WO2024004401A1 - 導電性フィルムおよび導電性フィルムの製造方法 - Google Patents

導電性フィルムおよび導電性フィルムの製造方法 Download PDF

Info

Publication number
WO2024004401A1
WO2024004401A1 PCT/JP2023/017875 JP2023017875W WO2024004401A1 WO 2024004401 A1 WO2024004401 A1 WO 2024004401A1 JP 2023017875 W JP2023017875 W JP 2023017875W WO 2024004401 A1 WO2024004401 A1 WO 2024004401A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper layer
oxygen gas
conductive film
thickness direction
layer
Prior art date
Application number
PCT/JP2023/017875
Other languages
English (en)
French (fr)
Inventor
翔也 竹下
大希 曽根
智宏 竹安
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2024004401A1 publication Critical patent/WO2024004401A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a conductive film and a method for manufacturing the conductive film.
  • conductive films are known that include a base material and a metal layer in this order.
  • a conductive film is used, for example, as a conductor layer for patterning electrodes in various devices such as flat panel displays and touch panels.
  • Such a conductive film is manufactured by, for example, disposing a metal layer on one surface in the thickness direction of a base material by a sputtering method.
  • outgas may be generated from the base material. Due to such outgas, a metal oxide is formed on the other surface of the metal layer in the thickness direction. In this case, there is a problem that the adhesion between the base material and the metal layer decreases.
  • conductive films that include a barrier layer (antirust layer) between the base material and the metal layer are being considered. According to the barrier layer, outgas from the base material can be blocked, so the above-mentioned problems can be solved.
  • a barrier layer antirust layer
  • a conductive film including a resin film, a rust prevention layer, and a copper layer in this order has been proposed (see, for example, Patent Document 1).
  • a barrier layer when a barrier layer is provided, there is a problem that the specific resistance of the metal layer increases.
  • the metal layer is a copper layer
  • providing a barrier layer inhibits crystal growth of the (200) plane of the copper layer in out-of-plane diffraction measurement using X-ray diffraction. As a result, crystal grains become smaller and the number of grain boundaries that inhibit electron transfer increases. As a result, there is a problem that the specific resistance becomes high.
  • An object of the present invention is to provide a conductive film that includes an inorganic layer that blocks outgas from an organic resin base material and has a low specific resistance, and a method for producing the conductive film.
  • t indicates the thickness (nm) of the copper layer.
  • . ⁇ 111 indicates the integrated intensity ratio of the integrated intensity of the peak of the (111) plane of the copper layer to the integrated intensity of all peaks of the copper layer in out-of-plane diffraction measurement using X-ray diffraction method.
  • ⁇ 111 is It shows the crystallite size ( ⁇ ) of the (111) plane of the copper layer in the out-of-plane diffraction measurement using the ray diffraction method.
  • ⁇ 200 is the crystallite size ( ⁇ ) of the (200) plane of the copper layer in the out-of-plane diffraction measurement using the X-ray diffraction method. Indicates the integrated intensity of the peak.
  • ⁇ 200 indicates the crystallite size ( ⁇ ) of the (200) plane of the copper layer in out-of-plane diffraction measurement using X-ray diffraction method.
  • the present invention [2] includes the conductive film according to the above [1], wherein the copper layer has a thickness of 50 nm or more.
  • the present invention [3] includes the conductive film according to the above [1] or [2], wherein the copper layer has a thickness of 300 nm or less.
  • the present invention [4] includes the conductive film according to any one of [1] to [3] above, wherein the inorganic layer has a thickness of 2 nm or more and 15 nm or less.
  • the present invention [5] includes a first step of preparing an organic resin base material, a second step of disposing an inorganic layer on one side in the thickness direction of the organic resin base material by a sputtering method, and a second step of disposing an inorganic layer on one side in the thickness direction of the organic resin base material by a sputtering method. and a third step of arranging a copper layer on one surface in the thickness direction, and in the second step and the third step, at least one of the sputtering gases supplies an inert gas and an oxygen gas as a sputtering gas. This is a method of manufacturing a conductive film.
  • the present invention [6] provides that in the second step, an inert gas is supplied as a sputtering gas, and oxygen gas is also supplied, and the flow rate of the oxygen gas in the second step is 5 sccm or more and 200 sccm or less.
  • the method includes the method for producing a conductive film as described in [5] above.
  • an inert gas is supplied as a sputtering gas, and oxygen gas is also supplied, and in the third step, the oxygen gas is supplied together with the inert gas by a sputtering method.
  • a step 3A of disposing a first copper layer on one side in the thickness direction of the inorganic layer and a step 3A of disposing the first copper layer on one side in the thickness direction of the inorganic layer, and supplying an inert gas by a sputtering method, without supplying oxygen gas, and disposing the first copper layer in the thickness direction.
  • an inert gas is supplied as a sputtering gas, and oxygen gas is also supplied, and in the third step, together with the inert gas, by a sputtering method,
  • the conductive film of the present invention includes an inorganic layer. Therefore, outgas from the organic resin base material can be blocked during production of the conductive film. As a result, it is possible to suppress the adhesion between the organic resin base material (inorganic layer) and the copper layer from decreasing.
  • Y calculated by a predetermined relational expression is less than 23.200. Therefore, the specific resistance of the copper layer can be lowered.
  • inert gas and oxygen gas are supplied as sputtering gas. Therefore, a conductive film including a copper layer with low specific resistance can be manufactured.
  • FIG. 1 shows one embodiment of the conductive film of the present invention.
  • 2A to 2C illustrate one embodiment of a method for manufacturing a conductive film.
  • FIG. 2A shows the first step of preparing an organic resin base material.
  • FIG. 2B shows a second step of arranging an inorganic layer on one side in the thickness direction of the organic resin base material.
  • FIG. 2C shows a third step of arranging a copper layer on one side in the thickness direction of the inorganic layer.
  • 3A to 3D illustrate one embodiment of a method for manufacturing a conductive film.
  • FIG. 3A shows the first step of preparing an organic resin base material.
  • FIG. 3B shows a second step of arranging an inorganic layer on one side in the thickness direction of the organic resin base material.
  • FIG. 3C shows a third A step in which a first copper layer is placed on one side in the thickness direction of the inorganic layer.
  • FIG. 3D shows a third B step of arranging a second copper layer on one side
  • the vertical direction on the paper is the vertical direction (thickness direction).
  • the upper side of the paper is the upper side (one side in the thickness direction).
  • the lower side of the paper is the lower side (the other side in the thickness direction).
  • the left-right direction and the depth direction of the paper surface are plane directions perpendicular to the up-down direction. Specifically, it conforms to the direction arrows in each figure.
  • the conductive film 1 has a film shape (including sheet shape) with a predetermined thickness.
  • the conductive film 1 extends in a plane direction perpendicular to the thickness direction.
  • Conductive film 1 has a flat upper surface and a flat lower surface.
  • the conductive film 1 includes an organic resin base material 2, an inorganic layer 3 disposed on one side of the organic resin base material 2 in the thickness direction, and a conductive film 1 disposed directly on one side of the inorganic layer 3 in the thickness direction.
  • a copper layer 4 is provided.
  • the conductive film 1 includes an organic resin base material 2, an inorganic layer 3 disposed directly on the upper surface (one side in the thickness direction) of the organic resin base material 2, and an inorganic layer 3 disposed directly on the upper surface (one side in the thickness direction) of the inorganic layer 3. a copper layer 4 disposed directly on the surface).
  • the thickness of the conductive film 1 is, for example, 300 ⁇ m or less, preferably 200 ⁇ m or less, and also, for example, 1 ⁇ m or more, preferably 5 ⁇ m or more.
  • Organic resin base material 2 has a film shape.
  • the organic resin base material 2 has flexibility.
  • the organic resin base material 2 is arranged on the entire lower surface of the inorganic layer 3 so as to be in contact with the lower surface of the inorganic layer 3 .
  • Organic resin base material 2 is the bottom layer of conductive film 1 .
  • An example of the organic resin base material 2 is a polymer film.
  • Examples of materials for the polymer film include polyester resin, (meth)acrylic resin, olefin resin, polycarbonate resin, polyethersulfone resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin, and polystyrene resin.
  • Examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate.
  • Examples of the (meth)acrylic resin include polymethyl methacrylate.
  • Examples of olefin resins include polyethylene, polypropylene, and cycloolefin polymers.
  • Examples of cellulose resins include triacetyl cellulose.
  • the material for the polymer film is polyester resin.
  • a more preferred material for the polymer film is polyethylene terephthalate.
  • the thickness of the organic resin base material 2 is, for example, 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and, for example, 200 ⁇ m or less, preferably 150 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the thickness of the organic resin base material 2 can be measured using a dial gauge (manufactured by PEACOCK, "DG-205").
  • the organic resin base material 2 preferably has transparency.
  • the total light transmittance (JIS K 7375-2008) of the organic resin base material 2 is, for example, 80% or more, preferably 85% or more.
  • the inorganic layer 3 is a layer for blocking outgas from the organic resin base material 2 in the method for manufacturing the conductive film 1 described later.
  • the inorganic layer 3 has a film shape.
  • the inorganic layer 3 is arranged over the entire upper surface of the organic resin base material 2 so as to be in contact with the upper surface of the organic resin base material 2 .
  • the inorganic layer 3 is arranged on the entire lower surface of the copper layer 4 so as to be in contact with the lower surface of the copper layer 4 .
  • the inorganic layer 3 is a sputtered layer because it is formed by a sputtering method.
  • the material of the inorganic layer 3 is not particularly limited as long as it is an inorganic material other than copper. Specifically, as the material for the inorganic layer 3, metals (excluding copper) and metal oxides (excluding copper oxide) are preferably used.
  • metals include Ni, In, Sn, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Pd, W, alloys thereof, and alloys of these with copper.
  • the metal is CuNi.
  • the metal oxide examples include oxides of the above metals.
  • Preferable examples of the metal oxide include indium-containing oxides.
  • Examples of the indium-containing oxide include indium tin composite oxide (ITO).
  • the metal oxide may be either crystalline or amorphous.
  • the material for the inorganic layer 3 is preferably a metal oxide.
  • the materials for the inorganic layer 3 can be used alone or in combination of two or more.
  • the thickness of the inorganic layer 3 is, for example, 2 nm or more from the viewpoint of gas barrier properties, and 15 nm or less, preferably 10 nm or less, more preferably 7 nm or less, from the viewpoint of processability.
  • the thickness of the inorganic layer 3 can be measured, for example, by observing the cross section of the conductive film 1 using a transmission electron microscope.
  • Copper layer 4 is a conductor layer.
  • the copper layer 4 is formed into a desired pattern if necessary.
  • the copper layer 4 has a film shape.
  • the copper layer 4 is disposed over the entire upper surface of the inorganic layer 3 so as to be in contact with the upper surface of the inorganic layer 3.
  • Copper layer 4 is the top layer of conductive film 1 .
  • the copper layer 4 is formed by a sputtering method, so it is a sputtered layer.
  • Examples of the material for the copper layer 4 include copper and copper alloys.
  • the metal constituting the copper alloy is not particularly limited, but examples thereof include silver, tin, chromium, and zirconium.
  • copper is preferably used as the material for the copper layer 4. That is, the copper layer 4 is preferably made of copper.
  • the specific resistance of the copper layer 4 is, for example, 2.300 ⁇ 10 ⁇ 8 ⁇ m or less, preferably 2.200 ⁇ 10 ⁇ 8 ⁇ m or less, more preferably 2.150 ⁇ 10 ⁇ 8 ⁇ m. m or less, more preferably 2.100 ⁇ 10 ⁇ 8 ⁇ m or less, particularly preferably 2.050 ⁇ 10 ⁇ 8 ⁇ m or less, and usually 1.000 ⁇ 10 ⁇ 8 ⁇ m or more It is.
  • the specific resistance can be calculated by multiplying the surface resistance value measured by the four-probe method and the thickness of the copper layer 4 in accordance with JIS K7194.
  • the surface resistance value of the copper layer 4 is, for example, 0.2200 ⁇ / ⁇ or less, preferably 0.2000 ⁇ / ⁇ or less, more preferably 0.1500 ⁇ / ⁇ or less.
  • the lower limit of the surface resistance value of the copper layer 4 is not particularly limited.
  • the surface resistance value of the copper layer 4 is usually over 0 ⁇ / ⁇ .
  • the surface resistance value can be measured by a four-terminal method in accordance with JIS K7194.
  • the thickness of the copper layer 4 is, for example, from the viewpoint of resistance value, 50 nm or more, preferably 70 nm or more, more preferably 90 nm or more, still more preferably 100 nm or more, and, for example, from the viewpoint of productivity, 300 nm or less. , preferably 250 nm or less, more preferably 210 nm or less, even more preferably 200 nm or less, particularly preferably 150 nm or less, and most preferably 120 nm or less.
  • the thickness of the copper layer 4 can be measured using cross-sectional TEM analysis, for example.
  • the method for manufacturing the conductive film 1 includes a first step of preparing an organic resin base material 2, a second step of disposing an inorganic layer 3 on one side in the thickness direction of the organic resin base material 2 by a sputtering method, and a sputtering method. a third step of arranging a copper layer 4 on one side in the thickness direction of the inorganic layer 3 by a method. Further, in this method, each layer is arranged in order, for example, in a roll-to-roll manner. In such a case, the conveyance speed is, for example, 1.0 m/min or more and, for example, 20.0 m/min or less.
  • the sputtering method is carried out while supplying sputtering gas in the second and third steps. , an inert gas (described later) and oxygen gas are supplied.
  • the inorganic layer 3 is arranged on one side in the thickness direction of the organic resin base material 2 by supplying oxygen gas together with an inert gas by a sputtering method.
  • the copper layer 4 is disposed on one surface of the inorganic layer 3 in the thickness direction by supplying oxygen gas together with an inert gas by sputtering. This satisfies equation (1), which will be described later.
  • an inorganic layer 3 is disposed on one surface in the thickness direction of the organic resin base material 2 by a sputtering method.
  • the inorganic layer 3 On one side in the thickness direction of the organic resin base material 2 by the sputtering method, first, if necessary, surface treatment is performed on one side in the thickness direction of the organic resin base material 2.
  • Examples of surface treatments include corona treatment, plasma treatment, flame treatment, ozone treatment, primer treatment, glow treatment, and saponification treatment.
  • a target material of the inorganic layer 3 and the organic resin base material 2 are placed facing each other in a vacuum chamber of a sputter film forming apparatus.
  • gas ions are accelerated and irradiated onto the target, thereby ejecting the target material from the target surface.
  • the target material is deposited on the surface (one side in the thickness direction) of the organic resin base material 2 to form the inorganic layer 3.
  • an inert gas for example, argon gas
  • oxygen gas are supplied as sputtering gas.
  • the flow rate of oxygen gas is, for example, 5 sccm or more, preferably 30 sccm or more, more preferably 60 sccm or more, still more preferably 80 sccm or more, particularly preferably 120 sccm or more, and, for example, 200 sccm or less.
  • the flow rate ratio of the inert gas flow rate to the oxygen gas flow rate is, for example, 3.5 or more and, for example, 200 or less.
  • the atmospheric pressure during sputtering is, for example, 0.1 Pa or higher, preferably 0.2 Pa or higher, and, for example, 2.0 Pa or lower.
  • the power source may be, for example, a DC power source, an AC power source, an MF power source, or an RF power source. Alternatively, a combination of these may be used.
  • the discharge output is, for example, 1.0 kW or more, preferably 10.0 kW or more, and, for example, 20 kW or less.
  • the inorganic layer 3 is placed on one side of the organic resin base material 2 in the thickness direction.
  • a copper layer 4 is placed on one surface of the inorganic layer 3 in the thickness direction by sputtering.
  • a target (the material of the copper layer 4) and the inorganic layer 3 are placed facing each other in a vacuum chamber in a sputter film forming apparatus.
  • gas ions are accelerated and irradiated onto the target, thereby ejecting the target material from the target surface.
  • the target material is deposited on the surface (one side in the thickness direction) of the inorganic layer 3 to form the copper layer 4.
  • an inert gas is supplied as the sputtering gas, and no oxygen gas is supplied.
  • the atmospheric pressure during sputtering is, for example, 0.1 Pa or higher, preferably 0.2 Pa or higher, and, for example, 2.0 Pa or lower.
  • the power source may be, for example, a DC power source, an AC power source, an MF power source, or an RF power source. Alternatively, a combination of these may be used.
  • the discharge output is, for example, 10 kW or more, preferably 50 kW or more, and, for example, 150 kW or less.
  • the film forming temperature (the temperature of the organic resin base material 2 on which the inorganic layer 3 is disposed) is, for example, 30° C. or higher and, for example, 60° C. or lower.
  • the copper layer 4 is placed on one side of the inorganic layer 3 in the thickness direction.
  • the conductive film 1 is manufactured.
  • the third step as a method of supplying oxygen gas, first, oxygen gas is supplied together with an inert gas by a sputtering method, and a part of the copper layer 4 (hereinafter referred to as A first copper layer 4A (referred to as a first copper layer 4A) is disposed, and then, by a sputtering method, an inert gas is supplied, and an oxygen gas is not supplied, and the remainder of the copper layer 4 is deposited on one surface in the thickness direction of the first copper layer 4A. (hereinafter referred to as the second copper layer 4B) and sputtering method, oxygen gas is supplied together with an inert gas to form a copper layer 4 on one side in the thickness direction of the inorganic layer 3.
  • Method 2B is one in which all of the above are arranged.
  • an inorganic layer 3 is disposed on one surface in the thickness direction of the organic resin base material 2 by a sputtering method.
  • an inert gas is supplied as the sputtering gas, and no oxygen gas is supplied.
  • the atmospheric pressure, power source, and discharge output during sputtering are the same as the atmospheric pressure, power source, and discharge output during sputtering in the second step in the first method.
  • the inorganic layer 3 is placed on one side of the organic resin base material 2 in the thickness direction.
  • a first copper layer 4A is placed on one side in the thickness direction of the inorganic layer 3 by supplying oxygen gas together with an inert gas by a sputtering method, and then an inert gas is supplied by a sputtering method.
  • the first copper layer 4B is arranged on one surface of the first copper layer 4A in the thickness direction without supplying oxygen gas.
  • the third step includes a third A step in which oxygen gas is supplied together with an inert gas by a sputtering method, and the first copper layer 4A is placed on one side in the thickness direction of the inorganic layer 3;
  • a third B step is provided, in which an inert gas is supplied, an oxygen gas is not supplied, and a second copper layer 4B is arranged on one surface in the thickness direction of the first copper layer 4A.
  • the copper layer 4 is formed by a first copper layer 4A formed by a sputtering method in which oxygen gas is supplied together with an inert gas, or a first copper layer 4A formed by a sputtering method in which an inert gas is supplied and no oxygen gas is supplied. It consists of a second copper layer 4B formed by a method.
  • a first copper layer 4A is arranged on one surface of the inorganic layer 3 in the thickness direction by supplying oxygen gas together with an inert gas by a sputtering method.
  • the flow rate of the oxygen gas is, for example, 1 sccm or more, preferably 3 sccm or more, more preferably 7 sccm or more, and also, for example, 20 sccm or less, preferably 15 sccm or less.
  • the flow rate ratio of the inert gas flow rate to the oxygen gas flow rate is, for example, 40 or more and, for example, 150 or less.
  • the atmospheric pressure, power supply, and film-forming temperature during sputtering are the same as those during sputtering in the third step in the first method.
  • the discharge output is, for example, 5.0 kW or more, preferably 10.0 kW or more, and, for example, 20 kW or less.
  • the first copper layer 4A is placed on one side of the inorganic layer 3 in the thickness direction.
  • the thickness of the first copper layer 4A is, for example, 5 nm or more and, for example, 20 nm or less.
  • a second copper layer 4B is arranged on one surface of the first copper layer 4A in the thickness direction by supplying an inert gas but not supplying oxygen gas, as shown in FIG. 3D. .
  • the atmospheric pressure, power supply, discharge output, and film-forming temperature during sputtering are the same as the atmospheric pressure, power supply, discharge output, and film-forming temperature during sputtering in the third step in the first method.
  • the second copper layer 4B is placed on one surface of the first copper layer 4A in the thickness direction.
  • the thickness of the second copper layer 4B is, for example, 50 nm or more and, for example, 300 nm or less.
  • the copper layer 4 is arranged on one side in the thickness direction of the inorganic layer 3, and the conductive film 1 is manufactured.
  • an inorganic layer 3 is disposed on one surface in the thickness direction of the organic resin base material 2 by a sputtering method.
  • Inert gas is supplied as the sputtering gas in the sputtering method, and oxygen gas is not supplied.
  • the atmospheric pressure, power source, and discharge output during sputtering are the same as the atmospheric pressure, power source, and discharge output during sputtering in the second step in the first method.
  • the inorganic layer 3 is placed on one side of the organic resin base material 2 in the thickness direction.
  • a copper layer 4 is disposed on one surface of the inorganic layer 3 in the thickness direction by supplying oxygen gas together with an inert gas by sputtering.
  • the copper layer 4 does not include a copper layer formed by a sputtering method in which an inert gas is supplied but no oxygen gas, but is formed by a sputtering method in which an oxygen gas is supplied together with an inert gas. Consisting of a formed copper layer.
  • the flow rate of oxygen gas during sputtering, the ratio of the flow rate of inert gas to the flow rate of oxygen gas, the atmospheric pressure, the power source, the discharge output, and the film forming temperature are the flow rate of oxygen gas during sputtering in step 3A in method 2A above. , the flow rate ratio of the inert gas flow rate to the oxygen gas flow rate, the atmospheric pressure, the power source, the discharge output, and the film forming temperature.
  • the copper layer 4 is placed on one side of the inorganic layer 3 in the thickness direction.
  • the third step as a method for supplying oxygen gas, first, oxygen gas is supplied together with an inert gas by a sputtering method, and a first 3A, in which the first copper layer 4A is disposed, and then the second copper layer 4B is disposed on one surface in the thickness direction of the first copper layer 4A by supplying an inert gas and not supplying oxygen gas by sputtering method.
  • Method 3B includes a sputtering method in which oxygen gas is supplied together with an inert gas, and the entire copper layer 4 is disposed on one surface in the thickness direction of the inorganic layer 3.
  • an inorganic layer 3 is disposed on one surface in the thickness direction of the organic resin base material 2 by a sputtering method.
  • inert gas and oxygen gas are supplied as sputtering gas.
  • the flow rate of oxygen gas is, for example, 10 sccm or more, preferably 30 sccm or more, and, for example, 200 sccm or less, preferably 150 sccm or less, more preferably 100 sccm or less, still more preferably 80 sccm or less, particularly preferably 60 sccm or less. It is.
  • the flow rate ratio of the inert gas flow rate to the oxygen gas flow rate is, for example, 40 or more and, for example, 150 or less.
  • the atmospheric pressure, power source, and discharge output during sputtering are the same as the atmospheric pressure, power source, and discharge output during sputtering in the second step in the first method.
  • the inorganic layer 3 is placed on one side of the organic resin base material 2 in the thickness direction.
  • a first copper layer 4A is arranged on one surface of the inorganic layer 3 in the thickness direction by supplying oxygen gas together with an inert gas by a sputtering method.
  • the flow rate of oxygen gas is lower than the flow rate of oxygen gas in the second step in the method 3A described above, for example, 1 sccm or more, preferably 3 sccm or more, more preferably 5 sccm or more, and, for example, 20 sccm or less, preferably is 15 sccm or less, more preferably 8 sccm or less.
  • the flow rate ratio of the inert gas flow rate to the oxygen gas flow rate is, for example, 40 or more and, for example, 500 or less.
  • the atmospheric pressure, power supply, discharge output, and film-forming temperature during sputtering are the same as the atmospheric pressure, power supply, discharge output, and film-forming temperature during sputtering in step 3A in method 2A above.
  • the first copper layer 4A is placed on one side of the inorganic layer 3 in the thickness direction.
  • a second copper layer 4B is arranged on one surface of the first copper layer 4A in the thickness direction by supplying an inert gas but not supplying oxygen gas, as shown in FIG. 3D. .
  • the atmospheric pressure, power source, and discharge output during sputtering are the same as the atmospheric pressure, power source, and discharge output during sputtering in the third step in the first method.
  • the second copper layer 4B is placed on one surface of the first copper layer 4A in the thickness direction.
  • the copper layer 4 is arranged on one side in the thickness direction of the inorganic layer 3, and the conductive film 1 is manufactured.
  • an inorganic layer 3 is disposed on one surface in the thickness direction of the organic resin base material 2 by a sputtering method.
  • inert gas and oxygen gas are supplied as sputtering gas.
  • the atmospheric pressure, power source, and discharge output during sputtering are the same as the atmospheric pressure, power source, and discharge output during sputtering in the second step in the first method.
  • the inorganic layer 3 is arranged on one side of the organic resin base material 2 in the thickness direction.
  • a copper layer 4 is disposed on one surface of the inorganic layer 3 in the thickness direction by supplying oxygen gas together with an inert gas by a sputtering method.
  • the flow rate of oxygen gas during sputtering, the ratio of the flow rate of inert gas to the flow rate of oxygen gas, the atmospheric pressure, the power source, the discharge output, and the film forming temperature are the flow rate of oxygen gas during sputtering in step 3A in method 3A above. , the flow rate ratio of the inert gas flow rate to the oxygen gas flow rate, the atmospheric pressure, the power source, the discharge output, and the film forming temperature.
  • the copper layer 4 is placed on one side of the inorganic layer 3 in the thickness direction.
  • the conductive film 1 is manufactured.
  • the method for manufacturing the conductive film 1 is Method 3A from the viewpoint of further lowering the specific resistance of the copper layer 4.
  • Y calculated by the following formula (1) is less than 23.200, preferably 23.000 or less, more preferably 22.500 or less, still more preferably 22.000 or less, especially It is preferably 21.500 or less, most preferably 21.000 or less, further 20.500 or less, and, for example, 10.000 or more.
  • Y -0.0002243 ⁇ ( ⁇ 111 /t)+5.764 ⁇ 111 ⁇ 0.02178 ⁇ 111 ⁇ 0.02283 ⁇ ( ⁇ 200 /t) ⁇ 0.009098 ⁇ 200 +0.01051 ⁇ t+28. 15 (1)
  • ⁇ 111 represents the integrated intensity of the peak of the (111) plane of the copper layer 4 in out-of-plane diffraction measurement using the X-ray diffraction method. Note that the measurement method of out-of-plane diffraction measurement using X-ray diffraction method will be described in detail in Examples described later (the same applies hereinafter).
  • t indicates the thickness (nm) of the copper layer 4.
  • ⁇ 111 represents the integrated intensity ratio of the integrated intensity of the peak of the (111) plane of the copper layer 4 to the integrated intensity of all peaks of the copper layer 4 in out-of-plane diffraction measurement using the X-ray diffraction method.
  • the integrated intensity of all peaks of the copper layer 4 refers to the integrated intensity of the peak of the (111) plane, the integrated intensity of the peak of the (200) plane, the integrated intensity of the peak of the (311) plane, and the integrated intensity of the peak of the (222) plane. means the total amount of integrated intensity.
  • ⁇ 111 indicates the crystallite size ( ⁇ ) of the (111) plane of the copper layer 4 in out-of-plane diffraction measurement using the X-ray diffraction method.
  • the crystallite size of the (111) plane of the copper layer 4 is, for example, 400 ⁇ or more, preferably 420 ⁇ or more, more preferably 430 ⁇ or more, and also, for example, 500 ⁇ or less, preferably 480 ⁇ or less, More preferably, it is 460 ⁇ or less.
  • crystallite size K ⁇ / ⁇ cos ⁇ , K: Scherrer constant, ⁇ : X-ray wavelength, ⁇ : half-width, ⁇ : Black angle) (the same applies below).
  • ⁇ 200 indicates the integrated intensity of the peak of the (200) plane of the copper layer 4 in out-of-plane diffraction measurement using the X-ray diffraction method.
  • ⁇ 200 indicates the crystallite size ( ⁇ ) of the (200) plane of the copper layer 4 in out-of-plane diffraction measurement using X-ray diffraction.
  • the crystallite size of the (200) plane of the copper layer 4 is, for example, 200 ⁇ or more, preferably 250 ⁇ or more, more preferably 300 ⁇ or more, and also, for example, 400 ⁇ or less, preferably 360 ⁇ or less, More preferably, it is 340 ⁇ or less.
  • Y can be adjusted within the above range by, for example, the flow rate of oxygen gas in the second step and the flow rate of oxygen gas in the third step.
  • the conductive film 1 includes an inorganic layer 3 . Therefore, when manufacturing the conductive film 1, outgas from the organic resin base material 2 can be blocked.
  • outgas may be generated from the organic resin base material 2. Due to such outgas, copper oxide is formed on the other surface of the copper layer 4 in the thickness direction. In this case, the adhesion between the organic resin base material 2 and the copper layer 4 may decrease.
  • the conductive film 1 includes an inorganic layer 3.
  • the above-mentioned outgas can be blocked.
  • Y calculated by the above formula (1) is less than 23.200. Therefore, the specific resistance of the copper layer 4 can be lowered.
  • the crystal growth of the (200) plane of the copper layer is inhibited in out-of-plane diffraction measurement by X-ray diffraction method. .
  • crystal grains become smaller and the number of grain boundaries that inhibit electron transfer increases.
  • the specific resistance becomes high.
  • Y calculated by the above formula (1) is less than 23.200.
  • the crystal growth of the (200) plane has proceeded appropriately, and the crystal grains can be enlarged, so that the specific resistance of the copper layer 4 can be lowered.
  • the conductive film 1 includes the organic resin base material 2, the inorganic layer 3, and the copper layer 4 in this order in the thickness direction, but between the organic resin base material 2 and the inorganic layer 3, A functional layer (for example, a hard coat layer) can also be placed thereon.
  • the conductive film 1 includes an organic resin base material 2, a hard coat layer, an inorganic layer 3, and a copper layer 4 in this order in the thickness direction.
  • Examples and Comparative Examples are shown below to further specifically explain the present invention. Note that the present invention is not limited to the Examples and Comparative Examples.
  • the specific numerical values of the blending ratio (content ratio), physical property values, parameters, etc. used in the following description are the corresponding blending ratios ( Content percentage), physical property values, parameters, etc. can be substituted with the upper limit value (value defined as "less than” or “less than”) or lower limit value (value defined as "more than” or “exceeding”). .
  • Example 1 A conductive film was manufactured by the first method. Specifically, a conductive film was manufactured using the following procedure.
  • an inorganic layer (thickness: 5 nm) was disposed on one side of the organic resin base material in the thickness direction by a sputtering method.
  • Equipment Roll-to-roll type sputtering film forming equipment (winding type DC magnetron sputtering equipment)
  • Inorganic layer material ITO Gas: argon gas and oxygen gas (oxygen gas flow rate 50 sccm), flow rate ratio of inert gas flow rate to oxygen gas flow rate 14
  • Discharge output 7.2kW Air pressure inside the film forming chamber: 0.4Pa Running speed: 8.0m/min
  • a copper layer (104.6 nm) was placed on one side of the inorganic layer in the thickness direction by sputtering under the following conditions.
  • Equipment Roll-to-roll type sputtering film forming equipment (winding type DC magnetron sputtering equipment)
  • Gas Argon gas Discharge output: 100kW Air pressure inside the film forming chamber: 0.4Pa Film forming temperature: 40°C Running speed: 8.0m/min
  • Examples 2 to 5 A conductive film was manufactured based on the same procedure as in Example 1. However, based on the description in Table 1, the inorganic layer, the flow rate of oxygen gas, and the thickness of the copper layer were changed.
  • Example 6 A conductive film was manufactured by Method 2A. Specifically, a conductive film was manufactured using the following procedure.
  • an inorganic layer (thickness: 5 nm) was disposed on one side of the organic resin base material in the thickness direction by a sputtering method.
  • Equipment Roll-to-roll sputtering film forming equipment (winding type DC magnetron sputtering equipment)
  • Inorganic layer material ITO Gas: Argon gas Discharge output: 7.2kW Air pressure inside the film forming chamber: 0.4Pa Running speed: 8.0m/min
  • Example 7 A conductive film was manufactured based on the same procedure as in Example 6. However, based on the description in Table 1, the flow rate of oxygen gas was changed.
  • Example 8 A conductive film was manufactured by Method 3A. Specifically, a conductive film was manufactured using the following procedure.
  • an inorganic layer (thickness: 5 nm) was disposed on one side of the organic resin base material in the thickness direction by a sputtering method.
  • Equipment Roll-to-roll type sputtering film forming equipment (winding type DC magnetron sputtering equipment)
  • Inorganic layer material ITO Gas: argon gas and oxygen gas (oxygen gas flow rate 20 sccm), flow rate ratio of inert gas flow rate to oxygen gas flow rate 35
  • Discharge output 7.2kW
  • Examples 9 to 13 A conductive film was manufactured based on the same procedure as in Example 8. However, based on the description in Table 1, the flow rate of oxygen gas and the thickness of the copper layer were changed.
  • Comparative example 1 A conductive film was manufactured based on the same procedure as in Example 1. However, based on the description in Table 1, the flow rate of oxygen gas was changed. Specifically, oxygen gas was not supplied in the second step.
  • Examples 1 to 13 are able to block outgas from the organic resin base material because they include an inorganic layer.
  • Examples 1 to 13 in which Y is less than 23.200 can have lower specific resistance than Comparative Example 1 in which Y is 23.200 or more. I understand.
  • the specific resistance can be made 2.300 ⁇ 10 ⁇ 8 ⁇ m or less.
  • the present invention can be used as a conductor layer for patterning electrodes in various devices such as flat panel displays and touch panels, ensuring practicality in achieving a practical level of resistivity.
  • the conductive film and the method for manufacturing a conductive film of the present invention are suitably used, for example, in the manufacture of various devices such as touch panels and optical sensors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

導電性フィルム(1)は、有機樹脂基材(2)と、有機樹脂基材(2)の厚み方向一方側に配置される無機層(3)と、無機層(3)の厚み方向一方面に直接配置される銅層(4)とを備える。所定の関係式から算出されるYが、23.200未満である。

Description

導電性フィルムおよび導電性フィルムの製造方法
 本発明は、導電性フィルムおよび導電性フィルムの製造方法に関する。
 従来、基材と、金属層とを順に備える導電性フィルムが知られている。このような導電性フィルムは、例えば、フラットパネルディスプレイ、タッチパネルなどの各種デバイスにおいて、電極をパターン形成するための導体層として用いられる。
 また、このような導電性フィルムは、例えば、スパッタリング法によって、基材の厚み方向一方面に金属層を配置することにより、製造される。
 一方、上記した導電性フィルムの製造では、基材からのアウトガスが発生する場合がある。このようなアウトガスによって、金属層の厚み方向他方面に、金属酸化物が形成される。そうすると、基材および金属層の間の密着性が低下するという不具合がある。
 これに対して、基材および金属層の間に、バリア層(防錆層)を備える導電性フィルムが検討されている。バリア層によれば、基材からのアウトガスを遮断することができるため、上記不具合を解消することができる。
 このような導電性フィルムとして、樹脂フィルムと、防錆層と、銅層とをこの順に含む導電性フィルムが提案されている(例えば、特許文献1参照。)。
特開2017-100368号公報
 一方、バリア層を設けると、金属層の比抵抗が高くなるという不具合がある。詳しくは、とりわけ、金属層が銅層である場合には、バリア層を設けると、X線回折法の面外回折測定における、銅層の(200)面の結晶成長が阻害される。そうすると、結晶粒が小さくなり、電子移動を阻害する粒界面が増加する。その結果、比抵抗が高くなるという不具合がある。
 本発明は、有機樹脂基材からのアウトガスを遮断する無機層を備えるとともに、低い比抵抗を有する導電性フィルムおよび導電性フィルムの製造方法を提供することにある。
 本発明[1]は、有機樹脂基材と、前記有機樹脂基材の厚み方向一方側に配置される無機層と、前記無機層の厚み方向一方面に直接配置される銅層とを備え、下記式(1)により算出されるYが、23.200未満である、導電性フィルムである。
Y=-0.0002243×(α111/t)+5.764×β111-0.02178×γ111-0.02283×(α200/t)-0.009098×γ200+0.01051×t+28.15  (1)
(上記式(1)において、α111は、X線回折法の面外回折測定における、銅層の(111)面のピークの積分強度を示す。tは、銅層の厚み(nm)を示す。β111は、X線回折法の面外回折測定における、銅層の(111)面のピークの積分強度の、銅層の全ピークの積分強度に対する積分強度比を示す。γ111は、X線回折法の面外回折測定における、銅層の(111)面の結晶子サイズ(Å)を示す。α200は、X線回折法の面外回折測定における、銅層の(200)面のピークの積分強度を示す。γ200は、X線回折法の面外回折測定における、銅層の(200)面の結晶子サイズ(Å)を示す。)
 本発明[2]は、前記銅層の厚みが、50nm以上である、上記[1]に記載の導電性フィルムを含んでいる。
 本発明[3]は、前記銅層の厚みが、300nm以下である、上記[1]または[2]に記載の導電性フィルムを含んでいる。
 本発明[4]は、前記無機層の厚みが、2nm以上15nm以下である、上記[1]~[3]のいずれか一項に記載の導電性フィルムを含んでいる。
 本発明[5]は、有機樹脂基材を準備する第1工程と、スパッタリング法によって、有機樹脂基材の厚み方向一方面に、無機層を配置する第2工程と、スパッタリング法によって、無機層の厚み方向一方面に、銅層を配置する第3工程とを備え、前記第2工程および前記第3工程において、少なくとも一方は、スパッタリングガスとして、不活性ガスを供給するとともに、酸素ガスを供給する、導電性フィルムの製造方法である。
 本発明[6]は、前記第2工程において、スパッタリングガスとして、不活性ガスを供給するとともに、酸素ガスを供給し、前記第2工程における前記酸素ガスの流量が、5sccm以上200sccm以下である、上記[5]に記載の導電性フィルムの製造方法を含んでいる。
 本発明[7]は、前記第3工程において、スパッタリングガスとして、不活性ガスを供給するとともに、酸素ガスを供給し、前記第3工程は、スパッタリング法によって、不活性ガスとともに、酸素ガスを供給して、無機層の厚み方向一方面に、第1銅層を配置する第3A工程と、スパッタリング法によって、不活性ガスを供給し、酸素ガスを供給せず、前記第1銅層の厚み方向一方面に、第2銅層を配置する第3B工程とを備え、前記第3A工程における酸素ガスの流量が、1sccm以上20sccm以下である、上記[5]に記載の導電性フィルムの製造方法を含んでいる。
 本発明[8]は、前記第2工程および第3工程において、スパッタリングガスとして、不活性ガスを供給するとともに、酸素ガスを供給し、前記第3工程は、スパッタリング法によって、不活性ガスとともに、酸素ガスを供給して、無機層の厚み方向一方面に、第1銅層を配置する第3A工程と、スパッタリング法によって、不活性ガスを供給し、酸素ガスを供給せず、前記第1銅層の厚み方向一方面に、第2銅層を配置する第3B工程とを備え、前記第2工程における酸素ガスの流量が、10sccm以上200sccm以下であり、前記第3A工程における酸素ガスの流量は、前記第2工程における酸素ガスの流量よりも少なく、かつ、1sccm以上20sccm以下である、上記[5]に記載の導電性フィルムの製造方法を含んでいる。
 本発明の導電性フィルムは、無機層を備える。そのため、導電性フィルムの製造時に、有機樹脂基材からのアウトガスを遮断することができる。その結果、有機樹脂基材(無機層)および銅層の間の密着性が低下することを抑制できる。
 また、この導電性フィルムは、所定の関係式により算出されるYが、23.200未満である。そのため、銅層の比抵抗を低くできる。
 本発明の導電性フィルムの製造方法では、第2工程および第3工程において、少なくとも一方は、スパッタリングガスとして、不活性ガスを供給するとともに、酸素ガスを供給する。そのため、比抵抗が低い銅層を備える導電性フィルムを製造できる。
図1は、本発明の導電性フィルムの一実施形態を示す。 図2A~図2Cは、導電性フィルムの製造方法の一実施形態を示す。図2Aは、有機樹脂基材を準備する第1工程を示す。図2Bは、有機樹脂基材の厚み方向一方面に、無機層を配置する第2工程を示す。図2Cは、無機層の厚み方向一方面に、銅層を配置する第3工程を示す。 図3A~図3Dは、導電性フィルムの製造方法の一実施形態を示す。図3Aは、有機樹脂基材を準備する第1工程を示す。図3Bは、有機樹脂基材の厚み方向一方面に、無機層を配置する第2工程を示す。図3Cは、無機層の厚み方向一方面に、第1銅層を配置する第3A工程を示す。図3Dは、第1銅層の厚み方向一方面に、第2銅層を配置する第3B工程を示す。
 図1を参照して、本発明の導電性フィルムの一実施形態を説明する。
 図1において、紙面上下方向は、上下方向(厚み方向)である。また、紙面上側が、上側(厚み方向一方側)である。また、紙面下側が、下側(厚み方向他方側)である。また、紙面左右方向および奥行き方向は、上下方向に直交する面方向である。具体的には、各図の方向矢印に準拠する。
 導電性フィルム1は、所定の厚みを有するフィルム形状(シート形状を含む。)を有する。導電性フィルム1は、厚み方向と直交する面方向に延びる。導電性フィルム1は、平坦な上面および平坦な下面を有する。
 図1に示すように、導電性フィルム1は、有機樹脂基材2と、有機樹脂基材2の厚み方向一方側に配置される無機層3と、無機層3の厚み方向一方面に直接配置される銅層4とを備える。具体的には、導電性フィルム1は、有機樹脂基材2と、有機樹脂基材2の上面(厚み方向一方側)に直接配置される無機層3と、無機層3の上面(厚み方向一方面)に直接配置される銅層4とを備える。
 導電性フィルム1の厚みは、例えば、300μm以下、好ましくは、200μm以下、また、例えば、1μm以上、好ましくは、5μm以上である。
<有機樹脂基材>
 有機樹脂基材2は、フィルム形状を有する。有機樹脂基材2は、可撓性を有する。有機樹脂基材2は、無機層3の下面に接触するように、無機層3の下面全面に、配置されている。有機樹脂基材2は、導電性フィルム1の最下層である。
 有機樹脂基材2としては、例えば、高分子フィルムが挙げられる。
 高分子フィルムの材料としては、例えば、ポリエステル樹脂、(メタ)アクリル樹脂、オレフィン樹脂、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、および、ポリスチレン樹脂が挙げられる。ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、および、ポリエチレンナフタレートが挙げられる。(メタ)アクリル樹脂としては、例えば、ポリメチルメタクリレートが挙げられる。オレフィン樹脂としては、例えば、ポリエチレン、ポリプロピレン、および、シクロオレフィンポリマーが挙げられる。セルロース樹脂としては、例えば、トリアセチルセルロースが挙げられる。
 高分子フィルムの材料として、好ましくは、ポリエステル樹脂が挙げられる。高分子フィルムの材料として、より好ましくは、ポリエチレンテレフタレートが挙げられる。
 有機樹脂基材2の厚みは、例えば、1μm以上、好ましくは、5μm以上、より好ましくは、10μm以上、また、例えば、200μm以下、好ましくは、150μm以下、より好ましくは、100μm以下である。
 有機樹脂基材2の厚みは、ダイヤルゲージ(PEACOCK社製、「DG-205」)を用いて測定できる。
 また、有機樹脂基材2は、好ましくは、透明性を有する。具体的には、有機樹脂基材2の全光線透過率(JIS K 7375-2008)は、例えば、80%以上、好ましくは、85%以上である。
<無機層>
 無機層3は、後述する導電性フィルム1の製造方法において、有機樹脂基材2からのアウトガスを遮断するための層である。
 無機層3は、フィルム形状を有する。無機層3は、有機樹脂基材2の上面に接触するように、有機樹脂基材2の上面全面に、配置されている。また、無機層3は、銅層4の下面に接触するように、銅層4の下面全面に、配置されている。
 また、無機層3は、詳しくは後述するが、スパッタリング法により形成されることから、スパッタ層である。
 無機層3の材料は、銅以外の無機物であれば、特に限定されない。具体的には、無機層3の材料として、好ましくは、金属(銅を除く。)、および、金属酸化物(酸化銅を除く。)が挙げられる。
 金属として、例えば、Ni、In、Sn、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Pd、W、これらの合金、および、これらと銅との合金が挙げられる。金属として、好ましくは、CuNiが挙げられる。
 金属酸化物は、例えば、上記金属の酸化物が挙げられる。金属酸化物として、好ましくは、インジウム含有酸化物が挙げられる。インジウム含有酸化物としては、例えば、インジウムスズ複合酸化物(ITO)が挙げられる。
 また、金属酸化物は、結晶質および非晶質のいずれであってもよい。
 無機層3の材料として、好ましくは、金属酸化物が挙げられる。
 無機層3の材料は、単独使用または2種以上併用することができる。
 無機層3の厚みは、例えば、ガスバリア性の観点から、2nm以上、また、例えば、加工性の観点から、15nm以下、好ましくは、10nm以下、より好ましくは、7nm以下である。
 なお、無機層3の厚みは、例えば、透過型電子顕微鏡を用いて、導電性フィルム1の断面を観察することにより測定することができる。
<銅層>
 銅層4は、導体層である。銅層4は、必要により、所望のパターンに形成される。
 銅層4は、フィルム形状を有する。銅層4は無機層3の上面全面に、無機層3の上面に接触するように、配置されている。銅層4は、導電性フィルム1の最上層である。
 また、銅層4は、詳しくは後述するが、スパッタリング法により形成されることから、スパッタ層である。
 銅層4の材料としては、例えば、銅および銅合金が挙げられる。
 銅合金を構成する金属としては、特に限定されないが、例えば、銀、錫、クロム、および、ジルコニウムが挙げられる。
 銅層4の材料として、導電性の観点から、好ましくは、銅が挙げられる。つまり、銅層4は、好ましくは、銅からなる。
 銅層4の比抵抗は、例えば、2.300×10-8Ω・m以下、好ましくは、2.200×10-8Ω・m以下、より好ましくは、2.150×10-8Ω・m以下、さらに好ましくは、2.100×10-8Ω・m以下、とりわけ好ましくは、2.050×10-8Ω・m以下、また、通常、1.000×10-8Ω・m以上である。
 なお、比抵抗は、JIS K7194に準拠して、4端子法により測定した表面抵抗値と銅層4の厚みとを乗ずることにより算出できる。
 銅層4の表面抵抗値は、例えば、0.2200Ω/□以下、好ましくは、0.2000Ω/□以下、より好ましくは、0.1500Ω/□以下である。
 銅層4の表面抵抗値の下限は、特に限定されない。例えば、銅層4の表面抵抗値は、通常、0Ω/□超過である。
 なお、表面抵抗値は、JIS K7194に準拠して、4端子法により測定することができる。
 銅層4の厚みは、例えば、抵抗値の観点から、50nm以上、好ましくは、70nm以上、より好ましくは、90nm以上、さらに好ましくは、100nm以上、また、例えば、生産性の観点から、300nm以下、好ましくは、250nm以下、より好ましくは、210nm以下、さらに好ましくは、200nm以下、とりわけ好ましくは、150nm以下、最も好ましくは、120nm以下である。
 なお、銅層4の厚みは、例えば、断面TEM分析を用いて測定することができる
<導電性フィルムの製造方法>
 図2A~図2Cおよび図3A~図3Dを参照して、導電性フィルム1の製造方法を説明する。
 導電性フィルム1の製造方法は、有機樹脂基材2を準備する第1工程と、スパッタリング法によって、有機樹脂基材2の厚み方向一方面に、無機層3を配置する第2工程と、スパッタリング法によって、無機層3の厚み方向一方面に、銅層4を配置する第3工程とを備える。また、この方法では、各層を、例えば、ロールトゥロール方式で、順に配置する。このような場合には、搬送速度は、例えば、1.0m/分以上、また、例えば、20.0m/分以下である。
 また、導電性フィルム1の製造方法では、第2工程および第3工程において、スパッタリングガスを供給しながら、スパッタリング法を実施するが、第2工程および第3工程において、少なくとも一方は、スパッタリングガスとして、不活性ガス(後述)を供給するとともに、酸素ガスを供給する。
 つまり、導電性フィルム1の製造方法では、第2工程において、スパッタリング法によって、不活性ガスとともに、酸素ガスを供給して、有機樹脂基材2の厚み方向一方面に、無機層3を配置する、および/または、第3工程において、スパッタリング法によって、不活性ガスとともに、酸素ガスを供給して、無機層3の厚み方向一方面に、銅層4を配置する。これにより、後述する式(1)を満足する。
 以下の説明では、第2工程において、酸素ガスを供給し、第3工程において、酸素ガスを供給しない第1方法と、第2工程において、酸素ガスを供給せず、第3工程において、酸素ガスを供給する第2方法と、第2工程および第3工程において、酸素ガスを供給する第3方法とについて、詳述する。
[第1方法]
 第1方法では、第2工程において、酸素ガスを供給し、第3工程において、酸素ガスを供給しない。
(第1工程)
 第1工程では、図2Aに示すように、有機樹脂基材2を準備する。
(第2工程)
 第2工程では、図2Bに示すように、スパッタリング法によって、有機樹脂基材2の厚み方向一方面に、無機層3を配置する。
 スパッタリング法によって、有機樹脂基材2の厚み方向一方面に、無機層3を配置するには、まず、必要により、有機樹脂基材2の厚み方向一方面に表面処理を施す。
 表面処理としては、例えば、コロナ処理、プラズマ処理、フレーム処理、オゾン処理、プライマー処理、グロー処理、および、ケン化処理が挙げられる。
 次いで、スパッタリング法では、スパッタ成膜装置における真空チャンバー内にターゲット(無機層3の材料)および有機樹脂基材2を対向配置する。次いで、スパッタリングガスを供給するとともに電源から電圧を印加することによりガスイオンを加速しターゲットに照射させて、ターゲット表面からターゲット材料をはじき出す。そして、そのターゲット材料を有機樹脂基材2の表面(厚み方向一方面)に堆積させて、無機層3を形成する。
 また、スパッタリングガスとして、不活性ガス(例えば、アルゴンガス)および酸素ガスを供給する。
 酸素ガスの流量は、例えば、5sccm以上、好ましくは、30sccm以上、より好ましくは、60sccm以上、さらに好ましくは、80sccm以上、とりわけ好ましくは120sccm以上、また、例えば、200sccm以下である。
 また、酸素ガスの流量に対する不活性ガスの流量の流量比は、例えば、3.5以上、また、例えば、200以下である。
 スパッタリング時の気圧は、例えば、0.1Pa以上、好ましくは、0.2Pa以上、また、例えば、2.0Pa以下である。
 電源は、例えば、DC電源、AC電源、MF電源、および、RF電源のいずれであってもよい。また、これらの組み合わせであってもよい。
 放電出力は、例えば、1.0kW以上、好ましくは、10.0kW以上、また、例えば、20kW以下である。
 これにより、有機樹脂基材2の厚み方向一方面に、無機層3を配置する。
(第3工程)
 第3工程では、図2Cに示すように、スパッタリング法によって、無機層3の厚み方向一方面に、銅層4を配置する。
 スパッタリング法では、スパッタ成膜装置における真空チャンバー内にターゲット(銅層4の材料)および無機層3を対向配置する。次いで、スパッタリングガスを供給するとともに電源から電圧を印加することによりガスイオンを加速しターゲットに照射させて、ターゲット表面からターゲット材料をはじき出す。そして、そのターゲット材料を無機層3の表面(厚み方向一方面)に堆積させて、銅層4を形成する。
 また、スパッタリングガスとして、不活性ガスを供給し、酸素ガスを供給しない。
 スパッタリング時の気圧は、例えば、0.1Pa以上、好ましくは、0.2Pa以上、また、例えば、2.0Pa以下である。
 電源は、例えば、DC電源、AC電源、MF電源、および、RF電源のいずれであってもよい。また、これらの組み合わせであってもよい。
 放電出力は、例えば、10kW以上、好ましくは、50kW以上、また、例えば、150kW以下である。
 成膜温度(無機層3が配置された有機樹脂基材2の温度)は、例えば、30℃以上、また、例えば、60℃以下である。
 これにより、無機層3の厚み方向一方面に、銅層4を配置する。
 以上により、導電性フィルム1を製造する。
[第2方法]
 第2方法では、第2工程において、酸素ガスを供給せず、第3工程において、酸素ガスを供給する。
 第3工程において、酸素ガスを供給する方法として、まず、スパッタリング法によって、不活性ガスとともに、酸素ガスを供給して、無機層3の厚み方向一方面に、銅層4の一部(以下、第1銅層4Aと称する。)を配置し、次いで、スパッタリング法によって、不活性ガスを供給し、酸素ガスを供給せず、第1銅層4Aの厚み方向一方面に、銅層4の残部(以下、第2銅層4Bと称する。)を配置する第2A方法、および、スパッタリング法によって、不活性ガスとともに、酸素ガスを供給して、無機層3の厚み方向一方面に、銅層4の全部を配置する第2B方法が挙げられる。
 以下、第2A方法および第2B方法について、順に詳述する。
[第2A方法]
(第1工程)
 第1工程では、図3Aに示すように、有機樹脂基材2を準備する。
(第2工程)
 第2工程では、図3Bに示すように、スパッタリング法によって、有機樹脂基材2の厚み方向一方面に、無機層3を配置する。
 スパッタリング法では、スパッタリングガスとして、不活性ガスを供給し、酸素ガスを供給しない。
 スパッタリング時の気圧、電源および放電出力は、上記第1方法における第2工程のスパッタリング時の気圧、電源および放電出力と同様である。
 これにより、有機樹脂基材2の厚み方向一方面に、無機層3を配置する。
(第3工程)
 第3工程では、スパッタリング法によって、不活性ガスとともに、酸素ガスを供給して、無機層3の厚み方向一方面に、第1銅層4Aを配置し、次いで、スパッタリング法によって、不活性ガスを供給し、酸素ガスを供給せず、第1銅層4Aの厚み方向一方面に、第1銅層4Bを配置する。
 つまり、第3工程は、スパッタリング法によって、不活性ガスとともに、酸素ガスを供給して、無機層3の厚み方向一方面に、第1銅層4Aを配置する第3A工程と、スパッタリング法によって、不活性ガスを供給し、酸素ガスを供給せず、第1銅層4Aの厚み方向一方面に、第2銅層4Bを配置する第3B工程とを備える。
 このような場合には、銅層4は、不活性ガスとともに、酸素ガスが供給されたスパッタリング法により形成された第1銅層4A、および、不活性ガスを供給し、酸素ガスを供給しないスパッタリング法により形成された第2銅層4Bからなる。
(第3A工程)
 第3A工程では、図3Cに示すように、スパッタリング法によって、不活性ガスとともに、酸素ガスを供給して、無機層3の厚み方向一方面に、第1銅層4Aを配置する。
 酸素ガスの流量は、例えば、1sccm以上、好ましくは、3sccm以上、より好ましくは、7sccm以上、また、例えば、20sccm以下、好ましくは、15sccm以下である。
 また、酸素ガスの流量に対する不活性ガスの流量の流量比は、例えば、40以上、また、例えば、150以下である。
 スパッタリング時の気圧、電源および成膜温度は、上記第1方法における第3工程のスパッタリング時の気圧、電源および成膜温度と同様である。
 放電出力は、例えば、5.0kW以上、好ましくは、10.0kW以上、また、例えば、20kW以下である。
 これにより、無機層3の厚み方向一方面に、第1銅層4Aを配置する。
 第1銅層4Aの厚みは、例えば、5nm以上、また、例えば、20nm以下である。
(第3B工程)
 第3B工程では、図3Dに示すように、スパッタリング法によって、不活性ガスを供給し、酸素ガスを供給せず、第1銅層4Aの厚み方向一方面に、第2銅層4Bを配置する。
 スパッタリング時の気圧、電源、放電出力および成膜温度は、上記第1方法における第3工程のスパッタリング時の気圧、電源、放電出力および成膜温度と同様である。
 これにより、第1銅層4Aの厚み方向一方面に、第2銅層4Bを配置する。
 第2銅層4Bの厚みは、例えば、50nm以上、また、例えば、300nm以下である。
 以上より、無機層3の厚み方向一方面に、銅層4を配置し、導電性フィルム1を製造する。
[第2B方法]
(第1工程)
 第1工程では、図2Aに示すように、有機樹脂基材2を準備する。
(第2工程)
 第2工程では、図2Bに示すように、スパッタリング法によって、有機樹脂基材2の厚み方向一方面に、無機層3を配置する。
 スパッタリング法におけるスパッタリングガスとして、不活性ガスを供給し、酸素ガスを供給しない。
 スパッタリング時の気圧、電源および放電出力は、上記第1方法における第2工程のスパッタリング時の気圧、電源および放電出力と同様である。
 これにより、有機樹脂基材2の厚み方向一方面に、無機層3を配置する。
(第3工程)
 第3工程では、図2Cに示すように、スパッタリング法によって、不活性ガスとともに、酸素ガスを供給して、無機層3の厚み方向一方面に、銅層4を配置する。
 このような場合には、銅層4は、不活性ガスを供給し、酸素ガスを供給しないスパッタリング法により形成された銅層を含まず、不活性ガスとともに、酸素ガスが供給されたスパッタリング法により形成された銅層からなる。
 スパッタリング時の酸素ガスの流量、酸素ガスの流量に対する不活性ガスの流量の流量比、気圧、電源、放電出力および成膜温度は、上記第2A方法における第3A工程のスパッタリング時の酸素ガスの流量、酸素ガスの流量に対する不活性ガスの流量の流量比、気圧、電源、放電出力および成膜温度と同様である。
 これにより、無機層3の厚み方向一方面に、銅層4を配置する。
 以上により、導電性フィルム1を製造する。
[第3方法]
 第3方法では、第2工程および第3工程において、酸素ガスを供給する。
 また、第3方法においても、第3工程において、酸素ガスを供給する方法として、まず、スパッタリング法によって、不活性ガスとともに、酸素ガスを供給して、無機層3の厚み方向一方面に、第1銅層4Aを配置し、次いで、スパッタリング法によって、不活性ガスを供給し、酸素ガスを供給せず、第1銅層4Aの厚み方向一方面に、第2銅層4Bを配置する第3A方法、および、スパッタリング法によって、不活性ガスとともに、酸素ガスを供給して、無機層3の厚み方向一方面に、銅層4の全部を配置する第3B方法が挙げられる。
 以下、第3A方法および第3B方法について、順に詳述する。
[第3A方法]
(第1工程)
 第1工程では、図3Aに示すように、有機樹脂基材2を準備する。
(第2工程)
 第2工程では、図3Bに示すように、スパッタリング法によって、有機樹脂基材2の厚み方向一方面に、無機層3を配置する。
 スパッタリング法では、スパッタリングガスとして、不活性ガスを供給するとともに、酸素ガスを供給する。
 酸素ガスの流量は、例えば、10sccm以上、好ましくは、30sccm以上、また、例えば、200sccm以下、好ましくは、150sccm以下、より好ましくは、100sccm以下、さらに好ましくは、80sccm以下、とりわけ好ましくは、60sccm以下である。
 また、酸素ガスの流量に対する不活性ガスの流量の流量比は、例えば、40以上、また、例えば、150以下である。
 スパッタリング時の気圧、電源および放電出力は、上記第1方法における第2工程のスパッタリング時の気圧、電源および放電出力と同様である。
 これにより、有機樹脂基材2の厚み方向一方面に、無機層3を配置する。
(第3A工程)
 第3A工程では、図3Cに示すように、スパッタリング法によって、不活性ガスとともに、酸素ガスを供給して、無機層3の厚み方向一方面に、第1銅層4Aを配置する。
 酸素ガスの流量は、上記した第3A方法における第2工程の酸素ガスの流量よりも少なく、例えば、1sccm以上、好ましくは、3sccm以上、より好ましくは、5sccm以上、また、例えば、20sccm以下、好ましくは、15sccm以下、より好ましくは、8sccm以下である。
 また、酸素ガスの流量に対する不活性ガスの流量の流量比は、例えば、40以上、また、例えば、500以下である。
 スパッタリング時の気圧、電源、放電出力および成膜温度は、上記第2A方法における第3A工程のスパッタリング時の気圧、電源、放電出力および成膜温度と同様である。
 これにより、無機層3の厚み方向一方面に、第1銅層4Aを配置する。
(第3B工程)
 第3B工程では、図3Dに示すように、スパッタリング法によって、不活性ガスを供給し、酸素ガスを供給せず、第1銅層4Aの厚み方向一方面に、第2銅層4Bを配置する。
 スパッタリング時の気圧、電源および放電出力は、上記第1方法における第3工程のスパッタリング時の気圧、電源および放電出力と同様である。
 これにより、第1銅層4Aの厚み方向一方面に、第2銅層4Bを配置する。
 以上より、無機層3の厚み方向一方面に、銅層4を配置し、導電性フィルム1を製造する。
[第3B方法]
(第1工程)
 第1工程では、図2Aに示すように、有機樹脂基材2を準備する。
(第2工程)
 第2工程では、図2Bに示すように、スパッタリング法によって、有機樹脂基材2の厚み方向一方面に、無機層3を配置する。
 スパッタリング法では、スパッタリングガスとして、不活性ガスを供給するとともに、酸素ガスを供給する。
 スパッタリング時の気圧、電源および放電出力は、上記第1方法における第2工程のスパッタリング時の気圧、電源および放電出力と同様である。
 これにより、有機樹脂基材2の厚み方向一方面に、無機層3を配置する。
(第3工程)
 第3工程では、図2Cに示すように、スパッタリング法によって、不活性ガスとともに、酸素ガスを供給して、無機層3の厚み方向一方面に、銅層4を配置する。
 スパッタリング時の酸素ガスの流量、酸素ガスの流量に対する不活性ガスの流量の流量比、気圧、電源、放電出力および成膜温度は、上記第3A方法における第3A工程のスパッタリング時の酸素ガスの流量、酸素ガスの流量に対する不活性ガスの流量の流量比、気圧、電源、放電出力および成膜温度と同様である。
 これにより、無機層3の厚み方向一方面に、銅層4を配置する。
 以上により、導電性フィルム1を製造する。
 導電性フィルム1の製造方法として、好ましくは、銅層4の比抵抗をより一層低くする観点から、第3A方法が挙げられる。
<導電性フィルムにおけるY>
 導電性フィルム1において、下記式(1)により算出されるYが、23.200未満、好ましくは、23.000以下、より好ましくは、22.500以下、さらに好ましくは、22.000以下、とりわけ好ましくは、21.500以下、最も好ましくは、21.000以下、さらには、20.500以下、また、例えば、10.000以上である。
Y=-0.0002243×(α111/t)+5.764×β111-0.02178×γ111-0.02283×(α200/t)-0.009098×γ200+0.01051×t+28.15  (1)
 上記式(1)において、α111は、X線回折法の面外回折測定における、銅層4の(111)面のピークの積分強度を示す。なお、X線回折法の面外回折測定の測定方法については、後述する実施例において詳述する(以下同様)。
 tは、銅層4の厚み(nm)を示す。
 β111は、X線回折法の面外回折測定における、銅層4の(111)面のピークの積分強度の、銅層4の全ピークの積分強度に対する積分強度比を示す。なお、銅層4の全ピークの積分強度とは、(111)面のピークの積分強度、(200)面のピークの積分強度、(311)面のピークの積分強度および(222)面のピークの積分強度の総量を意味する。
 γ111は、X線回折法の面外回折測定における、銅層4の(111)面の結晶子サイズ(Å)を示す。具体的には、銅層4の(111)面の結晶子サイズは、例えば、400Å以上、好ましくは、420Å以上、より好ましくは、430Å以上、また、例えば、500Å以下、好ましくは、480Å以下、より好ましくは、460Å以下である。
 なお、銅層4の(111)面の結晶子サイズは、シェラー式(結晶子サイズ=Kλ/βcosθ、K:シェラー定数、λ:X線波長、β:半値幅、θ:ブラック角)による算出することができる(以下同様)。
 α200は、X線回折法の面外回折測定における、銅層4の(200)面のピークの積分強度を示す。
 γ200は、X線回折法の面外回折測定における、銅層4の(200)面の結晶子サイズ(Å)を示す。具体的には、銅層4の(200)面の結晶子サイズは、例えば、200Å以上、好ましくは、250Å以上、より好ましくは、300Å以上、また、例えば、400Å以下、好ましくは、360Å以下、より好ましくは、340Å以下である。
 また、上記式(1)は、後述する実施例において詳述するシミュレーションに基づき、導出される。
 また、Yは、例えば、第2工程における酸素ガスの流量、および、第3工程における酸素ガスの流量によって、上記した範囲に調整することができる。
<作用効果>
 導電性フィルム1は、無機層3を備える。そのため、導電性フィルム1の製造時に、有機樹脂基材2からのアウトガスを遮断することができる。
 詳しくは、導電性フィルム2の製造では、有機樹脂基材2からのアウトガスが発生する場合がある。このようなアウトガスによって、銅層4の厚み方向他方面に、酸化銅が形成する。そうすると、有機樹脂基材2および銅層4の間の密着性が低下する場合がある。
 一方、導電性フィルム1は、無機層3を備える。これにより、上記アウトガスを遮断することができる。そうすると、銅層4の厚み方向他方面に、酸化銅が形成されることを抑制でき、その結果、有機樹脂基材2(無機層3)および銅層4の密着性が低下することを抑制できる。
 また、導電性フィルム1は、上記式(1)により算出されるYが、23.200未満である。そのため、銅層4の比抵抗を低くできる。
 詳しくは、上記したように、密着性の低下を抑制する観点から、無機層3を設けると、X線回折法の面外回折測定における、銅層の(200)面の結晶成長が阻害される。そうすると、結晶粒が小さくなり、電子移動を阻害する粒界面が増加する。その結果、比抵抗が高くなる。
 一方、導電性フィルム1では、上記式(1)により算出されるYが、23.200未満である。このような場合には、銅層4において、(200)面の結晶成長が適度に進行しており、結晶粒を大きくできるため、銅層4の比抵抗を低くできる。
<変形例>
 変形例において、一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、第一実施形態と同様の作用効果を奏することができる。さらに、一実施形態およびその変形例を適宜組み合わせることができる。
 また、上記した説明では、導電性フィルム1は、有機樹脂基材2と、無機層3と、銅層4とを厚み方向に向かって順に備えるが、有機樹脂基材2および無機層3の間に、機能層(例えば、ハードコート層)を配置することもできる。このような場合には、導電性フィルム1は、有機樹脂基材2と、ハードコート層と、無機層3と、銅層4とを厚み方向に向かって順に備える。
 以下に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替できる。
<導電性フィルムの製造>
  実施例1
 第1方法により、導電性フィルムを製造した。具体的には、以下の手順で、導電性フィルムを製造した。
[第1工程]
 有機樹脂基材として、ポリエチレンテレフタレート(125U48、東レ社製、厚み125μm)を準備した。
[第2工程]
 以下の条件に基づいて、スパッタリング法によって、有機樹脂基材の厚み方向一方面に、無機層(厚み5nm)を配置した。
{条件}
装置:ロールトゥロール方式のスパッタ成膜装置(巻取式のDCマグネトロンスパッタリング装置)
無機層の材料:ITO
ガス:アルゴンガスおよび酸素ガス(酸素ガスの流量50sccm)、酸素ガスの流量に対する不活性ガスの流量の流量比14
放電出力:7.2kW
成膜室内の気圧:0.4Pa
走行速度:8.0m/分
[第3工程]
 以下の条件に基づいて、スパッタリング法によって、無機層の厚み方向一方面に、銅層(104.6nm)を配置した。
{条件}
装置:ロールトゥロール方式のスパッタ成膜装置(巻取式のDCマグネトロンスパッタリング装置)
ガス:アルゴンガス
放電出力:100kW
成膜室内の気圧:0.4Pa
成膜温度:40℃
走行速度:8.0m/分
  実施例2~実施例5
 実施例1と同様の手順に基づいて、導電性フィルムを製造した。但し、表1の記載に基づいて、無機層、酸素ガスの流量および銅層の厚みを変更した。
  実施例6
 第2A方法により、導電性フィルムを製造した。具体的には、以下の手順で、導電性フィルムを製造した。
[第1工程]
 有機樹脂基材として、ポリエチレンテレフタレート(125U48、東レ社製、厚み125μm)を準備した。
[第2工程]
 以下の条件に基づいて、スパッタリング法によって、有機樹脂基材の厚み方向一方面に、無機層(厚み5nm)を配置した。
{条件}
装置:ロールトゥロール方式のスパッタ成膜装置(巻取式のDCマグネトロンスパッタリング装置)
無機層の材料:ITO
ガス:アルゴンガス
放電出力:7.2kW
成膜室内の気圧:0.4Pa
走行速度:8.0m/分
[第3A工程]
 以下の条件に基づいて、スパッタリング法によって、無機層の厚み方向一方面に、第1銅層(厚み12nm)を配置した。
{条件}
装置:ロールトゥロール方式のスパッタ成膜装置(巻取式のDCマグネトロンスパッタリング装置)
ガス:アルゴンガスおよび酸素ガス(酸素ガスの流量5sccm)、酸素ガスの流量に対する不活性ガスの流量の流量比5
放電出力:14.7kW
成膜室内の気圧:0.4Pa
成膜温度:40℃
走行速度:8.0m/分
[第3B工程]
 以下の条件に基づいて、スパッタリング法によって、第1銅層の厚み方向一方面に、第2銅層(厚み92nm)を配置した。
{条件}
装置:ロールトゥロール方式のスパッタ成膜装置(巻取式のDCマグネトロンスパッタリング装置)
ガス:アルゴンガス
放電出力:100kW
成膜室内の気圧:0.4Pa
成膜温度:40℃
走行速度:8.0m/分
  実施例7
 実施例6と同様の手順に基づいて、導電性フィルムを製造した。但し、表1の記載に基づいて、酸素ガスの流量を変更した。
  実施例8
 第3A方法により、導電性フィルムを製造した。具体的には、以下の手順で、導電性フィルムを製造した。
[第1工程]
 有機樹脂基材として、ポリエチレンテレフタレート(125U48、東レ社製、厚み125μm)を準備した。
[第2工程]
 以下の条件に基づいて、スパッタリング法によって、有機樹脂基材の厚み方向一方面に、無機層(厚み5nm)を配置した。
{条件}
装置:ロールトゥロール方式のスパッタ成膜装置(巻取式のDCマグネトロンスパッタリング装置)
無機層の材料:ITO
ガス:アルゴンガスおよび酸素ガス(酸素ガスの流量20sccm)、酸素ガスの流量に対する不活性ガスの流量の流量比35
放電出力:7.2kW
成膜室内の気圧:0.4Pa
走行速度:8.0m/分
[第3A工程]
 以下の条件に基づいて、スパッタリング法によって、無機層の厚み方向一方面に、第1銅層(厚み12nm)を配置した。
{条件}
装置:ロールトゥロール方式のスパッタ成膜装置(巻取式のDCマグネトロンスパッタリング装置)
ガス:アルゴンガスおよび酸素ガス(酸素ガスの流量7sccm)、酸素ガスの流量に対する不活性ガスの流量の流量比100
放電出力:14.7kW
成膜室内の気圧:0.4Pa
成膜温度:40℃
走行速度:8.0m/分
[第3B工程]
 以下の条件に基づいて、スパッタリング法によって、第1銅層の厚み方向一方面に、第2銅層(厚み92nm)を配置した。
{条件}
装置:ロールトゥロール方式のスパッタ成膜装置(巻取式のDCマグネトロンスパッタリング装置)
ガス:アルゴンガス
放電出力:100kW
成膜室内の気圧:0.4Pa
成膜温度:40℃
走行速度:8.0m/分
  実施例9~実施例13
 実施例8と同様の手順に基づいて、導電性フィルムを製造した。但し、表1の記載に基づいて、酸素ガスの流量および銅層の厚みを変更した。
  比較例1
 実施例1と同様の手順に基づいて、導電性フィルムを製造した。但し、表1の記載に基づいて、酸素ガスの流量を変更した。具体的には、第2工程において、酸素ガスを供給しなかった。
<評価>
(表面抵抗)
 各実施例および各比較例の銅層の表面抵抗を、JIS K7194に準拠して、4端子法により測定した。その結果を表1に示す。
(比抵抗)
 各実施例および各比較例の銅層の比抵抗を、表面抵抗値と銅層の厚みとを乗ずることにより算出した。その結果を表1に示す。
(X線回折法の面外回折測定)
 各実施例および各比較例の金属層について、下記の測定条件に基づき、X 線解析装置(SmartLab(Rigaku製))を用いて、X線回折法の面外回折測定を実施した。得られたα111、β111、γ111、α200およびγ200について、その結果を表1 に示す。
{測定条件}
スキャン軸:2θ/θ
開始角度(°):10
終了角度(°):100
ステップ(°):0.02
スピード(/分):1.0
(Yの算出)
 まず、上記式(1)を、以下の手順で算出した、導電性フィルムを作製し、X線回折法の面外回折測定を実施した。これにより、プロセス条件と、銅層4の比抵抗値とを、対応付けられた実験データを14点(実施例1~実施例13、比較例1に相当するデータ)得た。得られた実験データに基づいて、様々な説明変数を作成し、Ridge回帰を行った。Ridge回帰は、L2正則化項を有する線形回帰手法である。Ridge回帰によって、予測精度が高くなるように式の係数を最適化した。これにより、上記式(1)を得た。得られた上記式(1)に、各パラメータを代入して、Yを算出した。その結果を表1に示す。
<考察>
 実施例1~実施例13は、無機層を備えるため、有機樹脂基材からのアウトガスを遮断することができるとわかる。
 また、無機層を備える場合であっても、Yが、23.200未満である実施例1~実施例13は、Yが、23.200以上である比較例1よりも、比抵抗を低くできるとわかる。
 詳しくは、Yが、23.200未満である実施例1~実施例13は、比抵抗を、2.300×10-8Ω・m以下にすることができる。具体的には、とりわけ、フラットパネルディスプレイ、タッチパネルなどの各種デバイスにおいて、電極をパターン形成するための導体層の用途として、実用レベルの比抵抗を実現できる実用性を確保することができるとわかる。
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれるものである。
 本発明の導電性フィルムおよび導電性フィルムの製造方法は、例えば、タッチパネル、および、光センサなどの各種デバイスの製造に好適に用いられる。
 1   導電性フィルム
 2   有機樹脂基材
 3   無機層
 4   銅層

Claims (8)

  1.  有機樹脂基材と、
     前記有機樹脂基材の厚み方向一方側に配置される無機層と、
     前記無機層の厚み方向一方面に直接配置される銅層とを備え、
     下記式(1)により算出されるYが、23.200未満である、導電性フィルム。
    Y=-0.0002243×(α111/t)+5.764×β111-0.02178×γ111-0.02283×(α200/t)-0.009098×γ200+0.01051×t+28.15  (1)
    (上記式(1)において、α111は、X線回折法の面外回折測定における、銅層の(111)面のピークの積分強度を示す。tは、銅層の厚み(nm)を示す。β111は、X線回折法の面外回折測定における、銅層の(111)面のピークの積分強度の、銅層の全ピークの積分強度に対する積分強度比を示す。γ111は、X線回折法の面外回折測定における、銅層の(111)面の結晶子サイズ(Å)を示す。α200は、X線回折法の面外回折測定における、銅層の(200)面のピークの積分強度を示す。γ200は、X線回折法の面外回折測定における、銅層の(200)面の結晶子サイズ(Å)を示す。)
  2.  前記銅層の厚みが、50nm以上である、請求項1に記載の導電性フィルム。
  3.  前記銅層の厚みが、300nm以下である、請求項1に記載の導電性フィルム。
  4.  前記無機層の厚みが、2nm以上15nm以下である、請求項1~3のいずれか一項に記載の導電性フィルム。
  5.  有機樹脂基材を準備する第1工程と、
     スパッタリング法によって、有機樹脂基材の厚み方向一方面に、無機層を配置する第2工程と、
     スパッタリング法によって、無機層の厚み方向一方面に、銅層を配置する第3工程とを備え、
     前記第2工程および前記第3工程において、少なくとも一方は、スパッタリングガスとして、不活性ガスを供給するとともに、酸素ガスを供給する、導電性フィルムの製造方法。
  6.  前記第2工程において、スパッタリングガスとして、不活性ガスを供給するとともに、酸素ガスを供給し、
     前記第2工程における前記酸素ガスの流量が、5sccm以上200sccm以下である、請求項5に記載の導電性フィルムの製造方法。
  7.  前記第3工程において、スパッタリングガスとして、不活性ガスを供給するとともに、酸素ガスを供給し、
     前記第3工程は、スパッタリング法によって、不活性ガスとともに、酸素ガスを供給して、無機層の厚み方向一方面に、第1銅層を配置する第3A工程と、スパッタリング法によって、不活性ガスを供給し、酸素ガスを供給せず、前記第1銅層の厚み方向一方面に、第2銅層を配置する第3B工程とを備え、
     前記第3A工程における酸素ガスの流量が、1sccm以上20sccm以下である、請求項5に記載の導電性フィルムの製造方法。
  8.  前記第2工程および第3工程において、スパッタリングガスとして、不活性ガスを供給するとともに、酸素ガスを供給し、
     前記第3工程は、スパッタリング法によって、不活性ガスとともに、酸素ガスを供給して、無機層の厚み方向一方面に、第1銅層を配置する第3A工程と、スパッタリング法によって、不活性ガスを供給し、酸素ガスを供給せず、前記第1銅層の厚み方向一方面に、第2銅層を配置する第3B工程とを備え、
     前記第2工程における酸素ガスの流量が、10sccm以上200sccm以下であり、
     前記第3A工程における酸素ガスの流量は、前記第2工程における酸素ガスの流量よりも少なく、かつ、1sccm以上20sccm以下である、請求項5に記載の導電性フィルムの製造方法。
PCT/JP2023/017875 2022-07-01 2023-05-12 導電性フィルムおよび導電性フィルムの製造方法 WO2024004401A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022107319 2022-07-01
JP2022-107319 2022-07-01

Publications (1)

Publication Number Publication Date
WO2024004401A1 true WO2024004401A1 (ja) 2024-01-04

Family

ID=89381975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017875 WO2024004401A1 (ja) 2022-07-01 2023-05-12 導電性フィルムおよび導電性フィルムの製造方法

Country Status (1)

Country Link
WO (1) WO2024004401A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333925A (ja) * 1993-05-20 1994-12-02 Nippon Steel Corp 半導体集積回路及びその製造方法
JP2015133256A (ja) * 2014-01-14 2015-07-23 株式会社カネカ 透明導電積層体およびその製造方法ならびに静電容量方式タッチパネル
JP2016068470A (ja) * 2014-09-30 2016-05-09 株式会社カネカ 透明導電積層体および静電容量方式タッチパネル
WO2016140073A1 (ja) * 2015-03-04 2016-09-09 株式会社カネカ 導電層付き基板、タッチパネル用透明電極付き基板及びそれらの製造方法
WO2017104573A1 (ja) * 2015-12-16 2017-06-22 日東電工株式会社 金属層積層透明導電性フィルムおよびそれを用いたタッチセンサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333925A (ja) * 1993-05-20 1994-12-02 Nippon Steel Corp 半導体集積回路及びその製造方法
JP2015133256A (ja) * 2014-01-14 2015-07-23 株式会社カネカ 透明導電積層体およびその製造方法ならびに静電容量方式タッチパネル
JP2016068470A (ja) * 2014-09-30 2016-05-09 株式会社カネカ 透明導電積層体および静電容量方式タッチパネル
WO2016140073A1 (ja) * 2015-03-04 2016-09-09 株式会社カネカ 導電層付き基板、タッチパネル用透明電極付き基板及びそれらの製造方法
WO2017104573A1 (ja) * 2015-12-16 2017-06-22 日東電工株式会社 金属層積層透明導電性フィルムおよびそれを用いたタッチセンサ

Similar Documents

Publication Publication Date Title
JP6066154B2 (ja) 透明導電性フィルムの製造方法
JP4759143B2 (ja) 透明導電積層体、その製造方法及びそれを用いた表示素子
JP6261988B2 (ja) 透明導電フィルムおよびその製造方法
US9570210B2 (en) Transparent conductive film and production method therefor
JP6215062B2 (ja) 透明導電フィルムの製造方法
TWI651208B (zh) 具透明電極之基板及其製造方法
WO2016140073A1 (ja) 導電層付き基板、タッチパネル用透明電極付き基板及びそれらの製造方法
US10151024B2 (en) Method for producing transparent conductive film
JP4137254B2 (ja) 透明導電積層体の製造方法
JP6490262B2 (ja) 光透過性導電層付きフィルム、調光フィルムおよび調光装置
WO2024004401A1 (ja) 導電性フィルムおよび導電性フィルムの製造方法
KR101165770B1 (ko) 고투과율 및 저저항 특성을 갖는 인듐-틴 옥사이드 박막의 제조방법
WO2024004404A1 (ja) 導電性フィルム
JP6803191B2 (ja) 透明導電性フィルムの製造方法
TW202414440A (zh) 導電性膜及導電性膜之製造方法
JP6670368B2 (ja) 多層薄膜
WO2024004405A1 (ja) 導電性フィルム
WO2018207622A1 (ja) 光透過性導電層付きフィルム、調光フィルムおよび調光装置
WO2024070277A1 (ja) 導電反射膜
JP7502000B2 (ja) 透明導電性フィルム
CN103031517A (zh) 氧化铟锡膜及其制作方法
JP7478721B2 (ja) 透明電極付き基板の製造方法
JP2024067499A (ja) 透明導電性フィルムおよび透明導電性フィルムの製造方法
JP5805708B2 (ja) タッチパネルセンサー用配線膜、およびタッチパネルセンサー
CN112384848A (zh) 透光性导电薄膜及调光薄膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830853

Country of ref document: EP

Kind code of ref document: A1