WO2024000849A1 - 一种贝克曼重排反应合成己内酰胺的方法 - Google Patents

一种贝克曼重排反应合成己内酰胺的方法 Download PDF

Info

Publication number
WO2024000849A1
WO2024000849A1 PCT/CN2022/120387 CN2022120387W WO2024000849A1 WO 2024000849 A1 WO2024000849 A1 WO 2024000849A1 CN 2022120387 W CN2022120387 W CN 2022120387W WO 2024000849 A1 WO2024000849 A1 WO 2024000849A1
Authority
WO
WIPO (PCT)
Prior art keywords
caprolactam
phase
sulfuric acid
solvent
beckmann rearrangement
Prior art date
Application number
PCT/CN2022/120387
Other languages
English (en)
French (fr)
Inventor
庄大为
刘文刚
杨琦武
刘新伟
王聪
杨克俭
Original Assignee
中国天辰工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国天辰工程有限公司 filed Critical 中国天辰工程有限公司
Publication of WO2024000849A1 publication Critical patent/WO2024000849A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D201/00Preparation, separation, purification or stabilisation of unsubstituted lactams
    • C07D201/02Preparation of lactams
    • C07D201/04Preparation of lactams from or via oximes by Beckmann rearrangement
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D201/00Preparation, separation, purification or stabilisation of unsubstituted lactams
    • C07D201/16Separation or purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/02Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D223/06Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D223/08Oxygen atoms
    • C07D223/10Oxygen atoms attached in position 2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the technical field of chemical synthesis, and in particular relates to a catalyst for preparing caprolactam through Beckmann rearrangement and a preparation method thereof.
  • Caprolactam is an important organic chemical raw material. Due to its special structure, it is mainly used as a monomer of polymers to produce polyamide 6 (PA6) chips through polymerization. Caprolactam materials can produce nylon plastics, cotton fibers, artificial leather and other related products. At the same time, their application effects in various major medical fields are very obvious, and they can produce anti-platelet and other related drugs. Different brands of PA6 have different slice properties and their application fields are also different. After processing, PA6 is widely used in textiles, packaging, automobiles, electronics, machinery and other fields.
  • the raw material routes for the production of caprolactam are mainly benzene, phenol and toluene.
  • the toluene route accounts for the highest production capacity and is the most important caprolactam production method in the world.
  • Represented by the technology of Dutch company DSM cyclohexanone is synthesized from cyclohexanone oxime, and caprolactam is obtained through Beckmann rearrangement.
  • my country's caprolactam production technology has made great progress, and domestic production capacity has been greatly expanded.
  • Beckmann rearrangement reaction is an acid-catalyzed rearrangement reaction.
  • the reactant oxime is rearranged into an amide under the catalysis of acid.
  • Beckmann rearrangement catalysts including inorganic acids, organic acids, acidic molecular sieves, ionic liquids, etc. These catalyst schemes have been studied in detail.
  • Caprolactam is produced by the Beckmann rearrangement reaction of cyclohexanone oxime in the presence of sulfuric acid or fuming sulfuric acid.
  • the process generally adopts the method of external circulation of materials to transfer heat, that is, fuming sulfuric acid is added from the circulation pump inlet of the rearrangement reactor to the system to mix with the rearrangement liquid, and the heat is removed from the reaction system through the circulation pipeline heat exchanger. After the temperature is lowered, The circulating liquid enters the mixer and is quickly mixed with the added cyclohexanone oxime to react to form a rearrangement liquid.
  • the process is mature and simple, so this method is basically used in industry to produce caprolactam.
  • Patent CN1508128A also discloses a method for preparing caprolactam from cyclohexanone oxime and nicotinic acid or anhydrous sulfuric acid in the presence of a solvent inert to nicotinic acid or sulfuric acid, which reduces the by-product ammonium sulfate, but the solvent used Without effective separation, acid residues remain in the solvent, making it difficult to reuse and causing waste.
  • This method discloses a method for synthesizing caprolactam through Beckmann rearrangement reaction. Specifically, it is an improved Beckmann rearrangement reaction process using fuming sulfuric acid as a catalyst.
  • This method uses cyclohexanone oxime as raw material and The Beckmann rearrangement reaction using fuming sulfuric acid as a catalyst dissolves the reactants into a homogeneous phase through the solvent, which significantly improves the utilization of acidity in the fuming sulfuric acid, and separates the sulfuric acid and the solvent through ammonium sulfate saltation, allowing the solvent to be reused use.
  • this method can significantly reduce ammonium sulfate by-products, has mild reaction conditions, and has the advantages of high yield, and is suitable for industrial production.
  • a method for synthesizing caprolactam through Beckmann rearrangement reaction of the present invention includes the following steps:
  • caprolactam-sulfuric acid solution obtained in step (3) into the saturated ammonium sulfate aqueous solution, pass in sufficient ammonia gas to make it neutral, and completely separate the solvent, caprolactam and ammonium sulfate aqueous solution by salting out.
  • the separated liquid has three phases, namely caprolactam solvent phase, saturated ammonium sulfate aqueous solution phase and ammonium sulfate crystal;
  • step (4) flash evaporate the caprolactam solvent phase obtained in step (4), remove the solvent in the caprolactam phase, and obtain an aqueous solution of caprolactam; the solvent can be reused in step (1) and step (2);
  • step (6) Add the caprolactam aqueous solution obtained in step (5) to benzene, stir and extract to obtain a caprolactam-benzene phase and a water phase;
  • step (7) Add the caprolactam-benzene phase obtained in step (6) to water, stir and extract to obtain the benzene phase and caprolactam-water phase, take the water phase and distill the water to obtain caprolactam.
  • the selected solvents are 1,1,2,2-tetrachloroethane, 1,1-difluoro-1,2-dichloroethane, acetonitrile, N,N-dimethyl One or more of methyl formamide, acetone, methyl ethyl ketone, dioxane, and tert-butanol.
  • the mass concentration of cyclohexanone oxime is 5 to 50 wt%, and the preferred concentration is 25 to 40 wt%.
  • the selected solvent is the same as the solvent in step (1), and the SO 3 concentration in the fuming sulfuric acid used is 3 to 30%, preferably 12 to 20%.
  • the concentration of fuming sulfuric acid in the solvent is 30 to 80 wt%, and the preferred concentration is 40 to 50 wt%.
  • the mass ratio of cyclohexanone oxime and fuming sulfuric acid is 0.5-4, preferably 1.2-2.2.
  • the reaction temperature is 50-270°C, preferably 80-180°C, and the reaction time is 0.5-30min, preferably 5-15min;
  • the mass ratio of caprolactam-sulfuric acid solution and saturated ammonium sulfate solution is 1:1
  • the pH value of the aqueous phase after ammonia gas is introduced is 5-9
  • the neutralization crystallization reaction temperature is 30-70°C. , preferably 40 ⁇ 50°C;
  • the flash evaporation temperature is 40-90°C
  • the pressure is 0.1-100kPa
  • the solvent content in the caprolactam solution after flashing is less than 0.01%
  • the mass ratio of caprolactam phase to benzene is 0.5-3, preferably 1-2.
  • the treatment temperature is 30 to 70°C, preferably 40 to 50°C;
  • the mass ratio of caprolactam-benzene phase to water is 1 to 5, preferably 2 to 3, preferably 20 to 40°C;
  • the invention provides a method for synthesizing caprolactam through Beckmann rearrangement reaction.
  • a special process route selecting a specific solvent, and dissolving the reactants into a homogeneous phase through the solvent, the utilization rate of acidity in fuming sulfuric acid is significantly improved.
  • the sulfuric acid and the solvent are separated through ammonium sulfate salting out, so that the solvent can be reused.
  • this method can significantly reduce ammonium sulfate by-products, has mild reaction conditions, and has the advantages of high yield, and is suitable for industrial production.
  • Figure 1 is a process flow chart of a method for synthesizing caprolactam through Beckmann rearrangement reaction of the present invention.
  • the caprolactam-sulfuric acid solution was added to 97 kg of saturated aqueous ammonium sulfate solution, keeping the temperature at 50°C. Start stirring and gradually introduce ammonia gas into it. After introduction, the liquid is divided into three phases, and the pH value of the lower water phase is 6.02. Take a total of 95.1kg of the upper caprolactam phase and place it in a flash tank, keeping the temperature at 50°C and the absolute pressure at 101kPa. After flashing, remove the 1,1,2,2-tetrachloroethane solvent to obtain a caprolactam aqueous solution 31.8 kg.
  • caprolactam Place the aqueous solution of caprolactam in 20kg of benzene, keep the temperature at 45°C, and stir until the extraction is completed. Take a total of 42.2kg of the caprolactam-benzene phase in the upper layer, place it in 20kg of water, keep the temperature at 25°C, and stir until the extraction is completed to obtain an aqueous solution of caprolactam.
  • the conversion rate of cyclohexanone oxime is 100%
  • the selectivity of caprolactam is 99.7%
  • the output of caprolactam after neutralization crystallization-extraction treatment is 19.2kg
  • the yield is 96.3%
  • the amount of by-product ammonium sulfate is 17.9kg , 0.93kg of ammonium sulfate is produced per kilogram of caprolactam.
  • the caprolactam-sulfuric acid solution was added to 122 kg of saturated aqueous ammonium sulfate solution, keeping the temperature at 40°C. Start stirring and gradually introduce ammonia gas into it. After the introduction, the liquid is divided into three phases, and the pH value of the lower water phase is 5.88. Take a total of 110.0kg of the upper caprolactam phase and place it in a flash tank, keeping the temperature at 40°C and the absolute pressure at 40kPa. After flashing, remove the tert-butanol solvent to obtain 32.9kg of caprolactam aqueous solution. Place the aqueous solution of caprolactam in 25kg of benzene, keep the temperature at 45°C, and stir until the extraction is completed. Take a total of 46.7kg of the caprolactam-benzene phase in the upper layer, place it in 20kg of water, keep the temperature at 25°C, and stir until the extraction is completed to obtain an aqueous solution of caprolactam.
  • the conversion rate of cyclohexanone oxime is 100%
  • the selectivity of caprolactam is 99.8%
  • the output of caprolactam after neutralization crystallization-extraction treatment is 18.9kg
  • the yield is 94.5%
  • the amount of by-product ammonium sulfate is 20.7kg , 1.09kg of ammonium sulfate is produced per kilogram of caprolactam.
  • the caprolactam-sulfuric acid solution was added to 74 kg of saturated aqueous ammonium sulfate solution, keeping the temperature at 50°C. Start stirring and gradually introduce ammonia gas into it. After introduction, the liquid is divided into three phases, and the pH value of the lower water phase is 6.85. Take a total of 75kg of the upper caprolactam phase and place it in a flash tank, keeping the temperature at 50°C and the absolute pressure at 25kPa. After flashing, remove the 1,1-difluoro-1,2-dichloroethane solvent to obtain caprolactam. Aqueous solution 33.2kg.
  • caprolactam Place the aqueous solution of caprolactam in 30kg of benzene, keep the temperature at 40°C, and stir until the extraction is completed. Take a total of 42.7kg of the caprolactam-benzene phase in the upper layer, place it in 20kg of water, keep the temperature at 25°C, and stir until the extraction is completed to obtain an aqueous solution of caprolactam.
  • the conversion rate of cyclohexanone oxime is 100%
  • the selectivity of caprolactam is 99.7%
  • the output of caprolactam after neutralization crystallization-extraction treatment is 19.7kg
  • the yield is 98.5%
  • the amount of by-product ammonium sulfate is 16.5kg
  • per kilogram of caprolactam by-product is 0.84kg of ammonium sulfate.
  • the caprolactam-sulfuric acid solution was added to 105 kg of saturated aqueous ammonium sulfate solution, keeping the temperature at 50°C. Start stirring and gradually introduce ammonia gas into it. After introduction, the liquid is divided into three phases, and the pH value of the lower water phase is 5.99. Take a total of 101.2kg of the upper caprolactam phase and place it in a flash tank, keeping the temperature at 50°C and the absolute pressure at 30kPa. After flashing, remove the acetonitrile solvent to obtain 31.5kg of caprolactam aqueous solution. Place the aqueous solution of caprolactam in 25kg of benzene, keep the temperature at 40°C, and stir until the extraction is completed. Take a total of 43.8kg of the caprolactam-benzene phase in the upper layer, place it in 20kg of water, keep the temperature at 25°C, and stir until the extraction is completed to obtain an aqueous solution of caprolactam.
  • the conversion rate of cyclohexanone oxime is 100%
  • the selectivity of caprolactam is 95.1%
  • the output of caprolactam after neutralization crystallization-extraction treatment is 18.6kg
  • the yield is 93.2%
  • the amount of by-product ammonium sulfate is 20.8kg , 1.12kg of ammonium sulfate is produced per kilogram of caprolactam.
  • the caprolactam-sulfuric acid solution was added to 104 kg of saturated aqueous ammonium sulfate solution, keeping the temperature at 50°C. Start stirring and gradually introduce ammonia gas into it. After introduction, the liquid is divided into three phases, and the pH value of the lower water phase is 6.34. Take a total of 103.7kg of the upper caprolactam phase and place it in a flash tank, keeping the temperature at 50°C and the absolute pressure at 20kPa. After flashing, remove the dioxane solvent to obtain 25.6kg of caprolactam aqueous solution. Place the aqueous solution of caprolactam in 20kg of benzene, keep the temperature at 40°C, and stir until the extraction is completed. Take a total of 43.2kg of the caprolactam-benzene phase in the upper layer, place it in 20kg of water, keep the temperature at 30°C, and stir until the extraction is completed to obtain an aqueous solution of caprolactam.
  • the conversion rate of cyclohexanone oxime is 100%
  • the selectivity of caprolactam is 97.8%
  • the output of caprolactam after neutralization crystallization-extraction treatment is 19.1kg
  • the yield is 95.5%
  • the amount of by-product ammonium sulfate is 16.82kg
  • every kilogram of caprolactam by-product produces 0.88kg of ammonium sulfate.
  • the caprolactam-sulfuric acid solution was added to 107 kg of saturated ammonium sulfate aqueous solution, keeping the temperature at 50°C. Start stirring and gradually introduce ammonia gas into it. After introduction, the liquid is divided into three phases, and the pH value of the lower water phase is 6.25. Take a total of 100.9kg of the upper caprolactam phase and place it in a flash tank, keeping the temperature at 40°C and the absolute pressure at 10kPa. After flashing, remove the butanone solvent to obtain 33.2kg of caprolactam aqueous solution. Place the aqueous solution of caprolactam in 25kg of benzene, keep the temperature at 40°C, and stir until the extraction is completed. Take a total of 41.6kg of the caprolactam-benzene phase in the upper layer, place it in 20kg of water, keep the temperature at 30°C, and stir until the extraction is completed to obtain an aqueous solution of caprolactam.
  • the conversion rate of cyclohexanone oxime is 100%
  • the selectivity of caprolactam is 98.3%
  • the output of caprolactam after neutralization crystallization-extraction treatment is 19.3kg
  • the yield is 96.5%
  • the amount of by-product ammonium sulfate is 23.41kg , 1.21kg of ammonium sulfate is produced per kilogram of caprolactam.
  • Preheat 20kg of cyclohexanone oxime to 100°C take 20kg of fuming sulfuric acid with a concentration of 10%, and preheat it to 100°C.
  • Slowly spray the cyclohexanone oxime solution into the fuming sulfuric acid continue to stir and keep the reaction temperature at 100°C, stop the reaction after 5 minutes, and obtain the caprolactam-sulfuric acid phase.
  • the liquid is divided into three phases, and the pH value of the lower water phase is 6.0 .
  • the conversion rate of cyclohexanone oxime is 100%
  • the selectivity of caprolactam is 98.7%
  • the output of caprolactam after neutralization crystallization-extraction treatment is 19.4kg
  • the yield is 96.8%
  • the amount of by-product ammonium sulfate is 27.6kg , 1.42kg of ammonium sulfate is produced per kilogram of caprolactam.
  • Preheat 20kg of cyclohexanone oxime to 100°C take 12.5kg of fuming sulfuric acid with a concentration of 10%, and preheat it to 100°C. Slowly spray the cyclohexanone oxime solution into the fuming sulfuric acid, continue to stir and keep the reaction temperature at 100°C, stop the reaction after 5 minutes, and obtain the caprolactam-sulfuric acid phase. Place the caprolactam-sulfuric acid phase in 20kg of saturated ammonium sulfate aqueous solution, keep the temperature at 45°C, start stirring and gradually introduce ammonia gas into it. After the introduction, the liquid is divided into three phases, and the pH value of the lower water phase is 6.1 .
  • the conversion rate of cyclohexanone oxime is 100%
  • the selectivity of caprolactam is 69.8%
  • the output of caprolactam after neutralization crystallization-extraction treatment is 12.7kg
  • the yield is 63.4%
  • the amount of by-product ammonium sulfate is 17.2kg , 1.35kg of ammonium sulfate is produced per kilogram of caprolactam.
  • the conversion rate of cyclohexanone oxime was 100%, and the selectivity of caprolactam was 99.7%. Since the caprolactam-sulfate was not removed, part of the caprolactam was lost with the solvent.
  • the output of caprolactam was 18.2kg, and the yield was 91.0%.
  • the amount of by-product ammonium sulfate is 16.8kg, and the by-product ammonium sulfate per kilogram of caprolactam is 0.92kg. Although the by-product ammonium sulfate is reduced, the yield of caprolactam is low. Moreover, the solvent is contaminated and difficult to reuse.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)

Abstract

本发明提供的一种贝克曼重排反应合成己内酰胺的方法,以环己酮肟为原料,以发烟硫酸为催化剂的贝克曼重排反应,通过设计特别的工艺路线,选择特定的溶剂,通过溶剂将反应物溶解为均相,显著提高了发烟硫酸中酸性的利用率,并通过硫酸铵盐析分离了硫酸与溶剂,使得溶剂能够重复使用。同现有工艺相比,该方法能够显著的降低硫酸铵副产,反应条件温和,收率高等优点,适用于工业化生产。

Description

一种贝克曼重排反应合成己内酰胺的方法 技术领域
本发明属于化学合成技术领域,特别涉及一种用于贝克曼重排制备己内酰胺的催化剂及其制备方法。
背景技术
己内酰胺是一种重要的有机化工原料,由于其特殊的结构,主要作为高聚物的单体,通过聚合生成聚酰胺6(PA6)切片。己内酰胺材料可以生产尼龙塑料、棉纶纤维以及人造革等相关产品,同时在各大医药领域当中的应用效果非常明显,可以生产抗血小板等相关药物。不同牌号的PA6切片性能不同,其应用领域也有所区别,加工成型后的PA6被广泛应用于纺织、包装、汽车、电子、机械等领域。
己内酰胺的生产原料路线主要是苯、苯酚和甲苯。三种原料中甲苯路径所占产能最高,是世界最主要的己内酰胺生产方法。以荷兰DSM公司技术为代表,经过制取环己酮合成环己酮肟,经贝克曼重排得到己内酰胺。近年来,我国己内酰胺生产技术取得较大进展,国内产能得到了极大的扩充。
贝克曼重排反应(Beckmann重排反应)是一个由酸催化的重排反应,反应物肟在酸的催化作用下重排为酰胺。现在已经有多种贝克曼重排催化剂,包括无机酸、有机酸、酸性分子筛、离子液体等。人们对这些催化剂方案进行了细致的研究。
在己内酰胺工业生产中,多使用硫酸或发烟硫酸作为催化剂,己内酰胺由环己酮肟在硫酸或发烟硫酸存在下进行贝克曼重排反应生成。其工艺普遍采用物料外循环移热的方式,即将发烟硫酸从重排反应器中的循环泵入口加入到体系与重排液混合,经过循环管线换热器将热量移出反应系统,温度 降低后的循环液进入到混合器,迅速与加入的环己酮肟混合进行反应形成重排液。该工艺成熟、简单,因此工业上基本都采用该法生产己内酰胺。
环己酮肟在发烟硫酸存在下的重排反应是强放热反应,反应速度快,反应剧烈,系统配置不好会导致大量杂质生成,严重影响己内酰胺的产品质量。更严重的是,该工艺还副产大量的硫酸铵,每生产1吨己内酰胺会副产1.4~1.8吨的硫酸铵。硫酸铵是一种化肥,其售价低于成本价,大量的硫酸铵副产会导致成本上升。因此,该工艺需要进行改进,降低硫酸及氨气的消耗,降低副产物硫酸铵的产量,以降低生产成本。
专利US4257950中,将环己酮肟通过溶解在对烟酸惰性且不溶于水和烟酸的溶剂中,利用烟酸作催化剂进行贝克曼重排生产己内酰胺,但是副产硫铵没有减少。
专利CN1508128A中,也公开了一种环己酮肟和烟酸或无水硫酸在对烟酸或硫酸呈惰性的溶剂存在条件下制备己内酰胺的方法,减少了副产的硫酸铵,但使用的溶剂没有有效的分离,导致溶剂中有酸残留,难以重复使用,造成浪费。
发明内容
本方法公开了一种一种贝克曼重排反应合成己内酰胺的方法,具体的是一种改进的以发烟硫酸为催化剂的贝克曼重排反应工艺,本方法以环己酮肟为原料,以发烟硫酸为催化剂的贝克曼重排反应,通过溶剂将反应物溶解为均相,显著提高了发烟硫酸中酸性的利用率,并通过硫酸铵盐析分离了硫酸与溶剂,使得溶剂能够重复使用。同现有工艺相比,该方法能够显著的降低硫酸铵副产,反应条件温和,收率高等优点,适用于工业化生产。
具体的,本发明的一种贝克曼重排反应合成己内酰胺的方法,包括以下步骤:
(1)将环己酮肟置于溶剂中,搅拌至溶解;
(2)将发烟硫酸置于溶剂中,搅拌至溶解;
(3)将步骤(1)及(2)所得的溶液预热,再将环己酮肟溶液逐渐加入到发烟硫酸溶液中,得到两相混合液,搅拌至混合均匀并保温,得到己内酰胺-硫酸溶液;
(4)将步骤(3)所得的己内酰胺-硫酸溶液注入饱和硫酸铵水溶液中,通入足量氨气至中性,通过盐析使溶剂、己内酰胺与硫酸铵水溶液完全分离。分离后的液体为三相,分别为己内酰胺溶剂相和饱和硫酸铵水溶液相和硫酸铵结晶;
(5)将步骤(4)所得的己内酰胺溶剂相进行闪蒸,除去己内酰胺相中的溶剂,得到己内酰胺的水溶液;所述溶剂能够回用到步骤(1)和步骤(2)中;
(6)将步骤(5)所得的己内酰胺水溶液加入到苯中,搅拌萃取后得到己内酰胺-苯相和水相;
(7)将步骤(6)所得的己内酰胺-苯相加入到水中,搅拌萃取后得到苯相和己内酰胺-水相,取水相经精馏除水后得到己内酰胺。
所述步骤(1)中,所选的溶剂为1,1,2,2-四氯乙烷、1,1-二氟-1,2-二氯乙烷、乙腈、N,N-二甲基甲酰胺、丙酮、丁酮、二氧六环、叔丁醇中的一种或几种。
所述步骤(1)中,环己酮肟的质量浓度为5~50wt%,优选浓度为25~40wt%。
所述步骤(2)中,所选的溶剂同步骤(1)的溶剂相同,所用发烟硫酸中SO 3浓度为3~30%,优选为12~20%。发烟硫酸在溶剂中浓度为30~80wt%,优选浓度为40~50wt%。
所述步骤(3)中,环己酮肟与发烟硫酸的质量比为0.5~4,优选为1.2~2.2。反应温度为50~270℃,优选为80~180℃,反应时间为0.5~30min, 优选为5~15min;
所述步骤(4)中,己内酰胺-硫酸溶液与饱和硫酸铵溶液的质量比为1:1,通入氨气后水相的pH值为5~9,中和结晶反应温度为30~70℃,优选为40~50℃;
所述步骤(5)中,闪蒸温度为40~90℃,压力为0.1~100kPa,闪蒸后的己内酰胺溶液中溶剂含量小于0.01%;
所述步骤(6)中,己内酰胺相与苯的质量比为0.5~3,优选为1~2。处理温度为30~70℃,优选为40~50℃;
所述步骤(7)中,己内酰胺-苯相与水的质量比为1~5,优选为2~3,优选为20~40℃;
有益效果:
本发明提供的一种贝克曼重排反应合成己内酰胺的方法,通过设计特别的工艺路线,选择特定的溶剂,通过溶剂将反应物溶解为均相,显著提高了发烟硫酸中酸性的利用率,并通过硫酸铵盐析分离了硫酸与溶剂,使得溶剂能够重复使用。同现有工艺相比,该方法能够显著的降低硫酸铵副产,反应条件温和,收率高等优点,适用于工业化生产。
附图说明
图1为本发明一种贝克曼重排反应合成己内酰胺的方法的工艺流程图。
具体实施方式
下面将结合实施例来详细说明本发明。
实施例1
将20kg环己酮肟置于50kg 1,1,2,2-四氯乙烷中,搅拌至完全溶解后,将 其预热到150℃,取浓度为10%的发烟硫酸13kg,将其置于14kg1,1,2,2-四氯乙烷中。将其预热到150℃。将环己酮肟溶液加入到发烟硫酸溶液中,持续搅拌并保持反应温度为150℃,反应15min后停止反应,得到己内酰胺-硫酸溶液。
将己内酰胺-硫酸溶液加入到97kg的饱和硫酸铵水溶液中,保持温度为50℃。开始搅拌并向其中逐渐通入氨气,通入后液体分为三相,下层的水相的pH值为6.02。取上层己内酰胺相共95.1kg,将其置于闪蒸罐中,保持温度为50℃,绝对压力为101kPa,闪蒸后除去1,1,2,2-四氯乙烷溶剂,得到己内酰胺水溶液31.8kg。将己内酰胺的水溶液置于20kg的苯中,保持温度为45℃,搅拌至萃取完成。取上层的己内酰胺-苯相共42.2kg,将其置于20kg的水中,保持温度为25℃,搅拌至萃取完成,得到己内酰胺的水溶液。
经分析,环己酮肟的转化率为100%,己内酰胺的选择性为99.7%,中和结晶-萃取处理后己内酰胺的产量为19.2kg,收率为96.3%,副产硫酸铵量为17.9kg,每公斤己内酰胺副产硫酸铵0.93kg。
实施例2
将20kg环己酮肟置于60kg叔丁醇中,搅拌至完全溶解后,将其预热到170℃,取浓度为8%的发烟硫酸15kg,将其置于27kg叔丁醇中。将其预热到170℃。将环己酮肟溶液加入到发烟硫酸溶液中,持续搅拌并保持反应温度为170℃,反应10min后停止反应,得到己内酰胺-硫酸溶液。
将己内酰胺-硫酸溶液加入到122kg的饱和硫酸铵水溶液中,保持温度为40℃。开始搅拌并向其中逐渐通入氨气,通入后液体分为三相,下层的水 相的pH值为5.88。取上层己内酰胺相共110.0kg,将其置于闪蒸罐中,保持温度为40℃,绝对压力为40kPa,闪蒸后除去叔丁醇溶剂,得到己内酰胺水溶液32.9kg。将己内酰胺的水溶液置于25kg的苯中,保持温度为45℃,搅拌至萃取完成。取上层的己内酰胺-苯相共46.7kg,将其置于20kg的水中,保持温度为25℃,搅拌至萃取完成,得到己内酰胺的水溶液。
经分析,环己酮肟的转化率为100%,己内酰胺的选择性为99.8%,中和结晶-萃取处理后己内酰胺的产量为18.9kg,收率为94.5%,副产硫酸铵量为20.7kg,每公斤己内酰胺副产硫酸铵1.09kg。
实施例3
将20kg环己酮肟置于30kg 1,1-二氟-1,2-二氯乙烷中,搅拌至完全溶解后,将其预热到180℃,取浓度为8%的发烟硫酸12kg,将其置于12kg 1,1-二氟-1,2-二氯乙烷中。将其预热到180℃。将环己酮肟溶液加入到发烟硫酸溶液中,持续搅拌并保持反应温度为180℃,反应8min后停止反应,得到己内酰胺-硫酸溶液。
将己内酰胺-硫酸溶液加入到74kg的饱和硫酸铵水溶液中,保持温度为50℃。开始搅拌并向其中逐渐通入氨气,通入后液体分为三相,下层的水相的pH值为6.85。取上层己内酰胺相共75kg,将其置于闪蒸罐中,保持温度为50℃,绝对压力为25kPa,闪蒸后除去1,1-二氟-1,2-二氯乙烷溶剂,得到己内酰胺水溶液33.2kg。将己内酰胺的水溶液置于30kg的苯中,保持温度为40℃,搅拌至萃取完成。取上层的己内酰胺-苯相共42.7kg,将其置于20kg的水中,保持温度为25℃,搅拌至萃取完成,得到己内酰胺的水溶液。
经分析,环己酮肟的转化率为100%,己内酰胺的选择性为99.7%,中和结晶-萃取处理后己内酰胺的产量为19.7kg,收率为98.5%,副产硫酸铵量为16.5kg,每公斤己内酰胺副产硫酸铵0.84kg。
实施例4
将20kg环己酮肟置于55kg乙腈中,搅拌至完全溶解后,将其预热到100℃,取浓度为12%的发烟硫酸15kg,将其置于15kg乙腈中。将其预热到100℃。将环己酮肟溶液加入到发烟硫酸溶液中,持续搅拌并保持反应温度为200℃,反应8min后停止反应,得到己内酰胺-硫酸溶液。
将己内酰胺-硫酸溶液加入到105kg的饱和硫酸铵水溶液中,保持温度为50℃。开始搅拌并向其中逐渐通入氨气,通入后液体分为三相,下层的水相的pH值为5.99。取上层己内酰胺相共101.2kg,将其置于闪蒸罐中,保持温度为50℃,绝对压力为30kPa,闪蒸后除去乙腈溶剂,得到己内酰胺水溶液31.5kg。将己内酰胺的水溶液置于25kg的苯中,保持温度为40℃,搅拌至萃取完成。取上层的己内酰胺-苯相共43.8kg,将其置于20kg的水中,保持温度为25℃,搅拌至萃取完成,得到己内酰胺的水溶液。
经分析,环己酮肟的转化率为100%,己内酰胺的选择性为95.1%,中和结晶-萃取处理后己内酰胺的产量为18.6kg,收率为93.2%,副产硫酸铵量为20.8kg,每公斤己内酰胺副产硫酸铵1.12kg。
实施例5
将20kg环己酮肟置于60kg二氧六环中,搅拌至完全溶解后,将其预热到110℃,取浓度为18%的发烟硫酸12kg,将其置于12kg二氧六环中。将 其预热到160℃。将环己酮肟溶液加入到发烟硫酸溶液中,持续搅拌并保持反应温度为160℃,反应13min后停止反应,得到己内酰胺-硫酸溶液。
将己内酰胺-硫酸溶液加入到104kg的饱和硫酸铵水溶液中,保持温度为50℃。开始搅拌并向其中逐渐通入氨气,通入后液体分为三相,下层的水相的pH值为6.34。取上层己内酰胺相共103.7kg,将其置于闪蒸罐中,保持温度为50℃,绝对压力为20kPa,闪蒸后除去二氧六环溶剂,得到己内酰胺水溶液25.6kg。将己内酰胺的水溶液置于20kg的苯中,保持温度为40℃,搅拌至萃取完成。取上层的己内酰胺-苯相共43.2kg,将其置于20kg的水中,保持温度为30℃,搅拌至萃取完成,得到己内酰胺的水溶液。
经分析,环己酮肟的转化率为100%,己内酰胺的选择性为97.8%,中和结晶-萃取处理后己内酰胺的产量为19.1kg,收率为95.5%,副产硫酸铵量为16.82kg,每公斤己内酰胺副产硫酸铵0.88kg。
实施例6
将20kg环己酮肟置于50kg丁酮中,搅拌至完全溶解后,将其预热到170℃,取浓度为10%的发烟硫酸17kg,将其置于20kg丁酮中。将其预热到170℃。将环己酮肟溶液加入到发烟硫酸溶液中,持续搅拌并保持反应温度为170℃,反应7min后停止反应,得到己内酰胺-硫酸溶液。
将己内酰胺-硫酸溶液加入到107kg的饱和硫酸铵水溶液中,保持温度为50℃。开始搅拌并向其中逐渐通入氨气,通入后液体分为三相,下层的水相的pH值为6.25。取上层己内酰胺相共100.9kg,将其置于闪蒸罐中,保持温度为40℃,绝对压力为10kPa,闪蒸后除去丁酮溶剂,得到己内酰胺水溶 液33.2kg。将己内酰胺的水溶液置于25kg的苯中,保持温度为40℃,搅拌至萃取完成。取上层的己内酰胺-苯相共41.6kg,将其置于20kg的水中,保持温度为30℃,搅拌至萃取完成,得到己内酰胺的水溶液。
经分析,环己酮肟的转化率为100%,己内酰胺的选择性为98.3%,中和结晶-萃取处理后己内酰胺的产量为19.3kg,收率为96.5%,副产硫酸铵量为23.41kg,每公斤己内酰胺副产硫酸铵1.21kg。
对比例1
将20kg环己酮肟预热到100℃,取浓度为10%的发烟硫酸20kg,将其预热到100℃。将环己酮肟溶液缓慢喷雾加入到发烟硫酸中,持续搅拌并保持反应温度为100℃,反应5min后停止反应,得到己内酰胺-硫酸相。将己内酰胺-硫酸相置于40kg的饱和硫酸铵水溶液中,保持温度为45℃,开始搅拌并向其中逐渐通入氨气,通入后液体分为三相,下层的水相的pH值为6.0。取上层己内酰胺相共31.7kg,将其置于30kg的苯中,保持温度为45℃,搅拌至萃取完成。取上层的己内酰胺-苯相共54.1kg,将其置于20kg的水中,保持温度为30℃,搅拌至萃取完成,得到己内酰胺的水溶液。
经分析,环己酮肟的转化率为100%,己内酰胺的选择性为98.7%,中和结晶-萃取处理后己内酰胺的产量为19.4kg,收率为96.8%,副产硫酸铵量为27.6kg,每公斤己内酰胺副产硫酸铵1.42kg。
对比例2
将20kg环己酮肟预热到100℃,取浓度为10%的发烟硫酸12.5kg,将其预热到100℃。将环己酮肟溶液缓慢喷雾加入到发烟硫酸中,持续搅拌并 保持反应温度为100℃,反应5min后停止反应,得到己内酰胺-硫酸相。将己内酰胺-硫酸相置于20kg的饱和硫酸铵水溶液中,保持温度为45℃,开始搅拌并向其中逐渐通入氨气,通入后液体分为三相,下层的水相的pH值为6.1。取上层己内酰胺相共30.1kg,将其置于30kg的苯中,保持温度为45℃,搅拌至萃取完成。取上层的己内酰胺-苯相共50.6kg,将其置于20kg的水中,保持温度为30℃,搅拌至萃取完成,得到己内酰胺的水溶液。
经分析,环己酮肟的转化率为100%,己内酰胺的选择性为69.8%,中和结晶-萃取处理后己内酰胺的产量为12.7kg,收率为63.4%,副产硫酸铵量为17.2kg,每公斤己内酰胺副产硫酸铵1.35kg。
说明:对比例1中不用溶剂,硫酸多加,结果表明收率高,但硫铵副产多,对比例2中也不用溶剂,硫酸少加,结果表明硫酸副产少,但收率低。说明不加溶剂时,收率和副产难以两全。
对比例3
将20kg环己酮肟置于50kg三氯乙烯中,搅拌至完全溶解后,将其预热到150℃,取浓度为10%的发烟硫酸13kg,将其置于14kg三氯乙烯中。将其预热到150℃。将环己酮肟溶液加入到发烟硫酸溶液中,持续搅拌并保持反应温度为150℃,反应15min后停止反应,得到含有己内酰胺-硫酸盐的溶液。此时,三氯乙烯能溶解部分的己内酰胺-硫酸盐,使产品分两相,两相中均溶有己内酰胺-硫酸盐。
将产品溶液加入到97kg的饱和硫酸铵水溶液中,保持温度为50℃。开始搅拌并向其中逐渐通入氨气,通入后液体分为三相,下层为硫酸铵沉淀, 中层的水相的pH值为6.30,上层为含有己内酰胺的有机溶液相。经分析,上层的有机溶液相中含有己内酰胺-硫酸盐难以除净。
取上层己内酰胺相共96.8kg,将其置于闪蒸罐中,保持温度为50℃,绝对压力为101kPa,闪蒸后除去三氯乙烯,得到己内酰胺水溶液32.6kg。将己内酰胺的水溶液置于20kg的苯中,保持温度为45℃,搅拌至萃取完成。取上层的己内酰胺-苯相共38.8kg,将其置于20kg的水中,保持温度为25℃,搅拌至萃取完成,得到己内酰胺的水溶液。
经分析,环己酮肟的转化率为100%,己内酰胺的选择性为99.7%,由于己内酰胺-硫酸盐没有除净,部分己内酰胺随溶剂流失,己内酰胺的产量为18.2kg,收率为91.0%,副产硫酸铵量为16.8kg,每公斤己内酰胺副产硫酸铵0.92kg。虽然副产硫酸铵减少,但是己内酰胺的收率较低。而且溶剂被污染,难以重复利于。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种贝克曼重排反应合成己内酰胺的方法,其特征在于,包括以下步骤:
    (1)将环己酮肟置于溶剂中,搅拌至溶解;
    (2)将发烟硫酸置于溶剂中,搅拌至溶解;
    (3)将步骤(1)及(2)所得的溶液预热,再将环己酮肟溶液逐渐加入到发烟硫酸溶液中,得到两相混合液,搅拌至混合均匀并保温,得到己内酰胺-硫酸溶液;
    (4)将步骤(3)所得的己内酰胺-硫酸溶液注入饱和硫酸铵水溶液中,通入足量氨气至中性。通过盐析使溶剂、己内酰胺与硫酸铵水溶液完全分离。分离后的液体为三相,分别为己内酰胺溶剂相和饱和硫酸铵水溶液相和硫酸铵结晶;
    (5)将步骤(4)所得的己内酰胺相进行闪蒸,除去己内酰胺相中的溶剂,得到己内酰胺的水溶液;
    (6)将步骤(5)所得的己内酰胺水溶液加入到苯中,搅拌萃取后得到己内酰胺-苯相和水相;
    (7)将步骤(6)所得的己内酰胺-苯相加入到水中,搅拌萃取后得到苯相和己内酰胺-水相,取水相经精馏除水后得到己内酰胺;
    所述步骤(1)和步骤(2)中溶剂相同,所选的溶剂为1,1,2,2-四氯乙烷、1,1-二氟-1,2-二氯乙烷、乙腈、N,N-二甲基甲酰胺、丙酮、丁酮、二氧六环、叔丁醇中的一种或几种。
  2. 根据权利要求1所述的贝克曼重排反应合成己内酰胺的方法,其特征在于:所述步骤(1)中,环己酮肟的质量浓度为5~50wt%,优选浓度为25~40wt%。
  3. 根据权利要求1所述的贝克曼重排反应合成己内酰胺的方法,其特征在于:所述步骤(2)中,所用发烟硫酸中SO 3浓度为3~30%,优选为 12~20%。发烟硫酸在溶剂中浓度为30~80wt%,优选浓度为40~50wt%。
  4. 根据权利要求1所述的贝克曼重排反应合成己内酰胺的方法,其特征在于:所述步骤(3)中,环己酮肟溶液预热温度为50~270℃,优选为80~180℃,发烟硫酸溶液的预热温度为50~270℃,优选为80~180℃。
  5. 根据权利要求1所述的贝克曼重排反应合成己内酰胺的方法,其特征在于:所述步骤(3)中,环己酮肟与发烟硫酸的质量比为0.5~4,优选为1.2~2.2。
  6. 根据权利要求1所述的贝克曼重排反应合成己内酰胺的方法,其特征在于:所述步骤(2)中,反应温度为50~270℃,优选为80~180℃,反应时间为0.5~30min,优选为5~15min。
  7. 根据权利要求1所述的贝克曼重排反应合成己内酰胺的方法,其特征在于:所述步骤(4)中,己内酰胺-硫酸溶液与饱和硫酸铵溶液的质量比为1:1,通入氨气后水相的pH值为4~10,中和结晶反应温度为30~70℃,优选为40~50℃。
  8. 根据权利要求1所述的贝克曼重排反应合成己内酰胺的方法,其特征在于:所述步骤(5)中,闪蒸温度为40~90℃,压力为0.1~100kPa,闪蒸后的己内酰胺溶液中溶剂含量小于0.01%。
  9. 根据权利要求1所述的贝克曼重排反应合成己内酰胺的方法,其特征在于:所述步骤(6)中,己内酰胺相与苯的质量比为0.5~3,优选为1~2。处理温度为30~70℃,优选为40~50℃。
  10. 根据权利要求1所述的贝克曼重排反应合成己内酰胺的方法,其特征在于:所述步骤(7)中,己内酰胺-苯相与水的质量比为1~5,优选为2~3,优选为20~40℃。
PCT/CN2022/120387 2022-06-29 2022-09-22 一种贝克曼重排反应合成己内酰胺的方法 WO2024000849A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210750311.4A CN115093354B (zh) 2022-06-29 2022-06-29 一种贝克曼重排反应合成己内酰胺的方法
CN202210750311.4 2022-06-29

Publications (1)

Publication Number Publication Date
WO2024000849A1 true WO2024000849A1 (zh) 2024-01-04

Family

ID=83295493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120387 WO2024000849A1 (zh) 2022-06-29 2022-09-22 一种贝克曼重排反应合成己内酰胺的方法

Country Status (2)

Country Link
CN (1) CN115093354B (zh)
WO (1) WO2024000849A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806638A (en) * 1986-10-17 1989-02-21 Basf Aktiengesellschaft Neutralization of reaction mixtures obtained by Beckman rearrangement of cyclohexanone oxime
CN1508128A (zh) * 2002-12-13 2004-06-30 中国石油化工股份有限公司巴陵分公司 一种已内酰胺的制备方法
CN104356039A (zh) * 2014-11-10 2015-02-18 河北美邦工程科技有限公司 一种己内酰胺制备工艺
CN104387322A (zh) * 2014-10-21 2015-03-04 湖南百利工程科技股份有限公司 一种低副产硫酸铵的己内酰胺的制备方法
CN104910071A (zh) * 2015-05-08 2015-09-16 河北美邦工程科技股份有限公司 一种制备己内酰胺的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL277685A (zh) * 1961-04-27
DE2651195C3 (de) * 1976-11-10 1985-01-31 Basf Ag, 6700 Ludwigshafen Verfahren zur Gewinnung von grobkristallinem reinem Ammonsulfat
US4138472A (en) * 1976-11-10 1979-02-06 Basf Aktiengesellschaft Process for obtaining coarsely crystalline pure ammonium sulfate
CN105408313B (zh) * 2013-07-26 2018-11-09 Cap Iii 有限公司 一种工业规模回收己内酰胺和结晶硫酸铵的连续方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806638A (en) * 1986-10-17 1989-02-21 Basf Aktiengesellschaft Neutralization of reaction mixtures obtained by Beckman rearrangement of cyclohexanone oxime
CN1508128A (zh) * 2002-12-13 2004-06-30 中国石油化工股份有限公司巴陵分公司 一种已内酰胺的制备方法
CN104387322A (zh) * 2014-10-21 2015-03-04 湖南百利工程科技股份有限公司 一种低副产硫酸铵的己内酰胺的制备方法
CN104356039A (zh) * 2014-11-10 2015-02-18 河北美邦工程科技有限公司 一种己内酰胺制备工艺
CN104910071A (zh) * 2015-05-08 2015-09-16 河北美邦工程科技股份有限公司 一种制备己内酰胺的方法

Also Published As

Publication number Publication date
CN115093354B (zh) 2024-01-16
CN115093354A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
CN110835311A (zh) 一种由环己酮肟制备6-氨基己腈的方法
CN101891681B (zh) 一种由环己酮肟制备己内酰胺的贝克曼重排新方法
CN103524551B (zh) 一种n-正丁基硫代磷酰三胺的连续化生产工艺
JP3219835B2 (ja) 多環芳香族ポリアミンの製造方法
US11981616B2 (en) Method for preparing 3,3′-diaminobenzidine
JPS63284151A (ja) 多核芳香族ポリアミンの製造方法
JPH05170708A (ja) 多環芳香族ポリアミンの製造方法
WO2024000849A1 (zh) 一种贝克曼重排反应合成己内酰胺的方法
WO2024000848A1 (zh) 一种不副产硫酸铵的己内酰胺合成方法
KR20130041149A (ko) 고온 락탐 중화
JPS5826338B2 (ja) ポリイソシアネ−トノ セイゾウホウ
US4094907A (en) Process for the preparation of polyamines
CN101168524B (zh) 一种低磺化的己内酰胺制备方法
CN113548995A (zh) 一种α-吡咯烷酮的制备方法
CN116783156A (zh) 溴代链烷酸的氨解方法
CN113105332A (zh) 在微通道连续流反应器中制备艾曲波帕硝化中间体的方法
CN111747926A (zh) 一种羟哌吡酮游离碱的合成工艺改进方法
CN114456087B (zh) 一种利用微通道反应器制备间硝基苯甲腈的方法
CN116924922B (zh) 一种连续化生产苄索氯铵的方法
CN217140330U (zh) 一种固定床反应器连续生产海因的装置
US4147724A (en) Process for the preparation of polyamines
JP2002338529A (ja) リン酸の存在下でのモノニトロトルエンの製造のための連続等温方法
CN115974720A (zh) 一种两段氨肟化反应制备酮肟的方法
JPH02304046A (ja) 高純度0‐トルイル酸の製造法
CN117431276A (zh) 一种二腈的精制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948938

Country of ref document: EP

Kind code of ref document: A1