CN114409392B - 一种高剩磁比低损耗复合六角铁氧体材料及其制备方法 - Google Patents

一种高剩磁比低损耗复合六角铁氧体材料及其制备方法 Download PDF

Info

Publication number
CN114409392B
CN114409392B CN202210072833.3A CN202210072833A CN114409392B CN 114409392 B CN114409392 B CN 114409392B CN 202210072833 A CN202210072833 A CN 202210072833A CN 114409392 B CN114409392 B CN 114409392B
Authority
CN
China
Prior art keywords
type
hexaferrite
hexagonal ferrite
sintering
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210072833.3A
Other languages
English (en)
Other versions
CN114409392A (zh
Inventor
孙科
李万万
兰中文
余忠
邬传健
蒋晓娜
王武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202210072833.3A priority Critical patent/CN114409392B/zh
Publication of CN114409392A publication Critical patent/CN114409392A/zh
Application granted granted Critical
Publication of CN114409392B publication Critical patent/CN114409392B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0311Compounds
    • H01F1/0313Oxidic compounds
    • H01F1/0315Ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

一种高剩磁比低损耗复合六角铁氧体材料及其制备方法,属于铁氧体材料制备技术领域。所述六角铁氧体材料包括W型六角铁氧体主配方、M型BaFe12O19六角铁氧体和掺杂剂,W型六角铁氧体主配方包括:BaCO3、ZnO、CoO和Fe2O3,添加剂包括Bi2O3、H3BO3和SiO2。本发明采用陶瓷法合成具有交换耦合作用的W型和M型复合六角铁氧体,提高复合六角铁氧体的剩磁比和矫顽力,有利于实现微波器件的准平面特性;对添加剂配比及工艺优化,得到了兼具低铁磁共振线宽特征的W型和M型复合六角铁氧体,有利于降低准平面化器件的插入损耗,实现工程化应用。

Description

一种高剩磁比低损耗复合六角铁氧体材料及其制备方法
技术领域
本发明属于铁氧体材料制备技术领域,特别涉及一种高剩磁比低损耗复合六角铁氧体材料及其制备方法。
背景技术
随着微波技术的快速发展,环行器正朝着小型轻量化、集成化和低损耗的方向发展。W型六角铁氧体因其具有高而可调的磁晶各向异性场(Ha)、高剩磁比 (Mr/Ms)、高矫顽力(Hc)以及高居里温度(Tc)而成为极具前景的自偏置材料。利用上述W型六角铁氧体材料独有优势能够为环行器工作时提供自偏置场,完全摆脱外加磁钢束缚,使得环行器能够以准平面化状态工作,大大降低了器件的体积和质量。针对微波器件而言,材料的损耗会导致器件的插入损耗变大,恶化器件性能。因此,要求材料损耗越低越好。迭代有限元法分析表明,对于X波段环行器而言,500Oe的线宽将导致1dB插入损耗。
针对高剩磁比、低损耗W型六角铁氧体,约旦大学(Curr.Appl.Phys.,2018, 18:590-598)公布了一种BaCo2Fe16O27的W型六角铁氧体,其性能指标为:饱和磁化强度4πMs=4391Gs,剩磁比Mr/Ms=0.16,矫顽力Hc=90Oe,铁磁共振线宽ΔH未公布。虽然材料的饱和磁化强度较高,但剩磁比和矫顽力太小,不利于自偏置特性的实现和小型化的发展。美国东北大学(J.Appl.Phys.,2013,113: 17B305)公布了一种Co2+取代W型六角铁氧体,其性能指标为:饱和磁化强度 4πMs=2648Gs,剩磁比Mr/Ms=0.79,矫顽力Hc=2133Oe,铁磁共振线宽ΔH未公布。虽然材料拥有高的矫顽力,但饱和磁化强度和剩磁比有待进一步优化。电子科技大学(IOP Conf.Ser.Mater.Sci.Eng.,2020,782:022038)公布了一种主配方为BaNi2Fe16O27的W型六角铁氧体,其性能指标为:饱和磁化强度σs=68.26emu/g,剩磁比Mr/Ms=0.80,矫顽力Hc=2358Oe,铁磁共振线宽ΔH未公布。虽然材料拥有高的矫顽力,但剩磁比有待进一步优化。电子科技大学(J.Alloys Compd.,2019, 772:1100-1104)公布了一种BaZn2Fe16O27六角铁氧体,其性能指标为:饱和磁化强度4πMs=3115Gs,剩磁比Mr/Ms=0.80,矫顽力Hc=1011Oe,铁磁共振线宽ΔH =996Oe。由于材料的铁磁共振线宽过大,不利于实现具有低插入损耗性能的自偏置微波器件。三峡大学(J.Eur.Ceram.Soc.,2021,41:7717-7722)公布了一种 Gd3+取代BaNi2Fe16-xGdxO27六角铁氧体,其性能指标为:饱和磁化强度 4πMs=3476Gs,剩磁比Mr/Ms=0.85,矫顽力Hc=1527Oe,铁磁共振线宽ΔH=624Oe。虽然材料的剩磁比、矫顽力和铁磁共振线宽都优于上述所公布的材料,但材料的饱和磁化强度、剩磁比和铁磁共振线宽都有待进一步优化,以期获得既具有自偏置特性又具有低插入损耗的自偏置微波器件。专利CN106495678A公布了一种 Ba(Zn1-xCox)2Fe16O27六角铁氧体,其性能指标为:饱和磁化强度4πMs=3523Gs,剩磁比Mr/Ms=0.49,矫顽力Hc=1693Oe,铁磁共振线宽ΔH未公布。虽然材料拥有高的矫顽力,但饱和磁化强度和剩磁比有待进一步优化。专利CN111925201B 公布了一种Sc3+取代BaZn2Fe16-xScxO27六角铁氧体,其性能指标为:饱和磁化强度4πMs=3345Gs,剩磁比Mr/Ms=0.82,矫顽力Hc=1302Oe,铁磁共振线宽ΔH未公布。虽然材料拥有高的矫顽力,但饱和磁化强度和剩磁比有待进一步优化。上述研究表明,W型六角铁氧体的剩磁比Mr/Ms相对较低,很难突破0.85。铁磁共振线宽ΔH相对较高,很难低于600Oe。
基于上述,目前W型六角铁氧体材料仍无法实现高剩磁比低损耗的特性,因此本发明提供一种高剩磁比低损耗复合六角铁氧体材料及其制备方法。
发明内容
本发明的目的在于,针对背景技术存在的缺陷,提出了一种兼具高剩磁比、低损耗的复合六角铁氧体材料及其制备方法。
为实现上述目的,本发明采用的技术方案如下:
一种高剩磁比低损耗复合六角铁氧体材料,其特征在于,所述六角铁氧体材料包括W型六角铁氧体主配方、M型BaFe12O19六角铁氧体和掺杂剂,其中, W型六角铁氧体主配方包括:3.66~7.69mol%BaCO3、8.6~10.53mol%ZnO、 0.20~1.0mol%CoO、78.21~92.31mol%Fe2O3
M型BaFe12O19六角铁氧体占W型六角铁氧体主配方重量百分比为: 5~30.00wt%BaFe12O19
添加剂占W型六角铁氧体主配方重量百分比为:1.8~5.6wt%Bi2O3、 1.8~5.6wt%H3BO3、0.2~1.6wt%SiO2
一种高剩磁比低损耗复合六角铁氧体材料的制备方法,其特征在于,包括以下步骤:
步骤1、配料:
W型六角铁氧体以BaCO3、ZnO、CoO、Fe2O3作为原料,按照“3.66~7.69mol%BaCO3、8.6~10.53mol%ZnO、0.20~1.0mol%CoO、 78.21~92.31mol%Fe2O3”的比例称料,混料,配制得到W型六角铁氧体初始粉体;
步骤2、一次球磨:
将步骤1得到的W型六角铁氧体初始粉体在球磨机内混合均匀,球磨时间 8~16h;
步骤3、预烧:
将步骤2得到的球磨料烘干,在1050~1350℃温度下进行预烧,预烧时间为2~10h,得到W型六角铁氧体预烧粉体;
步骤4、掺杂:
在步骤3得到的W型六角铁氧体预烧粉体中加入M型BaFe12O19六角铁氧体,M型BaFe12O19六角铁氧体占W型六角铁氧体主配方重量百分比为: 5~30.00wt%BaFe12O19;然后加入添加剂,添加剂占W型六角铁氧体重量百分比为:1.8~5.6wt%Bi2O3、1.8~5.6wt%H3BO3、0.2~1.6wt%SiO2
步骤5、二次球磨:
将步骤4得到的混合粉料在球磨机中球磨6~24h,粉料粒度控制在0.6~0.9μm 之间;
步骤6、脱水:
将步骤5得到的球磨浆料脱水,脱水后料浆含水量控制在15~35wt%之间;
步骤7、成型:
将步骤6得到的脱水浆料在磁场成型机下压制成型,成型磁场强度为 1.2~1.4T,成型压力为80~120MPa;
步骤8、烧结:
将步骤7压制得到的坯件置于烧结炉内烧结,烧结温度为900~1200℃,时间为10min~60min,烧结完成后,自然冷却至室温,即可得到所述高剩磁比低损耗复合六角铁氧体材料。
对步骤8得到的复合六角铁氧体材料进行磁性能测试:材料的饱和磁化强度 4πMs、剩余磁化强度4πMr、剩磁比Mr/Ms、矫顽力Hc采用美国LakeShore 8604 型VSM测试,铁磁共振线宽(ΔH)采用美国Agilent N5227A矢量网络分析仪测试。
本发明制备的高剩磁比低损耗复合六角铁氧体材料最终的技术指标如下:
饱和磁化强度4πMs:≥4.34kGs;
剩余磁化强度4πMr:≥3.85kOe;
剩磁比Mr/Ms:≥0.88;
矫顽力Hc:≥519Oe;
线宽ΔH:≤573Oe。
本发明的原理如下:
本发明提供的一种高剩磁比低损耗复合六角铁氧体材料,在W型六角铁氧体中加入M型六角铁氧体,通过二次球磨改善两种铁氧体分布,经烧结后形成 W型和M型复合六角铁氧体;在W型和M型六角铁氧体之间的交换耦合作用下,磁矩易于向易轴平行排列,各向异性增强,有利于提高六角铁氧体的剩磁比 Mr/Ms和矫顽力Hc;同时,采用SiO2细化颗粒,调控晶粒/晶界特性,采用低熔点的H3BO3和Bi2O3,形成致密化片状晶粒,提高密度。
与现有技术相比,本发明的有益效果为:
本发明提供的一种高剩磁比低损耗复合六角铁氧体材料及其制备方法,采用陶瓷法合成具有交换耦合作用的W型和M型复合六角铁氧体,提高复合六角铁氧体的剩磁比和矫顽力,有利于实现微波器件的准平面特性;对添加剂配比及工艺优化,得到了兼具低铁磁共振线宽特征的W型和M型复合六角铁氧体,有利于降低准平面化器件的插入损耗,实现工程化应用。因此,本发明W型和M型复合六角铁氧体材料兼具高而可调的磁晶各向异性场、高的剩磁比、高的矫顽力以及较低的铁磁共振线宽特性。
附图说明
图1为实施例4得到的复合六角铁氧体材料的磁滞回线;
图2为实施例4得到的复合六角铁氧体材料的铁磁共振。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例
一种高剩磁比、低损耗复合六角铁氧体材料的制备方法,具体包括以下步骤:
步骤1、配料:
W型六角铁氧体以BaCO3、ZnO、CoO、Fe2O3作为原料,按照“5.26mol%BaCO3、10.00mol%ZnO、0.53mol%CoO、84.21mol%Fe2O3”的比例称料,混料,配制得到W型六角铁氧体初始粉体;
步骤2、一次球磨:
将步骤1得到的W型六角铁氧体初始粉体在球磨机内混合均匀,球磨时间 12h;
步骤3、预烧:
将步骤2得到的球磨料烘干,在1195℃温度下进行预烧,预烧时间为10h,得到W型六角铁氧体预烧粉体;
步骤4、掺杂:
在步骤3得到的W型六角铁氧体预烧粉体中加入M型BaFe12O19六角铁氧体,M型BaFe12O19六角铁氧体占W型六角铁氧体主配方重量百分比为: 5~30.00wt%BaFe12O19,加入的质量见下表;然后加入添加剂,添加剂占W型六角铁氧体重量百分比为:4wt%Bi2O3、4wt%H3BO3、0.6wt%SiO2
实施例1~6添加M型BaFe12O19六角铁氧体的质量见下表;
实施例 1 2 3 4 5 6
wt% 5 10 15 20 25 30
步骤5、二次球磨:
将步骤4得到的W型和M型六角铁氧体混合粉料在球磨机中球磨18h,粉料粒度控制在0.6~0.9μm之间;
步骤6、脱水:
将步骤5得到的球磨浆料脱水,脱水后料浆含水量控制在15~35wt%之间;
步骤7、成型:
将步骤6得到的脱水浆料在磁场成型机下压制成型,成型磁场强度为1.2~1.4T,成型压力为80~120MPa;
步骤8、烧结:
将步骤7压制得到的坯件置于烧结炉内烧结,烧结温度为980℃,时间为30 min,烧结完成后,自然冷却至室温,即可得到所述高剩磁比低损耗复合六角铁氧体材料。
对实施例步骤8得到的复合六角铁氧体材料进行磁性能测试:材料的饱和磁化强度4πMs、剩余磁化强度4πMr、剩磁比Mr/Ms、矫顽力Hc采用美国LakeShore 8604型VSM测试,铁磁共振线宽(ΔH)采用美国Agilent N5227A矢量网络分析仪测试。
实施例制备得到的复合六角铁氧体材料,其性能指标如下:
实施例1~6测试结果如下:
Figure BDA0003482894870000061

Claims (1)

1.一种高剩磁比低损耗复合六角铁氧体材料的制备方法,其特征在于,包括以下步骤:
步骤1、配料:
W型六角铁氧体以BaCO3、ZnO、CoO、Fe2O3作为原料,按照“3.66~7.69mol%BaCO3、8.6~10.53mol%ZnO、0.20~1.0mol%CoO、78.21~92.31mol%Fe2O3”的比例称料,上述各原料总和为100%,混料,配制得到W型六角铁氧体初始粉体;
步骤2、一次球磨:
将步骤1得到的W型六角铁氧体初始粉体在球磨机内混合均匀,球磨时间8~16h;
步骤3、预烧:
将步骤2得到的球磨料烘干,在1050~1350℃温度下进行预烧,预烧时间为2~10h,得到W型六角铁氧体预烧粉体;
步骤4、掺杂:
在步骤3得到的W型六角铁氧体预烧粉体中加入M型BaFe12O19六角铁氧体,M型BaFe12O19六角铁氧体占W型六角铁氧体主配方重量百分比为:5~30.00wt%BaFe12O19;然后加入添加剂,添加剂占W型六角铁氧体重量百分比为:1.8~5.6wt%Bi2O3、1.8~5.6wt%H3BO3、0.2~1.6wt%SiO2
步骤5、二次球磨:
将步骤4得到的混合粉料在球磨机中球磨6~24h,粉料粒度控制在0.6~0.9μm之间;
步骤6、脱水:
将步骤5得到的球磨浆料脱水,脱水后料浆含水量控制在15~35wt%之间;
步骤7、成型:
将步骤6得到的脱水浆料在磁场成型机下压制成型,成型磁场强度为1.2~1.4T,成型压力为80~120MPa;
步骤8、烧结:
将步骤7压制得到的坯件置于烧结炉内烧结,烧结温度为900~1200℃,时间为10min~60min,烧结完成后,自然冷却至室温,即可得到所述高剩磁比低损耗复合六角铁氧体材料。
CN202210072833.3A 2022-01-21 2022-01-21 一种高剩磁比低损耗复合六角铁氧体材料及其制备方法 Active CN114409392B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210072833.3A CN114409392B (zh) 2022-01-21 2022-01-21 一种高剩磁比低损耗复合六角铁氧体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210072833.3A CN114409392B (zh) 2022-01-21 2022-01-21 一种高剩磁比低损耗复合六角铁氧体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114409392A CN114409392A (zh) 2022-04-29
CN114409392B true CN114409392B (zh) 2023-03-28

Family

ID=81275888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210072833.3A Active CN114409392B (zh) 2022-01-21 2022-01-21 一种高剩磁比低损耗复合六角铁氧体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114409392B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115057697B (zh) * 2022-06-29 2023-05-16 横店集团东磁股份有限公司 一种低线宽的w型六角晶系微波铁氧体材料的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032498A (zh) * 1973-06-11 1975-03-29
CN102701721B (zh) * 2012-05-23 2013-09-11 安徽龙磁科技股份有限公司 一种低成本烧结钙永磁铁氧体及其制备方法
EP3017454A1 (en) * 2013-07-05 2016-05-11 Aarhus Universitet A permanent magnetic material
CN109851349B (zh) * 2019-03-18 2021-09-24 电子科技大学 一种高性能环保型六角永磁铁氧体材料及其制备方法
CN113860864A (zh) * 2021-10-11 2021-12-31 电子科技大学 高剩磁比高各向异性场SrM微波铁氧体材料及制备方法

Also Published As

Publication number Publication date
CN114409392A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
CN108424137B (zh) 高各向异性低铁磁共振线宽六角铁氧体材料及制备方法
CN110304913B (zh) 一种高频超低损耗锰锌软磁铁氧体材料及其制备方法
CN109851349B (zh) 一种高性能环保型六角永磁铁氧体材料及其制备方法
CN111925201B (zh) Sc掺杂六角晶系Zn2W铁氧体材料及制备方法
CN112430080A (zh) 一种高功率和高剩磁比的石榴石铁氧体材料及其制备方法
CN104230325A (zh) 制备永磁铁氧体预烧料的方法及永磁铁氧体的制备方法
CN104496457A (zh) 一种含稀土的永磁铁氧体及其制造方法
CN110105063A (zh) 一种5g通信用自旋铁氧体材料及其制备方法
CN112194482B (zh) 一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用
CN114409392B (zh) 一种高剩磁比低损耗复合六角铁氧体材料及其制备方法
CN111499369A (zh) 一种Ku波段用高功率旋矩铁氧体材料及其制备方法
CN113860864A (zh) 高剩磁比高各向异性场SrM微波铁氧体材料及制备方法
CN113072369B (zh) 高剩磁比的u型六角铁氧体材料及制备方法
CN112830776B (zh) 一种u型六角铁氧体材料及其制备方法
CN114262221B (zh) 一种高温度稳定性镍锌铁氧体材料及其制备方法和应用
CN109678483A (zh) 宽温低温度系数低功耗锰锌铁氧体材料的制备方法
CN115477534B (zh) Ku波段自偏置器件用双相复合铁氧体材料及其制备方法
CN116396069B (zh) 一种非磁场取向的织构化六角铁氧体材料的制备方法
CN116396068B (zh) K~Ka波段自偏置环行器铁氧体基板材料及制备方法
CN112430075A (zh) 一种铁氧体磁性材料及其制造方法
CN117326860A (zh) 一种单轴型小线宽六角铁氧体材料及其制备方法
CN114591074A (zh) 自偏置环行器用高剩磁m型钡铁氧体制备技术
CN112939590B (zh) 一种x波段准平面化器件用六角铁氧体材料及其制备方法
CN114409393B (zh) 一种高矫顽力低损耗复合六角铁氧体材料及其制备方法
CN111377724A (zh) 一种高性能无La-Co型永磁铁氧体材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant