WO2024001623A1 - 一种低线宽的w型六角晶系微波铁氧体材料的制备方法 - Google Patents

一种低线宽的w型六角晶系微波铁氧体材料的制备方法 Download PDF

Info

Publication number
WO2024001623A1
WO2024001623A1 PCT/CN2023/096164 CN2023096164W WO2024001623A1 WO 2024001623 A1 WO2024001623 A1 WO 2024001623A1 CN 2023096164 W CN2023096164 W CN 2023096164W WO 2024001623 A1 WO2024001623 A1 WO 2024001623A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
preparation
ball milling
temperature
rate
Prior art date
Application number
PCT/CN2023/096164
Other languages
English (en)
French (fr)
Inventor
吕飞雨
张利康
Original Assignee
横店集团东磁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横店集团东磁股份有限公司 filed Critical 横店集团东磁股份有限公司
Publication of WO2024001623A1 publication Critical patent/WO2024001623A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0311Compounds
    • H01F1/0313Oxidic compounds
    • H01F1/0315Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Definitions

  • Embodiments of the present application relate to the technical field of magnetic materials, such as a method for preparing a low line width W-type hexagonal microwave ferrite material.
  • active phased array radar uses a large number of radiating units arranged in an array, and several or even each radiating unit on the antenna array is equipped with a receiving/transmitting component.
  • the receiving/transmitting component is an active phased array radar.
  • the core component of the antenna array element needs to complete the transmission and reception of radio frequency signals under extremely small volume constraints.
  • This component has been highly integrated through monolithic microwave integrated circuit technology.
  • due to the size of the circulator it cannot be sufficiently small. ization and fragmentation. Due to its non-reciprocity, the circulator is an indispensable component in the receive/receiver assembly to connect the three modules of transmitter, antenna and receiver.
  • CN102584200A discloses an ultra-low loss, small line width microwave ferrite material and a preparation method thereof.
  • the main phase of the material is a garnet structure, and the chemical formula is: Y 3-2x-y Ca 2x+y Fe 5-xyz V x Zr y Al z O 12 , where: 0.02 ⁇ x ⁇ 0.25, 0.05 ⁇ y ⁇ 0.25, 0.01 ⁇ z ⁇ 0.25;
  • the preparation method includes the following steps: calculating and weighing raw materials according to stoichiometry, vibrating ball milling, pre-calcining, and vibration grinding Crushing, fine grinding, spray granulation, Press molding and sintering.
  • the ferromagnetic resonance line width ⁇ H of the obtained material is ⁇ 1.27KA/m
  • the insertion loss of the assembled microwave device is ⁇ 0.21dB. Its stability and reliability have been greatly improved. , the application range is expanded; the manufactured microwave ferrite device has the advantages of wide operating frequency and low insertion loss.
  • CN111732427A discloses a low ferromagnetic resonance line width hexagonal ferrite material for self-biased circulators, which is composed of main components and doping components, wherein the main components include: (6.5 ⁇ 7) mol Fe 2 O 3 , (1 ⁇ 1.17) mol BaCO 3 , (0 ⁇ 1) mol Ga 2 O 3 ; the doping components include (0.01 ⁇ 1) wt% CuO, (0.01 ⁇ 3) wt% Bi 2 O 3 , (0.01 ⁇ 1.5) wt% B 2 O 3 ; a preparation method of the above material is also disclosed; the prepared material has high anisotropic field, high saturation magnetization, low ferromagnetic resonance line width and appropriate coercive force, The preparation method is simple and easy to operate; due to its high anisotropic field, it can replace the external permanent magnet of the circulator, reduce the size of the circulator, and increase the operating frequency of the device; the low ferromagnetic resonance linewidth can effectively reduce the natural Bias circulator losses.
  • the current hexagonal ferrite materials cannot meet the new requirements of engineering due to their high ferromagnetic resonance line width and large losses.
  • the preparation method described in this application also uses oxygen sintering at a temperature of 1150°C to 1250°C to reduce the pores of the W-type hexagonal microwave ferrite material, effectively reduce its line width, and suppress the appearance of Fe 2+ to prevent the material from reducing dielectric loss.
  • the preparation method described in this application also limits the particle size X50 of the slurry after the first ball milling process to be 0.9-1.2 ⁇ m, and the particle size X50 of the slurry after the second ball-milling process is 0.8-1.1 ⁇ m.
  • the effect is to make most of the particles in a single domain state. It is beneficial for the magnetic moment to rotate under the action of the orientation magnetic field, obtain good orientation effect, increase the residual magnetization ratio, and effectively reduce the porosity.
  • the temperature of the first sintering treatment is 1200 ⁇ 1280°C. When the temperature is lower than 1200°C This will cause the grain size to not fully grow, resulting in low density, increased porosity, and increased line width. When the temperature is higher than 1280°C, oversized grains will appear, pores will increase, and the residual magnetization ratio will decrease, resulting in Line width increases.
  • the temperature of the first sintering treatment is 1200-1280°C, for example, it can be 1200°C, 1210°C, 1220°C, 1250°C, 1270°C or 1280°C, etc., but is not limited to the listed values, other values within this range The same applies to values not listed;
  • the composition and mass percentage of the flux are respectively Bi 2 O 3 : 0.01 to 0.1%, V 2 O 5 : 0.01 to 0.1%, SiO 2 : 0.01 to 0.1%, and ZnO: 0.01 to 0.1%.
  • Bi 2 O 3 0.01 to 0.1%, for example, it can be 0.01%, 0.02%, 0.04%, 0.05%, 0.08% or 0.1%, etc., but it is not limited to the listed values. Others are not listed within this range of values.
  • the numerical values of Other unlisted values are also applicable; SiO 2 : 0.01 to 0.1%, for example, it can be 0.01%, 0.02%, 0.04%, 0.05%, 0.08% or 0.1%, etc., but is not limited to the listed values.
  • ZnO 0.01 ⁇ 0.1%, for example, it can be 0.01%, 0.02%, 0.04%, 0.05%, 0.08% or 0.1%, etc., but is not limited to the listed values. This range of values Other values not listed in are also applicable;
  • the temperature of the oxygen sintering is 1150°C to 1250°C, for example, it can be 1150°C, 1155°C, 1180°C, 1200°C, 1220°C or 1250°C, etc., but is not limited to the listed values, and other values within the range are not limited to the listed values. The same applies to the values listed;
  • the linewidth of the low linewidth W-type hexagonal microwave ferrite material is ⁇ 400Oe, for example, it can be 399Oe, 390Oe, 380Oe, 370Oe, 350Oe or 320Oe, etc., but is not limited to the listed values. This range of values Other values not listed within are also applicable.
  • the rotation speed of the first ball milling treatment in step (1) is 60-80r/min, for example, it can be 60r/min, 62r/min, 65r/min, 70r/min, 75r/min or 80r/min, etc., However, it is not limited to the listed values, and other unlisted values within the range of values are also applicable.
  • the time of the first ball milling treatment is 20 to 40h, for example, it can be 20h, 23h, 25h, 30h, 35h, 38h or 40h, etc., but is not limited to the listed values, and other values within this range are not listed. The same applies to the values of .
  • a dispersant with a mass fraction of 0.01 to 0.05% is added to the first ball milling treatment, for example, it can be 0.01%, 0.02%, 0.03%, 0.04% or 0.05%, etc., but is not limited to the listed values. Other values within this range that are not listed are also applicable.
  • dispersant is not specifically limited in this application, and any dispersant for ball milling that is well known to those skilled in the art can be used.
  • the drying time is 16 to 20h, for example, it can be 16h, 16.5h, 17h, 18h, 19h or 20h, etc., but is not limited to the listed values, and other unlisted values within this range are the same. Be applicable.
  • the temperature rise rate of the first sintering treatment in step (2) is 1.0-1.5°C/min, for example, it can be 1.0°C/min, 1.1°C/min, 1.2°C/min, 1.3°C/min or 1.5°C/min. min, etc., but are not limited to the listed values, other unlisted values within this range are also applicable.
  • the rotation speed of the second ball milling treatment in step (3) is 60-80r/min, for example, it can be 60r/min, 62r/min, 65r/min, 70r/min, 75r/min or 80r/min, etc. , but not limited to the listed values, other unlisted values within this range are also applicable.
  • the time of the second ball milling treatment is 15 to 24h, for example, it can be 15h, 18h, 20h, 21h, 23h or 24h, etc., but is not limited to the listed values, other unlisted values within this range of values may The same applies.
  • a dispersant with a mass fraction of 0.01 to 0.05% is added to the second ball milling treatment in step (3), for example, it can be 0.01%, 0.02%, 0.03%, 0.04% or 0.05%, but is not limited to the above. For listed values, other unlisted values within this value range are also applicable.
  • the solid content of the slurry before granulation and molding in step (4) is ⁇ 70%, for example, it can be 70%, 72%, 75%, 80%, 85% or 90%, etc., but is not limited to the above.
  • the solid content of the slurry before granulation and molding in step (4) is ⁇ 70%, for example, it can be 70%, 72%, 75%, 80%, 85% or 90%, etc., but is not limited to the above.
  • other unlisted values within this value range are also applicable.
  • the density of the granulated sample is 3.4-3.6g/cm 3 , for example, it can be 3.4g/cm 3 , 3.41g/cm 3 , 3.45g/cm 3 , 3.5g/cm 3 , 3.55g / cm3 or 3.6g/ cm3 , etc., but are not limited to the listed values, other unlisted values within this range are also applicable.
  • the air sintering in step (4) includes starting from room temperature, increasing the temperature to 120°C at a rate of 1.0°C/min, maintaining the temperature for 2 hours, and then increasing the temperature to 1000°C at a rate of 2°C/min.
  • the oxygen sintering in step (4) includes a flow rate of 30-50L/min and an oxygen content of ⁇ 98%. of oxygen, raise the temperature to the oxygen sintering temperature at a rate of 2.5°C/min, and after holding for 3 to 8 hours, cool down to 700°C at a rate of 2.5°C/min. Stop the flow of oxygen and cool down with the furnace.
  • the flow rate is 30-50L/min, for example, it can be 30L/min, 35L/min, 38L/min, 40L/min, 45L/min or 50L/min, etc., but is not limited to the listed values.
  • the range of values Other unlisted values within are also applicable; oxygen content ⁇ 98%, for example, it can be 98%, 98.2%, 98.5%, 99%, 99.3% or 99.5%, etc., but is not limited to the listed values.
  • the heat preservation period is 3 to 8 hours, for example, it can be 3h, 4h, 5h, 7h or 8h, etc., but it is not limited to the listed values. Other unlisted values within this numerical range are also applicable.
  • the preparation method includes the following steps:
  • the first ball-milled slurry is sequentially subjected to drying at a temperature of 120-150°C for 16-20 hours and a first sintering treatment at a temperature of 1200-1280°C and a heating rate of 1.0-1.5°C/min to obtain a mixture powder;
  • the mixed powder is mixed with a flux, and the second ball milling process is performed at a rotation speed of 60 to 80 r/min for 15 to 24 hours to obtain a second ball milled slurry with a particle size X50 of 0.8 to 1.1 ⁇ m;
  • the flux The composition and mass percentage are respectively Bi 2 O 3 : 0.01 to 0.1%, V 2 O 5 : 0.01 to 0.1%, SiO 2 : 0.01 to 0.1% and ZnO: 0.01 to 0.1%; the second ball milling treatment Add a dispersant with a mass fraction of 0.01 to 0.05%;
  • the solid content of the slurry before granulation and molding is ⁇ 70%; the density of the sample after granulation and molding is 3.4-3.6g/cm 3 ;
  • the steps of the second sintering treatment include first performing air sintering and then oxygen sintering; the air sintering includes starting from room temperature, heating to 120°C at a rate of 1.0°C/min, maintaining the temperature for 2 hours, and then raising the temperature to 120°C at a rate of 2°C/min. 1000°C; the oxygen sintering includes oxygen with a flow rate of 30 to 50L/min and an oxygen content of ⁇ 98%, which is heated to a sintering temperature of 1150°C to 1250°C at a rate of 2.5°C/min. After being kept for 3 to 8 hours, the temperature is increased to 2.5 The temperature is lowered to 700°C at a rate of °C/min, and the flow of oxygen is stopped and the furnace is cooled.
  • the embodiments of the present application at least have the following beneficial effects:
  • the preparation method of the low line width W-type hexagonal microwave ferrite material provided by the embodiments of the present application is stable and has good repeatability.
  • the obtained W-type hexagonal microwave ferrite material has a linewidth of ⁇ 400Oe and is saturated.
  • the magnetization intensity is 3700 ⁇ 3900Gs, the remanence ratio is >0.9, and the density is >5.0g/cm 3 . It has the prospect of large-scale promotion and application.
  • This embodiment provides a method for preparing a low linewidth W-type hexagonal microwave ferrite material.
  • the preparation method includes the following steps:
  • the mixed powder is mixed with a flux and a dispersant with a mass fraction of 0.02%, it is put into a ball mill tank and mixed using a horizontal ball mill.
  • deionized water: zirconia balls (large: small) 1000:1000:(4000:1000) weight ratio, perform a second ball milling treatment with a rotation speed of 70r/min for 16 hours, the particle size X50 of the slurry after the second ball milling treatment is 0.8-1.1 ⁇ m; the flux
  • the composition and mass percentage are respectively Bi 2 O 3 : 0.06%, V 2 O 5 : 0.06%, SiO 2 : 0.06% and ZnO: 0.06%;
  • the sample is first air-sintered and then oxygen-sintered.
  • the air sintering starts from room temperature, is heated to 120°C at a rate of 1.0°C/min, is kept for 2 hours, and then heated to 1000°C at a rate of 2°C/min;
  • the oxygen sintering includes injecting oxygen with a flow rate of 40L/min and an oxygen content of 98%, heating up to a sintering temperature of 1180°C at a rate of 2.5°C/min, and after holding for 6 hours, cooling down to 700°C at a rate of 2.5°C/min.
  • the flow of oxygen was stopped and the furnace was cooled to obtain the low line width W-type hexagonal microwave ferrite material.
  • This embodiment provides a method for preparing a low linewidth W-type hexagonal microwave ferrite material.
  • This comparative example provides a method for preparing a low linewidth W-type hexagonal microwave ferrite material.
  • This comparative example provides a method for preparing a low linewidth W-type hexagonal microwave ferrite material.
  • This comparative example provides a method for preparing a low-linewidth W-type hexagonal microwave ferrite material. Except for the first sintering treatment temperature in step (3'), which is 1150°C, the preparation method is the same as the implementation. Same as Example 1.
  • This comparative example provides a method for preparing a low linewidth W-type hexagonal microwave ferrite material.
  • the temperature of the first sintering treatment in step (3') is 1300°C, The rest are the same as in Example 1.
  • This comparative example provides a method for preparing a low line width W-type hexagonal microwave ferrite material.
  • the preparation method except for the composition and mass percentage of the flux in step (4'), they are Bi 2 O 3 respectively. :0.12%, V 2 O 5 : 0.12%, SiO 2 : 0.12% and ZnO: 0.06%, the rest are the same as Example 1.
  • This comparative example provides a method for preparing a low line width W-type hexagonal microwave ferrite material.
  • the preparation method is the same as Example 1 except that no flux is added in step (4').
  • This comparative example provides a method for preparing a low linewidth W-type hexagonal microwave ferrite material.
  • the preparation method except for the composition and mass percentage of the flux in step (4'), they are V 2 O 5 respectively. : 0.12%, SiO 2 : 0.12% and ZnO: 0.06%, the rest are the same as in Example 1.
  • This comparative example provides a method for preparing a low line width W-type hexagonal microwave ferrite material.
  • the preparation method except that the first ball milling treatment time in step (2') is h, the obtained first ball milling treatment time Except that the particle size X50 of the slurry is ⁇ m, the rest are the same as in Example 1.
  • This comparative example provides a method for preparing a low linewidth W-type hexagonal microwave ferrite material.
  • the preparation method except that the second ball milling treatment time in step (4') is h, the obtained second ball milling treatment time Except that the particle size X50 of the slurry is ⁇ m, the rest are the same as in Example 1.
  • This comparative example provides a method for preparing a low linewidth W-type hexagonal microwave ferrite material.
  • the preparation method is the same as Example 1 except that the oxygen sintering temperature in step (7') is 1100°C. .
  • This comparative example provides a method for preparing a low linewidth W-type hexagonal microwave ferrite material.
  • the preparation method is the same as Example 1 except that the oxygen sintering temperature in step (7') is 1280°C. .
  • This comparative example provides a method for preparing a low-linewidth W-type hexagonal microwave ferrite material.
  • the preparation method is the same as Example 1 except for step (7'), which involves sintering without oxygen and direct air cooling. .
  • the line width of the W-type hexagonal microwave ferrite material obtained by the preparation method provided by this application is ⁇ 400Oe
  • the saturation magnetization is 3700 ⁇ 3900Gs
  • the residual magnetization ratio is >0.9
  • the density is >5.0g. /cm 3 , which has the prospect of large-scale promotion and application.
  • the line width of the W-type hexagonal microwave ferrite material obtained is higher; when the temperature of the first sintering treatment is lower, although other properties are equivalent to Example 1 , but the line width is higher; when no flux is added or the composition and content of each substance in the flux are not within the scope of this application, the W-type hexagonal microwave ferrite material will have a higher line width and residual magnetism.
  • the particle size of the slurry after the first ball milling treatment and the particle size of the slurry after the second ball milling treatment are larger, it will lead to a higher line width, a smaller residual magnetization ratio and a lower density of the W-type hexagonal microwave ferrite material;
  • the line width of the W-type hexagonal microwave ferrite material will be higher and the residual magnetization ratio will be smaller.
  • the preparation method of the low line width W-type hexagonal microwave ferrite material provided by this application has stable process, good repeatability, and has the prospect of large-scale promotion and application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本文公布一种低线宽的W型六角晶系微波铁氧体材料的制备方法,所述制备方法包括:称量→第一球磨处理→烘干→第一烧结处理→第二球磨处理→造粒成型→第二烧结处理,得到低线宽的W型六角晶系微波铁氧体材料。本申请所述制备方法采用稀土元素Gd替代部分Fe离子,利用Gd和Fe的电磁特性和补偿点来获得合适的饱和磁化强度、剩磁比和线宽,并且通过联合添加合适量的低熔点助熔剂Bi2O3、V2O5、SiO2和ZnO来改善W型六角晶系微波铁氧体材料的微观结构,减少气孔,降低线宽并增加剩磁比;所述的制备方法工艺稳定,可重复性好,适用于大批量生产。

Description

一种低线宽的W型六角晶系微波铁氧体材料的制备方法 技术领域
本申请实施例涉及磁性材料技术领域,例如一种低线宽的W型六角晶系微波铁氧体材料的制备方法。
背景技术
随着电子信息技术的高速发展,雷达在军、民用领域应用的重要性日益增进。其中,有源相控阵雷达采用大量辐射单元以阵列形式排布,且天线阵面上的数个甚至各个辐射单元都接配了收/发组件,收/发组件是有源相控阵雷达天线阵元的核心部件,需在极小的体积限制下,完成射频信号的发射与接收,该组件通过单片微波集成电路技术已经高度集成化,但是受制于环行器的尺寸,未能充分小型化、片式化。环行器因其非互易性,是收/发组件中连接发射机、天线和接收机三个模块不可或缺的元器件,但基于石榴石和尖晶石型铁氧体设计的传统环行器需要外加尺寸较大的永磁体提供偏置场以实现环行功能,而且环行器工作频率越高,所需要的永磁体体积就越大。因此,减小环行器的尺寸,是实现收/发组件进一步小型化、集成化不可回避的关键问题。
CN106747391A公开了一种基于流延工艺环行器基板的制备方法,包括下述步骤:1.主料配方:采用采用Y3-xCaxSnxFe5-xO12,x=0.06;2.一次球磨;3.预烧:在1000℃~1200℃条件下预烧,保温1~3小时;4.掺杂:加入以下添加剂:0.2wt%Bi2O3,0.10wt%BaTiO3;5.二次球磨:粉料加入40~50wt%的有机粘合剂和40~50wt%的无水乙醇,球磨4~8小时;6.流延成型:将浆料通过流延得到厚度为100~120μm的生膜带;7.叠层:根据厚度需要,生膜带叠片为8~15层,在6MPa下压制成型;8.烧结:在空气氛围中与1360~1440℃下保温4小时。采用本方法制备可以得到不用厚度的光滑平整的环行器用铁氧体介质基板,并具有适用于X波段特性,具有温度稳定性好,低线宽,介质损耗低等优点。
CN102584200A公开了一种超低损耗、小线宽微波铁氧体材料及其制备方法,材料主相为石榴石结构,化学式为:Y3-2x-yCa2x+yFe5-x-y-zVxZryAlzO12,其中:0.02≤x≤0.25,0.05≤y≤0.25,0.01≤z≤0.25;制备方法包括如下步骤:按化学计量计算并称取原材料,振动球磨,预烧,振磨粗粉碎,砂磨细粉碎,喷雾造粒, 压制成型和烧结。经测试,所获材料的铁磁共振线宽ΔH≤1.27KA/m,介电损耗tgδe≤0.5×10-4,装配的微波器件的插入损耗≤0.21dB,其稳定性和可靠性大幅度提高,应用范围扩大;制成的微波铁氧体器件具有工作频带宽和插入损耗低的优点。
CN111732427A公开了一种自偏置环行器用低铁磁共振线宽六角铁氧体材料,由主要成分和掺杂成分组成,其中,所述主要成分包括:(6.5~7)mol Fe2O3、(1~1.17)mol BaCO3、(0~1)mol Ga2O3;所述掺杂成分包括(0.01~1)wt%CuO、(0.01~3)wt%Bi2O3、(0.01~1.5)wt%B2O3;还公开了上述材料的制备方法;制备的材料具有高各向异性场、较高的饱和磁化强度、较低的铁磁共振线宽和适宜的矫顽力,且制备方法简单,易操作;由于具有高的各向异性场,可以取代环行器的外加永磁体,减小环行器的尺寸,提高器件的工作频率;低的铁磁共振线宽可以有效降低自偏置环行器的损耗。
目前的六角铁氧体材料因铁磁共振线宽较高、损耗较大,已经无法满足工程化新的要求。
因此,开发一种低线宽的W型六角晶系微波铁氧体材料的制备方法具有重要意义。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
为解决上述技术问题,本申请实施例提供一种低线宽的W型六角晶系微波铁氧体材料的制备方法,通过稀土元素Gd替代部分Fe离子,利用Gd和Fe的电磁特性和补偿点来获得合适的饱和磁化强度、剩磁比和线宽,并且通过联合添加合适量的低熔点助熔剂Bi2O3、V2O5、SiO2和ZnO来改善W型六角晶系微波铁氧体材料的微观结构,减少气孔,降低线宽并增加剩磁比。本申请所述的制备方法工艺稳定,可重复性好,适用于大批量生产。
本申请实施例提供一种低线宽的W型六角晶系微波铁氧体材料的制备方法,所述制备方法包括如下步骤:
(1)根据化学式BaGdxNi2Fe(16~x)O27,其中0.1<x<0.25计算并称取原料BaCO3、Gd2O3、Ni2O和Fe2O3后进行第一球磨处理,得到粒度X50为0.9~1.2μm 的第一球磨后浆料;
(2)所述第一球磨后浆料依次进行烘干和温度为1200~1280℃的第一烧结处理,得到混合粉料;
(3)所述混合粉料与助熔剂混合,进行第二球磨处理,得到粒度X50为0.8~1.1μm的第二球磨后浆料;所述助熔剂的组成和质量百分含量分别为Bi2O3:0.01~0.1%、V2O5:0.01~0.1%、SiO2:0.01~0.1%和ZnO:0.01~0.1%;
(4)所述第二球磨后浆料依次进行造粒成型和第二烧结处理,得到所述低线宽的W型六角晶系微波铁氧体材料;所述第二烧结处理包括先进行空气烧结再进行温度为1150℃~1250℃的氧气烧结;所述低线宽的W型六角晶系微波铁氧体材料的线宽<400Oe。
本申请所述的低线宽的W型六角晶系微波铁氧体材料的制备方法通过稀土元素Gd替代部分Fe离子,限定化学式BaGdxNi2Fe(16~x)O27中0.1<x<0.25,利用Gd和Fe的电磁特性和补偿点来获得合适的饱和磁化强度、剩磁比和线宽,并且通过联合添加质量百分含量分别为Bi2O3:0.01~0.1%、V2O5:0.01~0.1%、SiO2:0.01~0.1%和ZnO:0.01~0.1%的低熔点助熔剂,改善W型六角晶系微波铁氧体材料的微观结构,减少气孔,降低线宽并增加剩磁比。本申请所述制备方法还采用温度为1150℃~1250℃的氧气烧结,减少W型六角晶系微波铁氧体材料的气孔,有效降低其线宽,并且抑制Fe2+的出现,防止降低材料的介电损耗。
本申请所述制备方法还限定第一球磨处理后浆料的粒度X50为0.9~1.2μm,第二球磨处理后浆料的粒度X50为0.8~1.1μm,作用是使颗粒大多处于单畴态,有利于磁矩在取向磁场作用下转动,获得好的取向效果,提高剩磁比,另外可以有效的降低气孔率,而且,第一烧结处理的温度为1200~1280℃,当温度低于1200℃会导致晶粒尺寸没有完全长大,使密度偏低,气孔率提升,导致线宽增加,当温度高于于1280℃会导致有过大尺寸晶粒出现,孔隙增多,降低剩磁比,导致线宽增加。
本申请中0.1<x<0.25,例如可以是0.11、0.13、0.15、0.18、0.2或0.24等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用;
所述第一球磨处理后浆料的粒度X50为0.9~1.2μm,例如可以是0.9μm、0.95μm、1μm、1.05μm、1.1μm或1.2μm等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用;
所述第一烧结处理的温度为1200~1280℃,例如可以是1200℃、1210℃、1220℃、1250℃、1270℃或1280℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用;
所述第二球磨处理后浆料的粒度X50为0.8~1.1μm,例如可以是0.8μm、0.85μm、0.9μm、0.95μm、1μm或1.1μm等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用;
所述助熔剂的组成和质量百分含量分别为Bi2O3:0.01~0.1%、V2O5:0.01~0.1%、SiO2:0.01~0.1%和ZnO:0.01~0.1%。其中,Bi2O3:0.01~0.1%,例如可以是0.01%、0.02%、0.04%、0.05%、0.08%或0.1%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用;V2O5:0.01~0.1%,例如可以是0.01%、0.02%、0.04%、0.05%、0.08%或0.1%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用;SiO2:0.01~0.1%,例如可以是0.01%、0.02%、0.04%、0.05%、0.08%或0.1%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用;ZnO:0.01~0.1%,例如可以是0.01%、0.02%、0.04%、0.05%、0.08%或0.1%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用;
所述氧气烧结的温度为1150℃~1250℃,例如可以是1150℃、1155℃、1180℃、1200℃、1220℃或1250℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用;
所述低线宽的W型六角晶系微波铁氧体材料的线宽<400Oe,例如可以是399Oe、390Oe、380Oe、370Oe、350Oe或320Oe等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(1)所述第一球磨处理的转速为60~80r/min,例如可以是60r/min、62r/min、65r/min、70r/min、75r/min或80r/min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述第一球磨处理的时间为20~40h,例如可以是20h、23h、25h、30h、35h、38h或40h等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述第一球磨处理中加入质量分数为0.01~0.05%的分散剂,例如可以是0.01%、0.02%、0.03%、0.04%或0.05%等,但并不仅限于所列举的数值, 该数值范围内其他未列举的数值同样适用。
本申请对分散剂的种类不进行明确限定,可以采用本领域技术人员熟知的用于球磨处理的任何分散剂。
优选地,步骤(2)所述烘干的温度为120~150℃,例如可以是120℃、125℃、130℃、140℃、145℃或150℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述烘干的时间为16~20h,例如可以是16h、16.5h、17h、18h、19h或20h等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(2)所述第一烧结处理的升温速率为1.0~1.5℃/min,例如可以是1.0℃/min、1.1℃/min、1.2℃/min、1.3℃/min或1.5℃/min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(3)所述第二球磨处理的转速为60~80r/min,,例如可以是60r/min、62r/min、65r/min、70r/min、75r/min或80r/min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述第二球磨处理的时间为15~24h,例如可以是15h、18h、20h、21h、23h或24h等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(3)所述第二球磨处理中加入质量分数为0.01~0.05%的分散剂,例如可以是0.01%、0.02%、0.03%、0.04%或0.05%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(4)所述造粒成型前料浆的含固量≥70%,例如可以是70%、72%、75%、80%、85%或90%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述造粒成型后样品的密度为3.4~3.6g/cm3,例如可以是3.4g/cm3、3.41g/cm3、3.45g/cm3、3.5g/cm3、3.55g/cm3或3.6g/cm3等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(4)所述空气烧结包括从室温开始,以1.0℃/min速率升温至120℃,保温2h,再以2℃/min速率升温至1000℃。
优选地,步骤(4)所述氧气烧结包括通入流量为30~50L/min、氧气含量≥98% 的氧气,以2.5℃/min速率升温至氧气烧结温度,保温3~8h后,以2.5℃/min的速率降温到700℃,停止通入氧气并随炉冷却。
其中,流量为30~50L/min,例如可以是30L/min、35L/min、38L/min、40L/min、45L/min或50L/min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用;氧气含量≥98%,例如可以是98%、98.2%、98.5%、99%、99.3%或99.5%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用;保温3~8h,例如可以是3h、4h、5h、7h或8h等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本申请优选的技术方案,所述制备方法包括如下步骤:
(1)根据化学式BaGdxNi2Fe(16~x)O27,其中0.1<x<0.25计算并称取原料BaCO3、Gd2O3、Ni2O和Fe2O3后,进行转速为60~80r/min的第一球磨处理20~40h,得到粒度X50为0.9~1.2μm的第一球磨后浆料;所述第一球磨处理中加入质量分数为0.01~0.05%的分散剂;
(2)所述第一球磨后浆料依次进行温度为120~150℃的烘干16~20h和温度为1200~1280℃、升温速率为1.0~1.5℃/min的第一烧结处理,得到混合粉料;
(3)所述混合粉料与助熔剂混合,进行转速为60~80r/min的第二球磨处理15~24h,得到粒度X50为0.8~1.1μm的第二球磨后浆料;所述助熔剂的组成和质量百分含量分别为Bi2O3:0.01~0.1%、V2O5:0.01~0.1%、SiO2:0.01~0.1%和ZnO:0.01~0.1%;所述第二球磨处理中加入质量分数为0.01~0.05%的分散剂;
(4)所述第二球磨后浆料依次进行造粒成型和第二烧结处理,得到所述低线宽的W型六角晶系微波铁氧体材料;所述低线宽的W型六角晶系微波铁氧体材料的线宽<400Oe;
所述造粒成型前料浆的含固量≥70%;所述造粒成型后样品的密度为3.4~3.6g/cm3
所述第二烧结处理的步骤包括先进行空气烧结再进行氧气烧结;所述空气烧结包括从室温开始,以1.0℃/min速率升温至120℃,保温2h,再以2℃/min速率升温至1000℃;所述氧气烧结包括通入流量为30~50L/min、氧气含量≥98%的氧气,以2.5℃/min速率升温至烧结温度1150℃~1250℃,保温3~8h后,以2.5℃/min的速率降温到700℃,停止通入氧气并随炉冷却。
与相关技术相比,本申请实施例至少具有以下有益效果:
本申请实施例提供的低线宽的W型六角晶系微波铁氧体材料的制备方法工艺稳定,可重复性好,得到的W型六角晶系微波铁氧体材料的线宽<400Oe,饱和磁化强度为3700~3900Gs,剩磁比>0.9,密度>5.0g/cm3,具有大规模推广应用前景。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
为便于理解本申请,本申请列举实施例如下。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
下面对本申请进一步详细说明。但下述的实例仅仅是本申请的简易例子,并不代表或限制本申请的权利保护范围,本申请的保护范围以权利要求书为准。
实施例1
本实施例提供一种低线宽的W型六角晶系微波铁氧体材料的制备方法,所述制备方法包括如下步骤:
(1’)根据化学式BaGdxNi2Fe(16~x)O27,其中x=0.2,计算并称取原料BaCO3、Gd2O3、Ni2O和Fe2O3;其中BaCO3的纯度为99.65%,Gd2O3的纯度为99.5%,Ni2O的纯度为99.5%,Fe2O3的纯度为99.5%;
(2’)将原料放入球磨罐中使用球磨机混合,按原料:去离子水:氧化锆球(大:小)=1000:1000:(4000:1000)的重量比投料,进行转速70r/min的第一球磨处理24h;所述第一球磨处理中加入质量分数为0.02%的分散剂;所述第一球磨处理后浆料的粒度X50为0.9~1.2μm;
(3’)将第一球磨处理后的浆料放入烘箱烘干,烘干温度140℃,时间18h;之后将烘干后的粉料过60目筛放进空气烧结炉进行第一烧结处理5h,以1.5℃/min的速度升温到第一烧结处理的温度1250℃,得到混合粉料;
(4’)所述混合粉料与助熔剂、质量分数为0.02%的分散剂混合后,放入球磨罐中使用卧式球磨机混合,按材料:去离子水:氧化锆球(大:小)=1000:1000:(4000:1000)的重量比投料,进行转速为70r/min的第二球磨处理16h,所述第二球磨处理后浆料的粒度X50为0.8~1.1μm;所述助熔剂的组成和质量百分含量分别为Bi2O3:0.06%、V2O5:0.06%、SiO2:0.06%和ZnO:0.06%;
(5’)第二球磨处理后的料浆用滤布过滤多余的水,使料浆的含固量在70% 以上;
(6’)将处理后的料浆进行取向成型,得到的样品尺寸为Z42*8,成型密度3.4g/cm3
(7’)所述样品先进行空气烧结再进行氧气烧结,所述空气烧结从室温开始,以1.0℃/min速率升温至120℃,保温2h,再以2℃/min速率升温至1000℃;所述氧气烧结包括通入流量为40L/min、氧气含量为98%的氧气,以2.5℃/min速率升温至烧结温度1180℃,保温6h后,以2.5℃/min的速率降温到700℃,停止通入氧气并随炉冷却,得到所述低线宽的W型六角晶系微波铁氧体材料。
实施例2
本实施例提供一种低线宽的W型六角晶系微波铁氧体材料的制备方法,所述制备方法除了步骤(1’)中x=0.18外,其余均与实施例1相同。
对比例1
本对比例提供一种低线宽的W型六角晶系微波铁氧体材料的制备方法,所述制备方法除了步骤(1’)中x=0外,其余均与实施例1相同。
对比例2
本对比例提供一种低线宽的W型六角晶系微波铁氧体材料的制备方法,所述制备方法除了步骤(1’)中x=0.3外,其余均与实施例1相同。
对比例3
本对比例提供一种低线宽的W型六角晶系微波铁氧体材料的制备方法,所述制备方法除了步骤(3’)中第一烧结处理的温度为1150℃外,其余均与实施例1相同。
对比例4
本对比例提供一种低线宽的W型六角晶系微波铁氧体材料的制备方法,所述制备方法所述制备方法除了步骤(3’)中第一烧结处理的温度为1300℃外,余均与实施例1相同。
对比例5
本对比例提供一种低线宽的W型六角晶系微波铁氧体材料的制备方法,所述制备方法除了步骤(4’)中助熔剂的组成和质量百分含量分别为Bi2O3:0.12%、V2O5:0.12%、SiO2:0.12%和ZnO:0.06%外,其余均与实施例1相同。
对比例6
本对比例提供一种低线宽的W型六角晶系微波铁氧体材料的制备方法,所述制备方法除了步骤(4’)中不加入助熔剂外,其余均与实施例1相同。
对比例7
本对比例提供一种低线宽的W型六角晶系微波铁氧体材料的制备方法,所述制备方法除了步骤(4’)中助熔剂的组成和质量百分含量分别为V2O5:0.12%、SiO2:0.12%和ZnO:0.06%外,其余均与实施例1相同。
对比例8
本对比例提供一种低线宽的W型六角晶系微波铁氧体材料的制备方法,所述制备方法除了步骤(2’)中第一球磨处理时间为h,得到的第一球磨处理后浆料的粒度X50为μm外,其余均与实施例1相同。
对比例9
本对比例提供一种低线宽的W型六角晶系微波铁氧体材料的制备方法,所述制备方法除了步骤(4’)中第二球磨处理时间为h,得到的第二球磨处理后浆料的粒度X50为μm外,其余均与实施例1相同。
对比例10
本对比例提供一种低线宽的W型六角晶系微波铁氧体材料的制备方法,所述制备方法除了步骤(7’)中氧气烧结温度为1100℃外,其余均与实施例1相同。
对比例11
本对比例提供一种低线宽的W型六角晶系微波铁氧体材料的制备方法,所述制备方法除了步骤(7’)中氧气烧结温度为1280℃外,其余均与实施例1相同。
对比例12
本对比例提供一种低线宽的W型六角晶系微波铁氧体材料的制备方法,所述制备方法除了步骤(7’),不通氧气烧结,直接空气降温,其余均与实施例1相同。
将以上实施例和对比例得到的W型六角晶系微波铁氧体材料加工成Φ2.5mm圆球,测定其饱和磁化强度;
将以上实施例和对比例得到的W型六角晶系微波铁氧体材料加工成Z38*6的样品,测定其剩磁比;
将以上实施例和对比例得到的W型六角晶系微波铁氧体材料加工成Φ1mm圆球,测定其线宽;
采用排水法测定以上实施例和对比例得到的W型六角晶系微波铁氧体材料的密度,各测试结果如表1所示。
表1
从表1可以看出,采用本申请提供的制备方法得到的W型六角晶系微波铁氧体材料的线宽<400Oe,饱和磁化强度为3700~3900Gs,剩磁比>0.9,密度>5.0g/cm3,具有大规模推广应用前景。
当原料中不加入Gd,或者Gd的比例太多,得到的W型六角晶系微波铁氧体材料的线宽较高;当第一烧结处理的温度较低,虽然其他性能与实施例1相当,但线宽较高;当不添加助熔剂或助熔剂中各物质的组成和含量不在本申请的范围内,均会导致W型六角晶系微波铁氧体材料的线宽较高且剩磁比较小; 当第一球磨处理后浆料的粒度和第二球磨处理后浆料的粒度较大,会导致W型六角晶系微波铁氧体材料的线宽较高、剩磁比较小且密度较低;当氧气烧结温度不在本申请的范围内,均会导致W型六角晶系微波铁氧体材料的线宽较高且剩磁比较小。
综上所述,本申请提供的低线宽的W型六角晶系微波铁氧体材料的制备方法工艺稳定,可重复性好,具有大规模推广应用前景。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,均落在本申请的保护范围和公开范围之内。

Claims (12)

  1. 一种低线宽的W型六角晶系微波铁氧体材料的制备方法,其包括如下步骤:
    (1)根据化学式BaGdxNi2Fe(16~x)O27,其中0.1<x<0.25计算并称取原料BaCO3、Gd2O3、Ni2O和Fe2O3后进行第一球磨处理,得到粒度X50为0.9~1.2μm的第一球磨后浆料;
    (2)所述第一球磨后浆料依次进行烘干和温度为1200~1280℃的第一烧结处理,得到混合粉料;
    (3)所述混合粉料与助熔剂混合,进行第二球磨处理,得到粒度X50为0.8~1.1μm的第二球磨后浆料;所述助熔剂的组成和质量百分含量分别为Bi2O3:0.01~0.1%、V2O5:0.01~0.1%、SiO2:0.01~0.1%和ZnO:0.01~0.1%;
    (4)所述第二球磨后浆料依次进行造粒成型和第二烧结处理,得到所述低线宽的W型六角晶系微波铁氧体材料;所述第二烧结处理包括先进行空气烧结再进行温度为1150℃~1250℃的氧气烧结;所述低线宽的W型六角晶系微波铁氧体材料的线宽<400Oe。
  2. 根据权利要求1所述的制备方法,其中,步骤(1)所述第一球磨处理的转速为60~80r/min。
  3. 根据权利要求1或2所述的制备方法,其中,所述第一球磨处理的时间为20~40h。
  4. 根据权利要求1-3任一项所述的制备方法,其中,所述第一球磨处理中加入质量分数为0.01~0.05%的分散剂。
  5. 根据权利要求1-4任一项所述的制备方法,其中,步骤(2)所述烘干的温度为120~150℃;
    优选地,所述烘干的时间为16~20h。
  6. 根据权利要求1~5任一项所述的制备方法,其中,步骤(2)所述第一烧结处理的升温速率为1.0~1.5℃/min。
  7. 根据权利要求1~6任一项所述的制备方法,其中,步骤(3)所述第二球磨处理的转速为60~80r/min;
    优选地,所述第二球磨处理的时间为15~24h。
  8. 根据权利要求1~7任一项所述的制备方法,其中,步骤(3)所述第二球磨处理中加入质量分数为0.01~0.05%的分散剂。
  9. 根据权利要求1~8任一项所述的制备方法,其中,步骤(4)所述造粒成型前料浆的含固量≥70%;
    优选地,所述造粒成型后样品的密度为3.4~3.6g/cm3
  10. 根据权利要求1~9任一项所述的制备方法,其中,步骤(4)所述空气烧结包括从室温开始,以1.0℃/min速率升温至120℃,保温2h,再以2℃/min速率升温至1000℃。
  11. 根据权利要求1~10任一项所述的制备方法,其中,步骤(4)所述氧气烧结包括通入流量为30~50L/min、氧气含量≥98%的氧气,以2.5℃/min速率升温至氧气烧结温度,保温3~8h后,以2.5℃/min的速率降温到700℃,停止通入氧气并随炉冷却。
  12. 根据权利要求1~11任一项所述的制备方法,其括如下步骤:
    (1)根据化学式BaGdxNi2Fe(16~x)O27,其中0.1<x<0.25计算并称取原料BaCO3、Gd2O3、Ni2O和Fe2O3后,进行转速为60~80r/min的第一球磨处理20~40h,得到粒度X50为0.9~1.2μm的第一球磨后浆料;所述第一球磨处理中加入质量分数为0.01~0.05%的分散剂;
    (2)所述第一球磨后浆料依次进行温度为120~150℃的烘干16~20h和温度为1200~1280℃、升温速率为1.0~1.5℃/min的第一烧结处理,得到混合粉料;
    (3)所述混合粉料与助熔剂混合,进行转速为60~80r/min的第二球磨处理15~24h,得到粒度X50为0.8~1.1μm的第二球磨后浆料;所述助熔剂的组成和质量百分含量分别为Bi2O3:0.01~0.1%、V2O5:0.01~0.1%、SiO2:0.01~0.1%和ZnO:0.01~0.1%;所述第二球磨处理中加入质量分数为0.01~0.05%的分散剂;
    (4)所述第二球磨后浆料依次进行造粒成型和第二烧结处理,得到所述低线宽的W型六角晶系微波铁氧体材料;所述低线宽的W型六角晶系微波铁氧体材料的线宽<400Oe;
    所述造粒成型前料浆的含固量≥70%;所述造粒成型后样品的密度为3.4~3.6g/cm3
    所述第二烧结处理的步骤包括先进行空气烧结再进行氧气烧结;所述空气烧结包括从室温开始,以1.0℃/min速率升温至120℃,保温2h,再以2℃/min速率升温至1000℃;所述氧气烧结包括通入流量为30~50L/min、氧气含量≥98%的氧气,以2.5℃/min速率升温至烧结温度1150℃~1250℃,保温3~8h后,以 2.5℃/min的速率降温到700℃,停止通入氧气并随炉冷却。
PCT/CN2023/096164 2022-06-29 2023-05-25 一种低线宽的w型六角晶系微波铁氧体材料的制备方法 WO2024001623A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210756747.4 2022-06-29
CN202210756747.4A CN115057697B (zh) 2022-06-29 2022-06-29 一种低线宽的w型六角晶系微波铁氧体材料的制备方法

Publications (1)

Publication Number Publication Date
WO2024001623A1 true WO2024001623A1 (zh) 2024-01-04

Family

ID=83204455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096164 WO2024001623A1 (zh) 2022-06-29 2023-05-25 一种低线宽的w型六角晶系微波铁氧体材料的制备方法

Country Status (2)

Country Link
CN (1) CN115057697B (zh)
WO (1) WO2024001623A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115057697B (zh) * 2022-06-29 2023-05-16 横店集团东磁股份有限公司 一种低线宽的w型六角晶系微波铁氧体材料的制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1139648A (zh) * 1995-07-06 1997-01-08 南京理工大学 超细六角晶系铁氧体的制备方法
JP2005019890A (ja) * 2003-06-27 2005-01-20 Tdk Corp フェライト磁石粉末、焼結磁石、ボンド磁石、磁気記録媒体
JP2005072186A (ja) * 2003-08-22 2005-03-17 Tdk Corp フェライト磁石粉末、フェライト磁石の製造方法及び六方晶w型フェライト相の生成方法
CN1706011A (zh) * 2003-02-25 2005-12-07 Tdk株式会社 铁氧体磁体粉末、烧结磁体、粘结磁体以及磁记录介质
JP2005347485A (ja) * 2004-06-02 2005-12-15 Neomax Co Ltd フェライト電波吸収材料とその製造方法
CN1774772A (zh) * 2003-07-31 2006-05-17 Tdk株式会社 铁氧体磁性材料以及六方晶w型铁氧体磁性材料的制造方法
CN1842505A (zh) * 2003-12-09 2006-10-04 Tdk株式会社 铁氧体磁性材料、铁氧体烧结磁体
CN1898180A (zh) * 2004-03-04 2007-01-17 Tdk株式会社 铁氧体磁性材料、铁氧体烧结磁体及其制造方法
CN102643082A (zh) * 2012-03-05 2012-08-22 沈阳理工大学 一种w型钡铁氧体的制备方法
CN111755192A (zh) * 2019-03-27 2020-10-09 Tdk株式会社 铁氧体烧结磁铁、铁氧体颗粒、粘结磁铁和旋转电机
CN113302157A (zh) * 2019-02-08 2021-08-24 株式会社村田制作所 软磁性组合物、烧结体、复合体、糊料,线圈部件和天线
CN113677625A (zh) * 2019-03-29 2021-11-19 Tdk株式会社 铁氧体烧结磁体、铁氧体颗粒、粘结磁体和旋转电气设备
CN115057697A (zh) * 2022-06-29 2022-09-16 横店集团东磁股份有限公司 一种低线宽的w型六角晶系微波铁氧体材料的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2586134B1 (fr) * 1985-08-06 1989-12-01 Thomson Csf Materiau magnetique stable en temperature pour utilisation en hyperfrequences et son procede de fabrication
US5698131A (en) * 1995-05-15 1997-12-16 Matsushita Electric Industrial Co., Ltd. Paste for manufacturing ferrite and ferrite
JP2000221448A (ja) * 1999-02-04 2000-08-11 Tokin Corp 光アイソレータ
FR2965393B1 (fr) * 2010-09-27 2012-09-14 Thales Sa Ferrite grenat d'yttrium-fer, et son procede de fabrication, composant hyperfrequences l'incluant et leurs procedes de fabrication
CN104003707B (zh) * 2014-02-27 2015-05-27 横店集团东磁股份有限公司 一种钡永磁铁氧体材料的制备方法
CN112390639B (zh) * 2020-11-30 2022-08-26 横店集团东磁股份有限公司 一种电磁吸收与屏蔽的铁氧体材料、电磁波吸收体及其制备方法
CN113072372B (zh) * 2021-04-22 2022-05-20 横店集团东磁股份有限公司 一种双组分微波铁氧体材料及其制备方法和应用
CN113363041A (zh) * 2021-07-12 2021-09-07 横店集团东磁股份有限公司 一种高饱和低损耗双组分微波铁氧体材料及其制备方法与应用
CN114031389A (zh) * 2021-11-02 2022-02-11 横店集团东磁股份有限公司 一种三阶互调环形器用微波铁氧体材料及其制备方法
CN114409392B (zh) * 2022-01-21 2023-03-28 电子科技大学 一种高剩磁比低损耗复合六角铁氧体材料及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1139648A (zh) * 1995-07-06 1997-01-08 南京理工大学 超细六角晶系铁氧体的制备方法
CN1706011A (zh) * 2003-02-25 2005-12-07 Tdk株式会社 铁氧体磁体粉末、烧结磁体、粘结磁体以及磁记录介质
JP2005019890A (ja) * 2003-06-27 2005-01-20 Tdk Corp フェライト磁石粉末、焼結磁石、ボンド磁石、磁気記録媒体
CN1774772A (zh) * 2003-07-31 2006-05-17 Tdk株式会社 铁氧体磁性材料以及六方晶w型铁氧体磁性材料的制造方法
JP2005072186A (ja) * 2003-08-22 2005-03-17 Tdk Corp フェライト磁石粉末、フェライト磁石の製造方法及び六方晶w型フェライト相の生成方法
CN1842505A (zh) * 2003-12-09 2006-10-04 Tdk株式会社 铁氧体磁性材料、铁氧体烧结磁体
CN1898180A (zh) * 2004-03-04 2007-01-17 Tdk株式会社 铁氧体磁性材料、铁氧体烧结磁体及其制造方法
JP2005347485A (ja) * 2004-06-02 2005-12-15 Neomax Co Ltd フェライト電波吸収材料とその製造方法
CN102643082A (zh) * 2012-03-05 2012-08-22 沈阳理工大学 一种w型钡铁氧体的制备方法
CN113302157A (zh) * 2019-02-08 2021-08-24 株式会社村田制作所 软磁性组合物、烧结体、复合体、糊料,线圈部件和天线
CN111755192A (zh) * 2019-03-27 2020-10-09 Tdk株式会社 铁氧体烧结磁铁、铁氧体颗粒、粘结磁铁和旋转电机
CN113677625A (zh) * 2019-03-29 2021-11-19 Tdk株式会社 铁氧体烧结磁体、铁氧体颗粒、粘结磁体和旋转电气设备
CN115057697A (zh) * 2022-06-29 2022-09-16 横店集团东磁股份有限公司 一种低线宽的w型六角晶系微波铁氧体材料的制备方法

Also Published As

Publication number Publication date
CN115057697B (zh) 2023-05-16
CN115057697A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
CN108424137B (zh) 高各向异性低铁磁共振线宽六角铁氧体材料及制备方法
CN109867518B (zh) 一种高温度稳定性的石榴石铁氧体及其制备方法
Xu et al. Investigation of grain boundary diffusion and grain growth of lithium zinc ferrites with low activation energy
CN112679204B (zh) 一种高饱和高介电常数低线宽微波铁氧体材料及其制备方法
CN111825441A (zh) 高介电常数、高饱和磁化强度石榴石铁氧体材料、其制备方法及应用
CN107417266A (zh) 一种无稀土石榴石铁氧体材料及其制备方法
WO2024001623A1 (zh) 一种低线宽的w型六角晶系微波铁氧体材料的制备方法
US20240067568A1 (en) Two-component microwave ferrite material, preparation method therefor and application thereof
CN111925201B (zh) Sc掺杂六角晶系Zn2W铁氧体材料及制备方法
CN115385680A (zh) 一种高介低线宽微波旋磁铁氧体材料及其制备方法
CN112745122A (zh) 一种高功率高介电常数石榴石的制备方法及石榴石
Liao et al. Magnetic properties and microstructure of low temperature sintered LiZnMnTi ferrites doped with Li2CO3B2O3Bi2O3SiO2 glasses
CN113896521B (zh) 一种低饱和窄线宽旋磁材料及其制备方法
Xu et al. Enhanced magnetic properties of low temperature sintered LiZnTi ferrite ceramic synthesized through adjusting microstructure
CN117326860A (zh) 一种单轴型小线宽六角铁氧体材料及其制备方法
CN115477534B (zh) Ku波段自偏置器件用双相复合铁氧体材料及其制备方法
WO2023216676A1 (zh) 一种适用于5g射频器的微波铁氧体材料及其制备方法
Xie et al. Low-firing Li 0.42 Zn 0.27 Ti 0.11 Mn 0.1 Fe 2.1 O 4 ceramics modified with V 2 O 5–ZnO–B 2 O 3 glass addition for microwave device application
CN112939590B (zh) 一种x波段准平面化器件用六角铁氧体材料及其制备方法
Liao et al. Magnetic properties of low temperature sintered LiZn ferrites by using Bi2O3-Li2CO3-CaO-SnO2-B2O3 glass as sintering agent
CN113004031A (zh) 一种微波铁氧体材料及其制备与应用方法
Chen et al. Low-temperature sintering and ferrimagnetic properties of LiZnTiMn ferrites with Bi2O3–Nb2O5 eutectic mixture
CN116396068B (zh) K~Ka波段自偏置环行器铁氧体基板材料及制备方法
HUANG et al. Low temperature sintering behavior of La-Co substituted M-type strontium hexaferrites for use in microwave LTCC technology
CN114436635B (zh) 具有高自旋波线宽的微波铁氧体材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829808

Country of ref document: EP

Kind code of ref document: A1