WO2016140073A1 - 導電層付き基板、タッチパネル用透明電極付き基板及びそれらの製造方法 - Google Patents

導電層付き基板、タッチパネル用透明電極付き基板及びそれらの製造方法 Download PDF

Info

Publication number
WO2016140073A1
WO2016140073A1 PCT/JP2016/054730 JP2016054730W WO2016140073A1 WO 2016140073 A1 WO2016140073 A1 WO 2016140073A1 JP 2016054730 W JP2016054730 W JP 2016054730W WO 2016140073 A1 WO2016140073 A1 WO 2016140073A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
metal
thin film
metal oxide
Prior art date
Application number
PCT/JP2016/054730
Other languages
English (en)
French (fr)
Inventor
貴久 藤本
玉井 仁
山本 憲治
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN201680008183.9A priority Critical patent/CN107210092B/zh
Priority to US15/551,514 priority patent/US10353497B2/en
Priority to JP2017503413A priority patent/JP6698064B2/ja
Publication of WO2016140073A1 publication Critical patent/WO2016140073A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details

Definitions

  • the present invention relates to a substrate with a conductive layer in which a conductive layer is formed on a transparent film substrate, a substrate with a transparent electrode for a touch panel, and methods for producing them.
  • a transparent electrode used for a display device such as a touch panel or a display
  • a light emitting device such as an LED
  • a light receiving device such as a solar cell
  • electrical characteristics expressed as sheet resistance As a material for such a transparent electrode, a transparent conductive oxide mainly composed of indium oxide is often used. Various characteristics can be imparted to indium oxide by adding a metal oxide such as tin oxide.
  • a transparent electrode thin film is formed on a soft substrate such as a film and patterned, but a transparent conductive oxide such as indium oxide is a crystal. Therefore, it is necessary to perform high temperature film formation or heat treatment after film formation, and the temperature is determined by the heat resistance of the film substrate. In addition, the conductivity of the transparent conductive oxide is inferior to that of the metal.
  • the electrical characteristics of transparent electrodes using transparent conductive oxide are limited to 8 ⁇ 10 ⁇ 5 to 3 ⁇ 10 ⁇ 4 ⁇ cm.
  • the metal mesh is formed into a mesh-like and translucent (transparent) by forming the metal wiring into a thin line having a line width of 10 ⁇ m or less, particularly 5 ⁇ m or less.
  • the glare prevention measure may be only one side.
  • the glare prevention measure is applied to the interface between the base material and the metal layer and the outermost surface of the metal layer. Is essential.
  • Patent Documents 2, 3, and 4 As a conventional technique for preventing glare of a metal layer, techniques (Patent Documents 2, 3, and 4) of laminating a black metal layer are disclosed.
  • Patent Document 2 improves the visibility of an electromagnetic wave shielding shield. Since a thin line pattern of 5 ⁇ m or less required for a touch panel does not function effectively, production of a line width of 5 ⁇ m or less is not assumed. Further, in the method of laminating the black metal oxide layer, it is easily assumed that the difference in the etching rate between the black metal oxide layer and the metal wiring portion is large, and there is a problem in thinning of 5 ⁇ m or less. It can be said that it is difficult to apply this technique to a touch panel as it is.
  • Patent Document 3 discloses an electromagnetic wave shield in which a black metal oxide layer and a metal layer are sequentially laminated on a transparent film substrate via a transparent underlayer.
  • a touch panel provided with a metal mesh electrode it does not have a transparent base layer that is a transparent conductive layer, and lamination of a transparent inorganic layer for improving adhesion is not preferable from the viewpoint of cost.
  • the etching rate and etching time of each layer are important for thinning of 5 ⁇ m or less, and this point is not taken into consideration, so it is considered that it cannot be applied to a touch panel.
  • Patent Document 4 includes a light-shielding layer in which a nickel-copper oxide layer or nitride layer is formed as a first light-shielding layer, and a nickel-copper alloy or a nitride or carbide thereof is formed as a second layer.
  • a substrate is disclosed.
  • a film-like transparent conductive layer such as ITO is formed on the color filter layer, side etching caused by the difference in etching time between the metal layer and the light shielding layer when the metal layer is laminated and thinned by etching Is not assumed.
  • a line width of about 20 ⁇ m is disclosed, and it can be said that a 5 ⁇ m-width thin line mesh electrode for a touch panel is not assumed.
  • a surface treatment or glare prevention layer (black layer) is required.
  • the etching rate of each layer It is necessary to control the etching time.
  • the difference between the etching rate of the black layer and the etching rate of the metal layer is large, and it is a problem to achieve both glare prevention, etching rate, and etching time.
  • a metal layer is formed on a conventional black layer, there is a trade-off relationship between the etching characteristics and glare prevention characteristics. If the amount of metal oxide or metal nitride in the black layer is increased to increase the glare prevention characteristics, etching is performed. The rate is lowered, and side etching of the fine wire mesh electrode occurs.
  • An object of the present invention is to provide a substrate with a conductive layer that can improve both glare prevention characteristics and etching characteristics, a method for manufacturing the same, and a substrate with transparent electrodes for touch panels.
  • the substrate with a conductive layer of the first invention is a substrate with a conductive layer in which a thin film underlayer, a metal oxide layer, and a first metal layer are formed in this order on at least one surface of a transparent film substrate.
  • the thin film underlayer has nickel and copper or their oxides as main components, the metal oxide layer has nickel and copper oxides as main components, and the first metal layer has at least one of gold, silver, and copper Is the main component, (1)
  • the film thickness of the thin film underlayer is 20 nm or less, (2)
  • the metal oxide layer has a thickness of 80 nm or less, (3) Film thickness of the thin film underlayer ⁇ film thickness of the metal oxide layer, It is characterized by satisfying the above relational expressions (1) to (3).
  • the first invention can employ the following various forms.
  • a second metal layer mainly composed of gold, silver, or copper was further laminated on the first metal layer.
  • the film thickness of the first metal layer is 10 nm or more and 500 nm or less
  • the film thickness of the second metal layer is 100 nm or more and 10 ⁇ m or less
  • the total thickness of the first metal layer and the second metal layer is 10 ⁇ m or less.
  • the first and second metal layers in the substrate with a conductive layer described in (b) above are thinned to a line width of 1 to 10 ⁇ m.
  • a thin wire mesh electrode having an aperture ratio of 90% or more is formed.
  • a method for producing a substrate with a conductive layer according to a third invention is the substrate with a conductive layer, wherein a thin film underlayer, a metal oxide layer, and a first metal layer are formed in this order on at least one surface of a transparent film substrate.
  • the invention of the method for manufacturing a substrate with a conductive layer may employ the following steps.
  • the method further includes a metal layer laminating step of forming a second metal layer containing gold, silver, or copper as a main component on the first metal layer.
  • G The value calculated from the oxygen flow rate / power density when the thin film underlayer and the metal oxide layer are laminated by sputtering is smaller in the thin film underlayer than in the metal oxide layer.
  • the value calculated from the oxygen flow rate / power density is 0 or more and 14 or less for the thin film underlayer, and 9 or more and 27 or less for the metal oxide layer.
  • the pressure during film formation is 0.6 Pa or less.
  • a method for manufacturing a substrate with a conductive layer according to a fourth invention is the method for manufacturing a substrate with a conductive layer according to (b), wherein the first metal layer is sputtered in the metal layer forming step. In the metal layer laminating step, the second metal layer is formed by electrolytic plating.
  • the method for producing a substrate with a transparent electrode for a touch panel according to a fifth invention is the thin film underlayer and the metal oxide layer in the substrate with a conductive layer produced by the method for producing a substrate with a conductive layer according to the third invention. And forming a first metal layer on a fine-line mesh electrode thinned to a line width of 1 to 10 ⁇ m.
  • the method for manufacturing a substrate with a transparent electrode for a touch panel according to a sixth aspect of the present invention is a thin film underlayer and a metal oxide layer in the substrate with a conductive layer manufactured by the method for manufacturing a substrate with a conductive layer described in (f) above. And an electrode forming step of forming the first metal layer and the second metal layer on a fine line mesh electrode thinned to a line width of 1 to 10 ⁇ m.
  • a thin film underlayer mainly composed of nickel and copper or an oxide thereof is laminated as a film having a transparent or translucent glare prevention function of 20 nm or less, and thereon.
  • a metal oxide layer mainly composed of an oxide of nickel and copper is stacked as a transparent or translucent film having an antiglare function of 80 nm or less.
  • the base thin film layer, the metal thin film layer, the first metal thin film layer, and the second metal layer are laminated in this order on the transparent film substrate, Since the second metal layer is formed into a metal mesh electrode having a width of 1 to 10 ⁇ m by patterning, it is possible to provide a substrate with a transparent electrode for a touch panel having a metal mesh electrode that prevents glare.
  • the method for manufacturing a substrate with a conductive layer of the third invention since the thin film underlayer and the metal oxide layer are laminated by sputtering, it is possible to form the thin film underlayer and the metal oxide layer with stable quality.
  • the first metal layer is formed by sputtering and the second metal layer is laminated by electrolytic plating. It can be formed thicker than one metal layer.
  • the thin film underlayer, the metal oxide layer, and the first metal layer laminated by sputtering are etched into a fine mesh electrode having a line width of 1 to 10 ⁇ m.
  • a thin film underlayer, a metal oxide layer, a first metal layer, and a second metal layer laminated by sputtering are etched to form a 1 to 10 ⁇ m line. It can be formed into a thin fine wire mesh electrode.
  • FIG. 1 It is a diagram which shows the analysis result of O / (Ni + Cu) in the thin film base layer analyzed in Example 1, and a metal oxide layer.
  • FIG. 1 and 2 illustrate a substrate with a conductive layer, a substrate with a transparent electrode for a touch panel, and a manufacturing method thereof according to an embodiment of the present invention.
  • a substrate Fa with a conductive layer shown in FIG. 1 is obtained by laminating a thin film underlayer 2, a metal oxide layer 3, and a metal layer 4 (first metal layer) in this order on a transparent film substrate 1.
  • the substrate Fc with a transparent electrode for a touch panel shown in FIG. 1 is formed by forming a thin fine-line mesh metal layer 5 (second metal layer) on the surface of the substrate Fa with a conductive layer, and then forming the thin film base layer 2 and the metal
  • the oxide layer 3 and the metal layer 4 are etched, and the thin-film underlayer 2, the metal oxide layer 3, the metal layer 4, and the metal layer 5 form a fine wire mesh electrode.
  • a substrate Fb with a conductive layer shown in FIG. 2 is obtained by forming a thin metal layer 5A (second metal layer) on the surface of a substrate Fa with a conductive layer similar to the above by electrolytic plating.
  • a substrate Fc with a transparent electrode for a touch panel shown in FIG. 2 is a thin line including the metal layer 5 by etching the thin film underlayer 2, the metal oxide layer 3, the metal layer 4, and the thin metal layer 5A of the substrate Fb with a conductive layer.
  • a mesh electrode is formed.
  • the material of the transparent film constituting the transparent film substrate 1 is not particularly limited as long as it is colorless and transparent at least in the visible light region and has heat resistance at the transparent electrode layer forming temperature.
  • the material for the transparent film include polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN), cycloolefin resins, polycarbonate resins, polyimide resins, and cellulose resins. . Of these, polyester resins are preferable, and polyethylene terephthalate is particularly preferably used.
  • the thickness of the transparent film substrate 1 is not particularly limited, but is preferably 10 ⁇ m to 400 ⁇ m, more preferably 20 ⁇ m to 200 ⁇ m. If the thickness is within the above range, the transparent film substrate 1 can have durability and moderate flexibility, so that each transparent dielectric layer and transparent electrode layer can be manufactured with high productivity by the Roll to Roll method. It is possible to membrane. As the transparent film substrate 1, one having improved mechanical properties such as Young's modulus and heat resistance by orienting molecules by biaxial stretching is preferably used.
  • a stretched film has a property of being thermally contracted when heated because strain caused by stretching remains in the molecular chain.
  • stress is relaxed by adjusting the stretching conditions and heating after stretching, the thermal shrinkage rate is reduced to about 0.2% or less, and the heat shrink start temperature is increased.
  • Biaxially stretched films low heat shrink films
  • a functional layer such as a hard coat layer may be formed on one or both sides of the transparent film substrate 1.
  • the thickness of the hard coat layer is preferably 1 to 10 ⁇ m, more preferably 3 to 8 ⁇ m, and even more preferably 5 to 8 ⁇ m.
  • the material of the hard coat layer is not particularly limited, and a material obtained by applying and curing a urethane resin, an acrylic resin, a silicone resin, or the like can be appropriately used.
  • a thin film underlayer 2 is formed on the transparent film substrate 1.
  • the thin film underlayer 2 is a layer for the purpose of improving etching characteristics, preventing glare, improving the color, and adhering to the film substrate.
  • Good etching characteristics means that the total etching time of the two layers of the thin film underlayer 2 and the metal oxide layer 3 is 0.05 times to 6 times, preferably 0.1 times or more the etching time of the metal layer 4 It is within 3 times, more preferably 0.5 times or more and 2 times or less.
  • the total etching time of the two layers of the thin film base layer 2 and the metal oxide layer 3 is 0.05 times or less than the etching time of the metal layer 4, the thin film base layer 2 is very easily etched. Side etching of the underlayer 2 is very likely to occur, and it is difficult to control the etching.
  • the etching of the thin film underlayer 2 takes time, and the metal layer 4 Is side-etched and cannot be thinned.
  • the etching rate of the metal layer 4 is 1 to 30 times, preferably 2 to 25 times, more preferably 3 to 20 times, more preferably the etching rate of the thin film underlayer 2 and the metal oxide layer 3. It is greater than 3 times and within 15 times, and thereby, it is possible to form a fine line mesh electrode by suppressing side etching when patterning into a fine line mesh.
  • the thin film underlayer 2 is mainly composed of nickel and copper or oxides thereof.
  • the main component means that nickel and copper or oxides thereof occupy 90% or more of the film components.
  • nickel copper when copper is used as the metal layer 4 or the metal layer 5, it is advantageous that etching can be performed with one solution using an iron chloride aqueous solution or the like, and that an etching rate is easy to make.
  • the film thickness of the thin film underlayer 2 is preferably 2 nm or more and 20 nm or less, more preferably 3 nm or more and 18 nm or less, and further preferably 4 nm or more and 15 nm. If the film thickness is too thin, the transparent film substrate 1 and the metal oxide layer 3 come into contact with each other and a film having a low etching rate is formed. Therefore, a film thickness of 2 nm or more is preferable. On the other hand, if the film is too thick, glare occurs, which is inappropriate from the viewpoint of preventing glare.
  • the method for forming the thin film underlayer 2 is not particularly limited, but sputtering is preferable.
  • a pretreatment such as a plasma treatment may be appropriately performed.
  • the film forming conditions are not controlled by the argon / oxygen ratio, but are preferably formed by a value calculated from oxygen flow rate (sccm) / power density (w / cm 2 ).
  • the etching rate and the degree of glare of the thin film underlayer 2 cannot be controlled only by argon / oxygen, but are preferably controlled by the film forming power and the amount of oxygen at that time.
  • the value calculated from the oxygen flow rate (sccm) / power density (w / cm 2 ) is preferably 0 or more and 14 or less. When the value is large, the effect of preventing glare is increased, but on the other hand, the etching rate is very slow and is not suitable for thinning.
  • the distribution in the depth direction of the film is preferably larger in O / (Ni + Cu) ratio closer to the transparent film substrate 1 from the viewpoint of glare and etching characteristics.
  • the ratio of O / (Ni + Cu) at a film thickness of 1/2 from the surface of the thin film underlayer 2 is “O / (Ni + Cu) at a film thickness of 9/10 from the surface of the metal oxide layer 3”.
  • the ratio is preferably less than 2/3, more preferably 2/3 or less, and more preferably 1/2 or less (see Table 1 and FIG. 4).
  • Metal oxide layer 3 A metal oxide layer 3 is formed on the thin film underlayer 2.
  • the metal oxide layer 3 is a layer for the purpose of preventing glare and improving color.
  • the metal oxide layer 3 is mainly composed of nickel and copper oxides.
  • the main component means that nickel and copper oxides occupy 90% or more of the film components. You may contain metals, such as silver, tungsten, titanium, and chromium, in the remaining 10%.
  • nickel copper when copper is used as the metal layer 4 or the metal layer 5, there are advantages such that etching can be performed with one solution using an iron chloride aqueous solution or the like, and a material having a similar etching rate can be easily produced.
  • the film thickness of the metal oxide layer 3 is preferably 10 nm or more and 80 nm or less, more preferably 11 nm or more and 60 nm or less, and further preferably 12 nm or more and 40 nm. If the film thickness is too thin, the effects of glare prevention and color improvement are not observed. On the other hand, if the film is too thick, it takes time for etching, which is not preferable from the viewpoint of thinning. In order to prevent a decrease in light transmittance, the total film thickness of the thin film underlayer 2 and the metal oxide layer 3 is desirably 100 nm or less.
  • Sputtering is preferable as the method for forming the metal oxide layer 3, but it is not limited to sputtering.
  • the film forming conditions are not controlled by the argon / oxygen ratio, but are preferably formed by a value calculated from oxygen flow rate (sccm) / power density (w / cm 2 ).
  • the degree of glare of the metal oxide layer 3 cannot be controlled only by argon / oxygen, but is preferably controlled by the film forming power and the amount of oxygen at that time.
  • the value calculated from the oxygen flow rate (sccm) / power density (w / cm 2 ) is preferably 9 or more and 27 or less. When the value is large, the effect of preventing glare is increased, but on the other hand, the etching rate is very slow and is not suitable for thinning, so 27 or more is not preferable.
  • the distribution in the depth direction of the film preferably has a larger O / (Ni + Cu) ratio closer to the film substrate 1 from the viewpoint of glare and etching characteristics.
  • the ratio of O / (Ni + Cu) at a thickness of 1/4 from the surface of the metal oxide layer 3 is “O / (Ni + Cu) at a thickness of 9/10 from the surface of the metal oxide layer 3”.
  • Ratio more preferably 2/3 or less, more preferably 1/2 or less (see Table 1 and FIG. 4).
  • a thin film underlayer 2 mainly composed of nickel and copper or an oxide thereof is laminated as a transparent or translucent film having an antiglare function having a thickness of 20 nm or less, and an oxide of nickel and copper is mainly formed thereon.
  • the metal oxide layer 3 is laminated as a transparent or translucent film having an antiglare function of 80 nm or less.
  • the glare of the metal layer 4 (first metal layer) can be suppressed by the thin film underlayer 2 and the metal oxide layer 3.
  • the etching characteristics of the thin film base layer 2 and the metal oxide layer 3 can be improved as compared with the case where the thin film base layer 2 is not formed because of the double suppression of the glare of the metal layer 4.
  • Metal layer 4 (first metal layer) is formed on the metal oxide layer 3.
  • the metal layer 4 is a film for the purpose of imparting conductivity.
  • the metal layer 4 is mainly composed of copper, silver or gold.
  • the main component means that copper, silver or gold occupies 90% or more of the film component. In order to improve characteristics such as improvement of corrosion resistance within the remaining 10%, other metals and doped substances may be contained.
  • the method for forming the metal layer 4 is not specified, but electroless plating, electrolytic plating, and sputtering are preferable, and sputtering is particularly preferable.
  • the thickness of the metal layer 4 is preferably 10 nm to 500 nm, more preferably 50 nm to 300 nm, and still more preferably 80 nm to 200 nm. If the film thickness is too thin, the resistance will not be sufficiently low. On the other hand, in the case of 500 nm or more, it is not preferable from the viewpoint of productivity if the film is too thick.
  • Metal layer 5 (second metal layer) A metal layer 5 (second metal layer) is appropriately formed on the metal layer 4 as necessary.
  • the metal layer 5 is a film intended to reduce resistance by being laminated on the metal layer 4.
  • the metal layer 5 contains copper, silver or gold as a main component.
  • the main component means that copper, silver or gold occupies 90% or more of the film component. In order to improve characteristics such as improvement of corrosion resistance within the remaining 10%, other metals and doped substances may be contained.
  • the method for forming the metal layer 5 is not specified, but electroless plating and electrolytic plating are preferable, and electrolytic plating is particularly preferable.
  • a negative mesh electrode pattern is formed with a resist 6 on the surface of the substrate Fa with a conductive layer, a metal layer 5 is formed by electrolytic plating, and then the resist 6 is removed before the thin film underlayer 2. Then, the substrate Fc with a transparent electrode for a touch panel is manufactured by etching the metal oxide layer 3 and the metal layer 4.
  • a thin-film metal layer 5A is formed on the surface of the substrate Fa with a conductive layer to produce a substrate Fb with a conductive layer.
  • a pattern is formed, and the thin film underlayer 2, the metal oxide layer 3, the metal layer 4, and the thin film metal layer 5A are etched to manufacture a substrate Fc with a transparent electrode for a touch panel.
  • the film thickness of the metal layer 5 is preferably 100 nm or more and 10 ⁇ m or less, more preferably 200 nm or more and 5000 nm or less, and further preferably 500 nm or more and 3000 nm or less. If the film thickness is too thin, the resistance will not be sufficiently low. On the other hand, in the case of 10 ⁇ m or more, if the film is too thick, it is not preferable from the viewpoint of productivity and thinning.
  • the line width of the metal layer 5 is preferably 1 to 10 ⁇ m and particularly preferably 1 to 5 ⁇ m.
  • FIG. 1A the manufacturing process for forming the thin film underlayer 2 to the metal layer 4 (the manufacturing process of the substrate Fa with a conductive layer) is not limited to the following, but by sputtering An example of film formation will be described.
  • the transparent film substrate 1 is placed in a chamber of a roll-to-roll sputtering apparatus, and a target made of Ni—Cu alloy is set in the chamber. Then, evacuation is started, and when it becomes 5 ⁇ 10 ⁇ 4 Pa or less, degassing treatment is performed at a temperature of 50 ° C. to remove the generated gas from the film. After sufficiently degassing, an argon-oxygen mixed gas (for example, a purity of 99.8% or more is preferable) is supplied into the chamber.
  • the ratio of argon: oxygen varies depending on the film forming power density.
  • the pressure in the chamber during sputtering greatly affects the uniformity of the blackened layer (thin film underlayer 2), the deposition rate, and the amount of oxygen contained in the (Ni—Cu—O) compound.
  • it is preferably 0.05 Pa or more and 0.6 Pa or less. More preferably, it is 0.10 Pa or more and 0.35 Pa or less.
  • the composition ratio of Ni and Cu in the (Ni—Cu—O) compound can be determined by appropriately selecting the composition ratio of the target Ni—Cu alloy.
  • the oxygen content in the (Ni—Cu—O) compound can be adjusted by adjusting the supply amount of the oxygen gas.
  • the target is not limited to the Ni—Cu alloy, but is Ni—Cu—X, where X is any one or more elements, for example, a ternary alloy, a quaternary alloy, etc. A multi-element material containing Cu and Cu may be used.
  • the metal oxide layer 3 is formed without breaking the vacuum.
  • argon-oxygen mixed gas for example, a purity of 99.8% or more is preferable
  • the ratio of argon: oxygen varies depending on the film forming power density. Investigation is performed within the range described in the column of [Metal oxide layer 3], and argon: oxygen is determined.
  • the pressure in the chamber during sputtering greatly affects the uniformity of the blackened layer (metal oxide layer 3), the deposition rate, and the oxygen content of the (Ni—Cu—O) compound. In this embodiment, it is preferable that it is 0.05 Pa or more and 0.6 Pa or less. More preferably, it is 0.10 Pa or more and 0.35 Pa or less.
  • the composition ratio of Ni and Cu in the (Ni—Cu—O) compound can be determined by appropriately selecting the composition ratio of the target Ni—Cu alloy.
  • the oxygen content in the (Ni—Cu—O) compound can be adjusted by adjusting the supply amount of the oxygen gas.
  • the target is not limited to the Ni—Cu alloy, but is Ni—Cu—X, where X is any one or more elements, for example, a ternary alloy, a quaternary alloy, etc. A multi-element material containing Cu and Cu may be used.
  • the metal layer 4 is formed without breaking the vacuum. At this time, it is preferable to continuously form the film in a chamber different from the metal oxide layer 3. Argon (for example, a purity of 99.8% or more is preferable) is supplied into the chamber. In the case of continuous film formation, the copper film thickness is adjusted by the film forming power. The purity of the target Cu is preferably 99.99% by weight or more.
  • a metal layer forming step for depositing the layer 4 is performed.
  • the thin-film underlayer 2, the metal oxide layer 3, and the metal layer 4 are formed on the fine wire mesh electrode with respect to the substrate Fa with the conductive layer on which the metal layer 4 is formed through the metal layer forming step.
  • an electrode pattern resist is applied to the surface of the metal layer 4 and exposed to form a fine line mesh pattern to be formed with the resist. Thereafter, the thin film underlayer 2, the metal oxide layer 3, and the metal layer 4 are etched. Finally, when the resist is removed, a substrate (not shown) with a transparent electrode (thin line pattern) for a touch panel formed by forming a fine line mesh electrode is manufactured (subtractive method).
  • the thin film underlayer 2 is formed on the transparent resin substrate such as the transparent film substrate 1 as described above.
  • the thin film underlayer forming process, the blackened layer forming process for forming the metal oxide layer 3, the metal layer forming process for depositing the metal layer 4, and the metal layer laminating process for depositing the metal layer 5 are performed.
  • the substrate Fc with a transparent electrode for a touch panel is manufactured by performing an electrode forming process of forming the metal oxide layer 3, the metal layer 4, and the metal layer 5 on the fine line mesh electrode.
  • an electrode forming process of forming the metal oxide layer 3, the metal layer 4, and the metal layer 5 on the fine line mesh electrode is performed in the metal layer laminating step and the electrode forming step.
  • a thin film metal layer 5 ⁇ / b> A is formed to produce a substrate Fb with a conductive layer (metal layer lamination step).
  • the thin metal layer 5A is formed by an electrolytic plating method. As the electrolytic plating, electrolytic plating using an aqueous copper sulfate solution is preferable. Thereafter, a resist to be formed on the thin-film metal layer 5 is formed by the resist 6 by applying an electrode pattern resist and performing exposure. Thereafter, the thin film underlayer 2, the metal oxide layer 3, the metal layer 4, and the thin metal layer 5A are etched (electrode formation step).
  • the resist 6 is removed, and a substrate with a transparent electrode for a touch panel, in which a thin line mesh electrode having a line width of 1 to 10 ⁇ m is formed by the thin film underlayer 2, the metal oxide layer 3, the metal layer 4, and the metal layer 5 Fc is manufactured.
  • the ratio of each element a value obtained by XPS depth measurement is used.
  • Samples used for the analysis were transparent film substrate 1 / metal oxide layer 3 and transparent film substrate 1 / thin film underlayer 2 / metal oxide layer 3, both of which were analyzed from the surface of metal oxide layer 3. (See FIGS. 3 and 4).
  • the horizontal axis represents the XPS processing time
  • the vertical axis represents “C” in the main components (assuming 95% or more of all components, and in this embodiment, N, C, O, Ni, Cu).
  • the content ratio (%) of “Ni + Cu” is shown.
  • the horizontal axis is the XPS treatment time
  • the vertical axis is the ratio of O / (Ni + Cu).
  • the values used in the analysis were argon sputtering at the same speed, and the thin film underlayer 2 was O / O at the position of 1/2 of the film thickness and 9/10 of the film thickness from the interface with the metal oxide layer 3.
  • the ratio of (Ni + Cu) and the metal oxide layer 3 reference was made to the ratio of O / (Ni + Cu) at the 1/4 position, 1/2 position, and 9/10 position from the surface of the film thickness (FIG. 4). Table 1).
  • the film thickness of the metal oxide layer 3 is determined from the “outermost surface” to the “number of carbon (C1s) atoms derived from the transparent film substrate 1 (pieces” ) Exceeds the total number of nickel (N1s) and copper (Cu2p) atoms, and the position in the depth direction was calculated from the time of analysis sputtering.
  • the film thickness of the thin film underlayer 2 is “the number of Ni and Cu atoms relative to the whole (pieces)”. From the point that the amount of change in the ratio of the total value changes from minus to plus (point A in FIG. 3) ”, the number of carbon (C1s) atoms derived from the transparent film substrate 1 is nickel (N1s) and copper. The point in the depth direction was calculated from the time during which sputtering was performed for analysis, up to a point exceeding the total number of (Cu2p) atoms (points) (point B in FIG. 3).
  • the film thickness of the metal oxide layer 3 is such that the amount of change in the ratio of the total number of Ni and Cu atoms (pieces) with respect to the whole changes from “outermost surface” to “plus” (A in FIG. 3). Point) ”, and the position in the depth direction was calculated from the time of sputtering for analysis.
  • the total etching time of the thin film underlayer 2 and the metal oxide layer 3 is within 3 times the etching time of the metal layer 4 (copper is deposited to 100 nm) (Good)
  • the ones within 6 times can be used ( ⁇ ), and the ones longer than 6 times cannot be used ( ⁇ ).
  • the sample after etching is appropriately measured with a total light transmittance measuring device (trade name: NDH7000, manufactured by Nippon Denshoku Co., Ltd.) and manufactured. The difference in transmittance with the film substrate 1 before film formation was compared.
  • Glitter and color were judged by measuring the color difference of reflection of incident light from the back side of the transparent film substrate 1 using a color difference meter (see Table 3). Glitter is judged by L * and is good if it is less than 55.0 ( ⁇ ), can be used if it is 55.0 or more and less than 65.0 ()), if it is 65.0 or more Impossible (x).
  • the color is judged based on a * and b *, and is good ( ⁇ ) when
  • ⁇ 3.0 can be used ( ⁇ ), 3.0 ⁇
  • Example 1 As the transparent film substrate 1, a biaxially stretched polyethylene terephthalate (PET) film having a thickness of 50 ⁇ m and having an easy-adhesion layer on a continuous strip-shaped non-colored transparent surface was prepared. Next, the transparent film substrate 1 is set in a roll-to-roll sputtering apparatus, and a target Ni—Cu (30 wt%) alloy is set in the chamber. Then, after evacuating to 5 ⁇ 10 ⁇ 4 Pa or less, the temperature of the transport drum is raised to 40 ° C. and the film is transported to perform degassing to remove the gas generated from the film substrate 1. went.
  • PET polyethylene terephthalate
  • the chamber pressure during conveyance of the film substrate was reduced to 5 ⁇ 10 ⁇ 4 Pa or less to sufficiently degas.
  • a thin film underlayer 2 made of an alloy containing nickel, copper and oxygen was formed on the surface of the PET film by vacuum magnetron sputtering.
  • the film forming conditions were as follows: Ni—Cu (30 wt%) alloy target, oxygen 5 sccm, power density 0.7 w / cm 2 , argon flow rate 500 sccm, oxygen flow rate 5 sccm, pressure 0.35 Pa and film thickness 6 nm.
  • Membrane was performed.
  • the metal oxide layer 3 was continuously formed without breaking the vacuum.
  • the film forming conditions were as follows: Ni—Cu (30 wt%) alloy target was used, and an argon flow rate of 500 sccm, an oxygen flow rate of 25 sccm, a pressure of 0.35 Pa, a power density of 1.5 w / cm 2 and a film thickness of 23 nm were formed. Further, the metal layer 4 was continuously formed without breaking the vacuum. Film formation conditions were as follows: using a copper target, an argon flow rate of 165 sccm, a power density of 1.5 w / cm 2 , and a film thickness of 100 nm were formed. The sheet resistance was 0.4 ⁇ / ⁇ .
  • a photosensitive resist was applied on the entire surface of the metal layer 4 (conductor layer) and then dried. Subsequently, a mask having a mesh pattern having a reverse pattern to the desired pattern was subjected to contact exposure and developed. Thereby, it processed into the pattern which does not have a resist layer only in the part corresponded to a wiring part. Then, 900 nm of copper was laminated
  • the resist is removed and etching is performed using a 2% aqueous ferric chloride solution to remove portions other than the mesh of the thin film underlayer 2, the metal oxide layer 3, and the metal layer 4, and a transparent electrode pattern (fine wire mesh). Electrode). At this time, the width of the fine line is 3 ⁇ m. The aperture ratio of the fine wire mesh electrode is 90% or more, and the light transmittance is 91%.
  • Example 2 A substrate with a transparent electrode was produced in the same manner as in Example 1, except that the thickness of the metal oxide layer 3 was set to 2/3. In the visual confirmation, the time for the thin film underlayer 2 and the metal oxide layer 3 to dissolve was 1.2 times the time for the thin film metal layer 4 to dissolve. The D light transmittance of the sample after etching measured for confirming whether there was any undissolved residue was the same as that of the film substrate 1 before film formation (within ⁇ 0.4%). Moreover, the adhesiveness by crosscut was 4B or more.
  • Example 3 A substrate with a transparent electrode was produced in the same manner as in Example 1, except that the amount of oxygen during film formation of the metal oxide layer 3 was other than 15 sccm. In the visual confirmation, the time for the thin film underlayer 2 and the metal oxide layer 3 to dissolve was 2.5 times the time for the metal layer 4 to dissolve. The D light transmittance of the sample after etching measured for confirming whether there was any undissolved residue was the same as that of the film substrate 1 before film formation (within ⁇ 0.4%). Moreover, the adhesiveness by crosscut was 4B or more.
  • Example 4 A substrate with a transparent electrode was produced in the same manner as in Example 1, except that the amount of oxygen during the formation of the metal oxide layer 3 was other than 30 sccm. In visual confirmation, the time for the thin film underlayer 2 and the metal oxide layer 3 to dissolve was 4.0 times the time for the metal layer 4 to dissolve. The D light transmittance of the sample after etching measured for confirming whether there was any undissolved residue was the same as that of the film substrate 1 before film formation (within ⁇ 0.8%).
  • Example 5 A substrate with a transparent electrode was produced in the same manner as in Example 1, except that the amount of oxygen at the time of forming the thin film underlayer 2 was changed to 0 sccm. In visual confirmation, the time for the thin film underlayer 2 and the metal oxide layer 3 to dissolve was 4.0 times the time for the metal layer 4 to dissolve. The D light transmittance of the sample after etching measured for confirming whether there was any undissolved residue was the same as that of the film substrate 1 before film formation (within ⁇ 0.8%).
  • Example 6 A substrate with a transparent electrode was produced in the same manner as in Example 1, except that the amount of oxygen at the time of forming the thin film underlayer 2 was changed to 10 sccm.
  • the D light transmittance of the sample after etching measured for confirming whether there was any undissolved residue was the same as that of the film substrate before film formation (within ⁇ 0.3%).
  • the time for the thin film underlayer 2 and the metal oxide layer 3 to dissolve was 5.0 times the time for the metal layer 4 to dissolve.
  • Example 1 A film was formed under the same conditions as in Example 1 except that the thin film underlayer 2 was not laminated.
  • the time required for etching the metal oxide layer 3 relative to the time required for etching the metal layer 4 was longer than 6.0 times.
  • Comparative Example 2 The process was performed in the same manner as in Comparative Example 1 except that the metal oxide layer 3 was formed with an oxygen amount of 10 sccm. When the metal oxide layer 3 and the metal layer 4 were etched, the time required for etching the metal oxide layer 3 relative to the time required for etching the metal layer 4 was 2.0 times.
  • Example 3 The process was performed in the same manner as in Example 1 except that the thickness of the metal oxide layer 3 was quadrupled.
  • the time required for etching the thin film underlayer 2 and the metal oxide layer 3 relative to the time required for etching the metal layer 4 was 6.0 times. It was long.
  • Example 4 The process was performed in the same manner as in Example 1 except that the thickness of the thin film underlayer 2 was increased to 5 times.
  • the time required for etching the thin film underlayer 2 and the metal oxide layer 3 with respect to the time required for etching the metal layer 4 was 3.0 times. there were. However, the color was bad.
  • Example 5 A film was formed under the same conditions as in Example 1 except that the thin film underlayer 2 and the metal oxide layer 3 were not laminated. The color was bad.
  • Example 1 The process was performed in the same manner as in Example 1 except that the thin film underlayer 2 was formed with an oxygen amount of 15 sccm.
  • the time required for etching the thin film underlayer 2 and the metal oxide layer 3 relative to the time required for etching the metal layer 4 was 6.0 times. It was long.
  • Example 2 The process was performed in the same manner as in Example 1 except that the metal oxide layer 3 was formed with an oxygen amount of 45 sccm.
  • the time required for etching the thin film underlayer 2 and the metal oxide layer 3 relative to the time required for etching the metal layer 4 was 6.0 times. It was long.
  • the value calculated from the oxygen flow rate (sccm) / power density (w / cm 2 ) when the thin film underlayer 2 and the metal oxide layer 3 are laminated by sputtering shows that the thin film underlayer 2 is more metal oxide. Less than layer 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Position Input By Displaying (AREA)

Abstract

 ギラツキ防止特性とエッチング特性の両方を向上させ得る導電層付き基板、その製造方法、タッチパネル用透明電極付き基板を提供する。 導電層付き基板(Fa)は、透明フィルム基板(1)の少なくとも片面上に、薄膜下地層(2)と金属酸化物層(3)と第1の金属層(4)をこの順に形成した導電層付き基板において、前記薄膜下地層(2)はニッケル及び銅又はそれらの酸化物を主成分とし、前記金属酸化物層(3)はニッケルと銅の酸化物を主成分とし、第1の金属層(4)は金、銀、銅の少なくとも1種を主成分とするものであり、(1)前記薄膜下地層(2)の膜厚は20nm以下、(2)前記金属酸化物層(3)の膜厚は80nm以下、(3)前記薄膜下地層(2)の膜厚≦前記金属酸化物層(3)の膜厚、上記の関係式(1)~(3)を満たすことを特徴としている。

Description

導電層付き基板、タッチパネル用透明電極付き基板及びそれらの製造方法
 本発明は、透明フィルム基板上に導電層が形成された導電層付き基板、タッチパネル用透明電極付き基板及びそれらの製造方法に関する。
 タッチパネルやディスプレイなどの表示デバイス、LEDなどの発光デバイス、太陽電池などの受光デバイスに用いられる透明電極付き基板では、シート抵抗として表される電気特性の制御が重要である。このような透明電極の材料としては、酸化インジウムを主成分とした透明導電性酸化物が用いられることが多い。酸化インジウムには酸化スズなどの金属酸化物を添加することで、種々の特性を付与することが可能である。
 一般的な透明電極付き基板の構造としては、フィルムなどの軟質基板上に透明電極薄膜が形成され、パターニングされたものが知られているが、酸化インジウムのような透明導電性酸化物は、結晶化のために高温製膜または製膜後の熱処理が必要であり、その温度はフィルム基板の耐熱性によって決定され、加えて透明導電性酸化物の導電性は金属のそれより劣るため、必然的に透明導電性酸化物を用いた透明電極の電気特性は8×10-5~3×10-4Ωcmが限界とされている。
 一方で、より低抵抗な透明電極用材料として金属ナノワイヤーを分散させた樹脂や金属メッシュが考案されており、実用化に向けた取り組みが盛んである。特に金属メッシュは、特許文献1に記載されているように、金属配線を10μm以下、特に5μm以下の線幅の細線にすることで、メッシュ状且つ透光性(透明)にするものである。
特開2013-186632号公報 特開2008-311565号公報 特開2002-246788号公報 特開平10-307204号公報
 ところで、タッチパネルはディスプレイ表面上に設置されるためにその視認性が大きな課題となる。特に、金属細線パターンの場合ギラツキ、中でも銅を用いる場合には、ギラツキに加えてその褐色の色目の改善も求められている。フィルムの向きによって、ギラツキ防止措置は一面だけでよい場合もあるが、1枚のフィルムの両面に銅を製膜する場合には基材と金属層の界面、金属層の最表面のギラツキ防止措置が必須となる。
 金属層のギラツキ防止の従来の技術として、黒色金属層を積層する技術(特許文献2,3,4)が開示されている。
 特許文献2は電磁波遮蔽シールドの視認性を向上するものであり、タッチパネルに要求される5μm以下の細線パターンではその機能が有効に作動しないため、5μm以下の線幅の作製は想定されていない。また、黒色金属酸化物層を積層する方法では、黒色金属酸化物層と金属配線部のエッチング速度の差が大きくなることが容易に想定され、5μm以下の細線化に課題があり、本特許文献の技術をそのままタッチパネル用に適用することは困難であるといえる。
 特許文献3には、透明フィルム基板上に透明下地層を介して、黒色金属酸化物層と金属層が順次積層された電磁波シールドが開示されている。金属メッシュの電極を設けたタッチパネルの場合、透明導電層である透明下地層を有することはなく、密着性を向上させるための透明無機層の積層はコストの観点から好ましくない。加えて、5μm以下の細線化には各層のエッチングレート、エッチング時間が重要となり、その点が考慮されていないため、タッチパネル用には適応することができないと考えられる。
 特許文献4には、遮光層の第1層としてニッケルと銅の酸化物層や窒化物層を形成し、第2層としてニッケルと銅の合金やそれらの窒化物又は炭化物を形成した遮光層付き基板が開示されている。しかし、カラーフィルタ層の上にITO等の膜状の透明導電層が形成されるものの、金属層を積層してエッチングにより細線化する場合の金属層と遮光層のエッチング時間の差から生じるサイドエッチングを想定していない。さらに、20μm程度の線幅についてのみ開示されており、タッチパネル用の5μm幅の細線メッシュ電極を想定していないといえる。
 金属光沢に由来するギラツキを抑えるために、表面処理または、ギラツキ防止層(黒色層)が必要となる。特に、透明フィルム基板と金属層の間にエッチングレートの低いギラツキ防止層を形成すると共に、線幅5μm以下の細線導電パターン(細線メッシュ電極)をエッチングにより形成するためには、各層のエッチングレート、エッチング時間を制御することが必要である。
 この場合、黒色層のエッチングレートと金属層のエッチングレートの差が大きく、ギラツキ防止とエッチングレート、エッチング時間の両方を達成することが課題である。従来の黒色層の上に金属層を製膜した場合、エッチング特性とギラツキ防止特性はトレードオフの関係があり、黒色層の金属酸化物量や金属窒化物量を増してギラツキ防止特性を高めると、エッチングレートが低下し、細線メッシュ電極のサイドエッチングが発生する。タッチパネル用の線幅5μm以下の細線導電パターンを形成する場合には、この両方の特性を満たすことが求められている。
 本発明の目的は、ギラツキ防止特性とエッチング特性の両方を向上させ得る導電層付き基板、その製造方法、タッチパネル用透明電極付き基板を提供することである。
 第1発明(請求項1)の導電層付き基板は、透明フィルム基板の少なくとも片面上に、薄膜下地層と金属酸化物層と第1の金属層をこの順に形成した導電層付き基板において、
前記薄膜下地層はニッケル及び銅又はそれらの酸化物を主成分とし、前記金属酸化物層はニッケルと銅の酸化物を主成分とし、第1の金属層は金、銀、銅の少なくとも1種を主成分とするものであり、
(1)前記薄膜下地層の膜厚は20nm以下、
(2)前記金属酸化物層の膜厚は80nm以下、
(3)前記薄膜下地層の膜厚≦前記金属酸化物層の膜厚、
上記の関係式(1)~(3)を満たすことを特徴としている。
 第1発明は、次のような種々の形態を採用することができる。
(a)前記薄膜下地層の1/2の膜厚におけるO/(Ni+Cu)の比≦前記金属酸化物層の1/2の膜厚におけるO/(Ni+Cu)の比、の関係式を満たしている。
(b)前記第1の金属層上に、金、銀、銅のいずれかを主成分とする第2の金属層がさらに積層された。
(c)前記金属酸化物層の表面から1/4の膜厚におけるO/(Ni+Cu)の比<前記金属酸化物層の表面から9/10の膜厚におけるO/(Ni+Cu)の比、の関係式を満している。
(d)前記薄膜下地層の前記金属酸化物層との間の界面から9/10の膜厚におけるO/(Ni+Cu)の比<前記金属酸化物層の表面から9/10の膜厚におけるO/(Ni+Cu)の比、の関係式を満たしている。
(e)前記第1の金属層の膜厚が10nm以上500nm以下であり、前記第2の金属層の膜厚が100nm以上10μm以下であり、前記薄膜下地層、前記金属酸化物層、前記第1の金属層、前記第2の金属層の膜厚の合計が10μm以下である。
 第2発明(請求項7)のタッチパネル用透明電極付き基板は、上記(b)に記載の導電層付き基板における第1,第2の金属層を、1~10μmの線幅に細線化された細線メッシュ電極であって開口率が90%以上の細線メッシュ電極に形成したことを特徴としている。
 第3発明(請求項8)の導電層付き基板の製造方法は、透明フィルム基板の少なくとも片面上に、薄膜下地層と金属酸化物層と第1の金属層をこの順に形成する導電層付き基板の製造方法において、ニッケル及び銅又はそれらの酸化物を主成分とし膜厚が20nm以下である薄膜下地層を形成する薄膜下地層形成工程と、ニッケルと銅の酸化物を主成分とし膜厚が80nm以下である金属酸化物層を形成する黒化層形成工程と、金属酸化物層上に金、銀、銅の少なくとも1種を主成分とする第1の金属層を形成する金属層形成工程とを有することを特徴としている。
 この導電層付き基板の製造方法の発明は、次のような工程を採用してもよい。
(f)前記第1の金属層上に金、銀、銅のいずれかを主成分とする第2の金属層を形成する金属層積層工程をさらに有する。
(g)前記薄膜下地層と前記金属酸化物層をスパッタリングによって積層する際の酸素流量/電力密度から算出される値が、薄膜下地層の方が金属酸化物層より小さい。
(h)前記酸素流量/電力密度から算出される値が、薄膜下地層では0以上14以下であり、金属酸化物層では9以上27以下である。
(i)製膜時の圧力が0.6Pa以下である。
 第4発明(請求項13)の導電層付き基板の製造方法は、前記(b)に記載の導電層付き基板を製造する製造方法において、前記金属層形成工程では、第1の金属層をスパッタリングによって形成し、前記金属層積層工程では、第2の金属層を電解めっきによって形成することを特徴としている。
 第5発明(請求項14)のタッチパネル用透明電極付き基板の製造方法は、前記第3発明に記載の導電層付き基板の製造方法によって製造した導電層付き基板における薄膜下地層と金属酸化物層と第1の金属層とを、1~10μmの線幅に細線化された細線メッシュ電極に形成する電極形成工程を有する。
 第6発明(請求項15)のタッチパネル用透明電極付き基板の製造方法は、前記(f)に記載の導電層付き基板の製造方法によって製造した導電層付き基板における薄膜下地層、金属酸化物層、第1の金属層及び第2の金属層とを、1~10μmの線幅に細線化された細線メッシュ電極に形成する電極形成工程を有する。
 第1発明の導電層付き基板によれば、ニッケル及び銅又はそれらの酸化物を主成分とする薄膜下地層を20nm以下の透明または半透明なギラツキ防止機能を有する膜として積層し、その上にニッケルと銅の酸化物を主成分とする金属酸化物層を80nm以下の透明または半透明なギラツキ防止機能を有する膜として積層する。これにより、薄膜下地層と金属酸化物層とで第1の金属層のギラツキを二重に抑制することができる。
 上記のように金属層のギラツキを二重に抑制する関係上、薄膜下地層を形成しない場合に比べて薄膜下地層と金属酸化物層のエッチング特性を向上させることができる。その結果、エッチング特性の向上とギラツキ防止効果の向上を両立させることができ、これまでトレードオフであった両方の特性を満たすものを製作することが可能となった。
 第2発明のタッチパネル用透明電極付き基板によれば、透明フィルム基板上に下地薄膜層、金属薄膜層、第1の金属薄膜層、第2の金属層をこの順で積層して、第1,第2の金属層をパターニングにより1~10μm幅の金属メッシュ電極に形成するため、ギラツキを防止した金属メッシュ電極を有するタッチパネル用透明電極付き基板を提供することができる。
 第3発明の導電層付き基板の製造方法によれば、薄膜下地層と金属酸化物層をスパッタリングによって積層するため、安定した品質の薄膜下地層と金属酸化物層を形成することができる。
 第4発明の導電層付き基板の製造方法によれば、第1の金属層をスパッタリングによって形成し、第2の金属層を電解メッキにより積層するため、安定した品質の第2の金属層を第1の金属層よりも厚く形成できる。
 第5発明のタッチパネル用透明電極付き基板の製造方法によれば、スパッタリングによって積層した薄膜下地層と金属酸化物層と第1の金属層とをエッチングにより1~10μmの線幅の細線メッシュ電極に形成できる。
 第6発明のタッチパネル用透明電極付き基板の製造方法によれば、スパッタリングによって積層した薄膜下地層と金属酸化物層と第1の金属層と第2の金属層とをエッチングにより1~10μmの線幅の細線メッシュ電極に形成できる。
本発明の実施形態に係る導電層付き基板とタッチパネル用透明電極付き基板の製造方法の説明図であり、(A)は透明フィルム基板の上に薄膜下地層と金属酸化物層と金属層を積層した導電層付き基板の断面図、(B)はその上にレジストをパターニングした途中状態の断面図、(C)は更に電解めっきを施した途中状態の断面図、(D)はレジストを除去した途中状態の断面図、(E)はエッチングして細線メッシュ電極を形成してなるタッチパネル用透明電極付き基板の断面図である。 本発明の実施形態に係る導電層付き基板とタッチパネル用透明電極付き基板の製造方法の説明図であり、(A)は透明フィルム基板の上に薄膜下地層と金属酸化物層と金属層を積層した導電層付き基板の断面図、(B)は更に薄膜状金属物層を積層した導電層付き基板の断面図、(C)は上記の導電層付き基板の上にレジストをパターニングした途中状態の断面図、(D)はエッチングして細線メッシュ電極を形成した途中状態の断面図、(E)はレジストを除去して完成したタッチパネル用透明電極付き基板の断面図である。 実施例1において透明フィルム基板、薄膜下地層と金属酸化物層を分析し、XPSの処理時間(横軸)と主成分に占める「C」と「Ni+Cu」の含有比率(%)(縦軸)をグラフ化した線図である。 実施例1において分析した薄膜下地層と金属酸化物層におけるO/(Ni+Cu)の分析結果を示す線図である。
 以下、本発明を実施するための形態について図面を参照しつつ説明する。
実施の形態
 図1,図2には、本発明の実施形態に係る導電層付き基板と、タッチパネル用透明電極付き基板と、それらの製造方法が図示されている。
[導電層付き基板、タッチパネル用透明電極付き基板の構成]
 図1に示す導電層付き基板Faは、透明フィルム基板1上に薄膜下地層2、金属酸化物層3、金属層4(第1の金属層)をこの順で積層したものである。
 図1に示すタッチパネル用透明電極付き基板Fcは、上記の導電層付き基板Faの表面に薄い細線メッシュ状の金属層5(第2の金属層)を形成してから、薄膜下地層2と金属酸化物層3と金属層4をエッチングして、薄膜下地層2と金属酸化物層3と金属層4と金属層5とで細線メッシュ電極を形成したものである。
 図2に示す導電層付き基板Fbは、上記と同様の導電層付き基板Faの表面に電解めっきにより薄膜状金属層5A(第2の金属層)を形成したものである。図2に示すタッチパネル用透明電極付き基板Fcは、導電層付き基板Fbの薄膜下地層2と金属酸化物層3と金属層4と薄膜状金属層5Aとをエッチングして金属層5を含む細線メッシュ電極を形成したものである。
[透明フィルム基板1]
 透明フィルム基板1を構成する透明フィルムは、少なくとも可視光領域で無色透明であり、透明電極層形成温度における耐熱性を有していれば、その材料は特に限定されない。透明フィルムの材料としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等のポリエステル系樹脂、シクロオレフィン系樹脂、ポリカーボネート樹脂、ポリイミド樹脂、セルロース系樹脂等が挙げられる。中でも、ポリエステル系樹脂が好ましく、ポリエチレンテレフタレートが特に好ましく用いられる。
 透明フィルム基板1の厚みは特に限定されないが、10μm~400μmが好ましく、20μm~200μmがより好ましい。厚みが上記範囲内であれば、透明フィルム基板1が耐久性と適度な柔軟性とを有し得るため、その上に各透明誘電体層および透明電極層をRoll to Roll方式により生産性高く製膜することが可能である。透明フィルム基板1としては、二軸延伸により分子を配向させることで、ヤング率などの機械的特性や耐熱性を向上させたものが好ましく用いられる。
 一般に、延伸フィルムは、延伸による歪が分子鎖に残留するため、加熱された場合に熱収縮する性質を有している。このような熱収縮を低減させるために、延伸の条件調整や延伸後の加熱によって応力を緩和し、熱収縮率を0.2%程度あるいはそれ以下に低減させるとともに、熱収縮開始温度が高められた二軸延伸フィルム(低熱収縮フィルム)が知られている。透明電極付き基板の製造工程における基材の熱収縮による不具合を抑止する観点から、このような低熱収縮フィルムを基材として用いることも提案されている。
 ここで、図示省略するが、透明フィルム基板1の片面または両面にハードコート層等の機能性層が形成されたものであってもよい。透明フィルム基板1に適度な耐久性と柔軟性を持たせるためには、ハードコート層の厚みは1~10μmが好ましく、3~8μmがより好ましく、5~8μmがさらに好ましい。ハードコート層の材料は特に制限されず、ウレタン系樹脂、アクリル系樹脂、シリコーン系樹脂等を、塗布・硬化させたもの等を適宜に用いることができる。また、密着性を向上させるために透明フィルム基板1に易接着層を積層することも可能である。
[薄膜下地層2]
 透明フィルム基板1上には、薄膜下地層2が形成されている。薄膜下地層2は、エッチング特性が良好となる、ギラツキ防止、色目の向上、フィルム基板との密着性を目的とした層である。エッチング特性が良好とは、薄膜下地層2と金属酸化物層3の2層のエッチング時間の合計が、金属層4のエッチング時間の0.05倍以上6倍以内、好ましくは0.1倍以上3倍以内、より好ましくは0.5倍以上2倍以内であることである。
 薄膜下地層2と金属酸化物層3の2層のエッチング時間の合計が、金属層4のエッチング時間の0.05倍以下であれば、薄膜下地層2が非常にエッチングしやすい状況であり薄膜下地層2のサイドエッチングが非常に発生しやすい状況にあり、エッチングを制御することが難しい。
 一方、薄膜下地層2と金属酸化物層3の2層のエッチング時間の合計が、金属層4のエッチング時間の6倍以上であれば、薄膜下地層2のエッチングに時間がかかり、金属層4がサイドエッチングされて、細線化ができない。金属層4のエッチングレートが薄膜下地層2と金属酸化物層3のエッチングレートの1倍以上30倍以内、好ましくは2倍以上25倍以内、より好ましくは3倍以上20倍以内、さらに好ましくは3倍より大きく15倍以内であることであり、これにより、細線メッシュにパターニングするときのサイドエッチングを抑制することで、細線メッシュ電極の形成が可能となる。
 薄膜下地層2はニッケル及び銅又はそれらの酸化物を主成分とする。主成分とは、ニッケル及び銅又はそれらの酸化物が膜成分の90%以上を占めることを指す。ニッケル銅を用いることで、金属層4や、金属層5として銅を使用した場合に、塩化鉄水溶液等による1液でエッチングできること、エッチングレートが近いものが作りやすいことが利点である。残り10%の範囲で、銀、タングステン、チタン、クロム等の金属を含有してもよい。
 薄膜下地層2の膜厚は、2nm以上20nm以下が好ましい、3nm以上18nm以下がさらに好ましく、4nm以上15nmがさらに好ましい。膜厚が薄すぎると、透明フィルム基板1と金属酸化物層3が接触して、エッチングレートが遅い膜が形成してしまうため、2nm以上の膜厚が好ましい。一方、膜が厚すぎるとギラツキが発生するためギラツキ防止の観点から不適である。
 薄膜下地層2の製膜方法は特に限定されないが、スパッタリングが好ましい。フィルム基板1と薄膜下地層2の密着性を向上させるために適宜、プラズマ処理等の前処理を行ってもよい。製膜条件は、アルゴン酸素比によって制御されるものではなく、酸素流量(sccm)/電力密度(w/cm2)から算出される値によって製膜することが好ましい。薄膜下地層2のエッチングレート及びギラツキの程度は、アルゴン/酸素のみでは制御できず、製膜電力とそのときの酸素量によって制御することが好ましい。酸素流量(sccm)/電力密度(w/cm2)から算出される値は、0以上14以下が好ましい。前記値が大きい場合、ギラツキ防止の効果が大きくなるが、一方エッチングレートが非常に遅くなり細線化に適さないため14以上は好ましくない。
 また、膜の深さ方向の分布は、ギラツキ、エッチング特性の観点から透明フィルム基板1に近いほうがO/(Ni+Cu)比が大きいことが好ましい。具体的には、「薄膜下地層2の表面から1/2の膜厚におけるO/(Ni+Cu)の比」が「金属酸化物層3の表面から9/10の膜厚におけるO/(Ni+Cu)の比」より小さいことが好ましく、より好ましくは2/3以下、より好ましくは1/2以下である(表1、図4参照)。
 これは、O/(Ni+Cu)の値が大きいほどギラツキ防止効果があるのに対して、エッチングレートが遅くなるためである。フィルム基板1側のギラツキを防止するためにO/(Ni+Cu)が大きい膜部分をフィルム基板1側に積層することで、ギラツキ防止効果とエッチング特性の両方を満たす膜が積層可能である。
 しかも、薄膜下地層2の1/2の膜厚におけるO/(Ni+Cu)の比≦金属酸化物層3の1/2の膜厚におけるO/(Ni+Cu)の比、の関係を満たすことが望ましい。また、薄膜下地層2の金属酸化物層3との間の界面から9/10の膜厚におけるO/(Ni+Cu)の比<金属酸化物層3の表面から9/10の膜厚におけるO/(Ni+Cu)の比、の関係を満たすことが望ましい(表1、図4参照)。
[金属酸化物層3]
 薄膜下地層2の上には、金属酸化物層3が形成される。金属酸化物層3は、ギラツキ防止及び色目の向上を目的とした層である。
 金属酸化物層3はニッケルと銅の酸化物を主成分とする。主成分とは、ニッケルと銅の酸化物が膜成分の90%以上を占めることを指す。残り10%の範囲で、銀、タングステン、チタン、クロム等の金属を含有してもよい。ニッケル銅を用いることで、金属層4や、金属層5として銅を使用した場合に、塩化鉄水溶液等による1液でエッチングできること、エッチングレートが近いものが作りやすいこと等の利点がある。
 金属酸化物層3の膜厚は、10nm以上80nm以下が好ましい、11nm以上60nm以下がさらに好ましく、12nm以上40nmがさらに好ましい。膜厚が薄すぎると、ギラツキ防止及び色目向上の効果がみられない。一方、膜が厚すぎるとエッチングに時間がかかるため細線化の観点から好ましくない。尚、光透過性の低下を防止するため、薄膜下地層2と金属酸化物層3の膜厚の合計は100nm以下とすることが望ましい。
 金属酸化物層3製膜方法はスパッタリングが好ましいが、スパッタリングに限定されるものではない。製膜条件は、アルゴン酸素比によって制御されるものではなく、酸素流量(sccm)/電力密度(w/cm2)から算出される値によって製膜することが好ましい。金属酸化物層3のギラツキの程度は、アルゴン/酸素のみでは制御できず、製膜電力とそのときの酸素量によって制御することを好ましい。酸素流量(sccm)/電力密度(w/cm2)から算出される値は、9以上27以下が好ましい。前記値が大きい場合、ギラツキ防止の効果が大きくなるが、一方エッチングレートが非常に遅くなり細線化に適さないため27以上は好ましくない。
 また、膜の深さ方向の分布は、ギラツキ、エッチング特性の観点からフィルム基板1に近いほうがO/(Ni+Cu)比が大きいことが好ましい。具体的には、「金属酸化物層3の表面から1/4の膜厚におけるO/(Ni+Cu)の比」が「金属酸化物層3の表面から9/10の膜厚におけるO/(Ni+Cu)の比」より小さいことが好ましく、より好ましくは2/3以下、より好ましくは1/2以下である(表1、図4参照)。
 これは、O/(Ni+Cu)の値が大きいほどギラツキ防止効果があるけれども、エッチングレートが遅くなるためである。フィルム基板1側のギラツキを防止するためにO/(Ni+Cu)が大きい膜部分をフィルム基板1側に積層することで、ギラツキ防止効果とエッチング特性の両方を満たす膜が積層可能である。
 ニッケル及び銅又はそれらの酸化物を主成分とする薄膜下地層2を20nm以下の透明または半透明なギラツキ防止機能を有する膜として積層し、その上にニッケルと銅の酸化物を主成分とする金属酸化物層3を80nm以下の透明または半透明なギラツキ防止機能を有する膜として積層する。これにより、薄膜下地層2と金属酸化物層3とで金属層4(第1の金属層)のギラツキを二重に抑制することができる。
 上記のように金属層4のギラツキを二重に抑制する関係上、薄膜下地層2を形成しない場合に比べて薄膜下地層2と金属酸化物層3のエッチング特性を向上させることができる。その結果、エッチング特性の向上とギラツキ防止効果の向上を両立させることができ、これまでトレードオフであった両方の特性を満たすものを製作することが可能となった。
[金属層4(第1の金属層)]
 金属酸化物層3の上には、金属層4(第1の金属層)が形成される。金属層4は、導電性を付与することを目的とした膜である。金属層4は銅、銀又は金を主成分とする。主成分とは、銅、銀又は金が膜成分の90%以上を占めることを指す。残り10%の範囲で耐腐食性向上等の特性を向上させるためにその他の金属やドープ物質を含有してもよい。金属層4の製膜方法は規定されないが、無電解めっき、電解めっき、スパッタリングが好ましく、スパッタリングが特に好ましい。
 金属層4の膜厚は、10nm以上500nm以下が好ましく、より好ましくは、50nm以上300nm以下であり、さらに好ましくは80nm以上200nm以下である。膜厚が薄すぎると、抵抗が十分に低くならない。一方、500nm以上の場合、膜が厚すぎると生産性の観点から好ましくない。
[金属層5(第2の金属層)]
 金属層4の上には、必要に応じて適宜、金属層5(第2の金属層)が形成される。金属層5は、金属層4の上に積層することで、抵抗を下げることを目的とした膜である。金属層5は銅、銀又は金を主成分とする。主成分とは、銅、銀又は金が膜成分の90%以上を占めることを指す。残り10%の範囲で耐腐食性向上等の特性を向上させるためにその他の金属やドープ物質を含有してもよい。金属層5の製膜方法は規定されないが、無電解めっき、電解めっきが好ましく、電解めっき特に好ましい。
 図1に示す例では、導電層付き基板Faの表面にレジスト6で細線メッシュ電極のネガパターンを形成し、電解めっきにより金属層5を形成し、その後レジスト6を除去してから薄膜下地層2と金属酸化物層3と金属層4をエッチングすることでタッチパネル用透明電極付き基板Fcを製作する。
 図2に示す例では、導電層付き基板Faの表面に薄膜状金属層5Aを製膜して導電層付き基板Fbを製作し、この導電層付き基板Fb表面にレジスト6で細線メッシュ電極のポジパターンを形成し、薄膜下地層2と金属酸化物層3と金属層4と薄膜状金属層5Aをエッチングすることで、タッチパネル用透明電極付き基板Fcを製作する。
 金属層5の膜厚は、100nm以上10μm以下が好ましく、より好ましくは、200nm以上5000nm以下であり、さらに好ましくは500nm以上3000nm以下である。膜厚が薄すぎると、抵抗が十分に低くならない。一方、10μm以上の場合、膜が厚すぎると生産性の観点、細線化を行う観点から好ましくない。金属層5の線幅は1~10μmが望ましく、1~5μmが特に望ましい。
[導電層付き基板の製造方法]
[薄膜下地層2~金属層4までの製造工程]
 図1,図2は、導電層付き基板とタッチパネル用透明電極付き基板の製造方法の一例を示した説明図である。
 図1の(A)に示すように、薄膜下地層2~金属層4までを形成する製造工程(導電層付き基板Faの製造工程)は、下記に限定されるものではないが、スパッタリング法によって製膜する一例について記載する。
 薄膜下地層2は、透明フィルム基板1をRoll to Roll方式のスパッタリング装置のチャンバー内に設置して、Ni-Cu合金からなるターゲットをチャンバー内にセットする。そして、真空引きを開始して、5×10-4Pa以下となったら50℃の温度にて、脱ガス処理を行いフィルムからの発生するガスの除去を行う。十分に脱ガスを行った後、チャンバー内にアルゴン-酸素混合ガス(例えば、純度99.8%以上が好ましい)を供給する。アルゴン:酸素の比率は、製膜電力密度によって異なる。
 上記[薄膜下地層2]の欄に記載した範囲で検討を行い、アルゴン:酸素を決定する。
 スパッタ時のチャンバー内の圧力は、黒化層(薄膜下地層2)の均一性、積層速度及び(Ni-Cu-O)化合物の含有酸素量にも大きく影響する。本発明においては、0.05Pa以上0.6Pa以下であることが好ましい。さらに好ましくは、0.10Pa以上0.35Pa以下が好ましい。
 ターゲットであるNi-Cu合金の組成比は特に限定されるものではない。しかしながら、Ni:Cu=80重量%~20重量%:20重量%~80重量%を用いることが好ましく、純度は99.99重量%以上が好ましい。また、ターゲットであるNi-Cu合金の組成比を適宜選択することで、(Ni-Cu-O)化合物中のNiとCuとの組成比を決めることができる。また、酸素ガスの供給量を調整することで(Ni-Cu-O)化合物中の酸素の含有量を調整できる。なお、ターゲットはNi-Cu合金に限定されず、Ni-Cu-Xであり、Xは任意の1種又は2種以上の元素である、例えば、3元系合金、4元系合金など、NiとCuとを含む多元系物質を用いても良い。
 その後、真空を破ることなく、金属酸化物層3の製膜を行う。このとき好ましくは、薄膜下地層2とは別のチャンバーで連続製膜することが好ましい。これは、一度真空を破ることで、薄膜下地層2の表面が酸化することを避けるためである。
 チャンバー内にアルゴン-酸素混合ガス(例えば、純度99.8%以上が好ましい)を供給する。アルゴン:酸素の比率は、製膜電力密度によって異なる。上記[金属酸化物層3]の欄に記載した範囲で検討を行い、アルゴン:酸素を決定する。
 スパッタ時のチャンバー内の圧力は、黒化層(金属酸化物層3)の均一性、積層速度及び(Ni-Cu-O)化合物の含有酸素量にも大きく影響する。本実施形態においては、0.05Pa以上0.6Pa以下であることが好ましい。さらに好ましくは、0.10Pa以上0.35Pa以下が好ましい。
 ターゲットであるNi-Cu合金の組成比は特に限定されるものではない。しかし、Ni:Cu=80重量%~20重量%:20重量%~80重量%を用いることが好ましく、純度は99.99重量%以上が好ましい。また、ターゲットであるNi-Cu合金の組成比を適宜選択することで、(Ni-Cu-O)化合物中のNiとCuとの組成比を決めることができる。また、酸素ガスの供給量を調整することで(Ni-Cu-O)化合物中の酸素の含有量を調整できる。なお、ターゲットはNi-Cu合金に限定されず、Ni-Cu-Xであり、Xは任意の1種又は2種以上の元素である、例えば、3元系合金、4元系合金など、NiとCuとを含む多元系物質を用いても良い。
 その後、真空を破ることなく、金属層4の製膜を行う。このとき好ましくは、金属酸化物層3とは別のチャンバーで連続製膜することが好ましい。チャンバー内にアルゴン(例えば、純度99.8%以上が好ましい)を供給する。連続製膜の場合、銅の膜厚は、製膜電力によって調整する。ターゲットのCuの純度は99.99重量%以上が好ましい。
[金属層4(第1の金属層)のみの場合のタッチパネル用透明電極付き基板の製造方法]
 透明フィルム基板1などの透明樹脂基材上に、前記のようにして、薄膜下地層2を形成する薄膜下地層形成工程と、金属酸化物層3を形成する黒化層形成工程を経て、金属層4を堆積させる金属層形成工程を行う。図示は省略するが、金属層形成工程を経て金属層4が形成された導電層付き基板Faに対して、薄膜下地層2と金属酸化物層3と金属層4とを細線メッシュ電極に形成する電極形成工程を行うことで、タッチパネル用透明電極(細線パターン)付き基板(図示略)を製造する。
 ここで、前記金属層形成工程では、金属層4の表面に電極パターンのレジストを塗布し、露光を行うことで、形成したい細線メッシュのパターンをレジストによって形成する。その後、薄膜下地層2、金属酸化物層3、金属層4をエッチング処理する。最後にレジストの除去を行うと、細線メッシュ電極を形成してなるタッチパネル用透明電極(細線パターン)付き基板(図示略)を製造する(サブトラクティブ法)。
[金属層4(第1の金属層)と金属層5(第2の金属層)とを有する場合のタッチパネル用透明電極付き基板の製造方法]
 金属層4(第1の金属層)と金属層5(第2の金属層)とを有する場合、透明フィルム基板1などの透明樹脂基材上に、前記のようにして、薄膜下地層2を形成する薄膜下地層形成工程と、金属酸化物層3を形成する黒化層形成工程、金属層4を堆積させる金属層形成工程、金属層5を堆積させる金属層積層工程を経て、薄膜下地層2と金属酸化物層3と金属層4と金属層5とを細線メッシュ電極に形成する電極形成工程を行うことで、タッチパネル用透明電極(細線パターン)付き基板Fcを製造する。この場合の金属層積層工程及び電極形成工程では、後述するセミアディティブ法又はサブトラクティブ法の何れかを採用可能である。
[セミアディティブ法](図1(B)~(E)参照)
 前記のようにして金属層4まで製膜した導電層付き基板Faに対して、電極パターンのレジストを塗布、露光を行うことで、金属層4上に形成したいパターンの逆パターンをレジスト6によって形成する。その後、めっき処理によって金属層5を形成する(金属層積層工程)。そして、レジスト除去を行い、薄膜下地層2と金属酸化物層3と金属層4とをエッチングすることによって(電極形成工程)、薄膜下地層2と金属酸化物層3と金属層4と金属層5とで線幅が1~10μmの細線メッシュ電極を形成してなるタッチパネル用透明電極付き基板Fcを製造する。エッチング液としては、特に限定されないが、塩化第二鉄水溶液や、塩化銅水溶液を主成分する溶液を使用することが好ましい。
[サブトラクティブ法](図2(B)~(E)参照)
 金属層4を形成後、薄膜状金属層5Aを製膜して導電層付き基板Fbを製作する(金属層積層工程)。薄膜状金属層5Aは、電解めっき法によって製膜する。電解めっきとしては、硫酸銅水溶液を用いた電解めっきが好ましい。その後、電極パターンのレジストを塗布、露光を行うことで、薄膜状金属層5上に形成したいパターンをレジスト6によって形成する。その後、薄膜下地層2、金属酸化物層3、金属層4、薄膜状金属層5Aをエッチング処理する(電極形成工程)。最後にレジスト6の除去を行い、薄膜下地層2と金属酸化物層3と金属層4と金属層5とで線幅が1~10μmの細線メッシュ電極を形成してなるタッチパネル用透明電極付き基板Fcを製造する。
 以下に、本発明の実施例について具体的に説明するが、本発明はこれらの実施例に限定されるものではない。また、本実施例では、本発明の製造方法による特性を明確に示すため片面製膜としているが、両面に形成してもプロセスは同じである。
 尚、下記の実施例1~6、比較例1~6、実験例1~2の分析結果は、表3に示すとおりである。
 各元素の比はXPSのデプス測定により求めた値を使用する。分析に用いたサンプルは、透明フィルム基板1/金属酸化物層3と、透明フィルム基板1/薄膜下地層2/金属酸化物層3であり、いずれも金属酸化物層3の表面からの分析を行った(図3、図4参照)。
 図3においては、横軸をXPSの処理時間、縦軸を主成分(全成分の95%以上と想定され、本実施例では、N,C,O,Ni,Cu)に占める「C」と「Ni+Cu」の含有比率(%)とし、図4においては、横軸をXPSの処理時間、縦軸をO/(Ni+Cu)の比とした。
 分析において用いた値は、同じ速度でアルゴンスパッタを行い、薄膜下地層2については、金属酸化物層3との間の界面から膜厚の1/2の位置、9/10の位置におけるO/(Ni+Cu)の比、金属酸化物層3については、膜厚の表面から1/4の位置、1/2の位置、9/10の位置におけるO/(Ni+Cu)の比を参照した(図4、表1参照)。
 なお、透明フィルム基板1/金属酸化物層3を分析する場合、金属酸化物層3の膜厚は、「最表面」から「透明フィルム基板1に由来する炭素(C1s)の原子の個数(個)がニッケル(N1s)と銅(Cu2p)の原子の個数(個)の合計を上回る点」までとし、深さ方向の位置については、分析のスパッタを行った時間から算出した。
 透明フィルム基板1/薄膜下地層2/金属酸化物層3を分析する場合、図3に示すように、上記薄膜下地層2の膜厚は、「全体に対するNiとCuの原子の個数(個)の合計値の割合の変化量がマイナスからプラスに転じる点(図3のA点)」から「透明フィルム基板1に由来する炭素(C1s)の原子の個数(個)がニッケル(N1s)と銅(Cu2p)の原子の個数(個)の合計を上回る点(図3のB点)」までとし、深さ方向の位置については、分析のスパッタを行った時間から算出した。一方、金属酸化物層3の膜厚は、「最表面」から「全体に対するNiとCuの原子の個数(個)の合計値の割合の変化量がマイナスからプラスに転じる点(図3のA点)」までとし、深さ方向の位置については、分析のスパッタを行った時間から算出した。
 エッチング特性の判断基準としては、薄膜下地層2と金属酸化物層3の合計エッチング時間が金属層4(スパッタリングにより銅を100nm製膜)のエッチング時間の3倍以内であるものを良好(◎)、6倍以内のものを使用可能(○)、6倍より長いものを使用不可(×)とした。溶け残り又は製膜によるフィルム基板1へのタメージが無いことを確認するために、適宜、エッチング後サンプルを全光線透過率測定装置(商品名:NDH7000、日本電色社製)で測定し、製膜前のフィルム基板1との透過率の差を比較した。
 ギラツキ、色目については、色差計を用いて透明フィルム基板1の裏側からの入射光の反射の色差の測定から判断した(表3参照)。ギラツキは、L*で判断を行い、55.0未満であるものを良好(◎)、55.0以上65.0未満であるものを使用可能(○)、65.0以上であるものを使用不可(×)とした。
 色目は、a*、b*で判断を行い、|a*|≦2.5、且つ、|b*|≦2.5であるものを良好(◎)、2.5<|a*|≦3.0、且つ、2.5<|b*|≦3.0であるものを使用可能(○)、3.0<|a*|、または、3.0<|b*|であるものを使用不可(×)とした。
 [実施例1]
 透明フィルム基板1として、厚さ50μmで連続帯状の無着色透明な表面に易接着層を有する2軸延伸ポリエチレンテレフタレート(PET)フィルムを用意した。次に、透明フィルム基板1をRoll to Rollのスパッタリング装置に設置して、ターゲットであるNi-Cu(30重量%)合金をチャンバー内にセットする。そして、5×10-4Pa以下まで真空引きを行った後、搬送ドラムの温度を40℃まで昇温しフィルムを搬送することで、脱ガス処理を行いフィルム基板1から発生するガスの除去を行った。
 フィルム基板搬送中のチャンバー圧力を5×10-4Pa以下にして十分に脱ガスを行った。次に、真空マグネトロンスパッタ法によりこのPETフィルム表面にニッケルと銅と酸素を含む合金からなる薄膜下地層2を製膜した。製膜条件は、Ni-Cu(30重量%)合金ターゲットを用いて、酸素5sccm、電力密度0.7w/cm2、アルゴン流量500sccm、酸素流量5sccm、圧力0.35Paで、膜厚6nmの製膜を行った。
 真空を破ることなく連続して、金属酸化物層3を製膜した。製膜条件は、Ni-Cu(30重量%)合金ターゲットを用いて、アルゴン流量500sccm、酸素流量25sccm、圧力0.35Pa、電力密度1.5w/cm2で、膜厚23nmを製膜した。さらに真空を破ることなく連続して、金属層4を製膜した。製膜条件は、銅ターゲットを用いて、アルゴン流量165sccm、電力密度1.5w/cm2、膜厚100nmを製膜した。尚、シート抵抗は0.4Ω/□であった。
 真空を破りサンプルを取り出し、その一部を使用し、薄膜下地層2、金属酸化物層3、金属層4を2%塩化第二鉄水溶液を用いて細線メッシュを形成するようにエッチングを行い、その時間を測定した。目視確認において、薄膜下地層2及び金属酸化物層3が溶解する時間は、金属層4が溶解する時間の2.5倍であった。溶け残りの有無を確認するために測定したエッチング後のサンプルのD光線透過率は、製膜前のフィルム基板1と同等(±0.4%以内)であった。また、クロスカットによる密着性は4B以上であった。フィルム基板1側から反射の色差から、ギラツキ、色目が良好であることを確認した。
 前記金属層4(導電体層)上に感光性レジストを全面に塗布後、乾燥を行った。つづいて、所望のパターンと逆パターンのメッシュパターンのマスクを密着露光し、現像処理を行った。これにより、配線部に相当する部分のみレジスト層がないようなパターンに加工した。その後、開口部に硫酸銅水溶液を主成分とする溶液を用いた電解メッキによって金属層5として銅を900nm積層した(セミアディティブ法)。
 その後、レジスト除去を行い、2%塩化第二鉄水溶液を用いてエッチングを行い、薄膜下地層2と金属酸化物層3と金属層4のメッシュ以外の部分を除去し、透明電極パターン(細線メッシュ電極)を作製した。このとき、細線の幅は3μmである。細線メッシュ電極の開口率は90%以上で、光線透過率は91%である。
 実施例1の条件で製膜した薄膜下地層2と金属酸化物層3のXPSの分析の結果は下記の表1及び図4に示すとおりであった。
Figure JPOXMLDOC01-appb-T000001
 [実施例2]
 実施例1の工程において、金属酸化物層3の膜厚を2/3にした以外は同様にして透明電極付き基板を製造した。目視確認において、薄膜下地層2及び金属酸化物層3が溶解する時間は、薄膜状の金属層4が溶解する時間の1.2倍であった。溶け残りの有無を確認するために測定したエッチング後のサンプルのD光線透過率は、製膜前のフィルム基板1と同等(±0.4%以内)であった。また、クロスカットによる密着性は4B以上であった。
 [実施例3]
 実施例1の工程において、金属酸化物層3の製膜時の酸素量を15sccm以外にした以外は同様にして透明電極付き基板を製造した。目視確認において、薄膜下地層2及び金属酸化物層3が溶解する時間は、金属層4が溶解する時間の2.5倍であった。溶け残りの有無を確認するために測定したエッチング後のサンプルのD光線透過率は、製膜前のフィルム基板1と同等(±0.4%以内)であった。また、クロスカットによる密着性は4B以上であった。
 [実施例4]
 実施例1の工程において、金属酸化物層3の製膜時の酸素量を30sccm以外にした以外は同様にして透明電極付き基板を製造した。目視確認において、薄膜下地層2及び金属酸化物層3が溶解する時間は、金属層4が溶解する時間の4.0倍であった。溶け残りの有無を確認するために測定したエッチング後のサンプルのD光線透過率は、製膜前のフィルム基板1と同等(±0.8%以内)であった。
 [実施例5]
 実施例1の工程において、薄膜下地層2の製膜時の酸素量を0sccmにした以外は同様にして透明電極付き基板を製造した。目視確認において、薄膜下地層2及び金属酸化物層3が溶解する時間は、金属層4が溶解する時間の4.0倍であった。溶け残りの有無を確認するために測定したエッチング後のサンプルのD光線透過率は、製膜前のフィルム基板1と同等(±0.8%以内)であった。
 [実施例6]
 実施例1の工程において、薄膜下地層2の製膜時の酸素量を10sccmにした以外は同様にして透明電極付き基板を製造した。溶け残りの有無を確認するために測定したエッチング後のサンプルのD光線透過率は、製膜前のフィルム基板と同等(±0.3%以内)であった。目視確認において、薄膜下地層2及び金属酸化物層3が溶解する時間は、金属層4が溶解する時間の5.0倍であった。
 [比較例1]
 薄膜下地層2を積層しなかった以外は、実施例1と同様に条件で製膜を行った。
 金属酸化物層3と金属層4をエッチングしたところ、金属層4のエッチングに要する時間に対する金属酸化物層3のエッチングに要する時間は、6.0倍より長かった。
 [参考例1]
 比較例1と同様の条件で製膜した金属酸化物層3のXPSの分析の結果は下記の表2のとおりであった。
Figure JPOXMLDOC01-appb-T000002
 [比較例2]
 金属酸化物層3を酸素量10sccmで製膜した以外は、比較例1と同様にプロセスを行った。金属酸化物層3と金属層4をエッチングしたところ、金属層4のエッチングに要する時間に対する金属酸化物層3のエッチングに要する時間は、2.0倍であった。
 [比較例3]
 金属酸化物層3の膜厚を4倍にした以外は、実施例1と同様にプロセスを行った。薄膜下地層2、金属酸化物層3と金属層4をエッチングしたところ、金属層4のエッチングに要する時間に対する薄膜下地層2と金属酸化物層3のエッチングに要する時間は、6.0倍より長かった。
 [比較例4]
 薄膜下地層2の膜厚を5倍にした以外は、実施例1と同様にプロセスを行った。薄膜下地層2と金属酸化物層3と金属層4をエッチングしたところ、金属層4のエッチングに要する時間に対する薄膜下地層2と金属酸化物層3のエッチングに要する時間は、3.0倍であった。しかしながら、色目が悪かった。
 [比較例5]
 薄膜下地層2、金属酸化物層3を積層しなかった以外は、実施例1と同様に条件で製膜を行った。色目が悪かった。
 [実験例1]
 薄膜下地層2を酸素量15sccmで製膜した以外は、実施例1と同様にプロセスを行った。薄膜下地層2、金属酸化物層3と金属層4をエッチングしたところ、金属層4のエッチングに要する時間に対する薄膜下地層2と金属酸化物層3のエッチングに要する時間は、6.0倍より長かった。
 [実験例2]
 金属酸化物層3を酸素量45sccmで製膜した以外は、実施例1と同様にプロセスを行った。薄膜下地層2と金属酸化物層3と金属層4をエッチングしたところ、金属層4のエッチングに要する時間に対する薄膜下地層2と金属酸化物層3のエッチングに要する時間は、6.0倍より長かった。
Figure JPOXMLDOC01-appb-T000003
 尚、薄膜下地層2と金属酸化物層3をスパッタリングによって積層する際の酸素流量(sccm)/電力密度(w/cm2)から算出される値が、薄膜下地層2の方が金属酸化物層3より小さい。
 当業者ならば、以上説明した本発明を実施するための形態に適宜変更を付加した形態で実施可能であることは勿論であり、本発明はそのような変更形態も包含するものである。
1  透明フィルム基板
2  薄膜下地層
3  金属酸化物層
4  金属層(第1の金属層)
5  金属層(第2の金属層)
5A 薄膜状金属層
6  レジスト
Fa,Fb 導電層付き基板
Fc タッチパネル用透明電極付き基板

Claims (15)

  1.  透明フィルム基板の少なくとも片面上に、薄膜下地層と金属酸化物層と第1の金属層をこの順に形成した導電層付き基板において、
     前記薄膜下地層はニッケル及び銅又はそれらの酸化物を主成分とし、前記金属酸化物層はニッケルと銅の酸化物を主成分とし、第1の金属層は金、銀、銅の少なくとも1種を主成分とするものであり、
    (1)前記薄膜下地層の膜厚は20nm以下、
    (2)前記金属酸化物層の膜厚は80nm以下、
    (3)前記薄膜下地層の膜厚≦前記金属酸化物層の膜厚、
     上記の関係式(1)~(3)を満たすことを特徴とする導電層付き基板。
  2. (4)前記薄膜下地層の1/2の膜厚におけるO/(Ni+Cu)の比≦前記金属酸化物層の1/2の膜厚におけるO/(Ni+Cu)の比、
     上記の関係式(4)を満たすことを特徴とする請求項1に記載の導電層付き基板。
  3.  前記第1の金属層上に、金、銀、銅のいずれかを主成分とする第2の金属層がさらに積層されたことを特徴とする請求項1又は2に記載の導電層付き基板。
  4. (5)前記金属酸化物層の表面から1/4の膜厚におけるO/(Ni+Cu)の比<前記金属酸化物層の表面から9/10の膜厚におけるO/(Ni+Cu)の比、
     上記の関係式(5)を満たすことを特徴とする請求項1~3の何れか1項に記載の導電層付き基板。
  5. (6)前記薄膜下地層の前記金属酸化物層との間の界面から9/10の膜厚におけるO/(Ni+Cu)の比<前記金属酸化物層の表面から9/10の膜厚におけるO/(Ni+Cu)の比、
     上記の関係式(6)を満たすことを特徴とする請求項1~3の何れか1項に記載の導電層付き基板。
  6.  前記第1の金属層の膜厚が10nm以上500nm以下であり、前記第2の金属層の膜厚が100nm以上10μm以下であり、
     前記薄膜下地層、前記金属酸化物層、前記第1の金属層、前記第2の金属層の膜厚の合計が10μm以下であることを特徴とする請求項3に記載の導電層付き基板。
  7.  請求項3に記載の導電層付き基板における第1,第2の金属層を、1~10μmの線幅に細線化された細線メッシュ電極であって開口率が90%以上の細線メッシュ電極に形成したことを特徴とするタッチパネル用透明電極付き基板。
  8.  透明フィルム基板の少なくとも片面上に、薄膜下地層と金属酸化物層と第1の金属層をこの順に形成する導電層付き基板の製造方法において、
     ニッケル及び銅又はそれらの酸化物を主成分とし膜厚が20nm以下である前記薄膜下地層を形成する薄膜下地層形成工程と、
     ニッケルと銅の酸化物を主成分とし膜厚が80nm以下である前記金属酸化物層を形成する黒化層形成工程と、
     前記金属酸化物層上に金、銀、銅の少なくとも1種を主成分とする第1の金属層を形成する金属層形成工程と、
     を有することを特徴とする導電層付き基板の製造方法
  9.  前記第1の金属層上に金、銀、銅のいずれかを主成分とする第2の金属層を形成する金属層積層工程をさらに有することを特徴とする請求項8に記載の導電層付き基板の製造方法。
  10.  前記薄膜下地層形成工程及び黒化層形成工程において、前記薄膜下地層と前記金属酸化物層をスパッタリングによって積層する際の酸素流量/電力密度から算出される値が、薄膜下地層の方が金属酸化物層より小さいことを特徴とする請求項8又は9に記載の導電層付き基板の製造方法。
  11. 前記酸素流量/電力密度から算出される値が、薄膜下地層では0以上14以下であり、金属酸化物層では9以上27以下であることを特徴とする請求項10に記載の導電層付き基板の製造方法。
  12. 前記薄膜下地層形成工程及び黒化層形成工程において、スパッタリングによる製膜時の圧力が0.6Pa以下であることを特徴とする請求項8~11の何れか1項に記載の導電層付き基板の製造方法。
  13.  前記金属層形成工程では、前記第1の金属層をスパッタリングによって形成し、前記金属層積層工程では、前記第2の金属層を電解めっきによって形成することを特徴とする請求項8~12の何れか1項に記載の導電層付き基板の製造方法。
  14.  請求項8に記載の導電層付き基板の製造方法によって製造した導電層付き基板における薄膜下地層と金属酸化物層と第1の金属層とを、1~10μmの線幅に細線化された細線メッシュ電極に形成する電極形成工程を有することを特徴とするタッチパネル用透明電極付き基板の製造方法。
  15.  請求項9に記載の導電層付き基板の製造方法によって製造した導電層付き基板における薄膜下地層、金属酸化物層、第1の金属層及び第2の金属層とを、1~10μmの線幅に細線化された細線メッシュ電極に形成する電極形成工程を有することを特徴とするタッチパネル用透明電極付き基板の製造方法。
PCT/JP2016/054730 2015-03-04 2016-02-18 導電層付き基板、タッチパネル用透明電極付き基板及びそれらの製造方法 WO2016140073A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680008183.9A CN107210092B (zh) 2015-03-04 2016-02-18 带导电层的基板、触摸面板用带透明电极的基板及它们的制造方法
US15/551,514 US10353497B2 (en) 2015-03-04 2016-02-18 Substrate with conductive layers, substrate with touch-panel transparent electrodes, and method for fabricating same
JP2017503413A JP6698064B2 (ja) 2015-03-04 2016-02-18 導電層付き基板、タッチパネル用透明電極付き基板及びそれらの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015042545 2015-03-04
JP2015-042545 2015-03-04

Publications (1)

Publication Number Publication Date
WO2016140073A1 true WO2016140073A1 (ja) 2016-09-09

Family

ID=56848226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054730 WO2016140073A1 (ja) 2015-03-04 2016-02-18 導電層付き基板、タッチパネル用透明電極付き基板及びそれらの製造方法

Country Status (4)

Country Link
US (1) US10353497B2 (ja)
JP (1) JP6698064B2 (ja)
CN (1) CN107210092B (ja)
WO (1) WO2016140073A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017136818A (ja) * 2016-01-28 2017-08-10 住友金属鉱山株式会社 積層体基板、導電性基板、積層体基板の製造方法、導電性基板の製造方法
JP2018051784A (ja) * 2016-09-26 2018-04-05 住友金属鉱山株式会社 積層体基板、導電性基板、積層体基板の製造方法、導電性基板の製造方法
KR20180130797A (ko) * 2017-05-30 2018-12-10 동우 화인켐 주식회사 Oled 일체형 터치 센서 및 이를 포함하는 oled 화상 표시 장치
WO2019065782A1 (ja) * 2017-09-29 2019-04-04 富士フイルム株式会社 導電性フィルム、タッチパネルセンサー、タッチパネル、導電性フィルムの製造方法
JP2020097761A (ja) * 2018-12-17 2020-06-25 日東電工株式会社 導電性フィルムの製造方法
WO2023228535A1 (ja) * 2022-05-25 2023-11-30 日東電工株式会社 導電層付フィルムおよびフィルムアンテナ用積層フィルム
WO2024004401A1 (ja) * 2022-07-01 2024-01-04 日東電工株式会社 導電性フィルムおよび導電性フィルムの製造方法
WO2024004405A1 (ja) * 2022-07-01 2024-01-04 日東電工株式会社 導電性フィルム
WO2024004404A1 (ja) * 2022-07-01 2024-01-04 日東電工株式会社 導電性フィルム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10459547B2 (en) * 2015-02-26 2019-10-29 Lg Chem, Ltd Conductive structure and method for manufacturing same
CN109986599B (zh) * 2017-12-29 2020-10-02 北京纳米能源与系统研究所 摩擦电光智能皮肤、机械手及机器人
CN112908519B (zh) * 2021-01-19 2022-04-12 大正(江苏)微纳科技有限公司 一种抗化学腐蚀的透明导电薄膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005060326A1 (ja) * 2003-12-16 2005-06-30 Dai Nippon Printing Co., Ltd. 電磁波シールド材、及びその製造方法
JP2012508924A (ja) * 2008-11-14 2012-04-12 エルジー イノテック カンパニー リミテッド タッチスクリーン及びその製造方法
JP2013129183A (ja) * 2011-11-22 2013-07-04 Toray Ind Inc 積層体
JP2014160481A (ja) * 2011-01-18 2014-09-04 Fujifilm Corp 透明電極シート、透明電極シートの製造方法、及びこれらの透明電極シートを用いた静電容量方式のタッチパネル

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10307204A (ja) 1997-03-07 1998-11-17 Asahi Glass Co Ltd 遮光層付き基板及びその製造方法並びにカラーフィルタ基板及び液晶表示素子
US6416194B1 (en) * 1999-02-11 2002-07-09 Turkiye Sise Ve Cam Fabrikalari A.S. Thermostable back-surface mirrors
JP2002246788A (ja) 2000-12-12 2002-08-30 Nisshinbo Ind Inc 透視性電磁波シールド材
EP1215705A3 (en) 2000-12-12 2003-05-21 Nisshinbo Industries, Inc. Transparent electromagnetic radiation shielding material
JP4105537B2 (ja) * 2002-12-24 2008-06-25 株式会社村上開明堂 エレクトロクロミック素子
JP2008311565A (ja) 2007-06-18 2008-12-25 Dainippon Printing Co Ltd ディスプレイ用複合フィルタ
US20110240996A1 (en) * 2010-03-17 2011-10-06 National Taiwan University Optoelectronic device and method for producing the same
JP5473990B2 (ja) * 2011-06-17 2014-04-16 日東電工株式会社 導電性積層体、パターン配線付き透明導電性積層体、および光学デバイス。
JP5531029B2 (ja) * 2012-01-05 2014-06-25 日東電工株式会社 導電性フィルム及び導電性フィルムロール
JP2013186632A (ja) 2012-03-07 2013-09-19 Toppan Printing Co Ltd フィルム状タッチパネルセンサー及びその製造方法
JP5984570B2 (ja) * 2012-08-09 2016-09-06 日東電工株式会社 導電性フィルム
US9405046B2 (en) * 2013-03-13 2016-08-02 Intermolecular, Inc. High solar gain low-e panel and method for forming the same
US9395593B2 (en) * 2013-03-15 2016-07-19 Kinestral Technologies, Inc. Electrochromic lithium nickel group 6 mixed metal oxides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005060326A1 (ja) * 2003-12-16 2005-06-30 Dai Nippon Printing Co., Ltd. 電磁波シールド材、及びその製造方法
JP2012508924A (ja) * 2008-11-14 2012-04-12 エルジー イノテック カンパニー リミテッド タッチスクリーン及びその製造方法
JP2014160481A (ja) * 2011-01-18 2014-09-04 Fujifilm Corp 透明電極シート、透明電極シートの製造方法、及びこれらの透明電極シートを用いた静電容量方式のタッチパネル
JP2013129183A (ja) * 2011-11-22 2013-07-04 Toray Ind Inc 積層体

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017136818A (ja) * 2016-01-28 2017-08-10 住友金属鉱山株式会社 積層体基板、導電性基板、積層体基板の製造方法、導電性基板の製造方法
JP2018051784A (ja) * 2016-09-26 2018-04-05 住友金属鉱山株式会社 積層体基板、導電性基板、積層体基板の製造方法、導電性基板の製造方法
KR20180130797A (ko) * 2017-05-30 2018-12-10 동우 화인켐 주식회사 Oled 일체형 터치 센서 및 이를 포함하는 oled 화상 표시 장치
KR102361262B1 (ko) * 2017-05-30 2022-02-09 동우 화인켐 주식회사 Oled 일체형 터치 센서 및 이를 포함하는 oled 화상 표시 장치
WO2019065782A1 (ja) * 2017-09-29 2019-04-04 富士フイルム株式会社 導電性フィルム、タッチパネルセンサー、タッチパネル、導電性フィルムの製造方法
JP2020097761A (ja) * 2018-12-17 2020-06-25 日東電工株式会社 導電性フィルムの製造方法
JP7280036B2 (ja) 2018-12-17 2023-05-23 日東電工株式会社 導電性フィルムの製造方法
WO2023228535A1 (ja) * 2022-05-25 2023-11-30 日東電工株式会社 導電層付フィルムおよびフィルムアンテナ用積層フィルム
WO2024004401A1 (ja) * 2022-07-01 2024-01-04 日東電工株式会社 導電性フィルムおよび導電性フィルムの製造方法
WO2024004405A1 (ja) * 2022-07-01 2024-01-04 日東電工株式会社 導電性フィルム
WO2024004404A1 (ja) * 2022-07-01 2024-01-04 日東電工株式会社 導電性フィルム

Also Published As

Publication number Publication date
US10353497B2 (en) 2019-07-16
US20180032167A1 (en) 2018-02-01
JPWO2016140073A1 (ja) 2018-03-01
CN107210092B (zh) 2019-06-18
JP6698064B2 (ja) 2020-05-27
CN107210092A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
WO2016140073A1 (ja) 導電層付き基板、タッチパネル用透明電極付き基板及びそれらの製造方法
JP6099875B2 (ja) 積層体の製造方法
JP6322188B2 (ja) 導電性フィルム基板、透明導電性フィルムおよびその製造方法、ならびにタッチパネル
JP6404663B2 (ja) 透明導電積層体の製造方法
CN106229080B (zh) 用于柔性电子器件的低阻值透明导电网络膜及其制备方法
KR102650752B1 (ko) 금속층 적층 투명 도전성 필름 및 그것을 사용한 터치 센서
WO2016163323A1 (ja) 透明導電フィルムおよび表示デバイス
TW201629725A (zh) 觸控面板用導電性基板、觸控面板用導電性基板之製造方法
JP5818383B2 (ja) 酸化膜が形成された導電性フィルムを備える有機発光ダイオードディスプレイ及びその製造方法
JP6262483B2 (ja) 導電性フィルム基板およびその製造方法
TW201603054A (zh) 電極圖案製作用積層體、其製造方法、觸控面板用基板及影像顯示裝置
JP2015133256A (ja) 透明導電積層体およびその製造方法ならびに静電容量方式タッチパネル
JP2012123454A (ja) 静電容量式タッチパネル用の透明導電フィルム
CN107636209B (zh) 导电性基板
JP2002246788A (ja) 透視性電磁波シールド材
JP6448947B2 (ja) 多層薄膜
JP2022179519A (ja) 調光フィルム用光透過性導電フィルム及び調光フィルム
JP2014218726A (ja) 透明電極付き基板およびその製造方法、ならびにタッチパネル
JP6103375B2 (ja) 電子部品を作製するために用いられる積層体および積層体製造方法、フィルムセンサおよびフィルムセンサを備えるタッチパネル装置、並びに、濃度勾配型の金属層を成膜する成膜方法
JP6806732B2 (ja) 透明導電積層体の製造方法
JP7003665B2 (ja) 黒化めっき液、導電性基板の製造方法
JP6594706B2 (ja) 透明電極フィルムおよび表示デバイス
WO2017175629A1 (ja) 導電性基板
JP2019083020A (ja) 多層薄膜
JPWO2018193940A1 (ja) 導電性基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503413

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758767

Country of ref document: EP

Kind code of ref document: A1