WO2024004027A1 - 移動焼入れ装置及び移動焼入れ方法 - Google Patents

移動焼入れ装置及び移動焼入れ方法 Download PDF

Info

Publication number
WO2024004027A1
WO2024004027A1 PCT/JP2022/025739 JP2022025739W WO2024004027A1 WO 2024004027 A1 WO2024004027 A1 WO 2024004027A1 JP 2022025739 W JP2022025739 W JP 2022025739W WO 2024004027 A1 WO2024004027 A1 WO 2024004027A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
divided
hardening
coils
shaft
Prior art date
Application number
PCT/JP2022/025739
Other languages
English (en)
French (fr)
Inventor
明仁 山根
利行 秦
千尋 小塚
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to PCT/JP2022/025739 priority Critical patent/WO2024004027A1/ja
Publication of WO2024004027A1 publication Critical patent/WO2024004027A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/14Tools, e.g. nozzles, rollers, calenders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present disclosure relates to a mobile hardening device and a mobile hardening method.
  • Traverse hardening means hardening the coil member or the like while moving it in the axial direction with respect to the shaft-like body.
  • the shaft-like body is heated by induction by passing a current through the coil while moving the coil along the outer peripheral surface in the longitudinal direction of the shaft-like body. Then, by spraying a cooling liquid onto the outer circumferential surface immediately after heating, the shaft-shaped body is rapidly cooled and hardened.
  • the shaft-like body is a stepped shaft that has a step part where the outer diameter changes from a large diameter to a small diameter or from a small diameter to a large diameter at a midpoint in the longitudinal direction, the shaft It is necessary to adjust the air gap between the outer peripheral surface of the shaped body and the coil as appropriate.
  • One of the device configurations that makes such adjustment possible is a configuration in which the coil is composed of a plurality of divided coils. Specifically, a plurality of divided coils are arranged side by side in the circumferential direction of the shaft-like body, and these divided coils are connected in series to a power source. Then, the divided coils are moved in the longitudinal direction of the shaft-like body while passing current from the power source through each divided coil. Then, just before each divided coil reaches the stepped portion, the air gap is closed by moving each divided coil closer to or away from the outer peripheral surface of the shaft-like body depending on the change in the outer diameter of the shaft-like body. Maintain approximately constant.
  • Patent Document 1 A conventional high-frequency induction heating device using this type of split coil is disclosed in Patent Document 1 listed below.
  • the device is equipped with a high-frequency induction heating coil as a split coil.
  • This high-frequency induction heating coil is a shaft-shaped member having a flange portion and a shaft portion erected at the center of the flange portion, the flange portion and the shaft portion intersect and are formed between them.
  • the coils are arranged at positions facing each other across the axis of the shaft-like member, and , comprising a pair of high-frequency induction heating coil structures disposed opposite to the radiused portion and the shaft portion at a position spaced apart from the radiused portion and the shaft portion of the shaft-shaped member, the pair of high-frequency induction heating
  • the present invention employs a configuration in which each coil component is formed with bent coil portions that are bent so as to protrude in a direction away from the axis of the shaft-like member.
  • the above-mentioned pair of high-frequency induction heating coil configurations can be applied to all various shaft-like members with different diameters on the outer circumferential surface. "It becomes possible to arrange the body in a corresponding manner.”
  • the number of turns of the divided coil is one turn, and it is not possible to increase the number of turns to plurality due to structural reasons. This is because if a plurality of divided coils are stacked along the longitudinal direction of the shaft to increase the number of turns, it is not possible to appropriately move and harden the stepped portion where the outer diameter of the shaft changes.
  • the part on the rear side in the advancing direction is still heating the small diameter part. Even so, if the portion on the front side in the traveling direction is not moved away from the outer circumferential surface of the small diameter portion as soon as possible before reaching the large diameter portion, it will not be possible to get over the stepped portion. Therefore, this results in unfavorable results from the viewpoint of heating efficiency and uneven baking.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a mobile hardening device and a mobile hardening method that can harden a stepped shaft while suppressing overheating and short circuits of split coils caused by large currents. do.
  • a mobile quenching device An apparatus that performs movement hardening on a shaft-shaped body in which a large diameter part with a relatively large outer diameter and a small diameter part with a relatively small outer diameter are connected via a stepped part, a plurality of first split coils arranged in a ring around the moving center line at a first position on the moving center line; a plurality of second divided coils arranged in a ring shape around the moving center line at a second position different from the first position on the moving center line; a first divided coil drive unit that moves each of the first divided coils toward and away from the moving center line; a second divided coil drive unit that moves each of the second divided coils toward and away from the moving center line; a control unit that controls the first divided coil drive unit and the second divided coil drive unit; Equipped with.
  • each first divided coil and each second divided coil while moving each first divided coil and each second divided coil in a state in which they are arranged in an overlapping manner in the direction along the movement center line around the shaft-shaped body, A high frequency current is passed through each first divided coil and each second divided coil. Then, each first divided coil, each second divided coil, and the shaft-like body undergo electromagnetic induction, and the shaft-like body is heated by induction.
  • the control section drives the first divided coil drive section to gradually move the position of each first divided coil toward the outside in the radial direction of the shaft-like body.
  • each first divided coil can be moved along the outer circumferential surface without interfering with the stepped portion while keeping each second divided coil along the periphery of the small diameter portion.
  • the control section drives the second divided coil drive section to The position of the split coil is gradually moved radially outward of the shaft-shaped body.
  • the first divided coil drive unit moves each first divided coil close to the outer circumferential surface of the shaft-like body, in the opposite manner to the above procedure.
  • the second divided coil drive section causes each second divided coil to approach the outer circumferential surface of the shaft-shaped body. The movement of the first divided coil and the second divided coil toward the shaft-like body is performed individually depending on the outer diameter of the portion to be inductively heated by the first divided coil and the second divided coil.
  • the number of coils that heat the shaft-like body is not limited to two, that is, each first divided coil and each second divided coil. Three or more split coils may be stacked in the direction of the moving center line. In that case, it is preferable to employ three or more divided coil drive units, which is the same number as the divided coils.
  • the following configuration may be adopted: Also equipped with a high frequency power supply;
  • the control unit individually controls a current value of a high frequency current flowing from the high frequency power source to each of the first divided coils and a current value of a high frequency current flowing from the high frequency power source to each of the second divided coils.
  • the control unit individually controls the current value in each first divided coil and the current value in each second divided coil, it is suitable for the heating location of the shaft-shaped body.
  • the current value can be adjusted to the desired value. For example, when heating the corner formed at the connection point between the step part and the large diameter part with each first divided coil, by increasing the current value in each first divided coil, each first divided coil can be heated. Corners can be sufficiently heated without reducing the moving speed of the coil. In addition, as a method for heating the corner to a higher temperature, it is also possible to slow down the moving speed when each first divided coil passes through the corner.
  • the following configuration may be adopted: further comprising a variable resistor that electrically connects each of the first divided coils and each of the second divided coils and allows the high frequency current from the high frequency power source to flow;
  • the control unit distributes and supplies the high frequency current from the high frequency power supply to each of the first divided coils and each of the second divided coils while controlling the variable resistor.
  • the control unit controls the variable resistor to control the current value of the high-frequency current flowing through each first divided coil and the high-frequency current flowing through each second divided coil.
  • the current values can be adjusted to either different values or the same value. Therefore, it is possible to set a high frequency current in each of the first divided coils and each of the second divided coils in accordance with the heating location of the shaft-shaped body.
  • the moving hardening method includes: A method of performing movement hardening on a shaft-shaped body in which a large diameter part with a relatively large outer diameter and a small diameter part with a relatively small outer diameter are connected via a stepped part, a plurality of first divided coils arranged in a ring around the moving center line at a first position on the moving center line; and a plurality of first divided coils arranged in a ring around the moving center line at a second position on the moving center line.
  • the moving hardening of the shaft-like body using a plurality of second split coils; During the movement hardening, each of the first divided coils and each of the second divided coils are individually moved toward and away from the outer peripheral surface of the shaft-like body.
  • the same effect as that of the moving hardening apparatus described in (1) above can be obtained. Therefore, it is possible to solve the interference problem with the shaft-shaped body that occurs when each of the first divided coils and each of the second divided coils are stacked in the direction of the moving center line. As a result, it is possible to achieve moving hardening using multiple turns of split coils (first split coil and second split coil), so the current value of the high-frequency current flowing through each split coil can be significantly lowered than in the case of one turn. It becomes possible.
  • the current value of the high frequency current flowing through each of the first divided coils and the current value of the high frequency current flowing through each of the second divided coils. may be controlled individually.
  • the same effect as that of the moving hardening apparatus described in (2) above can be obtained. Therefore, since moving hardening can be performed while keeping the moving speed of each first divided coil and each second divided coil constant, the moving speed of the cooling ring that follows them can also be kept constant and uneven cooling can be suppressed.
  • the mobile hardening apparatus and the mobile hardening method according to each of the above aspects it is possible to perform mobile hardening of the stepped shaft while suppressing overheating and short-circuiting of the divided coils due to large current.
  • FIG. 1 is a partially cutaway side view schematically showing a movable hardening device according to an embodiment of the present disclosure.
  • FIG. 2 is a view from above of a pair of first split coils provided in the movable hardening apparatus, and is a view taken along the line AA in FIG. 1. (a) shows a state in which the space between the first divided coils is narrowed and the small diameter part is heated by induction, and (b) shows a state in which the space between the first divided coils is widened and the large diameter part is heated by induction. shows.
  • FIG. 2 is a circuit diagram schematically showing electrical connections between a high frequency power source and a first divided coil and a second divided coil.
  • FIG. 2 is a longitudinal cross-sectional view of section B in FIG. 1, showing a state in which the shaft-shaped body is hardened while being moved through a stepped portion. Shift hardening is performed in the order of (a), (b), and (c).
  • FIG. 2 is a diagram showing simulation results of the mobile hardening device, and is a longitudinal cross-sectional view of a portion including section B in FIG. 1.
  • FIG. (a) shows a conventional example
  • (b) shows an example.
  • the direction along the central axis CL of the shaft-like body W is the longitudinal direction
  • the radial direction of the shaft-like body W centered on the central axis CL is simply the radial direction
  • the circumferential direction of the shaft-like body W is the circumferential direction.
  • direction usually called direction.
  • a moving center line that is the center line of each first divided coil and each second divided coil is used. do.
  • This movement center line is a straight line that coincides with the center axis CL.
  • the upper side of the page along the center line of movement may be simply referred to as the upper side
  • the lower side of the page may simply be referred to as the lower side.
  • FIG. 1 is a partially cutaway side view schematically showing a mobile hardening device.
  • FIG. 2 is a view from above of a pair of first split coils provided in the mobile hardening apparatus, and is a view taken along the line AA in FIG.
  • FIG. 3 is a circuit diagram schematically showing electrical connections between the high frequency power source and the first divided coil and the second divided coil.
  • a mobile hardening apparatus 1 shown in FIG. 1 is an apparatus that performs traverse hardening on a shaft-like body W such as an axle for a railway vehicle or a ball screw using a high-frequency current.
  • the shaft-shaped body W is a stepped shaft in which a large diameter portion W1, a stepped portion W2, a small diameter portion W3, a stepped portion W4, and a large diameter portion W5 are coaxially arranged in this order from the bottom to the top in the longitudinal direction.
  • the large diameter portions W1 and W5 are cylinders having a circular planar cross section, and have the largest outer diameter in the entire shaft-like body W.
  • the small diameter portion W3 is a cylinder having a circular planar cross section, and has a smaller outer diameter than the large diameter portions W1 and W5.
  • the stepped portion W2 has a truncated conical shape that connects the upper end of the large diameter portion W1 and the lower end of the small diameter portion W3.
  • the outer diameter of the stepped portion W2 gradually decreases upward from the same outer diameter as the large diameter portion W1, and becomes equal to the outer diameter of the lower end of the small diameter portion W3.
  • the stepped portion W4 has an inverted truncated conical shape that connects the upper end of the small diameter portion W1 and the lower end of the large diameter portion W5.
  • the outer diameter of the stepped portion W4 gradually increases upward from the same outer diameter as the upper end of the small diameter portion W3, and becomes equal to the outer diameter of the lower end of the large diameter portion W5.
  • the large diameter portion W1, the stepped portion W2, the small diameter portion W3, the stepped portion W4, and the large diameter portion W5 share the central axis CL.
  • the outer diameter dimension of the small diameter portion W3 is, for example, 80% to 90% when the outer diameter dimension of the large diameter portions W1 and W5 is taken as 100%.
  • the shaft-shaped body W is formed of a material having conductivity, such as carbon steel or low alloy steel containing 95% by weight or more of iron (Fe), which is a ferrite phase.
  • the mobile hardening device includes a support section 10, an induction heating section 20, a cooling section 30, a moving section 40, a control section 50, and a power source 60.
  • the support portion 10 includes a lower center 11 and an upper center 12.
  • the lower center 11 coaxially supports the large diameter portion W1 of the shaft-like body W from below.
  • the upper center 12 coaxially supports the large diameter portion W5 of the shaft-like body W from above.
  • the lower center 11 and the upper center 12 are arranged such that the central axis CL of the shaft-like body W is along the vertical direction, one end side of the shaft-like body W (the side where the large diameter portion W1 is located) is downward, and the other end (the side where the large diameter portion W1 is located) is downward.
  • the shaft-like body W is supported so that the side where the portion W5 is located is upward.
  • a shaft-shaped body W is arranged between the lower center 11 and the upper center 12 so as to be rotatable about the central axis CL.
  • the lower center 11 and the upper center 12 that pivotally support the shaft-like body W in this way are centered around the shaft-like body W when receiving a driving force from a shaft-like body rotation motor (not shown) provided in the support section 10. Rotate around axis CL.
  • the induction heating unit 20 includes a plurality of coils and a coil support 28.
  • two coils, an upper coil 21 and a lower coil 22 are used as the plurality of coils.
  • These upper coil 21 and lower coil 22 have the same configuration. Therefore, first, the upper coil 21 will be explained below, and since the lower coil 22 is the same as the upper coil 21, the same reference numerals will be used to omit redundant explanation.
  • the number of coils that heat the shaft-like body W is not limited to two, the upper coil 21 and the lower coil 22. Three or more coils may be stacked in the direction of the center line of movement.
  • the upper coil 21 has a pair of split coils 21A arranged annularly around the center line of movement (center axis CL).
  • Each divided coil 21A has a coil main body portion 21a, a first conducting wire portion 21b, and a second conducting wire portion 21c.
  • the coil main body portion 21a has an arcuate shape that is convex in the radial direction about the central axis CL.
  • the inner circumferential surface of the coil main body portion 21a is a concave arc surface centered on the central axis CL, and is arranged with a constant gap g in the circumferential direction from the outer circumferential surface of the small diameter portion W3. .
  • the coil main body portion 21a inductively heats approximately a half circumference (180° portion) of the shaft-shaped body W in the circumferential direction.
  • the shape of the coil main body portion 21a instead of the circular arc shape, an L-shape or a V-shape that is convex in a direction away from the central axis CL may be adopted.
  • the first conducting wire portion 21b is electrically and mechanically connected to one end of the coil body portion 21a, and extends substantially straight outward in the radial direction.
  • the second conducting wire portion 21c is electrically and mechanically connected to the other end of the coil body portion 21a, and extends substantially straight outward in the radial direction.
  • the first conducting wire portion 21b and the second conducting wire portion 21c extend along a common straight line.
  • the pair of divided coils 21A having the above configuration forms one heating coil coaxially arranged around the shaft-like body W by a combination of the two coil body parts 21a.
  • the pair of coil body portions 21a are arranged around the small diameter portion W3 with the gap g.
  • the large diameter parts W1 and W5 as shown in FIG. A coil main body portion 21a is arranged.
  • the stepped portions W2 and W4 are heated by induction, the relative positions between the pair of split coils 21A are widened or narrowed according to the change in the outer diameter of the stepped portions.
  • a pair of coil body parts 21a are arranged around W4.
  • the gap g is adjusted to be the minimum without interfering with the heated part.
  • the upper coil 21 and the lower coil 22 are coaxially arranged so that the upper coil 21 overlaps the lower coil 22. That is, each coil main body part 21a of the upper coil 21 is disposed so as to coaxially overlap each coil main body part 21a of the lower coil 22.
  • the first conductor part 21b and the second conductor part 21c of the lower coil 22 and the first conductor part 21b and the second conductor part 21c of the upper coil 21 are arranged in the circumferential direction.
  • the second conducting wire portions 21c may be arranged so as to overlap with each other.
  • each first conducting wire portion 21b and each second conducting wire portion 21c of the lower coil 22 and each first conducting wire portion 21b and each second conducting wire portion 21c of the upper coil 21 are arranged so that they do not overlap with each other. It may be placed in In this case, the gap (non-heating range) formed between each of the first conducting wire parts 21b of the lower coil 22 and the gap (non-heating range) formed between each of the second conducting wire parts 21c of the upper coil 21 are defined as It can be covered by heating by each coil main body part 21a.
  • the gap formed between each first conducting wire part 21b of the upper coil 21 (non-heating range) and the gap formed between each second conducting wire part 21c (non-heating range) are defined as It can also be covered by heating by each coil main body 21a.
  • the number of coil divisions is two, but the number is not limited to two and may be three or more.
  • the number of divisions is three, one divided coil heats an angular range of about 120° in the circumferential direction of the shaft-like body W.
  • the upper coil 21 and lower coil 22 described above are manufactured by bending and brazing hollow tubes having a rectangular cross section, and have electrical conductivity. Each end of the first conducting wire portion 21b and the second conducting wire portion 21c is electrically and mechanically connected to the current transformer 61 of the power source 60 shown in FIG. 1.
  • the current transformer 61 causes a high frequency current to flow through the upper coil 21 and the lower coil 22. Further, the upper coil 21 and the lower coil 22 can be cooled by flowing a cooling liquid into their tubes.
  • the coil support stand 28 supports the upper coil 21 and the lower coil 22 coaxially with the shaft-like body W in a state where they are overlapped in the direction in which the moving center line extends.
  • the coil support stand 28 includes a first guide part and a second guide part (not shown), a first divided coil drive part 28a and a second divided coil drive part 28b, and a support stand main body 28c.
  • the first guide part and the second guide part, the first divided coil drive part 28a and the second divided coil drive part 28b are fixed to the support body 28c.
  • the support body 28c is connected to and supported by a current transformer 61, which will be described later, via a stay 28d.
  • the first guide portion guides the divided coils 21A of the upper coil 21 so as to be able to approach and separate from each other.
  • the first guide section a linear guide laid along the approach/separation direction can be exemplified.
  • the first divided coil drive section 28a applies a driving force to each divided coil 21A to move them toward and away from each other.
  • a combination of a stepping motor and a ball screw can be used.
  • one first divided coil drive section 28a is provided for each divided coil 21A, but the present invention is not limited to this configuration.
  • One first divided coil drive section 28a is provided with a common drive source. Alternatively, the pair of split coils 21A may be moved closer to each other and separated from each other.
  • the second guide section also guides the divided coils 22A of the lower coil 22 so as to be able to move toward and away from each other.
  • the second guide part a linear guide laid along the approach/separation direction can be exemplified.
  • the second divided coil drive section 28b applies a driving force to each divided coil 22A to move them toward and away from each other.
  • a combination of a stepping motor and a ball screw can be used.
  • one second divided coil drive section 28b is provided for each divided coil 22A, but the present invention is not limited to this configuration.
  • One second divided coil drive section 28b is provided with a common drive source.
  • the pair of split coils 22A may be moved closer to each other and separated from each other.
  • the cooling unit 30 includes a cooling ring 31, a cooling ring support stay 32, and a coolant circulation pump 33.
  • the cooling ring 31 is formed in an annular shape.
  • An internal space 31a is formed within the cooling ring 31.
  • a plurality of nozzles 31b communicating with the internal space 31a are formed on the inner peripheral surface of the cooling ring 31 and spaced apart from each other in the circumferential direction.
  • a shaft-like body W is coaxially inserted into the cooling ring 31 .
  • the cooling ring 31 is arranged below each divided coil 21.
  • the cooling ring 31 is connected to and supported by a coolant circulation pump 33 via a cooling ring support stay 32.
  • the coolant circulation pump 33 supplies a coolant L such as water into the internal space 31a of the cooling ring 31.
  • the cooling liquid L supplied to the internal space 31a is ejected toward the shaft-like body W through the plurality of nozzles 31b, and cools the shaft-like body W.
  • the moving unit 40 shown in FIG. 1 includes a support plate 41, a pinion gear 42, a motor 43, and a rack 44.
  • the support body 28c, the current transformer 61, the cooling ring 31, and the coolant circulation pump 33 are fixed to the support plate 41.
  • a pinion gear 42 is rotatably fixed to the support plate 41.
  • a motor 43 that rotationally drives a pinion gear 42 is attached to the support plate 41 .
  • the support plate 41 is connected to a rack 44 via a guide rail (not shown).
  • the support plate 41 is movable vertically relative to the rack 44 by the guide rail.
  • the pinion gear 42 meshes with the teeth of the rack 44. Therefore, when the control unit 50 drives the motor 43, the pinion gear 42 rotates, and the support plate 41 moves upward or downward relative to the rack 44.
  • the upper coil 21 and the lower coil 22 are connected in parallel to the power supply 60. That is, one end of the upper coil 21 (one end of each divided coil 21A) and one end of the lower coil 22 (one end of each divided coil 22A) are electrically connected via the variable resistor 62. ing. A slider 63a connected to a wiring 63 extending from one end of the power source 60 is electrically connected to the variable resistor 62. Further, the other end of the upper coil 21 (the other end of each divided coil 21A) and the other end of the lower coil 22 (the other end of each divided coil 22A) are electrically connected via the wiring 64. It is connected. The other end of the power source 60 is electrically connected to this wiring 64 via a wiring 65.
  • the control unit 50 controls the slider 63a to adjust the value of the current flowing through the upper coil 21 and the value of the current flowing through the lower coil 22. Therefore, depending on the heating location of the shaft-like body W, the value of the current flowing through the upper coil 21 and the value of the current flowing through the lower coil 22 can be made the same or different.
  • the control unit 50 includes an arithmetic circuit and a memory (not shown).
  • the memory stores a control program and the like for driving the arithmetic circuit.
  • the control unit 50 is connected to the current transformer 61, the first divided coil drive unit 28a, the second divided coil drive unit 28b, the slider 63a, the coolant circulation pump 33, the motor 43, and the shaft-shaped body rotation motor. control.
  • the control section 50 controls the first divided coil drive section 28a and the second divided coil drive section 28b, as shown in FIG. 2(a). As described above, the arrangement interval between the pair of divided coils 22A is minimized.
  • the first divided coil drive section 28a and the second divided coil drive section 28b are controlled by the control section 50, so that the first divided coil drive section 28a and the second divided coil drive section 28b are ), the gap between the pair of divided coils 22A is maximized.
  • the first divided coil drive section 28a and the second divided coil drive section 28b are controlled by the control section 50, so that the step portions W2 and W4 of the shaft-like body W are Following the change in diameter of the stepped portions W2 and W4 in the longitudinal direction, the pair of divided coils 21A and the pair of divided coils 22A are opened and closed.
  • FIG. 4 is a flowchart showing the moving hardening method in this embodiment.
  • the shaft-shaped body W is supported in advance by the support portion 10 so that the central axis CL is along the vertical direction.
  • the control unit 50 drives the motor 43 to place the upper coil 21 and the lower coil 22 below the large diameter portion W1. Then, the control unit 50 controls the shaft-like body rotation motor to rotate the shaft-like body W around the central axis CL. Subsequently, the control unit 50 drives the current transformer 61 to cause high frequency current to flow through the upper coil 21 and the lower coil 22. At this time, the control unit 50 makes the current value flowing through the upper coil 21 and the current value flowing through the lower coil 22 the same by controlling the slider 63a.
  • control unit 50 drives the coolant circulation pump 33 to jet the coolant L toward the shaft W from the plurality of nozzles 31b of the cooling ring 31.
  • cooling fluid is supplied to each of the upper coil 21 and the lower coil 22 to start cooling them.
  • control unit 50 controls the first divided coil drive unit 28a and the second divided coil drive unit 28b to adjust the distance between each divided coil 21A of the upper coil 21 and the interval between each divided coil 22A of the lower coil 22.
  • the gap is opened to match the outer diameter dimension of the large diameter portion W1.
  • the control unit 50 drives the motor 43 to integrally move the upper coil 21 and the lower coil 22 upward.
  • the large diameter portion W1 is heated by induction from the lower end toward the upper end by the upper coil 21 and the lower coil 22. That is, the high frequency current flowing through the upper coil 21 and the lower coil 22 causes an eddy current to flow on the surface of the large diameter portion W1 of the shaft-shaped body W, and the large diameter portion W1 is heated by induction by this eddy current.
  • the current value supplied to the upper coil 21 and the current value supplied to the lower coil 22 are the same, the amount of heating applied to the shaft-shaped body W by these upper coil 21 and lower coil 22 is , are the same as each other.
  • the cooling ring 31 passes following the lower coil 22, the cooling liquid L is sprayed onto the outer peripheral surface of the heated large diameter portion W1. As a result, the heated large diameter portion W1 is rapidly cooled and hardened.
  • the stepped portion W2 whose diameter gradually decreases upward is heated by induction.
  • the intervals between each divided coil 21A and the interval between each divided coil 22A were kept constant in each of the upper coil 21 and the lower coil 22, but in the second hardening step S3, The interval between each divided coil 21A and the interval between each divided coil 22A are gradually narrowed. That is, when inductively heating the stepped portion W2 from the lower end to the upper end, the control unit 50 controls the first divided coil drive unit 28a and the second divided coil drive unit 28b to heat the stepped portion W2. The interval between each divided coil 21A and the interval between each divided coil 22A are narrowed so that the air gap is maintained constant.
  • the small diameter portion W3 which has the smallest outer diameter dimension and is constant along the longitudinal direction, is heated by induction.
  • the interval between each divided coil 21A and the interval between each divided coil 22A was gradually narrowed, but in the third hardening step S4, the interval between each divided coil 21A and the interval between each divided coil 22A were gradually narrowed.
  • the distance between the coils 22A is kept constant to a minimum. That is, when inductively heating the small diameter portion W3 from the lower end to the upper end, the control unit 50 controls the first divided coil drive unit 28a and the second divided coil drive unit 28b to heat the small diameter portion W3 and the second divided coil drive unit 28b.
  • each divided coil 21A and the interval between each divided coil 22A are maintained constant so that the air gap between the two divided coils 21A and 22A is maintained constant.
  • the arrangement state of each divided coil 21A at this time is shown in FIG. 2(a).
  • an eddy current flows on the surface thereof due to the high frequency current flowing through each divided coil 21A and each divided coil 22A, and induction heating is caused by this eddy current.
  • the cooling ring 31 passes through each divided coil 21A and each divided coil 22A, the coolant L is sprayed onto the outer peripheral surface of the heated small diameter portion W3. As a result, the heated small diameter portion W3 is rapidly cooled and hardened.
  • the stepped portion W4 whose diameter gradually increases upward is heated by induction.
  • the intervals between the divided coils 21A and the intervals between the divided coils 22A were kept constant, but in the fourth hardening step S5, the intervals between the divided coils 21A and the intervals between the divided coils 22A and 22A were kept constant. Gradually increase the distance between 22A. That is, when inductively heating the stepped portion W4 from the lower end to the upper end between both divided coils 21A, the control section 50 controls the first divided coil drive section 28a and the second divided coil drive section 28b.
  • the large diameter portion W5 which has the largest outer diameter dimension and is constant along the longitudinal direction, is heated by induction.
  • the interval between each divided coil 21A and the interval between each divided coil 22A were gradually widened, but in the fifth hardening step S6, the interval between each divided coil 21A and the interval between each divided coil Keep the distance between 22A constant and maximum. That is, when inductively heating the large diameter portion W5 from the lower end to the upper end, the control unit 50 controls the first divided coil drive unit 28a and the second divided coil drive unit 28b to heat the large diameter portion W5 by induction heating from the lower end to the upper end.
  • each divided coil 21A and the interval between each divided coil 22A are maintained constant so that the air gap with W5 is maintained constant.
  • the arrangement state of each divided coil 21A and each divided coil 22A at this time is shown in FIG. 2(b).
  • an eddy current flows on the surface thereof due to the high frequency current flowing through each divided coil 21A and each divided coil 22A, and induction heating is caused by this eddy current.
  • the cooling ring 31 passes after each divided coil 21, the cooling liquid L is sprayed onto the outer circumferential surface of the heated large diameter portion W5. As a result, the heated large diameter portion W5 is rapidly cooled and hardened.
  • the shaft-shaped body W is hardened over its entire length, and all steps are completed.
  • the shaft-shaped body W which has been movement hardened over its entire length, has increased hardness compared to before the movement hardening.
  • the upper coil 21 and the lower coil 22 are formed in a process in which the upper coil 21 and the lower coil 22 reach the small diameter part W3 from the large diameter part W1 through the step part W2, and the process from the small diameter part W3 to the step part W4 to the large diameter part W3.
  • the control section 50 individually controls the first divided coil drive section 28a and the second divided coil drive section 28b.
  • each of the upper coil 21 and the lower coil 22 can be independently moved toward and away from the outer peripheral surface of the shaft-shaped body W, so that, for example, as shown in FIG.
  • Each can be arranged along the outer circumferential surface of the shaft-shaped body W while responding to changes in the outer diameter thereof.
  • FIG. 5 is a diagram showing the process from the small diameter part W3 to the large diameter part W5 via the stepped part W4.
  • the small diameter part W3 is heated by both the upper coil 21 and the lower coil 22, and
  • the small diameter portion W3 is heated by the lower coil 22, while the stepped portion W4 is heated by the upper coil 21, and in (c), the large diameter portion W5 is heated by both the upper coil 21 and the lower coil 22. Indicates the condition.
  • the control unit 50 controls the first divided coil drive unit 28a and the second divided coil drive unit 28b to control the upper coil 21 and the lower coil 22 are brought close to each other so that an equal air gap is maintained with respect to the outer peripheral surface of the small diameter portion W3.
  • the inner circumferential surfaces of the upper coil 21 and the lower coil 22 are arranged at equal distances from the movement center line (center axis CL).
  • moving hardening is performed while moving the upper coil 21 and the lower coil 22 upward.
  • the third hardening step S4 by the upper coil 21 and the third hardening step S4 by the lower coil 22 are performed simultaneously in parallel.
  • a fourth hardening step S5 is performed following the third hardening step S4. That is, the upper coil 21, which has finished induction heating up to the upper end of the small diameter portion W3, is gradually moved radially outward by the first divided coil drive section 28a that has received instructions from the control section 50, and is gradually moved toward the outside in the step difference. Part W4 is moved and hardened. During this movement hardening, the control unit 50 controls so that the air gap formed between the inner circumferential surface of the upper coil 21 and the outer circumferential surface of the stepped portion W4 is always kept constant. The upper coil 21 after being moved and hardened to the upper end of the stepped portion W4 reaches around the lower end of the large diameter portion W5.
  • the lower coil 22 at this time continues induction heating of the small diameter portion W3 while being maintained at a position a certain distance from the movement center line (center axis CL) until reaching the upper end of the small diameter portion W3. .
  • the lower coil 22, which has finished induction heating up to the upper end of the small diameter portion W3, is gradually moved radially outward by the second split coil drive section 28b that has received instructions from the control section 50.
  • the stepped portion W4 is moved and hardened.
  • the control unit 50 controls so that the air gap formed between the inner circumferential surface of the lower coil 22 and the outer circumferential surface of the stepped portion W4 is always kept constant.
  • the third hardening step S4 by the lower coil 22 and the fourth hardening step S5 by the upper coil 21 are performed simultaneously in parallel.
  • a fifth hardening step S6 is performed. That is, the control unit 50 controls the first divided coil drive unit 28a and the second divided coil drive unit 28b, so that both the upper coil 21 and the lower coil 22 are moved relative to the outer peripheral surface of the large diameter portion W5. Close together to ensure equal air gap. As a result, the inner circumferential surfaces of the upper coil 21 and the lower coil 22 are arranged at equal distances from the movement center line (center axis CL). Then, in this state, moving hardening is performed while moving the upper coil 21 and the lower coil 22 upward. As described above, in FIG. 5C, the fifth hardening step S6 by the upper coil 21 and the fifth hardening step S6 by the lower coil 22 are performed simultaneously in parallel.
  • the process of heating from the small diameter part W3 to the large diameter part W5 via the stepped part W4 has been described above, the process of heating from the large diameter part W1 to the small diameter part W3 via the stepped part W2 can be similarly controlled.
  • the upper coil 21 and the lower coil 22 are moved and hardened while individually adjusting their radial positions using the section 50. That is, in the second quenching step S3, the upper coil 21 that has undergone induction heating up to the upper end of the large diameter portion W1 is moved radially inward by the first divided coil drive section 28a that has received instructions from the control section 50. While being gradually moved, the stepped portion W2 is moved and hardened.
  • control unit 50 controls so that the air gap formed between the inner circumferential surface of the upper coil 21 and the outer circumferential surface of the stepped portion W2 is always kept constant.
  • the upper coil 21 after being moved and hardened to the upper end of the stepped portion W2 reaches around the lower end of the small diameter portion W3.
  • the lower coil 22 at this time continues induction heating of the large diameter portion W5 while being maintained at a position a certain distance from the movement center line (center axis CL) until reaching the upper end of the large diameter portion W5. I will do it.
  • the lower coil 22, which has finished induction heating up to the upper end of the large diameter portion W5, is gradually moved radially inward by the second divided coil drive section 28b that has received instructions from the control section 50.
  • the stepped portion W2 is moved and hardened.
  • the control unit 50 controls so that the air gap formed between the inner circumferential surface of the lower coil 22 and the outer circumferential surface of the stepped portion W2 is always kept constant.
  • the first hardening step S2 by the lower coil 22 and the second hardening step S3 by the upper coil 21 are performed simultaneously in parallel.
  • step S1 to the fifth hardening step S6 movement hardening is performed while continuing the upward movement of each divided coil 21A, each divided coil 22A, and cooling ring 31 relative to the shaft-shaped body W without stopping. do. Therefore, for example, when moving from the fourth hardening step S5 to the fifth hardening step S6, the moving hardening is continued while keeping the moving speed of each divided coil 21A, each divided coil 22A, and cooling ring 31 constant. At this time, there are some parts that need to be heated locally, such as the corner e formed between the stepped part W4 and the large diameter part W5, as shown in FIG. 5(a). .
  • each can be adjusted to a current value suitable for the heating location of the shaped body W.
  • a current value suitable for the heating location of the shaped body W For example, when heating the corner e with each divided coil 21A, by increasing the current value in each divided coil 21A, the corner can be sufficiently heated without reducing the moving speed of each divided coil 21A. . Therefore, in this mobile hardening device, there is no need to reduce the moving speed of the upper coil 21, so the above-mentioned uneven cooling does not occur.
  • a mobile quenching device includes: The large diameter portion (W1, W5) with a relatively large outer diameter and the small diameter portion (W3) with a relatively small outer diameter are moved and hardened into a shaft-like body (W) that is connected via a stepped portion (W2, W4).
  • a device that performs a plurality of first divided coils (21A) arranged annularly around the moving center line at a first position on the moving center line; a plurality of second split coils (22A) arranged in a ring shape around the moving center line at a second position different from the first position on the moving center line; a first divided coil drive unit (28a) that moves each of the first divided coils (21A) toward and away from the center line of movement; a second divided coil drive unit (28b) that moves each of the second divided coils (22A) toward and away from the center line of movement; a control unit (50) that controls the first divided coil drive unit (28a) and the second divided coil drive unit (28b); Equipped with.
  • the following configuration may be adopted: further comprising a high frequency power source (60);
  • the control unit (50) controls a current value of a high frequency current flowing from the high frequency power source (60) to each of the first divided coils (21A) and a current value of a high frequency current flowing from the high frequency power source (60) to each of the second divided coils (22A).
  • the current value of the high-frequency current to be passed is individually controlled.
  • variable resistor (62) electrically connects between each of the first divided coils (21A) and each of the second divided coils (22A) and allows the high frequency current from the high frequency power supply (60) to flow.
  • the control unit (50) controls the variable resistor (62) while directing the high frequency current from the high frequency power source (60) to each of the first divided coils (21A) and each of the second divided coils (22A). ) and distributed to.
  • the moving hardening method includes: The large diameter portion (W1, W5) with a relatively large outer diameter and the small diameter portion (W3) with a relatively small outer diameter are moved and hardened into a shaft-like body (W) that is connected via a stepped portion (W2, W4).
  • each of the first divided coils (21A) and each of the second divided coils (22A) are individually moved toward and away from the outer peripheral surface of the shaft-like body (W).
  • the current value of the high-frequency current flowing through each of the first divided coils (21A) and the current value of the high frequency current passed through each of the second divided coils (22A) may be individually controlled.
  • FIG. 6 is a diagram showing simulation results, and is a longitudinal cross-sectional view of a portion including section B in FIG. (a) shows a conventional example, and (b) shows an example.
  • the outer diameter of the large diameter portion W5 was 200 mm
  • the outer diameter of the small diameter portion W3 was 170 mm.
  • the material of the shaft-shaped body W was carbon steel.
  • the maximum heating temperature at the corner e was 1287°C. Further, the current value passed through the coil was 28,000A to 45,000A. The time it took to complete the moving hardening of a predetermined length was 131 seconds. On the other hand, in the example shown in FIG. 6(b), the maximum heating temperature at the corner e was 1278°C. Further, the current value passed through each coil was 12,600A to 20,250A. The time it took to complete the moving hardening of a predetermined length was 132 seconds. From the above results, compared to the comparative example using a single-turn coil, in the example using a two-turn coil, the maximum current required to perform the same heating is halved, and the current value can be significantly lowered. It could be confirmed.
  • the moving hardening device and the moving hardening method of the present disclosure it is possible to move and harden the stepped shaft while suppressing overheating and short circuit of the divided coils due to large current.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

この移動焼入れ装置は、相対的に外径が大きい大径部と相対的に外径が小さい小径部とが段差部を介して連なる軸状体に移動焼入れを行う装置であって、移動中心線上の第1の位置において前記移動中心線の周りに環状に配置された複数の第1分割コイルと;前記移動中心線上の、前記第1の位置と異なる第2の位置において前記移動中心線の周りに環状に配置された複数の第2分割コイルと;前記各第1分割コイルを、前記移動中心線に対して接近離間させる第1分割コイル駆動部と;前記各第2分割コイルを、前記移動中心線に対して接近離間させる第2分割コイル駆動部と;前記第1分割コイル駆動部及び前記第2分割コイル駆動部を制御する制御部と;を備える。

Description

移動焼入れ装置及び移動焼入れ方法
 本開示は、移動焼入れ装置及び移動焼入れ方法に関する。
 従来、軸状体を誘導加熱により移動焼入れし、軸状体の疲労強度を高めることが行われている。ここで言う、移動焼入れ(traverse hardening)とは、軸状体に対してコイル部材等を軸線方向に移動させながら焼入れすることを意味する。
 具体的には、軸状体の長手方向に向かって外周面に沿うようにコイルを移動させながらコイルに電流を流すことで、軸状体を誘導加熱していく。そして、加熱直後の外周面に対して冷却液を吹き付けることにより、軸状体を急速冷却して焼入れする。ここで、軸状体がその長手方向の途中位置において外径が大径から小径、あるいは小径から大径に変わる段差部を有する段付軸である場合は、加熱効率を維持するために、軸状体の外周面とコイルとのエアーギャップを適宜調整する必要がある。
 このような調整を可能にする装置構成の一つに、コイルを複数の分割コイルにより構成する形態がある。具体的には、複数の分割コイルを軸状体の周方向に並べて配置させ、これら分割コイルを電源に直列接続する。そして、電源からの電流を各分割コイルに流しながらこれら分割コイルを軸状体の長手方向に移動させて行く。そして、各分割コイルが段差部に至る直前に、軸状体の外径寸法の変化に応じて、各分割コイルを軸状体の外周面に対して接近あるいは離間させることにより、前記エアーギャップをほぼ一定に維持する。
 この種の分割コイルを用いた従来の高周波誘導加熱装置が、下記特許文献1に開示されている。同装置は、分割コイルとして高周波誘導加熱コイルを備えている。この高周波誘導加熱コイルは、「フランジ部とこのフランジ部の中央箇所に立設された軸部とを有する軸状部材のうち、前記フランジ部と前記軸部とが交差してこれらの間に形成されるアール部並びに前記軸部の外周面を高周波誘導加熱するための軸状部材加熱用の高周波誘導加熱用コイルにおいて、前記軸状部材の軸線を挟んで互いに対向する位置にそれぞれ配置されると共に、前記軸状部材のアール部及び軸部に対して間隔を隔てた位置において前記アール部及び軸部に対向して配置される一対の高周波誘導加熱コイル構成体を備え、前記一対の高周波誘導加熱コイル構成体に、前記軸状部材の軸線に対して遠ざかる方向に向けて突出するように屈曲された屈曲状コイル部をそれぞれ形成した」構成を採用している。
 同装置によれば、「一対の高周波誘導加熱コイル構成体を用いることにより、外周面の径の大きさが相異する各種の軸状部材の全てに対して上述の一対の高周波誘導加熱コイル構成体を対応配置させることが可能になる」と説明されている。
日本国特開2008-150640号公報
 ところで、上記装置も含めて従来の移動焼入れ装置は、その分割コイルの巻き数が一巻きであり、構造上の理由により巻き数を複数に増やすことが出来なかった。それは、分割コイルを軸状体の長手方向に沿って複数本重ねて巻き数を増やした場合、軸状体の外径が変わる段差部を適切に移動焼入れできないからである。例えば、大径部から小径部に向かう段差部の移動焼入れにおいては、軸状体の長手方向に重なる分割コイルの全体が大径部を通過するまでは、この分割コイルを小径部に近付けることができない。そのため、分割コイルのうちで大径部の加熱を終えて小径部に至った進行方向の前方側にある部分は、小径部の外周面との間に広いエアーギャップがあるまま誘導加熱することになるので、加熱効率及び焼きむらの観点から好ましくない。
 一方、小径部から大径部に向かう段差部の移動焼入れにおいては、軸状体の長手方向に重なる分割コイルのうちで進行方向の後方側にある部分は、まだ小径部を加熱している途中であっても、進行方向の前方側にある部分が大径部に至る前の時点で早々に小径部の外周面から遠ざけておかないと、段差部を乗り越えられない。よって、やはり、加熱効率及び焼きむらの観点から好ましくない結果になる。
 以上に説明した理由により、今までの分割コイルはその巻き数を複数にすることができず、一巻きの構成が通常であった。一巻きの場合は、分割コイルに流す電流を、複数巻きの場合よりも極めて高い大電流とする必要が有るため、分割コイルの過加熱や短絡等の問題を引き起こしやすい。
 本開示は、上記事情に鑑みてなされたものであって、大電流に伴う分割コイルの過加熱や短絡を抑制しながら段付軸を移動焼入れできる移動焼入れ装置及び移動焼入れ方法の提供を目的とする。
 上記課題を解決するために、本開示は以下の態様を提案している。
(1)本開示の一態様に係る移動焼入れ装置は、
 相対的に外径が大きい大径部と相対的に外径が小さい小径部とが段差部を介して連なる軸状体に移動焼入れを行う装置であって、
 移動中心線上の第1の位置において前記移動中心線の周りに環状に配置された複数の第1分割コイルと;
 前記移動中心線上の、前記第1の位置と異なる第2の位置において前記移動中心線の周りに環状に配置された複数の第2分割コイルと;
 前記各第1分割コイルを、前記移動中心線に対して接近離間させる第1分割コイル駆動部と;
 前記各第2分割コイルを、前記移動中心線に対して接近離間させる第2分割コイル駆動部と;
 前記第1分割コイル駆動部及び前記第2分割コイル駆動部を制御する制御部と;
を備える。
 上記(1)に記載の移動焼入れ装置によれば、軸状体の周囲に、各第1分割コイル及び各第2分割コイルを移動中心線に沿う方向に重ねて配置した状態で移動させながら、各第1分割コイル及び各第2分割コイルに高周波電流を流す。すると、各第1分割コイル及び各第2分割コイルと、軸状体とが電磁誘導し、軸状体が誘導加熱される。
 このようにして移動しながら軸状体を誘導加熱していく際、各第2分割コイルが小径部を誘導加熱している最中に各第1分割コイルが段差部を誘導加熱する場合には、制御部が第1分割コイル駆動部を駆動して各第1分割コイルの位置を軸状体の径方向外方に向かって徐々に移動させる。この移動により、各第2分割コイルを小径部の周囲に沿わせたまま、各第1分割コイルを段差部に干渉させることなく外周面に沿って移動させることができる。
 さらに進んで、各第2分割コイルが段差部を誘導加熱すると同時に各第1分割コイルが大径部を誘導加熱する場合には、制御部が第2分割コイル駆動部を駆動して各第2分割コイルの位置を軸状体の径方向外方に向かって徐々に移動させる。その結果、各第1分割コイルを大径部の周囲に沿わせたまま、各第2分割コイルを段差部に干渉させることなく段差部の外周面に沿って移動させることができる。
 一方、大径部から段差部を超えて小径部を誘導加熱する場合には、上記手順とは逆に、第1分割コイル駆動部により各第1分割コイルを軸状体の外周面に接近させ、そして第2分割コイル駆動部により各第2分割コイルを軸状体の外周面に接近させる。これら第1分割コイル及び第2分割コイルの軸状体への接近動作は、これら第1分割コイル及び第2分割コイルが誘導加熱する箇所の外径に応じて個別に行われる。
 したがって、各第1分割コイル及び各第2分割コイルを移動中心線の方向に重ねた場合に生じる軸状体との干渉問題を解消できる。その結果、複数巻きの分割コイル(第1分割コイル及び第2分割コイル)による移動焼入れが実現できるので、各分割コイルに流す高周波電流の電流値を、一巻きの場合よりも大幅に下げることが可能になる。
 なお、軸状体を加熱するコイルは、各第1分割コイル及び各第2分割コイルの2つに限らない。3つ以上の分割コイルを移動中心線の方向に重ねてもよい。その場合には、分割コイルと同数である3つ以上の分割コイル駆動部を併せて採用することが好ましい。
(2)上記(1)に記載の移動焼入れ装置において、以下の構成を採用してもよい:
 高周波電源をさらに備え;
 前記制御部が、前記高周波電源から前記各第1分割コイルに流す高周波電流の電流値と、前記高周波電源から前記各第2分割コイルに流す高周波電流の電流値とを、個別に制御する。
 上記(2)に記載の移動焼入れ装置によれば、各第1分割コイルにおける電流値と各第2分割コイルにおける電流値とを制御部が個別に制御するので、軸状体の加熱箇所に適した電流値に調整できる。例えば、段差部及び大径部間の接続箇所に形成される角部を各第1分割コイルで加熱する際には、各第1分割コイルにおける電流値を高めにすることで、各第1分割コイルの移動速度を下げることなく角部を十分に加熱できる。
 なお、角部をより高い温度に加熱するための方法としては、角部を各第1分割コイルが通過する際の移動速度を遅くすることも考えられる。しかし、その場合は、加熱後の軸状体を冷却する冷却環の移動も遅くする必要が生じてしまうので、冷却環の移動速度を軸方向で一定にできず、冷却ムラが発生してしまう。一方、本態様では移動速度を落とさずに済むので、そのような不具合が生じない利点がある。
(3)上記(2)に記載の移動焼入れ装置において、以下の構成を採用してもよい:
 前記各第1分割コイルと前記各第2分割コイルとの間を電気的に接続すると共に前記高周波電源からの前記高周波電流を流す可変抵抗器をさらに備え;
 前記制御部が、前記可変抵抗器を制御しながら、前記高周波電源からの前記高周波電流を前記各第1分割コイルと前記各第2分割コイルとに分配供給する。
 上記(3)に記載の移動焼入れ装置によれば、制御部が可変抵抗器を制御することで、各第1分割コイルを流れる高周波電流の電流値と、各第2分割コイルを流れる高周波電流の電流値とを、互いに異なる値あるいは互いに同じ値のどちらにも調整できる。よって、軸状体の加熱箇所に応じた高周波電流を、各第1分割コイル及び各第2分割コイルのそれぞれに設定することができる。
(4)本開示の一態様に係る移動焼入れ方法は、
 相対的に外径が大きい大径部と相対的に外径が小さい小径部とが段差部を介して連なる軸状体に移動焼入れを行う方法であって、
 移動中心線上の第1の位置において前記移動中心線の周りに環状に配置された複数の第1分割コイルと、移動中心線上の第2の位置において前記移動中心線の周りに環状に配置された複数の第2分割コイルとを用いて前記軸状体を前記移動焼入れし;
 前記移動焼入れの際に、前記各第1分割コイル及び前記各第2分割コイルを、個別に、前記軸状体の外周面に対して接近離間させる。
 上記(4)に記載の移動焼入れ方法によれば、上記(1)に記載の移動焼入れ装置の作用と同じ作用を得ることができる。したがって、各第1分割コイル及び各第2分割コイルを移動中心線の方向に重ねた場合に生じる軸状体との干渉問題を解消できる。その結果、複数巻きの分割コイル(第1分割コイル及び第2分割コイル)による移動焼入れが実現できるので、各分割コイルに流す高周波電流の電流値を、一巻きの場合よりも大幅に下げることが可能になる。
(5)上記(4)に記載の移動焼入れ方法において、前記移動焼入れの際に、前記各第1分割コイルに流す高周波電流の電流値と、前記各第2分割コイルに流す高周波電流の電流値とを、個別に制御してもよい。
 上記(5)に記載の移動焼入れ方法によれば、上記(2)に記載の移動焼入れ装置の作用と同じ作用を得ることができる。したがって、各第1分割コイル及び各第2分割コイルの移動速度を一定にしながら移動焼入れを行えるので、これらに追従する冷却環の移動速度も一定に保って冷却ムラを抑制することができる。
 上記各態様に係る移動焼入れ装置及び移動焼入れ方法によれば、大電流に伴う分割コイルの過加熱や短絡を抑制しながら段付軸を移動焼入れすることができる。
本開示の一実施形態に係る移動焼入れ装置の一部を破断して模式的に示す側面図である。 同移動焼入れ装置に備わる一対の第1分割コイルをその上方から見た図であり、図1のA-A矢視図である。そして、(a)が各第1分割コイル間を狭めて小径部を誘導加熱している状態を示し、(b)が各第1分割コイル間を拡げて大径部を誘導加熱している状態を示す。 高周波電源と第1分割コイル及び第2分割コイルとの電気的接続を概略的に示す回路図である。 同実施形態における移動焼入れ方法を示すフローチャートである。 軸状体を、段差部を介して移動しながら焼入れする状態を示す図であって、図1のB部の縦断面図である。移動焼入れは、(a),(b),(c)の順序で行われる。 移動焼入れ装置のシミュレーション結果を示す図であって、図1のB部を含む部分の縦断面図である。(a)が従来例を示し、(b)が実施例を示す。
 以下、本開示に係る移動焼入れ装置及び移動焼入れ方法の一実施形態を、図面に基づいて説明する。以下の説明において、軸状体Wの中心軸線CLに沿った方向を長手方向、中心軸線CLを中心とする軸状体Wの半径方向を単に半径方向、軸状体Wの周回り方向を周方向、と呼ぶ場合がある。また、移動焼入れ装置に備わる各第1分割コイル及び各第2分割コイルを移動させる方向を示すために、各第1分割コイル及び各第2分割コイルの中心線である移動中心線を用いるものとする。この移動中心線は、中心軸線CLと一致する直線である。そして、図1において移動中心線に沿って紙面上側を単に上側、紙面下側を単に下側、と呼ぶ場合がある。
<移動焼入れ装置>
 まず、図1から図3を用いて、本実施形態の移動焼入れ装置の構成を説明する。ここで、図1は、移動焼入れ装置の一部を破断して模式的に示す側面図である。図2は、同移動焼入れ装置に備わる一対の第1分割コイルをその上方から見た図であり、図1のA-A矢視図である。図3は、高周波電源と第1分割コイル及び第2分割コイルとの電気的接続を概略的に示す回路図である。
 図1に示す移動焼入れ装置1は、鉄道車両用の車軸、あるいはボールネジ等の軸状体Wに、高周波電流を用いて移動焼入れ(traverse hardening)を行う装置である。
 まず、軸状体Wについて説明する。軸状体Wは、その長手方向の下方から上方に向かって、大径部W1、段差部W2、小径部W3、段差部W4、大径部W5が、この順に同軸配置された段付軸である。大径部W1,W5は、平断面が円形をなす円柱であり、軸状体W全体の中で最も外径が大きい。小径部W3は、平断面が円形をなす円柱であり、大径部W1,W5よりも外径が小さい。段差部W2は、大径部W1の上端及び小径部W3の下端間を接続する円錐台形状を有する。段差部W2の外径は、上方向に向かって、大径部W1と同じ外径から徐々に小さくなり、そして小径部W3の下端の外径に等しくなる。段差部W4は、小径部W1の上端及び大径部W5の下端間を接続する逆円錐台形状を有する。段差部W4の外径は、上方向に向かって、小径部W3の上端の外径と同じ外径から徐々に大きくなり、そして大径部W5の下端の外径に等しくなる。大径部W1、段差部W2、小径部W3、段差部W4、大径部W5は、中心軸線CLを共有する。大径部W1,W5の外径寸法を100%とした場合の小径部W3の外径寸法は、例えば80%~90%である。
 軸状体Wは、フェライト相である、炭素鋼、鉄(Fe)を95重量%以上含有する低合金鋼等の導電性を有する材料で形成されている。
 図1に示すように、移動焼入れ装置は、支持部10と、誘導加熱部20と、冷却部30と、移動部40と、制御部50と、電源60とを備える。
 図1に示すように、支持部10は、下方センター11と、上方センター12とを備えている。下方センター11は、軸状体Wの大径部W1をその下方から同軸に支持している。上方センター12は、軸状体Wの大径部W5をその上方から同軸に支持している。下方センター11及び上方センター12は、軸状体Wを、その中心軸線CLが上下方向に沿ってかつ軸状体Wの一端側(大径部W1がある側)が下方で他端(大径部W5がある側)が上方となるように、軸状体Wを支持している。これら下方センター11及び上方センター12間に、軸状体Wが中心軸線CLを中心として回転可能に配置されている。このように軸状体Wを軸支した下方センター11及び上方センター12は、支持部10に備わる軸状体回転モータ(不図示)からの駆動力を受けた場合に、軸状体Wを中心軸線CL回りに回転させる。
 図1に示すように、誘導加熱部20は、複数のコイルとコイル支持台28とを有する。
 本実施形態では、複数のコイルとして、上側コイル21と下側コイル22との2つを採用している。これら上側コイル21と下側コイル22は、互いに同一構成を有する。よって、まずは上側コイル21について以下に説明し、そして下側コイル22については上側コイル21と同じであるとして同一符号を用いることにより重複説明を省略する。なお、軸状体Wを加熱するコイルは、上側コイル21と下側コイル22の2つに限らない。3つ以上のコイルを移動中心線の方向に重ねてもよい。
 図2(a)に示すように、上側コイル21は、移動中心線(中心軸線CL)の周りに環状に配置された一対の分割コイル21Aを有している。各分割コイル21Aは、コイル本体部21aと、第1導線部21bと、第2導線部21cとを有する。
 コイル本体部21aは、中心軸線CLを中心として半径方向に凸となる円弧形状を有している。コイル本体部21aの内周面は、中心軸線CLを中心とする凹状の円弧面になっており、小径部W3の外周面に対して周方向で一定の隙間寸法gをあけて配置されている。コイル本体部21aは、軸状体Wの周方向おけるおよそ半周部分(180°部分)の範囲を誘導加熱する。なお、コイル本体部21aの形状としては、円弧形状に代わり、中心軸線CLから離れる方向に向かって凸となるL字形状あるいはV字形状を採用してもよい。
 第1導線部21bは、コイル本体部21aの一端に対して電気的及び機械的に接続されており、ほぼ径方向の外方に向かって真っ直ぐに延在している。第2導線部21cは、コイル本体部21aの他端に対して電気的及び機械的に接続されており、ほぼ径方向の外方に向かって真っ直ぐに延在している。第1導線部21b及び第2導線部21cは、共通の直線上に沿うように延在する。
 上記構成を有する一対の分割コイル21Aは、2つのコイル本体部21aの組み合わせにより、軸状体Wの周囲に同軸に配置された1つの加熱コイルを形成している。そして、小径部W3を誘導加熱する際には、一対の分割コイル21A間の相対位置を狭めることで、小径部W3の周囲に前記隙間gを置いて一対のコイル本体部21aが配置される。
 一方、図2(b)に示すように大径部W1,W5を誘導加熱する際には、一対の分割コイル21A間の相対位置を拡げることにより、大径部W1,W5の周囲に一対のコイル本体部21aが配置される。
 そして、段差部W2,W4を誘導加熱する際には、段差部の外径変化に応じて一対の分割コイル21A間の相対位置を拡げていく、あるいは、狭めていくことにより、段差部W2,W4の周囲に一対のコイル本体部21aが配置される。
 なお、軸状体Wの加熱箇所の外径に応じて一対の分割コイル21A間の相対位置を調整する際には、その加熱箇所に干渉しない範囲で、隙間gが最小となるように調整する。
 以上が上側コイル21の説明であるが、その分割コイル21Aを、下側コイル22の分割コイルと区別して説明するために、以下の説明では、下側コイル22の分割コイルについては符号22Aを付与して説明するものとする。
 図1に示すように、上側コイル21及び下側コイル22は、下側コイル22の上に上側コイル21を重ねるように同軸配置されている。すなわち、下側コイル22の各コイル本体部21aの上に上側コイル21の各コイル本体部21aを同軸に重ねるように配置されている。なお、下側コイル22と上側コイル21の周方向配置については、平面視したときに、下側コイル22の第1導線部21b及び第2導線部21cと上側コイル21の第1導線部21b及び第2導線部21cとが互いに重なるように配置してもよい。
 あるいは、平面視したときに、下側コイル22の各第1導線部21b及び各第2導線部21cと上側コイル21の各第1導線部21b及び各第2導線部21cとが互いに重ならないように配置してもよい。この場合、下側コイル22の各第1導線部21b間に形成される隙間(非加熱範囲)と各第2導線部21c間に形成される隙間(非加熱範囲)とを、上側コイル21の各コイル本体部21aによる加熱によってカバーすることができる。逆に、上側コイル21の各第1導線部21b間に形成される隙間(非加熱範囲)と各第2導線部21c間に形成される隙間(非加熱範囲)とを、下側コイル22の各コイル本体部21aによる加熱によってカバーすることもできる。
 また、上側コイル21及び下側コイル22のそれぞれにおいて、コイルの分割数を2つとしたが、2つに限らず3つ以上としてもよい。例えば分割数を3つとした場合には、一つの分割コイルで、軸状体Wの周方向における約120°の角度範囲を加熱することになる。
 以上に説明した上側コイル21及び下側コイル22は、断面が角形の中空管を曲げ加工及びロウ付け加工などして製造されたものであり、通電性を有する。そして、第1導線部21b及び第2導線部21cの各端部は、図1に示す電源60のカーレントトランス61に電気的及び機械的に連結されている。カーレントトランス61は、上側コイル21及び下側コイル22に高周波電流を流す。
 また、上側コイル21及び下側コイル22は、その管内に冷却液を流すことにより、これら上側コイル21及び下側コイル22を冷却可能としている。
 図1に戻り、コイル支持台28は、上側コイル21及び下側コイル22を移動中心線の延在方向に重ねた状態で、軸状体Wと同軸に支持する。コイル支持台28は、第1ガイド部及び第2ガイド部(不図示)と、第1分割コイル駆動部28a及び第2分割コイル駆動部28bと、支持台本体28cとを有する。
 支持台本体28cには、前記第1ガイド部及び前記第2ガイド部と、第1分割コイル駆動部28a及び第2分割コイル駆動部28bとが固定されている。支持台本体28cは、ステー28dを介して、後述のカーレントトランス61に接続及び支持されている。
 前記第1ガイド部は、図2(a),(b)に示したように、上側コイル21の各分割コイル21A間を互いに接近離間自在にガイドする。前記第1ガイド部としては、前記接近離間方向に沿って敷設されたリニアガイドを例示できる。
 第1分割コイル駆動部28aは、各分割コイル21Aに対し、これらの間を互いに接近離間させる駆動力を与える。第1分割コイル駆動部28aとしては、ステッピングモータ及びボールねじの組み合わせを用いることができる。なお、本実施形態では、各分割コイル21Aのそれぞれに1つずつ第1分割コイル駆動部28aを設けているが、この構成に限らず、1つの第1分割コイル駆動部28aを共通の駆動源として、一対の分割コイル21Aを互いに接近離間させてもよい。
 前記第2ガイド部も、前記第1ガイド部と同様に、下側コイル22の各分割コイル22A間を互いに接近離間自在にガイドする。前記第2ガイド部としては、前記接近離間方向に沿って敷設されたリニアガイドを例示できる。
 第2分割コイル駆動部28bは、各分割コイル22Aに対し、これらの間を互いに接近離間させる駆動力を与える。第2分割コイル駆動部28bとしては、ステッピングモータ及びボールねじの組み合わせを用いることができる。なお、本実施形態では、各分割コイル22Aのそれぞれに1つずつ第2分割コイル駆動部28bを設けているが、この構成に限らず、1つの第2分割コイル駆動部28bを共通の駆動源として、一対の分割コイル22Aを互いに接近離間させてもよい。
 図1に示すように、冷却部30は、冷却環31と、冷却環支持ステー32と、冷却液循環ポンプ33とを備える。
 冷却環31は、環状に形成されている。冷却環31内には内部空間31aが形成されている。冷却環31の内周面には、内部空間31aに連通する複数のノズル31bが周方向に互いに離間して形成されている。冷却環31の内部には、軸状体Wが同軸に挿入される。冷却環31は、各分割コイル21よりも下方に配置されている。
 冷却環31は、冷却環支持ステー32を介して冷却液循環ポンプ33に連結及び支持されている。冷却液循環ポンプ33は、水等の冷却液Lを冷却環31の内部空間31a内に供給する。内部空間31aに供給された冷却液Lは、複数のノズル31bを通して軸状体Wに向かって噴出し、軸状体Wを冷却する。
 図1に示す移動部40は、支え板41と、ピニオンギヤ42と、モータ43とラック44とを有する。
 支持台本体28c、カーレントトランス61、冷却環31、及び冷却液循環ポンプ33は、支え板41に固定されている。支え板41には、ピニオンギヤ42が回転自在に固定されている。支え板41には、ピニオンギヤ42を回転駆動するモータ43が取付けられている。
 支え板41は、図示されないガイドレールを介してラック44に連結されている。支え板41は、前記ガイドレールにより、ラック44に対して相対的に上下方向に移動自在となっている。そして、ピニオンギヤ42は、ラック44の歯に対して噛合している。そのため、制御部50がモータ43を駆動させると、ピニオンギヤ42が回転し、ラック44に対して支え板41が上方又は下方に移動する。
 図3に示すように、上側コイル21及び下側コイル22は、電源60に対して並列接続されている。すなわち、上側コイル21の一端(各分割コイル21Aそれぞれの一端)と、下側コイル22の一端(各分割コイル22Aそれぞれの一端)との間が、可変抵抗器62を介して電気的に接続されている。そして、この可変抵抗器62に、電源60の一端から伸びる配線63に接続されたスライダー63aが電気的に接続されている。
 また、上側コイル21の他端(各分割コイル21Aそれぞれの他端)と、下側コイル22の他端(各分割コイル22Aそれぞれの他端)との間が、配線64を介して電気的に接続されている。そして、この配線64に、電源60の他端が配線65を介して電気的に接続されている。
 上記構成によれば、電源から流れる電流が配線63及び可変抵抗器62を介して、上側コイル21及び下側コイル22に流れる。この時、制御部50がスライダー63aを制御することにより、上側コイル21に流れる電流値と下側コイル22に流れる電流値とを調整することができる。したがって、軸状体Wの加熱箇所に応じて、上側コイル21に流れる電流値と下側コイル22に流れる電流値とを同じにしたり、あるいは異ならせたりすることができる。
 制御部50は、不図示の演算回路及びメモリを備えている。前記メモリには、前記演算回路を駆動するための制御プログラム等が記憶されている。
 制御部50は、カーレントトランス61、第1分割コイル駆動部28a、第2分割コイル駆動部28b、スライダー63a、冷却液循環ポンプ33、モータ43、及び前記軸状体回転モータに接続され、これらを制御する。
 例えば、軸状体Wの小径部W3を移動焼入れする際には、制御部50が第1分割コイル駆動部28a及び第2分割コイル駆動部28bを制御することにより、図2(a)に示したように一対の分割コイル22A間の配置間隔を最小とする。一方、軸状体Wの大径部W1,W5を移動焼入れする際には、制御部50によって第1分割コイル駆動部28a及び第2分割コイル駆動部28bを制御することにより、図2(b)に示したように一対の分割コイル22A間の開きを最大とする。
 また、軸状体Wの段差部W2,W4を移動焼入れする際には、制御部50によって第1分割コイル駆動部28a及び第2分割コイル駆動部28bを制御することにより、中心軸線CLに沿う長手方向における段差部W2,W4の径変化に追従して、一対の分割コイル21A間及び一対の分割コイル22A間を開いたり閉じたりさせる。
<移動焼入れ方法>
 次に、本実施形態の移動焼入れ方法について説明する。
 図4は、本実施形態における移動焼入れ方法を示すフローチャートである。
 軸状体Wは、予め、支持部10により中心軸線CLが上下方向に沿うように支持されている。
 まず、配置工程S1において、制御部50は、モータ43を駆動して、上側コイル21及び下側コイル22を大径部W1よりも下方に配置させる。その上で、制御部50は、前記軸状体回転モータを制御して軸状体Wを中心軸線CL回りに回転させる。
 続いて、制御部50は、カーレントトランス61を駆動して上側コイル21及び下側コイル22に高周波電流を流す。この時、制御部50はスライダー63aを制御することにより、上側コイル21に流す電流値と下側コイル22に流す電流値とを同じにする。
 さらに制御部50は、冷却液循環ポンプ33を駆動して、冷却環31の複数のノズル31bから冷却液Lを軸状体Wに向かって噴出させる。また、上側コイル21及び下側コイル22のそれぞれに冷却液を供給してこれらの冷却も開始する。
 さらに制御部50は、第1分割コイル駆動部28a及び第2分割コイル駆動部28bを制御して、上側コイル21の各分割コイル21A間の間隔と、下側コイル22の各分割コイル22A間の間隔とを、大径部W1の外径寸法に合わせて開く。
 配置工程S1が終了すると、第1焼入れ工程S2に移行する。
 続く第1焼入れ工程S2において、制御部50は、モータ43を駆動することにより、上側コイル21及び下側コイル22を一体にして上方向に移動させる。すると、上側コイル21及び下側コイル22により、大径部W1がその下端から上端に向かって誘導加熱されていく。すなわち、上側コイル21及び下側コイル22を流れる高周波電流により、軸状体Wの大径部W1の表面に渦電流が流れ、この渦電流によって大径部W1が誘導加熱される。この時、上側コイル21に供給される電流値と下側コイル22に供給される電流値とが同じであるため、これら上側コイル21及び下側コイル22が軸状体Wに付与する加熱量は、互いに同じとなる。
 そして、下側コイル22に続いて冷却環31が通過する際に、冷却液Lが加熱後の大径部W1の外周面に吹き付けられる。これにより加熱後の大径部W1が急速冷却されて焼入れされる。
 続く第2焼入れ工程S3では、上方に向かって徐々に縮径する段差部W2を誘導加熱していく。上記第1焼入れ工程では、上側コイル21及び下側コイル22のそれぞれにおいて、各分割コイル21A間の間隔及び各分割コイル22A間の間隔を一定に保っていたが、本第2焼入れ工程S3では、各分割コイル21A間の間隔及び各分割コイル22A間の間隔を徐々に狭めていく。すなわち、段差部W2をその下端から上端に向かって誘導加熱していく際、制御部50は、第1分割コイル駆動部28a及び第2分割コイル駆動部28bを制御することにより、段差部W2とのエアーギャップが一定に維持されるよう、各分割コイル21A間の間隔及び各分割コイル22A間の間隔を狭めていく。
 この時、軸状体Wの段差部W2においては、各分割コイル21A,22Aを流れる高周波電流によりその表面に渦電流が流れ、この渦電流によって誘導加熱される。さらに、各分割コイル21A,22Aに続いて冷却環31が通過する際に、冷却液Lが加熱後の段差部W2の外周面に吹き付けられる。これにより加熱後の段差部W2が急速冷却されて焼入れされる。
 続く第3焼入れ工程S4では、外径寸法が最小かつ長手方向に沿って一定である小径部W3を誘導加熱していく。上記第2焼入れ工程S3では、各分割コイル21A間の間隔及び各分割コイル22A間の間隔を徐々に狭めていったが、本第3焼入れ工程S4では、各分割コイル21A間の間隔及び各分割コイル22A間の間隔が最小となるように一定に保ち続ける。
 すなわち、小径部W3をその下端から上端に向かって誘導加熱していく際、制御部50は、第1分割コイル駆動部28a及び第2分割コイル駆動部28bを制御することにより、小径部W3とのエアーギャップが一定に維持されるよう、各分割コイル21A間の間隔及び各分割コイル22A間の間隔を一定に維持する。この時の各分割コイル21Aの配置状態が、図2(a)となる。
 一方、軸状体Wの小径部W3においては、各分割コイル21A及び各分割コイル22Aを流れる高周波電流によりその表面に渦電流が流れ、この渦電流によって誘導加熱される。そして、各分割コイル21A及び各分割コイル22Aに続いて冷却環31が通過する際に、冷却液Lが加熱後の小径部W3の外周面に吹き付けられる。これにより加熱後の小径部W3が急速冷却されて焼入れされる。
 続く第4焼入れ工程S5では、上方に向かって徐々に拡径する段差部W4を誘導加熱していく。上記第3焼入れ工程S4では、各分割コイル21A間の間隔及び各分割コイル22A間の間隔を一定に保っていたが、本第4焼入れ工程S5では、各分割コイル21A間の間隔及び各分割コイル22A間の間隔を徐々に拡げていく。
 すなわち、両分割コイル21A間において段差部W4をその下端から上端に向かって誘導加熱していく際、制御部50は、第1分割コイル駆動部28a及び第2分割コイル駆動部28bを制御することにより、段差部W4とのエアーギャップが一定に維持されるよう、各分割コイル21A間の間隔及び各分割コイル22A間の間隔を拡げていく。
 一方、軸状体Wの段差部W4においては、各分割コイル21A及び各分割コイル22Aを流れる高周波電流によりその表面に渦電流が流れ、この渦電流によって誘導加熱される。さらに、各分割コイル21A及び各分割コイル22Aに続いて冷却環31が通過する際に、冷却液Lが加熱後の段差部W4の外周面に吹き付けられる。これにより加熱後の段差部W4が急速冷却されて焼入れされる。
 続く第5焼入れ工程S6では、外径寸法が最大かつ長手方向に沿って一定である大径部W5を誘導加熱していく。上記第4焼入れ工程S5では各分割コイル21A間の間隔及び各分割コイル22A間の間隔を徐々に広げていったが、本第5焼入れ工程S6では、各分割コイル21A間の間隔及び各分割コイル22A間の間隔が最大となるように一定に保ち続ける。
 すなわち、大径部W5をその下端から上端に向かって誘導加熱していく際、制御部50は、第1分割コイル駆動部28a及び第2分割コイル駆動部28bを制御することにより、大径部W5とのエアーギャップが一定に維持されるよう、各分割コイル21A間の間隔及び各分割コイル22A間の間隔を一定に維持する。この時の各分割コイル21A及び各分割コイル22Aの配置状態が、図2(b)となる。
 一方、軸状体Wの大径部W5においては、各分割コイル21A及び各分割コイル22Aを流れる高周波電流によりその表面に渦電流が流れ、この渦電流によって誘導加熱される。さらに、各分割コイル21に続いて冷却環31が通過する際に、冷却液Lが加熱後の大径部W5の外周面に吹き付けられる。これにより加熱後の大径部W5が急速冷却されて焼入れされる。
 以上説明の各工程S1~S6により、軸状体Wがその全長にわたって焼入れされ、全工程が完了する。全長にわたって移動焼入れされた軸状体Wは、移動焼入れの実施前に比べて、その硬度が増している。
 ここで、本開示の移動焼入れ方法では、上側コイル21及び下側コイル22が、大径部W1から段差部W2を経て小径部W3に至る過程と、小径部W3から段差部W4を経て大径部W5に至る過程とのそれぞれにおいて、制御部50が、第1分割コイル駆動部28a及び第2分割コイル駆動部28bを個別に制御する。その結果、上側コイル21及び下側コイル22のそれぞれを独立して軸状体Wの外周面に対して接近離間させられるので、例えば図5に示すように、上側コイル21及び下側コイル22のそれぞれを、軸状体Wの外径変化に対応しながら外周面に沿わせることができる。
 図5は、小径部W3から段差部W4を経て大径部W5に至る過程を示す図であり、(a)では小径部W3を上側コイル21及び下側コイル22の両方により加熱し、(b)では小径部W3を下側コイル22により加熱する一方で段差部W4を上側コイル21により加熱し、(c)では大径部W5を上側コイル21及び下側コイル22の両方により加熱している状態を示している。
 まず、図5(a)に示すように、小径部W3を誘導加熱する際には、制御部50が第1分割コイル駆動部28a及び第2分割コイル駆動部28bを制御することにより、上側コイル21及び下側コイル22の両方を、小径部W3の外周面に対して互いに等しいエアーギャップが確保されるように接近させる。その結果、上側コイル21及び下側コイル22それぞれの内周面が、移動中心線(中心軸線CL)からの距離が互いに等しい位置に配置される。そして、この状態のまま、上側コイル21及び下側コイル22を上方に向かって移動させながら移動焼入れを行う。
 以上説明のように、図5(a)では、上側コイル21による第3焼入れ工程S4と下側コイル22による第3焼入れ工程S4とが同時並行で行われる。
 続く図5(b)では、第3焼入れ工程S4に続いて第4焼入れ工程S5が行われる。
 すなわち、小径部W3の上端までの誘導加熱を終えた上側コイル21は、制御部50からの指示を受けた第1分割コイル駆動部28aによって径方向外側に向けて徐々に移動させられながら、段差部W4を移動焼入れする。この移動焼入れの際、制御部50は、上側コイル21の内周面と段差部W4の外周面との間に形成されるエアーギャップが常に一定に保たれるように制御する。段差部W4の上端まで移動焼入れした後の上側コイル21は、大径部W5の下端周囲に至る。
 一方、この時の下側コイル22は、小径部W3の上端に至るまで、移動中心線(中心軸線CL)から一定距離の位置に維持されたまま、小径部W3の誘導加熱を継続して行う。そして、小径部W3の上端までの誘導加熱を終えた下側コイル22は、制御部50からの指示を受けた第2分割コイル駆動部28bによって径方向外側に向けて徐々に移動させられながら、段差部W4を移動焼入れする。この移動焼入れの際、制御部50は、下側コイル22の内周面と段差部W4の外周面との間に形成されるエアーギャップが常に一定に保たれるように制御する。
 以上説明のように、図5(b)では、下側コイル22による第3焼入れ工程S4と、上側コイル21による第4焼入れ工程S5とが同時並行で行われる。
 続く図5(c)では、第5焼入れ工程S6が行われる。
 すなわち、制御部50が第1分割コイル駆動部28a及び第2分割コイル駆動部28bを制御することにより、上側コイル21及び下側コイル22の両方を、大径部W5の外周面に対して互いに等しいエアーギャップが確保されるように接近させる。その結果、上側コイル21及び下側コイル22それぞれの内周面が、移動中心線(中心軸線CL)からの距離が互いに等しい位置に配置される。そして、この状態のまま、上側コイル21及び下側コイル22を上方に向かって移動させながら移動焼入れを行う。
 以上説明のように、図5(c)では、上側コイル21による第5焼入れ工程S6と下側コイル22による第5焼入れ工程S6とが同時並行で行われる。
 以上では、小径部W3から段差部W4を経て大径部W5までを加熱する工程を示したが、大径部W1から段差部W2を経て小径部W3までを加熱する工程も、同様に、制御部50により上側コイル21及び下側コイル22それぞれの径方向各位置を個別に調整しながら移動焼入れする。
 すなわち、第2焼入れ工程S3では、大径部W1の上端までの誘導加熱を終えた上側コイル21は、制御部50からの指示を受けた第1分割コイル駆動部28aによって径方向内側に向けて徐々に移動させられながら、段差部W2を移動焼入れする。この移動焼入れの際、制御部50は、上側コイル21の内周面と段差部W2の外周面との間に形成されるエアーギャップが常に一定に保たれるように制御する。段差部W2の上端まで移動焼入れした後の上側コイル21は、小径部W3の下端周囲に至る。
 一方、この時の下側コイル22は、大径部W5の上端に至るまで、移動中心線(中心軸線CL)から一定距離の位置に維持されたまま、大径部W5の誘導加熱を継続して行う。そして、大径部W5の上端までの誘導加熱を終えた下側コイル22は、制御部50からの指示を受けた第2分割コイル駆動部28bによって径方向内側に向けて徐々に移動させられながら、段差部W2を移動焼入れする。この移動焼入れの際、制御部50は、下側コイル22の内周面と段差部W2の外周面との間に形成されるエアーギャップが常に一定に保たれるように制御する。
 以上説明のように、下側コイル22による第1焼入れ工程S2と、上側コイル21による第2焼入れ工程S3とが同時並行で行われる。
 以上説明の配置工程S1~第5焼入れ工程S6では、軸状体Wに対する各分割コイル21A及び各分割コイル22A及び冷却環31の上方への移動を停止させずに継続させながら、移動焼入れを実施する。よって、例えば第4焼入れ工程S5から第5焼入れ工程S6に移る際も、各分割コイル21A、各分割コイル22A、及び冷却環31の移動速度を一定に保ったまま、移動焼入れを進める。この時、例えば、図5(a)に示す、段差部W4と大径部W5との間に形成される角部eのように、部分的に十分な加熱量を与える必要がある部分がある。
 そのような箇所の加熱に際しては、上側コイル21及び下側コイル22のそれぞれが通過する際の移動速度を遅くすることも考えられる。しかし、その場合は、追従移動する冷却環31の動きも遅くなってしまうので、冷却環31の移動速度を中心軸線CL方向で一定にできず、冷却ムラが発生してしまう。
 これに対し、本実施形態の移動焼入れ装置では、図3に示したように、各分割コイル21Aにおける電流値と各分割コイル22Aにおける電流値とを、制御部50が個別に制御するので、軸状体Wの加熱箇所に適した電流値にそれぞれを調整できる。例えば、前記角部eを各分割コイル21Aで加熱する際には、各分割コイル21Aにおける電流値を高めにすることで、各分割コイル21Aの移動速度を下げることなく角部を十分に加熱できる。よって、この移動焼入れ装置では上側コイル21の移動速度を落とさずに済むので、上述した冷却ムラが生じない。
 以上に説明した各実施形態及び変形例の骨子を以下に纏める。
[1]本開示の一態様に係る移動焼入れ装置は、
 相対的に外径が大きい大径部(W1,W5)と相対的に外径が小さい小径部(W3)とが段差部(W2,W4)を介して連なる軸状体(W)に移動焼入れを行う装置であって、
 移動中心線上の第1の位置において前記移動中心線の周りに環状に配置された複数の第1分割コイル(21A)と;
 前記移動中心線上の、前記第1の位置と異なる第2の位置において前記移動中心線の周りに環状に配置された複数の第2分割コイル(22A)と;
 前記各第1分割コイル(21A)を、前記移動中心線に対して接近離間させる第1分割コイル駆動部(28a)と;
 前記各第2分割コイル(22A)を、前記移動中心線に対して接近離間させる第2分割コイル駆動部(28b)と;
 前記第1分割コイル駆動部(28a)及び前記第2分割コイル駆動部(28b)を制御する制御部(50)と;
を備える。
[2]上記[1]に記載の移動焼入れ装置において、以下の構成を採用してもよい:
 高周波電源(60)をさらに備え;
 前記制御部(50)が、前記高周波電源(60)から前記各第1分割コイル(21A)に流す高周波電流の電流値と、前記高周波電源(60)から前記各第2分割コイル(22A)に流す高周波電流の電流値とを、個別に制御する。
[3]上記[2]に記載の移動焼入れ装置において、以下の構成を採用してもよい:
 前記各第1分割コイル(21A)と前記各第2分割コイル(22A)との間を電気的に接続すると共に前記高周波電源(60)からの前記高周波電流を流す可変抵抗器(62)をさらに備え;
 前記制御部(50)が、前記可変抵抗器(62)を制御しながら、前記高周波電源(60)からの前記高周波電流を前記各第1分割コイル(21A)と前記各第2分割コイル(22A)とに分配供給する。
[4]本開示の一態様に係る移動焼入れ方法は、
 相対的に外径が大きい大径部(W1,W5)と相対的に外径が小さい小径部(W3)とが段差部(W2,W4)を介して連なる軸状体(W)に移動焼入れを行う方法であって、
 移動中心線上の第1の位置において前記移動中心線の周りに環状に配置された複数の第1分割コイル(21A)と、移動中心線上の第2の位置において前記移動中心線の周りに環状に配置された複数の第2分割コイル(22A)とを用いて前記軸状体(W)を前記移動焼入れし;
 前記移動焼入れの際に、前記各第1分割コイル(21A)及び前記各第2分割コイル(22A)を、個別に、前記軸状体(W)の外周面に対して接近離間させる。
[5]上記[4]に記載の移動焼入れ方法において、前記移動焼入れの際に、前記各第1分割コイル(21A)に流す高周波電流の電流値と、前記各第2分割コイル(22A)に流す高周波電流の電流値とを、個別に制御してもよい。
 以下では、従来の一巻き分割コイルを用いた移動焼入れ装置により誘導加熱を実施した比較例と、上記第1実施形態に基づく分割コイル21A,22Aを用いた移動焼入れ装置により誘導加熱を実施した実施例とのそれぞれをシミュレーションした結果について、説明する。
 図6は、シミュレーション結果を示す図であって、図1のB部を含む部分の縦断面図である。(a)が従来例を示し、(b)が実施例を示す。このシミュレーションでは、大径部W5の外径を200mmとし、小径部W3の外径を170mmとした。軸状体Wの材質は、炭素鋼とした。
 シミュレーションの結果、図6(a)に示す比較例では、角部eにおける最大加熱温度が1287℃であった。また、コイルに流した電流値は、28000A~45000Aであった。そして、所定長さの移動焼入れが完了するまでにかかった時間は131秒間であった。
 一方、図6(b)に示す実施例では、角部eにおける最大加熱温度が1278℃であった。また、各コイルに流した電流値は、12600A~20250Aであった。そして、所定長さの移動焼入れが完了するまでにかかった時間は132秒間であった。
 以上の結果より、一巻きのコイルを用いる比較例に比べて、二巻きのコイルを用いる実施例では、同等の加熱を行うに際して要した最大電流が半分となり、電流値を大幅に下げられることが確認できた。
 本開示の移動焼入れ装置及び移動焼入れ方法によれば、大電流に伴う分割コイルの過加熱や短絡を抑制しながら段付軸を移動焼入れすることができる。
 21A 第1分割コイル
 22A 第2分割コイル
 28a 第1分割コイル駆動部
 28b 第2分割コイル駆動部
 50 制御部
 60 高周波電源
 62 可変抵抗器
 W 軸状体
 W1,W5 大径部
 W2,W4 段差部
 W3 小径部

Claims (5)

  1.  相対的に外径が大きい大径部と相対的に外径が小さい小径部とが段差部を介して連なる軸状体に移動焼入れを行う装置であって、
     移動中心線上の第1の位置において前記移動中心線の周りに環状に配置された複数の第1分割コイルと;
     前記移動中心線上の、前記第1の位置と異なる第2の位置において前記移動中心線の周りに環状に配置された複数の第2分割コイルと;
     前記各第1分割コイルを、前記移動中心線に対して接近離間させる第1分割コイル駆動部と;
     前記各第2分割コイルを、前記移動中心線に対して接近離間させる第2分割コイル駆動部と;
     前記第1分割コイル駆動部及び前記第2分割コイル駆動部を制御する制御部と;
    を備えることを特徴とする移動焼入れ装置。
  2.  高周波電源をさらに備え;
     前記制御部が、前記高周波電源から前記各第1分割コイルに流す高周波電流の電流値と、前記高周波電源から前記各第2分割コイルに流す高周波電流の電流値とを、個別に制御する;
    ことを特徴とする請求項1に記載の移動焼入れ装置。
  3.  前記各第1分割コイルと前記各第2分割コイルとの間を電気的に接続すると共に前記高周波電源からの前記高周波電流を流す可変抵抗器をさらに備え;
     前記制御部が、前記可変抵抗器を制御しながら、前記高周波電源からの前記高周波電流を前記各第1分割コイルと前記各第2分割コイルとに分配供給する;
    ことを特徴とする請求項2に記載の移動焼入れ装置。
  4.  相対的に外径が大きい大径部と相対的に外径が小さい小径部とが段差部を介して連なる軸状体に移動焼入れを行う方法であって、
     移動中心線上の第1の位置において前記移動中心線の周りに環状に配置された複数の第1分割コイルと、移動中心線上の第2の位置において前記移動中心線の周りに環状に配置された複数の第2分割コイルとを用いて前記軸状体を前記移動焼入れし;
     前記移動焼入れの際に、前記各第1分割コイル及び前記各第2分割コイルを、個別に、前記軸状体の外周面に対して接近離間させる;
    ことを特徴とする移動焼入れ方法。
  5.  前記移動焼入れの際に、前記各第1分割コイルに流す高周波電流の電流値と、前記各第2分割コイルに流す高周波電流の電流値とを、個別に制御する
    ことを特徴とする請求項4に記載の移動焼入れ方法。
PCT/JP2022/025739 2022-06-28 2022-06-28 移動焼入れ装置及び移動焼入れ方法 WO2024004027A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025739 WO2024004027A1 (ja) 2022-06-28 2022-06-28 移動焼入れ装置及び移動焼入れ方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025739 WO2024004027A1 (ja) 2022-06-28 2022-06-28 移動焼入れ装置及び移動焼入れ方法

Publications (1)

Publication Number Publication Date
WO2024004027A1 true WO2024004027A1 (ja) 2024-01-04

Family

ID=89382237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025739 WO2024004027A1 (ja) 2022-06-28 2022-06-28 移動焼入れ装置及び移動焼入れ方法

Country Status (1)

Country Link
WO (1) WO2024004027A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108188A (ja) * 2013-10-25 2015-06-11 高周波熱錬株式会社 誘導加熱装置及び方法並びに熱処理装置及び方法
WO2019181382A1 (ja) * 2018-03-23 2019-09-26 日本製鉄株式会社 移動焼入れ装置及び移動焼入れ方法
WO2020235602A1 (ja) * 2019-05-23 2020-11-26 日本製鉄株式会社 移動焼入れ装置及び移動焼入れ方法
WO2021006062A1 (ja) * 2019-07-09 2021-01-14 日本製鉄株式会社 移動焼入れ装置及び移動焼入れ方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108188A (ja) * 2013-10-25 2015-06-11 高周波熱錬株式会社 誘導加熱装置及び方法並びに熱処理装置及び方法
WO2019181382A1 (ja) * 2018-03-23 2019-09-26 日本製鉄株式会社 移動焼入れ装置及び移動焼入れ方法
WO2020235602A1 (ja) * 2019-05-23 2020-11-26 日本製鉄株式会社 移動焼入れ装置及び移動焼入れ方法
WO2021006062A1 (ja) * 2019-07-09 2021-01-14 日本製鉄株式会社 移動焼入れ装置及び移動焼入れ方法

Similar Documents

Publication Publication Date Title
EP3770285B1 (en) Traverse hardening device and traverse hardening method
MX2012011957A (es) Tratamiento termico por induccion de una pieza de trabajo anular.
JP7151888B2 (ja) 移動焼入れ装置及び移動焼入れ方法
WO2015136927A1 (ja) 熱処理装置および熱処理方法
JP7168086B2 (ja) 移動焼入れ装置及び移動焼入れ方法
WO2024004027A1 (ja) 移動焼入れ装置及び移動焼入れ方法
JP2004052013A (ja) 高周波誘導加熱コイル体
JP7311811B2 (ja) 移動焼入れ装置及び移動焼入れ方法
WO2024004142A1 (ja) 移動焼入れ装置
JP4559779B2 (ja) クランクシャフトの誘導焼入方法
JP2017218654A (ja) カムシャフトの高周波焼入れ方法
JP2008150661A (ja) 焼戻用加熱コイル
JP7226539B2 (ja) 2次コイルモジュール、移動焼入れ装置及び移動焼入れ方法
WO2024057405A1 (ja) 移動焼入れ方法及び移動焼入れ装置
JP2023512702A (ja) ベアリングコンポーネントの複数の特徴部分を同時に加熱するためのスプリットマルチコイル電気誘導加熱処理システム
JP2013023740A (ja) 高周波誘導加熱コイル及び高周波誘導加熱方法
JP2008214698A (ja) 高周波焼き入れ装置及び方法
JP6671830B2 (ja) 熱処理装置
JP5667786B2 (ja) 誘導加熱装置及び誘導加熱方法
JP6290714B2 (ja) カムシャフトの誘導加熱装置、並びに、カムシャフトの誘導加熱方法
JP2632106B2 (ja) 高周波加熱コイル
JP5527154B2 (ja) 軸状部材の高周波焼入装置
WO2024057406A1 (ja) 移動焼入れ方法及び移動焼入れ装置
JPH0328486B2 (ja)
JP2001081513A (ja) 段付きシャフトの高周波加熱コイル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949304

Country of ref document: EP

Kind code of ref document: A1