 peeling off can be reduced.
  • the embodiment of the present disclosure conducted a COF pullout force test on a backlight module including two PCBAs and a backlight module including four PCBAs. After being placed simultaneously for 30 days, the pull-out force test of the COF was performed.
  • the test results can be referred to Table 1 and Figure 5 below. It should be noted that due to limitations of the testing equipment, the backplate 03 in the backlight module needs to be removed before the pullout force test, so that the substrate 01 is in a flat state. That is, the pull-out force test is conducted when the substrate 01 is not equipped with a curved back plate and is in a flat state.
  • the abscissa in Figure 5 refers to the 12 COFs in the structure shown in Figure 3, and the ordinate refers to the pull-out force value in grams force/cm (gf/cm).
  • Table 1 and Figure 5 also show the pull-out force of the FOG end and FOB end COF respectively.
  • the FOG end refers to the end of COF bound to substrate 01
  • the FOB end refers to the other end of COF bound to PCBA.
  • Pulling force refers to the combined force of the deformation resistance that an object overcomes during the pulling process and the friction with other structures. The greater the pulling force of the object, the smaller the stress on the object, and the smaller the risk of the object peeling off.
  • the average pulling force (average, Avg) of 12 COFs on the FOG side is: 1070gf/cm; the pulling force of 12 COFs on the FOB side The average force is: 1075gf/cm.
  • the average pullout force of 12 COFs on the FOG end is 1223gf/cm; the average pullout force of 12 COFs on the FOB end is 1225gf/cm.
  • the average value here refers to the value obtained by dividing the sum of the pulling forces of 12 COFs by 12.
  • the pull-out force of the COF increases by about fifteen percent (15%) in the backlight module with 4 PCBAs. Furthermore, it can be seen that by arranging the backlight module to include three or more driving circuit boards 05 , the embodiment of the present disclosure can effectively reduce the risk of peeling off of the first connecting member 04 .
  • FIG. 6 is a schematic structural diagram of yet another backlight module provided by an embodiment of the present disclosure.
  • Figure 7 is a cross-sectional view of the structure shown in Figure 6 in the MM' direction. It can be seen from FIG. 6 and FIG. 7 that the backlight module provided by the embodiment of the present disclosure may also include: multiple packaging structures 07 and a reflective layer 08 .
  • the plurality of packaging structures 07 correspond to the plurality of light-emitting units 02 in a one-to-one correspondence.
  • Each packaging structure 07 is located on a side of a corresponding light-emitting unit 02 away from the substrate 01 and covers the light-emitting unit 02 . That is, the orthographic projection of each light-emitting unit 02 on the substrate 01 is located within the orthographic projection of the corresponding packaging structure 07 on the substrate 01 , and the packaging structure 07 protrudes to the side away from the light-emitting unit 02 to cover the light-emitting unit.
  • the orthographic projection of each packaging structure 07 on the substrate 01 may be circular. Of course, in some other embodiments, the orthographic projection of the packaging structure 07 on the substrate 01 may also be in other shapes, such as an ellipse.
  • the reflective layer 08 may be located on one side of the substrate 01 and have a plurality of openings K1 corresponding to at least one-to-one correspondence with the plurality of light-emitting units 02 .
  • Each light-emitting unit 02 may be located within a corresponding opening K1
  • the orthographic projection of each opening K1 on the substrate 01 may be located within the projection of a packaging structure 07 on the substrate 01, and the edge of each packaging structure 07 They may all be located on the side of the reflective layer 08 away from the substrate 01 . That is, the reflective layer 08 may be located between the light emitting unit 02 and the packaging structure 07 , and the orthographic projection of the edge of the packaging structure 07 on the substrate 01 is located within the orthographic projection of the reflective layer 08 on the substrate 01 .
  • the size of the opening K1 of the reflective layer 08 may be larger than the size of the orthographic projection of the light emitting unit 02 on the substrate 01 , and may be smaller than the size of the orthographic projection of the packaging structure 07 on the substrate 01 .
  • the surface of the packaging structure 07 away from the substrate 01 is a curved surface.
  • the cross-section of the packaging structure 07 can be circular.
  • the surface of the packaging structure 07 away from the substrate 01 has a convex lens shape and is arranged on the light emitting side of the light-emitting unit 02 .
  • the packaging structure 07 covers the light-emitting unit 02 .
  • the cross-section of the packaging structure 07 may also be in other shapes such as hemispherical or polygonal.
  • the packaging structure 07 can be used to protect the light emitting unit 02 .
  • the packaging structure 07 can be used to prevent external water vapor from intruding into the protection unit 02 and causing damage to the light-emitting unit 02, and to prevent the light-emitting unit 02 from being corroded; and to prevent the light-emitting unit 02 from being collided with other devices on the substrate 01 or the backplane 03.
  • the reflective layer 08 can be used to reflect the light emitted by the light-emitting unit 02 to ensure light emission from the light-emitting side.
  • the material of the packaging structure 07 needs to be a transparent material to avoid reducing the light extraction efficiency of the light emitting unit 02 .
  • the material of the packaging structure 07 can be transparent silicone.
  • the reflective layer 08 needs to have high reflective properties, that is, it needs to be made of materials with high reflective properties.
  • the material of the reflective layer 08 may include silver or white ink.
  • the extension direction Y1 of the long sides of the light-emitting unit 02 is parallel to the binding side, the electrodes of the light-emitting unit 02 may break and peel off. Furthermore, the packaging structure 07 may be peeled off.
  • the extension direction Y1 of the long side of each light-emitting unit 02 not to be parallel to the binding side, on the basis of reducing the risk of peeling of the light-emitting unit 02, the risk of peeling of the packaging structure 07 can be reduced.
  • FIG. 8 is a schematic structural diagram of yet another backlight module provided by an embodiment of the present disclosure. It can be seen from FIG. 1 and FIG. 8 that the orthographic projection of each light-emitting unit 02 recorded in the embodiment of the present disclosure on the substrate 01 can be in a rectangular shape, and the substrate 01 can be in a rectangular shape.
  • each light-emitting unit 02 on the substrate 01 may have two opposite long sides and two opposite short sides, and the long sides are perpendicular to the short sides.
  • the substrate 01 has two opposite first sides and two opposite second sides, and the first side and the second side can intersect; the substrate 01 has diagonals in a flat state.
  • the substrate 01 has a rectangular shape.
  • the substrate 01 is a square.
  • the orthographic projection of each light-emitting unit 02 on the substrate 01 may also be in other shapes, such as a parallelogram.
  • the substrate 01 may also have other shapes. For example, trapezoid.
  • the angle ⁇ between the extension direction Y1 of the long side of each light-emitting unit 02 and the binding side may be greater than or equal to the target angle and less than or equal to 90 degrees.
  • the target angle may be the angle ⁇ between the diagonal of the rectangular substrate 01 and the binding edge in the flat state.
  • the target angle that is, the angle ⁇ can be 45 degrees.
  • the target angle that is, the included angle ⁇ is less than 90 degrees. For example, it can be 30 degrees.
  • the angle ⁇ between the extending direction Y1 of the long side of each light-emitting unit 02 and the binding side can be determined by diagonally dividing the upper and lower triangles in the substrate 01 shown in FIG. 8 (the illustration is filled with black part).
  • the angle ⁇ between the extension direction Y1 of the long side of each light-emitting unit 02 and the binding side may both be 90 degrees. That is, the extension direction Y1 of the long side of each light-emitting unit 02 is perpendicular to the binding side. Compared with the current solution in which the extension direction Y1 of the long side of the light-emitting unit 02 is parallel to the binding side, this is equivalent to rotating the entire light-emitting unit 02 by 90 degrees.
  • multiple light emitting units 02 may be arranged in an array. That is, the backlight module includes multiple rows and columns of light-emitting units 02 arranged in rows and columns as shown in FIG. 9 .
  • the first direction X1 and the second direction X2 may be perpendicular to each other.
  • the first direction X1 may refer to the row direction
  • the second direction X2 may refer to the column direction.
  • the substrate 01 of the backlight module according to the embodiment of the present disclosure can also include other electronic components on the same side as the light-emitting unit 02, such as a micro integrated circuit (IC) chip ( Referred to as driver chip) or sensor chip.
  • IC micro integrated circuit
  • driver chip sensor chip
  • the orthographic projection of each electronic component on the substrate is a rectangle, and the orthographic projection of each electronic component on the substrate includes two opposite long sides and two short sides.
  • the extending direction of the long side of each electronic component is in line with The binding sides intersect; specifically, the extending direction of the long side of each electronic component is parallel to the extending direction of the long side of the light-emitting unit.
  • the driver chip can control the brightness of the light-emitting unit 02 based on the signal transmitted from the driver circuit board 05 to the binding area B1.
  • One driver chip can be used to control multiple light-emitting units 02.
  • the number of driving chips may be smaller than the number of light-emitting units 02 .
  • the driver chip may be located in the opening K1 of the reflective layer 08 .
  • a packaging structure 07 may also be provided on the side of the driving chip away from the substrate 01.
  • the packaging structure 07 may cover the driving chip to protect the driving chip.
  • the orthographic projection of the driver chip on the substrate 01 may be in a rectangular shape, such as a square as shown in Figure 6 .
  • FIG. 9 also schematically shows multiple binding electrodes in the binding area B1.
  • the divided areas can refer to Figure 10, which includes a total of 9 areas (labeled 1 to 9 in the figure) located in the light-emitting area A1.
  • Each area can test three sites, and one site represents the setting of a light-emitting unit 02. position, correspondingly, a total of 27 sites can be tested.
  • the two backlight modules tested can be two backlight modules randomly selected from multiple backlight modules produced in the same batch.
  • Figure 11 shows the thrust test results of the lighting unit 02.
  • Figure 12 shows the thrust test results of the packaging structure 07 on one side of the light-emitting unit 02.
  • both Figures 11 and 12 respectively show that the current extension direction of the long side of the light-emitting unit 02 is parallel to the binding side (ie, the conventional arrangement), and the extension direction of the long side of the light-emitting unit 02 in the embodiment of the present disclosure is vertical.
  • the test results on the binding edge ie, the arrangement of the embodiment of the present disclosure.
  • "-1" and "-2" in Figures 11 and 12 respectively represent two backlight modules.
  • the abscissa refers to the positions of 27 sites.
  • the ordinate refers to the thrust, and the unit is gram force (gf).
  • gf gram force
  • the average thrust of the light-emitting unit 02 is approximately 115gf.
  • the average thrust of the light-emitting unit 02 is approximately 128.75gf.
  • the thrust of light-emitting unit 02 is increased by approximately 12%.
  • the risk of peeling off of the light-emitting unit 02 can be effectively reduced. That is, in the embodiment of the present disclosure, by adjusting the arrangement of the light-emitting units 02 , the light-emitting units 02 can be prevented from peeling off.
  • the average value here refers to the value obtained by dividing the sum of the thrust forces of the light-emitting unit 02 at 27 positions by 27.
  • the average thrust of the package structure 07 is approximately 1322gf.
  • the average thrust of the packaging structure 07 is approximately 1564gf.
  • the thrust force of package structure 07 increased by approximately 18%.
  • the risk of peeling of the packaging structure 07 can be effectively reduced. That is, in the embodiment of the present disclosure, by adjusting the arrangement of the light-emitting units 02, the packaging structure 07 can also be prevented from peeling off.
  • the average value here refers to the value obtained by dividing the sum of the thrust forces of the package structure 07 at 27 positions by 27.
  • Figure 7 also identifies the length L1 and height H1 of the packaging structure 07.
  • the length L1 of each packaging structure 07 is the diameter of the contact surface between the packaging structure 07 and the substrate 01 .
  • the height H1 of each packaging structure 07 may be the distance between the vertex of the packaging structure 07 away from the substrate 01 and the substrate 01 .
  • the packaging structure 07 peeling off due to the arrangement of the light-emitting unit 02, it is also affected by the physical and chemical properties (ie, physical and/or chemical properties) of the protective glue material.
  • the package structure 07 formed is also prone to peeling under a curved surface.
  • the packaging structure 07 is also prone to peeling off in a curved surface state.
  • the material of the packaging structure 07 can also be improved and/or the size of the packaging structure 07 can be adjusted to effectively reduce the risk of peeling of the packaging structure 07 .
  • the material of the packaging structure 07 can be set to a high thixotropic protective glue material.
  • High thixotropic protective adhesive material refers to a material that can "respond" to stress changes in a short time in terms of structural performance and prevent the protective adhesive material from peeling off due to internal stress.
  • High thixotropy refers to the properties of protective adhesive materials.
  • Example of adjusting the size of the packaging structure 07 The ratio L1/H1 of the length L1 to the height H1 of each packaging structure 07 can be set to be greater than or equal to the first ratio and less than the second ratio, so as to avoid affecting the optical specifications of the product. This effectively reduces the risk of peeling of the packaging structure 07 and solves the problem of peeling of the packaging structure 07 .
  • the first ratio may be 1 and the second ratio may be 4.5. That is, 1 ⁇ L1/H1 ⁇ 4.5.
  • the maximum size of the opening K1 of the reflective layer 08 is 1.6mm, then the packaging structure 07
  • the minimum design value of the length is slightly larger than 1.6mm; and the minimum length of the packaging structure 07 actually obtained according to the manufacturing process is related to the viscosity of the material used in the packaging structure.
  • Those skilled in the art can design and produce a packaging structure with a length-to-width ratio between 1 and 4.5 based on the design requirements provided by the embodiments of the present disclosure.
  • the length L0 of each packaging structure 07 is 2.5mm, and the height H0 is generally 0.5mm; when the backplane 03 is in a curved surface state, the stress at the contact position between the packaging structure 07 and the substrate 01 is large, and the package The thrust of the structure 07 is small, which can easily cause the packaging structure 07 to peel off.
  • the ratio L1/H1 of the length L1 to the height H1 of each packaging structure 07 can satisfy the above size relationship. Thereby, the stress on the package structure 07 at the contact surface of the substrate 01 is reduced in the curved state, thereby increasing the thrust of the package structure 07 and reducing the risk of the package structure 07 peeling off.
  • Figure 13 shows the thrust diagram of the packaging structure 07 before and after the improvement.
  • the thrust force is small.
  • the thrust force has been improved.
  • the bonding strength increases and peeling is less likely to occur.
  • Figure 14 shows the test results
  • Figure 14 respectively shows the thrust of the package structure 07 in the two backlight modules with a current length of 2.5mm and a height of 0.5mm, and the length provided by the embodiment of the present disclosure is 2.0mm , the thrust of package structure 07 in two backlight modules with a height of 0.5mm.
  • “-1” and “-2” in Figure 14 respectively represent two backlight modules.
  • the abscissa refers to the positions of 27 sites.
  • the ordinate refers to the thrust, and the unit is gf.
  • the average thrust of the packaging structure 07 is approximately 1322gf.
  • the average thrust force of the packaging structure 07 can be increased to 1750gf.
  • the thrust of package structure 07 increases by approximately 32%.
  • the risk of peeling of the packaging structure 07 can be effectively reduced. That is, in the embodiment of the present disclosure, by setting the size of the packaging structure 07 to satisfy 4 ⁇ L1/H1 ⁇ 5, the packaging structure 07 can also be prevented from peeling off.
  • the average value here refers to the value obtained by dividing the sum of the thrust forces of the package structure 07 at 27 positions by 27.
  • the contact surface can be called the interface of the two phases
  • the energy required to reversibly separate the interface of the two-phase polymers can be called the adhesion work Wa.
  • the greater the adhesion power Wa the closer the two-phase polymer adheres and the less likely it is to peel off.
  • the reflective layer 08 and the packaging structure 07 can be regarded as a two-phase polymer.
  • the adhesion work Wa between the two can be increased, thereby improving the packaging structure. 07's thrust further reduces the risk of peeling of the packaging structure 07.
  • r1 and r2 respectively refer to the interfacial tension of the two-phase polymers
  • the physical and chemical properties of the reflective layer 08 and the packaging structure 07 can be set as close as possible or the same to increase the adhesion work Wa between the reflective layer 08 and the packaging structure 07 .
  • the material of the reflective layer 08 and the material of the packaging structure 07 may be made of the same type of material.
  • homologous materials refer to materials with the same or similar physical and chemical properties.
  • the material of the reflective layer 08 and the material of the packaging structure 07 may be both silicone resin materials.
  • the material of the reflective layer 08 may be a silicone resin ink.
  • the material of the reflective layer 08 is generally a fluorine resin material
  • the material of the packaging structure 07 is generally a silicone resin material.
  • the physical and chemical properties of the reflective layer 08 and the packaging structure 07 are quite different.
  • the adhesion between the packaging structure 07 and the reflective layer 08 The power is smaller.
  • the material of the reflective layer 08 by setting the material of the reflective layer 08 to a silicone resin material, the physical and chemical properties of the reflective layer 08 and the packaging structure 07 can be similar, thereby improving the adhesion function between the packaging structure 07 and the reflective layer 08 . Wa.
  • the material of the reflective layer 08 may not be changed, but the material of the packaging structure 07 may be set to a fluorine-based resin material. This may also improve the adhesion function Wa between the packaging structure 07 and the reflective layer 08 . .
  • Figure 15 shows the test results
  • Figure 15 respectively shows the thrust of the packaging structure 07 in the two backlight modules in which the reflective layer 08 and the packaging structure 07 are made of non-homologous materials, as well as the reflective layer provided by the embodiment of the present disclosure.
  • 08 and package structure 07 are made of the same material as the thrust force of package structure 07 in two backlight modules.
  • “-1” and “-2” in Figure 15 respectively represent two backlight modules.
  • the abscissa refers to the positions of 27 sites.
  • the ordinate refers to the thrust, and the unit is gf.
  • the reflective layer 08 and the packaging structure 07 are made of non-homologous materials, and the average thrust of the packaging structure 07 is about 1322gf.
  • the adhesion work between the reflective layer 08 and the packaging structure 07 is increased, so that the average thrust of the packaging structure 07 is Can be upgraded to 1778gf.
  • the thrust force of package structure 07 is increased by approximately 35%.
  • the risk of peeling of the packaging structure 07 can be effectively reduced.
  • the packaging structure 07 can also be prevented from peeling off.
  • the average value here refers to the value obtained by dividing the sum of the thrust forces of the package structure 07 at 27 positions by 27.
  • the embodiments of the present disclosure can improve the structural peeling problem in the backlight module through the following multiple design methods:
  • the material of the reflective layer 08 and the material of the packaging structure 07 are of the same type.
  • the reflective layer 08 and the packaging structure 07 are both made of silicone resin materials.
  • the contact surface tension between the reflective layer 08 and the packaging structure 07 can be reduced, and the adhesion work between the reflective layer 08 and the packaging structure 07 can be increased, thereby increasing the thrust of the packaging structure 07 and further reducing the risk of peeling of the packaging structure 07 risk.
  • the light-emitting unit 02 can be prevented from extinguishing due to peeling, thereby improving the product yield of the backlight module.
  • FIG. 16 shows a schematic structural diagram of yet another backlight module.
  • the backlight module recorded in the embodiment of the present disclosure may include: a substrate 01 having a light-emitting area A1 and a binding area B1.
  • a reflective layer 08 is located on one side of the substrate 01 and has a plurality of openings (not shown in the figure).
  • There are a plurality of light-emitting units 02 (only one is schematically shown in the figure) located on one side of the substrate 01 and located in the light-emitting area A1. Each light-emitting unit 02 is located in an opening K1 of the reflective layer 08.
  • Each packaging structure 07 is located on the side of the light-emitting unit 02 away from the substrate 01.
  • the edge of each packaging structure 07 is located on the side of the reflective layer 08 away from the substrate 01, and covers the corresponding one light-emitting unit 02 (only the packaging structure is shown in the figure. 07 orthographic projection on substrate 01).
  • At least three drive circuit boards 05 are bound and connected to the binding area B1 through a plurality of first connectors 04 .
  • the second connector 06 couples every two adjacent drive circuit boards 05 .
  • the first connector 04 shown in FIG. 16 is a COF
  • the second connector 06 is an FFC
  • the drive circuit board 05 is a PCBA.
  • the hole diameter on the side of the package structure 07 close to the substrate 01 is 2.0 mm.
  • the extending direction of the long side of the light emitting unit 02 and the binding side are perpendicular to each other.
  • Each light-emitting unit 02 may include a positive electrode (positive, P) and a negative electrode (negative, N) arranged at intervals.
  • the positive electrode P and the negative electrode N can be arranged at intervals along the first direction X1.
  • inventions of the present disclosure provide a backlight module.
  • the backlight module includes a substrate with a light-emitting area and a binding area, a plurality of light-emitting units located on one side of the substrate, a backplane located on the other side of the substrate, and at least three units bound and connected to the binding area through a first connector.
  • a driver circuit board Moreover, the extending direction of the long side of each light-emitting unit is not parallel to the binding side of the binding area.
  • the angle between the long side extension direction of the light-emitting unit and the binding side of the binding area that is, the arrangement of the light-emitting units
  • the angle between the long side extension direction of the light-emitting unit and the binding side of the binding area that is, the arrangement of the light-emitting units
  • the risk of the light-emitting unit peeling off the substrate.
  • the risk of the first connector peeling off from the binding area when the backplane is in a curved surface state can be reduced, that is, the risk of the drive circuit board being disconnected from the binding area can be reduced.
  • Each structure in the backlight module provided by the embodiment of the present disclosure is not prone to peeling problems, and the product yield is good.
  • Figure 17 is a flow chart of a manufacturing method for a backlight module provided by an embodiment of the present disclosure. This method can be used to manufacture the backlight module as shown in the above figures. As shown in Figure 17, the method may include:
  • Step 1701 Provide a substrate.
  • the provided substrate 01 may have a light-emitting area A1 and a binding area B1 sequentially arranged along the first direction X1.
  • the provided substrate 01 may be a glass substrate.
  • the provided substrate 01 may also be a flexible substrate, such as a substrate made of flexible material polyimide.
  • Step 1702 Form multiple light-emitting units on one side of the substrate and in the light-emitting area.
  • each light-emitting unit 02 formed is rectangular, and the orthographic projection of each light-emitting unit 02 on the substrate 01 may include two opposite long sides and two Short side. And the extension direction Y1 of the long side of each light-emitting unit 02 and the binding side may intersect, that is, they may not be parallel.
  • the binding edge is the side of the substrate 01 where the binding area B1 is provided. It can be seen from the description of the above embodiments that such an arrangement can reduce the risk of peeling off of the light-emitting unit 02 and the packaging structure 07 .
  • Step 1703 Fix the backplane on the other side of the substrate where the light-emitting unit is not provided.
  • a back plate 03 can be formed on the other side of the substrate 01 where the light emitting unit 02 is not provided.
  • One side of the substrate 01 and the other side of the substrate 01 are opposite sides.
  • Step 1704 Form a plurality of first connecting members spaced apart along the second direction, and bind and connect one end of the plurality of first connecting members to the binding area.
  • the second direction X2 and the first direction X1 in the embodiment of the present disclosure may intersect.
  • the embodiment of the present disclosure can also form a plurality of first connecting members 04 arranged at intervals along the second direction X2, and bind and connect one end of the plurality of first connecting members 04 to the binding area B1.
  • Step 1705 Form at least three drive circuit boards spaced apart along the second direction, and bind and connect each drive circuit board to the other ends of at least two first connectors.
  • the embodiment of the present disclosure may also form three or more drive circuit boards 05 arranged at intervals along the second direction X2, and combine at least three drive circuit boards 05 with a plurality of first drive circuit boards 05 .
  • the other end of connector 04 is bound and connected.
  • at least three drive circuit boards 05 are bound and connected to the binding area B1 through a plurality of first connectors 04 .
  • At least three driving circuit boards 05 can transmit signals to the binding area B1 to light up a plurality of light-emitting units 02 located on one side of the substrate 01 .
  • Step 1706 Form a plurality of second connectors spaced apart along the second direction, and couple every two adjacent drive circuit boards through a second connector.
  • the embodiment of the present disclosure can also form a plurality of second connectors 06 arranged at intervals along the second direction X2 to couple every two adjacent drive circuit boards 05 so that each drive circuit Signal transmission can be achieved between boards 05.
  • step 1703 can be executed after steps 1704 to 1706 are executed in sequence. That is, the first connector 04 , the drive circuit board 05 , and the second connector 06 are finally bent to the surface of the back plate 03 away from the substrate 01 , and then assembled together with components such as optical films and plastic frames to form a backlight module.
  • embodiments of the present disclosure provide a method for manufacturing a backlight module.
  • a plurality of light-emitting units may be formed on one side of the substrate, a backplane may be formed on the other side of the substrate, and at least three drive circuit boards may be bound and connected to the binding area of the substrate through the first connector. Furthermore, the extending direction of the long side of each formed light-emitting unit is not parallel to the binding side of the binding area.
  • the angle between the long side extension direction of the light-emitting unit and the binding side of the binding area that is, the arrangement of the light-emitting units
  • the angle between the long side extension direction of the light-emitting unit and the binding side of the binding area that is, the arrangement of the light-emitting units
  • the risk of the light-emitting unit peeling off the substrate.
  • the risk of the first connecting piece peeling off from the binding area when the backplane is in a curved surface state can be reduced, that is, the risk of the driving circuit board being disconnected from the binding area can be reduced.
  • Each structure in the backlight module made by this method is not prone to peeling problems, and the product yield is good.
  • FIG. 18 is a schematic structural diagram of a display device provided by an embodiment of the present disclosure. As shown in Figure 18, the display device includes: a display panel 10, a power supply component J1, and a backlight module 00 provided by an embodiment of the present disclosure.
  • the power supply component J1 is coupled to the backlight module 00 and the display panel 10 respectively, and is used to provide electrical signals to the two.
  • the display panel 10 may be a curved liquid crystal display panel with the same curvature as the backplane in the backlight module 00 .
  • the backlight module 00 can be used to provide backlight for the display panel 10 .
  • the display device can be any product or component with a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator or a transparent display product.
  • a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator or a transparent display product.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance.
  • plurality refers to two or more unless expressly limited otherwise.

Abstract

一种背光模组及其制造方法、显示装置,属于显示技术领域。该背光模组包括具有发光区(A1)和绑定区(B1)的基板(01),位于基板(01)一侧的多个发光单元(02),位于基板(01)另一侧的背板(03),以及通过第一连接件(04)与绑定区(B1)绑定连接的至少三个驱动电路板(05)。并且,每个发光单元(02)的长边延伸方向与绑定区(B1)的绑定边不平行。如此,在背板(03)为曲面背板时,可以通过灵活设置发光单元(02)的长边延伸方向与绑定区(B1)的绑定边的夹角角度,降低在背板(03)处于曲面状态下,发光单元(02)从基板(01)上剥落的风险。以及,可以通过设置较多个驱动电路板(05),降低在背板(03)处于曲面状态下,第一连接件(04)从绑定区(B1)剥落的风险,即降低驱动电路板(05)与绑定区(B1)断开连接的风险。该背光模组中各结构不易发生剥落问题,产品良率较好。

Description

背光模组及其制造方法、显示装置 技术领域
本公开涉及显示技术领域,特别涉及一种背光模组及其制造方法、显示装置。
背景技术
背光模组是显示装置中不可缺少的一部分。目前,背光模组一般包括:基板,位于基板一侧的多个发光单元,位于基板一侧背板,以及位于背板远离基板一侧的一个驱动电路板。其中,驱动电路板能够通过连接件与基板绑定连接,并用于点亮基板上的多个发光单元。
但是,在背板为曲面背板时,受曲面状态影响,目前的背光模组中的结构(如,驱动电路板)易出现剥落,产品良率较差。
发明内容
提供了一种背光模组及其制造方法、显示装置,所述技术方案如下:
一方面,提供了一种背光模组,所述背光模组包括:
基板,具有沿第一方向依次排布的发光区和绑定区;
多个发光单元,位于所述基板的一侧,且位于所述发光区,每个发光单元为矩形,且每个发光单元在所述基板上的正投影包括相对的两条长边和两条短边,每个发光单元的长边的延伸方向与绑定边相交,所述绑定边为所述基板的设置绑定区的侧边;
背板,位于所述基板未设置有所述发光单元的另一侧;
多个第一连接件,沿第二方向间隔排布,且所述多个第一连接件的一端与所述绑定区绑定连接,所述第二方向与所述第一方向相交;
至少三个驱动电路板,沿所述第二方向间隔排布,且每个所述驱动电路板与至少两个所述第一连接件的另一端绑定连接;
以及,多个第二连接件,沿所述第二方向间隔排布,且每相邻两个驱动电 路板通过一个第二连接件耦接。
可选的,所述背板为曲面背板,且所述曲面背板的曲率半径位于700毫米至2000毫米之间。
可选的,每个发光单元在所述基板上的正投影呈长方形,所述基板呈矩形;
每个发光单元的长边的延伸方向与所述绑定边的夹角大于等于目标角度,且小于等于90度,所述目标角度为呈矩形的所述基板在平板状态下,其对角线与所述绑定边的夹角的角度。
可选的,每个发光单元的长边的延伸方向与所述绑定边的夹角均为90度,且所述多个发光单元阵列排布。
可选的,所述至少三个驱动电路板等间距排布。
可选的,所述绑定区沿所述第二方向划分为至少三个绑定子区域;
其中,所述绑定子区域的数目与所述第一连接件的数目相同,每个驱动电路板通过至少一个第一连接件与对应的一个绑定子区域绑定连接。
可选的,所述背光模组包括:四个驱动电路板,且每个驱动电路板均与绑定区连接的目标数量个相邻的第一连接件连接,所述目标数量大于等于1。
可选的,所述背光模组还包括:与所述多个发光单元一一对应的多个封装结构;
每个封装结构位于对应的一个发光单元远离所述基板的一侧,并覆盖所述发光单元,并且,每个封装结构的长度与高度之比大于等于第一比值,且小于等于第二比值;
其中,每个封装结构在所述基板上的正投影呈圆形,每个封装结构的长度为所述封装结构与所述基板接触面的直径,每个封装结构的高度为所述封装结构远离所述基板的顶点与所述基板的间距。
可选的,所述第一比值为1,所述第二比值为4.5。
可选的,每个封装结构的长度为2毫米,每个封装结构的高度为0.5毫米。
可选的,所述封装结构远离所述基板的表面为弧面。
可选的,所述封装结构的材料包括:具有高触变性的保护胶材料,且所述封装结构的材料为透明材料。
可选的,所述背光模组还包括:反射层;
所述反射层位于所述基板的一侧,且具有与所述多个发光单元一一对应的 多个开口,每个发光单元位于对应的一个开口内,且每个开口在所述基板上的正投影均位于一个封装结构在所述基板上的投影内,以及,每个封装结构的边缘均位于所述反射层远离所述基板的一侧;
其中,所述反射层的材料与所述封装结构的材料为同系材料。
可选的,所述反射层的材料和所述封装结构的材料均为硅系树脂材料。
可选的,所述反射层的材料包括:白色油墨。
可选的,所述驱动电路板包括:印刷电路板,所述第一连接件包括:覆晶薄膜绑定件,所述第二连接件包括:柔性扁平线缆。
可选的,所述发光单元为次毫米发光二极管或微型发光二极管。
可选的,所述第一方向与所述第二方向相互垂直。
另一方面,提供了一种背光模组的制造方法,用于制造如上述一方面所述的背光模组,所述方法包括:
提供基板,所述基板具有沿第一方向依次排布的发光区和绑定区;
在所述基板的一侧且在所述发光区中形成多个发光单元,每个发光单元为矩形,且每个发光单元在所述基板上的正投影包括相对设置的两条长边和两条短边,每个发光单元的长边的延伸方向与绑定边相交,所述绑定边为所述基板的设置绑定区的侧边;
在所述基板未设置有发光单元的另一侧固定背板;
形成沿第二方向间隔排布的多个第一连接件,并将所述多个第一连接件的一端与所述绑定区绑定连接,所述第二方向与所述第一方向相交;
形成沿所述第二方向间隔排布的至少三个驱动电路板,并将每个所述驱动电路板与至少两个所述第一连接件的另一端绑定连接;
形成沿所述第二方向间隔排布的多个第二连接件,并将每相邻两个驱动电路板通过一个第二连接件耦接。
又一方面,提供了一种显示装置,所述显示装置包括:供电组件,以及如上述方面所述的背光模组;
其中,所述供电组件与所述背光模组耦接,并用于为所述背光模组供电。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种背光模组的结构示意图;
图2是本公开实施例提供的另一种背光模组的结构示意图;
图3是本公开实施例提供的又一种背光模组的结构示意图;
图4是本公开实施例提供的一种背光模组的部分结构示意图;
图5是本公开实施例提供的一种第一连接件拉拔力测试结果示意图;
图6是本公开实施例提供的再一种背光模组的结构示意图;
图7是图6所示结构的截面示意图;
图8是本公开实施例提供的再一种背光模组的结构示意图;
图9是本公开实施例提供的再一种背光模组的结构示意图;
图10是本公开实施例提供的再一种背光模组的结构示意图;
图11是本公开实施例提供的一种发光单元的推力测试结构示意图;
图12是本公开实施例提供的一种封装结构的推力测试结构示意图;
图13是本公开实施例提供的一种封装结构在背板处于曲面状态下的示意图;
图14是本公开实施例提供的另一种封装结构的推力测试结构示意图;
图15是本公开实施例提供的又一种封装结构的推力测试结构示意图;
图16是本公开实施例提供的再一种背光模组的结构示意图;
图17是本公开实施例提供的一种背光模组的制造方法流程图;
图18是本公开实施例提供的一种显示装置的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
图1是本公开实施例提供的一种背光模组的结构示意图。如图1所示,该背光模组包括:
基板01。该基板01具有沿第一方向X1依次排布的发光区A1和绑定(bonding)区B1。
多个发光单元02。该多个发光单元02位于基板01的一侧,且位于发光区A1。每个发光单元02为矩形,其在基板01上的正投影可以包括相对的两条长边和两条短边,且每个发光单元02的长边的延伸方向Y1与绑定边相交,即不平行。其中,如图1所示,该绑定边为基板01的设置绑定区B1的侧边。
在图1基础上,参考图2可以看出,本公开实施例记载的背光模组还包括:背板03。该背板03位于基板01的未设置有发光元件02的一侧。
基于基板01和背板03的设置位置可知,背板03可以用于承载和固定基板01,提高基板的机械强度,并保持基板处于特定状态。基板01上的多个发光单元02可以被点亮以发光。基板01可以通过粘结层固定在背板03上。
需要说明的是,多个发光单元02可以通过固晶工艺设置在基板01的一个表面,为提高固晶效率,目前发光单元02的长边的延伸方向Y1均平行于绑定边。然而,在该排布方式下,在搭配曲面背板(即,背板03为具有固定曲率的弯曲结构)时,发光单元02的电极处会不可避免的受到应力,应力越大,发光单元02的推力越小。如此,导致发光单元02的电极与基板01上的焊盘发生分离,导致发光单元02从基板01上剥落(peeling)。
其中,应力是指:物体因外因(如,背板03处于曲面状态时的弯曲外力)而形变时,其内部产生的抵抗这种外因,以试图使物体从形变后的位置恢复至形变前的位置的力。推力表征的是物体和与之接触的其他部件之间的连接强度和牢固性,推力越大表示该物体和与之接触的其他部件之间的连接强度越大、牢固性越高。经测试发现,按照相关技术的排布方式(每发光单元02的长边的延伸方向Y1与绑定边平行),最靠近背板边缘区域的发光单元02的电极(正极或负极)所受应力最大,能够达到1*10 7牛/平方米(N/m 2),从而该处的发光单元02的推力较小。
而在本公开实施例中,通过设置每个发光单元02的长边的延伸方向Y1与绑定边不平行,可以通过灵活调整长边的延伸方向Y1与绑定边之间的夹角α的角度,使得在给设置有多个发光单元02的基板01搭配曲面背板时,有效减小发光单元02的电极处所受应力,从而提升发光单元02的推力,避免发光单元02的电极断裂而剥落。即,可以可靠降低发光单元02的剥落风险。
继续参考图1和图2可以看出,本公开实施例记载的背光模组还包括:多个第一连接件04,至少三个驱动电路板05,以及多个第二连接件06。
其中,该多个第一连接件04沿第二方向X2间隔排布,且该多个第一连接件04的一端与绑定区B1绑定连接。该第二方向X2与第一方向X1相交,即不平行。图1示出的第二方向X2与第一方向X1垂直。
该至少三个驱动电路板05沿第二方向X2间隔排布,且每个驱动电路板05与至少两个第一连接件04的另一端绑定连接。即,该至少三个驱动电路板05可以通过该多个第一连接件04绑定连接于绑定区B1中。
可选的,在本公开实施例中,基板01的绑定区B1可以包括多个沿第二方向X2间隔排布的绑定电极(图中未示出)。多个第一连接件04的一端可以与基板01的绑定区B1中的部分绑定电极绑定连接,驱动电路板05可以通过至少两个第一连接件04与基板01的绑定区B1中的多个绑定电极绑定连接。
以及,每相邻两个驱动电路板05通过一个第二连接件06耦接,即多个第二连接件06可以沿第二方向X2间隔排布。
其中,各个驱动电路板05之间可以通过第二连接件06传输信号。每个驱动电路板05可以通过第一连接件04向绑定区B1传输信号,且传输至绑定区B1的信号可以用于点亮基板01一侧设置的多个发光单元02。
需要说明的是,相关技术中,为了节省成本,提高组装效率,背光模组仅包括一个或最多两个驱动电路板05。然而,在该结构基础上,在实现曲面背板时,需要将驱动电路板05设置在基板01不设置发光单元02的一侧,即第一连接件04的弯折半径较大,且第一连接件04受力较为严重。如此,第一连接件04容易与绑定区B1发生分离,即第一连接件04的剥落风险较大。并且,为尽可能的保证驱动电路板05在曲面状态下位置不变(即,相当于处于平面状态),设置数量较少的驱动电路板05时,每个驱动电路板05靠近背板03弯曲程度最大的一端距背板03的距离较大,相应的,在该距离较大处,将驱动电路板05绑定连接至绑定区B1的第一连接件04所需长度较长。此处长度是指第一连接件04的整体长度(即,第一连接件04的一端至另一端的长度)。此外,受曲面状态影响,在设置数量较少的驱动电路板05时,每个驱动电路板05与背板03之间的间距较大,即存在较大空隙。如此,还导致背光模组的整体厚度较厚。
而在本公开实施例中,通过设置三个或三个以上的驱动电路板05,在实现曲面背板时,每个驱动电路板05更贴近背板03,第一连接件04无需弯折较大角度,即弯折半径可以较小。如,在一些实施中,第一连接件04的弯折半径可 以相当于在实现平面背板时,第一连接件04的弯折半径(此处,结合图3,弯折半径是指:第一连接件04由绑定连接驱动电路板05的另一端向绑定连接绑定区B1的另一端折叠的长度)。如此,可以减小第一连接件04受力,避免第一连接件04与绑定区B1发生分离,降低第一连接件04的剥落风险。并且,因设置了较多驱动电路板05,故相对于相关技术而言,每个驱动电路板05靠近背板03弯曲程度最大的一端距背板03的距离较小,相应的,将驱动电路板05绑定连接至绑定区B1的第一连接件04所需长度可以较小。此外,在曲面状态下,相对于相关技术而言,各个驱动电路板05与背板03之间的间距较小,即可以存在较小空隙。如此,即还可以确保背光模组的整体厚度可以较薄,即可以降低背光模组的整体厚度。
综上所述,本公开实施例提供了一种背光模组。该背光模组包括具有发光区和绑定区的基板,位于基板一侧的多个发光单元,位于基板另一侧的背板,以及通过第一连接件与绑定区绑定连接的至少三个驱动电路板。并且,每个发光单元的长边延伸方向与绑定区的绑定边不平行。如此,在背板为曲面背板时,可以通过设置发光单元的长边延伸方向与绑定区的绑定边的夹角角度,即发光单元的排布方式,降低在背板处于曲面状态下,发光单元从基板上剥落的风险。以及,可以通过设置多个驱动电路板,降低在背板处于曲面状态下,第一连接件从绑定区剥落的风险,即降低驱动电路板与绑定区断开连接的风险。本公开实施例提供的背光模组中各结构不易发生剥落问题,产品良率较好。
可选的,如上述实施例记载,背板03可以为曲面背板,且曲面背板的曲率可以位于700毫米分之一(mm -1)至2000mm -1之间。如,可以为1500mm -1。曲率一般用于衡量曲面背板的标准,用于指示弯曲程度。采用曲面背板的显示产品也可以称为曲面显示器。相比于传统的平面显示器,曲面显示器更加贴合人眼的生理弧度,能够大幅提升用户观看时的包裹感和沉浸感,使得用户无论是玩游戏、看电影还是日常办公时,均能享受到较好的视觉体验。
可选的,本公开实施例记载的发光单元02可以为发光二极管(light emitting diode,LED)。且该发光二极管LED可以为次毫米发光二极管(light emitting diode,LED),也可以称为迷你Mini_LED。或,微型发光二极管Micro_LED。
可选的,图3是本公开实施例提供的又一种背光模组的结构示意图。参考图1至图3可以看出,本公开实施例记载的至少三个驱动电路板05可以等间距 排布。即,在第二方向X2上,每相邻两个驱动电路板05之间的间距d1可以均为固定间距。
需要说明的是,等间距排布是指:在未实现曲面背板时,即背板03未处于弯曲状态下,至少三个驱动电路板05等间距排布。以及,此处等间距排布可以是指在包括奇数个驱动电路板05时,各个驱动电路板05等间距排布。若包括偶数个驱动电路板05,则可以按照呈矩形的基板01在平板状态下,在第一方向X1上的中轴线将基板01划分为左右两部分。偶数个驱动电路板05可以对称分布于左右两部分中(即,每部分包括相同数量个驱动电路板05),以及每部分的绑定区B1绑定连接的各个驱动电路板05可以等间距排布,即间距为固定间距,而分别位于左右两部分且最靠近的两个驱动电路板05之间的间距可以不为该固定间距。
以及,绑定区B1可以沿第二方向X2划分为至少三个绑定子区域B11。其中,绑定子区域B11的数目与第一连接件04的数目相同,每个驱动电路板05可以通过至少一个第一连接件04与对应的一个绑定子区域B11绑定连接。
可选的,各个绑定子区域B11包括的绑定电极的个数可以相等,相应的,结合图3,可以认为是至少三个绑定子区域B11依次沿第二方向X2依次排布。
可选的,每个驱动电路板05可以与绑定区B1连接的目标数量个相邻的第一连接件04连接,目标数量可以大于等于1。
如,参考图3,其示出的背光模组包括四个驱动电路板05。相应的,绑定区B1包括沿第二方向X2依次排布的四个绑定子区域B11。并且,每个驱动电路板05均通过相邻的三个第一连接件04与对应的绑定子区域B11绑定连接,即目标数量为3。进而可知,背光模组可以包括12个间隔排布的第一连接件04,以及三个间隔排布的第二连接件06。
可选的,参考图3还可以看出,本公开实施例记载的驱动电路板05可以包括:装配印刷电路板(printed circuit board assembly,PCBA)。第一连接件04可以包括:覆晶薄膜(chip on film,COF)绑定件。第二连接件06可以包括:柔性扁平线缆(flexible flat cable,FFC)。当然,在一些其他实施例中,驱动电路板05还可以包括其他类型的结构,如柔性电路板(flexible printed circuit,FPC)。第一连接件04还可以包括其他类型的绑定连接件,如晶板接装(chip on glass,COG)绑定件。第二连接件06还可以包括其他类型结构,如导电排线。
在图3所示结构基础上,图4示出了一种背光模组的部分结构截面图。其中,包括从背板03的背面和正面所观察到的截面部分,以及边缘局部放大部分。
结合图4,在采用四个驱动电路板05(如,PCBA)基础上,弯折背板03前后,每个驱动电路板05的位置相当。位置相当可以是指:弯折背板03前(即,背板03处于非弯曲状态下)驱动电路板05所处位置与弯折背板03后(即,背板03处于弯曲状态下)驱动电路板05所处位置相近。以及,如上述实施例记载,在采用四个驱动电路板05基础上,在弯折背板03后,第一连接件04(如,COF)所需弯折半径能达到1.5毫米(mm)左右,接近弯折背板03前,背板03处于平面状态时第一连接件04所需的弯折半径2mm。如此,即可以有效减小第一连接件04所受应力,降低第一连接件04的剥落风险。
以图3所示结构为例,本公开实施例分别针对包括2个PCBA的背光模组和4个PCBA的背光模组,同时放置30天后,进行了COF的拉拔力测试。测试结果可以参考下述表1和图5。需要说明的是,受测试设备限制,在拉拔力测试之前需要将背光模组中的背板03拆卸下来,使得基板01处于平面状态。即,拉拔力测试是在基板01未搭配曲面背板,处于平面状态下进行的测试。其中,图5横坐标是指图3所示结构中的12个COF,纵坐标是指拉拔力值,单位为克力/厘米(gf/cm)。且表1和图5还分别示出了FOG端和FOB端COF的拉拔力。FOG端是指COF与基板01绑定的一端,FOB是指COF与PCBA绑定的另一端。拉拔力是指:物体在拉拔过程克服的变形抗力和与其他结构之间摩擦力的合力。物体的拉拔力越大,物体所受应力越小,物体发生剥落的风险越小。
参考表1和图5可以看出,包括2个PCBA的背光模组中,FOG端12个COF的拉拔力平均值(average,Avg)为:1070gf/cm;FOB端12个COF的拉拔力平均值为:1075gf/cm。而包括4个PCBA的背光模组中,FOG端12个COF的拉拔力平均值为:1223gf/cm;FOB端12个COF的拉拔力平均值为:1225gf/cm。此处平均值是指:12个COF的拉拔力之和除以12得到的值。基于上述测试结果可以进一步确定,相对于设置2个PCBA的背光模组而言,设置4个PCBA的背光模组中,COF的拉拔力增大了约百分之十五(15%)。进而可知,本公开实施例通过设置背光模组包括三个或三个以上驱动电路板05,可以有效降低第一连接件04发生剥落的风险。
表1
Figure PCTCN2022108730-appb-000001
可选的,图6是本公开实施例提供的又一种背光模组的结构示意图。图7是图6所示结构在MM'方向上的截面图。结合图6和图7可以看出,本公开实施例提供的背光模组还可以包括:多个封装结构07和反射层08。
其中,该多个封装结构07与多个发光单元02一一对应。每个封装结构07位于对应的一个发光单元02远离基板01的一侧,并覆盖发光单元02。即,每个发光单元02在基板01上的正投影均位于对应的一个封装结构07在基板01上的正投影内,封装结构07向远离发光单元02的一侧凸出,以包覆发光单元02。以及,每个封装结构07在基板01上的正投影呈可以圆形。当然,在一些其他实施例中,封装结构07在基板01上的正投影还可以呈其他形状,如椭圆形。
反射层08可以位于基板01的一侧,且具有至少与多个发光单元02一一对应的多个开口K1。每个发光单元02可以位于对应的一个开口K1内,且每个开口K1在基板01上的正投影可以均位于一个封装结构07在基板01上的投影内,以及,每个封装结构07的边缘可以均位于反射层08远离基板01的一侧。即,反射层08可以位于发光单元02与封装结构07之间,封装结构07的边缘在基板01上的正投影位于反射层08在基板01上的正投影内。换言之,反射层08的开口K1的尺寸可以大于发光单元02在基板01上的正投影的尺寸,且可以小于封装结构07在基板01上的正投影的尺寸。
并且,参考图7还可以看出,封装结构07远离基板01的表面为弧面,沿平行于基板01的方向,封装结构07的横截面可以呈圆形。封装结构07远离基板01的表面具有凸透镜形状,设置在发光单元02的出光侧,封装结构07包覆发光单元02。当然,在一些其他实施例中,封装结构07的横截面也可以呈半球形或多边形等其他形状。
在本公开实施例中,该封装结构07可以用于保护发光单元02。如,该封装 结构07可以用于防止外界水汽侵入保护单元02而造成发光单元02损坏,避免发光单元02被腐蚀;以及用于防止发光单元02被基板01或背板03上的其他器件碰撞。该反射层08可以用于反射发光单元02发出的光线,以确保出光侧出光。
在上述位置关系和功能介绍可知,在本公开实施例中,封装结构07的材料需要为透明材料,以避免降低发光单元02的出光效率。如,封装结构07的材料可以为透明硅胶。反射层08需要具备高反射性能,即需要采用具有高反射性能的材料制备。如,反射层08的材料可以包括:银或白色油墨等。
相关技术中,因发光单元02的长边的延伸方向Y1均平行于绑定边,故会导致发光单元02的电极断裂,发生剥落问题。进一步的,会导致封装结构07发生剥落。而通过设置每个发光单元02的长边的延伸方向Y1不平行于绑定边,在降低发光单元02发生剥落风险的基础上,即可以降低封装结构07发生剥落的风险。
可选的,图8是本公开实施例提供的又一种背光模组的结构示意图。结合图1和图8可以看出,本公开实施例记载的每个发光单元02在基板01上的正投影可以呈长方形,基板01可以呈矩形。
即,每个发光单元02在基板01上的正投影可以具有相对的两条长边,以及相对的两条短边,长边与短边垂直。基板01具有相对的两条第一边和相对的两条第二边,第一边与第二边可以相交;基板01在平板状态下,具有对角线。在第一边与第二边长度不等的情况下,基板01呈矩形。在第一边与第二边长度相等的情况下,基板01为正方形。
当然,在一些其他实施例中,每个发光单元02在基板01上的正投影也可以呈其他形状,如平行四边形。基板01也可以呈其他形状。如,梯形。
结合图1和图8,每个发光单元02的长边的延伸方向Y1与绑定边的夹角α可以大于等于目标角度,且小于等于90度。其中,目标角度可以为呈矩形的基板01在平板状态下,其对角线与绑定边的夹角γ的角度。在基板01所呈矩形为正方形,第一边与第二边长度相等时,该目标角度,即夹角γ的角度可以为45度。在基板01所呈矩形为长方形,第一边与第二边长度不等时,该目标角度,即夹角γ的角度小于90度。如,可以为30度。即,每个发光单元02的长边的延伸方向Y1与绑定边的夹角α的角度可以在图8所示基板01中,被对 角线划分后的上下两个三角形(图示填充黑色部分)内调整。
例如,参考图1和图9,在本公开实施例中,每个发光单元02的长边的延伸方向Y1与绑定边的夹角α可以均为90度。即,每个发光单元02的长边的延伸方向Y1均与绑定边垂直。相对于目前发光单元02的长边的延伸方向Y1与绑定边平行的方案而言,相当于将发光单元02整体旋转了90度。
并且,多个发光单元02可以阵列排布。即,如图9所示的按行列排布,背光模组包括多行多列个发光单元02。可选的,如上述实施例记载,第一方向X1与第二方向X2可以相互垂直。相应的,在多个发光单元02阵列排布的基础上,第一方向X1可以是指行方向,第二方向X2可以是指列方向。
此外,参考图6和图9还可以看出,本公开实施例的背光模组的基板01还可以包括与发光单元02同侧的其他电子元件,例如微型集成电路(integrated circuit,IC)芯片(简称驱动芯片)或传感器芯片。每个电子元件在基板上的正投影为矩形,且每个电子元件在所述基板上的正投影包括相对的两条长边和两条短边,每个电子元件的长边的延伸方向与绑定边相交;具体地,每个电子元件的长边的延伸方向与发光单元的长边的延伸方向平行。
其中,驱动芯片可以基于驱动电路板05传输至绑定区B1的信号,控制发光单元02的亮度,一个驱动芯片可以用于控制多个发光单元02。相应的,参考图6和图9可知,背光模组中,驱动芯片的数量可以小于发光单元02的数量。
可选的,继续结合图6和图7可知,驱动芯片可以位于反射层08所具有的开口K1内。以及,驱动芯片远离基板01的一侧也可以设置有封装结构07,封装结构07可以覆盖驱动芯片,以用于保护驱动芯片。驱动芯片在基板01上的正投影可以呈矩形,如图6所示的正方形。
在图9设置基础上,搭配曲面背板时,可以减小发光单元02的电极处所受应力,从而可以提升发光单元02的推力,降低发光单元02的电极断裂的风险,以及还可以降低封装结构07发生剥落的风险。需要说明的是,图9还示意性的示出绑定区B1中的多个绑定电极。
示例的,以包括34英寸(inch)的基板01和曲率半径为1500mm -1的曲面背板03的2个背光模组为例,分区测试不同位置处发光单元02的推力和该发光单元02远离基板01一侧的封装结构07的推力。其中,所分区域可参考图10,共包括位于发光区A1的9个区域(图中标识为1至9),每个区域可以测试三 个位点,一个位点表示一个发光单元02的设置位置,相应的,可以共测试27个位点。需要说明的是,测试的2个背光模组可以为从同一批次生产的多个背光模组中随机选择的2个背光模组。
图11示出了发光单元02的推力测试结果。图12示出了发光单元02一侧封装结构07的推力测试结果。且,图11和图12均分别示出了目前发光单元02长边的延伸方向平行于绑定边(即,常规排布方式),以及本公开实施例中发光单元02长边的延伸方向垂直于绑定边的测试结果(即,本公开实施例排布方式)。其中,图11和图12中“-1”和“-2”分别表示两个背光模组。横坐标是指27个位点的位置。纵坐标是指推力,单位为克力(gf)。一般,推力越大,剥落风险越小。反之,推力越小,剥落风险越大。
结合图11所示的测试结果可以确定:常规排布方式下,发光单元02的推力平均值约为115gf。而本公开实施例将发光单元02旋转90度后,发光单元02的推力平均值约为128.75gf。发光单元02的推力增大了约12%。相应的,可以有效降低发光单元02发生剥落的风险。即,本公开实施例通过调整发光单元02的排布方式,可以避免发光单元02发生剥落。对于每个背光模组而言,此处平均值是指:27个位置处发光单元02的推力之和除以27得到的值。
参考图12所示的测试结果可以确定:常规排布方式下,封装结构07的推力平均值约为1322gf。而本公开实施例将发光单元02旋转90度后,封装结构07的推力平均值约为1564gf。封装结构07的推力增大了约18%。相应的,可以有效降低封装结构07发生剥落的风险。即,本公开实施例通过调整发光单元02的排布方式,还可以避免封装结构07发生剥落。对于每个背光模组而言,此处平均值是指:27个位置处封装结构07的推力之和除以27得到的值。
可选的,图7还标识了封装结构07的长度L1和高度H1。其中,每个封装结构07的长度L1为封装结构07与基板01接触面的直径。每个封装结构07的高度H1可以为封装结构07远离基板01的顶点与基板01的间距。
需要说明的是,经测试发现,除发光单元02的排布方式造成封装结构07发生剥落外,受保护胶材料的物化性质(即,物理性质和/或化学性质)影响,采用保护胶材料制成的封装结构07在曲面状态下也易发生剥落。以及,受封装结构07的长度L1与高度H1比值的影响,封装结构07在曲面状态下也易发生剥落。
基于此,在本公开实施例中,还可以通过改善封装结构07的材料,和/或,调整封装结构07的尺寸,以有效降低封装结构07发生剥落的风险。
改善封装结构07的材料实施例:可以设置封装结构07的材料为高触变保护胶材料。高触变保护胶材料是指:在结构性能上可以短时“响应”应力变化,避免保护胶材料受到内应力而剥落的一种材料。高触变是指保护胶材料所具有的性能。经测试发现,在封装结构07采用具有高触变性能的保护胶材料时,封装结构07在背板03弯曲时,封装结构07的剥落风险大大降低。
调整封装结构07的尺寸实施例:可以设置每个封装结构07的长度L1与高度H1之比L1/H1大于等于第一比值,且小于第二比值,以在不影响产品的光学规格前提下,有效降低封装结构07发生剥落的风险,解决封装结构07发生剥落的问题。
例如,第一比值可以为1,第二比值可以为4.5。即,1≤L1/H1≤4.5。如,假设L1/H1=4,则结合图7,例如可以设置每个封装结构07的长度L1为2.25毫米(mm),每个封装结构07的高度H1为0.5mm。可以理解的是,在具体实施时,封装结构07的长度的最小设计值,与反射层08的开口K1的尺寸正相关,例如反射层08的开口K1的最大尺寸为1.6mm,则封装结构07的长度的最小设计值略大于1.6mm;而根据制作工艺实际得到的封装结构07的长度的最小值,与封装结构所用材料的粘度有关。本领域技术人员可以根据本公开实施例提供的设计要求,设计和制作出长度和宽度的比值在1~4.5之间的封装结构。
相关技术中,结合图7,每个封装结构07的长度L0为2.5mm,高度H0一般为0.5mm;当背板03处于曲面状态时,封装结构07与基板01接触位置处应力较大,封装结构07的推力较小,易造成封装结构07发生剥落。本公开实施例通过将每个封装结构07的长度L1设置为2mm,且不改变封装结构07的高度,可以使得每个封装结构07的长度L1与高度H1之比L1/H1满足上述大小关系,从而降低曲面状态下封装结构07在基板01接触面处所受应力,进而提升封装结构07的推力,降低封装结构07发生剥落的风险。
示例的,以图7所示改进前后的封装结构07结构为例,图13示出了改进前后封装结构07的推力示意图。参考图13,在设置每个封装结构07的长度L1为2mm,高度H1为0.5mm基础上,推力较小。在将每个封装结构07的长度由2.5mm缩小为2.0mm,高度为0.5mm基础上,推力有所提升。可参考图中箭头 指向示意。推力提升基础上,粘合力度增大,不易发生剥落。
示例的,依然以包括34英寸(inch)的基板01和曲率为1500mm -1的曲面背板03的2个背光模组,且以图9所划分区域为例,本公开实施例对调整长度L1前后的封装结构07的推力进行了测试。图14示出了测试结果,且图14分别示出了目前长度为2.5mm,高度为0.5mm的2个背光模组中封装结构07的推力,以及,本公开实施例提供的长度为2.0mm,高度为0.5mm的2个背光模组中封装结构07的推力。其中,图14中的“-1”和“-2”分别表示两个背光模组。横坐标是指27个位点的位置。纵坐标是指推力,单位为gf。
参考图14所示的测试结果可以确定:在目前封装结构07的长度L1为2.5mm基础上,封装结构07的推力平均值约为1322gf。而本公开实施例将封装结构07的长度L1缩减为2.0mm后,封装结构07的推力平均值可以提升至1750gf。封装结构07的推力增大了约32%。相应的,可以有效降低封装结构07发生剥落的风险。即,本公开实施例通过设置封装结构07尺寸满足4≤L1/H1<5,也可以避免封装结构07发生剥落。对于每个背光模组而言,此处平均值是指:27个位置处封装结构07的推力之和除以27得到的值。
另一方面,不同的两相聚合物相接触(接触面可以称为两相的界面)后,将两相聚合物的界面可逆的分离开所需的能量可以称为粘附功Wa。粘附功Wa越大,两相聚合物粘附的越紧密,越不易发生剥落问题。在此基础上,可以将反射层08与封装结构07视为两相聚合物,若要避免封装结构07与反射层08发生剥落,可以提高两者之间的粘附功Wa,从而提升封装结构07的推力,进一步降低封装结构07发生剥落的风险。粘附功Wa可以满足:Wa=r1+r2-r12。
其中,r1和r2分别是指两相聚合物各自的界面张力,r12是指两相聚合物接触后的接触面张力。由该公式可知,若要使两相聚合物的粘附功Wa增大,则可以降低接触面张力r12。而两相聚合物的物化性质越接近,接触面张力r12越小;两相聚合物的物化性质相同,接触面张力r12则可以为0,即接触面张力消失,r1=r2。在此基础上,可以通过设置反射层08与封装结构07的物化性质尽可能的接近或是相同,以增大反射层08与封装结构07之间的粘附功Wa。
可选的,在本公开实施例中,可以设置反射层08的材料与封装结构07的材料为同系材料。此处,同系材料即是指:物化性质相同或相近的材料。
例如,在本公开实施例中,可以设置反射层08的材料和封装结构07的材 料均为硅系树脂材料。如,在反射层08的材料为上述实施例记载的白色油墨基础上,反射层08的材料可以为硅系树脂油墨。
目前,反射层08的材料一般为氟系树脂材料,封装结构07的材料一般为硅系树脂材料,反射层08与封装结构07的物化性质差异较大,封装结构07与反射层08的粘附功Wa较小。而在本公开实施例中,通过将反射层08的材料也设置为硅系树脂材料,可以使得反射层08与封装结构07的物化性质相近,从而提高封装结构07与反射层08的粘附功Wa。当然,在一些其他实施例中,也可以不改变反射层08的材料,而是将封装结构07的材料设置为氟系树脂材料,同样也可以提升封装结构07与反射层08的粘附功Wa。
示例的,依然以包括34英寸(inch)的基板01和曲率为1500mm -1的曲面背板03的2个背光模组,且以图9所划分区域为例,本公开实施例对调整材料前后的封装结构07的推力进行了测试。图15示出了测试结果,且图15分别示出了目前反射层08与封装结构07为非同系材料的2个背光模组中封装结构07的推力,以及,本公开实施例提供的反射层08与封装结构07为同系材料的2个背光模组中封装结构07的推力。其中,图15中的“-1”和“-2”分别表示两个背光模组。横坐标是指27个位点的位置。纵坐标是指推力,单位为gf。
参考图15所示的测试结果可以确定:相关技术中,反射层08与封装结构07为非同系材料基础上,封装结构07的推力平均值约为1322gf。而本公开实施例将反射层08的材料更换为与封装结构07同系的硅系树脂材料后,增大了反射层08与封装结构07之间的粘附功,使得封装结构07的推力平均值可以提升至1778gf。封装结构07的推力增大了约35%。相应的,可以有效降低封装结构07发生剥落的风险。即,本公开实施例通过设置反射层08与封装结构07的材料为同系材料,也可以避免封装结构07发生剥落。对于每个背光模组而言,此处平均值是指:27个位置处封装结构07的推力之和除以27得到的值。
基于上述实施例记载可知,相对于相关技术,本公开实施例可以通过以下多种设计方式改善背光模组中的结构剥落问题:
(1)新增多个驱动电路板05,如设置4个PCBA。如此,可以减小曲面状态下,第一连接件04(如,COF)受到的应力,减小第一连接件04的弯折半径。从而降低第一连接件04发生剥落的风险。
(2)调整发光单元02的排布方式,如将每个发光单元02的长边垂直于绑 定边。如此,可以减小背板03处于曲面状态下,发光单元02的电极处所受应力,提升发光单元02的推力,降低因电极断裂而造成的封装结构07(即,保护胶层)发生剥落的风险。
(3)减小封装结构07与基板01的接触面积,和/或,优化封装结构07的材料。如,设置接触直径为2mm,设置封装结构07的材料为高触变保护胶材料。如此,可以降低因基板01弯曲而导致的封装结构07所受应力较大,进一步降低封装结构07发生剥落的风险。
(4)设置反射层08的材料与封装结构07的材料为同系材料。如,设置反射层08与封装结构07均为硅系树脂材料。如此,可以降低反射层08与封装结构07之间的接触面张力,增大反射层08与封装结构07之间的粘附功,从而提升封装结构07的推力,进一步降低封装结构07发生剥落的风险。在降低上述风险基础上,可以避免发光单元02因剥落而灭灯,从而提高背光模组的产品良率。
示例的,以上述4点改进为例,图16示出了再一种背光模组的结构示意图。参考图16可以看出,本公开实施例记载的背光模组可以包括:具有发光区A1和绑定区B1的基板01。位于基板01一侧且具有多个开口(图中未示出)的反射层08。位于基板01一侧且位于发光区A1的多个发光单元02(图中仅示意性示出1个),每个发光单元02位于反射层08的一个开口K1内。位于发光单元02远离基板01一侧的多个封装结构07,每个封装结构07的边缘位于反射层08远离基板01的一侧,且覆盖对应的一个发光单元02(图中仅示出封装结构07在基板01上的正投影)。通过多个第一连接件04与绑定区B1绑定连接的至少三个驱动电路板05。以及,耦接每相邻两个驱动电路板05的第二连接件06。
并且,图16示出的第一连接件04为COF,第二连接件06为FFC,驱动电路板05为PCBA。封装结构07靠近基板01一侧的孔径为2.0mm。发光单元02的长边延伸方向与绑定边相互垂直。每个发光单元02可以包括间隔设置的正极(positive,P)和负极(negative,N)。为使长边延伸方向与绑定边相互垂直,正极P和负极N可以沿第一方向X1间隔排布。
综上所述,本公开实施例提供了一种背光模组。该背光模组包括具有发光区和绑定区的基板,位于基板一侧的多个发光单元,位于基板另一侧的背板,以及通过第一连接件与绑定区绑定连接的至少三个驱动电路板。并且,每个发 光单元的长边延伸方向与绑定区的绑定边不平行。如此,在背板为曲面背板时,可以通过灵活设置发光单元的长边延伸方向与绑定区的绑定边的夹角角度,即发光单元的排布方式,降低在背板处于曲面状态下,发光单元从基板上剥落的风险。以及,可以通过设置较多个驱动电路板,降低在背板处于曲面状态下,第一连接件从绑定区剥落的风险,即降低驱动电路板与绑定区断开连接的风险。本公开实施例提供的背光模组中各结构不易发生剥落问题,产品良率较好。
图17是本公开实施例提供的一种背光模组的制造方法流程图,该方法可以用于制造如上述附图所示的背光模组。如图17所示,该方法可以包括:
步骤1701、提供基板。
可选的,参考图1,提供的基板01可以具有沿第一方向X1依次排布的发光区A1和绑定区B1。并且,本公开实施例中,提供的基板01可以为玻璃基板。当然,在一些其他实施例中,提供的基板01也可以为柔性基板,如采用柔性材料聚酰亚胺制成的基板。
步骤1702、在基板的一侧且在发光区中形成多个发光单元。
可选的,继续参考图1,在本公开实施例中,形成的每个发光单元02为矩形,且每个发光单元02在基板01上的正投影可以包括相对的两条长边和两条短边。且每个发光单元02的长边的延伸方向Y1与绑定边可以相交,即不平行。其中,绑定边为基板01的设置绑定区B1的侧边。由上述实施例记载可知,如此设置可以降低发光单元02和封装结构07发生剥落的风险。
步骤1703、在基板未设置有发光单元的另一侧固定背板。
可选的,结合图2,可以在基板01未设置有发光单元02的另一侧形成背板03。基板01的一侧与基板01的另一侧为相对的两侧。
步骤1704、形成沿第二方向间隔排布的多个第一连接件,并将多个第一连接件的一端与绑定区绑定连接。
其中,参考图1,本公开实施例中的第二方向X2与第一方向X1可以相交。本公开实施例还可以形成沿第二方向X2间隔排布的多个第一连接件04,并将多个第一连接件04的一端与绑定区B1绑定连接。
步骤1705、形成沿第二方向间隔排布的至少三个驱动电路板,并将每个驱动电路板与至少两个第一连接件的另一端绑定连接。
可选的,参考图1,本公开实施例还可以形成沿第二方向X2间隔排布的三个或三个以上的驱动电路板05,并将至少三个驱动电路板05与多个第一连接件04的另一端绑定连接。从而使得至少三个驱动电路板05通过多个第一连接件04与绑定区B1绑定连接。至少三个驱动电路板05可以向绑定区B1传输信号,以点亮位于基板01一侧的多个发光单元02。由上述实施例记载可知,通过设置较多数量的驱动电路板05,可以降低第一连接件04发生剥落的风险,且还可以减小第一连接件04的长度,降低背光模组的整体厚度。
步骤1706、形成沿第二方向间隔排布的多个第二连接件,并将每相邻两个驱动电路板通过一个第二连接件耦接。
可选的,继续参考图1,本公开实施例还可以形成沿第二方向X2间隔排布的多个第二连接件06,以耦接每相邻两个驱动电路板05,使得各个驱动电路板05之间能够实现信号传输。
需要说明的是,参考图17还可以看出,上述步骤1703可以在依次执行完步骤1704至1706后执行。即,最后再将第一连接件04、驱动电路板05、第二连接件06弯折到背板03背离基板01的表面,接着与光学膜片、胶框等组件配合组装构成背光模组。
综上所述,本公开实施例提供了一种背光模组的制造方法。该方法中,可在基板的一侧形成多个发光单元,在基板的另一侧形成背板,以及通过第一连接件将至少三个驱动电路板绑定连接于基板的绑定区中。并且,形成的每个发光单元的长边延伸方向与绑定区的绑定边不平行。如此,在背板为曲面背板时,可以通过灵活设置发光单元的长边延伸方向与绑定区的绑定边的夹角角度,即发光单元的排布方式,降低在背板处于曲面状态下,发光单元从基板上剥落的风险。以及,可以通过设置较多个驱动电路板,降低在背板处于曲面状态下,第一连接件从绑定区剥落的风险,即降低驱动电路板与绑定区断开连接的风险。该方法制成的背光模组中各结构不易发生剥落问题,产品良率较好。
需要说明的是,各个步骤的具体制造方法可以参考上述装置侧实施例记载,在此不再赘述。
图18是本公开实施例提供的一种显示装置的结构示意图。如图18所示,该显示装置包括:显示面板10,供电组件J1,以及本公开实施例提供的背光模 组00。
其中,供电组件J1分别与背光模组00和显示面板10耦接,并用于为二者提供电信号。具体的,显示面板10可以是和背光模组00中的背板具有相同曲率的曲面液晶显示面板。背光模组00可以用于为显示面板10提供背光。
可选的,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪或透明显示产品等任何具有显示功能的产品或部件。
需要指出的是,在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间惟一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
以及,本公开实施方式部分使用的术语仅用于对本公开的实施例进行解释,而非旨在限定本公开。除非另作定义,本公开的实施方式使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。
如,在本公开实施例中,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。
“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。
“上”、“下”、“左”或者“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则所述相对位置关系也可能相应地改变。“连接”或者“耦接”是指电连接。
“和/或”,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联 对象是一种“或”的关系。
以上所述仅为本公开的可选的实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (20)

  1. 一种背光模组,所述背光模组包括:
    基板(01),具有沿第一方向(X1)依次排布的发光区(A1)和绑定区(B1);
    多个发光单元(02),位于所述基板(01)的一侧,且位于所述发光区(A1),每个发光单元(02)为矩形,且每个发光单元(02)在所述基板(01)上的正投影包括相对的两个长边和两个短边,每个发光单元(02)的长边的延伸方向与绑定边相交,所述绑定边为所述基板(01)的设置绑定区(B1)的侧边;
    背板(03),位于所述基板(01)未设置有所述发光单元(02)的另一侧;
    多个第一连接件(04),沿第二方向(X2)间隔排布,且所述多个第一连接件(04)的一端与所述绑定区(B1)绑定连接,所述第二方向(X2)与所述第一方向(X1)相交;
    至少三个驱动电路板(05),沿所述第二方向(X2)间隔排布,且每个所述驱动电路板(05)与至少两个所述第一连接件(04)的另一端绑定连接;
    以及,多个第二连接件(06),沿所述第二方向(X2)间隔排布,且每相邻两个驱动电路板(05)通过一个第二连接件(06)耦接。
  2. 根据权利要求1所述的背光模组,其中,所述背板(03)为曲面背板,且所述曲面背板的曲率半径在700毫米至2000毫米之间取值。
  3. 根据权利要求1所述的背光模组,其中,每个发光单元(02)在所述基板(01)上的正投影呈长方形,所述基板(01)呈矩形;
    每个发光单元(02)的长边的延伸方向与所述绑定边的夹角大于等于目标角度,且小于等于90度,所述目标角度为呈矩形的所述基板(01)的对角线与所述绑定边的夹角的角度。
  4. 根据权利要求3所述的背光模组,其中,每个发光单元(02)的长边的延伸方向与所述绑定边的夹角均为90度,且所述多个发光单元(02)阵列排布。
  5. 根据权利要求1至4任一所述的背光模组,其中,所述至少三个驱动电路 板(05)等间距排布。
  6. 根据权利要求1至5任一所述的背光模组,其中,所述绑定区(B1)沿所述第二方向(X2)划分为至少三个绑定子区域(B11);
    其中,所述绑定子区域(B11)的数目与所述第一连接件(04)的数目相同,每个驱动电路板(05)通过至少一个第一连接件(04)与对应的一个绑定子区域(B11)绑定连接。
  7. 根据权利要求1至6任一所述的背光模组,其中,所述背光模组包括:四个驱动电路板(05),且每个驱动电路板(05)均与绑定区(B1)连接的目标数量个相邻的第一连接件(04)连接,所述目标数量大于等于1。
  8. 根据权利要求1至7任一所述的背光模组,其中,所述背光模组还包括:与所述多个发光单元(02)一一对应的多个封装结构(07);
    每个封装结构(07)位于对应的一个发光单元(02)远离所述基板(01)的一侧,并覆盖所述发光单元(02),并且,每个封装结构(07)的长度与高度之比大于等于第一比值,且小于等于第二比值;
    其中,每个封装结构(07)在所述基板(01)上的正投影呈圆形,每个封装结构(07)的长度为所述封装结构(07)与所述基板(01)接触面的直径,每个封装结构(07)的高度为所述封装结构(07)远离所述基板(01)的顶点与所述基板(01)的间距。
  9. 根据权利要求8所述的背光模组,其中,所述第一比值为1,所述第二比值为4.5。
  10. 根据权利要求9所述的背光模组,其中,每个封装结构(07)的长度为2毫米,每个封装结构(07)的高度为0.5毫米。
  11. 根据权利要求8所述的背光模组,其中,所述封装结构(07)远离所述基板(01)的表面为弧面。
  12. 根据权利要求8所述的背光模组,其中,所述封装结构(07)的材料包括:具有高触变性的保护胶材料,且所述封装结构(07)的材料为透明材料。
  13. 根据权利要求8至12任一所述的背光模组,其中,所述背光模组还包括:反射层(08);
    所述反射层(08)位于所述基板(01)的一侧,且具有与所述多个发光单元(02)一一对应的多个开口(K1),每个发光单元(02)位于对应的一个开口(K1)内,且每个开口(K1)在所述基板(01)上的正投影均位于一个封装结构(07)在所述基板(01)上的投影内,以及,每个封装结构(07)的边缘均位于所述反射层(08)远离所述基板(01)的一侧;
    其中,所述反射层(08)的材料与所述封装结构(07)的材料为同系材料。
  14. 根据权利要求13所述的背光模组,其中,所述反射层(08)的材料和所述封装结构(07)的材料均为硅系树脂材料。
  15. 根据权利要求13所述的背光模组,其中,所述反射层(08)的材料包括:白色油墨。
  16. 根据权利要求1至15任一所述的背光模组,其中,所述驱动电路板(05)包括:印刷电路板;所述第一连接件(04)包括:覆晶薄膜绑定件;所述第二连接件(06)包括:柔性扁平线缆。
  17. 根据权利要求1至16任一所述的背光模组,其中,所述发光单元(02)为次毫米发光二极管或微型发光二极管。
  18. 根据权利要求1至17任一所述的背光模组,其中,所述第一方向(X1)与所述第二方向(X2)相互垂直。
  19. 一种背光模组的制造方法,用于制造如权利要求1至18任一所述的背光 模组,所述方法包括:
    提供基板,所述基板具有沿第一方向依次排布的发光区和绑定区;
    在所述基板的一侧且在所述发光区中形成多个发光单元,每个发光单元为矩形,且每个发光单元在所述基板上的正投影包括相对的两条长边和两条短边,每个发光单元的长边的延伸方向与绑定边相交,所述绑定边为所述基板的设置绑定区的侧边;
    在所述基板未设置有发光单元的另一侧与背板固定;
    形成沿第二方向间隔排布的多个第一连接件,并将所述多个第一连接件的一端与所述绑定区绑定连接,所述第二方向与所述第一方向相交;
    形成沿所述第二方向间隔排布的至少三个驱动电路板,并将每个所述驱动电路板与至少两个所述第一连接件的另一端绑定连接;
    形成沿所述第二方向间隔排布的多个第二连接件,并将每相邻两个驱动电路板通过一个第二连接件耦接。
  20. 一种显示装置,所述显示装置包括:供电组件(J1),显示面板(10)以及如权利要求1至18任一所述的背光模组(00);
    其中,所述供电组件(J1)分别与所述背光模组(00)和所述显示面板(10)耦接。
PCT/CN2022/108730 2022-07-28 2022-07-28 背光模组及其制造方法、显示装置 WO2024020957A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002414.0A CN117795401A (zh) 2022-07-28 2022-07-28 背光模组及其制造方法、显示装置
PCT/CN2022/108730 WO2024020957A1 (zh) 2022-07-28 2022-07-28 背光模组及其制造方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/108730 WO2024020957A1 (zh) 2022-07-28 2022-07-28 背光模组及其制造方法、显示装置

Publications (1)

Publication Number Publication Date
WO2024020957A1 true WO2024020957A1 (zh) 2024-02-01

Family

ID=89704968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108730 WO2024020957A1 (zh) 2022-07-28 2022-07-28 背光模组及其制造方法、显示装置

Country Status (2)

Country Link
CN (1) CN117795401A (zh)
WO (1) WO2024020957A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376209A (zh) * 2011-11-18 2012-03-14 深圳市华星光电技术有限公司 平板显示装置及立体显示装置
CN110379322A (zh) * 2019-07-15 2019-10-25 深圳市华星光电半导体显示技术有限公司 显示面板、显示模组及显示装置
CN110610929A (zh) * 2019-08-16 2019-12-24 武汉华星光电技术有限公司 背光模组
CN111221181A (zh) * 2020-01-20 2020-06-02 深圳市华星光电半导体显示技术有限公司 背光源及其制备方法
CN111999936A (zh) * 2020-08-27 2020-11-27 深圳市华星光电半导体显示技术有限公司 背光模组和显示装置
CN112309884A (zh) * 2020-10-23 2021-02-02 深圳市华星光电半导体显示技术有限公司 Led显示背板检测装置及其检测方法
CN112331090A (zh) * 2020-11-05 2021-02-05 Tcl华星光电技术有限公司 显示面板、显示模组及拼接屏
CN214098032U (zh) * 2021-02-05 2021-08-31 海信视像科技股份有限公司 一种显示装置
CN215578551U (zh) * 2021-06-16 2022-01-18 京东方科技集团股份有限公司 显示模组和显示装置
US20220148530A1 (en) * 2018-05-03 2022-05-12 Darfon Electronics Corp. Display device and backlight apparatus thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376209A (zh) * 2011-11-18 2012-03-14 深圳市华星光电技术有限公司 平板显示装置及立体显示装置
US20220148530A1 (en) * 2018-05-03 2022-05-12 Darfon Electronics Corp. Display device and backlight apparatus thereof
CN110379322A (zh) * 2019-07-15 2019-10-25 深圳市华星光电半导体显示技术有限公司 显示面板、显示模组及显示装置
CN110610929A (zh) * 2019-08-16 2019-12-24 武汉华星光电技术有限公司 背光模组
CN111221181A (zh) * 2020-01-20 2020-06-02 深圳市华星光电半导体显示技术有限公司 背光源及其制备方法
CN111999936A (zh) * 2020-08-27 2020-11-27 深圳市华星光电半导体显示技术有限公司 背光模组和显示装置
CN112309884A (zh) * 2020-10-23 2021-02-02 深圳市华星光电半导体显示技术有限公司 Led显示背板检测装置及其检测方法
CN112331090A (zh) * 2020-11-05 2021-02-05 Tcl华星光电技术有限公司 显示面板、显示模组及拼接屏
CN214098032U (zh) * 2021-02-05 2021-08-31 海信视像科技股份有限公司 一种显示装置
CN215578551U (zh) * 2021-06-16 2022-01-18 京东方科技集团股份有限公司 显示模组和显示装置

Also Published As

Publication number Publication date
CN117795401A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
CN108681118B (zh) 液晶显示器
CN103680319B (zh) 显示装置及其制造方法
CN109377890B (zh) 柔性显示装置
TWI335467B (en) Liquid crystal display device
CN111725265B (zh) 显示模组和显示装置
US10824008B2 (en) Backlight module and display device
CN104412315B (zh) 显示装置
CN112750363B (zh) 显示组件、显示模组、制作方法及电子设备
JP7183427B2 (ja) ディスプレイモジュール及びディスプレイ装置
US11829028B2 (en) Backlight source and manufacturing method thereof
WO2019184163A1 (zh) 背光模组及显示装置
CN114550589A (zh) 显示模组和显示装置
CN1683961A (zh) 电子部件、安装结构体、电光装置和电子设备
CN103629597B (zh) 背光组件
US20210366881A1 (en) Array substrate, method of manufacturing the same, and display device
CN113433731A (zh) 显示模组及移动终端
WO2024020957A1 (zh) 背光模组及其制造方法、显示装置
CN114927071B (zh) 显示模组和显示装置
WO2020155885A1 (zh) 覆晶薄膜及显示装置
KR20200033568A (ko) 터치 센서 모듈, 이를 포함하는 윈도우 적층체 및 이를 포함하는 화상 표시 장치
CN108364996A (zh) Oled显示装置
TW201416758A (zh) 顯示模組
CN103188869A (zh) 柔性印刷线路板
CN112102723A (zh) 显示模组及其制造方法、显示装置
US20140267998A1 (en) Flexible cable and liquid crystal display apparatus having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952415

Country of ref document: EP

Kind code of ref document: A1