WO2024000899A1 - 一种钴酸锂正极材料及其制备方法与应用 - Google Patents

一种钴酸锂正极材料及其制备方法与应用 Download PDF

Info

Publication number
WO2024000899A1
WO2024000899A1 PCT/CN2022/122921 CN2022122921W WO2024000899A1 WO 2024000899 A1 WO2024000899 A1 WO 2024000899A1 CN 2022122921 W CN2022122921 W CN 2022122921W WO 2024000899 A1 WO2024000899 A1 WO 2024000899A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt oxide
lithium cobalt
cathode material
organic polymer
oxide cathode
Prior art date
Application number
PCT/CN2022/122921
Other languages
English (en)
French (fr)
Inventor
毛林林
李长东
阮丁山
蔡勇
王英男
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024000899A1 publication Critical patent/WO2024000899A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium ion batteries, in particular to a lithium cobalt oxide cathode material and its preparation method and application.
  • lithium cobalt oxide As the earliest and most successful lithium-ion battery cathode material for commercial application, lithium cobalt oxide has a theoretical specific capacity of 274mAh/g. The currently commercialized lithium cobalt oxide has a maximum cut-off voltage of 4.48V, corresponding to a specific capacity of approximately 182mAh/g. Because the lithium cobalt oxide cathode material has excellent volume energy density, it is still the first choice as the cathode material for portable electronic devices, and is even gradually attracting the favor of power batteries. In order to further increase the energy density of lithium cobalt oxide, it is urgent to develop a new generation of ultra-high voltage ( ⁇ 4.5V) lithium cobalt oxide cathode materials.
  • ultra-high voltage ( ⁇ 4.5V) lithium cobalt oxide cathode materials In order to further increase the energy density of lithium cobalt oxide, it is urgent to develop a new generation of ultra-high voltage ( ⁇ 4.5V) lithium cobalt oxide cathode materials.
  • lithium cobalt oxide will undergo a series of side reactions, such as the irreversible phase transition accompanying the transformation of the O3 phase into the H1-3 phase, deterioration of the positive electrode interface, dissolution of cobalt element, and precipitation of lattice oxygen.
  • the internal resistance of the battery increases and the battery performance rapidly decays, which greatly limits the practical application of high-voltage lithium cobalt oxide.
  • doping coating can improve the performance under high voltage to a certain extent, there are still obvious disadvantages, especially at high voltage.
  • Doping elements transition metal atoms, anions, etc.
  • High doping amounts are required at high voltages. Doping into the body will cause significant capacity attenuation, which in turn weakens the advantages of high voltage and high capacity.
  • Surface coating materials are generally metal oxides, phosphates, fast ion conductors, etc.
  • the thickness of the coating layer and the interface between the coating layer and the body are still difficult to truly solve, which instead weakens the rate performance of lithium cobalt oxide.
  • the object of the present invention is to overcome the above-mentioned shortcomings of the prior art and provide a lithium cobalt oxide cathode material and its preparation method and application.
  • the technical solution adopted by the present invention is: a lithium cobalt oxide cathode material.
  • the lithium cobalt oxide cathode material is lithium cobalt oxide particles surface-coated with an organic polymer copolymer.
  • the organic polymer copolymer It contains fluorine and sulfonyl groups.
  • the invention provides a lithium cobalt oxide cathode material in which an organic polymer copolymer is coated on the surface of lithium cobalt oxide particles to protect the structural stability of lithium cobalt oxide, inhibit the dissolution of cobalt and the precipitation of lattice oxygen, and improve the high voltage of lithium cobalt oxide. cycle stability.
  • a uniform layer of organic polymer copolymer containing fluorine and sulfonyl groups is compounded on the surface of the lithium cobalt oxide cathode material.
  • fluorine atoms form a lattice doping on the surface, and the F-Me chemical bond energy is greater than that of Me-O, which is beneficial to enhancing the stability of the lithium cobalt oxide structure, and F doping can alleviate the corrosion of the cathode material by HF in the electrolyte.
  • the sulfonyl group effectively conducts lithium ions and forms friendly contact with the electrolyte, improving conductivity, reducing polarization, and improving rate performance.
  • the structural formula of the organic polymer copolymer is at least one of formula (I) and formula (II);
  • formula (I) is:
  • the R group is at least one of -OH and -NH 2 ;
  • the organic polymer copolymer of formula (II) is a perfluorosulfonic acid-polytetrafluoroethylene copolymer.
  • the weight ratio of the organic polymer copolymer coating is 0.2%-3% based on the weight of the lithium cobalt oxide particles; further preferably, the weight ratio based on the weight of the lithium cobalt oxide particles , the weight ratio of the organic polymer copolymer coating is 1%-2%.
  • the present invention provides a method for preparing a lithium cobalt oxide cathode material, which is processed by coating and modification with an organic polymer copolymer, including the following steps:
  • Step (1) After mixing the lithium cobalt oxide particles and the solvent evenly, add the organic polymer copolymer solution to obtain mixed solution A;
  • step (2) the mixed solution A is stirred, evaporated, dried, and ground, and then annealed. After the annealing is completed, the mixed solution A is ground to obtain the lithium cobalt oxide cathode material.
  • the preparation method provided by the invention can form a coating layer with controllable thickness, uniformity and density on the surface of the material, and the preparation process is simple and controllable.
  • the present invention designs a low-cost, easy-to-implement coating method that can significantly improve the electrochemical performance of lithium cobalt oxide-rich cathode materials and has good application prospects.
  • the chemical formula of the organic polymer copolymer lithium cobalt oxide cathode material is LiM x Co 1-x O 2 ; wherein, 0 ⁇ x ⁇ 0.2, M is Al, Zr, Ni , at least one of Mn, B, Nb, Sr, La, W, Y, Ce, Si, Mo, and Ti.
  • the organic polymer copolymer solution can be directly prepared or purchased; in the step (1), the solvent is ethanol, N-methylpyrrolidone, dimethylmethane. At least one of amide and butanone.
  • the stirring evaporation rate is 300-600 rpm; the stirring evaporation time is 1.5-2.5 h, and the temperature is 60-90°C; the drying temperature is 80-100 °C, the time is 10-24h; the annealing treatment is carried out in an inert gas, the inert gas is nitrogen or argon, the temperature is 150-300°C, the time is 2-6h.
  • the present invention provides the application of the lithium cobalt oxide cathode material in the fields of 3C batteries and power batteries.
  • the present invention provides the application of the lithium cobalt oxide cathode material under high cut-off voltage ( ⁇ 4.45V) conditions.
  • the beneficial effects of the present invention are: the preparation method provided by the present invention can form a coating layer with controllable thickness, uniformity and density on the surface of the material, and the preparation process is simple and controllable.
  • the present invention designs a low-cost, easy-to-implement coating method that can significantly improve the electrochemical performance of lithium cobalt oxide-rich cathode materials and has good application prospects.
  • the invention provides a lithium cobalt oxide cathode material in which an organic polymer copolymer is coated on the surface of lithium cobalt oxide particles to protect the structural stability of lithium cobalt oxide, inhibit the dissolution of cobalt and the precipitation of lattice oxygen, and improve the high voltage of lithium cobalt oxide. cycle stability.
  • a uniform layer of organic polymer copolymer containing fluorine and sulfonyl groups is compounded on the surface of the lithium cobalt oxide cathode material.
  • fluorine atoms form a lattice doping on the surface, and the F-Me chemical bond energy is greater than that of Me-O, which is beneficial to enhancing the stability of the lithium cobalt oxide structure, and F doping can alleviate the corrosion of the cathode material by HF in the electrolyte.
  • the sulfonyl group effectively conducts lithium ions and forms friendly contact with the electrolyte, improving conductivity, reducing polarization, and improving rate performance.
  • Figure 1 is a morphology diagram of the lithium cobalt oxide cathode material prepared in Example 3.
  • a method for preparing lithium cobalt oxide cathode material by coating and modifying it with an organic polymer copolymer including the following steps:
  • Examples 1-11 of the present invention is exactly the same as that of Example 1. Only the selected components are slightly different from those of Example 1.
  • the specific component selections of Examples 1-11 of the present invention and Comparative Examples 1-2 are as follows: As shown in Table 1;
  • Example 3 A single comparison is made with Example 3. Only the preparation process parameters are different. The specific component selection is exactly the same as Example 3, including the following steps:
  • Example 3 A single comparison is made with Example 3.
  • the specific component selection is as shown in Table 1.
  • the preparation method of lithium cobalt oxide cathode material includes the following steps:
  • lithium cobalt oxide particles After mixing the organic polymer copolymer with the solvent, add lithium cobalt oxide particles to obtain mixed solution A; where the chemical formula of the lithium cobalt oxide cathode material is LiAl 0.02 Mg 0.01 Co 0.97 O 2 ;
  • Comparative Example 3 is conventional metal oxide coating lithium cobalt oxide, the specific process is as follows:
  • the test conditions are: 25°C, the charge and discharge voltage range is 3.0-4.65V, and the charge and discharge cycle is 50 times at a charge and discharge rate of 0.5C (current 0.05mA). Calculate the capacity retention rate for 50 cycles.
  • the calculation method is as follows:
  • the 50th cycle capacity retention rate (%) (50th cycle discharge capacity/first cycle discharge capacity) * 100%.
  • FIG. 1 is a morphology diagram of the lithium cobalt oxide cathode material prepared in Example 3. It can be seen from Figure 1 that 2% of (C 7 F 13 O 3 SO 3 H) 20 .
  • the weight ratio of the organic polymer copolymer of the coating structural formula I is the same as that in Example 3. From the comparison, it can be seen that the effect of the structural formula I is not as prominent as the effect of the structural formula II. From the structural point of view of the two polymer copolymers, structural formula I has a regular and simple linear structure without side chains; structural formula II has long and numerous side chains, and the sulfonyl group is located at the end of the side chain.
  • the long side chain of structural formula II makes the polymer more flexible, making it easier for lithium ions to be transferred between the sulfonyl groups; at the same time, the end of the flexible side chain is easier to form hydrogen bonds with the electrolyte molecules, which helps the electrolyte Wet the cathode material to increase ionic conductivity.
  • the lithium cobalt oxide particles are coated with an organic polymer copolymer like structure I, it is still significantly improved compared to the conventional coating process.
  • Comparative Examples 1 and 2 are compared with Example 3 respectively: Comparative Example 1 provides an organic polymer copolymer containing only fluorine, and Comparative Example 2 provides an organic polymer copolymer containing only sulfonyl groups. It shows that neither the fluorine-containing organic matter alone nor the sulfonyl group-containing organic matter alone can achieve the effect of Example 3. The reason is: fluorine atoms form lattice doping on the surface, and the F-Me chemical bond energy is greater than Me-O, which is beneficial to enhancing the stability of the lithium cobalt oxide structure, and F doping can alleviate the corrosion of the cathode material by HF in the electrolyte.
  • the sulfonyl group effectively conducts lithium ions and forms friendly contact with the electrolyte, improving conductivity, reducing polarization, and improving rate performance. Only by complementing each other can the dual goals of improving structural stability and lithium ion conductivity be achieved. Structural stability and lithium ion conductivity are the two key factors that restrict capacity retention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种钴酸锂正极材料及其制备方法与应用,涉及锂离子电池技术领域。本发明提供了一种钴酸锂正极材料,所述钴酸锂正极材料为表面包覆有机高分子共聚物的钴酸锂颗粒,所述有机高分子共聚物包含氟基团和磺酰基团。本发明提供了在钴酸锂颗粒表面包覆有机高分子共聚物的钴酸锂正极材料,保护钴酸锂的结构稳定性,抑制钴的溶解以及晶格氧的析出,提升高电压钴酸锂的循环稳定性。

Description

一种钴酸锂正极材料及其制备方法与应用 技术领域
本发明涉及锂离子电池技术领域,尤其是一种钴酸锂正极材料及其制备方法与应用。
背景技术
钴酸锂作为商业化应用最早也是最成功的锂离子电池正极材料,其理论比容量可达到274mAh/g。目前商业化的钴酸锂最高截止电压可达4.48V,对应比容量约为182mAh/g。由于钴酸锂正极材料具有优异的体积能量密度,至今仍是便携式电子设备正极材料的首选,甚至逐渐吸引动力电池的青睐。为了进一步提升钴酸锂的能量密度,开发新一代超高电压(≥4.5V)钴酸锂正极材料成为当务之急。但是,随着充电电压的提高,钴酸锂会发生一系列副反应,例如伴随着O3相转变成H1-3相的不可逆相变,正极界面恶化,钴元素的溶解以及晶格氧的析出,导致电池内阻升高,电池性能迅速衰减,极大地限制了高压钴酸锂的实际应用。
目前解决高电压下材料不稳定问题仍然依靠掺杂、包覆手段改善晶体结构和表界面稳定性。虽然掺杂包覆一定程度上能改善高电压下的性能,但是仍存在明显的弊端,尤其是在高电压下。掺杂元素(过渡金属原子、阴离子等)一般都是非电化学活性物质,高电压下需要较高的掺杂量,掺入本体后会引起明显的容量衰减,反而削弱了高电压高容量的优势。表面包覆物质一般为金属氧化物、磷酸盐、快离子导体等,但是包覆层厚度、包覆层与本体的界面问题仍难以真正解决,反而弱化了钴酸锂的倍率性能。
从正极材料端入手,探索有效的改性方法是开发超高电压钴酸锂正极材料亟需解决的问题。
发明内容
基于此,本发明的目的在于克服上述现有技术的不足之处而提供一种钴酸锂正极材料及其制备方法与应用。
为实现上述目的,本发明所采取的技术方案为:一种钴酸锂正极材料,所述钴酸锂正极材料为表面包覆有机高分子共聚物的钴酸锂颗粒,所述有机高分子共聚物包含氟基团和磺酰基团。
本发明提供了在钴酸锂颗粒表面包覆有机高分子共聚物的钴酸锂正极材料,保护钴酸锂的结构稳定性,抑制钴的溶解以及晶格氧的析出,提升高电压钴酸锂的循环稳定性。本发明在钴酸锂正极材料表面复合一层均匀的含有氟和磺酰基团的有机高分子共聚物。其中氟原子在表面形成晶格掺杂,F-Me化学键能大于Me-O,有利于增强钴酸锂结构的稳定性,且F掺杂可缓解电解液中HF对正极材料的腐蚀。磺酰基团有效的传导锂离子,与电解液形成友好的接触,提升导电性,降低极化,提升倍率性能。
优选地,所述有机高分子共聚物的结构式为式(I)、式(II)中的至少一种;
其中,式(I)为:
Figure PCTCN2022122921-appb-000001
1≤n≤10,R基团为-OH、-NH 2中的至少一种;
式(II)为:
Figure PCTCN2022122921-appb-000002
15≤n≤30,15≤m≤30。
优选地,所述式(I)的有机高分子共聚物中,4≤n≤7;举例如下,有机高分子共聚物为全氟辛烷磺酸C 8F 17SO 3H(n=7,R=OH)、全氟戊烷磺酰胺C 5F 11SO 2NH 2(n=4,R=NH 2)中的至少一种。
优选地,所述式(II)的有机高分子共聚物中,20≤n≤25,20≤m≤25,具体地,有机高分子共聚物为全氟磺酸-聚四氟乙烯共聚物。举例如下,所述式全氟磺酸-聚四氟乙烯共聚物为C 7F 13O 3SO 3H.C 2F 4(m=20,n=20)、((C 7F 13O 3SO 3H) 4.(C 2F 4) 4)(m=25,n=25)中的至少一种。
优选地,所述得到的钴酸锂正极材料中,以钴酸锂颗粒重量计,有机高分子共聚物包覆的重量比为0.2%-3%;进一步优选地,以钴酸锂颗粒重量计,所述有机高分子共聚物包覆的重量比为1%-2%。
此外,本发明提供了一种钴酸锂正极材料的制备方法,采用有机高分子共聚物包覆改性的方式处理,包括如下步骤:
步骤(1)将所述钴酸锂颗粒与溶剂混合均匀后,加入有机高分子共聚物溶液,得到混合溶液A;
步骤(2)将所述混合溶液A搅拌蒸发、干燥、研磨后,进行退火处理,退火完成后研磨得到所述钴酸锂正极材料。
本发明提供的制备方法能够在材料表面形成厚度可控、均匀致密的包覆层,制备工艺简单可控。本发明设计了一种低成本,易实现的包覆方法,能够显著提升富钴酸锂正极材料的电化学性能,具有良好的应用前景。
优选地,所述步骤(1)中,所述有机物高分子共聚物钴酸锂正极材料的化学式为LiM xCo 1-xO 2;其中,0<x≤0.2,M为Al、Zr、Ni、Mn、B、Nb、Sr、La、W、Y、Ce、Si、Mo、Ti中的至少一种。
优选地,所述步骤(1)中,有机高分子共聚物溶液可以通过直接制备得到,也可以购买得到;所述步骤(1)中,溶剂为乙醇、N-甲基吡咯烷酮、二甲基甲酰胺、丁酮中的至少一种。
优选地,所述步骤(2)中,所述搅拌蒸发的速率为300-600rpm;所述搅拌蒸发的时间为1.5-2.5h,温度为60-90℃;所述干燥的温度为80-100℃,时间为10-24h;所述退火处理在惰性气体中进行,惰性气体为氮气或氩气,温度为150-300℃,时间为2-6h。
进一步地,本发明提供了所述的钴酸锂正极材料在3C电池、动力电池领域中的应用。优选地,本发明提供了所述的钴酸锂正极材料在高截止电压(≥4.45V)条件下的应用。
相对于现有技术,本发明的有益效果为:本发明提供的制备方法能够在材料表面形成厚度可控、均匀致密的包覆层,制备工艺简单可控。本发明设计了一种低成本,易实现的包覆方法,能够显著提升富钴酸锂正极材料的电化学性能,具有良好的应用前景。本发明提供了在钴酸锂颗粒表面包覆有机高分子共聚物的钴酸锂正极材料,保护钴酸锂的结构稳定性,抑制钴的溶解以及晶格氧的析出,提升高电压钴酸锂的循环稳定性。本发明在钴酸锂正极材料表面复合一层均匀的含有氟和磺酰基团的有机高分子共聚物。其中氟原子在表面形成晶格掺杂,F-Me化学键能大于Me-O,有利于增强钴酸锂结构的稳定性,且F掺杂可缓解电解液中HF对正极材料的腐蚀。磺酰基团有效的传导锂离子,与电解液形成友好的接触,提升导电性,降低极化,提升倍率性能。
附图说明
图1为实施例3制备得到的钴酸锂正极材料的形貌图。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合附图和具体实施例对本发明作进一步说明。
实施例中,所使用的实验方法如无特殊说明,均为常规方法,所用的材料、试剂等,如无特殊说明,均可从商业途径得到;
本发明实施例中所用到的有机高分子共聚物的具体分子式及名称如下,为市售产品:
全氟磺酸-聚四氟乙烯共聚物(C 7F 13O 3SO 3H) 20.(C 2F 4) 20(m=20,n=20);
全氟辛烷磺酸C 8F 17SO 3H(n=7,R=OH);
全氟戊烷磺酰胺C 5F 11SO 2NH 2(n=4,R=NH 2);
全氟磺酸-聚四氟乙烯共聚物(C 7F 13O 3SO 3H) 25.(C 2F 4) 25(m=25,n=25);
全氟磺酸-聚四氟乙烯共聚物(C 7F 13O 3SO 3H) 15.(C 2F 4) 15(m=15,n=15);
全氟磺酸-聚四氟乙烯共聚物(C 7F 13O 3SO 3H) 30.(C 2F 4) 30(m=30,n=30);
全氟乙烷磺酸C 2F 5SO 3H(n=1,R=OH);
全氟十一烷基磺酸C 11F 23SO 3H(n=10,R=OH);
聚偏二氟乙烯分子量11000);
十二烷基磺酸钠C 12H 25SO 3Na;
实施例1
一种钴酸锂正极材料的制备方法,采用有机高分子共聚物包覆改性的方式处理,包括如下步骤:
(1)将钴酸锂颗粒与溶剂混合均匀后,加入有机高分子共聚物溶液,得到混合溶液A;其中,钴酸锂正极材料的化学式为LiAl 0.02Mg 0.01Co 0.97O 2
(2)将混合溶液A搅拌蒸发(搅拌蒸发的速率为500rpm,搅拌蒸发的时间为2h,搅拌蒸发的温度为80℃)、干燥(干燥的温度为90℃,干燥的时间为15h)、研磨后,进行退火处理(退火处理在惰性气体中进行,惰性气体为氮气,退火处理的温度为200℃,退火处理的时间为4h),退火完成后研磨得到所述钴酸锂正极材料。
本发明实施例1-11的制备工艺与实施例1完全相同,仅选用的组分与实施例1略有差别,本发明实施例1-11及对比例1-2的具体组分选择,如表1所示;
表1
Figure PCTCN2022122921-appb-000003
Figure PCTCN2022122921-appb-000004
实施例12
与实施例3进行单一对比,仅制备工艺参数不同,具体组分选择与实施例3完全相同,包括如下步骤:
(1)将钴酸锂颗粒与溶剂混合均匀后,加入有机高分子共聚物溶液,得到混合溶液A;其中,钴酸锂正极材料的化学式为LiAl 0.02Mg 0.01Co 0.97O 2
(2)将混合溶液A搅拌蒸发(搅拌蒸发的速率为300rpm,搅拌蒸发的时间为2.5h,搅拌蒸发的温度为90℃)、干燥(干燥的温度为80℃,干燥的时间为24h)、研磨后,进行退火处理(退火处理在惰性气体中进行,惰性气体为氮气,退火处理的温度为150℃,退火处理的时间为6h),退火完成后研磨得到所述钴酸锂正极材料。
对比例1和对比例2
与实施例3进行单一对比,具体组分选择如表1所示,钴酸锂正极材料的制备方法包括如下步骤:
(1)将有机高分子共聚物与溶剂混合后,加入钴酸锂颗粒,得到混合溶液A;其中,钴酸锂正极材料的化学式为LiAl 0.02Mg 0.01Co 0.97O 2
(2)将混合溶液A搅拌蒸发(搅拌蒸发的速率为500rpm,搅拌蒸发的时间为2h,搅拌蒸发的温度为80℃)、干燥(干燥的温度为90℃,干燥的时间为15h)、研磨后,进行退火处理(退火处理在惰性气体中进行,惰性气体为氮气,退火处理的温度为200℃,退火处理的时间为4h),退火完成后研磨得到所述钴酸锂正极材料。
对比例3
对比例3为常规金属氧化物包覆钴酸锂,具体工艺如下:
称取100g钴酸锂粉末,0.38g纳米三氧化二铝,0.25g纳米二氧化钛,加入到研磨中,充分研磨1小时,使3种粉末充分混合均匀。然后将混合粉末装入坩埚中,放入管式中,空气气氛下750℃处理6小时。热处理后的物料经过研磨,即得到常规氧化物包覆的钴酸锂正极材料。
效果验证
实验过程:将实施例及对比例制备得到的钴酸锂正极材料作为电极材料,分别和聚偏氟乙烯、导电炭按照90:5:5混合,以N-甲基吡咯烷酮为溶剂制备成浆料,涂覆在铝箔上并80℃烘干,裁成极片,并和锂片、电解液、隔膜、电池壳等材料,在手套箱中装配成扣式半电池进行测试;
测试条件为:25℃,充放电电压区间为3.0-4.65V,以0.5C(电流0.05mA)的充放电倍率下,充放电循环50圈。计算50圈的容量保持率。计算方法如下:
第50圈循环容量保持率(%)=(第50圈循环放电容量/首圈循环放电容量)*100%。
实验结果:如表2所示;
表2
Figure PCTCN2022122921-appb-000005
Figure PCTCN2022122921-appb-000006
由上表可知,包覆有机高分子共聚物后,扣式半电4.65V循环50圈后,容量保持率较对比例3常规包覆工艺,均有明显提升;从实施例1-4对比看,结构式II的有机高分子共聚物包覆重量比在1-2%时,容量保持率最优。图1为实施例3制备得到的钴酸锂正极材料的形貌图,由图1可以看出,2%的(C 7F 13O 3SO 3H) 20.(C 2F 4) 20的共聚物包覆后,钴酸锂颗粒形貌保持较好,表面光滑且均一,说明包覆层均匀性较好,有效与钴酸锂表面发生融合。
实施例5-6是包覆结构式I有机高分子共聚物的重量比与实施例3相同的情况下,对比可以看有出,结构式I效果不及结构式II效果突出。两种高分子共聚物从结构上看,结构式I为无侧链规整简单的直链结构;结构式II为侧链较长且多,并且磺酰基团位于侧链的末端。结构式II长的侧链使的高分子柔性变强,磺酰基团之间更容易传递锂离子;同时,柔性强的侧链末端更容易与电解液分子之间形成氢键,有助于电解液对正极材料的浸润,提升离子导电率。但是,即使像结构I的有机高分子共聚物包覆钴酸锂颗粒后,仍较常规包覆工艺有 明显提升。
实施例7-9与实施例3进行对比,可以看出结构式II的分子量对容量保持率的优化效果存在明显影响。对比得出,结构式II中,最优的20≤n≤25,20≤m≤25。低于20时,分子量低,共聚物的强度较弱,对钴酸锂表面的形变抑制效果稍差,表现出来的就是循环容量保持率稍差。高于25时,分子量太大,导致表面包覆厚度变大均匀性变差,不利于锂离子动力学传输,从而会使得初始表面电阻增大,极化增加,循环容量保持率下降。同理,实施例10-11与实施例5进行对比可以看出,对于结构式I,直链中的单体单元最优为4≤n≤7。
对比例1、2分别与实施例3进行对比:对比例1提供了只含有氟的有机高分子共聚物,对比例2提供了只含有磺酰基团的有机高分子共聚物。说明,单独的含氟有机物,或者单独的含磺酰基团的有机物均不能达到实施例3的效果。原因为:氟原子在表面形成晶格掺杂,F-Me化学键能大于Me-O,有利于增强钴酸锂结构的稳定性,且F掺杂可缓解电解液中HF对正极材料的腐蚀。磺酰基团有效的传导锂离子,与电解液形成友好的接触,提升导电性,降低极化,提升倍率性能。二者只有相辅相成才能实现结构稳定性和锂离子导电性提升的双重目的,而结构稳定性和锂离子导电性是制约容量保持率的两大关键因素。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 一种钴酸锂正极材料,其特征在于,所述钴酸锂正极材料为表面包覆有机高分子共聚物的钴酸锂颗粒,所述有机高分子共聚物包含氟基团和磺酰基团。
  2. 如权利要求1所述的钴酸锂正极材料,其特征在于,所述有机高分子共聚物的结构式为式(I)、式(II)中的至少一种;
    其中,式(I)为:
    Figure PCTCN2022122921-appb-100001
    1≤n≤10,R基团为-OH、-NH 2中的至少一种;
    式(II)为:
    Figure PCTCN2022122921-appb-100002
    15≤n≤30,15≤m≤30。
  3. 如权利要求2所述的钴酸锂正极材料,其特征在于,所述式(I)的有机高分子共聚物中,4≤n≤7。
  4. 如权利要求2所述的钴酸锂正极材料,其特征在于,所述式(II)的有机高分子共聚物中,20≤n≤25,20≤m≤25。
  5. 如权利要求1所述的钴酸锂正极材料,其特征在于,得到的钴酸锂正极 材料中,以所述钴酸锂颗粒重量计,有机高分子共聚物包覆的重量比为0.2%-3%。
  6. 如权利要求1所述的钴酸锂正极材料,其特征在于,以所述钴酸锂颗粒重量计,所述有机高分子共聚物包覆的重量比为1%-2%。
  7. 一种如权利要求1所述的钴酸锂正极材料的制备方法,其特征在于,采用有机高分子共聚物包覆改性的方式处理,包括如下步骤:
    步骤(1):将所述钴酸锂颗粒与溶剂混合均匀后,加入有机高分子共聚物溶液,得到混合溶液A;
    步骤(2):将所述混合溶液A搅拌蒸发、干燥、研磨后,进行退火处理,退火完成后研磨得到所述钴酸锂正极材料。
  8. 如权利要求7所述的钴酸锂正极材料的制备方法,其特征在于,所述步骤(1)中,所述钴酸锂正极材料的化学式为LiM xCo 1-xO 2;其中,0<x≤0.2,M为Al、Zr、Ni、Mn、B、Nb、Sr、La、W、Y、Ce、Si、Mo、Ti中的至少一种。
  9. 如权利要求7所述的钴酸锂正极材料的制备方法,其特征在于,所述步骤(2)中,所述搅拌蒸发的速率为300-600rpm;所述搅拌蒸发的时间为1.5-2.5h,温度为60-90℃;所述干燥的温度为80-100℃,时间为10-24h;所述退火处理在惰性气体中进行,温度为150-300℃,时间为2-6h。
  10. 一种如权利要求1所述的钴酸锂正极材料在3C电池、动力电池领域中的应用。
PCT/CN2022/122921 2022-06-30 2022-09-29 一种钴酸锂正极材料及其制备方法与应用 WO2024000899A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210765248.1A CN115020672B (zh) 2022-06-30 2022-06-30 一种钴酸锂正极材料及其制备方法与应用
CN202210765248.1 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024000899A1 true WO2024000899A1 (zh) 2024-01-04

Family

ID=83078876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122921 WO2024000899A1 (zh) 2022-06-30 2022-09-29 一种钴酸锂正极材料及其制备方法与应用

Country Status (3)

Country Link
CN (1) CN115020672B (zh)
FR (1) FR3137505A1 (zh)
WO (1) WO2024000899A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115020672B (zh) * 2022-06-30 2024-03-12 广东邦普循环科技有限公司 一种钴酸锂正极材料及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159496A (ja) * 2010-02-01 2011-08-18 Asahi Glass Co Ltd 正極活物質、正極、および非水電解質二次電池
CN104051688A (zh) * 2013-03-15 2014-09-17 通用汽车环球科技运作有限责任公司 用于锂-硫或硅-硫电池的隔板或正极的涂层
CN107275576A (zh) * 2016-03-30 2017-10-20 通用汽车环球科技运作有限责任公司 包括聚合物单离子导体涂层的负电极
CN107845802A (zh) * 2017-11-22 2018-03-27 江门市科恒实业股份有限公司 一种用于锂电池的导电聚合物包覆钴酸锂及其制备方法
CN110148709A (zh) * 2019-05-25 2019-08-20 珠海冠宇电池有限公司 一种包含导电导锂复合材料包覆正极材料的正极极片的制备方法及锂离子电池
CN111490228A (zh) * 2019-01-29 2020-08-04 广州汽车集团股份有限公司 一种锂电池用电极及其制备方法与含有该电极的锂电池
CN111564612A (zh) * 2020-04-07 2020-08-21 江门市科恒实业股份有限公司 一种高导热导电性锂电正极材料及其制备方法
CN115020672A (zh) * 2022-06-30 2022-09-06 广东邦普循环科技有限公司 一种钴酸锂正极材料及其制备方法与应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100793818B1 (ko) * 2006-02-08 2008-01-21 고려대학교 산학협력단 리튬이차전지용 복합캐소드활물질 및 그 제조방법
US9525165B2 (en) * 2011-03-07 2016-12-20 Samsung Sdi Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery including the same
WO2012176901A1 (ja) * 2011-06-24 2012-12-27 旭硝子株式会社 リチウムイオン二次電池用活物質粒子の製造方法、電極およびリチウムイオン二次電池
CN104282909B (zh) * 2013-07-10 2016-12-28 中国科学院宁波材料技术与工程研究所 锂离子电池正极用导电粘结剂、锂离子电池正极及制备方法
JP6599222B2 (ja) * 2015-12-15 2019-10-30 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池
US20190270876A1 (en) * 2016-09-05 2019-09-05 Piotrek Co., Ltd. Conductive material and the usage
US20190115591A1 (en) * 2017-10-16 2019-04-18 Nanotek Instruments, Inc. Surface-Stabilized Cathode Active Material Particles, Lithium Secondary Batteries Containing Same, and Method of Manufacturing
KR102244913B1 (ko) * 2018-07-27 2021-04-26 주식회사 엘지화학 전극 보호층용 고분자 및 이를 적용한 이차전지
KR102158221B1 (ko) * 2018-07-31 2020-09-21 한국과학기술연구원 이차전지의 전극 활물질 표면에 전도성 고분자 코팅층을 균일하게 형성하는 방법
KR102630170B1 (ko) * 2018-09-14 2024-01-29 주식회사 엘지에너지솔루션 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
CN114551826B (zh) * 2022-01-18 2023-08-01 惠州锂威新能源科技有限公司 包覆改性的钴酸锂材料及其制备方法、正极片及锂离子电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159496A (ja) * 2010-02-01 2011-08-18 Asahi Glass Co Ltd 正極活物質、正極、および非水電解質二次電池
CN104051688A (zh) * 2013-03-15 2014-09-17 通用汽车环球科技运作有限责任公司 用于锂-硫或硅-硫电池的隔板或正极的涂层
CN107275576A (zh) * 2016-03-30 2017-10-20 通用汽车环球科技运作有限责任公司 包括聚合物单离子导体涂层的负电极
CN107845802A (zh) * 2017-11-22 2018-03-27 江门市科恒实业股份有限公司 一种用于锂电池的导电聚合物包覆钴酸锂及其制备方法
CN111490228A (zh) * 2019-01-29 2020-08-04 广州汽车集团股份有限公司 一种锂电池用电极及其制备方法与含有该电极的锂电池
CN110148709A (zh) * 2019-05-25 2019-08-20 珠海冠宇电池有限公司 一种包含导电导锂复合材料包覆正极材料的正极极片的制备方法及锂离子电池
CN111564612A (zh) * 2020-04-07 2020-08-21 江门市科恒实业股份有限公司 一种高导热导电性锂电正极材料及其制备方法
CN115020672A (zh) * 2022-06-30 2022-09-06 广东邦普循环科技有限公司 一种钴酸锂正极材料及其制备方法与应用

Also Published As

Publication number Publication date
CN115020672A (zh) 2022-09-06
CN115020672B (zh) 2024-03-12
FR3137505A1 (fr) 2024-01-05

Similar Documents

Publication Publication Date Title
JP7236631B2 (ja) ニッケル三元正極材料の表面改質方法
CN106450265B (zh) 一种原位氮掺杂碳包覆钛酸锂复合电极材料及其制备方法
KR100369445B1 (ko) 리튬이차전지의 양극전극용 리튬망간계 산화물의 코팅재및 그의 코팅방법
CN111211305B (zh) 一种pda辅助金属氧化物包覆的高镍三元层状正极材料及其制备方法
WO2014040410A1 (zh) 一种富锂固溶体正极复合材料及其制备方法、锂离子电池正极片和锂离子电池
CN109509874A (zh) 一种三氧化钼包覆富锂锰基正极材料的制备方法
WO2023124025A1 (zh) 一种石墨复合负极材料及其制备方法和应用
CN111268727B (zh) 一种钒酸钙复合材料及其制备方法、应用
WO2024000899A1 (zh) 一种钴酸锂正极材料及其制备方法与应用
CN114400306A (zh) 一种硅基复合负极材料及其制备方法和电化学储能装置
US6972134B2 (en) Method of preparing positive active material for rechargeable lithium batteries
WO2018068702A1 (zh) 一种正极极片及含有该极片的锂离子电池
CN114420920A (zh) 一种氟离子梯度掺杂富锂锰基正极材料及其制备方法和应用
Wang et al. Uniform AlF3 thin layer to improve rate capability of LiNi1/3Co1/3 Mn1/3O2 material for Li-ion batteries
WO2021184764A1 (zh) 用于锂离子电池的富锂锰基正极材料及其制备方法、正极片、锂离子电池和电动汽车
CN110931733B (zh) 一种表面锰掺杂及Li-Mn-PO4包覆高镍正极材料及其制备方法和应用
CN112467117A (zh) 磷酸钛铝锂包覆的石墨复合材料及其制备方法、电池负极
CN109216692B (zh) 改性三元正极材料及其制备方法、锂离子电池
CN108183216B (zh) 一种碳包覆富锂锰基正极材料及其制备方法和锂离子电池
CN116435514A (zh) 一种氟钛酸铵改性的富锂锰基正极材料及其制备方法
CN113745514B (zh) 一种氟掺杂及硅酸锂包覆的富锂锰基正极材料及其制备方法与应用
CN111740112B (zh) 一种磷酸铁锂/碳纳米管复合正极材料的制备方法
CN105576219B (zh) 具有三维Li+扩散通道的自愈合层状正极材料及其制备方法
CN111082065B (zh) 一种改性剂及其制备方法和用途
CN115959713A (zh) 一种锂离子电池正极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948987

Country of ref document: EP

Kind code of ref document: A1