WO2024002369A1 - 换电站和阵列式换电站 - Google Patents

换电站和阵列式换电站 Download PDF

Info

Publication number
WO2024002369A1
WO2024002369A1 PCT/CN2023/105244 CN2023105244W WO2024002369A1 WO 2024002369 A1 WO2024002369 A1 WO 2024002369A1 CN 2023105244 W CN2023105244 W CN 2023105244W WO 2024002369 A1 WO2024002369 A1 WO 2024002369A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
battery
power
driving direction
frame
Prior art date
Application number
PCT/CN2023/105244
Other languages
English (en)
French (fr)
Inventor
张建平
黄春华
Original Assignee
奥动新能源汽车科技有限公司
上海电巴新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥动新能源汽车科技有限公司, 上海电巴新能源科技有限公司 filed Critical 奥动新能源汽车科技有限公司
Publication of WO2024002369A1 publication Critical patent/WO2024002369A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S5/00Servicing, maintaining, repairing, or refitting of vehicles
    • B60S5/02Supplying fuel to vehicles; General disposition of plant in filling stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S5/00Servicing, maintaining, repairing, or refitting of vehicles
    • B60S5/06Supplying batteries to, or removing batteries from, vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G35/00Mechanical conveyors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F7/00Lifting frames, e.g. for lifting vehicles; Platform lifts
    • B66F7/10Lifting frames, e.g. for lifting vehicles; Platform lifts with platforms supported directly by jacks
    • B66F7/16Lifting frames, e.g. for lifting vehicles; Platform lifts with platforms supported directly by jacks by one or more hydraulic or pneumatic jacks
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H5/00Buildings or groups of buildings for industrial or agricultural purposes
    • E04H5/02Buildings or groups of buildings for industrial purposes, e.g. for power-plants or factories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/26Supply reservoir or sump assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the internal equipment of the power swap station in the prior art may have unreasonable layout, which results in the power swap station occupying a large area, and the construction conditions and costs are relatively high; and the existing power swap station usually requires lifting the car to swap power.
  • the battery swapping process is cumbersome and has certain safety risks, and the battery swapping efficiency is also relatively low; when the battery swapping station is built in an area with low traffic flow and low operating pressure, there may be excess equipment within the battery swapping station, resulting in a loss of battery swapping resources. Wasteful situation.
  • the existing battery swapping stations occupy a large area, have long station construction cycles and high costs, and cannot meet the needs of rapid batch station construction in a short period of time.
  • the existing battery swapping stations need to lift the car to swap batteries, which is cumbersome and has certain safety risks; the battery swapping equipment of the existing battery swapping stations has poor versatility for battery packs of different sizes; and The existing battery swapping station has fewer battery swapping stations, the layout of the battery swapping stations is unreasonable, and the overall efficiency is low.
  • a power swap station the power swap station includes a charging rack, battery transfer equipment, a vehicle platform and a power swap equipment; in the driving direction perpendicular to the vehicle, the power swap station is provided with the charging rack, the battery transfer equipment in sequence and the vehicle carrying platform; the battery exchange equipment transports batteries between the battery transfer equipment and the vehicle carrying platform.
  • the vehicle platform can be used for parking vehicles
  • the charging rack can charge the depleted battery
  • the battery transfer equipment can The battery on the charging rack is picked up and placed.
  • the battery swapping equipment can transport the battery between the battery rotating device and the vehicle platform, so that the charged battery on the charging rack is taken out through the battery transfer device and moved to the battery through the battery swapping device.
  • the depleted battery removed from the vehicle is moved to the battery transfer equipment through the battery replacement equipment, and then stored in the charging rack through the battery transfer equipment, thereby realizing the replacement of the battery on the vehicle.
  • the charging rack, battery transfer equipment and vehicle platform are arranged perpendicular to the driving direction of the vehicle, making the layout more reasonable, which can reduce the moving distance of the power swapping equipment during battery pack replacement, making battery pack replacement more efficient.
  • the battery swap station includes a foundation, and the charging rack, the battery transfer equipment and a plurality of the vehicle-carrying platforms are all arranged on the foundation.
  • the foundation plays a bearing and fixing role for the charging rack, battery transfer equipment and vehicle platform.
  • the foundation provides installation space for the charging rack, battery transfer equipment and vehicle platform, which facilitates the installation and fixation of the charging rack, battery transfer equipment and vehicle platform.
  • the mobile channel, battery transfer equipment installation area and vehicle platform installation area are simultaneously set up on the foundation, so that the battery swap equipment, battery transfer equipment and vehicle platform can be integrated into the foundation, which facilitates the mass production of battery swap stations and shortens the station construction cycle. Reduce website building costs.
  • the foundation includes: a moving channel for the power exchange equipment to move in a horizontal direction;
  • the charging rack installation area, the battery transfer equipment installation area and the vehicle platform installation area are connected in a direction perpendicular to the driving direction of the vehicle.
  • the depleted battery is removed through the battery swapping equipment, and the depleted battery is transported to the charging rack through the battery transfer equipment for charging.
  • the battery transfer equipment transports the fully charged battery to the battery swapping device.
  • the device installs a fully charged battery into the vehicle.
  • the charging rack installation area, the battery transfer equipment installation area and the vehicle platform installation area are connected, which can facilitate the battery transfer equipment to transport the battery and is beneficial to the work efficiency of the battery swap station.
  • the depth of the vehicle platform installation area is smaller than the depth of the battery transfer equipment installation area.
  • the above settings enable the vehicle platform to be installed on the foundation without sinking into the moving channel. There is no need to lift the power exchange equipment, and the battery can be transported between the power exchange equipment and the battery transfer equipment, which is beneficial to the work efficiency of the power exchange equipment.
  • the vehicle platform includes a moving door and a moving door driving device.
  • the moving door is installed at the battery replacement port for closing or opening the battery replacement port; the moving door driving device and the mobile door driving device are connected to the mobile door.
  • the door is connected and used to drive the movement of the mobile door;
  • the mobile door driving device includes a horizontal driving device and/or a vertical driving device, the vertical driving device drives the moving door to move in the vertical direction, and the horizontal driving device
  • the driving device drives the moving door to move in the horizontal direction.
  • the movable door can move in the vertical and horizontal directions respectively.
  • the moving door driving device includes a first hydraulic cylinder and a first hydraulic cylinder, and the first hydraulic cylinder is sleeved on the first hydraulic cylinder.
  • a hydraulic cylinder is used to provide power, which is easy to control, can perform stepless speed regulation, and has an overload protection function.
  • the arrangement of the moving door drive device is more flexible, has a simple structure and has large driving force. Lower cost than other drive devices.
  • the first hydraulic cylinder is sleeved on the first hydraulic cylinder, which can increase the stroke of the drive door drive device and reduce the occupied space. It can achieve a wider range of horizontal movement in a limited space and improve the adaptability and efficiency of the equipment.
  • the power exchange equipment includes a lower frame, and the power exchange equipment further includes a length adjustment mechanism and/or a width adjustment mechanism; the length adjustment mechanism is used to drive the lower frame to move along the vehicle driving direction; The width adjustment mechanism is used to adjust the width of the lower frame perpendicular to the driving direction of the vehicle.
  • the position adjustment range and positioning accuracy of the power exchange equipment in the length and width directions are improved, and it can be adapted to more car models and more specifications of batteries. Pool bag, better versatility.
  • the lower frame includes a first frame and a second frame spaced apart along the horizontal displacement direction; the width adjustment mechanism is provided at the interval between the first frame and the second frame, and the width adjustment mechanism It includes two output ends connected to the first frame and the second frame respectively, and the width adjustment mechanism drives the first frame and the second frame to move through the output ends.
  • the lower frame is divided into a first frame and a second frame distributed at intervals, which can reduce space occupation, make the structure more compact, and provide installation space for the width adjustment mechanism.
  • the spacing distance between the first frame and the second frame can be controlled through the width adjustment mechanism, so that it can be matched to more models and battery packs of more specifications, and has wider versatility.
  • the power exchange equipment includes the upper frame
  • the upper frame includes a third frame disposed on the upper part of the first frame and a fourth frame disposed on the upper part of the second frame.
  • the above settings make the distribution of the upper frame match the distribution of the lower frame, resulting in high space utilization.
  • the power exchange equipment further includes a hydraulic oil tank and/or an electronic control device, and the hydraulic oil tank and/or the electronic control device are arranged on the same side of the lower frame.
  • the hydraulic oil tank and/or the electronic control device are placed on the same side of the lower frame, and only need to occupy the space on one side.
  • the structure is compact and the space utilization rate is high.
  • An array type power swap station includes several of the above-mentioned power swap stations; each of the power swap stations includes a charging module and a vehicle platform; in the driving direction perpendicular to the vehicle, the charging module is arranged on One side of the vehicle platform; the charging module includes a charging rack and battery transfer equipment.
  • the vehicle platform can be used for parking vehicles, the charging rack can charge the depleted batteries, the battery transfer equipment can pick up and place the batteries on the charging rack, and the battery replacement equipment can be placed between the battery rotating equipment and the vehicle platform.
  • the battery is transported between the charging racks, so that the charged batteries on the charging rack are taken out through the battery transfer equipment and moved to the vehicle platform through the battery swapping equipment; or the depleted batteries removed from the vehicle are moved through the battery swapping equipment. to the battery transfer equipment, and then stored in the charging rack through the battery transfer equipment, thereby realizing the replacement of the battery on the vehicle.
  • the charging rack, battery transfer equipment and vehicle platform are arranged perpendicular to the driving direction of the vehicle, which can reduce the moving distance during battery pack replacement.
  • the battery pack replacement is more efficient and the layout is more reasonable.
  • the array-type power swap station includes a plurality of the power swap stations arranged in parallel.
  • the above-mentioned layout is regular, making it convenient for vehicles to park on the vehicle platform and perform battery swapping.
  • the vehicle battery swapping process is more orderly. There is no gap between the charging rack, battery transfer equipment, vehicle platform and battery swapping equipment of the battery swap station. It is easy to cause interference and is conducive to the rational layout of the battery swap station.
  • the vehicle platform includes a movable door and a battery replacement port, and the movable door is installed at the battery replacement port for closing or opening the battery replacement port; the movable door includes a relatively detachable
  • the first moving part and the second moving part move horizontally in opposite directions perpendicular to the driving direction of the vehicle to open or close the battery replacement port.
  • the first moving part and the second moving part of the moving door are relatively separable, which reduces the size of the single-block moving door, making it more lightweight and flexible, and also reduces the opening and closing stroke of the single-block moving door.
  • the requirements for the support and drive of the mobile door are reduced, and the service life and reliability of the mobile door are improved.
  • the split setting of the mobile door makes maintenance and replacement easier and more convenient, which can reduce the cost and time of maintenance and replacement, and improve the maintainability and reliability of the entire system.
  • the battery swapping stations are arranged in parallel in the driving direction of the vehicle, there will be no interference between the moving doors of the vehicle platforms of the two adjacent battery swapping stations in the driving direction of the vehicle, and they can be opened or closed at the same time, making the battery swapping stations
  • the size of the vehicle in the driving direction is smaller, which is conducive to the compact installation of multiple battery swap stations and high space utilization.
  • the power swapping station includes a foundation, the foundation includes a moving channel, the moving channel is used for the power swapping equipment to move in a horizontal direction, and the moving channels of the foundations of multiple power swapping stations are parallel. set up.
  • multiple mobile channels are set up in parallel, occupying a small space in the driving direction of the vehicle.
  • the size of the array power swapping station in the driving direction of the vehicle is smaller. Optimizing the layout of the array power swap station is conducive to reducing the floor space and achieving high space utilization.
  • the moving channels of the foundations of two oppositely arranged power swap stations are connected along the traveling direction perpendicular to the vehicle.
  • the moving channel is used to move the power swap equipment in the horizontal direction.
  • the power swap station includes a box, and the charging module is accommodated in the box.
  • the box protects the charging module.
  • the charging module will not be affected by harsh external environments, such as rain or snow, and can still work normally, which is conducive to the operation of the battery swap station and greatly reduces the number of times the battery swap station The maintenance cost is reduced and the service life of the charging module is improved.
  • the distance between any adjacent vehicle platforms or the distance between the vehicle platform and the charging module is greater than the preset gap, so that vehicles on any vehicle platform can drive out or drive in. .
  • the distance between the vehicle on the vehicle platform and the front and rear vehicles as well as the distance between the left and right charging modules and the vehicle are sufficient for the vehicle to be driven out directly without the need to adjust the vehicle's position back and forth.
  • the array-type power swap station includes a first array unit formed by two power swap stations arranged oppositely perpendicular to the driving direction.
  • Each of the power swap stations includes a charging module and a vehicle platform.
  • One of the vehicle-carrying platforms is located between two of the charging modules.
  • the battery removed from the vehicle is charged through the charging module, and the vehicle is parked through the vehicle platform.
  • Operating platform for battery swapping The first array unit includes two battery swap stations, which can replace the batteries of two vehicles at the same time. The two battery swap stations do not affect each other, and the battery swap efficiency is high.
  • a plurality of the first array units arranged in parallel form the array-type power swap station.
  • multiple first array units are arranged in parallel along the driving direction, with a regular layout, making the vehicle battery swapping process more orderly, and providing more battery swapping stations to provide battery swapping services for more vehicles.
  • the charging modules of the plurality of first array units are accommodated in the same box.
  • the box protects the charging module.
  • the charging module will not be affected by the harsh external environment, such as rain or snow, and can still work normally, which increases the service life of the charging module.
  • multiple charging modules Contained in the same box, reducing construction costs.
  • the adjacent vehicle-carrying platforms are on the same straight line.
  • the above settings are adopted so that the multiple vehicle-carrying platforms of the array battery swap station are regularly distributed, and vehicles can enter and exit the vehicle-carrying platform in an orderly manner for battery replacement.
  • two adjacent charging modules are arranged in contact with each other along the driving direction.
  • the above-mentioned contact arrangement is adopted, the layout is compact, and it takes up less space. It can provide a larger number of power-changing stations in a limited space.
  • a backup lane is provided between the two opposite battery swap stations perpendicular to the driving direction; or, between the two opposite battery swap stations perpendicular to the driving direction, There are partitions between rooms.
  • a backup lane By setting up a backup lane, sufficient space can be provided for vehicle passage, which is conducive to the passage and waiting of vehicles. The power exchange of the vehicle in front will not affect the passage of vehicles behind, improving the user experience.
  • the power swap stations in each first array unit will not interfere with each other, and there will be no interference between vehicles, which is safer.
  • the width of the spare lane is greater than the width of the vehicles parked on the vehicle platform.
  • the above-mentioned width relationship between the spare lane and vehicles is used to ensure that there is enough space for vehicles to pass, which is conducive to traffic efficiency.
  • the charging module includes a charging rack and a battery transfer device, and in a direction perpendicular to the driving direction, the vehicle carrying platform, the battery transfer device and the charging rack are arranged in sequence.
  • the replaced battery is charged through the charging rack, and the batteries on the charging rack are replaced and transported through the battery transfer equipment.
  • the foundation plays a bearing and fixing role for the charging rack, battery transfer equipment and vehicle platform.
  • the above-mentioned foundation provides a moving channel for the power exchange equipment.
  • the power exchange equipment moves along the moving channel in the foundation.
  • the movement trajectory will not deviate, and the power exchange equipment moves smoothly.
  • the moving channels of the foundations of the two opposite power swap stations are connected, which facilitates the construction of the foundations, can reduce the construction process, reduce the workload, and help improve the efficiency of station construction.
  • the use of connected mobile channels allows the sharing of power swapping equipment between oppositely set power swapping stations, improving the utilization rate of power swapping equipment and saving energy.
  • the power swapping station further includes power swapping equipment, which is used to replace batteries with the vehicle.
  • the power swapping equipment includes a lower frame and an upper frame, and the lower frame includes a third frame spaced apart along the horizontal displacement direction.
  • the upper frame includes a third frame disposed on the upper part of the first frame and a fourth frame disposed on the upper part of the second frame;
  • the power exchange equipment also includes a width adjustment mechanism and/or length Adjustment mechanism, the width adjustment mechanism is arranged at the interval between the first frame and the second frame, the width adjustment mechanism includes two output ends connected to the first frame and the second frame respectively.
  • An array-type power swap station the array-type power swap station includes a second array unit formed by at least two adjacent power swap stations in the driving direction, each of the power swap stations includes a charging module and a vehicle platform ;
  • the vehicle-carrying platforms of adjacent power swap stations are arranged in a staggered manner.
  • More power swap stations can be set up in a limited space, reducing the footprint of the power swap station. area, and the vehicles parked on the vehicle platforms set up front and back along the driving direction do not interfere with each other, and the vehicles pass smoothly, which improves the efficiency and layout rationality of the battery swap station, reduces construction costs, and improves the convenience of the battery swap process. sex and safety.
  • the two second array units are arranged opposite each other in the direction perpendicular to the driving direction, and the vehicle platform is located between the two charging modules; and/or, the array-type power swap station includes a plurality of parallel charging modules in the driving direction.
  • the second array unit is provided; and/or, along the direction perpendicular to the driving direction, a partition is provided between the two opposite battery swap stations.
  • the relatively arranged second array unit increases the number of battery swap stations, thereby increasing the number of battery swap stations, and the layout is more reasonable.
  • the vehicle platform is located between the two charging modules and the charging modules are located at both ends. It will not affect the normal traffic of vehicles before and after charging, and improves the battery swap efficiency of the battery swap station.
  • the vehicles parked on adjacent car-carrying platforms partially overlap; and/or, along the driving direction, the distance between the two front ends or the two rear ends of two adjacent car-carrying platforms is less than The length of the front and rear ends of a single vehicle platform.
  • the layout is more compact, which can save space in the driving direction and provide a greater number of power-changing stations in a limited space.
  • the vehicle-carrying platform adopts this design, which makes the layout of the vehicle-carrying platform more compact and saves the overall space of the battery swap station.
  • a backup lane is provided between the vehicle carrying platforms of any two adjacent battery swapping stations.
  • setting up a backup lane can improve the safety during the battery swapping process.
  • it can also provide sufficient space for vehicles to pass, which is conducive to passing and waiting.
  • the vehicles can be better placed during the battery swapping process. It can be parked and operated safely to reduce potential safety hazards caused by possible collisions between vehicles during the battery swapping process.
  • the backup lane runs through two adjacent battery swap stations, and the width of the backup lane is greater than the width of the vehicle.
  • the width of the backup lane is greater than the width of the vehicle.
  • the foundation includes a movement channel for the power exchange equipment to move in a horizontal direction; along the vertical direction to the driving direction, the movement channels of the foundations of two opposite power exchange stations are connected.
  • the moving channels of the foundations of two opposite power swap stations are connected, which facilitates the construction of the foundations, can reduce the construction process, reduce the workload, and improve the efficiency of station construction.
  • the moving channels of the foundations of two opposite power swap stations are connected, so that the two opposite power swap stations can share one foundation, which is beneficial to reducing costs.
  • sharing one foundation can save the need to align the two foundations. It is conducive to further improving the efficiency of website building.
  • the power exchange equipment includes a width adjustment mechanism and/or a length adjustment mechanism
  • the power exchange equipment includes an upper frame and a lower frame
  • the lower frame includes a first frame and a second frame spaced apart along the horizontal displacement direction.
  • the upper frame includes a third frame disposed on the upper part of the first frame and a fourth frame disposed on the upper part of the second frame;
  • the width adjustment mechanism is disposed on the first frame and the second frame.
  • the width adjustment mechanism includes two output ends connected to the first frame and the second frame respectively, and the width adjustment mechanism drives the first frame and the third frame through the output ends.
  • the two frames move; the length adjustment mechanism is used to drive the lower frame and the upper frame to move along the driving direction of the vehicle.
  • the vehicle platform includes a battery replacement port, and the length of the battery replacement port in the direction perpendicular to the driving direction exceeds the distance between the inner sides of the left and right wheels; and/or, the battery replacement port is located on the inside of the vehicle.
  • the length in the driving direction exceeds the distance between the inside of the front and rear wheels.
  • the length of the battery replacement port exceeds the inner distance of the wheel.
  • the battery replacement process is more convenient and smooth, reducing the difficulty of battery replacement.
  • the wheel axle distance of different vehicles and inner distance may vary, so a battery replacement port with sufficient length can adapt to various vehicles and provide a wider range of services.
  • the longer battery replacement port makes the battery replacement process faster and easier. Drivers can more easily align the vehicle with the replacement port, reducing alignment time and improving battery replacement efficiency. This will reduce user waiting time and improve overall service efficiency.
  • An energy station which is remodeled from a gas station, includes an array power swap station as described above, and the top of the charging module is connected to the ceiling of the gas station.
  • the ceiling is connected to the top of the charging module.
  • the ceiling has a fixed effect on the charging module.
  • the charging module is integrated with the ceiling. With the help of the ceiling, the charging module is fixed more stably. Moreover, the ceiling also blocks the charging module. effect.
  • the ceiling of the gas station is installed on the ground through uprights, and the box used to accommodate the charging module is also used to accommodate at least part of the uprights.
  • the columns not only support the ceiling, but also support the box. The installation and fixation of the box is more convenient and reliable, and the box can fully cover the charging module, providing better protection of.
  • multiple vehicle-carrying platforms of the battery swap station are spaced apart to form a third array unit to increase the number of battery swap stations on the basis of saving the number of charging modules, which can meet the needs of more vehicles to replace battery packs at the same time, and The spacing between multiple vehicles will not interfere with each other, and the layout is more reasonable, which improves the efficiency of battery swapping for vehicles.
  • multiple charging modules are accommodated in the same box.
  • multiple charging modules are accommodated inside the box.
  • the box plays a protective role.
  • the charging modules will not be affected by the harsh external environment, such as rain and snow, and can still work normally, improving charging efficiency.
  • the service life of the module is long, and multiple charging modules are housed in the same box, which reduces construction costs.
  • all adjacent vehicle-carrying platforms are on the same straight line.
  • vehicles along the driving direction can travel end-to-end on adjacent vehicle-carrying platforms without interfering with each other, and vehicles entering and exiting the corresponding vehicle-carrying platforms are more orderly.
  • any two adjacent vehicle-carrying platforms are arranged in a staggered manner along the driving direction.
  • the charging modules of adjacent power swap stations are closer without causing interference, which greatly saves space and layout. It is also more compact, and more power changing stations can be set up in a limited space.
  • the distance between two front ends or two rear ends of two adjacent vehicle-carrying platforms is smaller than the length of the front and rear ends of a single vehicle-carrying platform.
  • this arrangement makes it easier for any two adjacent vehicle-carrying platforms to be arranged in a staggered manner in the driving direction, further allowing adjacent charging modules to be arranged at close distances, making the layout more convenient. Because of its compactness, more power changing stations can be set up in a limited space.
  • a backup lane is provided between the vehicle carrying platforms of any two adjacent battery swapping stations, or a spare lane is provided between two adjacent vehicle carrying platforms in the battery swapping station.
  • Alternate channel By setting up a backup lane between the vehicle platforms, sufficient space can be provided for vehicle passage, which is conducive to the passage and waiting of vehicles. The power exchange of the vehicle in front will not affect the passage of vehicles behind, improving the user experience. feel.
  • two oppositely arranged battery swap stations form the third array unit.
  • two battery swap stations opposite each other perpendicular to the driving direction there are two battery swap stations in the same row, which further increases the number of battery swap stations in each array unit. Users can also adjust the battery swap station according to the actual situation. Select any battery swap station in the same row.
  • the power swap station includes one charging module, and the charging module is located outside the outermost vehicle platform.
  • the charging module is set at the outermost side of multiple spaced-apart vehicle-carrying platforms so that the position of the charging module does not interfere with the vehicle-carrying platform. The vehicles on the platform cause interference and the layout is more reasonable.
  • the spacing distance between adjacent vehicle-carrying platforms of the same power swap station is greater than the width of the vehicle.
  • the distance between adjacent vehicle platforms can form a driving channel, which facilitates the waiting or passing of vehicles behind and avoids congestion.
  • the vehicle-carrying platform includes a battery pack replacement port, and the length of the battery pack replacement port perpendicular to the driving direction exceeds the distance between the inner sides of the left and right wheels; and/or, the battery pack replacement port has a length perpendicular to the driving direction. The length exceeds the distance between the inside of the front and rear wheels.
  • the battery pack replacement port is provided to facilitate battery replacement in the vehicle without lifting the vehicle, and the specific size of the battery pack replacement port is set to make it easier to pick up and place the battery pack in the vehicle.
  • the charging module includes a charging rack and a battery transfer device.
  • the vehicle carrying platform, the battery transfer device and the charging rack are arranged in sequence;
  • the battery swap station also includes a battery swap device.
  • the battery exchange equipment transports batteries between the battery transfer equipment and the vehicle carrying platform.
  • the charging rack can charge the replaced battery, and the battery transfer equipment can transfer the battery packs on the battery swapping equipment and the battery packs in the charging rack.
  • the power exchange equipment includes a lower frame and an upper frame located above the lower frame; the power exchange equipment further includes a length adjustment mechanism, and the length adjustment mechanism is used to drive the lower frame and the upper frame along the The vehicle moves in the driving direction; and/or, the lower frame includes a first frame and a second frame, the first frame and the second frame are spaced apart along the horizontal displacement direction, and the power exchange equipment also includes a width adjustment mechanism.
  • the width adjustment mechanism is arranged at the interval between the first frame and the second frame, the width adjustment mechanism includes two output ends connected to the first frame and the second frame respectively, so The width adjustment mechanism drives the first frame and the second frame to move through the output end.
  • the charging rack, the battery transfer equipment and several vehicle-carrying platforms are all arranged on a foundation, and the foundation includes a moving channel for the power exchange equipment to move in a horizontal direction.
  • the foundation carries the charging rack, battery transfer equipment and vehicle platform, and provides a mobile channel for the battery replacement equipment, which makes it more convenient for the battery to be transported between the battery transfer equipment and the vehicle platform, and the battery replacement equipment If you move along the movement channel in the foundation, the movement trajectory will not deviate.
  • the array-type battery swapping station is used for battery pack replacement of at least two battery-swapping models.
  • the locking methods of the battery packs of the battery-swapping models include bolt locking, bead locking, T-shaped locking, and card locking. At least one of a buckle lock, a rotation lock, and a hitch lock; and/or the battery-swapping vehicle type includes at least one of a passenger car, a heavy truck, a light truck, a minivan, and a bus.
  • the array-type battery swap station can replace battery packs with multiple locking methods for different battery swap models, and has strong versatility.
  • Battery swap models include various common models on the market, and array battery swap stations can meet the battery swap needs of different electric vehicles on the market.
  • An energy station is characterized in that the energy station is modified based on a gas station, and the energy station includes an array power exchange station as described above.
  • the energy station includes an array power swapping station as described above, which can effectively solve the problem in the existing technology that the power swapping station has fewer power swapping stations and an unreasonable layout, resulting in low power swapping efficiency for new energy vehicles. defect.
  • Figure 1 is a schematic structural diagram of a power swap station according to Embodiment 1 of the present invention.
  • Figure 2 is a schematic structural diagram (1) of the foundation of the power swap station according to Embodiment 1 of the present invention.
  • Figure 3 is a schematic structural diagram (2) of the foundation of the power swap station according to Embodiment 1 of the present invention.
  • Figure 4 is a schematic structural diagram (3) of the foundation of the power swap station according to Embodiment 1 of the present invention.
  • Figure 5 is a schematic diagram of the upper structure of the vehicle carrying platform of the battery swap station according to Embodiment 1 of the present invention.
  • Figure 6 is a schematic diagram of the bottom structure of the vehicle platform of the battery swap station according to Embodiment 1 of the present invention.
  • Figure 7 is a partial structural schematic diagram of the vehicle carrying platform of the battery swap station according to Embodiment 1 of the present invention.
  • Figure 8 is a schematic structural diagram of the power swapping equipment of the power swapping station according to Embodiment 1 of the present invention.
  • Figure 9 is a partial structural schematic diagram of the power swapping equipment of the power swapping station according to Embodiment 1 of the present invention.
  • Figure 10 is a partial structural schematic diagram of the power swap equipment of the power swap station according to Embodiment 1 of the present invention.
  • Figure 11 is a partial structural schematic diagram of the power swapping equipment of the power swapping station according to Embodiment 1 of the present invention.
  • Figure 12 is a schematic structural diagram of an array power swap station according to Embodiment 2 of the present invention.
  • Figure 13 is a schematic structural diagram (1) of an array power swap station according to Embodiment 2 of the present invention.
  • Figure 14 is a schematic structural diagram (2) of an array power swap station according to Embodiment 2 of the present invention.
  • Figure 15 is a schematic structural diagram (3) of an array power swap station according to Embodiment 2 of the present invention.
  • Figure 16 is a schematic structural diagram (4) of an array power swap station according to Embodiment 2 of the present invention.
  • Figure 17 is a schematic structural diagram of an array power swap station in Embodiment 3 of the present invention
  • Figure 18 is a first array unit in Embodiment 3 of the present invention.
  • Figure 19 is a top view of the first array unit in Embodiment 3 of the present invention (without vehicles);
  • Figure 20 is a schematic structural diagram of another first array unit in Embodiment 3 of the present invention;
  • Figure 21 is a schematic structural diagram of the power exchange equipment in the foundation in Embodiment 3 of the present invention;
  • Figure 22 is a schematic structural diagram of the foundation in Embodiment 3 of the present invention;
  • Figure 23a is a schematic structural diagram of the power exchange equipment in Embodiment 3 of the present invention;
  • Figure 23b is a schematic structural diagram of the power exchange equipment in Embodiment 3 of the present invention;
  • Figure 23c is a schematic structural diagram of the upper frame and the lower frame in Embodiment 3 of the present invention;
  • Figure 23d is a schematic structural diagram of the power exchange equipment in Em
  • FIG. 23g is a schematic structural diagram of the unlocking mechanism of the power exchange equipment in Embodiment 3 of the present invention
  • Figure 24 is a schematic structural diagram of the vehicle-carrying platform in Embodiment 3 of the present invention.
  • Figure 25 is a schematic top structural view (1) of an array power swap station according to Embodiment 4 of the present invention.
  • Figure 26 is a schematic three-dimensional structural diagram (1) of an array power swap station according to Embodiment 4 of the present invention.
  • Figure 27 is a schematic three-dimensional structural diagram (2) of an array power swap station according to Embodiment 4 of the present invention.
  • Figure 28 is a schematic top structural view (2) of an array power swap station according to Embodiment 4 of the present invention.
  • Figure 29 is a schematic three-dimensional structural diagram (3) of an array power swap station according to Embodiment 4 of the present invention.
  • Figure 30 is a schematic structural diagram of Figure 29 from above in Embodiment 4 of the present invention.
  • Figure 31 is a schematic front structural view of an array power swap station according to Embodiment 4 of the present invention.
  • Figure 32 is a schematic structural diagram (1) of the foundation of the array power swap station in Embodiment 4 of the present invention.
  • Figure 33 is a schematic structural diagram (2) of the foundation of the array power swap station in Embodiment 4 of the present invention.
  • Figure 34 is a schematic structural diagram (3) of the foundation of the array power swap station in Embodiment 4 of the present invention.
  • Figure 35 is a schematic diagram of the upper structure of the vehicle platform of the array battery swapping station according to Embodiment 4 of the present invention.
  • Figure 36 is a schematic structural diagram of the power swap equipment of the array power swap station in Embodiment 4 of the present invention.
  • Figure 37 is a partial structural schematic diagram of the power swap equipment of the array power swap station in Embodiment 4 of the present invention.
  • Fig. 38 is a partial top structural schematic diagram of Fig. 25 according to Embodiment 4 of the present invention.
  • Figure 39 is a schematic diagram of the overall structure of the battery swap station and the vehicle in Embodiment 5 of the present invention.
  • Figure 40 is a schematic diagram of the overall structure of the power swap station in Embodiment 5 of the present invention.
  • Figure 41 is a schematic diagram of the overall structure of the array battery swapping station and the vehicle in Embodiment 5 of the present invention.
  • Figure 42 is a schematic structural diagram of a top view of an array power swap station and a vehicle in Embodiment 5 of the present invention.
  • Figure 43 is a schematic diagram of the overall structure of the array power swap station in Embodiment 5 of the present invention.
  • Figure 44 is a schematic diagram (1) of the overall structure of the power exchange equipment in Embodiment 5 of the present invention.
  • Figure 45 is a schematic diagram (2) of the overall structure of the power exchange equipment in Embodiment 5 of the present invention.
  • Figure 46 is a schematic structural diagram of the foundation in an unconnected state in Embodiment 5 of the present invention.
  • Figure 47 is a schematic structural diagram of the foundation in a connected state in Embodiment 5 of the present invention.
  • Figure 48 is a schematic top structural view of the array power swap station in Embodiment 6 of the present invention.
  • Figure 49 is a schematic diagram of the overall structure of the array power swap station and vehicle in Embodiment 6 of the present invention.
  • Figure 50 is a schematic top structural view of the array power swap station in Embodiment 6 of the present invention.
  • Figure 51 is a top view of the array power swap station and the vehicle in Embodiment 6 of the present invention.
  • Figure 52 is a schematic diagram of the overall structure of the array power swap station in Embodiment 6 of the present invention.
  • Embodiment 5 and 6 array power swap station 1, power swap station 10, vehicle platform 100, battery pack replacement port 110, power swap equipment 200, foundation 300, mobile channel 310, charging module 400 , charging rack 410, battery transfer device 420, Vehicle 500, spare lane 700, third array unit 930, lifting mechanism 210, horizontal displacement mechanism 220, lower frame 230, first frame 231, second frame 232, upper frame 240, third frame 241, fourth frame 242 , the length adjustment mechanism 250, the width adjustment mechanism 260, the driving direction L, is perpendicular to the driving direction H.
  • the power swap station 400 includes a charging rack 410, a battery transfer device 420, a vehicle platform 100 and a power swap device 200.
  • the power swap station 400 is configured with charging stations in sequence.
  • the rack 410, the battery transfer device 420 and the vehicle platform 100; the battery swapping device 200 transports batteries between the battery transfer device 420 and the vehicle platform 100.
  • the vehicle platform 100 can park the vehicle 500, the charging rack 410 can charge the depleted battery, the battery transfer device 420 can pick up and place the battery on the charging rack 410, and the battery swapping device 200 can transfer the battery between the battery rotating device and the vehicle platform.
  • the charging rack 410, the battery transfer equipment 420 and the vehicle platform 100 are arranged perpendicular to the driving direction L of the vehicle 500. The layout is more reasonable, which can reduce the moving distance of the power swapping equipment 200 during the battery pack replacement process, making the battery pack replacement easier. higher efficiency.
  • the power swap station 400 includes a foundation 300 , on which a charging rack 410 , a battery transfer device 420 and several vehicle platforms 100 are disposed.
  • the foundation 300 plays a bearing and fixing role for the charging rack 410, the battery transfer equipment 420 and the vehicle platform 100.
  • the foundation 300 provides an installation space for the charging rack 410, the battery transfer equipment 420 and the vehicle platform 100, which facilitates the installation and fixation of the charging rack 410, the battery transfer equipment 420 and the vehicle platform 100.
  • a mobile channel, a battery transfer equipment installation area 330 and a vehicle platform installation area 340 are simultaneously set up on the foundation 300 so that the power exchange equipment 200, the battery transfer equipment 420 and the vehicle platform 100 can be integrated into the foundation 300 to facilitate the installation of the power exchange station 400.
  • Mass production shortens the website building cycle and reduces website building costs.
  • the foundation 300 is made of prefabricated parts, which not only helps to reduce the manufacturing cost of the foundation 300, but also makes the installation of the foundation 300 more convenient.
  • the entire foundation 300 is located below the ground.
  • the foundation 300 does not occupy the space above the ground and does not interfere with the vehicles 500 and pedestrians on the ground. The user experience during the battery replacement process is better.
  • the upper surface of the foundation 300 and the ground Flat the upper surface of the vehicle platform 100 is flush with the upper surface of the foundation 300 , and no additional slope is required to enable the vehicle 500 to drive into the vehicle platform 100 , thus simplifying the structure of the battery swap station 400 .
  • the entire foundation 300 is located above the ground, and the entire foundation 300 is displaced above the ground. There is no need for underground construction, and construction is more convenient.
  • the foundation 300 includes: a moving channel for the power exchange device 200 to move in the horizontal direction; a charging rack installation area 320, and the charging rack 410 is provided on the charging rack Installation area 320, the charging rack installation area 320 is arranged on one side of the moving channel; battery transfer equipment installation area 330, the battery transfer equipment 420 is arranged on the battery transfer equipment installation area 330, the battery transfer equipment installation area 330 is arranged on one side of the moving channel .
  • the power exchange equipment 200 can move along the moving channel in the foundation 300 without deviating from the moving trajectory.
  • the charging rack installation area 320 is used to set the charging rack 410; the battery transfer equipment installation area 330 is used to set the battery transfer equipment 420 to facilitate the installation of the charging rack 410 and the battery transfer equipment 420.
  • the layout of the above arrangement is reasonable, and the arrangement of the charging rack 410 and the battery transfer device 420 will not interfere with the movement of the power exchange equipment 200, and facilitates the transportation of batteries between the power exchange equipment 200 and the battery transfer device, thus simplifying the layout of the power exchange station 400. , to facilitate the construction of the power swap station 400.
  • the foundation 300 also includes a vehicle platform installation area 340.
  • the vehicle platform installation area 340 is recessed downward, and the vehicle platform 100 is installed in the vehicle platform installation area.
  • the surface of the vehicle platform 100 does not exceed the foundation 300 .
  • the vehicle 500 will not be interfered when driving into the vehicle carrying platform 100, or there is no need to set up additional driving slopes for the vehicle 500 to go up and down, which facilitates the installation of the battery swap station 400, facilitates the passage of the vehicle 500, and improves the user experience.
  • the concave structure can also play a role in quickly positioning the vehicle platform 100 on the foundation 300, improving installation efficiency, and does not require a separate positioning structure on the foundation 300, reducing costs.
  • the recessed structure can further limit the position of the vehicle platform 100 .
  • the charging rack installation area 320, the battery transfer equipment installation area 330 and the vehicle platform installation area 340 are connected.
  • the depleted battery is removed through the battery swapping device 200, and the depleted battery is transported to the charging rack 410 through the battery transfer device 420 for charging.
  • the battery transfer device 420 transports the fully charged battery to the replacement.
  • the electrical equipment 200 installs the fully charged battery to the vehicle 500 through the electrical exchange equipment 200 .
  • the charging rack installation area 320, the battery transfer equipment installation area 330 and the vehicle platform installation area 340 are connected, which can facilitate the battery transfer equipment 420 to transport the battery, which is beneficial to the work efficiency of the power swap station 400; and when building the power swap station 400, it can To the charging rack installation area 320.
  • the battery transfer equipment installation area 330 and the vehicle platform installation area 340 are set up in a unified manner to facilitate the construction of the foundation 300.
  • two vehicle-carrying platform installation areas 340 can be provided in the foundation 300. As shown in Figure 3, the two vehicle-carrying platform installation areas 340 are independent of each other; or, as shown in Figure 4, two vehicle-carrying platform installation areas
  • the connecting channels of the foundation 300 where the 340 is located are connected.
  • the depth of the vehicle platform installation area 340 is smaller than the depth of the battery transfer equipment installation area 330.
  • the above arrangement enables the vehicle platform 100 to be installed on the foundation 300 without sinking into the moving channel.
  • the power swapping device 200 swaps power on the vehicle 500 from below the vehicle carrying platform 100 , accordingly, the power swapping device 200 moves below the vehicle carrying platform 100 .
  • the battery can be transported between the power exchange equipment 200 and the battery transfer equipment 420 without lifting the power exchange equipment 200 , which is beneficial to the working efficiency of the power exchange equipment 200 .
  • the vehicle platform 100 includes a battery replacement port 110 .
  • the length of the battery replacement port 110 in the direction perpendicular to the driving direction L of the vehicle 500 exceeds the left and right wheels of the vehicle 500 . and/or the length of the battery replacement port 110 in the driving direction L of the vehicle 500 exceeds the inner distance of the front and rear wheels.
  • the length of the battery replacement port 110 in two dimensions longer than the inner distances of the front and rear wheels and the left and right wheels respectively, the space for battery replacement is more sufficient, the difficulty of battery replacement is reduced, and the electric vehicle 500 is allowed to adopt a larger With the design of this vehicle platform 100, the battery replacement process becomes more convenient and faster, providing greater flexibility and convenience for the use and maintenance of the electric vehicle 500.
  • the battery replacement port 110 can also be larger than the inner distance of the wheels in one dimension, that is, only the length perpendicular to the driving direction L exceeds the inner distance of the left and right wheels, or only in the driving direction.
  • the length on L exceeds the distance between the inside of the front and rear wheels.
  • the size of the battery replacement port 110 is larger than the size of the battery pack to be replaced. By making the battery pack replacement port larger than the battery pack, the battery pack can pass through the battery replacement port 110 .
  • the vehicle platform 100 includes a moving door 130 and a driving device for the moving door 130.
  • the moving door 130 is installed at the battery replacement port 110 for closing or opening the battery. Replacement port 110; the driving device of the moving door 130 is connected to the moving door 130 and used to drive the movement of the moving door 130; the driving device of the moving door 130 includes a horizontal driving device 133 and/or a vertical driving device 134, and the vertical driving device 134 drives the moving door.
  • 130 moves in the vertical direction
  • the horizontal driving device 133 drives the moving door 130 to move in the horizontal direction.
  • the movable door 130 can move in the vertical direction and the horizontal direction respectively.
  • the driving device of the moving door 130 includes a first hydraulic cylinder 1331 and a second hydraulic cylinder 1332 .
  • the second hydraulic cylinder 1332 is sleeved on the first hydraulic cylinder 1331 .
  • Powered by a hydraulic cylinder it is easy to control and can Stepless speed regulation and overload protection function.
  • the moving door 130 driving device is more flexible in layout, has a simple structure, high driving force, and is lower in cost than other driving devices.
  • the second hydraulic cylinder 1332 is sleeved on the first hydraulic cylinder 1331, which can increase the stroke of the drive door drive device and reduce the occupied space. It can achieve a wider range of horizontal movement in a limited space and improve the adaptability and efficiency of the equipment. .
  • the power exchange equipment 200 includes a lower frame 230, and the power exchange equipment 200 also includes a length adjustment mechanism 250 and/or a width adjustment mechanism 260; the length adjustment mechanism 250 is To drive the lower frame 230 to move along the driving direction L of the vehicle 500 ; the width adjustment mechanism 260 is used to adjust the width of the lower frame 230 perpendicular to the driving direction L of the vehicle 500 .
  • the length adjustment structure and the width adjustment structure By setting the length adjustment structure and the width adjustment structure, the position adjustment range and positioning accuracy of the power swapping device 200 in the length and width directions are improved, and it can be adapted to more car models and battery packs of more specifications, and has better versatility. .
  • the lower frame 230 includes a first frame 231 and a second frame 232 spaced apart along the horizontal displacement direction; the width adjustment mechanism 260 is provided on the first frame 231 and the second frame 232. At the interval between the two frames 232, the width adjustment mechanism 260 includes two output ends connected to the first frame 231 and the second frame 232 respectively. The width adjustment mechanism 260 drives the first frame 231 and the second frame 232 to move through the output ends. Dividing the lower frame 230 into a first frame 231 and a second frame 232 distributed at intervals can reduce space occupation, make the structure more compact, and provide installation space for the width adjustment mechanism 260 .
  • the width adjustment mechanism 260 can control the spacing distance between the first frame 231 and the second frame 232, so that it can be adapted to more car models and more specifications of battery packs, and has wider versatility. Specifically, the width adjustment mechanism 260 is also driven by hydraulic pressure.
  • the width adjustment mechanism includes a hydraulic cylinder 261 and a telescopic rod 262 provided in the hydraulic cylinder 261. The end of the telescopic rod 262 is connected to the first frame 231 and the second frame 232 to form two.
  • the hydraulic cylinder 261 can be connected to or closed off the hydraulic oil tank 270 under the control of the electronic control device 280, so that the telescopic rod 262 extends out of the hydraulic cylinder 261 or is retracted into the hydraulic cylinder 261 and drives the two output ends to move.
  • the hydraulic cylinder 261 and the telescopic rod 262 are arranged between the first frame 231 and the second frame 232 and are arranged along the driving direction L.
  • the ends of the telescopic rod 262 are respectively connected to two connecting transmission parts 263.
  • One end of the connecting transmission part 263 is rotationally connected to the first frame 231 and the second frame 232, and the other end is rotationally connected to the telescopic rod 262.
  • One end of the connecting transmission member 263 connected to the first frame 231 and the second frame 232 is an output end.
  • the connecting transmission member 263 is rigid, so that when the telescopic rod 262 moves linearly, the connecting transmission member 263 is driven to move and rotate at the same time, pulling the first frame 231 and the second frame 232 close to the width adjustment mechanism 260 or away from the width adjustment mechanism 260 to achieve the same goal.
  • the moving path of the power exchange device 200 is the same linear motion, thereby adjusting the width.
  • the first frame 231 and the second frame 232 are both slidably provided on guide rails fixed on the power exchange device 200 to guide their movement. The laying direction of the guide rails is consistent with the direction of the guide rails.
  • the action path of the power exchange device 200 is the same.
  • the width adjustment mechanism 260 can also be configured as a hydraulic cylinder with telescopic rods provided at both ends and connected to the first frame 231 and the second frame 232 respectively.
  • the hydraulic cylinder and telescopic rod need to be arranged along the traveling direction of the power exchange equipment.
  • this embodiment only needs one telescopic rod to achieve the effect of moving both ends by connecting the transmission member 263.
  • the structure is simpler and more reliable, and the width adjustment mechanism and the length adjustment mechanism are set in the same direction, which also It can facilitate the connection of hydraulic pipelines.
  • the width adjustment mechanism 260 uses a hydraulic cylinder 261 to provide power, which is easy to control, can perform stepless speed regulation, and has an overload protection function. Compared with mechanical transmission, the width adjustment mechanism 260 is more flexible in layout, has a simple structure, and has large driving force. Lower cost than other drive devices.
  • the length adjustment mechanism includes a first length adjustment mechanism and a second length adjustment mechanism 252, wherein the first length adjustment mechanism is connected to the first frame 231 and the second frame 232 respectively, and the first length adjustment mechanism drives the first frame 231 and the second frame 232 move; the second length adjustment mechanism 252 is connected to the third frame 241 and the fourth frame 242 respectively, and the second length adjustment mechanism 252 drives the third frame 241 and the fourth frame 242 to move.
  • the first length adjustment mechanism and the second length adjustment mechanism 252 are set independently to adjust the lengths of the lower frame and the upper frame respectively without affecting each other, are more flexible, and can increase the length adjustment range of the power exchange equipment.
  • the first length adjustment mechanism is provided on the power exchange device 200 and includes a movable platform, a first length drive unit, and a first length guide rail.
  • the movable platform is driven by the first length drive unit and can move on the first length guide rail.
  • the first length guide rail is fixed on the power exchange device 200 and is arranged along the driving direction L.
  • the first frame 231 and the second frame 232 are both fixed on the movable platform and can move along with the movement of the movable platform.
  • the advantage of this arrangement is that only one first length driving unit is needed to drive the first frame 231 and the second frame 232 to move at the same time.
  • the first length adjustment mechanism may also be in other forms, such as using two driving units that are respectively connected to the first frame 231 and the second frame 232 to drive their movements.
  • both the first length drive unit and the second length drive unit are hydraulic drive units.
  • the first length drive unit includes a hydraulic cylinder and a telescopic rod.
  • the telescopic rod is connected to the movable platform through a fixed piece and indirectly connected to the first frame 231 and the telescopic rod.
  • the second length driving unit includes a hydraulic cylinder 2521 and a telescopic rod.
  • the telescopic rod is connected to the third platform 241 and the fourth platform 242 through the second length connection part 2523. It uses a hydraulic cylinder to provide power, which is easy to control, can carry out stepless speed regulation, has an overload protection function, is more flexible in layout, has a simple structure, large driving force, and is lower in cost than other driving devices.
  • the power exchange equipment 200 further includes a hydraulic oil tank 270 and/or an electric control device 280 , and the hydraulic oil tank 270 and/or the electric control device 280 are disposed on the same side of the lower frame 230 .
  • the hydraulic oil tank 270 and/or the electronic control device 280 are arranged on the same side of the lower frame 230 and only need to occupy space on one side. The structure is compact and the space utilization rate is high.
  • the array power swap station 400 includes several of the above power swap stations 400; each power swap station 400 includes a charging module and a vehicle platform 100; in Perpendicular to the driving direction L of the vehicle 500, the charging module is disposed on one side of the vehicle platform 100; the charging module includes a charging rack 410 and a battery transfer device 420.
  • the vehicle platform 100 can park the vehicle 500, the charging rack 410 can charge the depleted battery, the battery transfer device 420 can pick up and place the battery on the charging rack 410, and the battery swapping device 200 can transfer the battery between the battery rotating device and the vehicle platform.
  • the charging rack 410, the battery transfer equipment 420 and the vehicle platform 100 are arranged perpendicular to the driving direction L of the vehicle 500, which can reduce the moving distance during the battery pack replacement process, make the battery pack replacement more efficient, and the layout is more reasonable.
  • the distance between any adjacent vehicle platforms or the distance between the vehicle platform and the charging module is greater than the preset gap, so that vehicles on any vehicle platform can drive out or drive in.
  • the array power swap station 400 in the driving direction L of the vehicle 500, the array power swap station 400 It includes several power swap stations 400 arranged in parallel.
  • the above-mentioned layout is regular, making it convenient for the vehicle 500 to park on the vehicle platform 100 and perform battery swapping.
  • the battery swapping process of the vehicle 500 is more orderly.
  • the charging rack 410, battery transfer equipment 420, vehicle platform 100 and battery swapping equipment 200 of the battery swap station 400 It is not easy to interfere with each other, which is conducive to the rational layout of the power swap station 400.
  • the charging racks 410 and battery transfer equipment 420 of several power swap stations 400 are aligned in the driving direction of the vehicle 500, which simplifies the layout of the array power swap station 400 and facilitates maintenance of the array power swap station 400.
  • the vehicle platform 100 includes a movable door 130 and a battery replacement port 110.
  • the movable door 130 is installed at the battery replacement port 110 for closing or Open the battery replacement port 110;
  • the moving door 130 includes a relatively detachable first moving part 131 and a second moving part 132.
  • the first moving part 131 and the second moving part 132 move in opposite directions perpendicular to the driving direction L of the vehicle 500. Move horizontally to open or close the battery replacement port 110.
  • the first moving part 131 and the second moving part 132 of the moving door 130 are relatively separable, which reduces the size of the single-block moving door 130, making it more portable and flexible, and also reduces the opening and closing stroke of the single-block moving door 130.
  • the requirements for support and driving of the movable door 130 are reduced, and the service life and reliability of the movable door 130 are improved.
  • the split arrangement of the mobile door 130 makes maintenance and replacement easier and more convenient, can reduce the cost and time of maintenance and replacement, and improves the maintainability and reliability of the entire system.
  • the opening and closing stroke of the single-block moving door 130 is reduced, and the vehicle carrying platforms 100 of the two adjacent battery swapping stations 400 in the driving direction L of the vehicle 500 are There will be no interference between the moving doors 130 and they can be opened or closed at the same time, making the size of the power swap station 400 smaller in the driving direction L of the vehicle 500, which is conducive to compact installation of multiple power swap stations 400 and high space utilization.
  • the power swap station 400 includes a foundation 300.
  • the foundation 300 includes a moving channel.
  • the mobile channel is used for the power swap equipment 200 to move in the horizontal direction.
  • the foundations 300 of multiple power swap stations 400 Move channel parallel settings. Multiple mobile channels are arranged in parallel, occupying little space in the driving direction L of the vehicle 500.
  • the array power swap station 400 has specifications in the driving direction L of the vehicle 500. It is smaller and optimizes the layout of the array power swap station 400, which is beneficial to reducing the floor space and achieving high space utilization.
  • the moving channels of the foundations 300 of two opposite power swap stations 400 are connected along the driving direction L perpendicular to the vehicle 500 .
  • the moving channel is used for the power exchange equipment 200 to move in the horizontal direction.
  • the power exchange equipment 200 can move within the moving channel of the foundation 300 of two opposite power exchange stations 400, and the two opposite power exchange stations 400 can share it.
  • the power swap equipment 200 can reduce the manufacturing cost of the power swap station 400, especially in areas with low operating pressure.
  • two opposite exchangers are arranged along the driving direction L perpendicular to the vehicle 500 .
  • the moving channels of the foundation 300 of the power station 400 can also be set independently.
  • the power swap station 400 includes a box, and the charging module is accommodated in the box.
  • the box protects the charging module.
  • the charging module will not be affected by harsh external environments, such as rain or snow, and can still work normally, which is beneficial to the operation of the power swap station 400 and greatly reduces the maintenance cost of the power swap station 400. , improves the service life of the charging module.
  • the number of boxes is two.
  • the charging modules located on both sides of the driving direction L are located in two boxes respectively. Multiple charging modules on the same side are located in the same box.
  • the structure is simple and easy to construct.
  • the number of boxes can also be one, and the charging modules on both sides can be accommodated in the same large box at the same time.
  • the box has an opening for the vehicle 500 to move in and out.
  • the distance between any adjacent vehicle-carrying platforms 100 or the distance between the vehicle-carrying platform 100 and the charging module is greater than the preset gap, so that any vehicle-carrying platform 100 can Vehicles on the platform drive in or out.
  • the distance between the vehicle 500 located on the vehicle carrying platform 100 and the vehicles 500 in the front and rear as well as the distance between the left and right charging modules and the vehicle 500 are sufficient for the vehicle 500 to be driven out directly without the need to adjust the position of the vehicle 500 back and forth.
  • adjacent vehicle-carrying platforms 100 are on the same straight line.
  • the distribution of the vehicle-carrying platforms 100 of the array power swap station 400 is regular, and the vehicles 500 can be arranged in an orderly manner. Enter and exit the vehicle-carrying platform 100 to replace the battery; or, as shown in Figures 15 and 16, the vehicle-carrying platforms 100 of at least two battery swap stations 400 adjacent to each other in the driving direction L are arranged in a staggered manner, along the driving direction L,
  • the distance between the two front ends or the two rear ends of two adjacent vehicle-carrying platforms 100 is smaller than the length of the front and rear ends of a single vehicle-carrying platform 100 .
  • a spare lane is provided between two adjacent vehicle-carrying platforms 100 for vehicles on the vehicle-carrying platforms 100 to drive in or out.
  • the width of the spare lane is greater than the width of the vehicle.
  • the array-type power swap station includes a first array unit 910 formed by two opposite power swap stations 400 perpendicular to the driving direction A.
  • Each power swap station 400 includes a charging module 401 and a vehicle platform 100.
  • the two vehicle platforms 100 are located between the two charging modules 401.
  • the array-type power swap station charges the removed battery of the vehicle 500 through the charging module 401.
  • the vehicle platform 100 provides a platform for the vehicle 500 to park and serves as an operating platform for battery swapping with the vehicle 500.
  • Each first array unit 910 includes two battery replacement stations, which can replace the batteries of two vehicles at the same time.
  • the left and right battery swap stations 400 do not affect each other, and the battery replacement efficiency is high.
  • the array battery exchange The station includes a plurality of first array units 910 arranged in parallel.
  • a plurality of first array units 910 are arranged in parallel along the driving direction A, with a regular layout.
  • the battery swapping process of the vehicles 500 is more orderly, and more battery swapping stations are provided to provide battery swapping services for more vehicles 500 .
  • the front and rear vehicles 500, the vehicle platform 100, etc. are positioned correspondingly, and the layout is regular.
  • the array unit laid out in this way is called the first array unit 910.
  • the spacing and layout of each component device can be adjusted accordingly to form different array unit forms.
  • the number of first array units 910 can also be adjusted accordingly.
  • the charging modules 401 of multiple first array units 910 are accommodated in the same box (not shown in the figure).
  • the four charging modules 401 on the left side of the four first array units 910 are all housed in the same box, and the four charging modules 401 on the right side of the four first array units 910 are also housed in the same box. All contained in the same box.
  • the box plays a protective role for the charging module 401.
  • the charging module 401 will not be affected by the harsh external environment, such as rain and snow, and can still work normally, which increases the service life of the charging module 401, and multiple charging modules 401 can accommodate With the same box, the construction cost is reduced.
  • adjacent vehicle-carrying platforms 100 are on the same straight line, that is, the front and rear vehicle-carrying platforms 100 are on the same straight line.
  • the multiple vehicle-carrying platforms 100 of the array battery swapping station are regularly distributed, and the vehicles 500 can enter and exit the vehicle-carrying platforms 100 in an orderly manner for battery replacement.
  • two adjacent charging modules 401 are arranged in contact with each other along the driving direction A. Using the above-mentioned contact arrangement, the layout is compact and takes up less space. A larger number of power-changing stations can be provided in a limited space.
  • a backup lane 700 is provided between two opposite battery swap stations 400.
  • the width of the backup lane 700 is greater than the width of the vehicle 500 parked on the vehicle platform 100 .
  • the spare lane 700 and the vehicle 500 adopt such a width-size relationship to ensure that there is enough space for the vehicle 500 to pass, which is beneficial to traffic efficiency.
  • a partition 800 is provided between two opposite power swap stations 400 perpendicular to the driving direction A.
  • the power swap stations 400 in each first array unit 910 do not interfere with each other, and the vehicles 500 do not interfere with each other, which is safer.
  • backup lanes 700 can also be provided on both sides of the partition 800 , so that the vehicles 500 entering and exiting the power swap station 400 on the left and right sides can pass through the backup lanes 700 on each side, ensuring that the front and rear vehicles 500 It also ensures that the vehicles 500 walking on the left and right backup lanes 700 do not interfere with each other and better ensures safety.
  • the distance between any adjacent vehicle platforms 100 or the distance between the vehicle platform 100 and the charging module 401 is greater than the preset distance, so that any vehicle platform 100 can vehicles exiting or entering.
  • each charging module 401 includes a charging rack 410 and a battery transfer device 420. Perpendicular to the driving direction A, the vehicle platform 100, the battery transfer device 420 and the charging rack 410 Set in sequence.
  • the battery swap station 400 charges the replaced battery through the charging rack 410, and replaces and transports the batteries on the charging rack 410 through the battery transfer device 420.
  • the above-mentioned battery swap station 400 with the vehicle platform 100, the battery transfer equipment 420 and the charging rack 410 arranged in sequence has a reasonable layout and can reduce the moving distance during the battery pack 600 replacement process, making the battery pack 600 replacement more efficient.
  • the power swap station 400 also includes a foundation 300 and a power swap device 200.
  • a charging rack 410, a battery transfer device 420 and several vehicle platforms 100 are all disposed on the foundation 300.
  • the foundation 300 plays a supporting and fixing role for the charging rack 410, the battery transfer equipment 420 and the vehicle platform 100.
  • the foundation 300 includes a moving channel for the power exchange equipment 200 to move in the horizontal direction.
  • the track 310 matches the rollers of the power exchange equipment 200 so that the power exchange equipment 200 slides horizontally on the track 310.
  • the power exchange equipment 200 passes through the track 310.
  • the movement path in the foundation 300 is guided, and the power exchange equipment 200 moves smoothly.
  • the foundation 300 also includes a charging rack installation area 320, a battery transfer equipment installation area 330, a vehicle platform installation area 340 and a bearing part 350 (not marked in the figure).
  • the charging rack installation area 320 provides an installation space for the charging rack 410 to facilitate the installation and fixing of the charging rack 410.
  • the battery transfer equipment installation area 330 provides an installation space for the battery transfer equipment 420 to facilitate the installation and fixation of the battery transfer equipment 420 .
  • the vehicle-carrying platform installation area 340 is recessed downward, providing an installation space for the vehicle-carrying platform 100 and facilitating the installation and fixation of the vehicle-carrying platform 100 .
  • the bearing portion 350 is provided at the upper opening of the foundation 300 for sealing the foundation 300. By providing the bearing portion 350, the upper surface of the foundation 300 can be sealed, so that the vehicle 500 and pedestrians will not fall into the foundation 300, which is safer.
  • the depth of the foundation 300 is greater than the total thickness of the vehicle platform 100, the battery pack 600, the power exchange equipment 200 and the preset gap 360; the foundation 300 provides sufficient space for the installation of the power exchange equipment 200 and the replacement of the battery pack 600.
  • the preset gap 360 is the height occupied by the extending mechanism of the battery transfer device 420 to transfer the battery pack 600 from the power exchange device 200 .
  • the moving channels of the foundations 300 of two oppositely arranged power swap stations 400 are connected along the direction perpendicular to the driving direction A.
  • the foundation 300 provides a moving channel for the power exchange equipment 200.
  • the power exchange equipment 200 moves along the moving channel in the foundation 300.
  • the movement trajectory will not deviate, and the power exchange equipment 200 moves smoothly.
  • the moving channels of the foundations 300 of the two oppositely arranged power swap stations 400 are connected, conveniently
  • the construction of base 300 can reduce the construction process, reduce the workload, and help improve the efficiency of website construction.
  • the use of connected mobile channels allows the power exchange equipment 200 to be shared and used between opposite power exchange stations 400, thereby improving the utilization rate of the power exchange equipment 200 and saving energy.
  • the battery exchange equipment 200 transports batteries between the battery transfer equipment 420 and the vehicle platform 100, and exchanges batteries with the vehicle 500.
  • the battery swap station 400 replaces and transfers the batteries on the charging rack 410 through the battery transfer device 420, and transports the batteries between the battery transfer device 420 and the vehicle platform 100 through the battery swap device 200, thereby realizing the loss of power on the vehicle 500.
  • the battery is disassembled and transported to the charging rack 410 for charging, or the fully charged battery on the charging rack 410 is transported to the vehicle 500 for installation.
  • the power exchange equipment 200 includes a lifting mechanism 210 and a horizontal displacement mechanism 220; the lifting mechanism 210 is used to carry and lift the battery pack 600; the horizontal displacement mechanism 220 is used to drive the power exchange equipment 200 Movement in the horizontal direction facilitates battery replacement.
  • the movement direction of the battery replacement equipment is the direction perpendicular to the driving direction A in Figure 19.
  • the power swapping device 200 in this embodiment has precise positioning, good versatility, and can adapt to different vehicles 500 and battery packs.
  • the power exchange equipment 200 of this embodiment also includes a lower frame 230 and an upper frame 240.
  • the upper frame 240 is located above the lower frame 230.
  • the lifting mechanism 210 drives the upper frame 240 and the lower frame 230 to move together in the vertical direction, and then can move to Battery pack 600 pairs of positions.
  • the lifting mechanism 210 can adjust the vertical distance between the battery pack 600 and the power exchange equipment 200 to facilitate the power exchange equipment 200 to disassemble, assemble, and move the battery pack 600 .
  • the lower frame 230 includes a first frame 231 and a second frame 232 spaced apart along the horizontal displacement direction; the upper frame 240 includes a third frame 241 disposed above the first frame 231 and a fourth frame 242 disposed above the second frame 232 .
  • the upper frame 240 also includes a third frame 241 and a fourth frame 242 distributed at intervals, so as to match the distribution of the lower frame 230.
  • the rate is high.
  • the upper frame 240 and the lower frame 230 are divided into two parts and are arranged separately. This allows the 4 frames to move independently.
  • a roller 221 is provided at the bottom of the power swapping device 200 .
  • the horizontal displacement mechanism 220 is driven by a belt 222.
  • the belt 222 transmission structure is simple, the manufacturing cost is low, and the installation and maintenance are convenient.
  • the belt 222 is elastic and can alleviate impact and vibration, so the operation is smooth. That is, the horizontal displacement mechanism using the belt transmission has good stability and low cost.
  • the power swapping device 200 also includes a battery tray 244 , which is installed on the upper frame 240 through an elastic floating component 243 .
  • the battery pack is supported by the battery tray 244 to improve the stability of the battery pack during movement; the battery tray 244 is elastically connected to the upper frame 240 through the elastic floating component 243, so that the battery pack on the battery tray 244 is in a flexible carrying state. Avoid placing the battery pack in A hard collision occurs during the process of battery tray 244 .
  • the power swapping device 200 also includes a positioning mechanism, which is used to position the electric vehicle 500 and/or the battery pack. The positioning mechanism strengthens the positioning between the power exchange equipment 200 and the electric vehicle, improves the position adjustment range and positioning accuracy of the power exchange equipment 200, and can be adapted to more car models or more specifications of battery packs.
  • the positioning mechanism includes a vehicle positioning part 233 and a battery positioning part 245.
  • the vehicle positioning part 233 is used to position the vehicle 500
  • the battery positioning part 245 is used to position the battery pack; in this embodiment
  • the positioning mechanism is used to strengthen the positioning between the power exchange equipment 200, the electric vehicle 500 and the battery pack, improve the position adjustment range and positioning accuracy of the power exchange equipment, and can be adapted to more models and specifications.
  • Battery pack The power swapping equipment 200 is positioned separately with the electric vehicle and the battery pack to control the relative positions between the three during power swapping, so that the positioning is more accurate.
  • the upper frame 240 and the lower frame 230 are movably arranged on the power swapping device 200, and the battery positioning part 245, the unlocking mechanism, and the battery tray 244 are all arranged on the upper frame 240 and the lower frame 230 and can be moved accordingly. Its movement changes its position, making it easier for it to cooperate with battery packs and vehicles of different specifications to complete its functions.
  • the battery tray 244 is provided on the upper frame 240, and its position can be adjusted through the movement of the upper frame 240 and the lower frame 230 to carry battery packs of different specifications.
  • the power exchange device 200 also includes a width adjustment mechanism 260 and a length adjustment mechanism 250 .
  • the length adjustment mechanism 250 is used to drive the lower frame 230 and the upper frame 240 to move along the driving direction A of the vehicle 500 .
  • the width adjustment mechanism 260 can control the spacing distance between the first frame 231 and the second frame 232, thereby matching battery packs 600 of different sizes, resulting in wider versatility.
  • the position adjustment range and positioning accuracy of the battery swapping device 200 are improved through length adjustment, and can be adapted to more car models and battery packs 600 of more specifications.
  • the lower frame 230 and the upper frame 240 have a degree of freedom of movement along the traveling direction L of the vehicle 500 , which is realized by the length adjustment mechanism 250 .
  • the length adjustment mechanism includes a first length adjustment mechanism 251 and a second length adjustment mechanism 252.
  • the first length adjustment mechanism 251 is connected to the first frame 231 and the second frame 232 respectively.
  • the first length adjustment mechanism 251 drives the first frame 231 and the second frame 232 to move;
  • the second length adjustment mechanism 252 is connected to the third frame 241 and the fourth frame 242 respectively, and the second length adjustment mechanism 252 drives the third frame 241 and the fourth frame 242 to move.
  • the first length adjustment mechanism 251 and the second The length adjustment mechanism 252 is set up independently to adjust the lengths of the lower frame 230 and the upper frame 240 respectively without affecting each other, is more flexible, and can increase the length adjustment range of the power exchange equipment.
  • the first length adjustment mechanism 251 is provided on the power exchange equipment 200, which includes a movable platform 2514, a first length drive unit, and a first length guide rail 2513.
  • the movable platform 2514 is A length drive unit is driven and can move on the first length guide rail 2513 .
  • the first length guide rail is fixed on the power exchange device 200 and is arranged along the driving direction L.
  • the first frame 231 and the second frame 232 are both fixed on the movable platform 2514 and can move along with the movement of the movable platform 2514 .
  • the advantage of this arrangement is that only one first length driving unit is needed to drive the first frame 231 and the second frame 232 to move at the same time.
  • the first length adjustment mechanism may also be in other forms, such as using two driving units that are respectively connected to the first frame 231 and the second frame 232 to drive their movements.
  • first length adjustment mechanisms 252 which are connected to the third frame 241 and the fourth frame 242 respectively.
  • two second length adjustment mechanisms 252 are respectively provided on the first frame 231 and the second frame 232, which have a second length driving unit and a second length connecting part 2523.
  • the second length driving unit can drive the second length connecting part. 2523 moves along the driving direction L, and the two second length connecting parts 2523 are connected to the third frame 241 and the fourth frame 242 respectively.
  • the length adjustment mechanism can be driven by hydraulic pressure.
  • both the first length driving unit and the second length driving unit are hydraulic driving units.
  • the first length driving unit includes a hydraulic cylinder 2511 and a telescopic rod 2512.
  • the telescopic rod 2512 is connected to the movable platform 2514 through a fixed piece and indirectly connected to the second length driving unit.
  • the first length driving unit includes a hydraulic cylinder 2521 and a telescopic rod 2522.
  • the telescopic rod 2522 is connected to the third platform 241 and the fourth platform 242 through the second length connection part 2523. It uses a hydraulic cylinder to provide power, which is easy to control, and can perform stepless speed regulation. It has an overload protection function. Compared with mechanical transmission, the length adjustment mechanism is more flexible in arrangement, has a simple structure, large driving force, and is less expensive than other driving devices. lower.
  • the width adjustment mechanism includes a hydraulic cylinder 261 and a telescopic rod 262 provided in the hydraulic cylinder 261.
  • the end of the telescopic rod 262 is connected to the first frame 231 and the second frame 232 respectively.
  • the connection forms two output ends, and the hydraulic cylinder 261 can be connected or closed with the hydraulic oil tank 270 under the control of the electronic control device 280, so that the telescopic rod 262 extends out of the hydraulic
  • the cylinder 261 may be inserted into the hydraulic cylinder 261 and drive the two output ends to move.
  • the hydraulic cylinder 26 and the telescopic rod 262 are arranged between the first frame 231 and the second frame 232 and are arranged along the driving direction L.
  • the ends of the telescopic rod 262 are respectively connected to two connecting transmission parts 263.
  • One end of the connecting transmission part 263 is rotationally connected to the first frame 231 and the second frame 232, and the other end is rotationally connected to the telescopic rod 262.
  • One end of the connecting transmission member 263 connected to the first frame 231 and the second frame 232 is an output end.
  • the connecting transmission member 263 is rigid, so that when the telescopic rod 262 moves linearly, the connecting transmission member 263 is driven to move and rotate at the same time, pulling the first frame 231 and the second frame 232 close to the width adjustment mechanism 260 or away from the width adjustment mechanism 260 to achieve the same goal.
  • the moving path of the power exchange device 200 is the same linear motion, thereby adjusting the width.
  • the first frame 231 and the second frame 232 are both slidably mounted on guide rails fixed on the power exchange equipment 200 to guide their movement.
  • the laying direction of the guide rails is the same as the movement path of the power exchange equipment 200 .
  • the width adjustment mechanism 260 can also be configured as a hydraulic cylinder with telescopic rods provided at both ends and connected to the first frame 231 and the second frame 232 respectively.
  • the hydraulic cylinder and telescopic rod need to be arranged along the traveling direction of the power exchange equipment.
  • this embodiment only needs one telescopic rod to achieve the effect of moving both ends by connecting the transmission member 263.
  • the structure is simpler and more reliable, and the width adjustment mechanism and the length adjustment mechanism are set in the same direction, which also It can facilitate the connection of hydraulic pipelines.
  • the third frame 241 and the fourth frame 242 move synchronously with the first frame 231 and the second frame 232 .
  • they also adjust synchronously with the first frame 231 and the second frame 232.
  • Only one width adjustment mechanism 260 is needed to realize the width adjustment of the four frames.
  • the third frame 241 and the fourth frame 242 do not need to be separately provided with a width adjustment mechanism 260, which makes the structure more compact and helps reduce costs.
  • the width adjustment mechanism uses a hydraulic cylinder to provide power, which is easy to control, can perform stepless speed regulation, has an overload protection function, is more flexible in layout, has a simple structure, large driving force, and is lower in cost than other driving devices.
  • the power exchange equipment 200 also includes a hydraulic oil tank 270.
  • the hydraulic oil tank 270 is provided on the power exchange equipment 200 and moves together with the power exchange equipment 200.
  • the hydraulic oil tank 270 moves together with the power exchange equipment 200 .
  • the hydraulic oil tank 270 and the electronic control device 280 move together with the power exchange equipment 200.
  • the hydraulic oil tank 270 provides the required oil for the hydraulic system on the power exchange equipment 200.
  • the electronic control device 280 controls various operations of the power exchange equipment 200. , avoiding the installation of longer or more hydraulic pipelines and control cables between the power swap station 400 and the power swap equipment 200.
  • the power swap equipment 200 will not interfere with the hydraulic pipes or control cables during movement, making it more flexible. convenient.
  • the power exchange equipment 200 also includes an electronic control device 280.
  • the electronic control device 280 is provided on the power exchange equipment 200 and moves together with the power exchange equipment 200.
  • the electronic control device 280 moves together with the power swapping device 200, eliminating the need to install a long control cable.
  • the power swapping device 200 will not interfere with the control cable during movement, making it more flexible and convenient.
  • the electronic control device 280 and the hydraulic The fuel tank 270 is provided on the same side of the power exchange device 200 .
  • the electronic control device 280 and the hydraulic oil tank 270 are arranged on the same side of the power exchange equipment 200, which only takes up space on one side, has a compact structure, facilitates the electronic control device to control the work of the hydraulic oil tank, and shortens the distance between the electronic control device and the hydraulic oil tank. connection lines.
  • the electronic control device 280 and the hydraulic oil tank 270 are disposed on the same side of the power exchange device 200 in the direction perpendicular to the driving direction of the vehicle 500. It is beneficial to reduce the length of the power swapping device 200 in the driving direction of the vehicle 500 . In this embodiment, both the length adjustment mechanism and the width adjustment mechanism are driven by hydraulic pressure.
  • All hydraulic cylinders are connected to the hydraulic oil tank 270 provided on the power exchange equipment, and the hydraulic oil tank 270 provides pressure.
  • the hydraulic oil tank 270 has multiple parallel output ports, which are respectively connected to different hydraulic cylinders. Each output port is provided with an electronically controlled valve. The opening and closing of each electronically controlled valve is controlled through the electronic control device 280 to achieve length adjustment. Separate control of the mechanism and width adjustment mechanisms and their sub-mechanisms.
  • the lifting mechanism 210 is also hydraulically driven and controlled by the electronic control device 280 .
  • a hydraulic cylinder is used to provide power, which is easy to control, can perform stepless speed regulation, and has an overload protection function.
  • the arrangement of the lifting mechanism 210 is more flexible, has a simple structure, and has a large driving force. , lower cost than other drive devices.
  • other common driving power sources can also be used to achieve their basic functions, such as using a motor solution, etc., and only need to Just replace the drive unit of each device with a motor and adjust the setting position and other corresponding structures accordingly.
  • the power exchange device 200 may have only the width adjustment mechanism 260 or only the length adjustment mechanism 250.
  • the vehicle platform 100 includes a battery replacement port 110.
  • the length of the battery replacement port 110 perpendicular to the driving direction A exceeds the distance between the inner sides of the left and right wheels; the battery replacement port 110 is located on the inside of the vehicle 500.
  • the length in driving direction A exceeds the distance between the inside of the front and rear wheels.
  • the vehicle platform 100 also includes a wheel positioning device 120, through which the vehicle 500 can be easily fixed.
  • the vehicle platform 100 also includes a movable door 130, which is installed at the battery replacement port 110 for closing or opening the battery replacement port 110; by setting the movable door 130 to close and open the battery replacement port 110, the battery replacement port 110 is not affected. Under the premise of ensuring the battery is fully charged, by closing the battery replacement port 110, the vehicle 500 or pedestrians are prevented from falling into the battery replacement port 110 during normal travel, thereby improving the safety of battery replacement.
  • the moving door 130 includes a relatively detachable first moving part 131 and a second moving part 132. The first moving part 131 and the second moving part 132 move horizontally in opposite directions to open or close the battery replacement port 110.
  • the driving device of the moving door 130 includes a horizontal driving device 133 and a vertical driving device (not shown in the figure).
  • the vertical driving device is located on the back of the movable door 130 in Figure 24.
  • the vertical driving device drives the movable door 130 to move in the vertical direction
  • the horizontal driving device 133 drives the movable door 130 to move along the vertical direction. Move horizontally.
  • the distance between the vehicle 500 on the vehicle platform 100 and the vehicles 500 in the front and rear along the driving direction A, as well as the distance between the left and right charging modules 401 and the vehicle 500 in the first array unit 910 are set to such that any A vehicle 500 drives out directly, and there is no need to adjust the position of the vehicle 500 back and forth.
  • the distance between the front and rear vehicles 500, the distance between the charging module 401 and the vehicle 500 in the first array unit 910, and the distance between the left and right vehicles 500 in the first array unit 910 sufficient space is provided for the vehicle 500 to enter and exit freely, ensuring the vehicle 500's entry and exit.
  • the efficiency of the battery swap station is 400.
  • the array power swap station includes a second array unit 920 formed by at least two power swap stations 40 adjacently arranged in the driving direction.
  • Each power-swapping station 40 includes a charging module 400 and a vehicle-carrying platform 100; the vehicle-carrying platforms 100 of adjacent power-swapping stations 40 are arranged in a staggered manner.
  • the vehicles 500 parked on the vehicle carrying platforms 100 arranged front and back along the driving direction do not interfere with each other, and the vehicles 500 pass smoothly, which improves the efficiency and layout rationality of the power swap station 40, reduces construction costs, and improves the power swap process. convenience and safety.
  • the power swap station 40 includes a charging rack 410, a battery transfer device 420, a vehicle platform 100 and a power swap device 200; in the driving direction perpendicular to the vehicle 500, the power swap station 40 is arranged in sequence.
  • the vehicle platform 100 can accommodate the vehicle 500
  • the charging rack 410 can charge the depleted battery
  • the battery transfer device 420 can pick up and place the battery on the charging rack 410
  • the battery swapping device 200 can transfer the battery between the battery rotating device and the charging rack 410 .
  • the batteries are transported between the vehicle platforms 100, so that the charged batteries on the charging rack 410 are taken out through the battery transfer equipment 420 and moved to the vehicle platform 100 through the battery exchange equipment 200; or, the vehicles 500 are disassembled.
  • the depleted battery is moved to the battery transfer device 420 through the battery replacement device 200, and then stored in the charging rack 410 through the battery transfer device 420, thereby realizing the replacement of the battery on the vehicle 500.
  • the charging rack 410, the battery transfer equipment 420 and the vehicle platform 100 are arranged perpendicular to the driving direction of the vehicle 500, and the layout is more reasonable, which can reduce the moving distance of the power exchange equipment 200 during the battery pack replacement process, making the battery pack replacement more efficient. higher.
  • two second array units 920 are arranged opposite each other perpendicular to the driving direction, and the vehicle platform 100 is located between the two charging modules.
  • the opposite second array units 920 add a battery swap station.
  • the number of 40 thus increasing the battery replacement station
  • the number of vehicles and the layout is reasonable.
  • the vehicle platform 100 is located between the two charging modules and the charging modules are located at both ends. This will not affect the normal passage of the vehicle 500 before and after charging, and improves the battery swapping efficiency of the battery swap station 40.
  • the array-type power swap station includes a plurality of second array units 920 arranged in parallel along the driving direction, as shown in Figures 29 and 30, which can more effectively utilize the available space and accommodate more charging modules and vehicle platforms in a limited area. 100, saving space.
  • Multiple second array units 920 allow battery swapping services to be provided to multiple vehicles 500 at the same time, thereby reducing waiting time between vehicles 500 .
  • the vehicles 500 can be arranged in different array units in parallel to realize parallel power swapping processes and improve the traffic efficiency of the power swapping station 40 .
  • each second array unit 920 contains two power swap stations, and each power swap station includes two vehicle platforms 100 .
  • the distance between the front ends of two vehicle-carrying platforms 100 in two adjacent battery swapping stations, or the distance between the rear ends of two vehicle-carrying platforms 100 is smaller than the front and rear ends of a single vehicle-carrying platform 100 .
  • Back end length This arrangement makes it easier for any two adjacent vehicle platforms 100 to be arranged in a staggered manner in the driving direction, and further enables adjacent charging modules 400 to be arranged at a close distance, making the layout more compact. More power changing stations can be set up in a limited space.
  • the vehicle platform 100 in one power swap station 40 is set close to the charging module in the power swap station 40
  • the vehicle platform 100 in another power swap station 40 is located away from the charging module in the power swap station 40 .
  • the distance between the vehicle 500 parked on the vehicle platform 100 set far away from the charging module in the direction perpendicular to the driving direction H is greater than the width of the vehicle 500, and the distance between the two adjacent vehicles 500 is greater than the width of the vehicle 500.
  • the distance between the vehicles 500 parked on the two vehicle platforms 100 in the same horizontal direction in the second array unit 920 is greater than the width of the vehicles 500 . Further, in the direction perpendicular to the driving direction H, the distance W1 between the two vehicle-carrying platforms 100 in the same horizontal direction among the two oppositely arranged second array units 920 is greater than the width of the vehicle 500 , and is farther away from the charging module. The distance W2 between the vehicle platform 100 and the charging module is greater than the width of the vehicle 500, which can facilitate the passage of the vehicle 500 behind it.
  • the distance between the front of the vehicle 500 parked on the front vehicle platform 100 and the front of the vehicle 500 parked on the rear vehicle platform 100 is smaller than the vehicle The length of 500.
  • the vehicle 500 in front and the vehicle 500 behind are partially overlapped perpendicular to the driving direction H, and the vehicle 500 passing through the vehicle 500 is partially overlapped.
  • the station is more compact, which can save space in the driving direction, and can provide a larger number of power-changing stations in a limited space.
  • two adjacent charging modules 400 are arranged in contact with each other along the driving direction.
  • the charging modules 400 arranged in contact can reduce the area occupied by the charging modules, making the power swap station 40 compact in layout and occupying less space. It can be used in a limited space.
  • the floor space can provide a larger number of power changing stations.
  • multiple charging modules 400 are accommodated in the same box.
  • the box protects the charging modules.
  • the charging modules will not be affected by the harsh external environment, such as rain and snow, and can still work normally, which improves the efficiency of the charging module.
  • the service life is long, and multiple charging modules are accommodated in the same box, which reduces construction costs.
  • the number of boxes is two.
  • the charging modules located on both sides of the driving direction are located in two boxes respectively.
  • Multiple charging modules on the same side are located in the same box.
  • the structure is simple and easy to construct.
  • the number of boxes can also be one, and the charging modules on both sides can be accommodated in the same large box at the same time.
  • the box has an opening for the vehicle 500 to move in and out.
  • a backup lane 700 is provided between the vehicle platforms 100 of any two adjacent power swap stations 40.
  • the provision of the backup lane 700 can improve the safety during the power swap process.
  • the vehicles 500 can be better parked and operated during the power exchange process, reducing possible collisions between vehicles 500 during the power exchange process. Security risks.
  • the backup lane 700 runs through two adjacent battery swap stations 40.
  • the width of the backup lane 700 is greater than the width of the vehicle 500.
  • a partition 800 is provided between two opposite power swap stations 40.
  • the power swap stations 40 in each array power swap unit do not interfere with each other, and the vehicle 500 There will be no interference between them, and the battery replacement process is safer.
  • the distance between the two vehicle-carrying platforms 100 in the same horizontal direction in the two adjacent second array units 920 is greater than the width of the vehicle 500; the vehicle-carrying platform 100 located far away from the charging module
  • the distance between the platform 100 and the charging module is greater than the width of the vehicle 500.
  • the distance being greater than the width of the vehicle 500 can ensure that there is sufficient space between adjacent vehicle platforms 100.
  • the vehicle 500 can enter and exit the vehicle platform more freely when performing battery swap operations. 100, to improve the convenience of the battery swap station 40 and reduce the risk of interference and cross-operation between vehicles 500. Reduce the risk of collision between vehicles 500: By increasing the distance between vehicle platforms 100, the risk of collision between vehicles 500 is reduced.
  • This layout can improve the safety of the battery swap station 40 and reduce potential damage to the vehicle 500 or equipment. It is helpful for 40 staff members of the battery swapping station to maintain and operate the charging equipment. This makes inspection, cleaning, maintenance and other work more convenient, and improves the maintenance efficiency of the battery swap station 40 .
  • the distance between the front of the vehicle 500 parked on the vehicle platform 100 in front and the front of the vehicle 500 parked on the rear vehicle platform 100 is smaller than the distance between the vehicle 500 and the vehicle 500 parked on the vehicle platform 100 in the rear. length, by staggering the vehicle platform 100 and reducing the distance between the fronts of the vehicles 500, the space in the power swap station 40 can be effectively utilized, saving the floor space of the power swap station 40, and more power stations can be installed in a limited space. At the same time, the reduced gap can increase the vehicle 500 capacity of the battery swap station 400. This can provide services to more vehicles 500 at the same time, increase the efficiency of the battery swap station 400, and reduce user waiting time.
  • the distance between any adjacent vehicle platforms 100 or the distance between the vehicle platform 100 and the charging module is greater than the preset distance, so that vehicles on any vehicle platform can drive out or drive in.
  • the distance between any adjacent vehicle-carrying platforms 100 is greater than the preset gap, so that the vehicle 500 on any vehicle-carrying platform 100 can drive out or drive in.
  • the distance between the vehicle platform 100 and the charging module 400 can also be adjusted, so that the distance between the vehicle 500 on any vehicle platform 100 and any charging module 400 can meet the requirements of the vehicle on the vehicle platform 100 500 in and out.
  • the charging module 400 includes a charging rack 410 and a battery transfer device 420. Perpendicular to the driving direction, the vehicle platform 100, the battery transfer device 420 and the charging rack 410 are arranged in sequence.
  • the charging rack 410 can charge the replaced battery.
  • the battery transfer device 420 can transport the battery packs on the power exchange equipment 200 and the battery packs in the charging rack 410, and the layout is reasonable, which can reduce the moving distance during the battery pack replacement process, and the battery pack replacement efficiency is higher.
  • the power swap station 40 also includes a power swap device 200.
  • the power swap device 200 transports batteries between the battery transfer device 420 and the vehicle platform 100.
  • the power swap device 200 has accurate positioning, good versatility, and can Adapts to different sizes of vehicle 500 or battery pack.
  • the battery swapping device 200 By using the battery swapping device 200, the battery can be quickly transferred and exchanged within the charging station, which can significantly improve the speed and efficiency of battery swapping. This eliminates the need for manual battery replacement, reduces waiting time, and provides a more efficient service.
  • the battery swapping device 200 is used to directly transport the battery from the transfer device to the vehicle carrying platform 100, simplifying the operation process during the battery swapping process. .
  • the dedicated battery swapping equipment 200 is used to transport the battery from the transfer equipment to the vehicle platform 100, thereby reducing the risk of accidental injuries that may occur during manual transport. This improves the safety of the battery swap station 40 and protects the safety of workers and users. With the help of the power exchange equipment 200, a higher degree of automation can be achieved degree, improving the intelligence level of the battery swap station 40. Through automated operations, higher production efficiency and better resource utilization can be achieved, while labor costs and operational errors can be reduced.
  • the upper frame 240 and the lower frame 230 can be driven to move in the vertical direction together through the lifting mechanism, and then can be moved to the position of the battery pack pair.
  • the lifting mechanism can adjust the distance between the battery pack and the power swapping device 200 .
  • the vertical distance facilitates the battery swapping equipment 200 to disassemble, assemble, and move the battery pack.
  • the lower frame 230 includes a first frame 231 and a second frame 232.
  • the first frame 231 and the second frame 232 are spaced apart along the horizontal displacement direction.
  • the lower frame 230 is divided into spaced first frames. 231 and the second frame 232 can reduce space occupation, make the structure more compact, and provide installation space for the width adjustment mechanism 260.
  • the upper frame 240 includes a third frame 241 arranged at intervals above the first frame 231 and a fourth frame 242 arranged above the second frame 232 to facilitate the connection between the upper frame 240 and the lower frame 230
  • the distribution is matched, and the width adjustment of the lower frame 230 will not be restricted or hindered by the upper frame 240, and the space utilization rate is high.
  • the power exchange equipment 200 also includes a length adjustment mechanism 250.
  • the length adjustment mechanism 250 is used to drive the lower frame 230 and the upper frame 240 to move along the driving direction of the vehicle 500; specifically, the length adjustment mechanism 250 improves the position adjustment of the power exchange equipment 200.
  • the range and positioning accuracy can adapt to more models and battery packs of more specifications.
  • the length adjustment mechanism 250 includes a first length adjustment mechanism 251 and a second length adjustment mechanism 252.
  • the first length adjustment mechanism 251 and the second length adjustment mechanism 252 are provided independently.
  • the first length adjustment mechanism 251 is respectively connected with the second length adjustment mechanism 252 .
  • a frame 231 is connected to the second frame 232.
  • the first length adjustment mechanism 251 drives the first frame 231 and the second frame 232 to move.
  • the second length adjustment mechanism 252 is connected to the third frame 241 and the fourth frame 242 respectively.
  • the second length adjustment mechanism 251 drives the first frame 231 and the second frame 232 to move.
  • the adjustment mechanism 252 drives the third frame 241 and the fourth frame 242 to move without affecting each other, is more flexible, and can increase the length adjustment range of the power exchange device 200 .
  • the power exchange device 200 also includes a width adjustment mechanism 260.
  • the width adjustment mechanism 260 is provided at the interval between the first frame 231 and the second frame 232.
  • the width adjustment mechanism 260 includes two parts respectively connected with the first frame 231 and the second frame 232. The connected output end, the width adjustment mechanism 260 drives the first frame 231 and the second frame 232 to move through the output end;
  • the width adjustment mechanism 260 can control the spacing distance between the first frame 231 and the second frame 232, thereby matching battery packs of different sizes, resulting in wider versatility.
  • the third frame 241 and the fourth frame 242 move synchronously with the first frame 231 and the second frame 232 .
  • the third frame 241 and the fourth frame 242 are adjusted synchronously with the first frame 231 and the second frame 232 without the need for Setting the width adjustment mechanism 260 separately makes the structure more compact and helps reduce costs.
  • the power exchange equipment 200 also includes a hydraulic oil tank 270.
  • the hydraulic oil tank 270 is installed on the power exchange equipment 200 and moves with the power exchange equipment 200.
  • the hydraulic oil tank 270 provides the required oil for the hydraulic system on the power exchange equipment 200.
  • the electronic control device 280 controls various operations of the power exchange equipment 200, avoiding the installation of longer or more hydraulic pipelines and control cables between the power exchange station and the power exchange equipment 200, and the power exchange equipment 200 will not move. There will be no interference with hydraulic pipelines or control cables during the process, making it more flexible and convenient.
  • the power exchange equipment 200 also includes an electric control device 280.
  • the electric control device 280 is installed on the power exchange equipment 200 and moves together with the power exchange equipment 200. There is no need to install a long control cable, and the power exchange equipment 200 will not move during the movement. No interference occurs with control cables, making it more flexible and convenient.
  • the electronic control device 280 and the hydraulic oil tank 270 are arranged on the same side of the power exchange equipment 200, only occupying space on one side, and the structure is compact.
  • the electronic control device 280 and the hydraulic oil tank 270 are disposed on the same side of the power exchange equipment 200 in the direction perpendicular to the driving direction of the vehicle 500; it is beneficial to reduce the impact of the power exchange equipment 200 in the driving direction of the vehicle 500.
  • the length facilitates the electronic control device 280 to control the operation of the hydraulic oil tank 270 and shortens the connection line between the electronic control device 280 and the hydraulic oil tank 270 .
  • the length adjustment mechanism 250 is hydraulically driven and uses a hydraulic cylinder to provide power. It is easy to control, can perform stepless speed regulation, and has an overload protection function. Compared with mechanical transmission, the layout of the length adjustment mechanism 250 It is more flexible, has a simple structure, large driving force, and is lower in cost than other driving devices.
  • the width adjustment mechanism 260 is hydraulically driven and uses a hydraulic cylinder to provide power. It is easy to control, can perform stepless speed regulation, and has an overload protection function. Compared with mechanical transmission, the layout of the width adjustment mechanism 260260 is more flexible, and the structure is simple and the drive is High power and lower cost than other drive devices.
  • the power swap station 40 also includes a foundation 300 on which a charging rack 410, a battery transfer device 420 and several vehicle platforms 100 are arranged.
  • the foundation 300 pairs the charging rack 410, the battery transfer device 420 and the vehicle platform. 100 plays a bearing and fixing role.
  • the above-mentioned foundation 300 provides a moving channel for the power exchange equipment 200.
  • the power exchange equipment 200 moves along the moving channel in the foundation 300. The movement trajectory will not deviate, and the power exchange equipment 200 moves smoothly.
  • the foundation 300 includes a movement channel for the power exchange equipment 200 to move in the horizontal direction; along the direction perpendicular to the driving direction, the movement channels of the foundation 300 of two opposite power exchange stations 40 are connected.
  • the moving passages of the foundations 300 of the two opposite power swap stations 40 are connected, which facilitates the construction of the foundations 300, can reduce the construction process, reduce the workload, and improve the efficiency of station construction.
  • the foundations 300 of the two opposite power swap stations 40 The interconnection of the mobile channels allows two opposite power swap stations 40 to share a foundation 300, which is beneficial to reducing costs.
  • sharing a foundation 300 can eliminate the need to align the two foundations 300, which is beneficial to further improving the efficiency of station construction.
  • this embodiment provides a foundation 300.
  • the foundation 300 includes a moving channel for the above-mentioned power exchange equipment 200 to move in the horizontal direction; the power exchange equipment 200 can move along the horizontal direction in the foundation 300.
  • the channel moves and the movement trajectory will not deviate.
  • the moving channel includes a track 310, which matches the rollers of the power exchange equipment 200. By providing the track 310, the movement path of the power exchange equipment 200 in the foundation 300 is guided, and the power exchange equipment 200 moves smoothly.
  • the foundation 300 can be made of prefabricated parts, which not only helps to reduce the manufacturing cost of the foundation 300, but also makes the installation of the foundation 300 more convenient. Among them, the foundation 300 can be completely located below the ground. The foundation 300 does not occupy the space above the ground and will not interfere with the vehicles 500 and pedestrians on the ground. The user experience during the power replacement process is better.
  • the foundation 300 is located below the ground, and the foundation 300 is partially located below the ground, which can reduce the construction amount of the power swap station 400.
  • the foundation 300 is also all located above the ground. The foundation 300 is completely displaced above the ground. There is no need to carry out construction underground, and the construction is more convenient.
  • the foundation 300 also includes a charging rack 410 installation area 320 and a vehicle platform installation area 340, which provides an installation space for the charging rack 410 to facilitate the installation and fixation of the charging rack 410.
  • the foundation 300 also includes a battery transfer equipment 420 installation area 330. An installation space is provided for the battery transfer device 420 to facilitate the installation and fixation of the battery transfer device 420 .
  • the foundation 300 also includes an installation area for the vehicle platform 100, and the installation area of the vehicle platform 100 is recessed downward; in this embodiment, the foundation 300 provides an installation space for the vehicle platform 100, which facilitates the installation and fixation of the vehicle platform 100.
  • the surface of the vehicle-carrying platform 100 does not exceed the foundation 300; in this embodiment, the vehicle-carrying platform 100 does not exceed the foundation 300, and the vehicle 500 does not drive into the vehicle-carrying platform 100. It will be obstructed to facilitate the passage of 500 vehicles and improve the user experience.
  • the number of charging rack 410 installation areas 320, battery transfer equipment 420 installation areas 330, and vehicle platform 100 installation areas included in the foundation 300 can be determined according to the actual needs of the power swap station 400.
  • a vehicle platform 100 installation area is provided in the foundation 300 .
  • the foundation 300 may also be provided with two vehicle-carrying platforms 100 installation areas, and the foundation 300 where the two vehicle-carrying platforms 100 installation areas are located is connected to each other.
  • the foundation 300 may also be provided with multiple vehicle-carrying platform 100 installation areas.
  • the foundation 300 where the multiple vehicle-carrying platform 100 installation areas are located may be connected to each other or may be provided independently of each other.
  • the foundations 300 of the two power swap stations are connected, so that the moving channels inside the foundations are connected, and the two power exchange stations can even be connected.
  • the foundation 300 corresponding to the power swap station is integrated, which facilitates the construction of the foundation 300, can reduce the construction process, reduce the workload, and improve the efficiency of station construction.
  • one power swap station 400 may include one foundation 300 or a combination of multiple foundations 300 at the same time.
  • the vehicle platform 100 includes a battery replacement port 110 .
  • the battery replacement port 110 may be disposed in the middle of the vehicle platform 100, and the size of the battery replacement port 110 may be larger than the size of the battery pack to be replaced.
  • the vehicle platform 100 also includes a movable door 130, which is installed at the battery replacement port 110 for closing or opening the battery replacement port 110; by setting the movable door 130 to close and open the battery replacement port 110, the battery replacement port 110 is not affected. Under the premise of ensuring the battery is fully charged, by closing the battery replacement port 110, the vehicle 500 or pedestrians are prevented from falling into the battery replacement port 110 during normal travel, thereby improving the safety of battery replacement.
  • the movable door 130 moves perpendicular to the driving direction to open or close the battery replacement port 110.
  • the movable door 130 opens perpendicular to the driving direction. It occupies a small space in the driving direction of the vehicle 500 and is convenient for approaching the vehicle 500 in the driving direction. Arrange multiple potential exchange positions to achieve high space utilization.
  • the moving door 130 includes a relatively detachable first moving part 131 and a second moving part 132.
  • the first moving part 131 and the second moving part 132 move horizontally in opposite directions to open or close the battery replacement port 110.
  • the movable door 130 is flush with the battery replacement port 110, which will not affect the flatness of the upper surface of the vehicle platform 100, prevent the passage of the vehicle 500 from being affected, and provide a better user experience.
  • the length of the battery replacement port 110 perpendicular to the driving direction exceeds the distance between the insides of the left and right wheels; or, the length of the battery replacement port 110 in the driving direction of the vehicle 500 exceeds the distance between the insides of the front and rear wheels.
  • the length of the battery replacement port 110 exceeds the inner distance of the wheel.
  • the battery replacement process is more convenient and smooth, reducing the operational difficulty of replacing the battery.
  • the distance between the wheel axle of different vehicles 500 and The inner distance may be different, so the battery replacement port 110 with sufficient length can be adapted to various vehicles 500 and provide a wider service range.
  • the longer battery replacement port 110 makes the battery replacement process faster and easier. The driver can more easily align the vehicle 500 with the replacement port, reducing alignment time and improving battery replacement efficiency. This will reduce user waiting time and improve overall service efficiency.
  • the vehicle 500 and the vehicle 500 on the adjacent vehicle carrying platform 100 are The distance between the vehicle 500 and the charging module is enough for the vehicle 500 to pass. The distance between the vehicle 500 and the vehicle 500 is sufficient for the vehicle 500 to be driven out directly without the need to adjust the position of the vehicle 500 back and forth.
  • each power swap station 10 includes a charging module 400, a vehicle carrying platform 100, and a vehicle carrying platform 100.
  • the platform 100 is used to carry and position the vehicle 500.
  • the vehicle 500 travels to the vehicle platform 100 to replace the battery pack.
  • the charging module 400 also includes a charging rack 410 and a battery transfer device 420. The charging rack 410 can charge the replaced battery.
  • each power swap station 10 may further include a power swap device 200. Perpendicular to the driving direction H, the vehicle platform 100, the battery transfer device 420 and the charging rack 410 are arranged in sequence. The power swap device 200 is located on the battery. Batteries are transported between the transfer equipment 420 and the vehicle platform 100 .
  • the power swap station 10 may further include a foundation 300 , on which the charging rack 410 , the battery transfer device 420 and the vehicle platform 100 are disposed.
  • the foundation 300 includes components for the power swap device 200 to move in the horizontal direction. Mobile channel 310.
  • the foundation 300 carries the charging rack 410, the battery transfer equipment 420 and the vehicle platform 100, and provides a moving channel 310 for the battery exchange equipment 200, which makes it more convenient for the battery to be transported between the battery transfer equipment 420 and the vehicle platform 100, and
  • the power exchange equipment 200 moves along the movement channel 310 in the foundation 300, and the movement trajectory will not deviate.
  • the user parks the vehicle 500 on the vehicle platform 100.
  • the array-type power swap station 1 includes at least one third array unit 930.
  • the third array unit 930 is formed by at least one power swap station 10.
  • the power swap station includes Two vehicle-carrying platforms set at intervals.
  • the battery swap station may also include two or more vehicle-carrying platforms arranged at intervals.
  • the array-type power swap station includes four parallel third array units 930 , that is, the array-type power swap station 1 includes a total of four third array units 930 , and the four power swap stations 10 are arranged along the driving direction.
  • the driving direction L is arranged in sequence.
  • Each battery swap station 10 includes two vehicle-carrying platforms 100 arranged at intervals, and the two vehicle-carrying platforms 100 are arranged at intervals perpendicular to the driving direction H. Between the two vehicle-carrying platforms 100 There is a spare lane 700 between them.
  • the array power swap station 1 may also include other numbers of third array units 930 arranged in parallel.
  • the battery swap station 10 forming the third array unit 930 is equipped with two vehicle platforms 100 perpendicular to the driving direction H, which can replace battery packs for the two vehicles 500 so that the two vehicles 500 share one
  • the charging module 400 of the power swap station 10 further reduces the use cost.
  • the two vehicle-carrying platforms 100 of the battery swap station 10 are set at intervals to increase the number of battery swap stations in the battery swap station 10 on the basis of saving the number of charging modules 400, which can meet the needs of more vehicles 500 to replace battery packs at the same time, and The spacing between the two vehicles 500 will not interfere with each other, and the layout is more reasonable, which improves the efficiency of battery swapping for the vehicles 500.
  • each power swap station 10 is provided with two vehicle platforms 100 spaced apart along the direction H perpendicular to the driving direction, so that the two vehicles 500 can share one charging module 400 .
  • multiple vehicle-carrying platforms 100 may be arranged at intervals on each battery swap station 10 , for example, four vehicle-carrying platforms 100 may be arranged at intervals along the direction H perpendicular to the driving direction, and four vehicle-carrying platforms 100 may be arranged at intervals.
  • a backup lane 700 is provided between the vehicle platforms 100.
  • a battery swap station 10 When a battery swap station 10 includes multiple vehicle platforms 100 , the multiple vehicle platforms 100 are spaced apart perpendicular to the driving direction H, and the charging module 400 of the battery swap station 10 is arranged outside the outermost vehicle platform 100 , so that The position of the charging module 400 will not interfere with the vehicle 500 on the vehicle platform 100, and the layout is more reasonable.
  • each third array unit 930 only includes one power swap station 10 .
  • the third array unit 930 can adjust the number of power swap stations 10 according to actual needs.
  • each third array unit 930 can adjust the number of power swap stations 10 according to actual needs.
  • the units 930 each include two battery swap stations 10 arranged opposite each other perpendicular to the driving direction H, that is, the four vehicle platforms 100 are located between the two charging modules 400 , so that there are two battery swap stations 10 in the same row, further increasing the number of battery swap stations 10 .
  • the number of power swapping stations in each array unit, the user can also select any power swapping station 10 in the same row according to the actual situation.
  • the plurality of third array units 930 may not be arranged parallel to each other.
  • the plurality of third array units 930 may be arranged inclined at a certain angle to each other.
  • the adjacent third array units 930 can be arranged in contact with each other. That is, along the driving direction L, two adjacent third array units 930 can be arranged in contact with each other.
  • the charging modules 400 can be arranged in contact with each other, making the layout of the array power swap station 1 more compact, occupying less space, and providing a greater number of power swap stations within a limited space.
  • the four third array units 930 include a total of four power swap stations 10 and four charging modules 400.
  • the adjacent charging modules 400 in the driving direction L are located on the same straight line, and multiple charging modules 400 are accommodated.
  • the box can play a protective role.
  • the charging module 400 will not be affected by the harsh external environment, such as rain or snow, and can still work normally, which improves the efficiency of the charging module 400.
  • the service life is long, and multiple charging modules 400 are accommodated in the same box, which reduces construction costs.
  • the four third array units 930 when the four third array units 930 are arranged in parallel along the driving direction L, the four third array units 930 include a total of four battery swap stations 10, including eight
  • Each vehicle platform 100 is divided into two rows along the driving direction L, including one row close to the charging module 400 and another row far away from the charging module 400.
  • Each row includes four vehicle platforms 100, and each row includes four vehicle platforms 100.
  • the four vehicle-carrying platforms 100 are all on the same straight line in the driving direction L.
  • the vehicles 500 along the driving direction L can travel end-to-end on adjacent vehicle-carrying platforms 100 without interfering with each other.
  • the vehicles 500 enter and exit the corresponding vehicle platform 100 in a more orderly manner.
  • the distance between the two vehicle-carrying platforms 100 in each battery swap station 10 is greater than the width of the vehicle 500, so that the spacing between adjacent vehicle-carrying platforms 100 can form a backup lane 700, which is convenient for the rear vehicles 500 to wait or traffic to avoid crowding.
  • a continuous backup lane 700 is formed between the two rows of vehicle-carrying platforms 100.
  • the width of the backup lane 700 is greater than the width of the vehicle 500.
  • the backup lane 700 is set up between the platforms 100, which can provide sufficient space for the passage of vehicles 500, which is conducive to the passage and waiting of the vehicles 500. The power exchange of the vehicle 500 in front will not affect the passage of the vehicle 500 in the rear, which improves the user experience.
  • the vehicle platform 100 is provided with a battery pack replacement port 110.
  • a telescopic door is provided at the battery pack replacement port 110.
  • the battery pack replacement port 110 will be closed.
  • the telescopic door will open the battery pack replacement port 110.
  • the four wheels of the vehicle 500 are fixed, and the battery pack at the bottom of the vehicle 500 is located directly above the battery pack replacement port 110, which is perpendicular to the driving direction L.
  • the length of the battery pack replacement port 110 exceeds the inner distance of the left and right wheels, or the length of the battery pack replacement port 110 in the driving direction L exceeds the internal distance of the front and rear wheels, or the length of the battery pack replacement port 110 perpendicular to the driving direction H is as long as the length of the battery pack replacement port 110 in the driving direction H.
  • the length in the direction L exceeds the inner distance of the left and right wheels or the inner distance of the front and rear wheels at the same time.
  • the power exchange equipment 200 is specifically arranged inside the foundation 300 and moves within the moving channel 310 of the foundation 300. Movement, thereby realizing the transportation of battery packs between the battery transfer equipment 420 and the vehicle platform 100.
  • the moving channels 310 at the ends of two opposite foundations 300 can be connected, and the foundations 300 corresponding to the two power swap stations can even be integrated into one, which facilitates the construction of the foundations 300 and can reduce the cost.
  • the construction process reduces the workload and helps improve the efficiency of website construction.
  • the specific structure of the power exchange equipment 200 is shown in Figures 44 and 45.
  • the power exchange equipment 200 includes a lifting mechanism 210 and a horizontal displacement mechanism 220.
  • the power exchange equipment 200 also includes a lower frame 230 and an upper frame located above the lower frame 230. 240, wherein the upper frame includes a third frame 241 and a fourth frame 242, the lower frame includes a first frame 231 and a second frame 232, and the lifting mechanism 210 is used to drive the lower frame 230 and the upper frame 240 in the vertical direction. move.
  • the power exchange device 200 also includes a length adjustment mechanism 250, which is used to drive the lower frame 230 and the upper frame 240 to move along the vehicle driving direction.
  • the lifting mechanism 210 can drive the upper frame 240 and the lower frame 230 to move in the vertical direction together, and then move to the corresponding position of the battery pack, which facilitates the power swapping equipment 200 to disassemble and move the battery pack.
  • the length adjustment mechanism 250 improves the position adjustment range and positioning accuracy of the power swapping device 200 and can be adapted to more car models and battery packs of more specifications.
  • the lower frame 230 includes a first frame 231 and a second frame 232.
  • the first frame 231 and the second frame 232 are spaced apart along the horizontal displacement direction.
  • the power exchange device 200 also includes a width adjustment Mechanism 260.
  • the width adjustment mechanism 260 is arranged at the interval between the first frame 231 and the second frame 232.
  • the width adjustment mechanism 260 includes two output ends connected to the first frame 231 and the second frame 232 respectively.
  • the width adjustment mechanism 260 passes through The output end drives the first frame 231 and the second frame 232 to move.
  • the space occupied can be reduced, the structure is more compact, and an installation space is provided for the width adjustment mechanism 260, through which the width adjustment mechanism 260 can control the third frame.
  • the spacing distance between the first frame 231 and the second frame 232 can match battery packs of different sizes, resulting in wider versatility.
  • the distance between any adjacent vehicle platforms 100 along the driving direction or perpendicular to the driving direction is greater than the preset gap, so that the vehicle 500 on any vehicle platform 100 can drive out or in.
  • the distance between the vehicle platform 100 and the charging module 400 can also be adjusted, so that the distance between the vehicle 500 on any vehicle platform 100 and any charging module 400 can meet the requirements of the vehicle on the vehicle platform 100 500 in and out.
  • two opposite power swap stations 10 form a third array unit 930 in a direction perpendicular to the driving direction.
  • the array-type power swap station 1 in this embodiment is used to replace battery packs of at least two battery swap models.
  • the locking methods of the battery packs of the battery swap models include bolt lock, bead lock, T-shaped lock, and card lock. at least one of buckle lock, rotation lock, and hitch lock, so that the The array-type battery swap station 1 can replace battery packs with multiple locking methods of different battery swap models, and has strong versatility.
  • the battery-swap models applied to this array-type power swap station 1 include at least one of passenger cars, heavy trucks, light trucks, minivans, and buses. It can adapt to various common car models on the market.
  • the array-type power swap station 1 can meet the needs of all types of vehicles on the market. The battery swapping needs of different electric vehicles 500.
  • This embodiment also provides an energy station that is modified based on a gas station.
  • the energy station includes the above-mentioned array power swap station 1, and the top of the charging module 400 is connected to the ceiling of the energy station.
  • the ceiling has a fixing effect on the charging module 400, and the charging module 400 is integrated with the ceiling. With the help of the ceiling, the fixing of the charging module 400 is more stable, and the ceiling also has a shielding effect on the charging module 400.
  • the array power swap station 1 includes two third array units 930, that is, it includes two power swap stations 10.
  • Each power swap station 10 also includes a charging module 400, a vehicle platform 100 and a power swap device 200, and each power swap station 10 carries a vehicle.
  • the number of platforms 100 is also two, and the two vehicle-carrying platforms 100 of each power swap station 10 are arranged at intervals on one side of the charging module 400 .
  • the charging modules 400 of the two battery swapping stations 10 are in contact with each other.
  • the two charging modules 400 include a total of four vehicle-carrying platforms 100 , and the four vehicle-carrying platforms 100 are connected by two
  • the vehicle platform 100 is arranged in a staggered manner so that the charging modules 400 of adjacent power swap stations 10 are placed in contact without causing interference.
  • the layout is also more compact, and more power-changing stations can be set up in a limited space.
  • the distance between the two front ends or the two rear ends of two adjacent vehicle-carrying platforms 100 is smaller than the length of the front and rear ends of a single vehicle-carrying platform 100 . As shown in FIGS.
  • each third array unit 930 contains two power swap stations 10 , and each power swap station includes two vehicle platforms 100 .
  • the distance between the front ends of the two vehicle-carrying platforms 100 is The distance, or the distance between the rear ends of the two vehicle-carrying platforms 100 , is less than the length of the front and rear ends of a single vehicle-carrying platform 100 .
  • This arrangement makes it easier for any two adjacent vehicle platforms 100 to be arranged in a staggered manner in the driving direction, and further enables adjacent charging modules 400 to be arranged at a close distance, making the layout more compact. More power changing stations can be set up in a limited space.
  • the four vehicle-carrying platforms 100 are arranged in a staggered manner. In order to make the layout more compact, no spare lane 700 is provided between the vehicle-carrying platforms 100 . However, in actual use, in order to avoid interference between the vehicles 500, it is also possible to move the vehicle 500 at any time along the driving direction L. It means that a backup lane 700 is provided between two adjacent vehicle-carrying platforms 100, or a backup lane 700 is provided between two adjacent vehicle-carrying platforms 100 during battery swapping, thereby providing sufficient space for the passage of vehicles 500, which is conducive to vehicles. 500's passage and waiting, the battery replacement of the vehicle 500 in front will not affect the passage of the vehicle 500 behind, which improves the user experience.
  • the backup lane 700 runs through the adjacent battery swap stations 10 , and the width of the backup lane 700 is greater than the width of the vehicle 500 , so that There is enough space for the front and rear vehicles 500 to move in and out. Even if there are many battery swapping vehicles 500, it will not cause congestion, further improving the user's battery swapping experience.
  • the array-type power-swapping station 1 includes two third array units 930 , that is, it includes two power-swapping stations 10 , and the four vehicle-carrying platforms 100 of the two power-swapping stations 10 are arranged offset from each other.
  • the number of third array units 930 can be set according to requirements.
  • the array power swap station 1 includes four third array units 930, that is, four In the power swap station 10, the charging modules 400 of the four power swap stations 10 are in contact with each other.
  • the four power swap stations 10 include a total of eight vehicle platforms 100.
  • the eight vehicle platforms 100 are arranged in a staggered position with each other, so that the charging modules of the adjacent power swap stations 10 400 is set up in contact without causing interference, which greatly saves space and makes the layout more compact. More power-changing stations can be set up in a limited space.
  • This embodiment provides an energy station that is modified based on a gas station.
  • the energy station includes an array power swap station as in Embodiment 2-6.
  • the top of the charging module 401 is connected to the ceiling of the energy station.
  • the ceiling is connected to the top of the charging module 401, and the ceiling has a fixing effect on the charging module 401.
  • the charging module 401 is integrated with the ceiling. With the help of the ceiling, the fixing of the charging module 401 is more stable, and the ceiling is fixed to the charging module 401.
  • the charging module 401 also has a shielding function.
  • the ceiling of the gas station is set on the ground through columns, and the box used to accommodate the charging module 401 is also used to accommodate at least part of the columns.
  • the columns not only support the ceiling, but also support the box. The installation and fixation of the box is more convenient and reliable, and the box can fully cover the charging module 401, providing Better protection.
  • the energy station is used for battery replacement in at least two battery-swapping models.
  • the locking methods of the battery packs of the battery-swapping models include bolt locking, bead locking, T-shaped locking, snap locking, At least one of rotation lock and hitch lock.
  • the energy station can replace battery packs with multiple locking modes of different battery swap models, and has strong versatility.
  • Battery swapping models include at least one of passenger cars, heavy trucks, light trucks, minivans, and buses.
  • battery swapping models include various common models on the market, and array battery swapping stations and energy stations can meet the battery swapping needs of different electric vehicles on the market.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)
  • Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)
  • Automatic Assembly (AREA)

Abstract

本发明公开了一种换电站和阵列式换电站,换电站包括充电架、电池转运设备、载车平台和换电设备;在垂直于车辆的行车方向上,换电站依次设置充电架、电池转运设备和载车平台;换电设备在电池转运设备和载车平台之间输送电池。换电设备能够在电池转动设备和载车平台之间输送电池,从而将充电架上的充电完成的电池,经电池转运设备取出,并通过换电设备移动至载车平台处;或者,将车辆上拆卸下来的亏电电池,经换电设备移动至电池转运设备,再通过电池转运设备存放至充电架内,从而实现车辆上电池的更换。另外,充电架、电池转运设备和载车平台在垂直于车辆的行车方向上布置,布局更加合理,使得电池包更换效率更高。

Description

换电站和阵列式换电站
本申请要求申请日为2022年7月1日的中国专利申请2022107756122的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种换电站和阵列式换电站。
背景技术
近几年来,由于石油资源日益紧张,环保概念被大力宣传并且环保意识普遍得到提升。由此,新能源汽车发展迅速,依靠蓄电池作为驱动能源的电动车辆,具有零排放,噪声小的优势,随着电动汽车的市场占有率和使用频率也越来越高,其中,换电车型由于能够快速换电,用于为换电车型的电动汽车提供电池更换场所的换电站也越来越普及。
现有技术中的换电站内部的设备可能存在布局不合理,导致换电站的占地面积较大,建造的条件和成本都比较高;并且现有的换电站通常需要举升汽车进行换电,换电过程较为麻烦且具有一定的安全隐患、换电的效率也比较低;当换电站建在车流量少、换电站运营压力小的区域,换电站内部的设备可能存在过剩,导致换电资源浪费的情形。另外,现有的换电站占地面积较大,建站周期长,成本高,无法满足短时间内快速批量化建站的需求,且对于车密度少、运营压力小的区域,存在换电资源浪费的情形,同时,现有换电站需要举升汽车进行换电,换电过程较为麻烦,且具有一定的安全隐患;现有换电站的换电设备的对不同尺寸电池包的通用性较差;并且现有换电站换电工位较少,换电工位的布局不合理,整体效率较低。
发明内容
本发明要解决的技术问题是为了克服现有技术中换电站换电工位较少,换电工位的布局不合理,整体效率较低的缺陷,提供一种换电站和阵列式换电站。
本发明是通过下述技术方案来解决上述技术问题:
一种换电站,所述换电站包括充电架、电池转运设备、载车平台和换电设备;在垂直于车辆的行车方向上,所述换电站依次设置所述充电架、所述电池转运设备和所述载车平台;所述换电设备在所述电池转运设备和所述载车平台之间输送电池。
在本方案中,载车平台能够供车辆停靠,充电架能够为亏电电池进行充电,电池转运设备能够对 充电架上的电池进行取放,换电设备能够在电池转动设备和载车平台之间输送电池,从而将充电架上的充电完成的电池,经电池转运设备取出,并通过换电设备移动至载车平台处;或者,将车辆上拆卸下来的亏电电池,经换电设备移动至电池转运设备,再通过电池转运设备存放至充电架内,从而实现车辆上电池的更换。另外,充电架、电池转运设备和载车平台在垂直于车辆的行车方向上布置,布局更加合理,能够减少电池包更换过程中换电设备的移动距离,使得电池包更换效率更高。
较佳地,所述换电站包括地基,所述充电架、所述电池转运设备和若干个所述载车平台均设置在所述地基上。在本方案中,地基对充电架、电池转运设备和载车平台起到了承载及固定作用。地基为充电架、电池转运设备和载车平台提供了安装空间,便于充电架、电池转运设备和载车平台的安装及固定。在地基上同时设置移动通道、电池转运设备安装区和载车平台安装区,使得换电设备、电池转运设备和载车平台能够集成到地基上,方便换电站的批量化生产,缩短建站周期,降低建站成本。
较佳地,所述地基包括:移动通道,所述移动通道用于所述换电设备沿水平方向移动;
充电架安装区,所述充电架设置于所述充电架安装区,所述充电架安装区设置于所述移动通道的一侧;电池转运设备安装区,所述电池转运设备设置于所述电池转运设备安装区,所述电池转运设备安装区设置于所述移动通道的一侧。在本方案中,换电设备可在地基中沿移动通道进行移动,移动轨迹不会发生偏离。充电架安装区用于设置充电架;电池转运设备安装区用于设置电池转运设备,便于充电架和电池转运设备的安装。上述设置布局合理,且充电架和电池转运设备的设置不会干涉换电设备的移动,且便于电池在换电设备和电池转运装置之间的搬运,从而简化换电站的布局,便于换电站的建造。
较佳地,所述地基还包括载车平台安装区,所述载车平台安装区向下凹陷,所述载车平台安装于所述载车平台安装区时,所述载车平台的表面不超出所述地基。在本方案中,车辆驶入载车平台时不会受到干涉,或者不需要设置额外的上下车辆行驶坡面,便于换电站的设置,同时方便车辆通行,提高了用户体验。下凹的结构还能够对载车平台起到在地基上快速定位的作用,提高安装效率,而且不用单独在地基上设置定位结构,降低成本。凹陷的结构还能够对载车平台进一步起到限位的作用。
较佳地,沿垂直于车辆的行车方向上,所述充电架安装区、所述电池转运设备安装区和所述载车平台安装区相连通。在本方案中,车辆停靠在载车平台后,通过换电设备拆下亏电电池,通过电池转运设备将亏电电池搬运至充电架进行充电,同时电池转运设备将满电电池搬运至换电设备,通过换电 设备将满电电池安装到车辆上。充电架安装区、电池转运设备安装区和载车平台安装区相连通,能够便于电池转运设备对电池进行搬运,有利于换电站的工作效率。
较佳地,在所述地基中,所述载车平台安装区的深度小于所述电池转运设备安装区的深度。在本方案中,上述设置使得载车平台能够安装在地基上,不会陷入移动通道内。不需要进行举升换电设备,就能够实现电池在换电设备和电池转运设备之间的搬运,有利于换电设备的工作效率。
较佳地,所述载车平台包括电池更换口,所述电池更换口在垂直于车辆的行车方向上的长度超过车辆的左右车轮的内侧距离;和/或,所述电池更换口在所述车辆的行车方向上的长度超过前后车轮内侧距离。在本方案中,通过使电池更换口在两个维度方向上的长度分别大于前后车轮以及左右车轮的内侧距离,使得电池更换的空间更为充足,降低了电池更换的难度,且可允许电动车辆采用更大体积的电池包,通过这种载车平台的设计,电池更换过程变得更加方便和快捷,为电动车辆的使用和维护提供了更大的灵活性和便利性。
较佳地,所述载车平台包括移动门和移动门驱动装置,移动门安装于所述电池更换口处,用于关闭或者打开所述电池更换口;所述移动门驱动装置与所述移动门连接并用于驱动所述移动门的移动;所述移动门驱动装置包括水平驱动装置和/或竖直驱动装置,所述竖直驱动装置驱动所述移动门沿竖直方向移动,所述水平驱动装置驱动所述移动门沿水平方向移动。在本方案中,移动门可以沿竖直方向和水平方向分别移动,这两种驱动装置可以根据实际情况灵活应用,移动门的打开或者关闭更为灵活,提高了系统的适用性和可靠性。
较佳地,所述移动门驱动装置包括第一液压缸和第一液压缸,所述第一液压缸套设于所述第一液压缸。在本方案中,采用液压缸提供动力,易于控制,并且可以进行无极调速,具有过载保护功能,与机械传动相比,移动门驱动装置的布置更为灵活,并且结构简单,驱动力大,相比其他驱动装置成本更低。第一液压缸套设于第一液压缸,能够提升驱动门驱动装置的行程,并减小占用空间,可以在有限的空间内实现更大范围的水平移动,提高设备的适应性和效率。
较佳地,所述换电设备包括下部框架,所述换电设备还包括长度调节机构和/或宽度调节机构;所述长度调节机构用于带动所述下部框架沿车辆行车方向移动;所述宽度调节机构用于调节所述下部框架在垂直于车辆的行车方向上的宽度。在本方案中,通过设置长度调节结构和宽度调节结构,提高了换电设备在长度方向和宽度方向上的位置调整范围和定位精度,可以适配更多的车型和更多规格的电 池包,通用性更好。
较佳地,所述下部框架包括沿水平位移方向间隔设置第一框架和第二框架;所述宽度调节机构设置在所述第一框架和所述第二框架的间隔处,所述宽度调节机构包括两个分别与所述第一框架和所述第二框架连接的输出端,所述宽度调节机构通过所述输出端带动所述第一框架和所述第二框架移动。在本方案中,将下部框架分为间隔分布的第一框架和第二框架,能够减小空间占用,结构更为紧凑,并且为宽度调节机构提供了安装空间。通过宽度调节机构可以控制第一框架和第二框架之间的间隔距离,进而可以匹配适配更多的车型和更多规格的电池包,通用性更广。
较佳地,所述换电设备包括所述上部框架,所述上部框架包括设置在所述第一框架上部的第三框架和设置在所述第二框架上部的第四框架。在本方案中,上述设置使得上部框架的分布于下部框架分布相匹配,空间利用率高。
较佳地,所述换电设备还包括液压油箱和/或电控装置,所述液压油箱和/或所述电控装置设置在所述下部框架的同一侧。在本方案中,液压油箱和/或电控装置设置下部框架的同一侧,只需占用一侧的空间,结构紧凑,空间利用率高。
一种阵列式换电站,所述阵列式换电站包括若干个上述的换电站;每个所述换电站包括充电模块和载车平台;在垂直于车辆的行车方向上,所述充电模块设置于所述载车平台的一侧;所述充电模块包括充电架和电池转运设备。在本方案中,载车平台能够供车辆停靠,充电架能够为亏电电池进行充电,电池转运设备能够对充电架上的电池进行取放,换电设备能够在电池转动设备和载车平台之间输送电池,从而将充电架上的充电完成的电池,经电池转运设备取出,并通过换电设备移动至载车平台处;或者,将车辆上拆卸下来的亏电电池,经换电设备移动至电池转运设备,再通过电池转运设备存放至充电架内,从而实现车辆上电池的更换。另外,充电架、电池转运设备和载车平台在垂直于车辆的行车方向上布置,能够减少电池包更换过程中的移动距离,电池包更换效率更高,布局更加合理。通过设置若干个换电站,增加换电的工位,能够容纳更多的车辆同时进行换电,从而提升阵列式换电站的换电效率。
较佳地,在车辆的行车方向上,所述阵列式换电站包括若干个平行设置的所述换电站。在本方案中,上述布局规整,方便车辆停靠在载车平台并进行换电,车辆换电过程更为有序,换电站的充电架、电池转运设备、载车平台和换电设备之间不容易产生干涉,有利于换电站的合理布局。
较佳地,所述载车平台包括移动门和电池更换口,所述移动门安装于所述电池更换口处,用于关闭或者打开所述电池更换口;所述移动门包括的相对可分离的第一移动部和第二移动部,所述第一移动部和所述第二移动部在垂直于车辆的行车方向沿相反方向水平移动,将电池更换口打开或者关闭。在本方案中,移动门的第一移动部和第二移动部相对可分离,降低了单块移动门的尺寸,使其更加轻便、灵活,同时也降低了单块移动门的开闭行程,减小了对移动门支撑和驱动的要求,提高了移动门的使用寿命和可靠性。另外,移动门的分体设置,使得维护和更换变得更加容易和方便,可以降低维护和更换的成本和时间,提高了整个系统的可维护性和可靠性。当换电站在车辆的行车方向上平行设置时,在车辆的行车方向上相邻的两个换电站的载车平台的移动门之间不会发生干涉,能够同时打开或者关闭,使得换电站在车辆的行车方向上的规格更小,有利于多个换电站紧凑设置,空间利用率高。
较佳地,所述换电站包括地基,所述地基包括移动通道,所述移动通道用于所述换电设备沿水平方向移动,多个所述换电站的所述地基的所述移动通道平行设置。在本方案中,多个移动通道平行设置,对车辆行车方向上占据空间小,当换电站在车辆的行车方向上平行设置时,使得阵列式换电站在车辆的行车方向上的规格更小,优化阵列式换电站的布局,有利于减少占地面积,空间利用率高。
较佳地,沿垂直于车辆的行车方向上,两个相对设置的所述换电站的所述地基的所述移动通道相连通。在本方案中,移动通道用于换电设备沿水平方向移动,通过上述设置,两个相对设置的换电站能够共用换电设备,从而降低换电站的制造成本。
较佳地,所述换电站包括箱体,所述充电模块被容纳于所述箱体内。在本方案中,箱体为充电模块起到了保护作用,充电模块不会受到外部恶劣环境的影响,如在雨雪天气,仍能正常工作,有利于换电站的运营,并且大大减少了换电站的维护成本,提高了充电模块的使用寿命。
较佳地,沿行车方向或垂直于行车方向上,任意相邻载车平台的间距或载车平台与充电模块的间距大于预设间隙,以使任意载车平台上的车辆驶出或驶入。在本方案中,位于载车平台上的车辆与前后方的车辆距离以及左右充电模块、车辆的距离可以满足该车辆直接开出来,不需要来回调整车辆的位置。
一种阵列式换电站,所述阵列式换电站包括由两个在垂直于行车方向上相对设置的换电站形成的第一阵列单元,每个所述换电站包括充电模块和载车平台,两个所述载车平台位于两个所述充电模块之间。在本方案中,通过充电模块为车辆拆卸下来的电池充电,通过载车平台提供了车辆停靠,并进 行换电的操作平台。第一阵列单元包括两个换电工位,可以同时对两辆车进行电池更换,并且两个换电站互不影响,换电效率较高。
较佳地,沿所述行车方向上,多个平行设置的所述第一阵列单元形成所述阵列式换电站。在本方案中,多个第一阵列单元沿行车方向平行设置,布局规整,车辆换电过程更为有序,并且提供了更多的换电工位,能够为更多的车辆提供换电服务。
较佳地,沿所述行车方向上,多个所述第一阵列单元的所述充电模块被容纳于同一个箱体内。在本方案中,箱体为充电模块起到了保护作用,充电模块不会受到外部恶劣环境的影响,如在雨雪天气,仍能正常工作,提高了充电模块的使用寿命,并且多个充电模块容纳与同一个箱体内,降低了施工成本。
较佳地,沿所述行车方向上,相邻的所述载车平台处于同一直线上。在本方案中,采用上述设置,使得阵列式换电站的多个载车平台分布规整,车辆可以有序进出载车平台进行电池的更换。
较佳地,沿所述行车方向上,两个相邻的所述充电模块之间抵接设置。在本方案中,采用上述抵接设置,布局紧凑,占用空间少,在有限的占地空间可以提供更多数量的换电工位。
较佳地,沿垂直于所述行车方向上,两个相对设置的所述换电站之间设置有备用车道;或,沿垂直于所述行车方向上,两个相对设置的所述换电站之间设置有隔断。在本方案中,通过设置备用车道,可以为车辆通行提供充足的空间,有利于车辆的通行与等待,前方车辆的换电,不会影响后方车辆的通行,提高了用户体验感。通过设置隔断,每个第一阵列单元中的换电站互不干扰,车辆之间不会发生干涉,更为安全。
较佳地,所述备用车道的宽度大于停靠于所述载车平台上的车辆的宽度。在本方案中,备用车道和车辆采用上述宽度大小关系,保证车辆通行有足够的空间,有利于通行效率。
较佳地,所述充电模块包括充电架和电池转运设备,在垂直于行车方向上,所述载车平台、所述电池转运设备和所述充电架依次设置。在本方案中,通过充电架为更换的电池充电,通过电池转运设备与充电架上的电池进行更换、转运。采用上述依次设置载车平台、电池转运设备和充电架的换电站,布局合理,能够减少电池包更换过程中的移动距离,电池包更换效率更高。
较佳地,所述换电站还包括换电设备和地基,所述换电设备在所述电池转运设备和所述载车平台之间输送电池,所述充电架、所述电池转运设备和若干个所述载车平台均设置在地基上,所述地基包 括用于换电设备沿水平方向移动的移动通道;沿所述垂直于行车方向上,两个相对设置的所述换电站的地基的移动通道相通。在本方案中,通过电池转运设备与充电架上的电池进行更换、转运,通过上述的换电设备在电池转运设备和载车平台之间输送电池,从而实现了将车辆上的亏电电池拆卸并运送至充电架上充电,或将充电架上的满电电池运送至车辆处进行安装。
采用上述设置,地基对充电架、电池转运设备和载车平台起到了承载及固定作用。上述的地基为换电设备提供移动通道,换电设备在地基中沿移动通道进行移动,移动轨迹不会发生偏离,换电设备移动平稳。两个相对设置的换电站的地基的移动通道相通,方便地基的施工,能够减少施工工序,降低工作量,利于提高建站效率。并且,采用相通的移动通道使得可以在相对设置的换电站之间共享使用换电设备,提高换电设备的利用率,节约能源。
较佳地,所述换电站还包括换电设备,所述换电设备用于与车辆更换电池,所述换电设备包括下部框架和上部框架,所述下部框架包括沿水平位移方向间隔设置第一框架和第二框架;所述上部框架包括设置在所述第一框架上部的第三框架和设置在所述第二框架上部的第四框架;换电设备还包括宽度调节机构和/或长度调节机构,所述宽度调节机构设置在所述第一框架和所述第二框架的间隔处,所述宽度调节机构包括两个分别与所述第一框架和所述第二框架连接的输出端,所述宽度调节机构通过所述输出端带动所述第一框架和所述第二框架移动;所述长度调节机构用于带动所述下部框架和所述上部框架沿车辆行车方向移动。在本方案中,将下部框架分为间隔分布的第一框架和第二框架,能够减小空间占用,结构更为紧凑,并且为宽度调节机构提供了安装空间。上部框架的分布与下部框架分布相匹配,空间利用率高。通过宽度调节机构可以控制第一框架和第二框架之间的间隔距离,进而可以匹配不同尺寸的电池包,通用性更广。通过长度调节提高了换电设备的位置调整范围和定位精度,可以适配更多的车型和更多规格的电池包。
较佳地,所述载车平台包括有电池包更换口,所述电池更换口在所述垂直于行车方向上的长度超过左右车轮内侧距离;和/或所述电池更换口在所述行车方向上的长度超过前后车轮内侧距离。在本方案中,通过设置电池更换口,方便对车辆进行更换电池,并且无需对车辆进行举升;电池更换口采用上述不同方向的长度大小设置,电池更换的空间更为充足,降低了电池更换的难度,且可允许电动车辆采用更大体积的电池包。
较佳地,沿行车方向或垂直于行车方向上,任意相邻载车平台的间距或载车平台与充电模块的间 距大于预设间距,以使任意载车平台上的车辆驶出或驶入。在本方案中,通过上述设置,为车辆自由进出载车平台提供了足够空间,保障车辆进出换电站的效率。
一种能源站,所述能源站以加油站为基础改建而得,所述能源站包括有如上述的阵列式换电站,所述充电模块的顶部连接于所述能源站的顶棚。在本方案中,顶棚与充电模块的顶部连接,顶棚对充电模块具有固定的作用,充电模块与顶棚一体化,借助于顶棚,充电模块的固定更为稳定,并且,顶棚对充电模块还具备遮挡作用。
一种阵列式换电站,所述阵列式换电站包括由至少两个在行车方向上相邻设置的所述换电站形成的第二阵列单元,每个所述换电站包括充电模块和载车平台;相邻的所述换电站的所述载车平台错位布置。在本方案中,通过相邻的换电站的载车平台错位设置,可以极大的节约空间,布局紧凑,在有限的空间里可以设置更多的换电工位,减小了换电站的占地面积,并且,沿行车方向上前后设置的载车平台上停的车辆之间通行互不干扰,车辆通行顺畅,提高换电站的效率和布局合理性,降低建设成本,并提升换电过程的便利性和安全性。
较佳地,在垂直于行车方向上,两个所述第二阵列单元相对设置,载车平台位于两个充电模块之间;和/或,所述阵列式换电站包括多个沿行车方向平行设置的所述第二阵列单元;和/或,沿所述垂直于行车方向,两个相对设置的所述换电站之间设置有隔断。在本方案中,相对设置的第二阵列单元增加了换电站的数量,进而增加了换电工位的数量,并且布局较为合理,载车平台位于两个充电模块之间以及充电模块位于两端,不会影响车辆的充电前后的正常通行,提高了换电站的换电效率。
通过沿行车方向平行设置多个第二阵列单元,可以更有效地利用可用空间,有限的区域内容纳更多的充电模块和载车平台,节省空间。多个第二阵列单元允许同时为多辆车辆提供换电服务,减少了车辆之间的等待时间。车辆可以并行排列在不同的阵列单元中,实现并行的换电过程,提高了换电站的通行效率。通过设置隔断,每个阵列式换电单元中的换电站互不干扰,车辆之间不会发生干涉,换电过程更为安全。
较佳地,沿行车方向,相邻的载车平台上停放的车辆之间部分重合;和/或,沿行车方向上,相邻两个载车平台的两个前端或两个后端的距离小于单个载车平台的前、后端长度。在本方案中,通过部分重合,布局更为紧凑,可以节约行车方向上的空间,在有限的占地空间可以提供更多数量的换电工位。载车平台采用这种设计,使得载车平台的布局更加紧凑,节约换电站的整体空间。
较佳地,沿行车方向,两个相邻的所述充电模块之间抵接设置,和/或,多个所述充电模块被容纳于同一箱体内。在本方案中,抵接设置的充电模块可减少充电模块占地面积,使得换电站布局紧凑,占用空间少,在有限的占地空间可以提供更多数量的换电工位。箱体为充电模块起到了保护作用,充电模块不会受到外部恶劣环境的影响,如在雨雪天气,仍能正常工作,提高了充电模块的使用寿命,并且多个充电模块容纳于同一个箱体内,减低了施工成本。
较佳地,沿所述行车方向,任意两个相邻的所述换电站的所述载车平台之间设置有备用车道。在本方案中,设置备用车道可以提升换电过程中的安全性,此外,还可以为车辆通行提供充足的空间,有利于的通行和等待,通过错位布置,车辆在换电过程中可以更好地进行停放和操作,减少换电过程中车辆之间可能碰撞而导致的安全隐患。
较佳地,所述备用车道贯穿两个相邻的换电站,所述备用车道的宽度大于所述车辆的宽度。在本方案中,通过设置备用车道,可以为车辆通行提供充足的空间,有利于车辆的通行与等待,前方和后方车辆进行换电,不会影响本车辆的通行,提高了用户体验。
较佳地,在垂直于行车方向上,相对设置的两个第二阵列单元中处于同一水平方向上的两个所述载车平台之间的距离大于车辆的宽度;和/或,远离所述充电模块设置的所述载车平台距离所述充电模块的距离大于车辆的宽度。在本方案中,距离大于车辆的宽度可以确保相邻的载车平台之间有充足的空间,车辆进行换电操作时可以更自由地进出载车平台,提高换电站的便利性,减少车辆之间的干扰和交叉操作的风险。减少车辆的碰撞风险:通过增加载车平台之间的距离,车辆之间的碰撞风险减小。通过增加载车平台与充电模块的距离,可以降低车辆在充电过程中与充电设备发生碰撞或接触的风险。这种布局方式可以提高换电站的安全性,并减少潜在的车辆或设备损坏。有助于换电站工作人员进行充电设备的维护和操作。这使得检修、清洁、维修等工作更加便利,提高了换电站的维护效率。
较佳地,所述充电模块包括充电架和电池转运设备,在垂直于行车方向上,所述载车平台、所述电池转运设备和所述充电架依次设置;所述换电站还包括换电设备,所述换电设备在所述电池转运设备和所述载车平台之间输送电池。在本方案中,充电架可以为更换的电池进行充电,电池转运设备可以对换电设备上的电池包与充电架中的电池包进行转运,并且布局合理,能够减少电池包更换过程中的移动距离,电池包更换效率更高。换电设备定位精准,通用性好,能够适应不同尺寸的车辆及电池包。通过使用换电设备,在充电站内部实现电池的快速转运和交换,可以显著提高换电的速度和效率。 这消除了手动替换电池的需求,减少了等待时间,并提供了更高效的服务,使用换电设备将电池从转运设备直接输送到载车平台上,简化了换电过程中的操作流程。使用专用的换电设备将电池从转运设备搬运到载车平台上,减少了人工搬运中可能发生的意外伤害风险。这提高了换电站的安全性,保护工作人员和用户的安全。借助换电设备,可以实现更高的自动化程度,提升换电站的智能化水平。通过自动化的操作,可以实现更高的生产效率和更好的资源利用,减少人力成本和操作上的错误。
较佳地,所述换电站还包括地基,所述充电架、所述电池转运设备和若干个所述载车平台均设置在地基上。在本方案中,地基对充电架、电池转运设备和载车平台起到了承载及固定作用。上述的地基为换电设备提供移动通道,换电设备在地基中沿移动通道进行移动,移动轨迹不会发生偏离,换电设备移动平稳。
较佳地,所述地基包括用于所述换电设备沿水平方向移动的移动通道;沿所述垂直于行车方向上,两个相对设置的所述换电站的地基的所述移动通道相通。在本方案中,两个相对设置的换电站的地基的移动通道相通,方便地基的施工,能够减少施工工序,降低工作量,利于提高建站效率。同时,两个相对设置的换电站的地基的移动通道相通可以使两个相对设置的换电站共用一个地基,有利于降低成本,并且,共用一个地基能够省去对两个地基进行对准操作,利于进一步提高建站效率。
较佳地,所述换电设备包括宽度调节机构和/或长度调节机构,所述换电设备包括上部框架和下部框架,所述下部框架包括沿水平位移方向间隔设置第一框架和第二框架,所述上部框架包括设置在所述第一框架上部的第三框架和设置在所述第二框架上部的第四框架;所述宽度调节机构设置在所述第一框架和所述第二框架的间隔处,所述宽度调节机构包括两个分别与所述第一框架和所述第二框架连接的输出端,所述宽度调节机构通过所述输出端带动所述第一框架和所述第二框架移动;所述长度调节机构用于带动所述下部框架和所述上部框架沿车辆行车方向移动。在本方案中,通过宽度调节机构可以控制第一框架和第二框架之间的间隔距离,进而可以匹配不同尺寸的电池包,通用性更广;长度调节提高了换电设备的位置调整范围和定位精度,可以适配更多的车型和更多规格的电池包。
较佳地,所述载车平台包括有电池更换口,所述电池更换口在所述垂直于行车方向上的长度超过左右车轮内侧距离;和/或,所述电池更换口在所述车辆的行车方向上的长度超过前后车轮内侧距离。在本方案中,电池更换口的长度超过车轮内侧距离,用户在更换电池时不需要担心车轮位置是否影响更换,电池更换过程更加便捷和流畅,减少了更换电池的操作难度,不同车辆的轮轴距离和内侧距离 可能不同,因此具备足够长度的电池更换口可以适应各种车辆,提供更广泛的服务范围。更长的电池更换口使得电池更换过程更快速且更容易。驾驶员可以更轻松地将车辆对准更换口,减少对齐时间,提高更换电池的效率。这将减少用户等待时间,提高整体服务效率。
较佳地,当沿行车方向或垂直于行车方向上,任意相邻载车平台的间距或载车平台与充电模块的间距大于预设间距,以使任意载车平台上的车辆驶出或驶入。在本方案中,位于载车平台上的车辆与前后方的车辆距离以及左右充电模块、车辆的距离可以满足该车任意载车平台上的车辆直接开出来,不需要来回调整车辆的位置。
一种能源站,所述能源站以加油站改建而得,所述能源站包括如上所述的阵列式换电站,所述充电模块的顶部连接于加油站的顶棚。在本方案中,顶棚与充电模块的顶部连接,顶棚对充电模块具有固定的作用,充电模块与顶棚一体化,借助于顶棚,充电模块的固定更为稳定,并且,顶棚对充电模块还具备遮挡作用。
较佳地,所述加油站的所述顶棚通过立柱设于地面上,用于容纳所述充电模块的箱体还用于容纳至少部分所述立柱。在本方案中,立柱不仅对顶棚起到支撑的作用,对箱体同样具有支撑的作用,箱体的安装固定更为方便且固定可靠,并且箱体可以对充电模块进行全面遮盖,提供更好的保护。
一种阵列式换电站,其特点在于,所述阵列式换电站包括若干个换电站,每个所述换电站包括充电模块和载车平台;所述阵列式换电站包括由至少一个所述换电站形成的第三阵列单元,沿垂直于行车方向上,所述换电站包括多个间隔设置的所述载车平台。在本方案中,形成第三阵列单元的换电站沿与行车方向相垂直的方向设置有多个载车平台,能够为多辆车辆进行电池包的更换,使得多辆车辆共用一个换电站的充电模块,进一步降低了使用成本。此外,换电站的多个载车平台间隔设置形成第三阵列单元,以在节省充电模块数量的基础上增加换电站的换电工位数量,可以满足更多的车辆同时更换电池包的需求,并且多个车辆之间间隔设置不会相对产生干涉,布局上更为合理,提高了对车辆换电的效率。
优选地,沿行车方向上,所述阵列式换电站包括多个平行设置的所述第三阵列单元。在本方案中,通过将多个第三阵列单元沿行车方向平行设置形成阵列式换电站,进一步增加了阵列式换电站中换电工位的数量,并且使得整体的布局更为规整,车辆换电过程更为有序,更有效率的为更多的车辆提供换电服务。
优选地,沿行车方向上,两个相邻的所述充电模块之间抵接设置。在本方案中,通过将相邻换电站的充电模块抵接设置,使得阵列式换电站的布局更为紧凑,占用空间少,在有限的占地空间内可以提供更多数量的换电工位。
优选地,多个所述充电模块被容纳于同一箱体内。在本方案中,将多个充电模块均容纳在箱体的内部,箱体起到了保护作用,充电模块不会受到外部恶劣环境的影响,如在雨雪天气,仍能正常工作,提高了充电模块的使用寿命,并且多个充电模块容纳于同一个箱体内,减低了施工成本。
优选地,沿行车方向上,所有相邻的所述载车平台处于同一直线上。在本方案中,通过该种设置,使得沿行车方向的车辆在相邻的载车平台上可以首尾行进而不会互相产生干涉,车辆进出对应的载车平台更为有序。
优选地,沿行车方向上,任意两个相邻的所述载车平台之间错位布置。在本方案中,当车辆的长度大于充电模块的长度时,通过将载车平台错位布置的方式,使得相邻换电站的充电模块距离更近且不会造成干涉,极大的节约空间,布局上也更紧凑,在有限的空间里可以设置更多的换电工位。
优选地,沿行车方向上,相邻两个所述载车平台的两个前端或两个后端的距离小于单个所述载车平台的前、后端长度。在本方案中,通过该种设置,使得在行车方向上,任意两个相邻的载车平台更方便进行错位布置,进一步使得相邻的充电模块之间可以近距离的设置,使布局上更为紧凑,在有限的空间里可以设置更多的换电工位。
优选地,沿行车方向上,任意两个相邻的所述换电站的所述载车平台之间设置有备用车道,或者,所述换电站中相邻的两个载车平台之间设置有备用通道。在本方案中,通过在载车平台之间设置备用车道,可以为车辆通行提供充足的空间,有利于车辆的通行与等待,前方车辆的换电不会影响后方车辆的通行,提高了用户体验感。
优选地,所述备用车道贯穿两个相邻的所述换电站,所述备用车道的宽度大于车辆的宽度。在本方案中,备用车道贯穿两个相邻的换电站并且备用车道的宽度大于车辆的宽度,使得前后车辆的驶进驶出具有足够的空间,在换电车辆较多的情况下也不会造成拥挤,进一步提高用户的换电体验。
优选地,沿垂直行车方向上,两个相对设置的所述换电站形成所述第三阵列单元。在本方案中,通过将两个换电站沿垂直于行车方向上相对设置,使得同一排中存在两个换电站,进一步增加了每个阵列单元中换电工位的数量,用户也可以根据实际情况选择同一排任意一个换电站。
优选地,所述换电站包括一个所述充电模块,所述充电模块设于最外侧的载车平台的外侧。在本方案中,换电站中的多个载车平台共用一个充电模块的情况下,将该充电模块设置在多个间隔设置的载车平台的最外侧,使得充电模块的位置不会对载车平台上的车辆造成干扰,布局上更为合理。
优选地,同一所述换电站相邻的所述载车平台之间的间隔距离大于车辆的宽度。通过该种设置,使得相邻载车平台之间的间隔可以形成行车通道,便于后方的车辆等候或者通行,避免造成拥挤。
优选地,任意相邻所述载车平台的间距或载车平台与充电模块的间距大于预设间隙,以使任意载车平台上的车辆驶出或驶入。在本方案中,每一个载车平台上停放的车辆均可以利用周围的预设间隙驶进驶出,使得车辆之间不会造成干涉,不用来回调整车辆的位置,增加了用户充电的便利性。
优选地,所述载车平台包括有电池包更换口,所述电池包更换口在垂直于行车方向上的长度超过左右车轮内侧距离;和/或,所述电池包更换口在行车方向上的长度超过前后车轮内侧距离。在本方案中,通过设置电池包更换口,方便对车辆进行更换电池,并且无需对车辆进行举升,并且电池包更换口具体尺寸设置更为方便车辆中的电池包的取放。
优选地,所述充电模块包括充电架和电池转运设备,在垂直于行车方向上,所述载车平台、所述电池转运设备和所述充电架依次设置;所述换电站还包括换电设备,所述换电设备在所述电池转运设备和所述载车平台之间输送电池。在本方案中,充电架可以为更换的电池进行充电,电池转运设备可以在换电设备上的电池包与充电架中的电池包进行转运,通过设置换电设备在电池转运设备和多个载车平台之间输送电池,以提供一种较为简单可靠的结构,实现单个充电模块向多个载车平台输送电池的目的。
优选地,所述换电设备包括下部框架和位于下部框架上方的上部框架;所述换电设备还包括有长度调节机构,所述长度调节机构用于带动所述下部框架和所述上部框架沿车辆行车方向移动;和/或,所述下部框架包括第一框架和第二框架,所述第一框架和所述第二框架沿水平位移方向间隔设置,所述换电设备还包括宽度调节机构,所述宽度调节机构设置在所述第一框架和所述第二框架的间隔处,所述宽度调节机构包括两个分别与所述第一框架和所述第二框架连接的输出端,所述宽度调节机构通过所述输出端带动所述第一框架和所述第二框架移动。在本方案中,长度调节机构提高了换电设备的位置调整范围和定位精度,可以适配更多的车型和更多规格的电池包。以及,将下部框架分为间隔分布的第一框架和第二框架,能够减小空间占用,结构更为紧凑,并且为宽度调节机构提供了安装空间, 通过宽度调节机构可以控制第一框架和第二框架之间的间隔距离,进而可以匹配不同尺寸的电池包,通用性更广。
优选地,所述充电架、所述电池转运设备和若干个所述载车平台均设置在地基上,所述地基包括用于所述换电设备沿水平方向移动的移动通道。在本方案中,地基承载了充电架、电池转运设备和载车平台,并且为换电设备提供了移动通道,更方便了电池在电池转运设备和载车平台之间输送电池,并且换电设备在地基中沿移动通道进行移动,移动轨迹也不会发生偏离。
优选地,所述阵列式换电站至少应用于两种换电车型的电池包更换,所述换电车型的电池包的锁止方式包括螺栓锁止、涨珠锁止、T型锁止、卡扣锁止、旋转锁止、挂接锁止中的至少一种;和/或,所述换电车型包括乘用车、重卡、轻卡、微面、巴士中的至少一种。在本方案中,阵列式换电站可以对不同换电车型的多种锁止方式的电池包进行更换,通用性强。换电车型包括市场上各种常见车型,阵列式换电站能够满足市场上不同电动车辆的换电需求。
一种能源站,其特点在于,所述能源站以加油站为基础改建而得,所述能源站包括有如上所述的阵列式换电站。在本方案中,该能源站包括如上所述的阵列式换电站,可以有效的解决现有技术中换电站的换电工位较少且布局不合理导致对新能源汽车的换电效率较低的缺陷。
附图说明
图1为本发明实施例1的换电站的结构示意图。图2为本发明实施例1的换电站的地基的结构示意图(一)。图3为本发明实施例1的换电站的地基的结构示意图(二)。图4为本发明实施例1的换电站的地基的结构示意图(三)。图5为本发明实施例1的换电站的载车平台的上部结构示意图。图6为本发明实施例1的换电站的载车平台的底部结构示意图。图7为本发明实施例1的换电站的载车平台的局部结构示意图。图8为本发明实施例1的换电站的换电设备的结构示意图。图9为本发明实施例1的换电站的换电设备的局部结构示意图。图10为本发明实施例1的换电站的换电设备的局部结构示意图。图11为本发明实施例1的换电站的换电设备的局部结构示意图。图12为本发明实施例2的阵列式换电站的结构示意图。图13为本发明实施例2的一种阵列式换电站的结构示意图(一)。图14为本发明实施例2的一种阵列式换电站的结构示意图(二)。图15为本发明实施例2的一种阵列式换电站的结构示意图(三)。图16为本发明实施例2的一种阵列式换电站的结构示意图(四)。
图17为本发明实施例3的阵列式换电站的结构示意图;图18为本发明实施例3的第一阵列单 元的结构示意图(停放有车辆);图19为本发明实施例3的第一阵列单元的俯视图(无车辆);图20为本发明实施例3的另一种第一阵列单元的结构示意图;图21为本发明实施例3的换电设备在地基中的结构示意图;图22为本发明实施例3的地基的结构示意图;图23a为本发明实施例3的换电设备的结构示意图;图23b为本发明实施例3的换电设备的结构示意图;图23c从为本发明实施例3的上部框架和下部框架的结构示意图;图23d为本发明实施例3的换电设备去除液压油箱、电控装置的结构示意图;图23e为本发明实施例3的换电设备去除第三框架、第四框架的结构示意图;图23f为本发明实施例3的换电设备的第二长度调节机构的结构示意图;图23g为本发明实施例3的换电设备的解锁机构的结构示意图;图24为本发明实施例3的载车平台的结构示意图。
图25为本发明实施例4的一种阵列式换电站的俯视结构示意图(一)。图26为本发明实施例4的一种阵列式换电站的立体结构示意图(一)。图27为本发明实施例4的一种阵列式换电站的立体结构示意图(二)。图28为本发明实施例4的一种阵列式换电站的俯视结构示意图(二)。图29为本发明实施例4的一种阵列式换电站的立体结构示意图(三)。图30为本发明实施例4图29俯视的结构示意图。图31为本发明实施例4的一种阵列式换电站的正视结构示意图。图32为本发明实施例4的阵列式换电站的地基的结构示意图(一)。图33为本发明实施例4的阵列式换电站的地基的结构示意图(二)。图34为本发明实施例4的阵列式换电站的地基的结构示意图(三)。图35为本发明实施例4的阵列式换电站的载车平台的上部结构示意图。图36为本发明实施例4的阵列式换电站的换电设备的结构示意图。图37为本发明实施例4的阵列式换电站的换电设备的局部结构示意图。图38为本发明实施例4的图25的局部俯视结构示意图。
图39为本发明实施例5中换电站与车辆的整体结构示意图。图40为本发明实施例5中换电站的整体结构示意图。图41为本发明实施例5中阵列式换电站与车辆的整体结构示意图。图42为本发明实施例5中阵列式换电站与车辆的俯视结构示意图。图43为本发明实施例5中阵列式换电站的整体结构示意图。图44为本发明实施例5中换电设备的整体结构示意图(一)。图45为本发明实施例5中换电设备的整体结构示意图(二)。图46为本发明实施例5中地基在未连通状态下的结构示意图。图47为本发明实施例5中地基在连通状态下的结构示意图。图48为本发明实施例6中阵列式换电站的俯视结构示意图。图49为本发明实施例6中阵列式换电站与车辆的整体结构示意图。图50为本发明实施例6中阵列式换电站的俯视结构示意图。图51为本发明实施例6中阵列式换电站与车辆的俯 视结构示意图。图52为本发明实施例6中阵列式换电站的整体结构示意图。
实施例1和实施例2中的附图标记说明:载车平台100,电池更换口110,移动门130,第一移动部131,第二移动部132,水平驱动装置133,第一液压缸1331,第二液压缸1332,竖直驱动装置134,换电设备200,下部框架230,第一框架231,第二框架232,上部框架240,第三框架241,第四框架242,长度调节机构250,第二长度调节机构252,液压缸2521,第二长度连接部2523,宽度调节机构260,液压缸261,伸缩杆262,连接传动件263,液压油箱270,电控装置280,地基300,充电架安装区320,电池转运设备安装区330,载车平台安装区340,换电站400,充电架410,电池转运设备420,车辆500。
实施例3中的附图标记说明:载车平台100,电池更换口110,车轮定位装置120,移动门130,第一移动部131,第二移动部132,水平驱动装置133,换电设备200,举升机构210,水平位移机构220,滚轮221,皮带222,下部框架230,第一框架231,第二框架232,车辆定位部233,解锁机构2332,上部框架240,第三框架241,第四框架242,弹性浮动部件243,电池托盘244,长度调节机构250,第一长度调节机构251,液压缸2511,伸缩杆2512,第一长度导轨2513,活动平台2514,第二长度调节机构252,液压缸2521,伸缩杆2522,第二长度连接部2523,宽度调节机构260,液压缸261,伸缩杆262,连接传动件263,液压油箱270,电控装置280,地基300,轨道310,充电架安装区320,电池转运设备安装区330,载车平台安装区340,承载部350,预设间隙360,换电站400,充电模块401,充电架410,电池转运设备420,车辆500,电池包600,备用车道700,隔断800,第一阵列单元910,行车方向A。
实施例4中的附图标记说明:载车平台100,电池更换口110,移动门130,第一移动部131,第二移动部132,换电设备200,下部框架230,第一框架231,第二框架232,上部框架240,第三框架241,第四框架242,长度调节机构250,第一长度调节机构251,第二长度调节机构252,宽度调节机构260,液压油箱270,电控装置280,地基300,轨道310,充电架安装区320,电池转运设备安装区330,载车平台安装区340,换电站40,充电模块400,充电架410,电池转运设备420,车辆500,备用车道700,隔断800,第二阵列单元920。
实施例5和实施例6中的附图标记说明:阵列式换电站1,换电站10,载车平台100,电池包更换口110,换电设备200,地基300,移动通道310,充电模块400,充电架410,电池转运设备420, 车辆500,备用车道700,第三阵列单元930,举升机构210,水平位移机构220,下部框架230,第一框架231,第二框架232,上部框架240,第三框架241,第四框架242,长度调节机构250,宽度调节机构260,行车方向L,垂直于行车方向H。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
实施例1
本实施例提供一种换电站400,换电站400包括充电架410、电池转运设备420、载车平台100和换电设备200;在垂直于车辆500的行车方向L上,换电站400依次设置充电架410、电池转运设备420和载车平台100;换电设备200在电池转运设备420和载车平台100之间输送电池。载车平台100能够供车辆500停靠,充电架410能够为亏电电池进行充电,电池转运设备420能够对充电架410上的电池进行取放,换电设备200能够在电池转动设备和载车平台100之间输送电池,从而将充电架410上的充电完成的电池,经电池转运设备420取出,并通过换电设备200移动至载车平台100处;或者,将车辆500上拆卸下来的亏电电池,经换电设备200移动至电池转运设备420,再通过电池转运设备420存放至充电架410内,从而实现车辆500上电池的更换。另外,充电架410、电池转运设备420和载车平台100在垂直于车辆500的行车方向L上布置,布局更加合理,能够减少电池包更换过程中换电设备200的移动距离,使得电池包更换效率更高。
作为一种较佳的实施方式,如图2-图4所示,换电站400包括地基300,充电架410、电池转运设备420和若干个载车平台100均设置在地基300上。地基300对充电架410、电池转运设备420和载车平台100起到了承载及固定作用。地基300为充电架410、电池转运设备420和载车平台100提供了安装空间,便于充电架410、电池转运设备420和载车平台100的安装及固定。在地基300上同时设置移动通道、电池转运设备安装区330和载车平台安装区340,使得换电设备200、电池转运设备420和载车平台100能够集成到地基300上,方便换电站400的批量化生产,缩短建站周期,降低建站成本。在具体实施时,地基300采用预制件制成,不仅有利于减低地基300的制造成本,而且,地基300安装更为方便。
作为优选的实施方式,地基300全部位于地面以下。地基300不占用地面以上的空间,不会与地面上的车辆500及行人发生干涉,换电过程中的用户体验更佳。进一步地,地基300的上表面与地面 持平,载车平台100的上表面与地基300的上表面持平,不需要设置额外的坡面使得车辆500能够驶入载车平台100,简化了换电站400的结构。
作为优选的实施方式,地基300在竖直方向上的至少一部分位于地面以下,地基300部分位于地面以下,能够减少换电站400建造的施工量。
作为优选的实施方式,地基300全部位于地面以上,地基300全部位移地面以上,无需在地下进行施工,建造较为方便。
作为一种较佳的实施方式,如图2-4所示,地基300包括:移动通道,移动通道用于换电设备200沿水平方向移动;充电架安装区320,充电架410设置于充电架安装区320,充电架安装区320设置于移动通道的一侧;电池转运设备安装区330,电池转运设备420设置于电池转运设备安装区330,电池转运设备安装区330设置于移动通道的一侧。换电设备200可在地基300中沿移动通道进行移动,移动轨迹不会发生偏离。充电架安装区320用于设置充电架410;电池转运设备安装区330用于设置电池转运设备420,便于充电架410和电池转运设备420的安装。上述设置布局合理,且充电架410和电池转运设备420的设置不会干涉换电设备200的移动,且便于电池在换电设备200和电池转运装置之间的搬运,从而简化换电站400的布局,便于换电站400的建造。
作为一种较佳的实施方式,如图2-图4所示,地基300还包括载车平台安装区340,载车平台安装区340向下凹陷,载车平台100安装于载车平台安装区340时,载车平台100的表面不超出地基300。车辆500驶入载车平台100时不会受到干涉,或者不需要设置额外的上下车辆500行驶坡面,便于换电站400的设置,同时方便车辆500通行,提高了用户体验。下凹的结构还能够对载车平台100起到在地基300上快速定位的作用,提高安装效率,而且不用单独在地基300上设置定位结构,降低成本。凹陷的结构还能够对载车平台100进一步起到限位的作用。
作为一种较佳的实施方式,如图2-4所示,沿垂直于车辆500的行车方向L上,充电架安装区320、电池转运设备安装区330和载车平台安装区340相连通。车辆500停靠在载车平台100后,通过换电设备200拆下亏电电池,通过电池转运设备420将亏电电池搬运至充电架410进行充电,同时电池转运设备420将满电电池搬运至换电设备200,通过换电设备200将满电电池安装到车辆500上。充电架安装区320、电池转运设备安装区330和载车平台安装区340相连通,能够便于电池转运设备420对电池进行搬运,有利于换电站400的工作效率;并且在建造换电站400时能够对充电架安装区 320、电池转运设备安装区330和载车平台安装区340进行统一设置,便于地基300的建造。具体地,地基300中可以设置有两个载车平台安装区340,如图3所示,两个载车平台安装区340相互独立;或者,如图4所示,两个载车平台安装区340所处的地基300的连通通道相连通。
作为一种较佳的实施方式,如图2-图4所示,在地基300中,载车平台安装区340的深度小于电池转运设备安装区330的深度。上述设置使得载车平台100能够安装在地基300上,不会陷入移动通道内。当换电设备200从载车平台100的下方对车辆500进行换电时,相应地,换电设备200在载车平台100的下方移动。通过上述设置,在不需要进行举升换电设备200的情况下,就能够实现电池在换电设备200和电池转运设备420之间的搬运,有利于换电设备200的工作效率。
作为一种较佳的实施方式,如图5和图6所示,载车平台100包括电池更换口110,电池更换口110在垂直于车辆500的行车方向L上的长度超过车辆500的左右车轮的内侧距离;和/或,电池更换口110在车辆500的行车方向L上的长度超过前后车轮内侧距离。通过使电池更换口110在两个维度方向上的长度分别大于前后车轮以及左右车轮的内侧距离,使得电池更换的空间更为充足,降低了电池更换的难度,且可允许电动车辆500采用更大体积的电池包,通过这种载车平台100的设计,电池更换过程变得更加方便和快捷,为电动车辆500的使用和维护提供了更大的灵活性和便利性。
在其他可替代的实施例中,电池更换口110也可以在一个维度方向上大于车轮的内侧距离,即仅在垂直于行车方向L上的长度超过左右车轮的内侧距离,或者,仅在行车方向L上的长度超过前后车轮内侧距离。具体地,电池更换口110的尺寸大于所需更换的电池包的尺寸。通过使电池包更换口大于电池包,从而使电池包可以通过电池更换口110。
作为一种较佳的实施方式,如图5和图6所示,载车平台100包括移动门130、移动门130驱动装置,移动门130安装于电池更换口110处,用于关闭或者打开电池更换口110;移动门130驱动装置与移动门130连接并用于驱动移动门130的移动;移动门130驱动装置包括水平驱动装置133和/或竖直驱动装置134,竖直驱动装置134驱动移动门130沿竖直方向移动,水平驱动装置133驱动移动门130沿水平方向移动。移动门130可以沿竖直方向和水平方向分别移动,这两种驱动装置可以根据实际情况灵活应用,移动门130的打开或者关闭更为灵活,提高了系统的适用性和可靠性。
作为一种较佳的实施方式,如图7所示,移动门130驱动装置包括第一液压缸1331和第二液压缸1332,第二液压缸1332套设于第一液压缸1331。采用液压缸提供动力,易于控制,并且可以进行 无极调速,具有过载保护功能,与机械传动相比,移动门130驱动装置的布置更为灵活,并且结构简单,驱动力大,相比其他驱动装置成本更低。第二液压缸1332套设于第一液压缸1331,能够提升驱动门驱动装置的行程,并减小占用空间,可以在有限的空间内实现更大范围的水平移动,提高设备的适应性和效率。
作为一种较佳的实施方式,如图8-图11所示,换电设备200包括下部框架230,换电设备200还包括长度调节机构250和/或宽度调节机构260;长度调节机构250用于带动下部框架230沿车辆500行车方向L移动;宽度调节机构260用于调节下部框架230在垂直于车辆500的行车方向L上的宽度。通过设置长度调节结构和宽度调节结构,提高了换电设备200在长度方向和宽度方向上的位置调整范围和定位精度,可以适配更多的车型和更多规格的电池包,通用性更好。
作为一种较佳的实施方式,如图8和图9所示,下部框架230包括沿水平位移方向间隔设置第一框架231和第二框架232;宽度调节机构260设置在第一框架231和第二框架232的间隔处,宽度调节机构260包括两个分别与第一框架231和第二框架232连接的输出端,宽度调节机构260通过输出端带动第一框架231和第二框架232移动。将下部框架230分为间隔分布的第一框架231和第二框架232,能够减小空间占用,结构更为紧凑,并且为宽度调节机构260提供了安装空间。通过宽度调节机构260可以控制第一框架231和第二框架232之间的间隔距离,进而可以匹配适配更多的车型和更多规格的电池包,通用性更广。具体地,宽度调节机构260也采用液压驱动,宽度调节机构包括液压缸261和设置在液压缸261的伸缩杆262,伸缩杆262的端部与第一框架231和第二框架232分别连接形成两输出端,液压缸261可在电控装置280控制下与液压油箱270连通或者封闭,以使伸缩杆262伸出液压缸261或收入液压缸261并带动两输出端运动。
本实施例中,液压缸261和伸缩杆262设置于第一框架231和第二框架232之间,且沿行车方向L设置。伸缩杆262的端部分别连接;两个连接传动件263,连接传动件263一端与第一框架231和第二框架232转动连接,另一端则与伸缩杆262转动连接。连接传动件263与第一框架231和第二框架232连接的一端为输出端。连接传动件263为刚性,使得伸缩杆262直线运动时,连接传动件263被带动运动同时发生旋转,拉动第一框架231和第二框架232靠近宽度调节机构260或远离宽度调节机构260,实现与换电设备200的移动路径相同的直线运动,从而调节宽度。而第一框架231和第二框架232均是滑动设置在固定于换电设备200上的导轨来对其移动进行导向的,该导轨的铺设方向与 换电设备200的行动路径相同。在其他实施例中,宽度调节机构260也可被设置为一个液压缸两端均设置有伸缩杆,并分别与第一框架231和第二框架232连接。这种方案中液压缸和伸缩杆则需要沿换电设备的行驶方向设置。比起该方案来说,本实施例通过连接传动件263,仅需要一个伸缩杆即可实现两端移动的效果,结构更为简单可靠,且将宽度调节机构和长度调节机构同向设置,也可方便液压管路的连接。宽度调节机构260采用液压缸261提供动力,易于控制,并且可以进行无极调速,具有过载保护功能,与机械传动相比,宽度调节机构260的布置更为灵活,并且结构简单,驱动力大,相比其他驱动装置成本更低。
作为一种较佳的实施方式,换电设备200包括上部框架240,上部框架240包括设置在第一框架231上部的第三框架241和设置在第二框架232上部的第四框架242。上述设置使得上部框架240的分布于下部框架230分布相匹配,空间利用率高。在本实施例中,第三框架241和第四框架242随第一框架231和第二框架232同步移动;第三框架241和第四框架242在进行宽度调节时,也跟随第一框架231和第二框架232同步调节,仅需要设置一个宽度调节机构260即可实现四个框架的宽度调整。第三框架241和第四框架242无需单独设置宽度调节机构260,结构更为紧凑,并且有利于降低成本。
具体地,长度调节机构包括第一长度调节机构以及第二长度调节机构252,其中,第一长度调节机构分别与第一框架231和第二框架232连接,第一长度调节机构带动第一框架231和第二框架232移动;第二长度调节机构252分别与第三框架241和第四框架242连接,第二长度调节机构252带动第三框架241和第四框架242移动。第一长度调节机构与第二长度调节机构252独立设置,分别对下部框架和上部框架的长度进行调控,相互之间不会影响,更为灵活,且可以增大换电设备的长度调节范围。第一长度调节机构设置在换电设备200上,其包括一个活动平台、第一长度驱动单元、第一长度导轨组成,活动平台被第一长度驱动单元驱动进而可以在第一长度导轨上活动。第一长度导轨固定于换电设备200上并沿行车方向L设置。第一框架231和第二框架232均固定于该活动平台上并可随着活动平台的移动而移动。这种设置的优势在于仅需要一个第一长度驱动单元即可同时驱动第一框架231和第二框架232运动。在其他实施例中,第一长度调节机构还可以为其他形式,如采用两个驱动单元,分别与第一框架231和第二框架232连接分别驱动其运动的形式。
本实施例中,第二长度调节机构252则有两个,分别与第三框架241和第四框架242连接。其 中,两个第二长度调节机构252分别设置于第一框架231和第二框架232,其具有第二长度驱动单元和第二长度连接部2523,第二长度驱动单元可以驱动第二长度连接部2523沿行车方向L运动,两第二长度连接部2523分别与第三框架241和第四框架242连接。本实施例中,长度调节机构可以采用液压驱动。具体地,第一长度驱动单元和第二长度驱动单元均为液压驱动单元,第一长度驱动单元包括液压缸和伸缩杆,伸缩杆则通过一个固定件连接活动平台并间接连接第一框架231和第二框架232。第二长度驱动单元包括液压缸2521和伸缩杆,伸缩杆通过第二长度连接部2523与第三平台241和第四平台242连接。采用液压缸提供动力,易于控制,并且可以进行无极调速,具有过载保护功能,布置更为灵活,并且结构简单,驱动力大,相比其他驱动装置成本更低。
作为一种较佳的实施方式,换电设备200还包括液压油箱270和/或电控装置280,液压油箱270和/或电控装置280设置在下部框架230的同一侧。液压油箱270和/或电控装置280设置下部框架230的同一侧,只需占用一侧的空间,结构紧凑,空间利用率高。
实施例2
本实施例提供一种阵列式换电站400,如图1-图16所示,阵列式换电站400包括若干个上述的换电站400;每个换电站400包括充电模块和载车平台100;在垂直于车辆500的行车方向L上,充电模块设置于载车平台100的一侧;充电模块包括充电架410和电池转运设备420。载车平台100能够供车辆500停靠,充电架410能够为亏电电池进行充电,电池转运设备420能够对充电架410上的电池进行取放,换电设备200能够在电池转动设备和载车平台100之间输送电池,从而将充电架410上的充电完成的电池,经电池转运设备420取出,并通过换电设备200移动至载车平台100处;或者,将车辆500上拆卸下来的亏电电池,经换电设备200移动至电池转运设备420,再通过电池转运设备420存放至充电架410内,从而实现车辆500上电池的更换。另外,充电架410、电池转运设备420和载车平台100在垂直于车辆500的行车方向L上布置,能够减少电池包更换过程中的移动距离,电池包更换效率更高,布局更加合理。通过设置若干个换电站400,增加换电的工位,能够容纳更多的车辆500同时进行换电,从而提升阵列式换电站400的换电效率。沿行车方向L或垂直于行车方向L上,任意相邻载车平台的间距或载车平台与充电模块的间距大于预设间隙,以使任意载车平台上的车辆驶出或驶入。
作为一种较佳的实施方式,如图13-图16所示,在车辆500的行车方向L上,阵列式换电站400 包括若干个平行设置的换电站400。上述布局规整,方便车辆500停靠在载车平台100并进行换电,车辆500换电过程更为有序,换电站400的充电架410、电池转运设备420、载车平台100和换电设备200之间不容易产生干涉,有利于换电站400的合理布局。在具体实施时,若干个的换电站400的充电架410和电池转运设备420在车辆500的行驶方向上对齐,简化阵列式换电站400的布局,便于对阵列式换电站400进行维护。
作为一种较佳的实施方式,如图5、图6和图14所示,载车平台100包括移动门130和电池更换口110,移动门130安装于电池更换口110处,用于关闭或者打开电池更换口110;移动门130包括的相对可分离的第一移动部131和第二移动部132,第一移动部131和第二移动部132在垂直于车辆500的行车方向L沿相反方向水平移动,将电池更换口110打开或者关闭。移动门130的第一移动部131和第二移动部132相对可分离,降低了单块移动门130的尺寸,使其更加轻便、灵活,同时也降低了单块移动门130的开闭行程,减小了对移动门130支撑和驱动的要求,提高了移动门130的使用寿命和可靠性。另外,移动门130的分体设置,使得维护和更换变得更加容易和方便,可以降低维护和更换的成本和时间,提高了整个系统的可维护性和可靠性。当换电站400在车辆500的行车方向L上平行设置时,单块移动门130的开闭行程减小,在车辆500的行车方向L上相邻的两个换电站400的载车平台100的移动门130之间不会发生干涉,能够同时打开或者关闭,使得换电站400在车辆500的行车方向L上的规格更小,有利于多个换电站400紧凑设置,空间利用率高。
作为一种较佳的实施方式,如图4所示,换电站400包括地基300,地基300包括移动通道,移动通道用于换电设备200沿水平方向移动,多个换电站400的地基300的移动通道平行设置。多个移动通道平行设置,对车辆500行车方向L上占据空间小,当换电站400在车辆500的行车方向L上平行设置时,使得阵列式换电站400在车辆500的行车方向L上的规格更小,优化阵列式换电站400的布局,有利于减少占地面积,空间利用率高。
作为一种较佳的实施方式,如图4所示,沿垂直于车辆500的行车方向L上,两个相对设置的换电站400的地基300的移动通道相连通。移动通道用于换电设备200沿水平方向移动,通过上述设置,换电设备200能够在两个相对设置的换电站400的地基300的移动通道内移动,两个相对设置的换电站400能够共用换电设备200,特别是在运营压力小的区域,能够降低换电站400的制造成本。
在其他可替代的实施例中,如图3所示,沿垂直于车辆500的行车方向L上,两个相对设置的换 电站400的地基300的移动通道也可以独立设置。
作为一种较佳的实施方式,换电站400包括箱体,充电模块被容纳于箱体内。箱体为充电模块起到了保护作用,充电模块不会受到外部恶劣环境的影响,如在雨雪天气,仍能正常工作,有利于换电站400的运营,并且大大减少了换电站400的维护成本,提高了充电模块的使用寿命。具体地,箱体的数量为两个,位于行车方向L两侧的充电模块分别位于两个箱体内,同一侧的多个充电模块位于同一箱体内,结构简单,便于施工。当然,在其他实施例中,箱体的数量也可以为一个,两侧的所述充电模块可以同时被容纳于同一个大的箱体内,箱体上开设供车辆500行驶进出的开口。
作为一种较佳的实施方式,沿行车方向L或垂直于行车方向L上,任意相邻载车平台100的间距或载车平台100与充电模块的间距大于预设间隙,以使任意载车平台上的车辆驶出或驶入。位于载车平台100上的车辆500与前后方的车辆500距离以及左右充电模块、车辆500的距离可以满足该车辆500直接开出来,不需要来回调整车辆500的位置。
在具体实施时,如图13和图14所示,沿行车方向L,相邻的载车平台100处于同一直线上,阵列式换电站400的载车平台100的分布规整,车辆500可以有序进出载车平台100进行电池的更换;或者,如图15和图16所示,至少两个在行车方向L上相邻设置的换电站400的载车平台100错位布置,沿行车方向L上,相邻两个载车平台100的两个前端或两个后端的距离小于单个载车平台100的前、后端长度。通过错位布置,可以极大的节约空间,布局紧凑,在有限的空间里可以设置更多的换电工位,并且,沿行车方向L上前后设置的载车平台100上停的车辆500之间通行不互不干扰,车辆500通行顺畅。沿行车方向L上,相邻的两个载车平台100之间设有备用车道,以供载车平台100上的车辆驶入或驶出,备用车道的宽度大于车辆的宽度。
实施例3
如图17-24所示,本实施例提供了一种阵列式换电站,该阵列式换电站包括由两个在垂直于行车方向A上相对设置的换电站400形成的第一阵列单元910,每个换电站400包括充电模块401和载车平台100,两个载车平台100位于两个充电模块401之间。该阵列式换电站通过充电模块401为车辆500拆卸下来的电池充电,载车平台100提供了用于车辆500停靠的平台,并作为与车辆500进行换电的操作平台。每个第一阵列单元910包括两个换电工位,可以同时对两辆车进行电池更换,并且左右两个换电站400互不影响,换电效率较高。其中,如图17所示,沿行车方向A上,该阵列式换电 站包括多个平行设置的第一阵列单元910。多个第一阵列单元910沿行车方向A平行设置,布局规整,车辆500换电过程更为有序,并且提供了更多的换电工位,能够为更多的车辆500提供换电服务。
在本实施例中,前后平行的阵列单元中,沿行车方向A上,前后车辆500、载车平台100等位置对应,布局规则,这样布局的阵列单元被称为第一阵列单元910。采用这样布局的第一阵列单元910,方便换电站的施工,有利于节约建造费用。在其他实施例中,根据换电站各个组成设备布置效果的需要,可以相应地调整各个组成设备的间距、布局,形成不同的阵列单元形式。根据换电站的规模大小,第一阵列单元910的数量也可以相应地调整。其中,沿行车方向A上,多个第一阵列单元910的充电模块401被容纳于同一个箱体(图中未显示)内。即,如图17所示,四个第一阵列单元910左侧的四个充电模块401均容纳于同一个箱体中,而这四个第一阵列单元910右侧的四个充电模块401也均容纳于同一个箱体中。
箱体为充电模块401起到了保护作用,充电模块401不会受到外部恶劣环境的影响,如在雨雪天气,仍能正常工作,提高了充电模块401的使用寿命,并且多个充电模块401容纳与同一个箱体内,降低了施工成本。
其中,沿行车方向A上,相邻的载车平台100处于同一直线上,即前后方的载车平台100处于同一直线上。采用这样的设置,使得阵列式换电站的多个载车平台100分布规整,车辆500可以有序进出载车平台100进行电池的更换。本实施例中,沿行车方向A上,两个相邻的充电模块401之间抵接设置。采用上述抵接设置,布局紧凑,占用空间少,在有限的占地空间可以提供更多数量的换电工位。
如图17-19所示,沿垂直于行车方向A上,两个相对设置的换电站400之间设置有备用车道700。通过设置备用车道700,可以为车辆500通行提供充足的空间,有利于车辆500的通行与等待,前方车辆500的换电,不会影响后方车辆500的通行,提高了用户体验感。其中,备用车道700的宽度大于停靠于载车平台100上的车辆500的宽度。备用车道700和车辆500采用这样的宽度大小关系,保证车辆500通行有足够的空间,有利于通行效率。
如图20所示,在其他实施例中,沿垂直于行车方向A上,两个相对设置的换电站400之间设置有隔断800。通过设置隔断800,每个第一阵列单元910中的换电站400互不干扰,车辆500之间不会发生干涉,更为安全。在其他实施例中,还可以在隔断800的两侧分别设置有备用车道700,这样左右两侧换电站400上进出的车辆500可以在各自一侧的备用车道700上通行,既保障前后车辆500 的通行,也保障在左右备用车道700上行走的车辆500相互不干扰,更好地保障安全。本实施例中,沿行车方向A或垂直于行车方向A上,任意相邻载车平台100的间距或载车平台100与充电模块401的间距大于预设间距,以使任意载车平台100上的车辆驶出或驶入。通过上述设置,为车辆自由进出载车平台提供了足够空间,保障车辆进出换电站的效率。
如图17-19所示,在换电站400中,每个充电模块401包括充电架410和电池转运设备420,在垂直于行车方向A上,载车平台100、电池转运设备420和充电架410依次设置。该换电站400通过充电架410为更换的电池充电,通过电池转运设备420与充电架410上的电池进行更换、转运。采用上述依次设置载车平台100、电池转运设备420和充电架410的换电站400,布局合理,能够减少电池包600更换过程中的移动距离,电池包600更换效率更高。
如图18和图21-22所示,换电站400还包括地基300和换电设备200,充电架410、电池转运设备420和若干个载车平台100均设置在地基300上。地基300对充电架410、电池转运设备420和载车平台100均起到了承载及固定作用。地基300包括用于换电设备200沿水平方向移动的移动通道,轨道310与换电设备200的滚轮相匹配,使得换电设备200在轨道310上水平滑移,通过轨道310为换电设备200在地基300中的移动路径进行了引导,换电设备200移动平稳。地基300还包括充电架安装区320,电池转运设备安装区330、载车平台安装区340和承载部350(图中未标出)。充电架安装区320为充电架410提供了安装空间,方便充电架410的安装及固定。电池转运设备安装区330为电池转运设备420提供了安装空间,方便电池转运设备420的安装及固定。载车平台安装区340向下凹陷,为载车平台100提供了安装空间,方便载车平台100的安装及固定。承载部350设置在地基300的上部开口处,用于封闭地基300,通过设置承载部350,能够将地基300的上表面封闭,车辆500及行人不会掉落地基300中,更为安全。
地基300的深度大于载车平台100、电池包600、换电设备200以及预设间隙360的总厚度;地基300为换电设备200的设置以及电池包600的更换工作提供了充足的空间。预设间隙360为电池转运设备420从换电设备200上转运电池包600的伸出机构所占高度。
其中,沿垂直于行车方向A上,两个相对设置的换电站400的地基300的移动通道相通。地基300为换电设备200提供移动通道,换电设备200在地基300中沿移动通道进行移动,移动轨迹不会发生偏离,换电设备200移动平稳。两个相对设置的换电站400的地基300的移动通道相通,方便地 基300的施工,能够减少施工工序,降低工作量,利于提高建站效率。并且,采用相通的移动通道使得可以在相对设置的换电站400之间共享使用换电设备200,提高换电设备200的利用率,节约能源。换电设备200在电池转运设备420和载车平台100之间输送电池,并与车辆500更换电池。该换电站400通过电池转运设备420与充电架410上的电池进行更换、转运,通过换电设备200在电池转运设备420和载车平台100之间输送电池,从而实现了将车辆500上的亏电电池拆卸并运送至充电架410上充电,或将充电架410上的满电电池运送至车辆500处进行安装。
具体地,如图23a-23g所示,换电设备200包括举升机构210和水平位移机构220;举升机构210用于承载和升降电池包600;水平位移机构220用于驱动换电设备200沿水平方向运动,方便进行电池更换,换电设备的运动方向为图19中垂直于行车方向A的方向。在本实施例的换电设备200定位精准,通用性好,能够适应不同的车辆500及电池包。本实施例的换电设备200还包括下部框架230和上部框架240,上部框架240位于下部框架230上方,举升机构210带动上部框架240和下部框架230一起沿竖直方向移动,进而可以移动至电池包600对位置。举升机构210能够调整电池包600和换电设备200之间的竖直距离,方便换电设备200对电池包600进行拆装和移动的操作。下部框架230包括沿水平位移方向间隔设置第一框架231和第二框架232;上部框架240包括设置在第一框架231上部的第三框架241和设置在第二框架232上部的第四框架242。将下部框架230分为间隔分布的第一框架231和第二框架232,能够减小空间占用,结构更为紧凑,并且为宽度调节机构260提供了安装空间。上部框架240也包括间隔分布的第三框架241与第四框架242,便于与下部框架230的分布相匹配,在下部框架230进行宽度调整时不会受到上部框架240的限制或阻碍,且空间利用率高。本实施例中,上部框架240和下部框架230均分为两个部分分体设置。使得4个框架可以独立运动。
换电设备200的底部设置有滚轮221。通过设置滚轮221,可以降低摩擦力。水平位移机构220采用皮带222传动。皮带222传动结构简单,制造成本低,安装维护方便,并且皮带222富于弹性,可以缓和冲击和振动,因此运转平稳,即采用皮带传动的水平位移机构稳定性好,且成本较低。换电设备200还包括电池托盘244,电池托盘244通过弹性浮动部件243安装于上部框架240上。通过电池托盘244承托电池包,提高电池包在移动的过程中的稳定性;电池托盘244通过弹性浮动部件243与上部框架240弹性连接,使得电池托盘244上的电池包处于柔性承载的状态,避免电池包在放置于 电池托盘244的过程中发生硬性碰撞。换电设备200还包括定位机构,定位机构用于与电动车辆500和/或电池包定位。定位机构加强了换电设备200和电动汽车之间的定位,提高了换电设备200的位置调整范围和定位精度,可以适配更多的车型或更多规格的电池包。
本实施例中,举升机构210包括折叠组件,折叠机构发生折叠以带动电池包600升降。采用折叠形式的举升机构210,举升行程较大,且在非举升状态下,占用空间小。
如图23g所示,本实施例中,定位机构包括车辆定位部233和电池定位部245,车辆定位部233用于与车辆500进行定位,电池定位部245用于与电池包进行定位;在本实施例中,通过定位机构加强了换电设备200和电动汽车500以及电池包之间的定位,提高了换电设备的位置调整范围和定位精度,可以适配更多的车型和更多规格的电池包。换电设备200分别与电动车辆与电池包进行定位,以控制换电时三者之间的相对位置,定位更为精准。如图23g所示,换电设备200还包括解锁机构2332,解锁机构2332用于解锁车辆500上的电池包;通过设置解锁机构,方便对电池包的更换。解锁机构设置在上部框架240上,并且可通过上部框架240的运动调整其位置,以适应不同规格的车辆500和电池包并完成解锁功能。
本实施例中,上部框架240和下部框架230均可活动的设置在换电设备200上,而电池定位部245,解锁机构,电池托盘244均设置于上部框架240和下部框架230上并可随其运动而改变位置,方便其与不同规格的电池包和车辆配合完成其功能。本实施例中,电池托盘244设置在上部框架240上,并可通过上部框架240和下部框架230的运动调整位置以承载不同规格的电池包。
换电设备200还包括宽度调节机构260和长度调节机构250,长度调节机构250用于带动下部框架230和上部框架240沿车辆500行车方向A移动。通过宽度调节机构260可以控制第一框架231和第二框架232之间的间隔距离,进而可以匹配不同尺寸的电池包600,通用性更广。通过长度调节提高了换电设备200的位置调整范围和定位精度,可以适配更多的车型和更多规格的电池包600。本实施例中,下部框架230和上部框架240具有沿车辆500行驶方向L的移动的自由度,通过长度调节机构250来实现。如图23d所示,长度调节机构包括第一长度调节机构251以及第二长度调节机构252,其中,第一长度调节机构251分别与第一框架231和第二框架232连接,第一长度调节机构251带动第一框架231和第二框架232移动;第二长度调节机构252分别与第三框架241和第四框架242连接,第二长度调节机构252带动第三框架241和第四框架242移动。第一长度调节机构251与第二 长度调节机构252独立设置,分别对下部框架230和上部框架240的长度进行调控,相互之间不会影响,更为灵活,且可以增大换电设备的长度调节范围。
本实施例中,如图23d所示,第一长度调节机构251设置在换电设备200上,其包括一个活动平台2514、第一长度驱动单元、第一长度导轨2513组成,活动平台2514被第一长度驱动单元驱动进而可以在第一长度导轨2513上活动。第一长度导轨固定于换电设备200上并沿行车方向L设置。第一框架231和第二框架232均固定于该活动平台2514上并可随着活动平台2514的移动而移动。这种设置的优势在于仅需要一个第一长度驱动单元即可同时驱动第一框架231和第二框架232运动。在其他实施例中,第一长度调节机构还可以为其他形式,如采用两个驱动单元,分别与第一框架231和第二框架232连接分别驱动其运动的形式。
本实施例中,如图23d、23e所示,第二长度调节机构252则有两个,分别与第三框架241和第四框架242连接。其中,两个第二长度调节机构252分别设置于第一框架231和第二框架232,其具有第二长度驱动单元和第二长度连接部2523,第二长度驱动单元可以驱动第二长度连接部2523沿行车方向L运动,两第二长度连接部2523分别与第三框架241和第四框架242连接。本实施例中,长度调节机构可以采用液压驱动。具体的,第一长度驱动单元和第二长度驱动单元均为液压驱动单元,第一长度驱动单元包括液压缸2511和伸缩杆2512,伸缩杆2512则通过一个固定件连接活动平台2514并间接连接第一框架231和第二框架232。第一长度驱动单元包括液压缸2521和伸缩杆2522,伸缩杆2522通过第二长度连接部2523与第三平台241和第四平台242连接。采用液压缸提供动力,易于控制,并且可以进行无极调速,具有过载保护功能,与机械传动相比,长度调节机构的布置更为灵活,并且结构简单,驱动力大,相比其他驱动装置成本更低。
如图23d、23e所示,换电设备200还包括宽度调节机构260,宽度调节机构260设置在第一框架231和第二框架232的间隔处,宽度调节机构260包括两个分别与第一框架231和第二框架232连接的输出端,宽度调节机构260通过输出端带动第一框架231和第二框架232移动。通过宽度调节机构260可以控制第一框架231和第二框架232之间的间隔距离,进而可以匹配不同的电动车辆或电池包,通用性更广。如图23e所示,宽度调节机构260也采用液压驱动,宽度调节机构包括液压缸261和设置在液压缸261的伸缩杆262,伸缩杆262的端部与第一框架231和第二框架232分别连接形成两输出端,液压缸261可在电控装置280控制下与液压油箱270连通或者封闭,以使伸缩杆262伸出液压 缸261或收入液压缸261并带动两输出端运动。本实施例中,液压缸26和伸缩杆262设置于第一框架231和第二框架232之间,且沿行车方向L设置。伸缩杆262的端部分别连接;两个连接传动件263,连接传动件263一端与第一框架231和第二框架232转动连接,另一端则与伸缩杆262转动连接。连接传动件263与第一框架231和第二框架232连接的一端为输出端。连接传动件263为刚性,使得伸缩杆262直线运动时,连接传动件263被带动运动同时发生旋转,拉动第一框架231和第二框架232靠近宽度调节机构260或远离宽度调节机构260,实现与换电设备200的移动路径相同的直线运动,从而调节宽度。而第一框架231和第二框架232均是滑动设置在固定于换电设备200上的导轨来对其移动进行导向的,该导轨的铺设方向与换电设备200的行动路径相同。在其他实施例中,宽度调节机构260也可被设置为一个液压缸两端均设置有伸缩杆,并分别与第一框架231和第二框架232连接。这种方案中液压缸和伸缩杆则需要沿换电设备的行驶方向设置。比起该方案来说,本实施例通过连接传动件263,仅需要一个伸缩杆即可实现两端移动的效果,结构更为简单可靠,且将宽度调节机构和长度调节机构同向设置,也可方便液压管路的连接。
此外,第三框架241和第四框架242随第一框架231和第二框架232同步移动。第三框架241和第四框架242在进行宽度调节时,也跟随第一框架231和第二框架232同步调节,仅需要设置一个宽度调节机构260即可实现四个框架的宽度调整。第三框架241和第四框架242无需单独设置宽度调节机构260,结构更为紧凑,并且有利于降低成本。宽度调节机构采用液压缸提供动力,易于控制,并且可以进行无极调速,具有过载保护功能,布置更为灵活,并且结构简单,驱动力大,相比其他驱动装置成本更低。
如图23e所示,换电设备200还包括液压油箱270,液压油箱270设置在换电设备200上,并随换电设备200一同移动。液压油箱270随换电设备200一同移动。液压油箱270、电控装置280随换电设备200一同移动,液压油箱270为换电设备200上的液压系统提供所需的油液,电控装置280为换电设备200的各项操作进行控制,避免在换电站400与换电设备200之间设置较长或较多的液压管道与控制线缆,换电设备200不会在移动过程中与液压管道或控制线缆发生干涉,更为灵活便利。
如图23e所示,换电设备200还包括电控装置280,电控装置280设置在换电设备200上,并随换电设备200一同移动。电控装置280随换电设备200一同移动,无需设置较长的控制线缆,换电设备200不会在移动过程中与控制线缆发生干涉,更为灵活便利。如图23e所示,电控装置280和液压 油箱270设置在换电设备200的同一侧。电控装置280和液压油箱270设置换电设备200的同一侧,只需占用一侧的空间,结构紧凑,且便于电控装置对液压油箱的工作进行控制,缩短电控装置与液压油箱之间的连接线路。如图23e所示,电控装置280和液压油箱270在车辆500的垂直于行车方向上设置在换电设备200的同一侧。有利于降低换电设备200在车辆500行车方向上的长度。本实施例中,长度调节机构和宽度调节机构均通过液压驱动,所有的液压缸均与设置在换电设备上的液压油箱270连接,并由液压油箱270提供压力。液压油箱270具有多个并联的输出口,分别与不同的液压缸连接,每个输出口均设有一个电控阀门,通过电控装置280分别控制每个电控阀门的开闭,实现长度调节机构和宽度调节机构以及他们的子机构的单独控制。
此外,举升机构210也采用液压驱动,并且通过电控装置280来控制。在本实施例中,采用液压缸提供动力,易于控制,并且可以进行无极调速,具有过载保护功能,与机械传动相比,举升机构210的布置更为灵活,并且结构简单,驱动力大,相比其他驱动装置成本更低。在其他实施例中,无论是长度调节机构、宽度调节机构还是举升机构,除了采用液压驱动以外,亦可以采用其他常见的驱动动力源来实现其基本功能,如采用电机方案等,仅需要把各设备的驱动单元替换成电机并适应性调整设置位置和相应其他结构即可。在其他实施例中,根据调节的需要,换电设备200也可以只有宽度调节机构260或只有长度调节机构250。
如图24所示,在换电站400中,载车平台100包括有电池更换口110,电池更换口110在垂直于行车方向A上的长度超过左右车轮内侧距离;电池更换口110在车辆500的行车方向A上的长度超过前后车轮内侧距离。通过设置电池更换口110,方便对车辆进行更换电池,并且无需对车辆500进行举升;电池更换口110采用上述不同方向的长度大小设置,电池更换的空间更为充足,降低了电池更换的难度,且可允许电动车辆采用更大体积的电池包。
载车平台100还包括车轮定位装置120,通过车轮定位装置120,方便对车辆500进行固定。载车平台100还包括移动门130,移动门130安装于电池更换口110处,用于关闭或者打开电池更换口110;通过设置移动门130封闭和开启电池更换口110,以在不影响电池换电的前提下,通过封闭电池更换口110,避免车辆500或行人在正常行进时落入电池更换口110中,提高换电安全性。具体地,移动门130包括相对可分离的第一移动部131和第二移动部132,第一移动部131和第二移动部132沿相反方向水平移动,将电池更换口110打开或者关闭。移动门130的驱动装置包括水平驱动装置 133和竖直驱动装置(图中未显示),竖直驱动装置设在图24中移动门130的背面,竖直驱动装置驱动移动门130沿竖直方向移动,水平驱动装置133驱动移动门130沿水平方向移动。
在本实施例中,位于载车平台100上的车辆500与沿行车方向A的前后方的车辆500距离,以及第一阵列单元910中左右充电模块401、车辆500的距离被设置为,使得任一车辆500直接开出来,不需要来回调整车辆500的位置。通过设置前后车辆500的间距、第一阵列单元910中充电模块401与车辆500的间距,以及第一阵列单元910中左右车辆500的间距,为车辆500自由进出提供了足够空间,保障车辆500进出换电站400的效率。
实施例4
本实施例提供一种阵列式换电站40,如图25-图26所示,阵列式换电站包括由至少两个在行车方向上相邻设置的换电站40形成的第二阵列单元920,每个换电站40包括充电模块400和载车平台100;相邻的换电站40的载车平台100错位布置。通过相邻的换电站40的载车平台100错位设置,可以极大的节约空间,布局紧凑,在有限的空间里可以设置更多的换电工位,减小了换电站40的占地面积,并且,沿行车方向上前后设置的载车平台100上停的车辆500之间通行互不干扰,车辆500通行顺畅,提高换电站40的效率和布局合理性,降低建设成本,并提升换电过程的便利性和安全性。
具体地,如图25-图27所示,换电站40包括充电架410、电池转运设备420、载车平台100和换电设备200;在垂直于车辆500的行车方向上,换电站40依次设置充电架410、电池转运设备420和载车平台100;换电设备200在电池转运设备420和载车平台100之间输送电池。具体地,载车平台100能够供车辆500停靠,充电架410能够为亏电电池进行充电,电池转运设备420能够对充电架410上的电池进行取放,换电设备200能够在电池转动设备和载车平台100之间输送电池,从而将充电架410上的充电完成的电池,经电池转运设备420取出,并通过换电设备200移动至载车平台100处;或者,将车辆500上拆卸下来的亏电电池,经换电设备200移动至电池转运设备420,再通过电池转运设备420存放至充电架410内,从而实现车辆500上电池的更换。另外,充电架410、电池转运设备420和载车平台100在垂直于车辆500的行车方向上布置,布局更加合理,能够减少电池包更换过程中换电设备200的移动距离,使得电池包更换效率更高。
如图25、图26所示,在垂直于行车方向上,两个第二阵列单元920相对设置,载车平台100位于两个充电模块之间,相对设置的第二阵列单元920增加了换电站40的数量,进而增加了换电工位 的数量,并且布局较为合理,载车平台100位于两个充电模块之间以及充电模块位于两端,不会影响车辆500的充电前后的正常通行,提高了换电站40的换电效率。阵列式换电站包括多个沿行车方向平行设置的第二阵列单元920,如图29、图30所示,可以更有效地利用可用空间,有限的区域内容纳更多的充电模块和载车平台100,节省空间。多个第二阵列单元920允许同时为多辆车辆500提供换电服务,减少了车辆500之间的等待时间。车辆500可以并行排列在不同的阵列单元中,实现并行的换电过程,提高了换电站40的通行效率。
如图30所示,沿行车方向,相邻的载车平台100上停放的车辆500之间部分重合,通过部分重合,布局更为紧凑,可以节约行车方向上的空间,在有限的占地空间可以提供更多数量的换电工位。沿行车方向上,相邻两个载车平台100的两个前端或两个后端的距离小于单个载车平台100的前、后端长度。载车平台100采用这种设计,使得载车平台100的布局更加紧凑,节约换电站的整体空间。每个第二阵列单元920中包含有两个换电站,每个换电站包括两个载车平台100。在行车方向上,两个相邻换电站中两个载车平台100的前端之间的距离,或者两个载车平台100的后端之间的距离,均小于单个载车平台100的前、后端长度。通过该种设置,使得在行车方向上,任意两个相邻的载车平台100更方便进行错位布置,进一步使得相邻的充电模块400之间可以近距离的设置,使布局上更为紧凑,在有限的空间里可以设置更多的换电工位。
具体地,图38所示,第二阵列单元920的两个换电站40中,在垂直于行车方向H上,一个换电站40中的载车平台100靠近该换电站40中的充电模块设置,另一个换电站40中的载车平台100远离该换电站40中的充电模块设置。具体地,为方便后方的车辆500通行,在垂直于行车方向H上,远离充电模块设置的载车平台100上停放的车辆500距离充电模块的距离大于车辆500的宽度,并且,相邻的两个第二阵列单元920中处于同一水平方向上的两个载车平台100上停放的车辆500之间的距离大于车辆500的宽度。进一步地,在垂直于行车方向H上,相对设置的两个第二阵列单元920中处于同一水平方向上的两个载车平台100之间的距离W1大于车辆500的宽度,远离充电模块设置的载车平台100距离充电模块的距离W2大于车辆500的宽度,可以方便后方的车辆500通行。
沿行车方向L相邻的两个载车平台100中,位于前方的载车平台100上停放的车辆500的车头与位于后方的载车平台100上停放的车辆500的车头之间的距离小于车辆500的长度,车辆500停放后,前方的车辆500和后方的车辆500在垂直于行车方向H上部分重合,通过车辆500部分重合,布 局更为紧凑,可以节约行车方向上的空间,在有限的占地空间可以提供更多数量的换电工位。
具体地,沿行车方向,两个相邻的充电模块400之间抵接设置,抵接设置的充电模块400可减少充电模块占地面积,使得换电站40布局紧凑,占用空间少,在有限的占地空间可以提供更多数量的换电工位。
其中,多个充电模块400被容纳于同一箱体内,箱体为充电模块起到了保护作用,充电模块不会受到外部恶劣环境的影响,如在雨雪天气,仍能正常工作,提高了充电模块的使用寿命,并且多个充电模块容纳于同一个箱体内,减低了施工成本。具体地,箱体的数量为两个,位于行车方向两侧的充电模块分别位于两个箱体内,同一侧的多个充电模块位于同一箱体内,结构简单,便于施工。当然,在其他实施例中,箱体的数量也可以为一个,两侧的所述充电模块可以同时被容纳于同一个大的箱体内,箱体上开设供车辆500行驶进出的开口。
如图28所示,沿行车方向,任意两个相邻的换电站40的载车平台100之间设置有备用车道700,设置备用车道700可以提升换电过程中的安全性,此外,还可以为车辆500通行提供充足的空间,有利于的通行和等待,通过错位布置,车辆500在换电过程中可以更好地进行停放和操作,减少换电过程中车辆500之间可能碰撞而导致的安全隐患。其中,备用车道700贯穿两个相邻的换电站40,备用车道700的宽度大于车辆500的宽度,通过设置备用车道700,可以为车辆500通行提供充足的空间,有利于车辆500的通行与等待,前方和后方车辆500进行换电,不会影响本车辆500的通行,提高了用户体验。
如图28所示,沿垂直于行车方向,两个相对设置的换电站40之间设置有隔断800,通过设置隔断800,每个阵列式换电单元中的换电站40互不干扰,车辆500之间不会发生干涉,换电过程更为安全。
具体地,在垂直于行车方向上,相邻的两个第二阵列单元920中处于同一水平方向上的两个载车平台100之间的距离大于车辆500的宽度;远离充电模块设置的载车平台100距离充电模块的距离大于车辆500的宽度,距离大于车辆500的宽度可以确保相邻的载车平台100之间有充足的空间,车辆500进行换电操作时可以更自由地进出载车平台100,提高换电站40的便利性,减少车辆500之间的干扰和交叉操作的风险。减少车辆500的碰撞风险:通过增加载车平台100之间的距离,车辆500之间的碰撞风险减小。
通过增加载车平台100与充电模块的距离,可以降低车辆500在充电过程中与充电设备发生碰撞或接触的风险。这种布局方式可以提高换电站40的安全性,并减少潜在的车辆500或设备损坏。有助于换电站40工作人员进行充电设备的维护和操作。这使得检修、清洁、维修等工作更加便利,提高了换电站40的维护效率。
沿行车方向相邻的两个载车平台100中,位于前方的载车平台100上停放的车辆500的车头与位于后方的载车平台100上停放的车辆500的车头之间的距离小于车辆500的长度,通过错位布置载车平台100,减小车辆500的车头之间的距离,可以有效利用换电站40内的空间,节省换电站40占地面积,可以在有限的空间内设置更多的充电模块,同时,减小的间隙可以提高换电站400的车辆500容纳量。这样可以同时为更多的车辆500提供服务,增加换电站400的效率,并减少用户等待时间。
当沿行车方向或垂直于行车方向上,任意相邻载车平台100的间距或载车平台100与充电模块的间距大于预设间距,以使任意载车平台上的车辆驶出或驶入。沿行车方向或垂直于行车方向上,任意相邻载车平台100的间距大于预设间隙,以使任意载车平台100上的车辆500驶出或驶入。同时还可以调整载车平台100与充电模块400之间的距离,同样使得任一载车平台100上的车辆500与任一充电模块400之间的间距,均可满足载车平台100上的车辆500驶进驶出。通过该种设置,使得车辆500之间不会造成干涉,不用来回调整车辆500的位置,增加了用户充电的便利性。
充电模块400包括充电架410和电池转运设备420,在垂直于行车方向上,载车平台100、电池转运设备420和充电架410依次设置,充电架410可以为更换的电池进行充电,电池转运设备420可以对换电设备200上的电池包与充电架410中的电池包进行转运,并且布局合理,能够减少电池包更换过程中的移动距离,电池包更换效率更高。
如图36、图37所示,换电站40还包括换电设备200,换电设备200在电池转运设备420和载车平台100之间输送电池,换电设备200定位精准,通用性好,能够适应不同尺寸的车辆500或电池包。通过使用换电设备200,在充电站内部实现电池的快速转运和交换,可以显著提高换电的速度和效率。这消除了手动替换电池的需求,减少了等待时间,并提供了更高效的服务,使用换电设备200将电池从转运设备直接输送到载车平台100上,简化了换电过程中的操作流程。使用专用的换电设备200将电池从转运设备搬运到载车平台100上,减少了人工搬运中可能发生的意外伤害风险。这提高了换电站40的安全性,保护工作人员和用户的安全。借助换电设备200,可以实现更高的自动化程 度,提升换电站40的智能化水平。通过自动化的操作,可以实现更高的生产效率和更好的资源利用,减少人力成本和操作上的错误。
在本实施例中,通过举升机构可以带动上部框架240和下部框架230一起沿竖直方向移动,进而可以移动至电池包对位置,举升机构能够调整电池包和换电设备200之间的竖直距离,方便换电设备200对电池包进行拆装和移动的操作。
其中,如图36所示,下部框架230包括第一框架231和第二框架232,第一框架231和第二框架232沿水平位移方向间隔设置,将下部框架230分为间隔分布的第一框架231和第二框架232,能够减小空间占用,结构更为紧凑,并且为宽度调节机构260提供了安装空间。
在一种较佳的实施方式中,上部框架240包括间隔分布设置在第一框架231上部的第三框架241和设置在第二框架232上部的第四框架242,便于上部框架240与下部框架230分布相匹配,在下部框架230进行宽度调整时不会受到上部框架240的限制或阻碍,且空间利用率高。
其中,换电设备200还包括长度调节机构250,长度调节机构250用于带动下部框架230和上部框架240沿车辆500行车方向移动;具体地,长度调节机构250提高了换电设备200的位置调整范围和定位精度,可以适配更多的车型和更多规格的电池包。
在本实施例中,长度调节机构250包括第一长度调节机构251以及第二长度调节机构252,第一长度调节机构251与第二长度调节机构252独立设置,第一长度调节机构251分别与第一框架231和第二框架232连接,第一长度调节机构251带动第一框架231和第二框架232移动,第二长度调节机构252分别与第三框架241和第四框架242连接,第二长度调节机构252带动第三框架241和第四框架242移动,相互之间不会影响,更为灵活,且可以增大换电设备200的长度调节范围。
其中,换电设备200还包括宽度调节机构260,宽度调节机构260设置在第一框架231和第二框架232的间隔处,宽度调节机构260包括两个分别与第一框架231和第二框架232连接的输出端,宽度调节机构260通过输出端带动第一框架231和第二框架232移动;
在本实施例中,通过宽度调节机构260可以控制第一框架231和第二框架232之间的间隔距离,进而可以匹配不同尺寸的电池包,通用性更广。
在一种较佳的实施方式中,第三框架241和第四框架242随第一框架231和第二框架232同步移动。在本实施例中,第三框架241和第四框架242跟随第一框架231和第二框架232同步调节,无需 单独设置宽度调节机构260,结构更为紧凑,并且有利于降低成本。
其中,换电设备200还包括液压油箱270,液压油箱270设置在换电设备200上,并随换电设备200一同移动,液压油箱270为换电设备200上的液压系统提供所需的油液,电控装置280为换电设备200的各项操作进行控制,避免在换电站与换电设备200之间设置较长或较多的液压管道与控制线缆,换电设备200不会在移动过程中与液压管道或控制线缆发生干涉,更为灵活便利。
换电设备200还包括电控装置280,电控装置280设置在换电设备200上,并随换电设备200一同移动;无需设置较长的控制线缆,换电设备200不会在移动过程中与控制线缆发生干涉,更为灵活便利。其中,电控装置280和液压油箱270设置在换电设备200的同一侧,只需占用一侧的空间,结构紧凑。
在一种较佳的实施方式中,电控装置280和液压油箱270在车辆500的垂直于行车方向上设置在换电设备200的同一侧;有利于降低换电设备200在车辆500行车方向上的长度,且便于电控装置280对液压油箱270的工作进行控制,缩短电控装置280与液压油箱270之间的连接线路。
具体地,如图37所示,长度调节机构250采用液压驱动,采用液压缸提供动力,易于控制,并且可以进行无极调速,具有过载保护功能,与机械传动相比,长度调节机构250的布置更为灵活,并且结构简单,驱动力大,相比其他驱动装置成本更低。
宽度调节机构260采用液压驱动,采用液压缸提供动力,易于控制,并且可以进行无极调速,具有过载保护功能,与机械传动相比,宽度调节机构260260的布置更为灵活,并且结构简单,驱动力大,相比其他驱动装置成本更低。
本实施例中,换电站40还包括地基300,充电架410、电池转运设备420和若干个载车平台100均设置在地基300上,地基300对充电架410、电池转运设备420和载车平台100起到了承载及固定作用。上述的地基300为换电设备200提供移动通道,换电设备200在地基300中沿移动通道进行移动,移动轨迹不会发生偏离,换电设备200移动平稳。
具体地,地基300包括用于换电设备200沿水平方向移动的移动通道;沿垂直于行车方向上,两个相对设置的换电站40的地基300的移动通道相通。
在本方案中,两个相对设置的换电站40的地基300的移动通道相通,方便地基300的施工,能够减少施工工序,降低工作量,利于提高建站效率。同时,两个相对设置的换电站40的地基300的 移动通道相通可以使两个相对设置的换电站40共用一个地基300,有利于降低成本,并且,共用一个地基300能够省去对两个地基300进行对准操作,利于进一步提高建站效率。
如图32-图34所示,本实施例提供了一种地基300,地基300包括用于如上述的换电设备200沿水平方向移动的移动通道;换电设备200可在地基300中沿移动通道进行移动,移动轨迹不会发生偏离。
移动通道包括轨道310,轨道310与换电设备200的滚轮相匹配,通过设置轨道310,对换电设备200在地基300中的移动路径进行了引导,换电设备200移动平稳。
地基300可以采用预制件制成,不仅有利于减低地基300的制造成本,而且,地基300安装更为方便。其中,地基300可以全部位于地面以下,地基300不占用地面以上的空间,不会与地面上的车辆500及行人发生干涉,换电过程中的用户体验更佳。
在一种较佳的实施方式中,至少地基300的一部分位于地面以下,地基300部分位于地面以下,能够减少换电站400建造的施工量。地基300也全部位于地面以上,地基300全部位移地面以上,无需在地下进行施工,建造较为方便。
其中,地基300还包括充电架410安装区320以及载车平台安装区340,为充电架410提供了安装空间,方便充电架410的安装及固定,地基300还包括电池转运设备420安装区330,为电池转运设备420提供了安装空间,方便电池转运设备420的安装及固定。
其中,地基300还包括载车平台100安装区,载车平台100安装区向下凹陷;在本实施例中,地基300为载车平台100提供了安装空间,方便载车平台100的安装及固定,载车平台100安装于载车平台100安装区时,载车平台100的表面不超出地基300;在本实施例中,载车平台100不超出地基300,车辆500驶入载车平台100不会受到阻碍,方便车辆500通行,提高了用户体验。
其中,地基300所包括的充电架410安装区320、电池转运设备420安装区330以及载车平台100安装区的数量均可以根据换电站400的实际需求确定。例如,在本实施例中,地基300中设置有一个载车平台100安装区。在其他实施例中,地基300还可以设置两个载车平台100安装区,两个载车平台100安装区所处的地基300相互之间连通。在其他可选的实施例中,地基300也可以设置多个载车平台100安装区,多个载车平台100安装区所处的地基300可以相互连通,也可以相互独立设置。
如图34所示,两个换电站的地基300相连通,使得地基内部的移动通道相通,甚至可以将两个 换电站对应的地基300一体设置,方便地基300的施工,能够减少施工工序,降低工作量,利于提高建站效率。可以理解的是,在一个换电站400中可以包括一个地基300,也可以同时包括多个地基300的组合。
在本实施例中,如图35所示,载车平台100包括有电池更换口110,通过设置电池更换口110,方便对车辆500进行更换电池,并且无需对车辆500进行举升,通过车辆500定位装置,方便对车辆500进行固定。电池更换口110可以设置在载车平台100的中部位置,电池更换口110的尺寸可以大于所需更换的电池包的尺寸。载车平台100还包括移动门130,移动门130安装于电池更换口110处,用于关闭或者打开电池更换口110;通过设置移动门130封闭和开启电池更换口110,以在不影响电池换电的前提下,通过封闭电池更换口110,避免车辆500或行人在正常行进时落入电池更换口110中,提高换电安全性。
其中,移动门130沿垂直于行车方向进行移动,以打开或关闭电池更换口110,移动门130沿垂直于行车方向打开,对车辆500行车方向上占据空间小,便于在车辆500行车方向上临近布置多个换电位,空间利用率高。
移动门130包括的相对可分离的第一移动部131和第二移动部132,第一移动部131和第二移动部132沿相反方向水平移动,将电池更换口110打开或者关闭。在本实施例中,移动门130与电池更换口110相齐平,不会影响载车平台100的上表面的平整度,防止影响车辆500通行,用户体验较佳。
电池更换口110在垂直于行车方向上的长度超过左右车轮内侧距离;或,电池更换口110在车辆500的行车方向上的长度超过前后车轮内侧距离。
其中,电池更换口110的长度超过车轮内侧距离,用户在更换电池时不需要担心车轮位置是否影响更换,电池更换过程更加便捷和流畅,减少了更换电池的操作难度,不同车辆500的轮轴距离和内侧距离可能不同,因此具备足够长度的电池更换口110可以适应各种车辆500,提供更广泛的服务范围。更长的电池更换口110使得电池更换过程更快速且更容易。驾驶员可以更轻松地将车辆500对准更换口,减少对齐时间,提高更换电池的效率。这将减少用户等待时间,提高整体服务效率。
在一种较佳的实施方式中,当车辆500位于载车平台100上时,在车辆500的行驶方向和垂直于车辆500的行驶方向上,车辆500与相邻载车平台100上的车辆500之间的距离以及充电模块的距离足够车辆500通过,位于载车平台100上的车辆500与前后方的车辆500距离以及左右充电模块、车 辆500的距离可以满足该车辆500直接开出来,不需要来回调整车辆500的位置。
实施例5
如图41所示,本实施例提供了一种阵列式换电站1,该阵列式换电站1包括有四个换电站10组成,本实施例中的四个换电站10沿行车方向排列设置,在其他实施方式中,换电站10的数量和排布方式可根据实际需要进行调整,如图39和图40所示,每个换电站10均包括有充电模块400、载车平台100,载车平台100用来承载并定位车辆500,车辆500行驶至载车平台100上进行电池包的更换,充电模块400又包括有充电架410和电池转运设备420,充电架410可以为更换的电池进行充电,电池转运设备420可以用于从充电架410上取放电池包以方便电池包的转运。在其他实施方式中,每个换电站10还可进一步包括换电设备200,在垂直于行车方向H上,载车平台100、电池转运设备420和充电架410依次设置,换电设备200在电池转运设备420和载车平台100之间输送电池。
结合图46所示,换电站10还可进一步包括地基300,充电架410、电池转运设备420和载车平台100均设置在地基300上,地基300包括用于供换电设备200沿水平方向移动的移动通道310。地基300承载了充电架410、电池转运设备420和载车平台100,并且为换电设备200提供了移动通道310,更方便了电池在电池转运设备420和载车平台100之间输送电池,并且换电设备200在地基300中沿移动通道310进行移动,移动轨迹也不会发生偏离。在实际充电过程中,用户将车辆500停在载车平台100上,换电设备200将车辆500的电池包取出后,携带电池包在地基300内移动至电池转运设置处,电池包被放置于电池转运设备420上,利用充电架410对电池包进行充电,当充电结束后,换电设备200将电池包移送至载车平台100上,再安装至车辆500的底部。
如图41、图42和图43所示,该阵列式换电站1包括至少一个第三阵列单元930,第三阵列单元930由至少一个换电站10形成,沿垂直于行车方向上,换电站包括两个间隔设置的载车平台。在其他实施方式中,换电站也可包括两个以上间隔设置的载车平台。
本实施例中,沿行车方向上,阵列式换电站包括四个平行设置的第三阵列单元930,即该阵列式换电站1共包括有四个第三阵列单元930,四个换电站10沿行车方向L依次排列,其中,每一个换电站10均包括有两个间隔设置的载车平台100,并且两个载车平台100是沿垂直于行车方向H间隔设置,在两个载车平台100之间设置有备用车道700。在其他实施方式中,阵列式换电站1也可包括其他数量平行设置的第三阵列单元930。
通过该种设置,形成第三阵列单元930的换电站10沿垂直于行车方向H均设置有两个载车平台100,能够为两辆车辆500进行电池包的更换,使得两辆车辆500共用一个换电站10的充电模块400,进一步降低了使用成本。此外,换电站10的两个载车平台100间隔设置,以在节省充电模块400数量的基础上增加换电站10的换电工位数量,可以满足更多的车辆500同时更换电池包的需求,并且两个车辆500之间间隔设置不会相对产生干涉,布局上更为合理,提高了对车辆500换电的效率。
本实施例中,每一个换电站10沿垂直于行车方向H间隔设置有两个载车平台100,以满足两辆车辆500共用一个充电模块400。当然,在其他实施例中,为了满足实际的需求,每一个换电站10上可以间隔设置多个载车平台100,例如沿垂直于行车方向H间隔设置四个载车平台100,间隔设置的四个载车平台100之间设置备用车道700。在一个换电站10中包含多个载车平台100时,多个载车平台100沿垂直于行车方向H间隔设置,换电站10的充电模块400设置在最外侧的载车平台100的外侧,使得充电模块400的位置不会对载车平台100上的车辆500造成干扰,布局上更为合理。
此外,本实施例中,每一个第三阵列单元930仅仅包含一个换电站10,在其他实施例中,第三阵列单元930完全可以根据实际需要调整换电站10的数量,例如每一个第三阵列单元930均包含有两个沿垂直于行车方向H相对设置的换电站10,即四个载车平台100位于两个充电模块400之间,使得同一排中存在两个换电站10,进一步增加了每个阵列单元中换电工位的数量,用户也可以根据实际情况选择同一排任意一个换电站10。
如图41、图42和图43所示,本实施例中,四个第三阵列单元930沿行车方向L平行设置从而组成阵列式换电站1,在增加阵列式换电站1中换电工位的数量的同时,并且使得整体的布局更为规整,车辆500换电过程更为有序,更有效率的为更多的车辆500提供换电服务。当然,在其他实施例中,多个第三阵列单元930也可以不用相互平行设置,例如,多个第三阵列单元930彼此之间成一定角度倾斜设置。进一步的,如图41、图42和图43所示,当四个第三阵列单元930沿行车方向L平行设置时,相邻的第三阵列单元930之间存在一定的间隙,给换电车辆500的通行留有足够的空间。当然,在其他实施例中,四个第三阵列单元930沿行车方向L平行设置时,相邻的第三阵列单元930完全可以相互抵接设置,即沿行车方向L上,两个相邻的充电模块400之间可以抵接设置,使得阵列式换电站1的布局更为紧凑,占用空间少,在有限的占地空间内可以提供更多数量的换电工位。
进一步的,如图41、图42和图43所示,当四个第三阵列单元930沿行车方向L平行设置时, 四个第三阵列单元930共包含有四个换电站10,包含有四个充电模块400,在行车方向L上相邻的充电模块400均位于同一条直线上,并且多个充电模块400被容纳在同一箱体(图中未示出)内,箱体可以起到保护作用,充电模块400不会受到外部恶劣环境的影响,如在雨雪天气,仍能正常工作,提高了充电模块400的使用寿命,并且多个充电模块400容纳于同一个箱体内,减低了施工成本。
进一步的,如图41、图42和图43所示,当四个第三阵列单元930沿行车方向L平行设置时,四个第三阵列单元930共包含有四个换电站10,包含有八个载车平台100,八个载车平台100沿行车方向L上分为两列设置,包括靠近充电模块400一列和远离充电模块400的另一列,每一列包括四个载车平台100,每一列的四个载车平台100在行车方向L上均处于同一直线上,通过该种设置,使得沿行车方向L的车辆500在相邻的载车平台100上可以首尾行进而不会互相产生干涉,车辆500进出对应的载车平台100更为有序。
此外,每一个换电站10中的两个载车平台100之间的间隔距离大于车辆500的宽度,使得相邻载车平台100之间的间隔可以形成备用车道700,便于后方的车辆500等候或者通行,避免造成拥挤。当八个载车平台100沿行车方向L上分为两列设置时,在两列载车平台100之间形成连续的备用车道700,备用车道700的宽度大于车辆500的宽度,通过在载车平台100之间设置备用车道700,可以为车辆500通行提供充足的空间,有利于车辆500的通行与等待,前方车辆500的换电不会影响后方车辆500的通行,提高了用户体验感。
如图40和图43所示,载车平台100上开设有电池包更换口110,本实施例中在电池包更换口110处设置有伸缩门,当不存在车辆500进行换电时,伸缩门会将电池包更换口110关闭,当有车辆500停在载车平台100上时,伸缩门才会将电池包更换口110打开。当车辆500停在载车平台100上时,车辆500的四个车轮被固定,车辆500底部的电池包位于电池包更换口110的正上方,该电池包更换口110在垂直于行车方向L上的长度超过左右车轮的内侧距离,或者,电池包更换口110在行车方向L上的长度超过前后车轮的内部距离,又或者,电池包更换口110在垂直于行车方向H上的长度以及在行车方向L上的长度同时超过左右车轮的内侧距离或者前后车轮的内部距离,通过设置电池包更换口110,方便对车辆500进行更换电池,并且无需对车辆500进行举升,并且电池包更换口110具体尺寸可以根据实际需求进行调整,更为方便车辆500中的电池包的取放。
如上所述,换电设备200具体设置在地基300的内部,并在地基300的移动通道310内进行移 动,从而实现在电池转运设备420和载车平台100之间输送电池包。如图47所示,沿垂直于行车方向上,两个相对设置的地基300终的移动通道310可以连通,甚至可以将两个换电站对应的地基300一体设置,方便地基300的施工,能够减少施工工序,降低工作量,利于提高建站效率。
换电设备200的具体结构如图44和图45所示,该换电设备200包括举升机构210和水平位移机构220,换电设备200还包括下部框架230和位于下部框架230上方的上部框架240,其中,上部框架包括有第三框架241和第四框架242,下部框架包括有第一框架231和第二框架232,举升机构210用于带动下部框架230和上部框架240沿竖直方向移动。该换电设备200还包括有长度调节机构250,所述长度调节机构250用于带动下部框架230和上部框架240沿车辆行车方向移动。通过举升机构210可以带动上部框架240和下部框架230一起沿竖直方向移动,进而可以移动至电池包的对应位置,方便换电设备200对电池包进行拆装和移动的操作。长度调节机构250提高了换电设备200的位置调整范围和定位精度,可以适配更多的车型和更多规格的电池包。
进一步的,如图44和图45所示,下部框架230包括第一框架231和第二框架232,第一框架231和第二框架232沿水平位移方向间隔设置,换电设备200还包括宽度调节机构260,宽度调节机构260设置在第一框架231和第二框架232的间隔处,宽度调节机构260包括两个分别与第一框架231和第二框架232连接的输出端,宽度调节机构260通过输出端带动第一框架231和第二框架232移动。通过将下部框架230分为间隔分布的第一框架231和第二框架232,能够减小空间占用,结构更为紧凑,并且为宽度调节机构260提供了安装空间,通过宽度调节机构260可以控制第一框架231和第二框架232之间的间隔距离,进而可以匹配不同尺寸的电池包,通用性更广。
需要说明的是,本实施例中沿行车方向或垂直于行车方向上,任意相邻载车平台100的间距大于预设间隙,以使任意载车平台100上的车辆500驶出或驶入。同时还可以调整载车平台100与充电模块400之间的距离,同样使得任一载车平台100上的车辆500与任一充电模块400之间的间距,均可满足载车平台100上的车辆500驶进驶出。通过该种设置,使得车辆500之间不会造成干涉,不用来回调整车辆500的位置,增加了用户充电的便利性。
在其他实施方式中,沿垂直于行车方向上,两个相对设置的换电站10形成第三阵列单元930。
本实施例中的阵列式换电站1,至少应用于两种换电车型的电池包更换,换电车型的电池包的锁止方式包括螺栓锁止、涨珠锁止、T型锁止、卡扣锁止、旋转锁止、挂接锁止中的至少一种,使得该 阵列式换电站1可以对不同换电车型的多种锁止方式的电池包进行更换,通用性强。此外,本阵列式换电站1应用的换电车型包括乘用车、重卡、轻卡、微面、巴士中的至少一种,能够适应市场上各种常见车型,阵列式换电站1能够满足市场上不同电动车辆500的换电需求。
本实施例还提供了一种能源站,该能源站以加油站为基础改建而成,该能源站包括以上所述的阵列式换电站1,并且充电模块400的顶部连接于能源站的顶棚,顶棚对充电模块400具有固定的作用,充电模块400与顶棚一体化,借助于顶棚,充电模块400的固定更为稳定,并且,顶棚对充电模块400还具备遮挡作用。
实施例6
本实施例提供一种阵列式换电站1,其结构涉及与实施例5中提供的阵列式换电站1的结构大致相同,本实施例中,如图48和图49所示,该阵列式换电站1包含两个第三阵列单元930,即包含有两个换电站10,每个换电站10同样包含充电模块400、载车平台100和换电设备200,并且每个换电站10的载车平台100的数量同样为两个,每个换电站10的两个载车平台100间隔设置在充电模块400的一侧。当两个换电站10沿行车方向L依次排列时,两个换电站10的充电模块400互相抵接,两个充电模块400一共包含有四个载车平台100,四个载车平台100以两排四列的方式错位布置,当车辆500的长度大于充电模块400的长度时,通过将载车平台100错位布置的方式,使得相邻换电站10的充电模块400抵接设置且不会造成干涉,极大的节约空间,布局上也更紧凑,在有限的空间里可以设置更多的换电工位。具体的,沿行车方向L上,相邻两个载车平台100的两个前端或两个后端的距离小于单个载车平台100的前、后端长度。如图48和图49所示,每个第三阵列单元930中包含有两个换电站10,每个换电站包括两个载车平台100。以靠近充电模块400的载车平台100为例,在行车方向上,两个相邻换电站10中靠近充电模块400的两个载车平台100中,两个载车平台100的前端之间的距离,或者两个载车平台100的后端之间的距离,均小于单个载车平台100的前、后端长度。通过该种设置,使得在行车方向上,任意两个相邻的载车平台100更方便进行错位布置,进一步使得相邻的充电模块400之间可以近距离的设置,使布局上更为紧凑,在有限的空间里可以设置更多的换电工位。
本实施例中,四个载车平台100错位布置,为了使布局上更为紧凑,载车平台100之间未设置有备用车道700。但是,在实际使用中,为了避免车辆500之间产生干涉,也可以沿行车方向L上,任 意两个相邻的载车平台100之间设置备用车道700,或者换电中相邻的两个载车平台100之间设置备用车道700,从而为车辆500通行提供充足的空间,有利于车辆500的通行与等待,前方车辆500的换电不会影响后方车辆500的通行,提高了用户体验感。当在行车方向L上,任意两个相邻的载车平台100之间设置备用车道700时,备用车道700贯穿该相邻的换电站10,并且备用车道700的宽度大于车辆500的宽度,使得前后车辆500的驶进驶出具有足够的空间,在换电车辆500较多的情况下也不会造成拥挤,进一步提高用户的换电体验。
本实施例中,该阵列式换电站1包含两个第三阵列单元930,即包含两个换电站10,两个换电站10的四个载车平台100互相错位设置。但是,在实际使用中,可以根据需求设置第三阵列单元930的数量,如图50、图51和图52所示,该阵列式换电站1包括有四个第三阵列单元930,即四个换电站10,四个换电站10的充电模块400相互抵接,四个换电站10一共包含八个载车平台100,八个载车平台100相互错位设置,使得相邻换电站10的充电模块400抵接设置且不会造成干涉,极大的节约空间,布局上也更紧凑,在有限的空间里可以设置更多的换电工位。
实施例7
本实施例提供了一种能源站,该能源站以加油站为基础改建而得,能源站包括有如实施例2-6中的阵列式换电站,充电模块401的顶部连接于能源站的顶棚。在本实施例中,顶棚与充电模块401的顶部连接,顶棚对充电模块401具有固定的作用,充电模块401与顶棚一体化,借助于顶棚,充电模块401的固定更为稳定,并且,顶棚对充电模块401还具备遮挡作用。
加油站的顶棚通过立柱设于地面上,用于容纳充电模块401的箱体还用于容纳至少部分立柱。在本实施例中,立柱不仅对顶棚起到支撑的作用,对箱体同样具有支撑的作用,箱体的安装固定更为方便且固定可靠,并且箱体可以对充电模块401进行全面遮盖,提供更好的保护。
本实施例中,该能源站至少用于两种换电车型进行电池更换,换电车型的电池包的锁止方式包括螺栓锁止、涨珠锁止、T型锁止、卡扣锁止、旋转锁止、挂接锁止中的至少一种。在本实施例中,该能源站可以对不同换电车型的多种锁止方式的电池包进行更换,通用性强。换电车型包括乘用车、重卡、轻卡、微面、巴士中的至少一种。在本实施例中,换电车型包括市场上各种常见车型,阵列式换电站和能源站能够满足市场上不同电动车辆的换电需求。

Claims (23)

  1. 一种换电站,其特征在于,所述换电站包括充电架、电池转运设备、载车平台和换电设备;
    在垂直于车辆的行车方向上,所述换电站依次设置所述充电架、所述电池转运设备和所述载车平台;所述换电设备在所述电池转运设备和所述载车平台之间输送电池。
  2. 如权利要求1所述的换电站,其特征在于,所述换电站包括地基,所述充电架、所述电池转运设备和若干个所述载车平台均设置在所述地基上。
  3. 如权利要求2所述的换电站,其特征在于,所述地基包括:
    移动通道,所述移动通道用于所述换电设备沿水平方向移动;
    充电架安装区,所述充电架设置于所述充电架安装区,所述充电架安装区设置于所述移动通道的一侧;
    电池转运设备安装区,所述电池转运设备设置于所述电池转运设备安装区,所述电池转运设备安装区设置于所述移动通道的一侧;
    优选地,所述地基还包括载车平台安装区,所述载车平台安装区向下凹陷,所述载车平台安装于所述载车平台安装区时,所述载车平台的表面不超出所述地基;
    优选地,沿垂直于车辆的行车方向上,所述充电架安装区、所述电池转运设备安装区和所述载车平台安装区相连通;
    和/或,所述载车平台安装区的深度小于所述电池转运设备安装区的深度。
  4. 如权利要求1-3中任意一项所述的换电站,其特征在于,所述载车平台包括电池更换口,
    所述电池更换口在垂直于车辆的行车方向上的长度超过车辆的左右车轮的内侧距离;
    和/或,所述电池更换口在所述车辆的行车方向上的长度超过前后车轮内侧距离。
  5. 如权利要求4所述的换电站,其特征在于,所述载车平台包括移动门和移动门驱动装置,移动门安装于所述电池更换口处,用于关闭或者打开所述电池更换口;所述移动门驱动装置与所述移动门连接并用于驱动所述移动门的移动;
    所述移动门驱动装置包括水平驱动装置和/或竖直驱动装置,所述竖直驱动装置驱动所述移动门沿竖直方向移动,所述水平驱动装置驱动所述移动门沿水平方向移动;
    优选地,所述移动门驱动装置包括第一液压缸和第二液压缸,所述第二液压缸套设于所述第一液 压缸。
  6. 如权利要求1-5中任意一项所述的换电站,其特征在于,所述换电设备包括下部框架,所述换电设备还包括长度调节机构和/或宽度调节机构;
    所述长度调节机构用于带动所述下部框架沿车辆行车方向移动;
    所述宽度调节机构用于调节所述下部框架在垂直于车辆的行车方向上的宽度;
    优选地,所述下部框架包括沿水平位移方向间隔设置第一框架和第二框架;所述宽度调节机构设置在所述第一框架和所述第二框架的间隔处,所述宽度调节机构包括两个分别与所述第一框架和所述第二框架连接的输出端,所述宽度调节机构通过所述输出端带动所述第一框架和所述第二框架移动;
    优选地,所述换电设备包括上部框架,所述上部框架包括设置在所述第一框架上部的第三框架和设置在所述第二框架上部的第四框架;
    和/或,所述换电设备还包括液压油箱和/或电控装置,所述液压油箱和/或所述电控装置设置在所述下部框架的同一侧。
  7. 一种阵列式换电站,其特征在于,所述阵列式换电站包括若干个如权利要求1-6中任一项所述的换电站;
    每个所述换电站包括充电模块和载车平台;在垂直于车辆的行车方向上,所述充电模块设置于所述载车平台的一侧;所述充电模块包括充电架和电池转运设备。
  8. 如权利要求7所述的阵列式换电站,其特征在于,在车辆的行车方向上,所述阵列式换电站包括若干个平行设置的所述换电站;
    和/或,所述换电站包括箱体,所述充电模块被容纳于所述箱体内。
  9. 如权利要求8所述的阵列式换电站,其特征在于,所述载车平台包括移动门和电池更换口,所述移动门安装于所述电池更换口处,用于关闭或者打开所述电池更换口;
    所述移动门包括的相对可分离的第一移动部和第二移动部,所述第一移动部和所述第二移动部在垂直于车辆的行车方向沿相反方向水平移动,将电池更换口打开或者关闭。
  10. 如权利要求7所述的阵列式换电站,其特征在于,所述换电站包括地基,所述地基包括移动通道,所述移动通道用于所述换电设备沿水平方向移动,多个所述换电站的所述地基的所述移动通道平行设置;
    优选地,沿垂直于车辆的行车方向上,两个相对设置的所述换电站的所述地基的所述移动通道相连通。
  11. 如权利要求7所述的阵列式换电站,其特征在于,所述阵列式换电站包括由两个在垂直于行车方向上相对设置的换电站形成的第一阵列单元,两个所述载车平台位于两个所述充电模块之间。
  12. 如权利要求11所述的阵列式换电站,其特征在于,沿所述行车方向上,多个平行设置的所述第一阵列单元形成所述阵列式换电站;
    和/或,沿所述行车方向上,多个所述第一阵列单元的所述充电模块被容纳于同一个箱体内;
    和/或,沿所述垂直于行车方向上,两个相对设置的所述换电站的地基的移动通道相通;
    和/或,沿所述行车方向上,相邻的所述载车平台处于同一直线上;
    和/或,沿所述行车方向上,两个相邻的所述充电模块之间抵接设置。
  13. 如权利要求11或12所述的阵列式换电站,其特征在于,沿垂直于所述行车方向上,两个相对设置的所述换电站之间设置有备用车道;
    或,沿垂直于所述行车方向上,两个相对设置的所述换电站之间设置有隔断;优选地,所述备用车道的宽度大于停靠于所述载车平台上的车辆的宽度。
  14. 如权利要求7所述的阵列式换电站,其特征在于,
    所述阵列式换电站包括由至少两个在行车方向上相邻设置的所述换电站形成的第二阵列单元,相邻的所述换电站的所述载车平台错位布置。
  15. 如权利要求14所述的阵列式换电站,其特征在于,在垂直于行车方向上,两个所述第二阵列单元相对设置,载车平台位于两个充电模块之间;
    和/或,所述阵列式换电站包括多个沿行车方向平行设置的所述第二阵列单元;
    和/或,沿所述垂直于行车方向,两个相对设置的所述换电站之间设置有隔断。
  16. 如权利要求14或15所述的阵列式换电站,其特征在于,沿行车方向,相邻的载车平台上停放的车辆之间部分重合;
    和/或,沿行车方向上,相邻两个载车平台的两个前端或两个后端的距离小于单个载车平台的前、后端长度;
    和/或,沿行车方向,两个相邻的所述充电模块之间抵接设置;
    和/或,多个所述充电模块被容纳于同一箱体内;
    和/或,所述地基包括用于所述换电设备沿水平方向移动的移动通道;沿所述垂直于行车方向上,两个相对设置的所述换电站的地基的所述移动通道相通。
  17. 如权利要求14-16中任一项所述的阵列式换电站,其特征在于,沿所述行车方向,任意两个相邻的所述换电站的所述载车平台之间设置有备用车道;优选地,所述备用车道贯穿两个相邻的换电站,所述备用车道的宽度大于所述车辆的宽度;
    和/或,在垂直于行车方向上,相对设置的两个第二阵列单元中处于同一水平方向上的两个所述载车平台之间的距离大于车辆的宽度,
    和/或,远离所述充电模块设置的所述载车平台距离所述充电模块的距离大于车辆的宽度。
  18. 如权利要求7所述的阵列式换电站,其特征在于,所述阵列式换电站包括由至少一个所述换电站形成的第三阵列单元,沿垂直于行车方向上,所述换电站包括多个间隔设置的所述载车平台。
  19. 如权利要求18所述的阵列式换电站,其特征在于,沿行车方向上,所述阵列式换电站包括多个平行设置的所述第三阵列单元;
    优选地,沿行车方向上,两个相邻的所述充电模块之间抵接设置;
    和/或,沿行车方向上,多个所述充电模块被容纳于同一箱体内;
    和/或,沿行车方向上,相邻的所述载车平台处于同一直线上;
    和/或,沿行车方向上,任意两个相邻的所述载车平台之间错位布置;
    优选地,沿行车方向上,相邻两个所述载车平台的两个前端或两个后端的距离小于单个所述载车平台的前、后端长度。
  20. 如权利要求18所述的阵列式换电站,其特征在于,沿垂直行车方向上,两个相对设置的所述换电站形成所述第三阵列单元;
    和/或,所述换电站包括一个所述充电模块,所述充电模块设于最外侧的载车平台的外侧;
    和/或,同一所述换电站相邻的所述载车平台之间的间隔距离大于车辆的宽度。
  21. 如权利要求18-20中任一项所述的阵列式换电站,其特征在于,沿行车方向上,任意两个相邻的所述换电站的所述载车平台之间设置有备用车道,
    和/或,所述换电站中相邻的两个载车平台之间设置有备用通道;
    优选地,所述备用车道贯穿两个相邻的所述换电站,所述备用车道的宽度大于车辆的宽度。
  22. 如权利要求7-21中任一项所述的阵列式换电站,其特征在于,沿行车方向或垂直于行车方向上,任意相邻载车平台的间距或载车平台与充电模块的间距大于预设间隙,以使任意载车平台上的车辆驶出或驶入。
  23. 一种能源站,其特征在于,所述能源站以加油站为基础改建而得,所述能源站包括有如权利要求7-22中任意一项所述的阵列式换电站,所述充电模块的顶部连接于所述能源站的顶棚;
    优选地,所述加油站的所述顶棚通过立柱设于地面上,用于容纳所述充电模块的箱体还用于容纳至少部分所述立柱。
PCT/CN2023/105244 2022-07-01 2023-06-30 换电站和阵列式换电站 WO2024002369A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210775612 2022-07-01
CN202210775612.2 2022-07-01

Publications (1)

Publication Number Publication Date
WO2024002369A1 true WO2024002369A1 (zh) 2024-01-04

Family

ID=89274392

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/CN2023/105244 WO2024002369A1 (zh) 2022-07-01 2023-06-30 换电站和阵列式换电站
PCT/CN2023/105251 WO2024002372A1 (zh) 2022-07-01 2023-06-30 换电设备、换电站以及阵列式换电站
PCT/CN2023/105248 WO2024002371A1 (zh) 2022-07-01 2023-06-30 地基、换电站、阵列式换电站
PCT/CN2023/105238 WO2024002367A1 (zh) 2022-07-01 2023-06-30 换电设备、换电站以及阵列式换电站

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/CN2023/105251 WO2024002372A1 (zh) 2022-07-01 2023-06-30 换电设备、换电站以及阵列式换电站
PCT/CN2023/105248 WO2024002371A1 (zh) 2022-07-01 2023-06-30 地基、换电站、阵列式换电站
PCT/CN2023/105238 WO2024002367A1 (zh) 2022-07-01 2023-06-30 换电设备、换电站以及阵列式换电站

Country Status (2)

Country Link
CN (29) CN117325812A (zh)
WO (4) WO2024002369A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006498A (ja) * 2010-06-25 2012-01-12 Hirata Corp バッテリ交換システムおよびバッテリ交換方法
CN108001263A (zh) * 2017-11-23 2018-05-08 臻昊(北京)新能源科技有限公司 动力电池更换系统
CN109703532A (zh) * 2018-12-11 2019-05-03 西安航天精密机电研究所 一种应用升降机的可扩展的小型底盘式换电站
CN111645563A (zh) * 2020-06-24 2020-09-11 武汉蔚来能源有限公司 换电平台、换电站和换电方法
CN113291196A (zh) * 2021-05-28 2021-08-24 蓝谷智慧(北京)能源科技有限公司 用于换电站的换电系统
CN216374262U (zh) * 2021-09-30 2022-04-26 奥动新能源汽车科技有限公司 左右双工位换电站
CN115009090A (zh) * 2021-03-04 2022-09-06 奥动新能源汽车科技有限公司 换电设备、载车平台及包含其的换电站
CN217672235U (zh) * 2021-12-31 2022-10-28 奥动新能源汽车科技有限公司 紧凑型换电站

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101704716B1 (ko) * 2015-05-21 2017-02-10 주식회사 이브이인터코넥트 전기자동차용 이동식 배터리 교체시스템
CN207790356U (zh) * 2017-11-22 2018-08-31 蔚来汽车有限公司 电动汽车的自动换电平台和换电站
CN207955601U (zh) * 2017-12-15 2018-10-12 蔚来汽车有限公司 充换电站
CN110001599B (zh) * 2018-12-06 2022-12-02 蔚来(安徽)控股有限公司 换电平台、换电机器人及充换电站
CN211688081U (zh) * 2019-08-16 2020-10-16 北京新能源汽车股份有限公司 换电移动装置
CN111231739A (zh) * 2020-01-23 2020-06-05 奥动新能源汽车科技有限公司 换电设备
CN111232580A (zh) * 2020-01-23 2020-06-05 奥动新能源汽车科技有限公司 双向移动平台及包括其的穿梭车
CN111114376A (zh) * 2020-02-14 2020-05-08 奥动新能源汽车科技有限公司 换电平台、换电设备及包括该换电设备的换电站
DE202020101526U1 (de) * 2020-03-20 2020-04-01 Dieter Flämig Integrierte Stromversorgungsstation
CN212667171U (zh) * 2020-06-24 2021-03-09 武汉蔚来能源有限公司 电池传输系统及其换电站
CN215204522U (zh) * 2021-03-04 2021-12-17 奥动新能源汽车科技有限公司 换电设备及包含其的换电站
CN113619440B (zh) * 2021-05-28 2023-07-18 蓝谷智慧(北京)能源科技有限公司 换电移动装置
CN216033889U (zh) * 2021-07-22 2022-03-15 上海玖行能源科技有限公司 电动汽车的换电站平台以及换电系统
CN115556627A (zh) * 2022-05-31 2023-01-03 奥动新能源汽车科技有限公司 换电平台、换电设备及换电站

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006498A (ja) * 2010-06-25 2012-01-12 Hirata Corp バッテリ交換システムおよびバッテリ交換方法
CN108001263A (zh) * 2017-11-23 2018-05-08 臻昊(北京)新能源科技有限公司 动力电池更换系统
CN109703532A (zh) * 2018-12-11 2019-05-03 西安航天精密机电研究所 一种应用升降机的可扩展的小型底盘式换电站
CN111645563A (zh) * 2020-06-24 2020-09-11 武汉蔚来能源有限公司 换电平台、换电站和换电方法
CN115009090A (zh) * 2021-03-04 2022-09-06 奥动新能源汽车科技有限公司 换电设备、载车平台及包含其的换电站
CN113291196A (zh) * 2021-05-28 2021-08-24 蓝谷智慧(北京)能源科技有限公司 用于换电站的换电系统
CN216374262U (zh) * 2021-09-30 2022-04-26 奥动新能源汽车科技有限公司 左右双工位换电站
CN217672235U (zh) * 2021-12-31 2022-10-28 奥动新能源汽车科技有限公司 紧凑型换电站

Also Published As

Publication number Publication date
CN117325815A (zh) 2024-01-02
CN220374341U (zh) 2024-01-23
WO2024002367A1 (zh) 2024-01-04
WO2024002372A1 (zh) 2024-01-04
CN117325812A (zh) 2024-01-02
CN220374483U (zh) 2024-01-23
CN220884338U (zh) 2024-05-03
CN117325810A (zh) 2024-01-02
CN117325811A (zh) 2024-01-02
CN117325808A (zh) 2024-01-02
CN117325814A (zh) 2024-01-02
CN117325813A (zh) 2024-01-02
CN220430112U (zh) 2024-02-02
CN117326488A (zh) 2024-01-02
CN117325818A (zh) 2024-01-02
CN117325819A (zh) 2024-01-02
CN220374482U (zh) 2024-01-23
CN117325820A (zh) 2024-01-02
CN220764337U (zh) 2024-04-12
WO2024002371A1 (zh) 2024-01-04
CN117325701A (zh) 2024-01-02
CN220764335U (zh) 2024-04-12
CN117325817A (zh) 2024-01-02
CN117325809A (zh) 2024-01-02
CN220374340U (zh) 2024-01-23
CN117325816A (zh) 2024-01-02
CN220701078U (zh) 2024-04-02
CN117325702A (zh) 2024-01-02
CN220430111U (zh) 2024-02-02
CN220374485U (zh) 2024-01-23
CN220764336U (zh) 2024-04-12
CN220374484U (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
CN201011166Y (zh) 无轨小车搬运器的梳体交换式机械停车设备
CN106043246A (zh) 小型自动化换电站
CN207829552U (zh) 一种立体停车库车辆移动装置
WO2024041222A1 (zh) 充换电站
CN108487749A (zh) 一种机械式立体停车库
CN107882398A (zh) 一种建筑景观式立体停车库控制方法
WO2024002369A1 (zh) 换电站和阵列式换电站
CN108999449B (zh) 一种道路上层智能自动存取停车装置
CN106285110B (zh) 一种立体车库
CN214532189U (zh) 一种滚轮移动式立体车库
CN220009712U (zh) 以加油站为基础的能源站
CN108999448B (zh) 一种道路上层环形自动存取停车装置
CN220928875U (zh) 一种载车板交互机构及其立体停车库
CN216268783U (zh) 具有曳引机构的电池转运系统及换电站或储能站
CN113445797B (zh) 一种天桥立体车库
CN216476602U (zh) 一种共用升降通道的多层密集泊车设备
CN216331470U (zh) 集中充电分散换电式多功能换电站系统
CN213948201U (zh) 一种电动商用车高效换电站
CN109252722B (zh) 一种适用于道路上层空间的汽车自动存取装置
CN118082763A (zh) 一种换电站
CN114934704A (zh) 一种智能停车库自动管控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830531

Country of ref document: EP

Kind code of ref document: A1