WO2024004986A1 - 熱可塑性材料用組成物 - Google Patents

熱可塑性材料用組成物 Download PDF

Info

Publication number
WO2024004986A1
WO2024004986A1 PCT/JP2023/023732 JP2023023732W WO2024004986A1 WO 2024004986 A1 WO2024004986 A1 WO 2024004986A1 JP 2023023732 W JP2023023732 W JP 2023023732W WO 2024004986 A1 WO2024004986 A1 WO 2024004986A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
epihalohydrin
mol
mass
thermoplastic material
Prior art date
Application number
PCT/JP2023/023732
Other languages
English (en)
French (fr)
Inventor
将義 野路
和樹 宇野
明彦 森川
紀樹 北川
Original Assignee
株式会社大阪ソーダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪ソーダ filed Critical 株式会社大阪ソーダ
Publication of WO2024004986A1 publication Critical patent/WO2024004986A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3462Six-membered rings
    • C08K5/3465Six-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/39Thiocarbamic acids; Derivatives thereof, e.g. dithiocarbamates
    • C08K5/405Thioureas; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • C08L71/03Polyepihalohydrins

Definitions

  • the present invention relates to a composition for a thermoplastic material with excellent normal physical properties and gas permeation resistance, a thermoplastic material obtained from the composition for a thermoplastic material, and a method for producing the same.
  • Epihalohydrin rubber materials are widely used as fuel hoses, air hoses, and tube materials in automobile applications, taking advantage of their heat resistance, oil resistance, and low gas permeability. Conventionally, from the viewpoint of heat resistance, epihalohydrin rubber materials have been used as a crosslinked product through a vulcanization process.
  • thermoplastic elastomers with rubber elasticity have been widely used as materials to replace vulcanized rubber in fields such as automobile parts.
  • thermoplastic elastomers with excellent heat and oil resistance include thermoplastic elastomers made by dynamically crosslinking polybutylene terephthalate resin (PBT) and acrylic rubber, and ethylene-vinyl alcohol resin (EVOH) and butyl rubber (which have excellent gas permeation resistance).
  • PBT polybutylene terephthalate resin
  • EVOH ethylene-vinyl alcohol resin
  • butyl rubber which have excellent gas permeation resistance
  • Patent No. 6443659 Patent No. 5763221
  • An object of the present invention is to provide a thermoplastic material with excellent normal physical properties and gas permeation resistance.
  • the present invention contains (a) epihalohydrin rubber, (b) ethylene-vinyl alcohol copolymer (EVOH), and (c) a crosslinking agent, and based on 100 parts by mass of (a) epihalohydrin rubber, (b) Solving the above problems with a thermoplastic material composition containing 15 to 120 parts by mass of ethylene-vinyl alcohol copolymer (EVOH) and a thermoplastic material obtained from the thermoplastic material composition. They discovered this and completed the present invention.
  • Item 1 Contains (a) epihalohydrin rubber, (b) ethylene-vinyl alcohol copolymer (EVOH), and (c) crosslinking agent, and (b) ethylene per 100 parts by mass of (a) epihalohydrin rubber.
  • EVOH ethylene-vinyl alcohol copolymer
  • Item 2 (a) The composition for a thermoplastic material according to Item 1, wherein the epihalohydrin rubber has a structural unit derived from epihalohydrin and a structural unit derived from ethylene oxide.
  • Item 3 (b) The composition for a thermoplastic material according to Item 1 or 2, wherein the ethylene-vinyl alcohol copolymer (EVOH) has a melting point of 185° C. or lower as measured by DSC.
  • Item 4 The composition for thermoplastic materials according to any one of Items 1 to 3, wherein (c) the crosslinking agent is at least one crosslinking agent selected from the group consisting of quinoxaline, thiourea, and triazine.
  • Item 5 A thermoplastic material obtained from the composition for thermoplastic material according to any one of Items 1 to 4.
  • Item 6 The thermoplastic material according to Item 5, which is a thermoplastic elastomer.
  • thermoplastic material of the present invention has excellent normal physical properties and gas permeation resistance, it is useful for industrial products such as automobile parts, especially fuel hoses, refrigerant hoses, and tube materials.
  • composition for thermoplastic materials contains at least (a) epihalohydrin rubber, (b) ethylene-vinyl alcohol copolymer (EVOH), and (c) a crosslinking agent.
  • EVOH ethylene-vinyl alcohol copolymer
  • a crosslinking agent e.g., ethylene-vinyl alcohol copolymer (EVOH)
  • One type of these can be used alone, or two or more types can be used in combination.
  • Epihalohydrin rubber and (b) ethylene-vinyl alcohol copolymer (EVOH) are both materials with excellent gas permeation resistance, but by using them together, a synergistic effect is exerted, resulting in better resistance. It is presumed that gas permeability can be obtained.
  • a polymer having a structural unit derived from epihalohydrin and a structural unit derived from alkylene oxides is used as the epihalohydrin rubber, the above effects tend to be obtained more preferably.
  • the epihalohydrin rubber may be a polymer containing at least a structural unit derived from epihalohydrin, such as a homopolymer of epihalohydrin or epihalohydrin and alkylene oxides such as ethylene oxide, propylene oxide, and n-butylene oxide, Examples include copolymers with compounds selected from glycidyl compounds such as methyl glycidyl ether, ethyl glycidyl ether, n-glycidyl ether, allyl glycidyl ether, and phenyl glycidyl ether, and styrene oxide. One type of these can be used alone, or two or more types can be used in combination.
  • a polymer having a structural unit derived from epihalohydrin and a structural unit derived from alkylene oxides is preferable, and a polymer having a structural unit derived from epihalohydrin and a structural unit derived from ethylene oxide. is more preferable.
  • a polymer having a constitutional unit derived from epihalohydrin and a constitutional unit derived from alkylene oxides especially a polymer having a constitutional unit derived from epihalohydrin and a constitutional unit derived from ethylene oxide, ethylene-vinyl alcohol coexistence can be achieved. It is thought that by improving the compatibility with the polymer (EVOH), better gas permeation resistance (gas barrier properties) can be obtained as a thermoplastic material.
  • epihalohydrin rubbers include epihalohydrin homopolymer, epihalohydrin-ethylene oxide copolymer, epihalohydrin-propylene oxide copolymer, epihalohydrin-ethylene oxide-allyl glycidyl ether ternary copolymer, and epihalohydrin-ethylene oxide-propylene oxide.
  • Examples include allyl glycidyl ether quaternary copolymers. One type of these can be used alone, or two or more types can be used in combination.
  • epihalohydrin-ethylene oxide copolymers and epihalohydrin-ethylene oxide-allyl glycidyl ether terpolymers are preferred, and epihalohydrin-ethylene oxide copolymers are particularly preferred.
  • the proportion of structural units derived from ethylene oxide is preferably 0 to 90 mol%, more preferably 25 to 80 mol%, and 35 to 75 mol% based on the total structural units. % is particularly preferred.
  • the copolymerization ratio of structural units derived from epihalohydrin is preferably 5 mol% to 95 mol%, more preferably 20 mol% to 75 mol%, and 25 mol% to 65 mol%. It is particularly preferable that The structural unit derived from ethylene oxide is preferably 5 mol% to 95 mol%, more preferably 25 mol% to 80 mol%, and particularly preferably 35 mol% to 75 mol%.
  • the copolymerization ratio of the structural units derived from epihalohydrin is preferably 5 mol% to 95 mol%, more preferably 20 mol% to 75 mol%, Particularly preferred is 25 mol% to 65 mol%.
  • the structural unit derived from ethylene oxide is preferably 4 mol% to 94 mol%, more preferably 24 mol% to 79 mol%, and particularly preferably 34 mol% to 74 mol%.
  • the structural unit derived from allyl glycidyl ether is preferably 1 mol% to 10 mol%, more preferably 1 mol% to 8 mol%, particularly preferably 1 mol% to 7 mol%.
  • the copolymer composition of the epihalohydrin-ethylene oxide copolymer and the epihalohydrin-ethylene oxide allyl glycidyl ether terpolymer is determined by the halogen element (chlorine) content and iodine value.
  • the chlorine content is measured by potentiometric titration according to the method described in JIS K7229:1995.
  • the content of halogen elements other than chlorine is measured by nuclear magnetic resonance spectroscopy ( 1 H-NMR).
  • the mole fraction of the structural unit derived from epihalohydrin is calculated from the obtained halogen element (chlorine) content.
  • the iodine value is measured according to JIS K6235:2006.
  • the production of epihalohydrin rubber can be carried out by a solution polymerization method, a slurry polymerization method, etc. at a temperature in the range of -20 to 100° C. using a catalyst capable of ring-opening polymerization of an oxirane compound.
  • a catalyst capable of ring-opening polymerization of an oxirane compound include, for example, a catalyst system containing organoaluminium as a main ingredient and reacting it with water, an oxoacid compound of phosphorous, acetylacetone, etc., a catalyst system containing organozinc as a main ingredient and reacting it with water, and an organotin-based catalyst system.
  • organotin-based catalyst system examples include phosphoric acid ester condensate catalyst systems.
  • epihalohydrin examples include epichlorohydrin and epibromohydrin. One type of these can be used alone, or two or more types can be used in combination. Among them, epichlorohydrin is preferred.
  • the content of (a) epihalohydrin rubber in 100% by mass of the rubber component is preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, even if it is 100% by mass. good.
  • Ethylene-vinyl alcohol copolymer is a copolymer mainly composed of ethylene units and vinyl alcohol units, and is obtained by saponifying vinyl ester units in an ethylene-vinyl ester copolymer.
  • One type of these can be used alone, or two or more types can be used in combination.
  • the content of ethylene units in the ethylene-vinyl alcohol copolymer is preferably 20 mol% to 50 mol%, more preferably 30 mol% to 50 mol%, and preferably 35 mol% to 50 mol%. Particularly preferred, and most preferably 40 mol% to 50 mol%.
  • the degree of saponification of the ethylene-vinyl alcohol copolymer is preferably 90 mol% or more, more preferably 95 mol% or more, even more preferably 99 mol% or more, and even more preferably 100 mol%. There may be.
  • the degree of saponification of an ethylene-vinyl alcohol copolymer refers to the saponification ratio of vinyl ester units in the ethylene-vinyl ester copolymer, and is measured by nuclear magnetic resonance spectroscopy ( 1 H-NMR).
  • the content of vinyl alcohol units in the ethylene-vinyl alcohol copolymer is preferably 50 mol% to 80 mol%, more preferably 50 mol% to 70 mol%, and 50 mol% to 65 mol%. is particularly preferred, and most preferably 50 mol% to 60 mol%.
  • ethylene units, vinyl alcohol units, and vinyl ester units of the ethylene-vinyl alcohol copolymer may contain other structural units.
  • Other structural units include units derived from vinylsilane compounds such as vinyltrimethoxysilane and vinyltriethoxysilane, olefins such as propylene and butylene, unsaturated carboxylic acids such as (meth)acrylic acid and methyl (meth)acrylate, or It may have a structural unit derived from a compound such as an ester thereof.
  • One type of these can be used alone, or two or more types can be used in combination.
  • the content of structural units other than ethylene units, vinyl alcohol units, and vinyl ester units is preferably 5 mol % or less based on the total structural units.
  • the total content of ethylene units, vinyl alcohol units and vinyl ester units in the ethylene-vinyl alcohol copolymer is preferably 80 mol% or more, more preferably 90 mol% or more, even more preferably 95 mol% or more, and 100 mol% It may be %.
  • the total content of ethylene units and vinyl alcohol units in the (b) ethylene-vinyl alcohol copolymer is preferably 80 mol% or more, more preferably 90 mol% or more, even more preferably 95 mol% or more, and 100 mol%. It may be.
  • the melting point of the ethylene-vinyl alcohol copolymer measured by DSC is preferably 185°C or lower, more preferably 180°C or lower, even more preferably 170°C or lower, and the lower limit is not particularly limited, but 160°C or lower
  • the temperature is preferably 165°C or higher, more preferably 165°C or higher. Examples of the melting point are 160°C to 185°C, 160°C to 180°C, 165°C to 185°C, 165°C to 180°C, and 165°C to 170°C.
  • the melting point by DSC (differential scanning calorimeter) measurement can be determined in accordance with JIS K7121-1987 using a differential scanning calorimeter (DSC-8000 manufactured by PerkinElmer).
  • DSC-8000 manufactured by PerkinElmer The melting point of an ethylene-vinyl alcohol copolymer measured by DSC usually tends to increase as the content of vinyl alcohol units increases.
  • the content of (b) ethylene-vinyl alcohol copolymer is preferably 15 to 120 parts by mass based on 100 parts by mass of (a) epihalohydrin rubber.
  • the amount is more preferably 20 to 80 parts by mass, and particularly preferably 30 to 75 parts by mass.
  • the crosslinking agent at least one selected from the group consisting of quinoxaline crosslinking agents, thiourea crosslinking agents, and triazine crosslinking agents is used.
  • quinoxaline crosslinking agents thiourea crosslinking agents
  • triazine crosslinking agents One type of these can be used alone, or two or more types can be used in combination.
  • quinoxaline-based crosslinking agents and thiourea-based crosslinking agents are preferred, and quinoxaline-based crosslinking agents are particularly preferred.
  • quinoxaline crosslinking agent examples include 2,3-dimercaptoquinoxaline, quinoxaline-2,3-dithiocarbonate, 6-methylquinoxaline-2,3-dithiocarbonate, and 5,8-dimethylquinoxaline-2,3-dithiocarbonate. etc.
  • One type of these can be used alone, or two or more types can be used in combination.
  • 6-methylquinoxaline-2,3-dithiocarbonate is preferred.
  • thiourea-based crosslinking agent examples include 2-mercaptoimidazoline (ethylenethiourea), 1,3-diethylthiourea, 1,3-dibutylthiourea, trimethylthiourea, and the like.
  • 2-mercaptoimidazoline ethylenethiourea
  • 1,3-diethylthiourea 1,3-dibutylthiourea
  • trimethylthiourea and the like.
  • 2-mercaptoimidazoline ethylenethiourea
  • 1,3-diethylthiourea 1,3-dibutylthiourea
  • trimethylthiourea trimethylthiourea
  • 1,3,5-triazine trithiol 6-anilino-1,3,5-triazine-2,4-dithiol, 6-methylamino-1,3,5-triazine-2 ,4-dithiol, 6-dimethylamino-1,3,5-triazine-2,4-dithiol, 6-ethylamino-1,3,5-triazine-2,4-dithiol, 6-diethylamino-1,3 , 5-triazine-2,4-dithiol, 6-propylamino-1,3,5-triazine-2,4-dithiol, 6-dipropylamino-1,3,5-triazine-2,4-dithiol, 6-Butylamino-1,3,5-triazine-2,4-dithiol, 6-dibutylamino-1,3,5-triazine-2,4-dithiol, 6-butylamino-1,3,5
  • the content of (c) the crosslinking agent is preferably 0.1 to 10 parts by mass, and 0.3 to 5 parts by mass, based on 100 parts by mass of (a) epihalohydrin rubber. Parts by mass are particularly preferred.
  • composition for thermoplastic materials in addition to (a) epihalohydrin rubber, (b) ethylene-vinyl alcohol copolymer (EVOH), and (c) crosslinking agent, a crosslinking accelerator, a crosslinking retarder, an acid acceptor, Antiaging agents, lubricants, light stabilizers, fillers, reinforcing agents, plasticizers, processing aids, pigments, colorants, antistatic agents, foaming agents, etc. can be optionally added.
  • a crosslinking accelerator e.g., ethylene-vinyl alcohol copolymer (EVOH)
  • crosslinking agent e.g., ethylene-vinyl alcohol copolymer (EVOH)
  • crosslinking accelerators examples include morpholine sulfides, amines, weak acid salts of amines, quaternary ammonium salts, quaternary phosphonium salts, alkali metal salts of fatty acids, thiuramsufides, polyfunctional vinyl compounds, and mercaptobenzothiazoles. , sulfenamides, dimethiocarbamates, guanidines, polyhydric alcohols, and the like. One type of these can be used alone, or two or more types can be used in combination.
  • Particularly preferred accelerators when a quinoxaline crosslinking agent is applied to the composition of the present invention include 1,8-diazabicyclo(5,4,0) undecene-7 (hereinafter abbreviated as DBU) salt, 1,5-diazabicyclo( 4,3,0) nonene-5 (hereinafter abbreviated as DBN) salt.
  • DBU salt is preferred.
  • particularly preferred accelerators include guanidines.
  • DBU salts include DBU-carbonate, DBU-stearate, DBU-2-ethylhexylate, DBU-benzoate, DBU-salicylate, DBU-3-hydroxy-2-naphthoate, DBU-phenol.
  • Examples include resin salts, DBU-2-mercaptobenzothiazole salts, DBU-2-mercaptobenzimidazole salts, and the like.
  • DBN salts include DBN-carbonate, DBN-stearate, DBN-2-ethylhexylate, DBN-benzoate, DBN-salicylate, DBN-3-hydroxy-2-naphthoate, DBN -Phenol resin salts, DBN-2-mercaptobenzothiazole salts, DBN-2-mercaptobenzimidazole salts, and the like.
  • DBN salts include DBN-carbonate, DBN-stearate, DBN-2-ethylhexylate, DBN-benzoate, DBN-salicylate, DBN-3-hydroxy-2-naphthoate, DBN -Phenol resin salts, DBN-2-mercaptobenzothiazole salts, DBN-2-mercaptobenzimidazole salts, and the like.
  • DBN-2-mercaptobenzothiazole salts DBN-2-mercaptobenzimidazole salts
  • guanidines examples include 1,3-diphenylguanidine and 1,3-diorthotolylguanidine. One type of these can be used alone, or two or more types can be used in combination.
  • the content of the crosslinking accelerator is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass based on 100 parts by mass of epihalohydrin rubber.
  • crosslinking retarder examples include N-cyclohexylthiophthalimide, phthalic anhydride, and organic zinc compounds. One type of these can be used alone, or two or more types can be used in combination.
  • the content of the crosslinking retarder is preferably 0 to 5 parts by weight, and may be 0.1 to 3 parts by weight, based on 100 parts by weight of the epihalohydrin rubber.
  • Metal compounds and/or inorganic microporous crystals are used as acid acceptors.
  • Metal compounds that serve as acid acceptors include oxides, hydroxides, carbonates, carboxylates, silicates, borates, phosphites of Group II metals of the Periodic Table, and Group IVA metals of the Periodic Table. Examples include oxides of group metals, basic carbonates, basic carboxylates, basic phosphites, basic sulfites, tribasic sulfates, and the like. One type of these can be used alone, or two or more types can be used in combination.
  • metal compounds that serve as acid acceptors include magnesia (magnesium oxide), magnesium hydroxide, barium hydroxide, magnesium carbonate, barium carbonate, sodium carbonate, quicklime, slaked lime, calcium carbonate, calcium silicate, calcium stearate, Zinc stearate, calcium phthalate, calcium phosphite, zinc white, tin oxide, litharge, red lead, white lead, dibasic lead phthalate, dibasic lead carbonate, basic lead silicate, tin stearate, basic Examples include lead phosphite, basic tin phosphite, basic lead sulfite, and tribasic lead sulfate. One type of these can be used alone, or two or more types can be used in combination.
  • the above-mentioned inorganic microporous crystal means a crystalline porous body, and can be clearly distinguished from amorphous porous bodies such as silica gel and alumina.
  • amorphous porous bodies such as silica gel and alumina.
  • examples of such inorganic microporous crystals include zeolites, aluminophosphate-type molecular sieves, layered silicates, synthetic hydrotalcites, alkali metal titanates, and the like. One type of these can be used alone, or two or more types can be used in combination.
  • a particularly preferred acid acceptor is synthetic hydrotalcite.
  • the synthetic hydrotalcite is represented by the following general formula (I).
  • Z represents a real number from 1 to 5
  • w represents a real number from 0 to 10.
  • hydrotalcites represented by the general formula (I) include Mg 4.5 Al 2 (OH) 13 CO 3 .3.5H 2 O, Mg 4.5 Al 2 (OH) 13 CO 3 , Mg 4 Al 2 (OH) 12 CO 3.3.5H 2 O , Mg 6 Al 2 (OH) 16 CO 3.4H 2 O , Mg 5 Al 2 (OH) 14 CO 3.4H 2 O , Mg 3 Al Examples include 2 (OH) 10 CO 3 .1.7H 2 O, Mg 3 ZnAl 2 (OH) 12 CO 3 .3.5H 2 O, Mg 3 ZnAl 2 (OH) 12 CO 3 and the like. One type of these can be used alone, or two or more types can be used in combination.
  • the content of the acid acceptor is preferably 0.2 to 30 parts by mass, more preferably 0.5 to 20 parts by mass, and 1 to 10 parts by mass based on 100 parts by mass of (a) epihalohydrin rubber.
  • Parts by weight are particularly preferred and may be from 2 to 8 parts by weight. These ranges are preferable because the physical properties normally expected for a thermoplastic material can be obtained.
  • anti-aging agents include aromatic secondary amines, dithiocarbamate metal salts, benzimidazoles, phenols, phosphoric acids, and organic thio acids, with phenols and organic thio acids being preferred.
  • aromatic secondary amine anti-aging agents include N,N'-di-2-naphthyl-p-phenylenediamine, N-phenyl-1-naphthylamine, alkylated diphenylamine, octylated diphenylamine, 4,4'- Bis( ⁇ , ⁇ -dimethylbenzyl)diphenylamine, p-(p-toluenesulfonylamide)diphenylamine, N,N'-di-2-naphthyl-p-phenylenediamine, N,N'-diphenyl-p-phenylenediamine, N-phenyl-N'-isopropyl-p-phenylenediamine, N-phen
  • dithiocarbamate metal salt anti-aging agents examples include nickel dibutyldithiocarbamate.
  • benzimidazole anti-aging agents examples include zinc salts of 2-mercaptobenzimidazole and 2-mercaptobenzimidazole.
  • phenolic anti-aging agents include 2,6-di-tert-butyl-4-methylphenol, monophenol, 2,2'-methylenebis(4-ethyl-6-tert-butylphenol), and 2,2'-methylenebis(4-ethyl-6-tert-butylphenol).
  • Phosphate-based anti-aging agents include tris(nonylphenyl) phosphite, triphenyl phosphite, diphenylisodecyl phosphite, diphenyl mono(2-ethylhexyl) phosphite, diphenyl monotridecyl phosphite, phenyl diisodecyl phosphite.
  • phyto 4,4'-butylidene-bis(3-methyl-6-tert-butylphenylditridecyl) phosphite, cyclic neopentanetetrayl bis, trisphosphite, diisodecylpentaerythritol diphosphite, 9,10- Dihydro-9-oxa-10phosphaphenanthrene-10-oxide, 10-(3,5-di-tert-butyl-4-hydroxybenzyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene- 10-oxide, 10-desyloxy-9,10-dihydro-9-oxa-10-phosphaphenanthrene, tris(2,4-di-tert-butylphenyl)phosphite, cyclic neopentanetetrayl bis(2, 4-di-tert-butylphenyl) phosphite, cyclic
  • organic thio acid-based anti-aging agents examples include dilauryl 3,3'-thiodipropionate, distearyl 3,3'-thiodipropionate, and dimyristyl 3,3'-thiodipropionate.
  • dilauryl 3,3'-thiodipropionate distearyl 3,3'-thiodipropionate, and dimyristyl 3,3'-thiodipropionate.
  • tetrakis-(methylene-3-(3',5'-di-tert-butyl-4'-hydroxyphenyl)propionate)methane and dilauryl 3,3'-thiodipropionate are preferred.
  • the anti-aging agent one type thereof can be used alone or two or more types can be used in combination, but it is preferable to use two or more types in combination.
  • the amount of the anti-aging agent may be 0.1 to 10 parts by weight, preferably 0.3 to 5 parts by weight, and preferably 0.5 to 3 parts by weight, based on 100 parts by weight of the epihalohydrin rubber. It is particularly preferable that
  • Processing aids include higher fatty acids such as stearic acid, oleic acid, palmitic acid, and lauric acid, higher fatty acid salts such as sodium stearate and zinc stearate, higher fatty acid amides such as stearic acid amide and oleic acid amide, and oleic acid.
  • Higher fatty acid esters such as ethyl, higher aliphatic amines such as stearylamine and oleylamine, petroleum waxes such as carnauba wax and ceresin wax, aliphatic hydrocarbons such as vaseline and paraffin, silicone oils, silicone polymers, and low molecular weight polyethylene.
  • phthalate esters phosphate esters, rosin, (halogenated) dialkylamines, (halogenated) dialkyl sulfones, surfactants, glycol ethers, glycols, and the like.
  • phthalate esters phosphate esters, rosin, (halogenated) dialkylamines, (halogenated) dialkyl sulfones, surfactants, glycol ethers, glycols, and the like.
  • phthalate esters phosphate esters, rosin
  • (halogenated) dialkylamines halogenated dialkyl sulfones
  • surfactants glycol ethers, glycols, and the like.
  • glycol ethers glycols, and the like.
  • One type of these can be used alone, or two or more types can be used in combination.
  • glycol ethers examples include ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoallyl ether, propylene glycol monopropyl ether, ethylene glycol monoisobutyl ether, ethylene glycol monopropyl ether, ethylene glycol mono-tert-butyl ether, and propylene glycol monopropyl ether.
  • glycols include ethylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol.
  • glycol ethers or glycols are preferred as processing aids, glycols are more preferred, and polyesters are more preferred.
  • Alkylene glycol is more preferred, glycols selected from dialkylene glycol, trialkylene glycol, and tetraalkylene glycol (alkylene having 2 to 4 carbon atoms are more preferred), diethylene glycol, Particularly preferred are triethylene glycol and tetraethylene glycol.
  • the amount of processing aid added may be 1 to 14 parts by mass, preferably 2 to 13 parts by mass, and 3 to 12 parts by mass, based on 100 parts by mass of epihalohydrin rubber. It is particularly preferable that
  • the composition for thermoplastic materials As a method for producing the composition for thermoplastic materials, it is produced by kneading it in a kneader.
  • a kneading machine a device capable of kneading under shearing force while heating is appropriately selected, such as a kneader, a Banbury mixer, a twin-screw kneading extruder, and the like.
  • thermoplastic material of the present invention it is preferable to (dynamically) crosslink the epihalohydrin rubber with a crosslinking agent while kneading the thermoplastic material composition in a kneader.
  • a crosslinking agent capable of crosslinking the epihalohydrin rubber is added, and while kneading the mixture is mixed.
  • the most suitable method is to crosslink epihalohydrin rubber (dynamic crosslinking).
  • the temperature and time for crosslinking the epihalohydrin rubber while kneading are preferably in the range of 150 to 300°C (preferably 160 to 200°C) and 2 to 30 minutes. .
  • thermoplastic material of the present invention only needs to have thermoplasticity, and can also be described as an injection or extrusion molding material that takes advantage of its properties. It can also be described as a thermoplastic elastomer that has the property of softening and exhibiting fluidity when heated and returning to a rubber-like state when cooled.
  • crosslinked (a) epihalohydrin rubber is dispersed in (b) ethylene-vinyl alcohol copolymer (EVOH), i.e., (b) ethylene-vinyl alcohol copolymer (EVOH) is used as a continuous phase.
  • the crosslinked (a) epihalohydrin rubber is dispersed as a dispersed phase.
  • the crosslinked (a) epihalohydrin rubber in the thermoplastic elastomer (100% by mass) preferably contains 40 to 85% by mass, more preferably 50 to 85% by mass. , 55 to 85% by mass is particularly preferred. Further, it may be 45 to 80% by mass, 45 to 75% by mass, 50 to 80% by mass, or 50 to 75% by mass.
  • the total proportion of the crosslinked (a) epihalohydrin rubber and (b) ethylene-vinyl alcohol copolymer in the thermoplastic elastomer (100% by mass) may be 85 to 99% by mass, and may be 90 to 98% by mass. It may be %.
  • the thermoplastic elastomer of the present invention may contain a crosslinking agent, a crosslinking accelerator, an acid acceptor, and an antiaging agent used in crosslinking epihalohydrin rubber, and may also contain processing aids. Good too.
  • the total amount of these components other than (a) crosslinked epihalohydrin rubber and (b) ethylene-vinyl alcohol copolymer (EVOH) is 1 to 15% by mass in the thermoplastic elastomer composition (100% by mass). % and may be from 2 to 10% by weight.
  • thermoplastic elastomer composition A method for producing a (dynamically crosslinked) thermoplastic elastomer composition will be described. Note that the units in Tables 1 and 2 are parts by mass. In addition, if there is a discrepancy between the description in the main text and the description in the table, the description in the table takes precedence.
  • thermoplastic resins in Examples and Comparative Examples are determined in accordance with JIS K7121-1987 using a differential scanning calorimeter (DSC-8000 manufactured by PerkinElmer).
  • Example 1 Using a 60cc kneader heated to 165°C, each material except the crosslinking agent and crosslinking accelerator was added in the proportions shown in Table 1, and after kneading at 100 rpm for 3 minutes, the crosslinking agent and crosslinking accelerator were added, and the mixture was kneaded at 100 rpm. Dynamic crosslinking was performed for 4 minutes. Thereafter, a 2 mm thick sheet was molded by preheating for 3 minutes using a press set at 185° C., then heating for 3 minutes, and then cooling.
  • Example 2 A tensile test was conducted in accordance with JIS K6251 in the same manner as in Example 1, except that the lubricant, anti-aging agent, acid acceptor, and retardant were changed in the proportions shown in Table 1. The hardness was measured according to a known measuring method, and an oxygen gas permeability test was conducted according to JIS K6275-1.
  • Example 3 A tensile test was conducted in accordance with JIS K6251 in the same manner as in Example 1, except that the thermoplastic resin and acid acceptor were changed in the proportions shown in Table 1 from Example 1, and the measuring method specified in JIS K6253 was used. Hardness was measured according to the following.
  • Example 4" A tensile test was conducted in accordance with JIS K6251 in the same manner as in Example 1, except that the thermoplastic resin and acid acceptor were changed in the proportions shown in Table 1 from Example 1, and the measuring method specified in JIS K6253 was used. Hardness was measured according to the following.
  • Example 5 From Example 1, a tensile test was conducted in accordance with JIS K6251 in the same manner as in Example 1, except that the accelerator and crosslinking agent were changed in the proportions shown in Table 1, and according to the measurement method specified in JIS K6253, Hardness was measured.
  • Example 6 From Example 1, a tensile test was conducted in accordance with JIS K6251 in the same manner as in Example 1, except that the accelerator and crosslinking agent were changed in the proportions shown in Table 1, and according to the measurement method specified in JIS K6253, Hardness was measured.
  • Example 7 A tensile test was conducted in accordance with JIS K6251 in the same manner as in Example 1, except that diethylene glycol was added in the proportions shown in Table 1, and the hardness was measured according to the measurement method specified in JIS K6253. .
  • Example 9 A tensile test was conducted in accordance with JIS K6251 in the same manner as in Example 1, except that the accelerator was changed in the proportions shown in Table 1 and triethylene glycol was added from Example 1, and the results were as specified in JIS K6253. Hardness was measured according to the measurement method.
  • Comparative Example 1 A tensile test was conducted in accordance with JIS K6251 in the same manner as in Example 1, except that the thermoplastic resin was changed in the proportions shown in Table 2, and the hardness was measured according to the measurement method specified in JIS K6253. It was measured.
  • Comparative Example 2 A tensile test was conducted in accordance with JIS K6251 in the same manner as in Example 1, except that the heating temperature of the 60cc kneader was changed to 224°C and the thermoplastic resin was changed in the proportions shown in Table 2. Hardness was measured according to the measurement method specified in K6253.
  • Comparative Example 3 A tensile test was conducted in accordance with JIS K6251 in the same manner as in Example 1, except that the thermoplastic resin and acid acceptor were changed in the proportions shown in Table 2 from Example 1, and the measuring method specified in JIS K6253 was used. Hardness was measured according to the following.
  • Example 4 Each material was kneaded using a kneader and an open roll according to the formulation shown in Table 2 to produce an unvulcanized rubber sheet with a thickness of 2 to 2.5 mm. Further, for evaluation of tensile properties and oxygen gas permeability, the obtained unvulcanized rubber sheet was press-crosslinked at 170° C. for 15 minutes to obtain a primary vulcanized sheet with a thickness of 2 mm. This was further heated in an air oven at 150°C for 2 hours to obtain a second vulcanized sheet. Using the obtained secondary vulcanized sheet, an oxygen gas permeability test was conducted according to JIS K6275-1 using a gas permeability measuring device BT-3 manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • Tb means the tensile strength determined by the tensile test
  • Eb means the elongation determined by the tensile test
  • Hs means the hardness determined by the JIS K6253 hardness test.
  • Table 5 shows the oxygen gas permeation test results.
  • thermoplastic materials of Examples 1 to 9 using ethylene-vinyl alcohol copolymer (EVOH) as the thermoplastic resin and containing the content within the range of the present invention have excellent tensile strength and elongation. This was shown in Table 3.
  • Table 4 showed that in Comparative Examples 1 and 2, in which ethylene-vinyl alcohol copolymer (EVOH) was not used as the thermoplastic resin, the tensile strength and elongation were insufficient. Furthermore, Table 4 shows that in Comparative Example 3, in which the thermoplastic resin did not contain ethylene-vinyl alcohol in an amount within the range of the present invention, the tensile strength was insufficient.
  • EVOH ethylene-vinyl alcohol copolymer
  • Table 5 shows that when the content of the copolymer (EVOH) is within the range of the present invention, the oxygen gas permeability is excellent.
  • thermoplastic material of the present invention has excellent mechanical properties and gas permeation resistance, it is useful as automobile parts, tubes, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

常態物性及び耐ガス透過性に優れる熱可塑性材料を提供することを課題とする。 (a)エピハロヒドリン系ゴムと(b)エチレン-ビニルアルコール共重合体(EVOH)、(c)架橋剤とを含有し、(a)エピハロヒドリン系ゴム100質量部に対して、(b)エチレン-ビニルアルコール共重合体(EVOH)15~120質量部を含有する熱可塑性材料用組成物、及び該熱可塑性材料用組成物から得られる熱可塑性材料により、課題を解決することを見出した。

Description

熱可塑性材料用組成物
 本発明は、常態物性及び耐ガス透過性に優れた熱可塑性材料のための組成物、熱可塑性材料用組成物から得られる熱可塑性材料、及びその製造方法に関する。
 エピハロヒドリン系ゴム材料はその耐熱性、耐油性、低ガス透過性等を活かして、自動車用途では燃料ホースやエアー系ホース、チューブ材料として幅広く使用されている。従来、耐熱性の観点からエピハロヒドリン系ゴム材料は加硫工程を経て架橋体として用いられている。
 近年、ゴム弾性を有する熱可塑性エラストマーが、加硫ゴムを代替する材料として、自動車部品等の分野で多用されている。自動車部品は燃費改善のため更なる軽量化の要求が高まっており、これまで自動車に使用されていた加硫ゴム製のホースを、耐熱性、耐油性及び耐ガス透過性に優れる熱可塑性エラストマーに置き換えることができれば、軽量化が実現できる。
 従来、耐熱・耐油性に優れる熱可塑性エラストマーとしては、ポリブチレンテレフタレート樹脂(PBT)とアクリルゴムを動的架橋した熱可塑性エラストマーや耐ガス透過性に優れるエチレン-ビニルアルコール樹脂(EVOH)とブチルゴム(IIR)を動的架橋した熱可塑性エラストマー等が提案されているが、十分な性能を発揮できていなかった(特許文献1、2参照)。
特許第6443659号 特許第5763221号
 本発明は、常態物性及び耐ガス透過性に優れる熱可塑性材料を提供することを課題とする。
 本発明者らは、(a)エピハロヒドリン系ゴムと(b)エチレン-ビニルアルコール共重合体(EVOH)、(c)架橋剤とを含有し、(a)エピハロヒドリン系ゴム100質量部に対して、(b)エチレン-ビニルアルコール共重合体(EVOH)15~120質量部を含有する熱可塑性材料用組成物、及び該熱可塑性材料用組成物から得られる熱可塑性材料により、上記課題を解決することを見出し、本発明を完成するに至った。
 すなわち、本発明は以下に関する。
項1 (a)エピハロヒドリン系ゴム、(b)エチレン-ビニルアルコール共重合体(EVOH)、(c)架橋剤とを含有し、(a)エピハロヒドリン系ゴム100質量部に対して、(b)エチレン-ビニルアルコール共重合体(EVOH)15~120質量部を含有する熱可塑性材料用組成物。
項2 (a)エピハロヒドリン系ゴムが、エピハロヒドリンに由来する構成単位とエチレンオキシドに由来する構成単位とを有する項1に記載の熱可塑性材料用組成物。
項3 (b)エチレン-ビニルアルコール共重合体(EVOH)のDSC測定による融点が185℃以下である項1又は2に記載の熱可塑性材料用組成物。
項4 (c)架橋剤がキノキサリン系、チオウレア系、トリアジン系からなる群より選ばれる少なくとも1種の架橋剤である項1~3のいずれかに記載の熱可塑性材料用組成物。
項5 項1~4のいずれかに記載の熱可塑性材料用組成物から得られる熱可塑性材料。
項6 熱可塑性エラストマーである項5に記載の熱可塑性材料。
項7 (a)エピハロヒドリン系ゴム100質量部に対して、(b)エチレン-ビニルアルコール共重合体(EVOH)15~120質量部を混練機中で混練りしながら、(a)エピハロヒドリン系ゴムを架橋剤にて架橋して熱可塑性材料を得る項5又は6に記載の熱可塑性材料の製造方法。
 本発明の熱可塑性材料は常態物性及び耐ガス透過性に優れるため、自動車部品をはじめとした工業用製品、特に燃料ホースや冷媒ホース、チューブ材料として有用である。
<1.熱可塑性材料用組成物>
 本発明の熱可塑性材料用組成物は、少なくとも(a)エピハロヒドリン系ゴム、(b)エチレン-ビニルアルコール共重合体(EVOH)、(c)架橋剤とを含有する。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。
 (a)エピハロヒドリン系ゴム、(b)エチレン-ビニルアルコール共重合体(EVOH)は共に、耐ガス透過性に優れる材料であるが、両者を併用することにより相乗作用が発揮され、より良好な耐ガス透過性が得られるものと推測される。特に、(a)エピハロヒドリン系ゴムとして、エピハロヒドリンに由来する構成単位とアルキレンオキシド類に由来する構成単位とを有する重合体を使用した場合に、より好適に上記効果が得られる傾向がある。
 (a)エピハロヒドリン系ゴムは、エピハロヒドリンに由来する構成単位を少なくとも含有する重合体であればよく、エピハロヒドリンの単独重合体又は、エピハロヒドリンと、エチレンオキシド、プロピレンオキシド、n-ブチレンオキシドなどのアルキレンオキシド類、メチルグリシジルエーテル、エチルグリシジルエーテル、n-グリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテルなどのグリシジル類、スチレンオキシドなどから選択される化合物との共重合体を例示することができる。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。なかでも、エピハロヒドリンに由来する構成単位とアルキレンオキシド類に由来する構成単位とを有する重合体であることが好ましく、エピハロヒドリンに由来する構成単位とエチレンオキシドに由来する構成単位とを有する重合体であることがより好ましい。エピハロヒドリンに由来する構成単位とアルキレンオキシド類に由来する構成単位とを有する重合体、特にエピハロヒドリンに由来する構成単位とエチレンオキシドに由来する構成単位とを有する重合体とすることで、エチレン-ビニルアルコール共重合体(EVOH)との相溶性が向上することにより、熱可塑性材料としてより良好な耐ガス透過性(ガスバリア性)が得られるものと考えられる。
 エピハロヒドリン系ゴムを具体的に例示すると、エピハロヒドリン単独重合体、エピハロヒドリン-エチレンオキシド共重合体、エピハロヒドリン-プロピレンオキシド共重合体、エピハロヒドリン-エチレンオキシド-アリルグリシジルエーテル三元共重合体、エピハロヒドリン-エチレンオキシド-プロピレンオキシド-アリルグリシジルエーテル四元共重合体等を挙げることができる。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。なかでも、エピハロヒドリン-エチレンオキシド共重合体、エピハロヒドリン-エチレンオキシド-アリルグリシジルエーテル三元共重合体であることが好ましく、エピハロヒドリン-エチレンオキシド共重合体であることが特に好ましい。これら単独重合体または共重合体の分子量は特に制限されないが、JIS K6300-1:2013に準拠して測定したムーニー粘度表示でML1+4(100℃)=30~150程度である。
 エピハロヒドリン系ゴムとしては、エピハロヒドリンに由来する構成単位の割合が、全構成単位に対して、10~100モル%であることが好ましく、20~75モル%であることがより好ましく、25~65モル%であることが特に好ましい。
 エピハロヒドリン系ゴムとしては、エチレンオキシドに由来する構成単位の割合が、全構成単位に対して、0~90モル%であることが好ましく、25~80モル%であることがより好ましく、35~75モル%であることが特に好ましい。
 エピハロヒドリン系ゴムとしては、エピハロヒドリンに由来する構成単位及びエチレンオキシドに由来する構成単位の合計割合が、全構成単位に対して、80モル%以上であることが好ましく、85モル%以上であることがより好ましく、90モル%以上であることが特に好ましく、100モル%であってもよい。エピハロヒドリンに由来する構成単位とエチレンオキシドに由来する構成単位以外の他の構成単位としては、エピハロヒドリン以外のエピハロヒドリン、エチレンオキシド以外のアルキレンオキシド類、グリシジル類、スチレンオキシド等のエピハロヒドリン、エチレンオキシドと共重合可能の化合物由来の構成単位であってよい。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。
 エピハロヒドリン-エチレンオキシド共重合体の場合、それら共重合割合は、エピハロヒドリンに由来する構成単位は5mol%~95mol%であることが好ましく、20mol%~75mol%であることがより好ましく、25mol%~65mol%であることが特に好ましい。エチレンオキシドに由来する構成単位は5mol%~95mol%であることが好ましく、25mol%~80mol%であることがより好ましく、35mol%~75mol%であることが特に好ましい。
 エピハロヒドリン-エチレンオキシドアリルグリシジルエーテル三元共重合体の場合、それら共重合割合は、エピハロヒドリンに由来する構成単位は5mol%~95mol%であることが好ましく、20mol%~75mol%であることがより好ましく、25mol%~65mol%であることが特に好ましい。エチレンオキシドに由来する構成単位は4mol%~94mol%であることが好ましく、24mol%~79mol%であることがより好ましく、34mol%~74mol%であることが特に好ましい。アリルグリシジルエーテルに由来する構成単位は1mol%~10mol%であることが好ましく、1mol%~8mol%であることがより好ましく、1mol%~7mol%であることが特に好ましい。
 エピハロヒドリン-エチレンオキシド共重合体、エピハロヒドリン-エチレンオキシドアリルグリシジルエーテル三元共重合体の共重合組成については、ハロゲン元素(塩素)含有量、ヨウ素価により求められる。
 塩素含有量はJIS K7229:1995に記載の方法に従い、電位差滴定法によって測定する。塩素以外のハロゲン元素含有量は核磁気共鳴分光法(H-NMR)により測定する。得られたハロゲン元素(塩素)含有量からエピハロヒドリンに由来する構成単位のモル分率を算出する。
 ヨウ素価はJIS K6235:2006に準じた方法で測定する。得られたヨウ素価からアリルグリシジルエーテルに由来する構成単位のモル分率を算出する。
 エチレンオキシドに由来する構成単位のモル分率は、エピハロヒドリンに由来する構成単位のモル分率、アリルグリシジルエーテルに基づく構成単位のモル分率より算出する。
 エピハロヒドリン系ゴムの製造は、触媒としてオキシラン化合物を開環重合させ得るものを使用し、温度-20~100℃の範囲で溶液重合法、スラリー重合法等により実施できる。このような触媒としては、例えば有機アルミニウムを主体としこれに水やリンのオキソ酸化合物やアセチルアセトン等を反応させた触媒系、有機亜鉛を主体としこれに水を反応させた触媒系、有機錫-リン酸エステル縮合物触媒系等が挙げられる。例えば本出願人による米国特許第3,773,694号明細書に記載の有機錫-リン酸エステル縮合物触媒系を使用して、エピハロヒドリン系ゴムを製造することができる。なお、このような製法により、共重合させる場合、これらの成分を実質上ランダムに共重合することが好ましい。
 前記エピハロヒドリンとしては、例えば、エピクロロヒドリン、エピブロムヒドリンが挙げられる。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。なかでも、エピクロロヒドリンが好ましい。
 ゴム成分100質量%中の(a)エピハロヒドリン系ゴムの含有量は、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上であり、100質量%であってもよい。
 (b)エチレン-ビニルアルコール共重合体は、エチレン単位とビニルアルコール単位を主とする共重合体であり、エチレン-ビニルエステル共重合体中のビニルエステル単位を鹸化して得られるものである。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。
 (b)エチレン-ビニルアルコール共重合体におけるエチレン単位の含有量は、20mol%~50mol%であることが好ましく、30mol%~50mol%であることがより好ましく、35mol%~50mol%であることが特に好ましく、40mol%~50mol%であることが最も好ましい。
 (b)エチレン-ビニルアルコール共重合体の鹸化度は90モル%以上であることが好ましく、95モル%以上であることがより好ましく、99モル%以上であることがさらに好ましく、100モル%であってもよい。
 エチレン-ビニルアルコール共重合体の鹸化度は、エチレン-ビニルエステル共重合体中のビニルエステル単位の鹸化割合を意味し、核磁気共鳴分光法(H-NMR)により測定される。
 (b)エチレン-ビニルアルコール共重合体におけるビニルアルコール単位の含有量は、50mol%~80mol%であることが好ましく、50mol%~70mol%であることがより好ましく、50mol%~65mol%であることが特に好ましく、50mol%~60mol%であることが最も好ましい。
 (b)エチレン-ビニルアルコール共重合体のエチレン単位、ビニルアルコール単位及びビニルエステル単位に加えて、他の構成単位を有していてもよい。他の構成単位としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニルシラン化合物由来の単位、プロピレン、ブチレン等のオレフィン、(メタ)アクリル酸、(メタ)アクリル酸メチルなどの不飽和カルボン酸又はそのエステル等の化合物由来の構成単位を有していてもよい。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。エチレン単位、ビニルアルコール単位及びビニルエステル単位以外の構成単位の含有量は、全構成単位に対して5モル%以下であることが好ましい。
 (b)エチレン-ビニルアルコール共重合体におけるエチレン単位、ビニルアルコール単位及びビニルエステル単位の合計含有量は、好ましくは80mol%以上、より好ましくは90mol%以上、更に好ましくは95mol%以上であり、100mol%であってもよい。
同様に、(b)エチレン-ビニルアルコール共重合体におけるエチレン単位及びビニルアルコール単位の合計含有量は、好ましくは80mol%以上、より好ましくは90mol%以上、更に好ましくは95mol%以上であり、100mol%であってもよい。
 (b)エチレン-ビニルアルコール共重合体における各単位の含有量は、核磁気共鳴分光法(H-NMR)により測定される。
 (b)エチレン-ビニルアルコール共重合体のDSC測定による融点は185℃以下が好ましく、180℃以下であることがより好ましく、170℃以下であることが更に好ましく、下限は特に限定されないが、160℃以上であることが好ましく、165℃以上であることがより好ましい。融点としては、160℃~185℃、160℃~180℃、165℃~185℃、165℃~180℃、165℃~170℃が例示される。
 DSC(示差走査熱量計)測定による融点は、示差走査熱量計(パーキンエルマー社製DSC-8000)を用い、JIS K7121-1987に準拠して求めることができる。エチレン-ビニルアルコール共重合体のDSC測定による融点は、通常、ビニルアルコール単位の含有量が多くなるに従い、融点も高くなる傾向がある。
 熱可塑性材料用組成物においては、(b)エチレン-ビニルアルコール共重合体の含有量は、(a)エピハロヒドリン系ゴム100質量部に対して、15~120質量部であることが好ましく、得られる熱可塑性材料の硬度の点で、20~80質量部であることがより好ましく、30~75質量部であることが特に好ましい。
 (c)架橋剤としては、キノキサリン系架橋剤、チオウレア系架橋剤及びトリアジン系架橋剤からなる群より選択される少なくとも1種が使用される。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。なかでも、キノキサリン系架橋剤及びチオウレア系架橋剤であることが好ましく、キノキサリン系架橋剤であることが特に好ましい。
 前記キノキサリン系架橋剤としては、2,3-ジメルカプトキノキサリン、キノキサリン-2,3-ジチオカーボネート、6-メチルキノキサリン-2,3-ジチオカーボネート、5,8-ジメチルキノキサリン-2,3-ジチカーボネート等が挙げられる。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。なかでも、6-メチルキノキサリン-2,3-ジチオカーボネートが好ましい。
 前記チオウレア系架橋剤としては、2-メルカプトイミダゾリン(エチレンチオウレア)、1,3-ジエチルチオウレア、1,3-ジブチルチオウレア、トリメチルチオウレア等が挙げられる。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。なかでも、エチレンチオウレアが好ましい。
 前記トリアジン系架橋剤としては、1,3,5-トリアジントリチオール、6-アニリノ-1,3,5-トリアジン-2,4-ジチオール、6-メチルアミノ-1,3,5-トリアジン-2,4-ジチオール、6-ジメチルアミノ-1,3,5-トリアジン-2,4-ジチオール、6-エチルアミノ-1,3,5-トリアジン-2,4-ジチオール、6-ジエチルアミノ-1,3,5-トリアジン-2,4-ジチオール、6-プロピルアミノ-1,3,5-トリアジン-2,4-ジチオール、6-ジプロピルアミノ-1,3,5-トリアジン-2,4-ジチオール、6-ブチルアミノ-1,3,5-トリアジン-2,4-ジチオール、6-ジブチルアミノ-1,3,5-トリアジン-2,4-ジチオール、6-ヘキシルアミノ-1,3,5-トリアジン-2,4-ジチオール、6-オクチルアミノ-1,3,5-トリアジン-2,4-ジチオール、6-デシルアミノ-1,3,5-トリアジン-2,4-ジチオール等が挙げられる。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。なかでも、1,3,5-トリアジントリチオールが好ましい。
 熱可塑性材料用組成物においては、(c)架橋剤の含有量は、(a)エピハロヒドリン系ゴム100質量部に対して、0.1~10質量部であることが好ましく、0.3~5質量部であることが特に好ましい。
 熱可塑性材料用組成物においては、(a)エピハロヒドリン系ゴムと(b)エチレン-ビニルアルコール共重合体(EVOH)、(c)架橋剤以外に、架橋促進剤、架橋遅延剤、受酸剤、老化防止剤、滑剤、光安定化剤、充填剤、補強剤、可塑剤、加工助剤、顔料、着色剤、帯電防止剤、発泡剤等を任意に配合できる。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。
 架橋促進剤としては、例えば、モルホリンスルフィド類、アミン類、アミンの弱酸塩類、四級アンモニウム塩類、四級ホスホニウム塩類、脂肪酸のアルカリ金属塩、チウラムスフィド類、多官能ビニル化合物、メルカプトベンゾチアゾール類、スルフェンアミド類、ジメチオカーバメート類、グアニジン類、多価アルコール等を挙げることができる。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。キノキサリン系架橋剤を本発明の組成物に適用した場合の特に好ましい促進剤として、1,8-ジアザビシクロ(5,4,0)ウンデセン-7(以下DBUと略)塩、1,5-ジアザビシクロ(4,3,0)ノネン-5(以下DBNと略)塩が挙げられる。なかでも、DBU塩が好ましい。トリアジン系架橋剤を本発明の組成物に適用した場合の特に好ましい促進剤として、グアニジン類が挙げられる。
 DBU塩としては、DBU-炭酸塩、DBU-ステアリン酸塩、DBU-2-エチルヘキシル酸塩、DBU-安息香酸塩、DBU-サリチル酸塩、DBU-3-ヒドロキシ-2-ナフトエ酸塩、DBU-フェノール樹脂塩、DBU-2-メルカプトベンゾチアゾール塩、DBU-2-メルカプトベンズイミダゾール塩等が挙げられる。また、DBN塩としては、DBN-炭酸塩、DBN-ステアリン酸塩、DBN-2-エチルヘキシル酸塩、DBN-安息香酸塩、DBN-サリチル酸塩、DBN-3-ヒドロキシ-2-ナフトエ酸塩、DBN-フェノール樹脂塩、DBN-2-メルカプトベンゾチアゾール塩、DBN-2-メルカプトベンズイミダゾール塩等が挙げられる。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。なかでも、DBU-3-ヒドロキシ-2-ナフトエ酸塩、DBU-フェノール樹脂塩が好ましい。
 グアニジン類としては、1,3-ジフェニルグアニジン、1,3-ジオルトトリルグアニジンなどが挙げられる。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。
 架橋促進剤の含有量については、エピハロヒドリン系ゴム100質量部に対して0.1~5質量部であることが好ましく、0.5~3質量部であることがより好ましい
 また、架橋遅延剤としてはN-シクロヘキシルチオフタルイミド、無水フタル酸、有機亜鉛化合物等を挙げることができる。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。
 架橋遅延剤の含有量については、エピハロヒドリン系ゴム100質量部に対して0~5質量部であることが好ましく、0.1~3質量部であってよい。
 受酸剤としては金属化合物及び/又は無機マイクロポーラス・クリスタルが用いられる。
 受酸剤となる金属化合物としては、周期律表第II族金属の酸化物、水酸化物、炭酸塩、カルボン酸塩、ケイ酸塩、ホウ酸塩、亜リン酸塩、周期律表第IVA族金属の酸化物、塩基性炭酸塩、塩基性カルボン酸塩、塩基性亜リン酸塩、塩基性亜硫酸塩、三塩基性硫酸塩等が挙げられる。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。
 受酸剤となる金属化合物の具体例としては、マグネシア(酸化マグネシウム)、水酸化マグネシウム、水酸化バリウム、炭酸マグネシウム、炭酸バリウム、炭酸ナトリウム、生石灰、消石灰、炭酸カルシウム、ケイ酸カルシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、フタル酸カルシウム、亜リン酸カルシウム、亜鉛華、酸化錫、リサージ、鉛丹、鉛白、二塩基性フタル酸鉛、二塩基性炭酸鉛、塩基性ケイ酸鉛、ステアリン酸錫、塩基性亜リン酸鉛、塩基性亜リン酸錫、塩基性亜硫酸鉛、三塩基性硫酸鉛等を挙げることができる。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。
 前記無機マイクロポーラス・クリスタルとは、結晶性の多孔体を意味し、無定型の多孔体、例えばシリカゲル、アルミナ等とは明瞭に区別できるものである。このような無機マイクロポーラス・クリスタルの例としては、ゼオライト類、アルミノホスフェート型モレキュラーシーブ、層状ケイ酸塩、合成ハイドロタルサイト、チタン酸アルカリ金属塩等が挙げられる。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。特に好ましい受酸剤としては、合成ハイドロタルサイトが挙げられる。
 前記合成ハイドロタルサイトは下記一般式(I)で表される。
 MgZnAl(OH)(2(X+Y)+3Z-2)CO・wHO (I)
[式中、XとYはそれぞれX+Y=1~10の関係を有する0~10の実数、Zは1~5の実数、wは0~10の実数をそれぞれ示す。]
 前記一般式(I)で表されるハイドロタルサイト類の例として、Mg4.5Al(OH)13CO・3.5HO、Mg4.5Al(OH)13CO、MgAl(OH)12CO・3.5HO、MgAl(OH)16CO・4HO、MgAl(OH)14CO・4HO、MgAl(OH)10CO・1.7HO、MgZnAl(OH)12CO・3.5HO、MgZnAl(OH)12CO等を挙げることができる。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。
 受酸剤の含有量は、(a)エピハロヒドリン系ゴム100質量部に対して0.2~30質量部であることが好ましく、0.5~20質量部であることがより好ましく、1~10質量部であることが特に好ましく、2~8質量部であってよい。これらの範囲であれば、熱可塑性材料として通常期待される物性が得られるため好ましい。
 老化防止剤としては、芳香族第二級アミン類、ジチオカルバメート金属塩類、ベンズイミダゾール類、フェノール類、リン酸類、有機チオ酸類等が挙げられ、フェノール類及び有機チオ酸類が好ましい。芳香族第二級アミン系老化防止剤としては、N,N'-ジ-2-ナフチル-p-フェニレンジアミン、N-フェニル-1-ナフチルアミン、アルキル化ジフェニルアミン、オクチル化ジフェニルアミン、4,4'-ビス(α,α-ジメチルベンジル)ジフェニルアミン、p-(p-トルエンスルホニルアミド)ジフェニルアミン、N,N'-ジ-2-ナフチル-p-フェニレンジアミン、N,N'-ジフェニル-p-フェニレンジアミン、N-フェニル-N'-イソプロピル-p-フェニレンジアミン、N-フェニル-N'-(1,3-ジメチルブチル)-p-フェニレンジアミン、N-フェニル-N'-(3-メタクリロイルオキシ-2-ヒドロキシプロピル)-p-フェニレンジアミンなどが挙げられる。ジチオカルバメート金属塩系老化防止剤としては、ジブチルジチオカルバミン酸ニッケルなどが挙げられる。ベンズイミダゾール系老化防止剤としては、2-メルカプトベンズイミダゾールの亜鉛塩、2-メルカプトベンズイミダゾールなどが挙げられる。フェノール系老化防止剤の具体例としては、2,6-ジ-tert-ブチル-4-メチルフェノール、モノフェノール、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、p-クレゾールとジシクロペンタジエンのブチル化反応生成物、2,5’-ジ-tert-ブチルハイドロキノン、2,5’-ジ-tert-アミルハイドロキノン、2,6-ジ-tert-ブチル-p-クレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-tert-ブチル-4-エチルフェノール、ステアリル-β-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス-(メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート)メタン、ビス(3,3’-ビス-(4’-ヒドロキシ-3’-tert-ブチルフェニル)ブチリックアシッド)グリコールエステル、1,3,5-トリス(3’5-ジ-tert-ブチル-4’-ヒドロキシベンジル)-sec-トリアジン-2,4,6-(1H,3H,5H)トリオンが例示される。リン酸系老化防止剤として、トリス(ノニルフェニル)ホスファイト、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、ジフェニル・モノ(2-エチルへキシル)フォスファイト、ジフェニル・モノトリデシル・フォスファイト、フェニルジイソデシルホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-tert-ブチルフェニルジトリデシル)ホスファイト、サイクリックネオペンタンテトライルビス、トリスホスファイト、ジイソデシルペンタエリスリトールジフォスファイト、9,10-ジヒドロ-9-オキサ-10ホスファフェナントレン-10-オキシド、10-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4-ジ-tert-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ホスファイト、2,2メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイトが例示される。有機チオ酸系老化防止剤として、ジラウリル3,3’-チオジプロピオネート、ジステアリル3,3’-チオジプロピオネート、ジミリスチル3,3’-チオジプロピオネートが例示される。これらの中でも、テトラキス-(メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート)メタン及びジラウリル3,3’-チオジプロピオネートが好ましい。老化防止剤は、これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできるが、2種以上を組み合わせて用いることが好ましい。
 老化防止剤の配合量は、エピハロヒドリン系ゴム100質量部に対して、0.1~10質量部であってよく、0.3~5質量部であることが好ましく、0.5~3質量部であることが特に好ましい。
 加工助剤としては、ステアリン酸、オレイン酸、パルミチン酸、ラウリン酸などの高級脂肪酸、ステアリン酸ナトリウム、ステアリン酸亜鉛などの高級脂肪酸塩、ステアリン酸アミド、オレイン酸アミドなどの高級脂肪酸アミド、オレイン酸エチルなどの高級脂肪酸エステル、ステアリルアミン、オレイルアミンなどの高級脂肪族アミン、カルナバワックス、セレシンワックスなどの石油系ワックス、ワセリン、パラフィンなどの脂肪族炭化水素、シリコーン系オイル、シリコーン系ポリマー、低分子量ポリエチレン、フタル酸エステル類、リン酸エステル類、ロジン、(ハロゲン化)ジアルキルアミン、(ハロゲン化)ジアルキルスルフォン、界面活性剤、グリコールエーテル類、グリコール類などが挙げられる。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。
 上記グリコールエーテル類としては、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノアリルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノイソブチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノ-tert-ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノイソブチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノベンジルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノブチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールモノヘキシルエーテル、エチレングリコールモノイソプロピルエーテル、2-メトキシブタノール、3-メトキシブタノール及び3-メトキシ-3-メチルブタノールなどが挙げられる。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。
 上記グリコール類としては、エチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,4-ペンタンジオール、2,5-ヘキサンジオール、1,6-ヘキサンジオール、トリエチレングリコール、1-メチル-1,3-ブチレングリコール、2-メチル-1,3-ブチレングリコール、2,4-ジエチル-1,5-ペンタンジオール、2,2-ジエチル-1,3-プロパンジオール、トリプロピレングリコール、1,2-プロピレングリコール、2-メチル-1,5-ペンタンジオール、2-メチル-1,4-ペンタンジオール、2-メチル-2,4-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-1,3-プロパンジオール、ネオペンチルグリコール、2-ブチル-2-エチル-1,3-プロパンジオール、2-メチル-1,8-オクタンジオールなどが挙げられる。これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。
 エピハロヒドリン系ゴムとエチレン-ビニルアルコール共重合体(EVOH)との相溶性の観点から、機械的特性に優れるため、加工助剤としてはグリコールエーテル類またはグリコール類が好ましく、グリコール類がより好ましく、ポリアルキレングリコールであることがより好ましく、ジアルキレングリコール、トリアルキレングリコール、テトラアルキレングリコールから選択されるグリコール類であることが更に好ましく(炭素数2~4のアルキレンであることがより好ましい)、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコールが特に好ましい。
 加工助剤の添加量は、ブリードアウトの観点から、エピハロヒドリン系ゴム100質量部に対して、1~14質量部であってよく、2~13質量部であることが好ましく、3~12質量部であることが特に好ましい。
 熱可塑性材料用組成物の製造方法としては、混練機にて混練することで製造される。混練機としては、ニーダー、バンバリーミキサー、二軸混練押し出し機等のように、加熱しながらせん断力下に混練できる装置が適宜選択される。
 本発明の熱可塑性材料の製造方法としては、熱可塑性材料用組成物を混練機中で混練しながらエピハロヒドリン系ゴムを架橋剤にて(動的)架橋することが好ましい。具体的には、まず、エピハロヒドリン系ゴムとエチレン-ビニルアルコール共重合体(EVOH)を混練機中で予め十分に溶融混合した後、エピハロヒドリン系ゴムを架橋せしめ得る架橋剤を添加し、混練しながらエピハロヒドリン系ゴムを架橋せしめる方法(動的架橋)が最も好適である。また、混練しながらエピハロヒドリン系ゴムを架橋せしめる際の温度および時間は、本発明においては、温度150~300℃ (好ましくは160~200℃)で、時間2~30分の範囲にあるのが望ましい。
 本発明の熱可塑性材料としては、熱可塑性を有していればよく、その特性を活かした射出又は押出成型材料と記載することもできる。また、熱を加えると軟化して流動性を示し、冷却すればゴム状に戻る性質を持つ熱可塑性エラストマーと記載することができる。その場合、架橋された(a)エピハロヒドリン系ゴムが(b)エチレン-ビニルアルコール共重合体(EVOH)中を分散する、即ち、(b)エチレン-ビニルアルコール共重合体(EVOH)を連続相とし、架橋された(a)エピハロヒドリン系ゴムが分散相として分散することになる。
 熱可塑性エラストマーにおいては、熱可塑性エラストマー(100質量%)中における架橋された(a)エピハロヒドリン系ゴムは40~85質量%を含有することが好ましく、50~85質量%を含有することがより好ましく、55~85質量%を含有することが特に好ましい。また、45~80質量%、45~75質量%、50~80質量%、50~75質量%であってもよい。
 熱可塑性エラストマー(100質量%)中における(b)エチレン-ビニルアルコール共重合体は10~60質量%を含有することが好ましく、15~45質量%を含有することがより好ましく、15~40質量%を含有することが特に好ましい。また、10~45質量%、20~45質量%、20~40質量%であってもよい。
 熱可塑性エラストマー(100質量%)中における架橋された(a)エピハロヒドリン系ゴムと(b)エチレン-ビニルアルコール共重合体との合計割合は、85~99質量%であってよく、90~98質量%であってよい。
 本発明の熱可塑性エラストマーにおいては、エピハロヒドリン系ゴムを架橋する際に用いられる架橋剤、架橋促進剤、受酸剤、老化防止剤を含有していてもよく、加工助剤等を含有していてもよい。これらの(a)架橋されたエピハロヒドリン系ゴムと(b)エチレン-ビニルアルコール共重合体(EVOH)以外の成分の合計量については、熱可塑性エラストマー組成物(100質量%)中の1~15質量%であってよく、2~10質量%であってよい。
 本発明を実施するための具体的な形態を以下に実施例を挙げて説明する。但し、本発明はその要旨を逸脱しない限り、以下の実施例に限定されるものではない。
 (動的架橋型)熱可塑性エラストマー組成物の製造方法について記載する。尚、表1、表2の単位は質量部とする。また、本文の記載と、表中の記載に齟齬がある場合は、表中の記載が優先される。
 実施例及び比較例中の熱可塑性樹脂における融点は、示差走査熱量計(パーキンエルマー社製DSC-8000)を用い、JIS K7121-1987に準拠して求める。
 物性の測定方法は次の通りである。
・引張強さ       JIS K6251:2010準拠
・伸び         JIS K6251:2010準拠
・硬さ         JIS K6253:2012準拠
・酸素ガス透過性    JIS K6275-1:2022準拠
「実施例1」
 165℃に加熱した60ccニーダーを用いて、表1に示す割合で架橋剤及び架橋促進剤を除く各材料を添加し、100rpmで3分混練後、架橋剤及び架橋促進剤を添加し、100rpmで4分間の動的架橋を実施した。その後、185℃に設定したプレスで3分間予熱後に3分間加熱し、次いで冷却することにより2mm厚のシートを成型した。得られたシートを用い、島津製作所社製 AGS-5KNYを用いて、JIS K6251に準じて引張試験を、硬度は、高分子計器株式会社製 アスカーゴム硬度計D型を用いて、JIS K6253に規定されている測定法に従って測定し、株式会社東洋精機製作所製 ガス透過率測定装置BT-3を用いて、JIS K6275-1に準じて酸素ガス透過性試験を実施した。
「実施例2」
 実施例1より、表1に示す割合で滑剤、老化防止剤、受酸剤及び遅延剤を変更した以外は、実施例1と同様にJIS K6251に準じて引張試験を実施し、JIS K6253に規定されている測定法に従って、硬度を測定し、JIS K6275-1に準じて酸素ガス透過性試験を実施した。
「実施例3」
 実施例1より、表1に示す割合で熱可塑性樹脂及び受酸剤を変更した以外は、実施例1と同様にJIS K6251に準じて引張試験を実施し、JIS K6253に規定されている測定法に従って、硬度を測定した。
「実施例4」
 実施例1より、表1に示す割合で熱可塑性樹脂及び受酸剤を変更した以外は、実施例1と同様にJIS K6251に準じて引張試験を実施し、JIS K6253に規定されている測定法に従って、硬度を測定した。
「実施例5」
 実施例1より、表1に示す割合で促進剤及び架橋剤を変更した以外は、実施例1と同様にJIS K6251に準じて引張試験を実施し、JIS K6253に規定されている測定法に従って、硬度を測定した。
「実施例6」
 実施例1より、表1に示す割合で促進剤及び架橋剤を変更した以外は、実施例1と同様にJIS K6251に準じて引張試験を実施し、JIS K6253に規定されている測定法に従って、硬度を測定した。
「実施例7」
 実施例1より、表1に示す割合でジエチレングリコールを追加した以外は、実施例1と同様にJIS K6251に準じて引張試験を実施し、JIS K6253に規定されている測定法に従って、硬度を測定した。
「実施例8」
 実施例1より、表1に示す割合でトリエチレングリコールを追加した以外は、実施例1と同様にJIS K6251に準じて引張試験を実施し、JIS K6253に規定されている測定法に従って、硬度を測定し、JIS K6275-1に準じて酸素ガス透過性試験を実施した。
「実施例9」
 実施例1より、表1に示す割合で促進剤を変更し、トリエチレングリコールを追加した以外は、実施例1と同様にJIS K6251に準じて引張試験を実施し、JIS K6253に規定されている測定法に従って、硬度を測定した。
「比較例1」
 実施例1より、表2に示す割合で熱可塑性樹脂を変更した以外は、実施例1と同様にJIS K6251に準じて引張試験を実施し、JIS K6253に規定されている測定法に従って、硬度を測定した。
「比較例2」
 実施例1より、60ccニーダーの加熱温度を224℃に変更し、表2に示す割合で熱可塑性樹脂を変更した以外は、実施例1と同様にJIS K6251に準じて引張試験を実施し、JIS K6253に規定されている測定法に従って、硬度を測定した。
「比較例3」
 実施例1より、表2に示す割合で熱可塑性樹脂及び受酸剤を変更した以外は、実施例1と同様にJIS K6251に準じて引張試験を実施し、JIS K6253に規定されている測定法に従って、硬度を測定した。
「比較例4」
 表2に示す配合で各材料をニーダーおよびオープンロールで混練し、厚さ2~2.5 mmの未加硫ゴムシートを作製した。また、引張特性、酸素ガス透過性の評価のために得られた未加硫ゴムシートを170℃ で15分プレス架橋し、2mm厚の一次加硫シートを得た。さらにこれをエア・オーブンで150℃ で2時間加熱し、二次加硫シートを得た。得られた二次加硫シートを用い、株式会社東洋精機製作所製 ガス透過率測定装置BT-3を用いて、JIS K6275-1に準じて酸素ガス透過性試験を実施した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 各試験方法より得られた試験結果を表3、表4に示す。各表中Tbは引張試験に定める引張強さ、Ebは引張試験に定める伸び、HsはJIS K6253の硬さ試験に定める硬さをそれぞれ意味する。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
酸素ガス透過試験結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 熱可塑性樹脂としてエチレン-ビニルアルコール共重合体(EVOH)を用い、含有量を本発明の範囲内で含有させた実施例1~9の熱可塑性材料においては、引張強さ及び伸びに優れていることが表3より示された。
 一方で、熱可塑性樹脂としてエチレン-ビニルアルコール共重合体(EVOH)を用いていない比較例1及び2においては、引張強さ及び伸びは不十分であることが表4より示された。また、熱可塑性樹脂としてエチレン-ビニルアルコールの含有量を本発明の範囲内で含有させていない比較例3においては、引張強さは不十分であることが表4より示された。
 熱可塑性樹脂としてエチレン-ビニルアルコール共重合体(EVOH)の含有量を本発明の範囲内で含有させた実施例1~2及び8と比較例4を比較すると、熱可塑性樹脂としてエチレン-ビニルアルコール共重合体(EVOH)の含有量を本発明の範囲内で含有させた場合に、酸素ガス透過性に優れることが表5より示された。
 本発明の熱可塑性材料は機械的特性及び耐ガス透過性に優れるために、自動車用部品やチューブ等として有用である。
 
 

 

Claims (7)

  1.  (a)エピハロヒドリン系ゴム、(b)エチレン-ビニルアルコール共重合体(EVOH)、(c)架橋剤とを含有し、(a)エピハロヒドリン系ゴム100質量部に対して、(b)エチレン-ビニルアルコール共重合体(EVOH)15~120質量部を含有する熱可塑性材料用組成物。
  2.  (a)エピハロヒドリン系ゴムが、エピハロヒドリンに由来する構成単位とエチレンオキシドに由来する構成単位とを有する請求項1に記載の熱可塑性材料用組成物。
  3.  (b)エチレン-ビニルアルコール共重合体(EVOH)のDSC測定による融点が185℃以下である請求項1に記載の熱可塑性材料用組成物。
  4.  (c)架橋剤がキノキサリン系、チオウレア系、トリアジン系からなる群より選ばれる少なくとも1種の架橋剤である請求項1に記載の熱可塑性材料用組成物。
  5.  請求項1~4のいずれかに記載の熱可塑性材料用組成物から得られる熱可塑性材料。
  6.  熱可塑性エラストマーである請求項5に記載の熱可塑性材料。
  7.  (a)エピハロヒドリン系ゴム100質量部に対して、(b)エチレン-ビニルアルコール共重合体(EVOH)15~120質量部を混練機中で混練りしながら、(a)エピハロヒドリン系ゴムを架橋剤にて架橋して熱可塑性材料を得る請求項5に記載の熱可塑性材料の製造方法。

     
PCT/JP2023/023732 2022-07-01 2023-06-27 熱可塑性材料用組成物 WO2024004986A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022106758 2022-07-01
JP2022-106758 2022-07-01
JP2022-175619 2022-11-01
JP2022175619 2022-11-01

Publications (1)

Publication Number Publication Date
WO2024004986A1 true WO2024004986A1 (ja) 2024-01-04

Family

ID=89383113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023732 WO2024004986A1 (ja) 2022-07-01 2023-06-27 熱可塑性材料用組成物

Country Status (1)

Country Link
WO (1) WO2024004986A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499615B1 (ja) * 1963-12-07 1974-03-05
WO2010140583A1 (ja) * 2009-06-05 2010-12-09 ダイソー株式会社 ゴム-樹脂積層体
JP2013079374A (ja) * 2011-09-22 2013-05-02 Kuraray Co Ltd ビニルアルコール系重合体を含有する組成物
WO2015056593A1 (ja) * 2013-10-15 2015-04-23 ダイソー株式会社 保存安定性に優れた架橋用組成物
CN109111718A (zh) * 2018-07-11 2019-01-01 宁波艾克姆新材料有限公司 二丁基二硫代氨基甲酸镍预分散母胶粒及其制备方法
JP2019026662A (ja) * 2017-07-25 2019-02-21 株式会社大阪ソーダ 架橋用組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499615B1 (ja) * 1963-12-07 1974-03-05
WO2010140583A1 (ja) * 2009-06-05 2010-12-09 ダイソー株式会社 ゴム-樹脂積層体
JP2013079374A (ja) * 2011-09-22 2013-05-02 Kuraray Co Ltd ビニルアルコール系重合体を含有する組成物
WO2015056593A1 (ja) * 2013-10-15 2015-04-23 ダイソー株式会社 保存安定性に優れた架橋用組成物
JP2019026662A (ja) * 2017-07-25 2019-02-21 株式会社大阪ソーダ 架橋用組成物
CN109111718A (zh) * 2018-07-11 2019-01-01 宁波艾克姆新材料有限公司 二丁基二硫代氨基甲酸镍预分散母胶粒及其制备方法

Similar Documents

Publication Publication Date Title
US8258222B2 (en) Composition for vulcanized rubber and vulcanization product
WO2008050859A1 (en) Rubber composition for vulcanization
JP5660453B2 (ja) 半導電性ゴム組成物及びその加硫物
JP4867311B2 (ja) 加硫ゴム用組成物およびその加硫物
JP5601478B2 (ja) 半導電性ゴム用組成物、ゴム架橋体および半導電性部品
WO2024004986A1 (ja) 熱可塑性材料用組成物
JP5088010B2 (ja) 加硫用ゴム組成物
JP3994757B2 (ja) 加硫用ゴム組成物およびその加硫物
JP5403419B2 (ja) バイオディーゼル燃料と直接接触する成型部品を製造するための加硫用ゴム組成物
JP4855643B2 (ja) 耐酸性に優れた加硫用ゴム組成物およびその加硫ゴム材料
WO2024005003A1 (ja) 熱可塑性材料用組成物
JP4193560B2 (ja) 加硫用ゴム組成物およびその加硫ゴム材料
US8530587B2 (en) Vulcanizable rubber composition for use in an air spring and rubber formed product for use in an air spring
JP2000160037A (ja) エラストマー組成物およびそれを用いる電子写真装置用弾性部材
JP2007314588A (ja) エピクロルヒドリンゴム組成物およびそれからなる成形体
JPWO2019163362A1 (ja) エピハロヒドリンゴム組成物、エピハロヒドリンゴム架橋物及びエアダクトホース
JP2004352952A (ja) 加硫用ゴム組成物および加硫ゴム材料
JP4389738B2 (ja) 加硫用ゴム組成物、そのゴム加硫物および同加硫物からなるゴム製品
JP2005154686A (ja) エピハロヒドリンゴム組成物
JP2008031287A (ja) ニトリルゴム組成物、架橋性ニトリルゴム組成物及びゴム架橋物
WO2023190181A1 (ja) 架橋用組成物およびそれを架橋してなるゴム材料
JP5293997B2 (ja) 半導電性加硫ゴム用組成物、半導電性加硫ゴム成形体、及び半導電性ゴムロール
JP2024145254A (ja) エピハロヒドリン系ゴムおよびゴム組成物
WO2022215408A1 (ja) 難燃性熱可塑性ポリエステルエラストマー樹脂組成物、及びそれらから得られる成形品
JP5397752B2 (ja) 低金属汚染性ゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831426

Country of ref document: EP

Kind code of ref document: A1