WO2023286499A1 - エポキシ樹脂組成物、フィルム、フィルムの製造方法、及び硬化物 - Google Patents

エポキシ樹脂組成物、フィルム、フィルムの製造方法、及び硬化物 Download PDF

Info

Publication number
WO2023286499A1
WO2023286499A1 PCT/JP2022/023186 JP2022023186W WO2023286499A1 WO 2023286499 A1 WO2023286499 A1 WO 2023286499A1 JP 2022023186 W JP2022023186 W JP 2022023186W WO 2023286499 A1 WO2023286499 A1 WO 2023286499A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
component
film
group
Prior art date
Application number
PCT/JP2022/023186
Other languages
English (en)
French (fr)
Inventor
尚裕 小林
真典 吉田
賢三 鬼塚
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2023535180A priority Critical patent/JPWO2023286499A1/ja
Priority to CN202280046138.8A priority patent/CN117580888A/zh
Priority to KR1020237035613A priority patent/KR20230157487A/ko
Publication of WO2023286499A1 publication Critical patent/WO2023286499A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/223Di-epoxy compounds together with monoepoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/36Epoxy compounds containing three or more epoxy groups together with mono-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Definitions

  • the present invention relates to an epoxy resin composition, a film, a method for producing a film, and a cured product.
  • epoxy resins have been used for a wide range of applications, such as insulating materials for electrical and electronic components, sealing materials, adhesives, matrix resins for conductive materials and fiber-reinforced plastics, and impregnating adhesives for motor coils.
  • the recent demand for electronic devices is wide-ranging, such as miniaturization, high functionality, weight reduction, and multi-functionality.
  • miniaturization, miniaturization, and densification are progressing, the size of semiconductor chips is also increasing.
  • An underfill material is provided in the gap between the semiconductor chip and the substrate to protect the bump connection portion and the circuit surface of the chip, and an epoxy resin composition is used as the underfill material.
  • Epoxy resin compositions applicable to the underfill material include, for example, an epoxy resin composition containing microencapsulated amine/epoxy adduct particles and a reactive diluent, and exhibiting excellent storage stability, curing properties, and curing properties.
  • a one-liquid type epoxy resin composition having excellent physical properties and low viscosity has been disclosed (see, for example, Patent Document 1).
  • a microcapsule-type curing agent whose core is an epoxy resin curing agent containing two or more amine compounds, and a thermosetting liquid resin having a viscosity of 0.03 Pa s or more and less than 3 Pa s at 25°C.
  • a one-liquid type epoxy resin composition is disclosed which is an epoxy resin composition containing, and which is excellent in storage stability, low-temperature curability, and interstitial permeability (see, for example, Patent Document 2).
  • the underfill material for the gap between the semiconductor chip and the substrate has been shortened as a response to the increase in area due to the increase in size of the semiconductor chip and the response to the narrow gap due to the finer pitch of the semiconductor chip.
  • Low viscosity is sought to allow sufficient penetration in time.
  • the underfill material is required to have low-temperature curability, for example, sufficient curability at around 100° C., in order to reduce the influence on the constituent members of the semiconductor chip.
  • the underfill material is required to be a one-component epoxy resin composition that can omit the mixing process at the time of use. Since the epoxy resin and curing agent are integrated, high storage stability is required. That is, there is a demand for a one-liquid type epoxy resin composition that simultaneously has low viscosity, sufficient curability at around 100° C., and high storage stability at a high level.
  • a coating solution was prepared by dissolving components such as an epoxy resin, a curing agent, a curing accelerator, and a film-forming polymer in a solvent, and the coating solution was applied onto a predetermined support. After that, a film is produced by performing a drying treatment. Therefore, the coating liquid is strongly required to have storage stability as the coating liquid, stability during the film manufacturing process when the coating liquid is applied and dried, and stability in the film state.
  • the one-component epoxy resin compositions disclosed in Patent Documents 1 and 2 still have room for improvement in terms of both curability and storage stability.
  • the present invention provides an epoxy resin composition that exhibits low viscosity, sufficient curability at around 100°C, and excellent storage stability at the same time, and provides an epoxy resin composition.
  • An object of the present invention is to provide an epoxy resin composition which is excellent in stability during the production process of a film using and stability in the film state.
  • the present invention is as follows.
  • Component (A) an epoxy resin
  • Component (B) a microcapsule-type curing agent
  • Component (C) a reactive diluent
  • Component (D) a compound represented by the following formula (1); , an epoxy resin composition.
  • X 1 has 2 or more and 5 or less continuous carbon-carbon bonds
  • the carbon substituents and R 1 to R 5 contained in X 1 are hydrogen and alkyl groups, respectively.
  • the carbon substituent contained in X 1 and R 1 to R 5 may be the same or different, and may be a condensed ring compound in which any one selected from R 1 to R 5 exists in the same ring.
  • X 2 has 2 or more and 4 or less continuous carbon-carbon bonds
  • the carbon substituents and R 1 to R 5 contained in X 2 are hydrogen and alkyl groups, respectively.
  • the carbon substituent contained in X 2 and R 1 to R 5 may be the same or different, and may be a condensed ring compound in which any one selected from R 1 to R 5 exists in the same ring.
  • R 1 to R 9 each consist of hydrogen, an alkyl group, an unsaturated aliphatic group, an aromatic group, a heteroatom-containing substituent, a halogen atom-containing substituent, and a halogen atom. It is a species selected from the group.
  • R 1 to R 9 may be the same or different.
  • a condensed ring compound in which any one selected from R 1 to R 5 exists in the same ring may also be used.
  • R 1 to R 8 each consist of hydrogen, an alkyl group, an unsaturated aliphatic group, an aromatic group, a heteroatom-containing substituent, a halogen atom-containing substituent, and a halogen atom. It is a species selected from the group. R 1 to R 8 may be the same or different. Condensed ring compounds in which any one selected from R 1 to R 5 exists in the same ring may also be used. )
  • a film comprising a support and a resin composition layer containing the epoxy resin composition according to any one of [1] to [11] formed on the support.
  • the film is [12] or [13] above, which is any one selected from the group consisting of an interlayer insulating film, a film-type solder resist, a sealing sheet, a conductive film, an anisotropic conductive film, and a thermally conductive film. Film as described.
  • [15] A method for producing a film according to any one of [12] to [14], After coating the support with a preparation containing at least the epoxy resin composition of any one of [1] to [11] and component (F) an organic solvent, the temperature range is from 50 to 160°C. and a step of drying the component (F) organic solvent for a time range of 1 to 30 minutes.
  • [16] A cured product of the epoxy resin composition according to any one of [1] to [11].
  • [17] A cured product of the film according to any one of [12] to [14].
  • the epoxy resin composition of this embodiment is Component (A): an epoxy resin; Component (B): a microcapsule-type curing agent; Component (C): a reactive diluent; Component (D): a compound represented by the following formula (1); including.
  • X 1 has 2 or more and 5 or less continuous carbon-carbon bonds, and each of the carbon substituents and R 1 to R 5 contained in X 1 is hydrogen, an alkyl group, It is one selected from the group consisting of an unsaturated aliphatic group, an aromatic group, a heteroatom-containing substituent, a halogen atom-containing substituent, and a halogen atom.
  • the carbon substituents contained in X 1 and R 1 to R 5 may be the same or different. Condensed ring compounds in which any one selected from R 1 to R 5 exists in the same ring may also be used.
  • Epoxy resins include, but are not limited to, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, tetrabromobisphenol A type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, tetrabromobiphenyl type epoxy resin, diphenyl ether type epoxy resin, benzophenone type epoxy resin, phenylbenzoate type epoxy resin, diphenyl sulfide type epoxy resin, diphenyl sulfoxide type epoxy resin , Diphenylsulfone-type epoxy resin, Diphenyl disulfide-type epoxy resin, Naphthalene-type epoxy resin, Anthracene-type epoxy resin, Hydroquinone-type epoxy resin
  • the epoxy resin composition of the present embodiment preferably contains a bisphenol type epoxy resin from the viewpoint of handleability and heat resistance, and contains a bisphenol F type epoxy resin from the viewpoint of imparting storage stability and good reactivity. is more preferable, and from the viewpoint of imparting sufficient mechanical properties, it is further preferable to further contain a bisphenol A type epoxy resin. Further, by containing a bisphenol A type epoxy resin in addition to the bisphenol F type epoxy resin, more excellent storage stability and good reactivity are exhibited. Although this mechanism is not intended to be limited, it can be considered as follows.
  • the amount of bisphenol F-type epoxy resin added to a total of 100 parts by mass of bisphenol F-type epoxy resin and bisphenol A-type epoxy resin is sufficient to achieve the above effects. is preferably 5 parts by mass or more, more preferably 15 parts by mass or more, even more preferably 25 parts by mass or more, even more preferably 30 parts by mass or more, and even more preferably 40 parts by mass or more.
  • the amount of bisphenol F type epoxy resin added is preferably 90 parts by mass or less, more preferably 85 parts by mass or less, and 80 parts by mass. More preferred are:
  • the total amount of chlorine contained in the epoxy resin is preferably 2500 ppm or less, more preferably 2500 ppm or less, from the viewpoint of obtaining an epoxy resin composition having excellent electrical properties and an excellent balance between curability and storage stability. is 2000 ppm or less, more preferably 1500 ppm or less, and even more preferably 900 ppm or less.
  • the total amount of chlorine contained in (A) the epoxy resin is preferably 0.01 ppm or more, more preferably 0.02 ppm or more, and still more preferably 0, from the viewpoint of achieving a predetermined technical significance.
  • the total amount of chlorine contained in (A) the epoxy resin indicates the total amount of organic chlorine and inorganic chlorine contained in the (A) epoxy resin, and is a value based on the mass of the (A) epoxy resin.
  • the total chlorine content of the epoxy resin is measured by the following method.
  • the epoxy resin is washed with xylene, and washing and filtration are repeated until there is no epoxy resin in the washing solution, xylene. Next, the filtrate is distilled off under reduced pressure at 100° C. or less to obtain an epoxy resin.
  • a sample of 1 to 10 g of the obtained epoxy resin was precisely weighed so that the titration amount was 3 to 7 mL, dissolved in 25 mL of ethylene glycol monobutyl ether, and 25 mL of 1 N KOH propylene glycol solution was added thereto for 20 minutes. After boiling, it can be calculated from the titration amount titrated with an aqueous solution of silver nitrate.
  • the chlorine contained in the 1,2-chlorohydrin group is generally called hydrolyzable chlorine.
  • the amount of hydrolyzable chlorine in the epoxy resin is preferably 100 ppm or less, more preferably 50 ppm or less, still more preferably 0.01 or more and 20 ppm or less, still more preferably 0.05 or more and 10 ppm or less.
  • the amount of hydrolyzable chlorine in the epoxy resin is 100 ppm or less, it is advantageous from the viewpoint of achieving both high curability and storage stability in the epoxy resin composition of the present embodiment. A cured product of the composition tends to exhibit excellent electrical properties.
  • (A) the hydrolyzable chlorine in the epoxy resin is measured by the following method. 3 g of sample is dissolved in 50 mL of toluene, 20 mL of methanol solution of 0.1 N KOH is added thereto, boiled for 15 minutes, and then titrated with an aqueous solution of silver nitrate.
  • the epoxy resin composition of the present embodiment contains component (B): a microcapsule-type curing agent (hereinafter sometimes referred to as (B) microcapsule-type curing agent, component (B)).
  • component (B) a microcapsule-type curing agent
  • a microcapsule-type curing agent is a curing agent having at least a core containing a curing agent component and a shell covering the core. Since the component (B) is of a microcapsule type, the curing agent component, the above-mentioned (A) epoxy resin, the later-described component (C): reactive diluent, and the later-described component (D): a predetermined compound are combined. Since they are separated physically by the capsule membrane, they tend to be excellent in storage stability.
  • the core constituting the microcapsule-type curing agent is not particularly limited as long as it is a curing agent used in epoxy resins. Examples include amine-based curing agents, amide-based curing agents, phenol-based curing agents, Examples include acid anhydride-based curing agents, catalyst-type curing agents, modified products thereof, and the like. These may be used individually by 1 type, and may use 2 or more types together.
  • amine-based curing agents include, but are not limited to, amine adducts, modified polyamines, aliphatic polyamines, heterocyclic polyamines, alicyclic polyamines, aromatic amines, polyamidoamines, ketimine type, urethane amine type, and the like.
  • amide-based curing agents include, but are not limited to, dicyandiamide and guanidine-based compounds that are derivatives thereof, compounds obtained by adding acid anhydrides to amine-based compounds, and hydrazide-based compounds.
  • hydrazide compounds include, but are not limited to, succinic acid dihydrazide, adipic acid dihydrazide, phthalic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide, p-hydroxybenzoic acid hydrazide, salicylic acid hydrazide, phenylaminopropionic acid hydrazide, malein and acid dihydrazides.
  • guanidine-based compounds include, but are not limited to, dicyandiamide, methylguanidine, ethylguanidine, propylguanidine, butylguanidine, dimethylguanidine, trimethylguanidine, phenylguanidine, diphenylguanidine, and toluylguanidine.
  • Phenolic curing agents include, but are not limited to, phenol novolac resins, cresol novolak resins, phenol aralkyl resins, cresol aralkyl resins, naphthol aralkyl resins, biphenyl-modified phenol resins, biphenyl-modified phenol aralkyl resins, and dicyclopentadiene-modified resins.
  • acid anhydride curing agents include, but are not limited to, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, and methyl nadic anhydride. , hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, and the like.
  • catalytic curing agents include, but are not limited to, cationic thermosetting catalysts, BF 3 -amine complexes, and the like.
  • an amine-based curing agent containing a low-molecular-weight amine compound (a1) and an amine adduct is preferable from the viewpoint of having moderate reactivity.
  • the low-molecular-weight amine compound (a1) constituting the amine-based curing agent includes a compound having at least one primary amino group and/or secondary amino group but no tertiary amino group, and at least one tri- and compounds having a secondary amino group and at least one active hydrogen group.
  • Examples of the "compound having at least one primary amino group and/or secondary amino group but no tertiary amino group” include, but are not limited to, methylamine, ethylamine, propylamine, butylamine, Primary amines not having a tertiary amino group, such as ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, ethanolamine, propanolamine, cyclohexylamine, isophoronediamine, aniline, toluidine, diaminodiphenylmethane, diaminodiphenylsulfone, etc.
  • Amines dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, dimethanolamine, diethanolamine, dipropanolamine, dicyclohexylamine, piperidine, piperidone, diphenylamine, phenylmethylamine, phenylethylamine, etc. secondary amines having no secondary amino group;
  • Examples of the "compound having at least one tertiary amino group and at least one active hydrogen group” include, but are not limited to, 2-dimethylaminoethanol, 1-methyl-2-dimethylaminoethanol, Amino alcohols such as 1-phenoxymethyl-2-dimethylaminoethanol, 2-diethylaminoethanol, 1-butoxymethyl-2-dimethylaminoethanol, methyldiethanolamine, triethanolamine, N- ⁇ -hydroxyethylmorpholine; 2-( dimethylaminomethyl)phenol, 2,4,6-tris(dimethylaminomethyl)phenol and other aminophenols; 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole , 2-phenylimidazole, 1-aminoethyl-2-methylimidazole, 1-(2-hydroxy-3-phenoxypropyl)-2-methylimidazole, 1-(2-hydroxy-3-phenoxyprop
  • imidazoles are preferable from the viewpoint of having moderate reactivity.
  • each of the carboxylic acid compound, the sulfonic acid compound, the urea compound, the isocyanate compound, and the epoxy resin (e1) is reacted with the amine compound (a2). group-containing compounds, and the like.
  • carboxylic acid compounds include, but are not limited to, succinic acid, adipic acid, sebacic acid, phthalic acid, dimer acid, and the like.
  • sulfonic acid compound include, but are not limited to, ethanesulfonic acid, p-toluenesulfonic acid, and the like.
  • urea compounds include, but are not limited to, urea, methylurea, dimethylurea, ethylurea, t-butylurea, and the like.
  • isocyanate compounds include, but are not limited to, aliphatic diisocyanates, alicyclic diisocyanates, aromatic diisocyanates, aliphatic triisocyanates, and polyisocyanates.
  • aliphatic diisocyanates include, but are not limited to, ethylene diisocyanate, propylene diisocyanate, butylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and the like.
  • alicyclic diisocyanates include, but are not limited to, isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, norbornane diisocyanate, 1,4-isocyanatocyclohexane, 1,3-bis(isocyanatomethyl)-cyclohexane , 1,3-bis(2-isocyanatopropyl-2-yl)-cyclohexane and the like.
  • aromatic diisocyanates include, but are not limited to, tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylene diisocyanate, 1,5-naphthalene diisocyanate, and the like.
  • aliphatic triisocyanates include, but are not limited to, 1,6,11-undecane triisocyanate, 1,8-diisocyanate-4-isocyanatomethyloctane, 1,3,6-triisocyanatomethylhexane, and the like. be done.
  • polyisocyanate examples include, but are not limited to, polymethylene polyphenyl polyisocyanate and polyisocyanate derived from the above diisocyanate compound.
  • polyisocyanate derived from the diisocyanate compound examples include isocyanurate-type polyisocyanate, burette-type polyisocyanate, urethane-type polyisocyanate, allophanate-type polyisocyanate, and carbodiimide-type polyisocyanate.
  • Examples of the epoxy resin (e1) include the compounds described in ((A) epoxy resin) above.
  • the amine compounds given as examples of the low-molecular amine compound (a1) constituting the amine-based curing agent can be used.
  • amine adducts those obtained by the reaction of the epoxy resin (e1) and the amine compound (a2) are particularly preferred.
  • the amine adduct obtained by reacting the epoxy resin (e1) and the amine compound (a2) is also preferable from the viewpoint that the unreacted amine compound (a2) can be used as the low-molecular-weight amine compound (a1).
  • the core component of the microcapsule-type curing agent preferably contains a curing agent that is solid at 25°C and 1013 hPa from the viewpoint of storage stability.
  • the average particle size of the cores that constitute the microcapsule-type curing agent is preferably greater than 0.3 ⁇ m and 12 ⁇ m or less.
  • the average particle size of the cores is larger than 0.3 ⁇ m, aggregation of the cores can be further prevented, and (B) the formation of the microcapsule-type curing agent is further facilitated, and the storage stability of the epoxy resin composition of the present embodiment is improved. is sufficient for practical use.
  • the core has an average particle size of 12 ⁇ m or less, a homogeneous cured product can be obtained when the epoxy resin composition of the present embodiment is cured.
  • the epoxy resin composition of the present embodiment can contain diluents, fillers, pigments, dyes, flow control agents, thickeners, reinforcing agents, release agents, When compounding wetting agents, stabilizers, flame retardants, surfactants, organic solvents, conductive fine particles, crystalline alcohols, other resins, etc., it is possible to prevent the formation of large particle size aggregates, and long-term reliability.
  • the lower limit of the average particle size of the core is preferably greater than 0.3 ⁇ m, more preferably 0.4 ⁇ m or more, and even more preferably 0.5 ⁇ m or more.
  • the upper limit is preferably 12 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 9 ⁇ m or less.
  • the average particle diameter of the core means the average particle diameter defined by the median diameter. More specifically, it refers to the Stokes diameter measured by a laser diffraction/light scattering method using a particle size distribution meter ("HORIBA LA-920" manufactured by Horiba, Ltd.).
  • the method for controlling the average particle size of the core within the above-described numerical range is not limited to the following, but for example, a method of performing precise control in the step of pulverizing a hardening agent in lumps, Examples include a method of performing a pulverization step and a fine pulverization step, and then classifying particles having a desired average particle size using a precision classifier, and a method of spray-drying a solution in which a bulk curing agent is dissolved in a solvent. be done.
  • a device used for pulverization for example, a ball mill, an attritor, a bead mill, a jet mill, or the like can be used as necessary, but an impact type pulverizer is preferably used.
  • Examples of the impact pulverizer include jet mills such as swirling flow powder collision jet mills and powder collision counter jet mills.
  • a jet mill is a device that collides solid materials with each other by means of a high-speed jet flow using air as a medium to form fine particles.
  • As a method of performing precise control in the pulverization process there is a method of controlling temperature, humidity, pulverization amount per unit time, etc. during pulverization.
  • a sieve for example, Examples include a method of classifying using a standard sieve such as 325 mesh or 250 mesh
  • a classifier for example, a method of classifying by wind force according to the specific gravity of the particles.
  • Classifiers to be used include wet classifiers and dry classifiers, and dry classifiers are generally preferred.
  • classifiers examples include “Elbow Jet” manufactured by Nittetsu Mining Co., Ltd., “Fine Sharp Separator” manufactured by Hosokawa Micron Corporation, “Variable Impactor” manufactured by Sankyo Dengyo Co., Ltd., and “Specic Classifier” manufactured by Seishin Enterprise Co., Ltd. , Japan Donaldson's “Donaserec”, Yaskawa Corporation's “YM Microcassette”, Nisshin Engineering's “Turbo Classifier”, and other dry types such as Air Separator, Micron Separator, Microbrex, Accucut, etc. Examples include, but are not limited to, classifiers and the like.
  • a method of directly granulating the particles of the curing agent that constitutes the core instead of pulverizing, there is a method of spray-drying a solution in which a bulk curing agent is dissolved in a solvent. Specifically, there is a method of uniformly dissolving the curing agent constituting the core in an appropriate organic solvent, spraying fine droplets in a solution state, and drying with hot air or the like. As a drying device in this case, an ordinary spray drying device can be used.
  • the curing agent constituting the core is uniformly dissolved in a suitable organic solvent, and then the uniform solution is vigorously stirred to reduce the amount of the curing agent constituting the core.
  • the curing agent that constitutes the core is precipitated in the form of fine particles.
  • a method of removing the solvent by drying at a low temperature below the melting point of the curing agent that constitutes the core after separating the precipitated particles by filtration As a method for adjusting the average particle size of the curing agent that constitutes the core in a particulate state by a method other than classification, for example, a method of adjusting the average particle size by mixing a plurality of particles with different average particle sizes. etc.
  • Mixers used for the purpose of mixing powders include a container rotating mixer that rotates the container body containing the powder to be mixed, and a mechanical stirring or airflow mixer that does not rotate the container body containing the powder. Examples include a stationary container type mixer that mixes by stirring, a compound type mixer that rotates a container containing powder and uses other external force to mix, and the like.
  • the shape of the core that constitutes the microcapsule-type curing agent is not limited to the following, and may be, for example, granular, powdery, irregular, or irregular with rounded corners.
  • the shape of the core constituting the microcapsule-type curing agent is preferably as close to a true sphere as possible. The closer the core is to a true sphere, the more uniformly the capsule membrane, which is the shell to be described later, is formed, and the component (B) tends to exhibit low cohesion, excellent storage stability, and excellent solvent resistance.
  • the degree of closeness to a true sphere is represented by a degree of circularity, and the degree of circularity of a true sphere is 1.
  • the circularity of the core of component (B) is preferably 0.93 or more, preferably 0.95 or more, and more preferably 0.98 or more.
  • the circularity of the core that constitutes the microcapsule-type curing agent can be measured by a flow particle image analysis method. More specifically, a sample for measurement is poured into a liquid, the particles are photographed, the particle diameter is obtained from the particle projected area, and the ratio of the peripheral length of the projected particle image to the circumference of the circle corresponding to the particle diameter is calculated. can ask.
  • the method for controlling the circularity of the core is not particularly limited, but it is effective to modify the surface of the curing agent that constitutes the core. Examples include a method of mechanically rounding particles or a method of hot air treatment.
  • the microcapsule-type curing agent preferably has a structure in which the surface of the core is covered with a shell containing a synthetic resin and/or an inorganic oxide.
  • (B) constitutes a microcapsule type curing agent. It is preferable that the shell contains a synthetic resin.
  • Synthetic resins contained in the shell include, but are not limited to, epoxy-based resins, phenol-based resins, polyester-based resins, polyethylene-based resins, nylon-based resins, polystyrene-based resins, and urethane-based resins.
  • the synthetic resin is preferably an epoxy-based resin, a phenol-based resin, or a urethane-based resin from the viewpoint of the balance between the stability of the film forming the shell and the destructibility when heated.
  • the epoxy resin used for the shell is not limited to the following, but for example, an epoxy resin having two or more epoxy groups, an epoxy resin having two or more epoxy groups and a compound having two or more active hydrogens produced by reaction. and a reaction product of a compound having two or more epoxy groups and a compound having one active hydrogen and a carbon-carbon double bond.
  • a resin produced by a reaction between a compound having two or more epoxy groups and a compound having two or more active hydrogens is preferable, and in particular, an amine-based curing agent and two or more epoxy groups are preferably used. Reaction products with epoxy resins are more preferred.
  • Phenolic resins include, but are not limited to, phenol-formaldehyde polycondensates, cresol-formaldehyde polycondensates, resorcinol-formaldehyde polycondensates, bisphenol A-formaldehyde polycondensates, and phenol-formaldehyde polycondensates. Modified polyethylene polyamine and the like can be mentioned.
  • polyester resins include, but are not limited to, ethylene glycol-terephthalic acid-polypropylene glycol polycondensate, ethylene glycol-butylene glycol-terephthalic acid polycondensate, terephthalic acid-ethylene glycol-polyethylene glycol polycondensate, and the like. is mentioned.
  • polyethylene-based resins include, but are not limited to, ethylene-propylene-vinyl alcohol copolymers, ethylene-vinyl acetate copolymers, ethylene-vinyl acetate-acrylic acid copolymers, and the like.
  • nylon resin examples include, but are not limited to, adipic acid-hexamethylenediamine polycondensate, sebacic acid-hexamethylenediamine polycondensate, and p-phenylenediamine-terephthalic acid polycondensate.
  • polystyrene resins include, but are not limited to, styrene-butadiene copolymers, styrene-butadiene-acrylonitrile copolymers, acrylonitrile-styrene-divinylbenzene copolymers, and styrene-propenyl alcohol copolymers. be done.
  • Urethane resins include, but are not limited to, butyl isocyanate, cyclohexyl isocyanate, octadecyl isocyanate, phenyl isocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, tolidine diisocyanate, naphthalene diisocyanate, Examples include polycondensates of isocyanate monomers such as triphenylmethane triisocyanate, condensates thereof, or polymers thereof with monoalcohols or polyhydric alcohols. Among these, urethane resins, which are addition polymers of monoalcohols or polyhydric alcohols and monoisocyanates or polyhydric isocyanates, are preferred.
  • inorganic oxides include, but are not limited to, boron compounds such as boron oxide and borate esters, silicon dioxide, and calcium oxide.
  • boron oxide is preferable from the viewpoint of the stability of the film forming the shell and the susceptibility to breakage during heating.
  • the shell is selected from the group consisting of an isocyanate compound, an active hydrogen compound, a curing agent for epoxy resins, an epoxy resin, and an amine compound. It preferably contains one or more selected reaction products.
  • the isocyanate compound As the isocyanate compound, the isocyanate compounds exemplified as raw materials for the amine adduct contained in the core can be used.
  • active hydrogen compounds include, but are not limited to, water, compounds having at least one primary amino group and/or secondary amino group, and compounds having at least one hydroxyl group. These active hydrogen compounds may be used singly or in combination of two or more.
  • Examples of compounds having at least one primary amino group and/or secondary amino group include, but are not limited to, aliphatic amines, alicyclic amines, aromatic amines, and the like.
  • aliphatic amines include, but are not limited to, alkylamines such as methylamine, ethylamine, propylamine, butylamine and dibutylamine; alkylenediamines such as ethylenediamine, propylenediamine, butylenediamine and hexamethylenediamine; polyalkylenepolyamines such as ethylenetetramine and tetraethylenepentamine; and polyoxyalkylenepolyamines such as polyoxypropylenediamine and polyoxyethylenediamine.
  • alicyclic amines include, but are not limited to, cyclopropylamine, cyclobutylamine, cyclopentylamine, cyclohexylamine, isophoronediamine, and the like.
  • aromatic amines include, but are not limited to, aniline, toluidine, benzylamine, naphthylamine, diaminodiphenylmethane, diaminodiphenylsulfone, and the like.
  • Examples of compounds having at least one hydroxyl group include alcohol compounds and phenol compounds.
  • Examples of alcohol compounds include, but are not limited to, methyl alcohol, propyl alcohol, butyl alcohol, amyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, lauryl alcohol, and dodecyl alcohol.
  • stearyl alcohol eicosyl alcohol
  • allyl alcohol crotyl alcohol
  • propargyl alcohol cyclopentanol
  • cyclohexanol benzyl alcohol
  • cinnamyl alcohol ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monobutyl, etc.
  • polyhydric alcohols such as pentaerythritol Class: 1 secondary hydroxyl group obtained by reacting a compound having at least one epoxy group with a compound having at least one hydroxyl group, carboxyl group, primary amino group, secondary amino group, or thiol group
  • polyhydric alcohols such as compounds having two or more in the molecule. These alcohol compounds may be primary alcohols, secondary alcohols, or tertiary alcohols.
  • Phenolic compounds include, but are not limited to, carbolic acid, cresol, xylenol, carvacrol, motyl, monophenols such as naphthol, catechol, resorcinol, hydroquinone, bisphenol A, bisphenol F, pyrogallol, phloroglucin, 2-( polyhydric phenols such as dimethylaminomethyl)phenol and 2,4,6-tris(dimethylaminomethyl)phenol; These compounds having at least one hydroxyl group are preferably polyhydric alcohols or polyhydric phenols, more preferably polyhydric alcohols, from the viewpoint of latency and solvent resistance.
  • reaction conditions for preparing two or more reaction products are not particularly limited, but are generally -10° C. to 150° C. for 10 minutes to 12 hours.
  • the compounding ratio is (isocyanate group in the isocyanate compound):(active hydrogen in the active hydrogen compound) (equivalent ratio). , preferably in the range of 1:0.1 to 1:1000.
  • the reaction can be carried out in a predetermined dispersion medium, if necessary.
  • dispersion media include solvents, plasticizers, and resins.
  • solvents include, but are not limited to, hydrocarbons such as benzene, toluene, xylene, cyclohexane, mineral spirits and naphtha; ketones such as acetone, methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK); ethyl acetate; , esters such as acetic acid-n-butyl and propylene glycol monomethyl ethyl ether acetate; alcohols such as methanol, isopropanol, n-butanol, butyl cellosolve and butyl carbitol; and water.
  • hydrocarbons such as benzene, toluene, xylene, cyclohexane, mineral spirits and naphtha
  • ketones such
  • plasticizers include, but are not limited to, phthalate diester plasticizers such as dibutyl phthalate and di(2-ethylhexyl) phthalate; aliphatic dibasic acid esters such as di(2-ethylhexyl) adipate. plasticizers; phosphate triester plasticizers such as tricresyl phosphate; glycol ester plasticizers such as polyethylene glycol ester; Examples of resins include, but are not limited to, silicone resins, epoxy resins, phenol resins, and the like.
  • the reaction between the epoxy resin and the curing agent for the epoxy resin is usually carried out at a temperature range of -10°C to 150°C, preferably 0°C to 100°C, for 1 hour to 168 hours, preferably 2 hours to 72 hours. Done in hours reaction time.
  • the dispersion medium is preferably a solvent or a plasticizer.
  • the mass % of the reaction product contained in the shell as described above is usually 1% by mass or more, preferably 50% by mass or more, and may be 100% by mass. .
  • examples of methods for forming a shell covering the surface of the core include the following methods (1) to (3).
  • examples of the dispersion medium include solvents, plasticizers, and resins.
  • the solvent, plasticizer, and resin one or two or more reaction products selected from the group consisting of the above-described isocyanate compounds, active hydrogen compounds, curing agents for epoxy resins, epoxy resins, and amine compounds.
  • solvents, plasticizers, and resins that can be used in preparing can be used.
  • the method of separating the (B) microcapsule-type curing agent from the dispersion medium after forming the shells by the methods (2) and (3) above is not particularly limited. is preferably separated and removed together with the dispersion medium. Such methods include removing the dispersion medium and unreacted shell-forming material by filtration. After removing the dispersion medium, it is preferable to wash the microcapsule-type curing agent. Washing the microcapsule hardener can remove unreacted shell-forming material adhering to the surface. The washing method is not particularly limited, but the residue left by filtration can be washed with a dispersion medium or a solvent that does not dissolve the microcapsule-type curing agent.
  • the microcapsule-type curing agent By drying the microcapsule-type curing agent after filtering and washing, the microcapsule-type curing agent can be obtained in the form of powder.
  • the drying method is not particularly limited, but it is preferable to dry at a temperature below the melting point or softening point of the curing agent, such as drying under reduced pressure.
  • By pulverizing the microcapsule-type curing agent it is possible to easily perform the blending operation with (A) the epoxy resin. Further, when an epoxy resin is used as a dispersion medium, it is possible to obtain a masterbatch of a microcapsule-type curing agent integrated with the epoxy resin at the same time as the shell is formed, which is preferable.
  • the shell-forming reaction is usually carried out in a temperature range of -10°C to 150°C, preferably 0°C to 100°C, for a reaction time of 10 minutes to 72 hours, preferably 30 minutes to 24 hours.
  • the shell constituting the (B) microcapsule-type curing agent includes a urea bonding group that absorbs infrared rays with a wave number of 1630 to 1680 cm ⁇ 1 and a wave number of 1680 to 1725 cm ⁇ 1 . and a urethane bond group that absorbs infrared rays with a wave number of 1730 to 1755 cm ⁇ 1 .
  • the urea binding group, burette binding group, and urethane binding group can be detected by measurement using a Fourier transform infrared spectrophotometer (hereinafter sometimes referred to as "FT-IR").
  • FT-IR Fourier transform infrared spectrophotometer
  • a modified aliphatic polyamine curing agent is added and cured at 40°C for 12 hours, and then the epoxy resin portion is completely cured at 120°C for 24 hours.
  • the thickness of the shell constituting the (B) microcapsule-type curing agent is preferably 5 nm or more and 1000 nm or less, more preferably 10 nm or more and 100 nm or less.
  • the thickness of the shell is an average layer thickness, and can be measured with a transmission electron microscope.
  • the content of the (B) microcapsule-type curing agent in the epoxy resin composition of the present embodiment is 1 part by mass or more from the viewpoint of imparting sufficient reactivity to 100 parts by mass of the (A) epoxy resin. is preferred, 5 parts by mass or more is more preferred, 10 parts by mass or more is even more preferred, 20 parts by mass or more is even more preferred, and 30 parts by mass or more is even more preferred.
  • component (C) reactive diluent
  • the epoxy resin composition of the present embodiment contains component (C): reactive diluent (hereinafter sometimes referred to as (C) reactive diluent, component (C)).
  • a reactive diluent is a compound having an epoxy group or an acrylic group that can be incorporated into the cured structure, and is contained in the epoxy resin composition of the present embodiment to reduce the viscosity of the epoxy resin composition. It is a compound that has the effect of
  • Examples of the (C) reactive diluent include, but are not limited to, (meth)acrylate compounds and epoxy compounds capable of reducing viscosity without impairing reactivity.
  • the compounds exemplified in (A) epoxy resin are excluded, and compounds having a viscosity of 1 mPa ⁇ s or more and less than 3 Pa ⁇ s at 25° C. are defined as reactive diluents.
  • the (C) reactive diluent is compatible with (A) the epoxy resin and (B) the microcapsule-type curing agent described above, and is incorporated into the cured structure after the reaction. is preferably an epoxy compound.
  • Examples of (meth)acrylate compounds used as reactive diluents include, but are not limited to, compounds having (meth)acryloyl groups at both ends of a polyalkylene oxide, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, polybutylene glycol di(meth)acrylate, trimethylolpropane type polyfunctional (meth)acrylate, pentaerythritol type polyfunctional (meth)acrylate, dipentaerythritol type polyfunctional (meth)acrylate, etc. mentioned.
  • the bifunctional (meth)acrylate compound having two or more aromatic rings includes, for example, a compound having a polyalkylene oxide added to bisphenol A and having a (meth)acrylate structure at both ends.
  • monofunctional (meth)acrylate compounds having one aromatic ring include phenyl (meth)acrylate and ethylene glycol monophenyl ether (meth)acrylate.
  • Epoxy compounds used as reactive diluents include, but are not limited to, the following epoxy compounds having no aromatic ring and epoxy compounds having an aromatic ring.
  • Monofunctional epoxy compounds having no aromatic ring include compounds such as n-butyl glycidyl ether, t-butyl glycidyl ether, allyl glycidyl ether, and 2-ethylhexyl glycidyl ether.
  • Styrene oxide phenylglycidyl ether, cresyl glycidyl ether, p-sec-butylphenylglycidyl ether, t-butylphenylglycidyl ether, trade names manufactured by Sakamoto Yakuhin Kogyo Co., Ltd., as monofunctional epoxy compounds having one or more aromatic rings. : compounds such as SY-OPG.
  • Bifunctional epoxy compounds having no aromatic ring include, for example, 1,4-cyclohexanedimethanol diglycidyl ether, 1,3-cyclohexanedimethanol diglycidyl ether, (3,4-epoxycyclohexyl)methyl-3 ,4-epoxycyclohexyl carboxylate, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, dicyclopentadiene dimethanol diglycidyl ether , vinyl cyclohexene dioxide, trade name: YX-8000 manufactured by Mitsubishi Chemical Co., Ltd., trade name: SR-8EGS manufactured by Sakamoto Yakuhin Kogyo Co., Ltd., and the like.
  • bifunctional epoxy compounds having one or more aromatic rings include diglycidyl hexahydrophthalate, resorcinol diglycidyl ether, tert-butylhydroquinone diglycidyl ether, diglycidyl ether of polyoxyalkylenebisphenol A, N,N -diglycidylaniline, N,N-diglycidyl-o-toluidine and the like.
  • trifunctional epoxy compounds include trimethylolpropane triglycidyl ether, glycerin triglycidyl ether, N,N-bis(2,3-epoxypropyl)-4-(2,3-epoxypropoxy)aniline, and the like. be done.
  • the reactive diluent preferably has an aromatic ring from the viewpoint of enhancing solvent resistance.
  • the reactive diluent is a monofunctional compound having either one of an epoxy group and an acrylic group as a functional group, wherein the aromatic ring is monocyclic and monofunctional. is more preferable from the viewpoint of further improving the solvent resistance.
  • the monofunctional group is an epoxy group from the viewpoint that the component (C) is incorporated into the cured product of the epoxy resin composition of the present embodiment after the reaction to develop sufficient mechanical strength.
  • each substituent of the aromatic ring has 3 or less carbon atoms from the viewpoint of improving penetration of the component (B) into the capsule membrane and improving solvent resistance.
  • the (C) reactive diluent does not contain a nitrogen atom, from the viewpoint of suppressing the reaction between the (C) reactive diluent and (A) the epoxy resin and enhancing the storage stability.
  • the mechanism by which (C) the reactive diluent has the above-described structure to improve the solvent resistance of the epoxy resin composition of the present embodiment is not intended to be limited, but is considered as follows.
  • aromatic ring of the reactive diluent (C) is a monocyclic and monofunctional compound, so that it can easily penetrate into the inside of the shell and can be used in a denser and wider area.
  • Aromatic rings can form simultaneous stacking networks.
  • each substituent of the aromatic ring has 3 or less carbon atoms, steric hindrance can be further reduced, penetration into the shell can be enhanced, and solvent resistance can be further improved.
  • the amount of the reactive diluent (C) added is preferably 1% by mass or more, more preferably 3% by mass or more, from the viewpoint of imparting sufficient solvent resistance to the entire epoxy resin composition of the present embodiment. , more preferably 4% by mass or more, even more preferably 5% by mass or more, and even more preferably 6% by mass or more.
  • it is preferably 20% by mass or less, more preferably 15% by mass or less, further preferably 13% by mass or less. % by mass or less is even more preferable, and 11% by mass or less is even more preferable.
  • the epoxy resin composition of the present embodiment contains, as component (D), a compound represented by the following formula (1) (hereinafter sometimes referred to as component (D)).
  • component (D) a compound represented by the following formula (1)
  • the epoxy resin composition of the present embodiment improves low viscosity and low-temperature curability while maintaining high storage stability, and even when heat is transferred unevenly. It is possible to secure a sufficient curing area for
  • X 1 has 2 or more and 5 or less consecutive carbon-carbon bonds.
  • the carbon substituents contained in X 1 and R 1 to R 5 are, respectively, hydrogen, an alkyl group, an unsaturated aliphatic group, an aromatic group, a heteroatom-containing substituent, a halogen atom-containing substituent, and a halogen It is a kind selected from the group consisting of atoms.
  • the carbon substituents contained in X 1 and R 1 to R 5 may be the same or different.
  • a condensed ring compound in which any one selected from R 1 to R 5 exists in the same ring may also be used.
  • Examples of the compound represented by formula (1) include, but are not limited to, 3-phenoxy-1-propanol, 3-phenoxy-1,2-propanediol, 3-phenoxy-1,3-propanediol, mephenesin (3-(ortho-toluoxy-1,2-propanediol), guaifenesin (3-(2-methoxyphenoxy)propane-1,2-diol), bisphenol A (3-hydroxypropyl) glycidyl ether, bisphenol A ( 2,3-dihydroxypropyl)glycidyl ether, compound 1, compound 2 and compound 3 below.
  • the mechanism by which the component (D) improves the low-viscosity and low-temperature curability of the epoxy resin composition of the present embodiment and exhibits the effect of improving the cured region is not intended to be limited, but is considered as follows. be done.
  • (A) The interaction such as aromatic ring stacking and hydrogen bonding between epoxy resins is replaced by the interaction between (A) epoxy resin and component (D) by the aromatic group or hydroxyl group of component (D),
  • A) The interaction between the epoxy resins is eliminated, and the molecular migration of the entire epoxy resin composition is facilitated, resulting in a low viscosity.
  • the curing agent component and the epoxy resin (A) The compatibility of the epoxy resin composition is improved, the diffusion of the curing agent in the epoxy resin composition is improved, and a steep reaction at a lower temperature is possible. Furthermore, since the epoxy resin composition of the present embodiment contains (C) a reactive diluent, it is thought that the viscosity of the epoxy resin composition is further lowered and the diffusibility is dramatically improved.
  • the component (D) acts as a catalyst in the reaction between the curing agent and the epoxy group until it is incorporated into the polymer.
  • the improvement of the cured region also contributes to the improvement of the compatibility between the curing agent after the coordination of the component (D), the epoxy resin (A), and the reactive diluent (C), and the diffusion of the components. Effects on interaction, coordination, and compatibility are greatly affected by molecular structure. Therefore, the epoxy resin composition of this embodiment contains the compound represented by the above formula (1) as the component (D).
  • Component (D) is a compound represented by the following formula (2). It is preferable from the viewpoint of expressing good curing properties.
  • X 2 has 2 or more and 4 or less continuous carbon-carbon bonds, and the carbon substituents and R 1 to R 5 contained in X 2 are each hydrogen, an alkyl group, It is one selected from the group consisting of an unsaturated aliphatic group, an aromatic group, a heteroatom-containing substituent, a halogen atom-containing substituent, and a halogen atom.
  • the carbon substituents contained in X 2 and R 1 to R 5 may be the same or different. Condensed ring compounds in which any one selected from R 1 to R 5 exists in the same ring may also be used.
  • the component (D) is a compound having two continuous carbon-carbon bonds represented by the following formula (3), and (B) the curing agent component in the microcapsule-type curing agent and the coordination bond. It is more preferable from the viewpoint of good diffusibility into the epoxy resin after forming.
  • each of R 1 to R 9 is hydrogen, an alkyl group, an unsaturated aliphatic group, an aromatic group, a heteroatom-containing substituent, a halogen atom-containing substituent, and a group consisting of a halogen atom. It is a kind of choice.
  • Each of R 1 to R 9 may be the same or different. Condensed ring compounds in which any one selected from R 1 to R 5 exists in the same ring may also be used.
  • Component (D) is a compound represented by the following formula (4) in which R 9 in the formula (3) is a hydroxyl group. It is more preferable from the viewpoint of enhancing the storage stability.
  • R 1 to R 8 are each hydrogen, an alkyl group, an unsaturated aliphatic group, an aromatic group, a heteroatom-containing substituent, a halogen atom-containing substituent, and a group consisting of a halogen atom. It is a kind of choice.
  • R 1 to R 8 may be the same or different.
  • a condensed ring compound in which any one selected from R 1 to R 5 exists in the same ring may also be used.
  • R 6 , R 7 and R 8 is preferably a hydrogen atom.
  • R 1 to R 5 in the compound represented by the above formulas (1) to (4) of the component D are an epoxy group and a structure represented by the following formula (5). It is preferable not to contain (terminal diol structure).
  • R 1 to R 5 in the compounds of formulas (1) to (4) preferably do not contain the structure (terminal diol structure) of formula (5).
  • component (D) has excellent compatibility with (A) the epoxy resin and (C) the reactive diluent; Due to the excellent compatibility with (A) the epoxy resin and (C) the reactive diluent, the epoxy resin composition of the present embodiment exhibits the effects of lowering the viscosity, improving the low-temperature curability, and improving the curing region. Therefore, the sp value of component (D) is preferably close to the sp values of (A) the epoxy resin and (C) the reactive diluent. The following is ROBERT F.
  • the sp value of component (D) is preferably 7 (cal/cm 3 ) 1/2 or more as a lower limit.
  • (cal/cm 3 ) 1/2 or more is more preferable, 9 (cal/cm 3 ) 1/2 or more is more preferable, 10 (cal/cm 3 ) 1/2 or more is still more preferable, and 11 (cal/cm 3 ) 1/2 or more is even more preferable.
  • the upper limit is preferably less than 20 (cal/cm 3 ) 1/2 , more preferably 18 (cal/cm 3 ) 1/2 or less, and even more preferably 16 (cal/cm 3 ) 1/2 or less.
  • the amount of component (D) added is 0.001 relative to the entire epoxy resin composition. % by mass or more is preferable, 0.005% by mass or more is more preferable, 0.01% by mass or more is still more preferable, and 0.012% by mass or more is even more preferable. From the viewpoint of suppressing deterioration of storage stability due to excessive addition, it is preferably 5% by mass or less, more preferably 3% by mass or less, even more preferably 2.5% by mass or less, and even more preferably 2% by mass or less.
  • Component (D) may be added at the time of mixing with other components, or may be formed in the system after mixing, and includes (A) epoxy resin, (B) microcapsule-type curing agent, and (C) It may be generated in-situ during the manufacture of the reactive diluent.
  • the epoxy resin composition of the present embodiment may optionally contain (B) a curing agent other than a microcapsule-type curing agent, and additives such as an organic filler, an inorganic filler, a pigment, a dye, Flow modifiers, thickeners, mold release agents, wetting agents, flame retardants, surfactants, resins, and the like can also be included.
  • a curing agent other than a microcapsule-type curing agent
  • additives such as an organic filler, an inorganic filler, a pigment, a dye, Flow modifiers, thickeners, mold release agents, wetting agents, flame retardants, surfactants, resins, and the like can also be included.
  • Curing agents other than microcapsule-type curing agents include the curing agents and active ester compounds listed above as the core component of the microcapsule-type curing agent.
  • the organic filler has a function as a shock mitigating agent capable of relieving stress generated by impact.
  • the epoxy resin composition of the present embodiment can further improve adhesiveness to various connecting members. In addition, it tends to be possible to suppress the generation and progression of fillet cracks.
  • organic fillers include, but are not limited to, acrylic resin, silicone resin, butadiene rubber, polyester, polyurethane, polyvinyl butyral, polyarylate, polymethyl methacrylate, acrylic rubber, polystyrene, NBR, SBR, silicone-modified resin, and Examples include organic fine particles of copolymers containing these as components.
  • organic fine particles include, for example, alkyl (meth)acrylate-butadiene-styrene copolymer, alkyl (meth)acrylate-silicone copolymer, silicone-(meth)acrylic copolymer, Examples include a composite of silicone and (meth)acrylic acid, a composite of alkyl (meth)acrylate-butadiene-styrene and silicone, and a composite of alkyl (meth)acrylate and silicone.
  • organic fine particles organic fine particles having a core-shell structure and having different compositions between the core layer and the shell layer can be used.
  • Core-shell type organic fine particles include, for example, particles obtained by grafting an acrylic resin to a silicone-acrylic rubber core, and particles obtained by grafting an acrylic resin to an acrylic copolymer. These organic fillers may be used individually by 1 type, and may use 2 or more types together.
  • the inorganic filler can adjust the thermal expansion coefficient of the epoxy resin composition of the present embodiment. tend to contribute to the improvement of durability and moisture resistance.
  • examples of inorganic fillers include, but are not limited to, talc, calcined clay, uncalcined clay, mica, silicates such as glass; titanium oxide, aluminum oxide (alumina), fused silica (e.g. fused spherical silica and fused crushed silica); silica), synthetic silica, oxides such as crystalline silica; carbonates such as calcium carbonate, magnesium carbonate, hydrotalcite; hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide; barium sulfate, calcium sulfate, etc.
  • the shape of the inorganic filler is not particularly limited, and may be amorphous, spherical, or scaly, for example. These inorganic fillers may be used individually by 1 type, and may use 2 or more types together.
  • Pigments include, but are not limited to, kaolin, aluminum oxide trihydrate, aluminum hydroxide, chalk powder, gypsum, calcium carbonate, antimony trioxide, penton, silica, aerosol, lithopone, barite, titanium dioxide, and the like. is mentioned.
  • dyes include, but are not limited to, plant-derived dyes such as madder and indigo, natural dyes such as mineral-derived dyes such as ocher and red clay, synthetic dyes such as alizarin and indigo, and fluorescent dyes. mentioned.
  • Flow modifiers include, but are not limited to, organosilane compounds such as silane coupling agents; organotitanium compounds such as titanium tetraisopropoxide and titanium diisopropoxybis(acetylacetonate); zirconium tetranormal; Examples include organic zirconium compounds such as butoxide and zirconium tetraacetylacetonate.
  • organosilane compounds such as silane coupling agents
  • organotitanium compounds such as titanium tetraisopropoxide and titanium diisopropoxybis(acetylacetonate)
  • zirconium tetranormal examples include organic zirconium compounds such as butoxide and zirconium tetraacetylacetonate.
  • thickening agents include, but are not limited to, animal thickeners such as gelatin; vegetable thickeners such as polysaccharides and cellulose; polyacrylic thickeners, modified polyacrylic thickeners; agents, polyether-based thickeners, urethane-modified polyether-based thickeners, and chemically synthesized thickeners such as carboxymethyl cellulose.
  • release agent examples include, but are not limited to, a fluorine-based release agent, a silicone-based release agent, and a mixture of glycidyl (meth)acrylate and a linear alkyl (meth)acrylate having 16 to 22 carbon atoms.
  • examples include acrylic release agents made of copolymers.
  • wetting agent examples include, but are not limited to, unsaturated polyester copolymer-based wetting agents having an acidic group, such as acrylic polyphosphate.
  • flame retardants include, but are not limited to, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, halogen-based flame retardants such as chlorine compounds and bromine compounds, phosphorus-based flame retardants such as condensed phosphate esters, Examples include antimony-based flame retardants such as antimony trioxide and antimony pentoxide, and inorganic oxides such as silica fillers.
  • surfactants include, but are not limited to, anionic surfactants such as alkylbenzenesulfonates and alkylpolyoxyethylene sulfates, cationic surfactants such as alkyldimethylammonium salts, alkyldimethylamine oxides, and Examples include amphoteric surfactants such as alkylcarboxybetaine, and nonionic surfactants such as linear alcohols having 25 or more carbon atoms and fatty acid esters.
  • anionic surfactants such as alkylbenzenesulfonates and alkylpolyoxyethylene sulfates
  • cationic surfactants such as alkyldimethylammonium salts, alkyldimethylamine oxides
  • amphoteric surfactants such as alkylcarboxybetaine
  • nonionic surfactants such as linear alcohols having 25 or more carbon atoms and fatty acid esters.
  • resins include, but are not limited to, silicone resins, phenolic resins, phenoxy resins, polyvinyl butyral resins, polyvinyl acetal resins, polyacrylic resins, polyimide resins, carboxyl groups, hydroxyl groups, vinyl groups and Examples thereof include elastomers having functional groups such as amino groups.
  • the mixing method is also not particularly limited, and can be appropriately selected from, for example, a method using a planetary mixer, a method using three rolls, and the like. Also, (B) the microcapsule-type curing agent may be produced by any of the methods described above.
  • the epoxy resin composition of the present embodiment can also be used as a masterbatch type epoxy resin curing agent to produce a curable resin composition. That is, an epoxy resin and other curing agents can be added to the epoxy resin composition of the present embodiment to produce a curable resin composition. In such cases, the curable resin composition is also included in the embodiments of the present invention.
  • the curable resin composition is a mixture of the epoxy resin composition of the present embodiment, (A) the epoxy resin, (B) the curing agent exemplified as the core component of the microcapsule-type curing agent, and other additives exemplified. , a mixing roll such as three rolls, a dissolver, a planetary mixer, a kneader, an extruder, or the like, and sufficiently mixed until uniform.
  • the epoxy resin composition of the present embodiment, the curable resin composition, and the epoxy resin composition preparation liquid for films described later can also be subjected to heat treatment at a temperature of 30° C. to 80° C. for 1 to 168 hours.
  • the heating method is not particularly limited, and examples thereof include a method of heating in an oven, an incubator, a water bath, an oil bath, and the like.
  • the temperature history is not particularly limited, and for example, the temperature may be raised stepwise or may be raised all at once.
  • the heat treatment can converge the reaction of excess functional groups that react at low temperatures.
  • the epoxy resin composition of the present embodiment and the curable resin composition using the same are not limited to the following, but include sealing materials for electrical and electronic components such as underfill materials and relay sealing materials, insulating materials, and adhesives. , conductive materials, matrix resins for fiber-reinforced plastics, impregnation fixing materials for motor coils, and the like.
  • the underfill material is required to have low viscosity for rapid penetration between the semiconductor chip and the substrate, stability against heating during penetration, and excellent curability at 100 ° C. or higher.
  • the epoxy resin composition of has all these properties.
  • the epoxy resin composition of the present embodiment is suitable for increasing the area of a semiconductor chip from the viewpoint of ensuring a sufficient curing region even if the heat transfer is non-uniform.
  • matrix resins of fiber-reinforced plastics and impregnated adhesives for motor coils are required to have penetrability into fine fibers or gaps between coils, stability during penetration, and curability.
  • a resin composition is suitable because it has all these properties.
  • a curable resin composition using the epoxy resin composition of the present embodiment also has similar characteristics, and is therefore suitable for the above-described aspects.
  • the film of this embodiment has a resin composition layer containing the epoxy resin composition of this embodiment.
  • the epoxy resin composition can also function as an epoxy resin curing agent or curing accelerator.
  • the epoxy resin composition of the present embodiment is excellent in low viscosity, solvent resistance, storage stability and curability, and is suitable for films.
  • the film of the present embodiment has, for example, a predetermined support and a resin composition layer formed on the support from an epoxy resin composition preparation solution described later, and if necessary, supports the resin composition layer. It may have a protective layer on the surface opposite to the body.
  • ⁇ Method for preparing epoxy resin composition liquid for film> As a method for preparing an epoxy resin composition preparation for forming a resin composition layer of a film, for example, the epoxy resin composition of the present embodiment, (A) an epoxy resin, and (B) a microcapsule-type curing agent. A method of mixing the curing agent and other additives mentioned as core components, component (E): a film-forming polymer, etc., and further adding component (F): an organic solvent, and mixing with a planetary mixer or the like can be mentioned.
  • the film-forming polymer (E) has the effect of suppressing cracking, repelling, and excessive flow when the epoxy resin composition preparation solution is applied and the organic solvent is dried to form a film.
  • any polymer that is effective in maintaining the can be used.
  • component (E) include, but are not limited to, phenoxy resins, polyvinyl butyral resins, polyvinyl acetal resins, polyacrylic resins, polyimide resins, and carboxyl groups, hydroxyl groups, vinyl groups, amino groups, and the like. Examples include elastomers having functional groups.
  • Film-forming polymers are sometimes referred to as binder polymers.
  • the organic solvent is not particularly limited, and known ones can be used.
  • hydrocarbons such as toluene, xylene, cyclohexane, mineral spirits, solvent naphtha; ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK); ethyl acetate, acetic acid-n- esters such as butyl and propylene glycol monomethyl ethyl ether acetate; alcohols such as methanol, isopropanol, n-butanol, butyl cellosolve and butyl carbitol; amide solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone. .
  • hydrocarbons such as toluene, xylene, cyclohexane, mineral spirits, solvent naphtha
  • ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK)
  • ⁇ Support> As the support, a material that can withstand the temperature during drying of the organic solvent is preferable.
  • supports include, but are not limited to, polyethylene terephthalate film, polyvinyl alcohol film, polyvinyl chloride film, vinyl chloride copolymer film, polyvinylidene chloride film, vinylidene chloride copolymer film, polymethacrylic acid film.
  • examples include methyl copolymer films, polystyrene films, polyacrylonitrile films, styrene copolymer films, polyamide films, cellulose derivative films, and the like. As these films, stretched ones can also be used as necessary.
  • the protective layer a material capable of sufficiently maintaining the smoothness of the surface of the resin composition layer is preferable.
  • a protective layer a material capable of sufficiently maintaining the smoothness of the surface of the resin composition layer is preferable.
  • a protective layer a polyethylene film, a polypropylene film, an easily peeled polyethylene terephthalate film, an oriented polypropylene film, or the like can be preferably used, although the protective layer is not limited to the following.
  • the film of this embodiment can be produced by sequentially laminating a support, a resin composition layer, and, if necessary, a protective layer.
  • a method for laminating the support, the resin composition layer, and the protective layer a known method can be employed.
  • a preparation solution containing the epoxy resin composition of the present embodiment and (F) an organic solvent is prepared.
  • a resin composition layer is formed thereon.
  • the drying method is not particularly limited, and examples thereof include an oven and hot air blowing.
  • the drying temperature and time are not particularly limited, but from the viewpoint of sufficiently removing the solvent and suppressing deformation of the support due to excessive heating and excessive reaction of the resin composition layer during drying, the drying temperature is set at 50°C.
  • Drying is preferably performed within a temperature range of 1 to 160° C. for a drying time of 1 to 30 minutes, and more preferably at 80 to 150° C. for 3 to 25 minutes.
  • the drying temperature may be a constant temperature, or a temperature gradient may be applied. Then, if necessary, a film can be produced by laminating a protective layer on the formed resin composition layer.
  • the film of the present embodiment can be used as, but not limited to, an interlayer insulating film, a film-type solder resist, a sealing sheet, a conductive film, an anisotropically conductive film, a thermally conductive film, and the like. Since the epoxy resin composition of the present embodiment is excellent in solvent resistance and storage stability, it is possible to extend the coating time of the epoxy resin composition preparation solution for film containing it, and The storable period of the film that has been processed can be extended. In particular, it is possible to refrigerate or store at room temperature, even for films that have conventionally been stored frozen.
  • the epoxy resin composition of the present embodiment has a low viscosity, the viscosity of the prepared liquid containing the epoxy resin composition can be easily controlled, and the coating property on the support is excellent. Furthermore, the resin composition layer containing the epoxy resin composition of the present embodiment has a sufficiently low viscosity by heating when the film is attached, and has excellent stability during the film production process and during storage. Therefore, the reaction of the epoxy compound after film production is suppressed, and the low viscosity can be maintained for a long period of time. Due to these properties, the film of the present embodiment has excellent conformability to irregularities, and can be bonded to a substrate without gaps.
  • the film of this embodiment since the epoxy resin composition of this embodiment has excellent curability at around 100° C., the film of this embodiment also has excellent curability. Since the above properties are commonly required for interlayer insulating films, film-type solder resists, encapsulating sheets, conductive films, anisotropically conductive films, and thermally conductive films, the film of the present embodiment has these properties. It is suitable for the aspect of
  • the cured product of this embodiment is a cured product of the epoxy resin composition of this embodiment and the film of this embodiment described above.
  • the cured product of this embodiment can be produced by subjecting the epoxy resin composition and film of this embodiment to heat treatment.
  • the heat treatment can be performed, for example, by heat treatment in a heating furnace such as an oven, thermocompression bonding, or the like.
  • the heating conditions are not particularly limited, and can be appropriately selected according to the composition of the epoxy resin composition and the heat treatment apparatus.
  • the cured product of this embodiment is excellent in mechanical strength.
  • epoxy resin composition (A) epoxy resin, (B) microcapsule-type curing agent, (C) reactive diluent, component (D): formula (1) After weighing and mixing the compounds represented by each, filtration was performed under conditions of 55° C. for 48 hours to obtain an epoxy resin composition.
  • the number of parts of epoxy resin (A) to be blended shown in Tables 1 to 3 below is blended at the same time as adding the “microcapsule-type curing agent dispersed in epoxy resin” prepared in Production Examples 1, 2, and 3. It is the amount of epoxy resin in the entire epoxy resin composition including different epoxy resins. Accordingly, the number of parts of "(B) microcapsule-type curing agent" shown in Tables 1 to 3 below is the number of parts of the microcapsule-type curing agent itself consisting of a core and a shell.
  • the initial viscosity is preferably 4500 mPa s or less, more preferably 3500 mPa s or less, and even more preferably 3000 mPa s or less. evaluated.
  • Storage stability storage stability viscosity ratio
  • the initial viscosity immediately after preparation of the epoxy resin composition and the elapsed viscosity after leaving the epoxy resin composition at 40° C. for 7 days were measured at room temperature (25° C.) using an E-type viscometer.
  • the storage stability viscosity ratio was calculated using the following formula (1).
  • Storage stability viscosity ratio Viscosity after standing for 7 days at 40°C/Initial viscosity Formula (1)
  • the storage stability viscosity ratio was evaluated as preferably 1.2 or less, more preferably 1.1 or less, and still more preferably 1.0.
  • ⁇ Cured area 100% ⁇ Cured area: 80% or more and less than 100% ⁇ Cured area: 50% or more and less than 80% ⁇ Cured area: less than 50%
  • the evaluation is shown in the table in order of ⁇ , ⁇ , ⁇ , and ⁇ in descending order of evaluation.
  • Samples were prepared by mixing 80 parts by mass of the epoxy resin compositions of Examples 1 to 19 and Comparative Example 2 with 20 parts by mass of MEK (methyl ethyl ketone) as a solvent. The obtained sample was heated at 50° C., and the time (h) until the fluidity disappeared was measured. It was evaluated that the time until fluidity disappeared was preferably 0.5 hours (h) or more, more preferably 1 hour (h), and still more preferably 2 hours (h) or more.
  • MEK methyl ethyl ketone
  • a solution was obtained by mixing and dissolving 50 parts by mass of phenoxy resin (manufactured by InChem, trade name “PKHB”), 50 parts by mass of bisphenol A liquid epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name “jER828”), and 100 parts by mass of MEK. , 20 parts by mass of the epoxy resin composition of any one of Examples 1 to 19 and Comparative Example 2 was mixed with 100 parts by mass of this solution to prepare an epoxy resin composition preparation for film.
  • PKHB phenoxy resin
  • jER828 bisphenol A liquid epoxy resin
  • This prepared solution was applied onto a polyethylene terephthalate film (thickness: 50 ⁇ m) as a support so that the dry film thickness would be 40 ⁇ m, and then dried by heating in an oven preheated to 120° C. for 5 minutes.
  • the surface opposite to the support was protected with a polyethylene terephthalate film treated for easy peeling to obtain a film.
  • films of Examples 20 to 38 and Comparative Example 4 are referred to as films of Examples 20 to 38 and Comparative Example 4, respectively.
  • the FT-IR spectrum of the resulting film was measured with a Fourier transform infrared spectrophotometer (FT/IR-6600, manufactured by JASCO Corporation).
  • Epoxy consumption rate 100-[(P2/P1)/(P20/P10)] x 100 Formula (3) Evaluation was made according to the following criteria according to the epoxy consumption rate.
  • Epoxy consumption rate ⁇ 0% ⁇ epoxy consumption rate ⁇ 10% ⁇ 10% ⁇ epoxy consumption rate ⁇ 15% ⁇ 15% ⁇ epoxy consumption rate ⁇ 20% ⁇ 20% ⁇ Epoxy consumption rate ⁇
  • the results are shown in the table in the order of ⁇ , ⁇ , ⁇ , and ⁇ in descending order of evaluation.
  • Epoxy consumption rate ⁇ 0% ⁇ epoxy consumption rate ⁇ 10% ⁇ 10% ⁇ epoxy consumption rate ⁇ 15% ⁇ 15% ⁇ epoxy consumption rate ⁇ 20% ⁇ 20% ⁇ Epoxy consumption rate ⁇
  • the results are shown in the table in the order of ⁇ , ⁇ , ⁇ , and ⁇ in descending order of evaluation.
  • Epoxy consumption rate ⁇ 0% ⁇ epoxy consumption rate ⁇ 10% ⁇ 10% ⁇ epoxy consumption rate ⁇ 15% ⁇ 15% ⁇ epoxy consumption rate ⁇ 20% ⁇ 20% ⁇ Epoxy consumption rate ⁇
  • the results are shown in the table in the order of ⁇ , ⁇ , ⁇ , and ⁇ in descending order of evaluation.
  • a film was produced by the method described in (Stability during production of film using epoxy resin composition) and (Stability during production of film using epoxy resin composition as a curing accelerator). After that, the epoxy resin composition layer was transferred to an aluminum foil and cured in an oven at 180° C. for 1 hour. The appearance and cross-section of the resulting cured product were observed to determine whether or not it could be cured.
  • YED216D 1,6-hexanediol diglycidyl ether (viscosity at 25° C. 121 mPa s) (trade name manufactured by Mitsubishi Chemical Corporation)
  • Nieupol BPE-20 polyol compound obtained by adding ethylene oxide to bisphenol A (trade name manufactured by Sanyo Chemical Industries, Ltd.)
  • Example 15 when comparing Example 15 and Comparative Example 1, it can be seen that even a small amount of component (D) has an effect of improving reactivity, and this indicates that component (D) acts catalytically. Do you get it.
  • a comparison of Examples 5, 13, and 14 shows that an epoxy resin composition having an excellent balance of properties can be obtained even if the ratio of the bisphenol A type epoxy resin and the bisphenol F type epoxy resin in component (A) is changed. Do you get it. It was also found that the higher the ratio of the bisphenol F type epoxy resin in the component (A), the better the low viscosity and storage stability.
  • Table 4 shows the evaluation results of the cured region test.
  • component (C) and component (D) improved the cured area.
  • Tables 5 and 6 show the evaluation results of the solvent resistance test.
  • Example and Comparative Example 2 it was found that the addition of component (C) improved the solvent resistance. Comparing Example 1 and Example 5, it was found that increasing the amount of component (C) added improved the solvent resistance. Moreover, when Examples 5, 6 and 7 were compared with Example 18, it was found that the compound having an aromatic ring as the component (C) was superior in solvent resistance. Furthermore, when comparing Examples 5 and 6 with Example 7, it was found that when component (C) was PGE and/or o-CGE, it exhibited superior solvent resistance compared to tBPGE. This is probably because the less steric hindrance of the aromatic ring substituents makes it easier to penetrate into the capsule membrane, forming a denser aromatic ring stacking network. Furthermore, when comparing Examples 5 and 12 with Example 19, it was found that the compound in which the terminal of component (D) had a diol structure was superior in solvent resistance.
  • Tables 7 and 8 show the film production stability and film storage stability of the films of Examples 20 to 38 and Comparative Example 4 using the epoxy resin compositions of Examples 1 to 19 and Comparative Example 2. Shows the results of the test.
  • Example 20 and Example 24 A comparison between Examples 20 to 38 and Comparative Example 4 revealed that the addition of the component (C) improved the stability during film production and the storage stability of the film. Comparing Example 20 and Example 24, it was found that increasing the amount of component (C) added improved the stability during film production and the storage stability of the film. Comparing Examples 24, 25 and 26 with Example 37, it was found that the compound having an aromatic ring as component (C) was superior in stability during film production.
  • Table 9 shows the stability during film production and the storage stability test of the films of Examples 39 to 42 using the epoxy resin compositions of Examples 1, 5, 10, and 15 as curing accelerators. Evaluation results are shown.
  • Examples 39 to 42 exhibited excellent film production stability and film storage stability.
  • Tables 10 and 11 show the evaluation results of the curability test of the films of Examples 20-42.
  • the epoxy resin composition of the present invention can be industrially used as an insulating material for electrical and electronic parts such as underfill, a sealing material, an adhesive, a matrix resin for conductive materials and fiber-reinforced plastics, an impregnation fixing agent for motor coils, and the like.
  • various paste materials such as insulating adhesive paste, conductive paste, anisotropic conductive paste, thermal conductive paste, various coating materials, paints, etc. that can make use of excellent solvent resistance. have availability on

Abstract

成分(A):エポキシ樹脂と、 成分(B):マイクロカプセル型硬化剤と、 成分(C):反応性希釈剤と、 成分(D):下記式(1)で表される化合物と、 を、含むエポキシ樹脂組成物。 (式(1)中、Xは2つ以上5つ以下の連続する炭素-炭素結合を有し、Xに含まれる炭素の置換基及びR~Rは、それぞれ、水素、アルキル基、不飽和脂肪族基、芳香族基、ヘテロ原子を含む置換基、ハロゲン原子を含む置換基、及びハロゲン原子からなる群より選ばれる一種である。Xに含まれる炭素の置換基及びR~Rは、それぞれ、同一であっても、異なっていてもよい。また、R~Rから選ばれるいずれかが同一環に存在する縮合環化合物でもよい。)

Description

エポキシ樹脂組成物、フィルム、フィルムの製造方法、及び硬化物
 本発明は、エポキシ樹脂組成物、フィルム、フィルムの製造方法、及び硬化物に関する。
 従来から、エポキシ樹脂は、電気電子部品の絶縁材料、封止材料、接着剤、導電性材料や繊維強化プラスチックのマトリックス樹脂、モーターコイルの含浸固着剤等の、幅広い用途に利用されている。
 昨今の電子デバイス機器に対する要求は、小型化、高機能化、軽量化、多機能化、と多岐にわたっており、半導体チップの実装技術においても、電極パッドとパッドピッチとのファインピッチ化による一層の微細化、小型化、高密度化が進んでいると共に、半導体チップの大型化も進んでいる。前記半導体チップと基板との隙間には、バンプ接続部とチップの回路面とを保護するアンダーフィル材があり、前記アンダーフィル材としてエポキシ樹脂組成物が用いられている。
 アンダーフィル材に適用可能なエポキシ樹脂組成物としては、例えば、マイクロカプセル化されたアミン/エポキシ付加体粒子と反応性希釈剤を含むエポキシ樹脂組成物であって、貯蔵安定性、硬化特性、硬化物物性、及び低粘度性に優れる1液型エポキシ樹脂組成物が開示されている(例えば、特許文献1参照)。
 また、例えば、2種類以上のアミン化合物を含むエポキシ樹脂用硬化剤をコアとするマイクロカプセル型硬化剤と、25℃における粘度が0.03Pa・s以上3Pa・s未満の熱硬化性液状樹脂を含むエポキシ樹脂組成物であって、貯蔵安定性、低温硬化性、及び隙間浸透性に優れる1液型エポキシ樹脂組成物が開示されている(例えば、特許文献2参照)。
特許第3454437号公報 特許第6085130号公報
 近年、上述したような、半導体チップと基板との隙間のアンダーフィル材は、半導体チップの大型化による大面積化への対応や、半導体チップのファインピッチ化に伴う狭ギャップへの対応として、短時間での十分な浸透を可能にするための低粘度性が求められている。また、前記アンダーフィル材は、半導体チップの構成部材への影響を低減化するために、低温での硬化性、例えば100℃付近での十分な硬化性が求められている。
 さらに、前記アンダーフィル材は、生産性向上の観点から、使用時の混合工程を省略可能な1液型エポキシ樹脂組成物であることが求められているが、1液型エポキシ樹脂組成物は、エポキシ樹脂と硬化剤が一体となっているため、高い保存安定性が要求されている。
 すなわち、低粘度性、100℃付近での十分な硬化性、及び高い保存安定性を、同時に高いレベルで兼備する、1液型エポキシ樹脂組成物が求められている。
 また、近年では、電子材料の小型化・薄型化に伴い、接着層や絶縁層を薄くすることを目的として、エポキシ樹脂組成物を用いたフィルムの重要性が増している。前記フィルムを得るためには、エポキシ樹脂、硬化剤、硬化促進剤、及びフィルム形成用ポリマー等の成分を溶剤に溶解した塗液を作製し、当該塗液を所定の支持体上に塗工した後、乾燥処理を実施することにより、フィルムを作製する。そのため、前記塗液には、塗液としての保存安定性、塗液を塗工及び乾燥する際のフィルムの製造工程中での安定性、及びフィルム状態での安定性が強く求められている。
 上述したような、エポキシ樹脂組成物への各種要求に対して、特許文献1、2に開示されている1液型エポキシ樹脂組成物は、硬化性と保存安定性の両立に関して未だ改善の余地があると共に、これらのエポキシ樹脂組成物を用いたフィルムの製造工程中での安定性、及びフィルム状態での安定性に関しても未だ改善の余地がある、という問題点を有している。
 そこで本発明は、上述した従来技術の問題点に鑑み、低粘度性、100℃付近での十分な硬化性、優れた保存安定性を同時に発現するエポキシ樹脂組成物を得ると共に、エポキシ樹脂組成物を用いたフィルムの製造工程中での安定性、及びフィルム状態での安定性に優れるエポキシ樹脂組成物を提供することを目的とする。
 本発明者は、鋭意検討した結果、以下の技術的手段によって、上記の目的を達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下のとおりである。
〔1〕
 成分(A):エポキシ樹脂と、
 成分(B):マイクロカプセル型硬化剤と、
 成分(C):反応性希釈剤と、
 成分(D):下記式(1)で表される化合物と、
を、含むエポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000006
 
 (式(1)中、Xは2つ以上5つ以下の連続する炭素-炭素結合を有し、Xに含まれる炭素の置換基及びR~Rは、それぞれ、水素、アルキル基、不飽和脂肪族基、芳香族基、ヘテロ原子を含む置換基、ハロゲン原子を含む置換基、及びハロゲン原子からなる群より選ばれる一種である。Xに含まれる炭素の置換基及びR~Rは、それぞれ、同一であっても、異なっていてもよい。また、R~Rから選ばれるいずれかが同一環に存在する縮合環化合物でもよい。)
〔2〕
 前記成分(D)が下記式(2)で表される化合物である、前記〔1〕に記載のエポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000007
 
 (式(2)中、Xは2つ以上4つ以下の連続する炭素-炭素結合を有し、Xに含まれる炭素の置換基及びR~Rは、それぞれ、水素、アルキル基、不飽和脂肪族基、芳香族基、ヘテロ原子を含む置換基、ハロゲン原子を含む置換基、及びハロゲン原子からなる群より選ばれる一種である。Xに含まれる炭素の置換基及びR~Rは、それぞれ、同一であっても、異なっていてもよい。また、R~Rから選ばれるいずれかが同一環に存在する縮合環化合物でもよい。)
〔3〕
 前記成分(D)が下記式(3)で表される化合物である、前記〔1〕又は〔2〕に記載のエポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000008
 
 (式(3)中、R~Rは、それぞれ、水素、アルキル基、不飽和脂肪族基、芳香族基、ヘテロ原子を含む置換基、ハロゲン原子を含む置換基、及びハロゲン原子からなる群より選ばれる一種である。
 R~Rは、それぞれ、同一であっても、異なっていてもよい。また、R~Rから選ばれるいずれかが同一環に存在する縮合環化合物でもよい。)
〔4〕
 前記成分(D)が下記式(4)で表される化合物である、前記〔1〕乃至〔3〕のいずれか一に記載のエポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000009
 
 (式(4)中、R~Rは、それぞれ、水素、アルキル基、不飽和脂肪族基、芳香族基、ヘテロ原子を含む置換基、ハロゲン原子を含む置換基、及びハロゲン原子からなる群より選ばれる一種である。
 R~Rは、それぞれ、同一であっても、異なっていてもよい。また、R~Rから選ばれるいずれかが同一環に存在する縮合環化合物でもよい。)
〔5〕
 前記成分(A)エポキシ樹脂が、少なくともビスフェノールF型エポキシ樹脂を含む、前記〔1〕乃至〔4〕のいずれか一に記載のエポキシ樹脂組成物。
〔6〕
 前記成分(B)マイクロカプセル型硬化剤は、コアの円形度が0.93以上である、前記〔1〕乃至〔5〕のいずれか一に記載のエポキシ樹脂組成物。
〔7〕
 前記成分(C)反応性希釈剤は、芳香環を有する化合物である、前記〔1〕乃至〔6〕のいずれか一に記載のエポキシ樹脂組成物。
〔8〕
 前記成分(C)反応性希釈剤は、前記芳香環が単環であり、かつ単官能の化合物である、前記〔1〕乃至〔7〕のいずれか一に記載のエポキシ樹脂組成物。
〔9〕
 前記成分(C)反応性希釈剤の含有量が、前記エポキシ樹脂組成物中、1質量%以上20質量%以下である、前記〔1〕乃至〔8〕のいずれか一に記載のエポキシ樹脂組成物。
〔10〕
 前記成分(D)の含有量が、前記エポキシ樹脂組成物中、0.001質量%以上5質量%以下である、前記〔1〕乃至〔9〕のいずれか一に記載のエポキシ樹脂組成物。
〔11〕
 前記R~Rは、エポキシ基及び下記式(5)の構造(末端ジオール)を含まない、前記〔1〕乃至〔10〕のいずれか一に記載のエポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000010
 
〔12〕
 支持体と、前記支持体上に形成された前記〔1〕乃至〔11〕のいずれか一に記載のエポキシ樹脂組成物を含む樹脂組成物層とを有するフィルム。
〔13〕
 前記樹脂組成物層が、成分(E):フィルム形成用ポリマーを、さらに含む、前記〔12〕に記載のフィルム。
〔14〕
 前記フィルムは、
 層間絶縁フィルム、フィルム型ソルダーレジスト、封止シート、導電性フィルム、異方導電性フィルム、及び熱伝導性フィルムからなる群より選ばれるいずれか一つである、前記〔12〕又は〔13〕に記載のフィルム。
〔15〕
 前記〔12〕乃至〔14〕のいずれか一に記載のフィルムの製造方法であって、
 前記支持体上に、少なくとも前記〔1〕乃至〔11〕のいずれか一のエポキシ樹脂組成物と、成分(F)有機溶剤とを含む調合液を塗工した後、50~160℃の温度範囲かつ1~30分の時間範囲で、前記成分(F)有機溶剤を乾燥させる工程を含む、フィルムの製造方法。
〔16〕
 前記〔1〕乃至〔11〕のいずれか一に記載のエポキシ樹脂組成物の硬化物。
〔17〕
 前記〔12〕乃至〔14〕のいずれか一に記載のフィルムの硬化物。
 本発明によれば、低粘度性、100℃付近での十分な硬化性、保存安定性に優れ、フィルムへ適用した際に、フィルムの製造工程中での安定性、及びフィルム状態での安定性に優れる、エポキシ樹脂組成物を提供することができる。
 以下、本発明を実施するための形態(以下、「本実施形態」と言う。)について詳細に説明する。
 以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜変形して実施できる。
〔エポキシ樹脂組成物〕
 本実施形態のエポキシ樹脂組成物は、
 成分(A):エポキシ樹脂と、
 成分(B):マイクロカプセル型硬化剤と、
 成分(C):反応性希釈剤と、
 成分(D):下記式(1)で表される化合物と、
を、含む。
Figure JPOXMLDOC01-appb-C000011
 
 式(1)中、Xは2つ以上5つ以下の連続する炭素-炭素結合を有し、Xに含まれる炭素の置換基及びR~Rは、それぞれ、水素、アルキル基、不飽和脂肪族基、芳香族基、ヘテロ原子を含む置換基、ハロゲン原子を含む置換基、及びハロゲン原子からなる群より選ばれる一種である。Xに含まれる炭素の置換基及びR~Rは、それぞれ、同一であっても、異なっていてもよい。また、R~Rから選ばれるいずれかが同一環に存在する縮合環化合物でもよい。
(成分(A):エポキシ樹脂)
 本実施形態のエポキシ樹脂組成物は、成分(A):エポキシ樹脂(以下、(A)エポキシ樹脂、成分(A)と記載する場合がある。)を含む。
 (A)エポキシ樹脂としては、以下に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、テトラブロモビフェニル型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ベンゾフェノン型エポキシ樹脂、フェニルベンゾエート型エポキシ樹脂、ジフェニルスルフィド型エポキシ樹脂、ジフェニルスルホキシド型エポキシ樹脂、ジフェニルスルホン型エポキシ樹脂、ジフェニルジスルフィド型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ヒドロキノン型エポキシ樹脂、メチルヒドロキノン型エポキシ樹脂、ジブチルヒドロキノン型エポキシ樹脂、レゾルシン型エポキシ樹脂、メチルレゾルシン型エポキシ樹脂、カテコール型エポキシ樹脂等の2官能型エポキシ樹脂類;N,N-ジグリシジルアミノベンゼン型エポキシ樹脂、トリアジン型エポキシ樹脂等の3官能型エポキシ樹脂類;テトラグリシジルジアミノジフェニルメタン型エポキシ樹脂、ジアミノベンゼン型エポキシ樹脂等の4官能型エポキシ樹脂類;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ブロモ化フェノールノボラック型エポキシ樹脂等の多官能型エポキシ樹脂類;及び脂環式エポキシ樹脂類が挙げられる。
 これらは1種単独で用いてもよく、2種以上を併用してもよい。さらに、これらをイソシアネート等で変性したエポキシ樹脂等も併用することができる。
 本実施形態のエポキシ樹脂組成物は、取り扱い性と耐熱性の観点から、ビスフェノール型エポキシ樹脂を含むことが好ましく、保存安定性と良好な反応性を付与する観点からビスフェノールF型エポキシ樹脂を含むことがより好ましく、十分な機械特性を付与する観点から、さらにビスフェノールA型エポキシ樹脂を含むことがさらに好ましい。
 また、ビスフェノールF型エポキシ樹脂に加えてビスフェノールA型エポキシ樹脂を含むことで、より優れた保存安定性と良好な反応性を発現する。本メカニズムについては、限定する趣旨ではないが、以下のように考えられる。ビスフェノールA型エポキシ樹脂を含むことでビスフェノールF型エポキシ樹脂同士での凝集が抑制されるため、本実施形態のエポキシ樹脂組成物の均一性が向上し保存安定性が改善されると共に、硬化開始後での分子の拡散性が高まることで反応性が向上する。
 ビスフェノールF型エポキシ樹脂とビスフェノールA型エポキシ樹脂を併用する場合は、ビスフェノールF型エポキシ樹脂とビスフェノールA型エポキシ樹脂合計100質量部に対して、ビスフェノールF型エポキシ樹脂の添加量は、上記効果を十分に発現する観点から、5質量部以上が好ましく、15質量部以上がより好ましく、25質量部以上がさらに好ましく、30質量部以上がさらにより好ましく、40質量部以上がよりさらに好ましい。また、十分な機械特性を発現するためにビスフェノールA型エポキシ樹脂を添加する観点から、ビスフェノールF型エポキシ樹脂の添加量は、90質量部以下が好ましく、85質量部以下がより好ましく、80質量部以下がさらに好ましい。
 (A)エポキシ樹脂に含まれる全塩素量は、優れた電気特性を有すると共に硬化性と貯蔵安定性のバランスに優れたエポキシ樹脂組成物を得る観点から、2500ppm以下であることが好ましく、より好ましくは2000ppm以下であり、さらに好ましくは1500ppm以下であり、さらにより好ましくは900ppm以下である。
 また、(A)エポキシ樹脂に含まれる全塩素量は、所定の技術的意義を達成する観点から、0.01ppm以上であることが好ましく、より好ましくは0.02ppm以上であり、さらに好ましくは0.05ppm以上であり、さらにより好ましくは0.1ppm以上であり、よりさらに好ましくは0.2ppm以上であり、特に好ましくは0.5ppm以上である。
 ここで、(A)エポキシ樹脂に含まれる全塩素量とは、(A)エポキシ樹脂中に含まれる有機塩素及び無機塩素の総量を示し、(A)エポキシ樹脂に対する質量基準の値である。
 (A)エポキシ樹脂の全塩素量は、以下の方法により測定される。
 (A)エポキシ樹脂をキシレンを用いて洗浄し、洗浄液であるキシレン中にエポキシ樹脂が無くなるまで洗浄と濾過を繰り返す。次に、濾液を100℃以下で減圧留去し、エポキシ樹脂を得る。得られたエポキシ樹脂の試料1~10gを、滴定量が3~7mLになるよう精秤し、25mLのエチレングリコールモノブチルエーテルに溶解し、これに1規定KOHのプロピレングリコール溶液25mLを加えて20分間煮沸した後、硝酸銀水溶液で滴定した滴定量より算出することができる。
 ここで、全塩素の内、1,2-クロロヒドリン基に含まれる塩素は、一般に、加水分解性塩素と呼ばれる。(A)エポキシ樹脂中の加水分解性塩素量は、好ましくは100ppm以下、より好ましくは50ppm以下、さらに好ましくは0.01以上20ppm以下、さらにより好ましくは0.05以上10ppm以下である。(A)エポキシ樹脂中の加水分解性塩素量が100ppm以下であると、本実施形態のエポキシ樹脂組成物において高い硬化性と保存安定性を両立する観点から有利であり、本実施形態のエポキシ樹脂組成物の硬化物が優れた電気特性を示す傾向にある。
 ここで、(A)エポキシ樹脂中の加水分解性塩素は、以下の方法により測定される。
 試料3gを50mLのトルエンに溶解し、これに0.1規定KOHのメタノール溶液20mLを加えて15分間煮沸した後、硝酸銀水溶液で滴定した滴定量より算出することができる。
(成分(B):マイクロカプセル型硬化剤)
 本実施形態のエポキシ樹脂組成物は、成分(B):マイクロカプセル型硬化剤(以下、(B)マイクロカプセル型硬化剤、成分(B)と記載する場合がある。)を含む。
 (B)マイクロカプセル型硬化剤とは、硬化剤成分を含むコアと、前記コアを被覆するシェルと、を少なくとも有する硬化剤である。成分(B)がマイクロカプセル型であることにより、硬化剤成分と、上述した(A)エポキシ樹脂、後述する成分(C):反応性希釈剤、後述する成分(D):所定の化合物とがカプセル膜を隔てて、物理的に隔離されているため、保存安定性に優れる傾向にある。
<コア>
 (B)マイクロカプセル型硬化剤を構成するコアは、エポキシ樹脂に用いられている硬化剤であればよく、特に限定されないが、例えば、アミン系硬化剤、アミド系硬化剤、フェノール系硬化剤、酸無水物系硬化剤、触媒型硬化剤、及びこれらの変性物等が挙げられる。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 アミン系硬化剤としては、以下に限定されないが、例えば、アミンアダクト系、変性ポリアミン系、脂肪族ポリアミン系、複素環式ポリアミン系、脂環式ポリアミン系、芳香族アミン系、ポリアミドアミン系、ケチミン系、ウレタンアミン系等が挙げられる。
 アミド系硬化剤としては、以下に限定されないが、例えば、ジシアンジアミド及びその誘導体であるグアニジン系化合物、アミン系化合物に酸無水物を付加させた化合物、及びヒドラジド系化合物が挙げられる。
 ヒドラジド系化合物としては、以下に限定されないが、例えば、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、フタル酸ジヒドラジド、イソフタル酸ジヒドラジドテレフタル酸ジヒドラジド、p-オキシ安息香酸ヒドラジド、サリチル酸ヒドラジド、フェニルアミノプロピオン酸ヒドラジド、マレイン酸ジヒドラジド等が挙げられる。
 グアニジン系化合物としては、以下に限定されないが、例えば、ジシアンジアミド、メチルグアニジン、エチルグアニジン、プロピルグアニジン、ブチルグアニジン、ジメチルグアニジン、トリメチルグアニジン、フェニルグアニジン、ジフェニルグアニジン、トルイルグアニジン等が挙げられる。
 フェノール系硬化剤としては、以下に限定されないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性フェノールアラルキル樹脂、ジシクロペンタジエン変性フェノール樹脂、アミノトリアジン変性フェノール樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮合ノボラック樹脂、ナフトール-クレゾール共縮合ノボラック樹脂、アリルアクリルフェノール樹脂等が挙げられる。
 酸無水物系硬化剤としては、以下に限定されないが、例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。
 触媒型硬化剤としては、以下に限定されるものではないが、例えば、カチオン系熱硬化触媒、BF-アミン錯体等が挙げられる。
 上述した、コアを構成する各種硬化剤の中でも、適度な反応性を有する観点から、低分子アミン化合物(a1)とアミンアダクトを含むアミン系硬化剤が好ましい。
 アミン系硬化剤を構成する低分子アミン化合物(a1)としては、少なくとも1個の一級アミノ基及び/又は二級アミノ基を有するが三級アミノ基を有さない化合物、及び少なくとも1個の三級アミノ基と少なくとも1個の活性水素基とを有する化合物等が挙げられる。
 前記「少なくとも1個の一級アミノ基及び/又は二級アミノ基を有するが三級アミノ基を有さない化合物」としては、以下に限定されないが、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、エタノールアミン、プロパノールアミン、シクロヘキシルアミン、イソホロンジアミン、アニリン、トルイジン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の、三級アミノ基を有さない第一アミン類;ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジメタノールアミン、ジエタノールアミン、ジプロパノールアミン、ジシクロヘキシルアミン、ピペリジン、ピペリドン、ジフェニルアミン、フェニルメチルアミン、フェニルエチルアミン等の、三級アミノ基を有さない第二アミン類等が挙げられる。
 前記「少なくとも1個の三級アミノ基と少なくとも1個の活性水素基とを有する化合物」としては、以下に限定されないが、例えば、2-ジメチルアミノエタノール、1-メチル-2-ジメチルアミノエタノール、1-フェノキシメチル-2-ジメチルアミノエタノール、2-ジエチルアミノエタノール、1-ブトキシメチル-2-ジメチルアミノエタノール、メチルジエタノールアミン、トリエタノールアミン、N-β-ヒドロキシエチルモルホリン等のアミノアルコール類;2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール等のアミノフェノール類;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、1-アミノエチル-2-メチルイミダゾール、1-(2-ヒドロキシ-3-フェノキシプロピル)-2-メチルイミダゾール、1-(2-ヒドロキシ-3-フェノキシプロピル)-2-エチル-4-メチルイミダゾール、1-(2-ヒドロキシ-3-ブトキシプロピル)-2-メチルイミダゾール、1-(2-ヒドロキシ-3-ブトキシプロピル)-2-エチル-4-メチルイミダゾール等のイミダゾール類;1-(2-ヒドロキシ-3-フェノキシプロピル)-2-フェニルイミダゾリン、1-(2-ヒドロキシ-3-ブトキシプロピル)-2-メチルイミダゾリン、2-メチルイミダゾリン、2,4-ジメチルイミダゾリン、2-エチルイミダゾリン、2-エチル-4-メチルイミダゾリン、2-ベンジルイミダゾリン、2-フェニルイミダゾリン、2-(o-トリル)-イミダゾリン、テトラメチレン-ビス-イミダゾリン、1,1,3-トリメチル-1,4-テトラメチレン-ビス-イミダゾリン、1,3,3-トリメチル-1,4-テトラメチレン-ビス-イミダゾリン、1,1,3-トリメチル-1,4-テトラメチレン-ビス-4-メチルイミダゾリン、1,3,3-トリメチル-1,4-テトラメチレン-ビス-4-メチルイミダゾリン、1,2-フェニレン-ビス-イミダゾリン、1,3-フェニレン-ビス-イミダゾリン、1,4-フェニレン-ビス-イミダゾリン、1,4-フェニレン-ビス-4-メチルイミダゾリン等のイミダゾリン類;ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ジプロピルアミノプロピルアミン、ジブチルアミノプロピルアミン、ジメチルアミノエチルアミン、ジエチルアミノエチルアミン、ジプロピルアミノエチルアミン、ジブチルアミノエチルアミン、N-メチルピペラジン、N-アミノエチルピペラジン、ジエチルアミノエチルピペラジン等の三級アミノアミン類;2-ジメチルアミノエタンチオール、2-メルカプトベンゾイミダゾール、2-メルカプトベンゾチアゾール、2-メルカプトピリジン、4-メルカプトピリジン等のアミノメルカプタン類;N,N-ジメチルアミノ安息香酸、N,N-ジメチルグリシン、ニコチン酸、イソニコチン酸、ピコリン酸等のアミノカルボン酸類;N,N-ジメチルグリシンヒドラジド、ニコチン酸ヒドラジド、イソニコチン酸ヒドラジド等のアミノヒドラジド類等が挙げられる。
 これらの低分子アミン化合物(a1)の中でも、適度な反応性を有する観点から、イミダゾール類が好ましい。
 次に、アミン系硬化剤を構成するアミンアダクトとしては、カルボン酸化合物、スルホン酸化合物、尿素化合物、イソシアネート化合物、エポキシ樹脂(e1)のそれぞれと、アミン化合物(a2)との反応により得られるアミノ基を有する化合物等が挙げられる。
 カルボン酸化合物としては、以下に限定されないが、例えば、コハク酸、アジピン酸、セバシン酸、フタル酸、ダイマー酸等が挙げられる。
 スルホン酸化合物としては、以下に限定されないが、例えば、エタンスルホン酸、p-トルエンスルホン酸等が挙げられる。
 尿素化合物としては、以下に限定されないが、例えば、尿素、メチル尿素、ジメチル尿素、エチル尿素、t-ブチル尿素等が挙げられる。
 イソシアネート化合物としては、以下に限定されないが、例えば、脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート、脂肪族トリイソシアネート、ポリイソシアネート等が挙げられる。
 脂肪族ジイソシアネートとしては、以下に限定されないが、例えば、エチレンジイソシアネート、プロピレンジイソシアネート、ブチレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等が挙げられる。
 脂環式ジイソシアネートとしては、以下に限定されないが、例えば、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、ノルボルナンジイソシアネート、1,4-イソシアナトシクロヘキサン、1,3-ビス(イソシアナトメチル)-シクロヘキサン、1,3-ビス(2-イソシアナトプロピル-2-イル)-シクロヘキサン等が挙げられる。
 芳香族ジイソシアネートとしては、以下に限定されないが、例えば、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシレンジイソシアネート、1,5-ナフタレンジイソシアネート等が挙げられる。
 脂肪族トリイソシアネートとしては、以下に限定されないが、例えば、1,6,11-ウンデカントリイソシアネート、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、1,3,6-トリイソシアネートメチルヘキサン等が挙げられる。
 ポリイソシアネートとしては、以下に限定されないが、ポリメチレンポリフェニルポリイソシアネートや前記ジイソシアネート化合物より誘導されるポリイソシアネート等が挙げられる。前記ジイソシアネート化合物より誘導されるポリイソシアネートとしては、イソシアヌレート型ポリイソシアネート、ビュレット型ポリイソシアネート、ウレタン型ポリイソシアネート、アロハネート型ポリイソシアネート、カルボジイミド型ポリイソシアネート等が挙げられる。
 エポキシ樹脂(e1)としては、例えば、上述の((A)エポキシ樹脂)に記載した化合物が挙げられる。
 アミン化合物(a2)としては、上述したアミン系硬化剤を構成する低分子アミン化合物(a1)の例として挙げたアミン化合物が使用できる。
 これらのアミンアダクトの中で、特に、エポキシ樹脂(e1)とアミン化合物(a2)との反応により得られるものが好ましい。エポキシ樹脂(e1)とアミン化合物(a2)との反応により得られるアミンアダクトは、未反応のアミン化合物(a2)を低分子アミン化合物(a1)として流用できるという観点からも好ましい。
 (B)マイクロカプセル型硬化剤のコア成分は、25℃、1013hPaで固体である硬化剤を含むことが、保存安定性の観点から好ましい。これにより、各成分を混合する際にカプセルに傷が発生したとしても、コア成分のカプセル外への溶出を抑えられ、保存安定性を保つことができる。
 (B)マイクロカプセル型硬化剤を構成するコアの平均粒径は、0.3μmより大きく、12μm以下であることが好ましい。コアの平均粒径が0.3μmより大きいことにより、コア同士の凝集を一層防止でき、(B)マイクロカプセル型硬化剤の形成が一層容易となり、本実施形態のエポキシ樹脂組成物の保存安定性が実用上十分となる効果が得られる。コアの平均粒径が12μm以下であることにより、本実施形態のエポキシ樹脂組成物を硬化した際に均質な硬化物を得ることができる。また、コアの平均粒径が12μm以下であることにより、本実施形態のエポキシ樹脂組成物に、希釈剤、充填剤、顔料、染料、流れ調整剤、増粘剤、強化剤、離型剤、湿潤剤、安定剤、難燃剤、界面活性剤、有機溶剤、導電性微粒子、結晶性アルコール、その他の樹脂類等を配合した際に大粒径の凝集物の生成を防止でき、硬化物の十分な長期信頼性が得られる。コアの平均粒径は、下限値として0.3μmより大きいことが好ましく、0.4μm以上がより好ましく、0.5μm以上がさらに好ましい。上限値としては、12μm以下が好ましく、10μm以下がより好ましく、9μm以下がさらに好ましい。
 コアの平均粒径とは、メジアン径で定義される平均粒径を意味する。より具体的には、粒度分布計(堀場製作所社製、「HORIBA LA-920」)を用い、レーザー回析・光散乱法で測定されるストークス径をいう。
 コアの平均粒径を、上述した数値範囲に制御する方法としては、以下に限定されないが、例えば、塊状の硬化剤の粉砕工程において精密な制御を行う方法、塊状の硬化剤の粉砕工程として粗粉砕工程と微粉砕工程を行い、さらに精密な分級装置を用いて所望の平均粒径のものを分級して得る方法、塊状の硬化剤を溶媒に溶解させた溶液を噴霧乾燥させる方法等が挙げられる。
 粉砕に用いる装置としては、例えば、ボールミル、アトライタ、ビーズミル、ジェットミル等を必要に応じて採用できるが、衝撃式粉砕装置を用いることが好ましい。前記衝撃式粉砕装置としては、例えば、旋回式流粉体衝突型ジェットミル、粉体衝突型カウンタージェットミル等のジェットミルが挙げられる。ジェットミルは、空気等を媒体とした高速のジェット流により、固体材料同士を衝突させて微粒子化する装置である。粉砕工程において精密な制御を行う方法としては、粉砕時の温度、湿度、単位時間当たりの粉砕量等を制御する方法が挙げられる。粉砕工程後に精密な分級装置を用いて所望の平均粒径のものを分級して得る方法としては、例えば、粉砕後、分級により所定の平均粒径の粉粒体を得るため、篩(例えば、325メッシュや250メッシュ等の標準篩)や分級機を用いて分級する方法や、粒子の比重に応じて、風力による分級を行う方法等が挙げられる。使用する分級機としては、湿式分級機や乾式分級機が挙げられるが、一般には乾式分級機が好ましい。このような分級機としては、例えば、日鉄鉱業社製の「エルボージェット」、ホソカワミクロン社製の「ファインシャープセパレーター」、三協電業社製の「バリアブルインパクタ」、セイシン企業社製の「スペディッククラシファイア」、日本ドナルドソン社製の「ドナセレック」、安川商事社製の「ワイエムマイクロカセット」、日清エンジニアリング社製の「ターボクラシファイア」、その他各種エアーセパレータ、ミクロンセパレーター、ミクロブレックス、アキュカット等の乾式分級装置等が挙げられるが、これらに限定されない。
 粉砕ではなく、直接、前記コアを構成する硬化剤の粒子を造粒する方法としては、塊状の硬化剤を溶媒に溶解させた溶液を噴霧乾燥させる方法が挙げられる。具体的には、コアを構成する硬化剤を適当な有機溶剤に均一に溶解後、溶液状態で微小液滴として噴霧後に熱風等により乾燥する方法等が挙げられる。この場合の乾燥装置としては、通常のスプレードライ装置が挙げられる。
 また、硬化剤の粒子を造粒する方法としては、前記コアを構成する硬化剤を適当な有機溶剤に均一に溶解し、その後、均一溶液を強撹拌しつつ、コアを構成する硬化剤の貧溶媒を添加することで、コアを構成する硬化剤を微小粒子の状態で析出させる。次に、析出した粒子をろ過分離後、溶剤を、コアを構成する硬化剤の融点以下の低温で乾燥除去する方法が挙げられる。
 粒子状態となったコアを構成する硬化剤の平均粒径を分級以外の手法で調整する方法としては、例えば、平均粒径が異なる複数の粒子を混合することで、平均粒径を調整する方法等が挙げられる。例えば、粉砕や分級が困難な大粒径の硬化剤の場合、それとは別の小粒径の硬化剤を添加し、混合することで、平均粒径を上記範囲となる硬化剤とすることもできる。
 このようにして得られた硬化剤は、必要に応じて、更に分級してもよい。このような粉体の混合を目的として使用する混合機としては、混合する粉体の入った容器本体を回転させる容器回転型混合機、粉体の入った容器本体は回転させず機械撹拌や気流撹拌で混合を行う容器固定型混合機、粉体の入った容器を回転させ、他の外力も使用して混合を行う複合型混合機等が挙げられる。
 (B)マイクロカプセル型硬化剤を構成するコアの形状は、以下に限定されず、例えば、顆粒状、粉末状、不定形、不定形の角が丸みを帯びた形状等のいずれでもよい。
 (B)マイクロカプセル型硬化剤を構成するコアの形状は、真球に近い程好ましい。コアが真球に近いほど、後述するシェルであるカプセル膜が均等に形成され、成分(B)は、低凝集性と優れた保存安定性と優れた耐溶剤性を発現する傾向にある。真球への近さの程度は円形度で表され、真球の円形度は1である。成分(B)のコアの円形度としては、0.93以上が好ましく、0.95以上が好ましく、0.98以上がさらに好ましい。
 (B)マイクロカプセル型硬化剤を構成するコアの円形度は、フロー式粒子像解析法により測定することができる。より具体的には、測定用試料を液中に流し粒子を撮影し、粒子投影面積より粒子径を求め、粒子投影像の周囲長と粒子径相当円の円周との比を算出することにより求めることができる。
 コアの円形度を制御する方法は、特に限定されないが、コアを構成する硬化剤の表面改質を行う方法が有効である。例えば、機械的に粒子を丸くしたり、熱風処理したりする方法が挙げられる。
<シェル>
 (B)マイクロカプセル型硬化剤は、コアの表面を、合成樹脂及び/又は無機酸化物を含むシェルによって被覆されている構造を有するものであることが好ましい。これらの中でも、シェルを構成する膜の安定性と加熱時の破壊し易さ、及び本実施形態のエポキシ樹脂組成物の硬化物の均一性の観点から、(B)マイクロカプセル型硬化剤を構成するシェルは、合成樹脂を含むことが好ましい。
 シェルに含まれる合成樹脂としては、以下に限定されないが、例えば、エポキシ系樹脂、フェノール系樹脂、ポリエステル系樹脂、ポリエチレン系樹脂、ナイロン系樹脂、ポリスチレン系樹脂、ウレタン系樹脂等が挙げられる。これらの中でも、合成樹脂は、シェルを構成する膜の安定性と加熱時の破壊性のバランスの観点から、エポキシ系樹脂、フェノール系樹脂、ウレタン系樹脂が好ましい。
 シェルに用いるエポキシ系樹脂としては、以下に限定されないが、例えば、2以上のエポキシ基を持つエポキシ樹脂、2以上のエポキシ基を持つエポキシ樹脂と2以上の活性水素を持つ化合物との反応により生成する樹脂、2以上のエポキシ基を持つ化合物と活性水素1つと炭素-炭素2重結合とを持つ化合物との反応生成物等が挙げられる。これらの中でも、安定性の観点から、2以上のエポキシ基を持つ化合物と2以上の活性水素を持つ化合物との反応により生成する樹脂が好ましく、特にアミン系硬化剤と2つ以上のエポキシ基をもつエポキシ樹脂との反応生成物がより好ましい。
 フェノール系樹脂としては、以下に限定されないが、例えば、フェノール-ホルムアルデヒド重縮合物、クレゾール-ホルムアルデヒド重縮合物、レゾルシノール-ホルムアルデヒド重縮合物、ビスフェノールA-ホルムアルデヒド重縮合物、フェノール-ホルムアルデヒド重縮合物のポリエチレンポリアミン変性物等が挙げられる。
 ポリエステル系樹脂としては、以下に限定されないが、例えば、エチレングリコール-テレフタル酸-ポリプロピレングリコール重縮合物、エチレングリコール-ブチレングリコール-テレフタル酸重縮合物、テレフタル酸-エチレングリコール-ポリエチレングリコール重縮合物等が挙げられる。
 ポリエチレン系樹脂としては、以下に限定されないが、例えば、エチレン-プロピレン-ビニルアルコール共重合物、エチレン-酢酸ビニル共重合物、エチレン-酢酸ビニル-アクリル酸共重合物等が挙げられる。
 ナイロン系樹脂としては、以下に限定されないが、例えば、アジピン酸-ヘキサメチレンジアミン重縮合物、セバシン酸-ヘキサメチレンジアミン重縮合物、p-フェニレンジアミン-テレフタル酸重縮合物等が挙げられる。
 ポリスチレン系樹脂としては、以下に限定されないが、例えば、スチレン-ブタジエン共重合物、スチレン-ブタジエン-アクリロニトリル共重合物、アクリロニトリル-スチレン-ジビニルベンゼン共重合物、スチレン-プロペニルアルコール共重合物等が挙げられる。
 ウレタン系樹脂としては、以下に限定されないが、例えば、ブチルイソシアネート、シクロヘキシルイソシアネート、オクタデシルイソシアネート、フェニルイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、トリジンジイソシアネート、ナフタレンジイソシアネート、トリフェニルメタントリイソシアネート等のイソシアネート単量体、あるいはその縮合物、又はその重合体と、モノアルコール、多価アルコールとの重縮合物等が挙げられる。これらの中でも、モノアルコール又は多価アルコールと、モノイソシアネート又は多価イソシアネートの付加重合物であるウレタン樹脂が好ましい。
 無機酸化物としては、以下に限定されないが、例えば、酸化ホウ素、ホウ酸エステル等のホウ素化合物、二酸化珪素、酸化カルシウム等が挙げられる。これらの中でも、シェルを構成する膜の安定性と加熱時の破壊しやすさの観点から、酸化ホウ素が好ましい。
 また、シェルは、本実施形態のエポキシ樹脂組成物の保存安定性と硬化性のバランスの観点から、イソシアネート化合物、活性水素化合物、エポキシ樹脂用の硬化剤、エポキシ樹脂、及びアミン化合物からなる群より選択される1種又は2種以上の反応生成物を含むことが好ましい。
 イソシアネート化合物としては、上述のコアに含まれるアミンアダクトの原料の例として挙げたイソシアネート化合物が使用できる。
 活性水素化合物としては、以下に限定されないが、例えば、水、少なくとも1個の1級アミノ基及び/又は2級アミノ基を有する化合物、少なくとも1個の水酸基を有する化合物等が挙げられる。これらの活性水素化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 少なくとも1個の1級アミノ基及び/又は2級アミノ基を有する化合物としては、以下に限定されないが、例えば、脂肪族アミン、脂環式アミン、芳香族アミン等が挙げられる。
 脂肪族アミンとしては、以下に限定されないが、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ジブチルアミン等のアルキルアミン、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン等のアルキレンジアミン;ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等のポリアルキレンポリアミン;ポリオキシプロピレンジアミン、ポリオキシエチレンジアミン等のポリオキシアルキレンポリアミン類等が挙げられる。
 脂環式アミンとしては、以下に限定されないが、例えば、シクロプロピルアミン、シクロブチルアミン、シクロペンチルアミン、シクロヘキシルアミン、イソホロンジアミン等が挙げられる。
 芳香族アミンとしては、以下に限定されないが、例えば、アニリン、トルイジン、ベンジルアミン、ナフチルアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等が挙げられる。
 少なくとも1個の水酸基を有する化合物としては、アルコール化合物、フェノール化合物等が挙げられる。
 アルコール化合物としては、以下に限定されないが、例えば、メチルアルコール、プロピルアルコール、ブチルアルコール、アミルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ウンデシルアルコール、ラウリルアルコール、ドテシルアルコール、ステアリルアルコール、エイコシルアルコール、アリルアルコール、クロチルアルコール、プロパルギルアルコール、シクロペンタノール、シクロヘキサノール、ベンジルアルコール、シンナミルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノブチル等のモノアルコール類;エチレングリコール、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、水添ビスフェノールA、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の多価アルコール類;少なくとも1個のエポキシ基を有する化合物と、少なくとも1個の水酸基、カルボキシル基、1級アミノ基、2級アミノ基、又はチオール基を有する化合物との反応により得られる、2級水酸基を1分子中に2個以上有する化合物等の多価アルコール類等が挙げられる。
 これらのアルコール化合物は、1級アルコール、2級アルコール、3級アルコールのいずれでもよい。
 フェノール化合物としては、以下に限定されないが、例えば、石炭酸、クレゾール、キシレノール、カルバクロール、モチール、ナフトール等のモノフェノール類、カテコール、レゾルシン、ヒドロキノン、ビスフェノールA、ビスフェノールF、ピロガロール、フロログルシン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール等の多価フェノール類等が挙げられる。
 これら少なくとも1個の水酸基を有する化合物としては、潜在性や耐溶剤性の観点から、好ましくは多価アルコール類や多価フェノール類であり、より好ましくは多価アルコール類である。
 上述したような、(B)マイクロカプセル型硬化剤を構成するシェルに含まれる、イソシアネート化合物、活性水素化合物、エポキシ樹脂用の硬化剤、エポキシ樹脂、及びアミン化合物からなる群より選択される1種又は2種以上の反応生成物を調製する反応条件としては、特に限定されないが、通常、-10℃~150℃の温度範囲で、10分間~12時間の反応時間である。
 シェルに含まれる反応生成物を調製するためにイソシアネート化合物と活性水素化合物とを用いる場合の配合比は、(イソシアネート化合物中のイソシアネート基):(活性水素化合物中の活性水素)(当量比)として、好ましくは1:0.1~1:1000の範囲である。
 前記反応は、必要により所定の分散媒中で行うことができる。
 分散媒としては、溶媒、可塑剤、樹脂類等が挙げられる。
 溶媒としては、以下に限定されないが、例えば、ベンゼン、トルエン、キシレン、シクロヘキサン、ミネラルスピリット、ナフサ等の炭化水素類;アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等のケトン類;酢酸エチル、酢酸-n-ブチル、プロピレングリコールモノメチルエチルエーテルアセテート等のエステル類;メタノール、イソプロパノール、n-ブタノール、ブチルセロソルブ、ブチルカルビトール等のアルコール類;水等が挙げられる。
 可塑剤としては、以下に限定されないが、例えば、フタル酸ジブチル、フタル酸ジ(2-エチルヘキシシル)等のフタル酸ジエステル系可塑剤;アジピン酸ジ(2-エチルヘキシシル)等の脂肪族二塩基酸エステル系可塑剤;リン酸トリクレジル等のリン酸トリエステル系可塑剤;ポリエチレングリコールエステル等のグリコールエステル系可塑剤等が挙げられる。
 樹脂類としては、以下に限定されないが、例えば、シリコーン樹脂類、エポキシ樹脂類、フェノール樹脂類等が挙げられる。
 上記の中でも、エポキシ樹脂とエポキシ樹脂用の硬化剤との反応は、通常-10℃~150℃、好ましくは0℃~100℃の温度範囲で、1時間~168時間、好ましくは2時間~72時間の反応時間で行われる。また、分散媒としては、好ましくは溶媒、可塑剤である。
 なお、上述したような、シェルに含まれる反応生成物が、シェル中に占める質量%としては、通常1質量%以上であり、好ましくは50質量%以上であり、100質量%であってもよい。
 (B)マイクロカプセル型硬化剤において、コアの表面を被覆するシェルを形成する方法としては、例えば、以下の(1)~(3)のような方法が挙げられる。
 (1):分散媒である溶剤中に、カプセル成分と、硬化剤の粒子とを溶解・分散させた後、分散媒中のカプセル成分の溶解度を下げて、エポキシ樹脂用硬化剤の粒子の表面にカプセルを析出させる方法。
 (2):硬化剤の粒子を分散媒に分散させ、この分散媒に上記のカプセルを形成する材料を添加して硬化剤の粒子上に析出させる方法。
 (3):分散媒にカプセルを形成する原材料成分を添加し、硬化剤の粒子の表面を反応の場として、そこでシェル形成材料を生成する方法。
 ここで、前記(2)、(3)の方法は、反応と被覆を同時に行うことができるため好ましい。
 なお、前記(1)~(3)の方法において、分散媒としては、溶媒、可塑剤、樹脂等が挙げられる。また、溶媒、可塑剤、樹脂としては、上述したイソシアネート化合物、活性水素化合物、エポキシ樹脂用の硬化剤、エポキシ樹脂、及びアミン化合物からなる群から選択される1種又は2種以上の反応生成物を調製する際に使用できる溶媒、可塑剤、樹脂の例として挙げたものを使用できる。
 前記(2)、(3)の方法でシェルを形成した後、(B)マイクロカプセル型硬化剤を分散媒より分離する方法は、特に限定されないが、シェルを形成した後の未反応の原料については、分散媒と共に分離・除去することが好ましい。このような方法として、ろ過により分散媒、及び未反応のシェル形成材料を除去する方法が挙げられる。
 分散媒を除去した後、マイクロカプセル型硬化剤を洗浄することが好ましい。マイクロカプセル型硬化剤の洗浄により、表面に付着している、未反応のシェルを形成する材料を除去できる。
 洗浄の方法は特に限定されないが、ろ過による残留物の際に、分散媒又はマイクロカプセル型硬化剤を溶解しない溶媒を用いて洗浄することができる。ろ過や洗浄を行った後にマイクロカプセル型硬化剤を乾燥することで、マイクロカプセル型硬化剤を粉末状の形態で得ることができる。乾燥の方法は特に限定されないが、硬化剤の融点、又は軟化点以下の温度で乾燥することが好ましく、例えば減圧乾燥が挙げられる。マイクロカプセル型硬化剤を粉末状にすることで、(A)エポキシ樹脂との配合作業を容易に行うことができる。また、分散媒としてエポキシ樹脂を用いると、シェル形成と同時に、エポキシ樹脂と一体となったマイクロカプセル型硬化剤のマスターバッチを得ることができるため好適である。
 なお、シェルの形成反応は、通常、-10℃~150℃、好ましくは0℃~100℃の温度範囲で、10分間~72時間、好ましくは30分間~24時間の反応時間で行われる。
 また、(B)マイクロカプセル型硬化剤を構成するシェルは、保存安定性と反応性のバランスの観点から、波数1630~1680cm-1の赤外線を吸収するウレア結合基と、波数1680~1725cm-1の赤外線を吸収するビュレット結合基と、波数1730~1755cm-1の赤外線を吸収するウレタン結合基とを有することが好ましい。
 前記ウレア結合基、ビュレット結合基、ウレタン結合基は、フーリエ変換式赤外分光光度計(以下、「FT-IR」という場合がある。)を用いて測定することにより検出できるまた、シェルが、ウレア結合基、ビュレット結合基、ウレタン結合基を有することは、顕微FT-IRにより確認することができる。
 具体的には、本実施形態のエポキシ樹脂組成物に対し、変性脂肪族ポリアミン硬化剤を加えて40℃で12時間かけて硬化させ、その後、さらに120℃で24時間かけてエポキシ樹脂部分を完全に硬化させる。その後、ウルトラミクロトームを用いて、得られた硬化物から厚さ5~20μmの試料を作製し、顕微FT-IRで、シェルの深さ方向を分析する。シェルの表面付近の観察により、ウレア結合基、ビュレット結合基、ウレタン結合基の存在を観察することができる。
 また、(B)マイクロカプセル型硬化剤を構成するシェルの厚みは、5nm以上1000nm以下であることが好ましく、より好ましくは10nm以上100nm以下である。シェルの厚みを5nm以上とすることで、本実施形態のエポキシ樹脂組成物の貯蔵安定性を一層向上させることができる。また、シェルの厚みを1000nm以下とすることで、硬化性を一層向上させることができる。なお、ここでいう厚みは、平均層厚であり、透過型電子顕微鏡により測定することができる。
 本実施形態のエポキシ樹脂組成物中の(B)マイクロカプセル型硬化剤の含有量は、(A)エポキシ樹脂を100質量部とした時、十分な反応性を付与する観点から、1質量部以上が好ましく、5質量部以上がより好ましく、10質量部以上がよりさらに好ましく、20質量部以上がさらにより好ましく、30質量部以上がよりさらに好ましい。
 また、(B)マイクロカプセル型硬化剤同士の凝集を抑制する観点、硬化物に十分な機械強度を付与する観点、及びエポキシ樹脂組成物に十分な保存安定性を付与する観点から、100質量部以下が好ましく、90質量部以下がより好ましく、80質量部以下がさらに好ましく、75質量部以下がさらにより好ましく、70質量部以下がよりさらに好ましい。
(成分(C):反応性希釈剤)
 本実施形態のエポキシ樹脂組成物は、成分(C):反応性希釈剤(以下、(C)反応性希釈剤、成分(C)と記載する場合がある。)を含む。
 反応性希釈剤とは、硬化構造に組み込まれることが可能なエポキシ基やアクリル基を有する化合物であり、本実施形態のエポキシ樹脂組成物中に含有することで、エポキシ樹脂組成物を低粘度化する効果のある化合物である。
 (C)反応性希釈剤としては、以下に限定されないが、例えば、(メタ)アクリレート化合物や、反応性を損なわず低粘度化可能なエポキシ化合物が挙げられる。
 本明細書では、上述の(A)エポキシ樹脂に例示した化合物を除外し、かつ25℃における粘度が1mPa・s以上3Pa・s未満である化合物を反応性希釈剤とする。
 本実施形態のエポキシ樹脂組成物においては、上述した(A)エポキシ樹脂や(B)マイクロカプセル型硬化剤との相性がよく、反応後に硬化構造に取り込まれる観点から、(C)反応性希釈剤としては、エポキシ化合物が好ましい。
 (C)反応性希釈剤として用いられる(メタ)アクリレート化合物としては、以下に限定されないが、例えば、ポリアルキレンオキシドの両末端に(メタ)アクリロイル基を有する化合物、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、トリメチロールプロパン型多官能(メタ)アクリレート、ペンタエリスリトール型多官能(メタ)アクリレート、ジペンタエリスリトール型多官能(メタ)アクリレート等が挙げられる。具体的に、芳香環を2つ以上有する2官能性の(メタ)アクリレート化合物としては、例えば、ビスフェノールAにポリアルキレンオキサイドが付加し両末端が(メタ)アクリレート構造を有する化合物等が挙げられ、芳香環を1つ有する1官能性の(メタ)アクリレート化合物としては、例えば、フェニル(メタ)アクリレート、エチレングリコールモノフェニルエーテル(メタ)アクリレート等が挙げられる。
 (C)反応性希釈剤として用いられるエポキシ化合物としては、以下に限定されないが、例えば、下記の芳香環を有さないエポキシ化合物、芳香環を有するエポキシ化合物が挙げられる。
 芳香環を有さない単官能のエポキシ化合物としては、n-ブチルグリシジルエーテル、t-ブチルグリシジルエーテル、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル等の化合物が挙げられる。
 芳香環を1以上有し、1官能性エポキシ化合物として、スチレンオキシド、フェニルグリシジルエーテル、クレジルグリシジルエーテル、p-sec-ブチルフェニルグリシジルエーテル、t-ブチルフェニルグリシジルエーテル、阪本薬品工業社製商品名:SY-OPG等の化合物が挙げられる。
 芳香環を有さない、2官能性エポキシ化合物としては、例えば、1,4-シクロヘキサンジメタノールジグリシジルエーテル、1,3-シクロヘキサンジメタノールジグリシジルエーテル、(3,4-エポキシシクロヘキシル)メチル-3,4-エポキシシクロヘキシルカルボキシレート、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ジシクロペンタジエンジメタノールジグリシジルエーテル、ビニルシクロヘキセンジオキシド、三菱ケミカル社製商品名:YX-8000、阪本薬品工業社製商品名:SR-8EGS等の化合物が挙げられる。
 芳香環を1以上有する2官能性エポキシ化合物としては、例えば、ヘキサヒドロフタル酸ジグリシジルエーテル、レゾルシノールジグリシジルエーテル、tert-ブチルハイドロキノンジグリシジルエーテル、ポリオキシアルキレンビスフェノールAのジグリシジルエーテル、N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジン等の化合物が挙げられる。
 3官能性エポキシ化合物としては、例えば、トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル、N,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)アニリン等が挙げられる。
 本実施形態のエポキシ樹脂組成物において、(C)反応性希釈剤は、芳香環を有することが耐溶剤性を高める観点で好ましい。また、(C)反応性希釈剤は、前記芳香環が単環であり、かつ単官能であること、特に、官能基としてエポキシ基又はアクリル基のいずれか1つを有する単官能の化合物であることが耐溶剤性をさらに高める観点でより好ましい。さらに、前記単官能基がエポキシ基であることが反応後に(C)成分が本実施形態のエポキシ樹脂組成物の硬化物中に取り込まれることで十分な機械強度を発現する観点でさらにより好ましい。さらにまた、前記芳香環の各置換基の炭素数が3以下であることが後述するように、成分(B)のカプセル膜内への侵入性を向上させ耐溶剤性を向上させる観点から特に好ましい。
 一方で、(C)反応性希釈剤が窒素原子を含まないことが、(C)反応性希釈剤と(A)エポキシ樹脂の反応を抑制し、保存安定性を高める観点から好ましい。
 (C)反応性希釈剤が上述した構造を取ることで、本実施形態のエポキシ樹脂組成物の耐溶剤性を向上させるメカニズムについては、限定する趣旨ではないが、以下のように考える。
 (C)反応性希釈剤が芳香環を有する場合、前記(B)マイクロカプセル型硬化剤のシェル内部に取り込まれた反応性希釈剤の芳香環同士でスタッキング効果を発現してネットワークを形成するため、シェルの凝集力を高めることができる。従って、溶剤に対しても、膨潤しにくいシェルを構築することができ、本実施形態のエポキシ樹脂組成物の耐溶剤性を高められる。
 また、(C)反応性希釈剤は、前記芳香環が単環、かつ単官能の化合物であることにより、立体障害が小さくなるため、シェル内部への侵入が容易となり、より緻密かつ広いエリアで芳香環同時のスタッキングネットワークを形成できる。ここで、前記芳香環の各置換基の炭素数が3以下であることで、立体障害をより低減し、シェル内部への侵入性を高め、耐溶剤性をさらに向上させることができる。
 (C)反応性希釈剤の添加量は、本実施形態のエポキシ樹脂組成物全体に対して、十分な耐溶剤性を付与する観点で、1質量%以上が好ましく、3質量%以上がより好ましく、4質量%以上がさらに好ましく、5質量%以上がさらにより好ましく、6質量%以上がよりさらに好ましい。また、過剰な低粘度化と保存安定性の悪化、及び硬化物の機械強度低減を抑える観点で、20質量%以下が好ましく、15質量%以下がより好ましく、13質量%以下がさらに好ましく、12質量%以下がさらにより好ましく、11質量%以下がよりさらに好ましい。
(成分(D):式(1)で表される化合物)
 本実施形態のエポキシ樹脂組成物は、成分(D)として、下記式(1)で表される化合物(以下、成分(D)と記載する場合がある。)を含む。
 成分(D)を含むことで、本実施形態のエポキシ樹脂組成物は、高い保存安定性を維持したまま、低粘度性と低温硬化性を向上させ、さらに熱の伝わり方が不均一な場合での十分な硬化領域の確保が可能となる。
Figure JPOXMLDOC01-appb-C000012
 
 式(1)中、Xは2つ以上5つ以下の連続する炭素-炭素結合を有する。Xに含まれる炭素の置換基及びR~Rは、それぞれ、水素、アルキル基、不飽和脂肪族基、芳香族基、ヘテロ原子を含む置換基、ハロゲン原子を含む置換基、及びハロゲン原子からなる群より選ばれる一種である。Xに含まれる炭素の置換基及びR~Rは、それぞれ、同一であっても、異なっていてもよい。また、R~Rから選ばれるいずれかが同一環に存在する縮合環化合物でもよい。
 前記式(1)で示される化合物としては、以下に限定されないが、例えば、3-フェノキシ-1-プロパノール、3-フェノキシ-1,2-プロパンジオール、3-フェノキシ-1,3-プロパンジオール、メフェネシン(3-(オルト-トルオキシ-1,2-プロパンジオール)、グアイフェネシン(3-(2-メトキシフェノキシ)プロパン-1,2-ジオール)、ビスフェノールA(3-ヒドロキシプロピル)グリシジルエーテル、ビスフェノールA(2,3-ジヒドロキシプロピル)グリシジルエーテル、下記化合物1、化合物2、化合物3が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
 成分(D)が、本実施形態のエポキシ樹脂組成物の低粘度性と低温硬化性を向上させ、硬化領域の改善に効果を示すメカニズムとしては、限定する趣旨ではないが、以下のように考えられる。
 (A)エポキシ樹脂同士の芳香環スタッキングや水素結合といった相互作用が、成分(D)の芳香族基やヒドロキシル基により、(A)エポキシ樹脂と成分(D)との相互作用に置き換わることで、(A)エポキシ樹脂同士での相互作用が解消され、エポキシ樹脂組成物全体として分子移動が容易になるため低粘度化する。また、硬化の際に、成分(D)のヒドロキシル基と(B)マイクロカプセル型硬化剤中の硬化剤成分との間で配位結合を形成することで、硬化剤成分と(A)エポキシ樹脂の相溶性が高まり、エポキシ樹脂組成物中での硬化剤の拡散性が向上し、より低温での急峻な反応を可能にする。さらに、本実施形態のエポキシ樹脂組成物は(C)反応性希釈剤を含むため、エポキシ樹脂組成物がより低粘度化し上記拡散性が飛躍的に向上すると考えられる。さらに上記メカニズムによれば、成分(D)、(A)エポキシ樹脂、(C)反応性希釈剤の相溶性が良好な場合、特段に優れた反応性の向上を発現すると考えられる。
 また、本メカニズムにおいて、成分(D)は、硬化剤とエポキシ基の反応において、重合物に取り込まれるまでは触媒的に作用する。
 硬化領域の改善についても、前述の成分(D)の配位後の硬化剤と(A)エポキシ樹脂、(C)反応性希釈剤との相溶性向上と成分拡散性向上が寄与している。相互作用や配位性、相溶性に対する効果は、分子構造の影響を大きく受ける。したがって、本実施形態のエポキシ樹脂組成物は、成分(D)が上記式(1)で示される化合物を含む。
 成分(D)は、下記式(2)で表される化合物であることが、(B)マイクロカプセル型硬化剤中の硬化剤成分との配位結合形成の際の立体障害を抑制し、良好な硬化特性を発現する観点で好ましい。
Figure JPOXMLDOC01-appb-C000016
 
 式(2)中、Xは2つ以上4つ以下の連続する炭素-炭素結合を有し、Xに含まれる炭素の置換基及びR~Rは、それぞれ、水素、アルキル基、不飽和脂肪族基、芳香族基、ヘテロ原子を含む置換基、ハロゲン原子を含む置換基、及びハロゲン原子からなる群より選ばれる一種である。Xに含まれる炭素の置換基及びR~Rは、それぞれ、同一であっても、異なっていてもよい。また、R~Rから選ばれるいずれかが同一環に存在する縮合環化合物でもよい。
 成分(D)は、下記式(3)で表される連続する炭素-炭素結合が2つである化合物であることが、(B)マイクロカプセル型硬化剤中の硬化剤成分と配位結合を形成した後のエポキシ樹脂中への良好な拡散性の観点でより好ましい。
Figure JPOXMLDOC01-appb-C000017
 
 式(3)中、R~Rは、それぞれ、水素、アルキル基、不飽和脂肪族基、芳香族基、ヘテロ原子を含む置換基、ハロゲン原子を含む置換基、及びハロゲン原子からなる群より選ばれる一種である。
 R~Rは、それぞれ、同一であっても、異なっていてもよい。また、R~Rから選ばれるいずれかが同一環に存在する縮合環化合物でもよい。
 成分(D)は、下記式(4)で表される、前記式(3)中のRがヒドロキシル基である化合物であることが、耐溶剤安定性、フィルムの作製時安定性、フィルムの保存安定性を高める観点でさらに好ましい。
Figure JPOXMLDOC01-appb-C000018
 
 式(4)中、R~Rは、それぞれ、水素、アルキル基、不飽和脂肪族基、芳香族基、ヘテロ原子を含む置換基、ハロゲン原子を含む置換基、及びハロゲン原子からなる群より選ばれる一種である。
 R~Rは、それぞれ、同一であっても、異なっていてもよい。また、R~Rから選ばれるいずれかが同一環に存在する縮合環化合物でもよい。
 また、硬化剤成分への配位性を高めるために立体障害を低減する観点において、成分(D)である前記式(3)、(4)で表される化合物のR、R、Rは水素原子であることが好ましい。
 成分(D)を、効率的に作用させる観点から、成分Dの前記式(1)~(4)で表される化合物における、R~Rは、エポキシ基及び下記式(5)の構造(末端ジオール構造)を含まないことが好ましい。
Figure JPOXMLDOC01-appb-C000019
 
 成分(D)である前記式(1)~(4)で表される化合物が、R~Rにエポキシ基を有さないことで、硬化反応系に取り込まれることが無く長期間作用することが可能になる。
 また、R~Rが、前記式(5)の構造を持つと、前記式(1)~(4)の化合物の分子内に立体障害の影響が小さい位置関係で硬化剤と配位結合可能な官能基が2つ以上存在することになり、その結果、複数分子の間で配位結合が形成されることで分子移動性が低下してしまう。そのため、前記式(1)~(4)の化合物におけるR~Rは、前記式(5)の構造(末端ジオール構造)を含まないことが好ましい。
 相溶性の指標として、sp値(δ)があり、化合物同士のsp値の差が小さい場合、良好な相溶性を示す。
 成分(D)の、前記(A)エポキシ樹脂、(C)反応性希釈剤に対する相溶性が優れること、及び、成分(D)が硬化剤に配位して形成された配位化合物の、前記(A)エポキシ樹脂、(C)反応性希釈剤に対する相溶性が優れることにより、本実施形態のエポキシ樹脂組成物において、低粘度化、低温硬化性の向上、硬化領域の改善の効果をより発揮するため、成分(D)のsp値は、(A)エポキシ樹脂、(C)反応性希釈剤のsp値に対して近い値を有することが好ましい。
 以下は、ROBERT F. FEDORS著 POLYMER ENGINEERING AND SCIENCE, FEBRUARY, 1974, Vol. 14, No. 2に記載の値を用いて、25℃における、各化合物のsp値をFedorsの計算法(数式(i))により求めたものである。
 下記式中、δはsp値を示す。
 δ=(ΣΔe/ΣΔv)1/2 ・・・・・数式(i)
 Δeは置換基ごとの凝集エネルギーを表し、Δvはモル分子容を示す。
〔成分(A)〕
 ビスフェノールA型エポキシ樹脂(n=0体)・・δ=10.9(cal/cm1/2
 ビスフェノールF型エポキシ樹脂(n=0体)・・δ=12.1(cal/cm1/2
 1,6-ビス(2,3-エポキシプロポキシ)ナフタレン・・δ=13.1(cal/cm1/2
〔成分(C)〕
 フェニルグリシジルエーテル   ・・・・・δ=10.6(cal/cm1/2
 オルト-クレジルグリシジルエーテル   ・・・・・δ=9.7(cal/cm1/2
 1,6-ヘキサンジオールジグリシジルエーテル   ・・・・・δ=9.8(cal/cm1/2
〔成分(D)〕
 3-フェノキシ-1-プロパノール    ・・・・・δ=12.0(cal/cm1/2
 3-フェノキシ-1,2-プロパンジオール・・δ=14.3(cal/cm1/2
 メフェネシン            ・・・・δ=13.0(cal/cm1/2
 グアイフェネシン         ・・・・・δ=13.0(cal/cm1/2
 ビスフェノールA(3-ヒドロキシプロピル)グリシジルエーテル
・・・・・δ=11.6(cal/cm1/2
 ビスフェノールA(2,3-ジヒドロキシプロピル)グリシジルエーテル
                  ・・・・・δ=12.9(cal/cm1/2  
  化合物1            ・・・・・δ=12.0(cal/cm1/2
  化合物2            ・・・・・δ=12.0(cal/cm1/2
  化合物3            ・・・・・δ=12.6(cal/cm1/2
 本実施形態のエポキシ樹脂組成物の低粘度化、低温硬化性の向上、硬化領域の改善の効果をより発揮する観点から、(A)エポキシ樹脂及び/又は(C)反応性希釈剤が、sp値が9~14(cal/cm1/2のエポキシ樹脂を含む場合は、成分(D)のsp値は、下限値として、7(cal/cm1/2以上が好ましく、8(cal/cm1/2以上がより好ましく、9(cal/cm1/2以上がさらに好ましく、10(cal/cm1/2以上がよりさらに好ましく、11(cal/cm1/2以上がさらにより好ましい。上限値としては、20(cal/cm1/2未満が好ましく、18(cal/cm1/2以下がより好ましく、16(cal/cm1/2以下がさらにより好ましい。
 本実施形態のエポキシ樹脂組成物の、低粘度化と触媒的な反応性向上の効果を十分に発揮する観点から、成分(D)の添加量は、エポキシ樹脂組成物全体に対して0.001質量%以上が好ましく、0.005質量%以上がより好ましく、0.01質量%以上がさらに好ましく、0.012質量%以上がさらにより好ましい。また、過剰添加による保存安定性悪化を抑制する観点から、5質量%以下が好ましく、3質量%以下がより好ましく、2.5質量%以下がさらに好ましく、2質量%以下がさらにより好ましい。
 成分(D)は、その他成分との混合時に添加してもよく、混合後に系中で生成してもよく、また、(A)エポキシ樹脂、(B)マイクロカプセル型硬化剤、及び(C)反応性希釈剤を製造する際に系中で生成させてもよい。
(その他添加剤)
 本実施形態のエポキシ樹脂組成物には、必要に応じて、上述した成分以外に、(B)マイクロカプセル型硬化剤以外の硬化剤、及び添加剤として、有機フィラー、無機フィラー、顔料、染料、流れ調整剤、増粘剤、離型剤、湿潤剤、難燃剤、界面活性剤、樹脂類等を、さらに含むことができる。
 (B)マイクロカプセル型硬化剤以外の硬化剤としては、上述のマイクロカプセル型硬化剤のコア成分で挙げた硬化剤や活性エステル化合物等が挙げられる。
 有機フィラーとは衝撃により発生する応力を緩和することが可能な、衝撃緩和剤としての機能を有するものである。
 本実施形態のエポキシ樹脂組成物は、有機フィラーを含有することで、各種接続部材との接着性をより一層向上することができる。また、フィレットクラックの発生及び進展を抑制することができる傾向にある。
 有機フィラーとしては、以下に限定されないが、例えば、アクリル樹脂、シリコーン樹脂、ブタジエンゴム、ポリエステル、ポリウレタン、ポリビニルブチラール、ポリアリレート、ポリメチルメタクリレート、アクリルゴム、ポリスチレン、NBR、SBR、シリコーン変性樹脂、及びこれらを成分として含む共重合体の有機微粒子が挙げられる。
 接着性向上の観点から、有機微粒子としては、例えば、(メタ)アクリル酸アルキル-ブタジエン-スチレン共重合体、(メタ)アクリル酸アルキル-シリコーン共重合体、シリコーン-(メタ)アクリル共重合体、シリコーンと(メタ)アクリル酸との複合体、(メタ)アクリル酸アルキル-ブタジエン-スチレンとシリコーンとの複合体及び(メタ)アクリル酸アルキルとシリコーンとの複合体等が挙げられる。
 また、前記有機微粒子としては、コアシェル型の構造を有し、コア層とシェル層とで組成が異なる有機微粒子を用いることもできる。コアシェル型の有機微粒子として、例えば、シリコーン-アクリルゴムをコアとてアクリル樹脂をグラフトした粒子、及びアクリル共重合体にアクリル樹脂をグラフトとした粒子等が挙げられる。
 これらの有機フィラーは、1種単独で用いてもよいし、2種以上を併用してもよい。
 無機フィラーは、本実施形態のエポキシ樹脂組成物の熱膨張係数を調整することができるため、無機フィラーを含有することにより、本実施形態のエポキシ樹脂組成物をアンダーフィル材として使用した際の耐熱性及び耐湿性の向上に寄与する傾向にある。
 無機フィラーとしては、以下に限定されないが、例えば、タルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩;酸化チタン、酸化アルミニウム(アルミナ)、溶融シリカ(例えば溶融球状シリカ及び溶融破砕シリカ)、合成シリカ、結晶シリカ等の酸化物;炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩;水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物;硫酸バリウム、硫酸カルシウム等の硫酸塩;亜硫酸カルシウム等亜硫酸塩;ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩;窒化アルミニウム、窒化ホウ素、窒化ケイ素等の窒化物が挙げられる。
 これらの中でも、耐熱性、耐湿性、及び強度を向上できる観点から、溶融シリカ、結晶シリカ、及び合成シリカ粉末が好ましく、また、酸化アルミニウム、及び窒化ホウ素のいずれかが好ましい。これらを用いることで、熱線膨張係数を抑制できるため、冷熱サイクル試験の改善等が見込まれる。
 無機フィラーの形状は、特に限定されず、例えば、不定形、球状、及びりん片のいずれの形態であってもよい。
 これらの無機フィラーは、1種単独で用いてもよいし、2種以上を併用してもよい。
 顔料としては、以下に限定されないが、例えば、カオリン、酸化アルミニウム三水和物、水酸化アルミニウム、チョーク粉、石こう、炭酸カルシウム、三酸化アンチモン、ペントン、シリカ、エアロゾル、リトポン、バライト、二酸化チタン等が挙げられる。
 染料としては、以下に限定されないが、例えば、茜、藍等の植物由来の染料や、黄土、赤土等の鉱物由来の染料といった天然染料、アリザリン、インディゴ等の合成染料の他、蛍光染料等が挙げられる。
 流れ調整剤としては、以下に限定されないが、例えば、シランカップリング剤等の有機シラン化合物;チタンテトライソプロポキシドやチタンジイソプロポキシビス(アセチルアセトネート)のような有機チタン化合物;ジルコニウムテトラノルマルブトキシドやジルコニウムテトラアセチルアセトネート等の有機ジルコニウム化合物等が挙げられる。
 増粘剤としては、以下に限定されないが、例えば、ゼラチンのような動物性増粘剤;多糖類やセルロースのような植物性増粘剤;ポリアクリル系増粘剤、変性ポリアクリル系増粘剤、ポリエーテル系増粘剤、ウレタン変性ポリエーテル系増粘剤、カルボキシメチルセルロース等の化学合成系増粘剤等が挙げられる。
 離型剤としては、以下に限定されないが、例えば、フッ素系離型剤、シリコーン系離型剤、(メタ)アクリル酸グリシジルと炭素数16~22の直鎖アルキル(メタ)アクリル酸エステルとの共重合体からなるアクリル系離型剤等が挙げられる。
 湿潤剤としては、以下に限定されないが、例えば、アクリルポリリン酸エステル等の、酸性基を有する不飽和ポリエステルコポリマー系湿潤剤等が挙げられる。
 難燃剤としては、以下に限定されないが、例えば、水酸化アルミニウムや水酸化マグネシウム等の金属水酸化物、塩素化合物や臭素化合物等のハロゲン系難燃剤、縮合リン酸エステル等のリン系難燃剤、三酸化アンチモンや五酸化アンチモン等のアンチモン系難燃剤、シリカ充填剤等の無機酸化物等が挙げられる。
 界面活性剤としては、以下に限定されないが、例えば、アルキルベンゼンスルホン酸塩やアルキルポリオキシエチレン硫酸塩等のアニオン性界面活性剤、アルキルジメチルアンモニウム塩等のカチオン性界面活性剤、アルキルジメチルアミンオキシドやアルキルカルボキシベタイン等の両性界面活性剤、炭素数25以上の直鎖状アルコールや脂肪酸エステル等の非イオン性界面活性剤等が挙げられる。
 樹脂類としては、以下に限定されないが、例えば、シリコーン樹脂類、フェノール樹脂類、フェノキシ樹脂、ポリビニルブチラール樹脂、ポリビニルアセタール樹脂、ポリアクリル樹脂、ポリイミド樹脂、並びに、カルボキシル基、ヒドロシキシル基、ビニル基及びアミノ基等の官能基を有するエラストマー類等が挙げられる。
〔エポキシ樹脂組成物の製造方法〕
 本実施形態のエポキシ樹脂組成物の製造方法は、上述した(A)エポキシ樹脂、(B)マイクロカプセル型硬化剤、(C)反応性希釈剤、及び成分(D)の化合物を混合し、エポキシ樹脂組成物を得る工程を有する。
 予め(A)エポキシ樹脂と(C)反応性希釈剤と成分(D)の化合物を混合した後に、(B)マイクロカプセル型硬化剤を添加することや、(B)マイクロカプセル型硬化剤と(C)反応性希釈剤と成分(D)の化合物を混合した後に(A)エポキシ樹脂を添加すること、加えて(A)エポキシ樹脂と(B)マイクロカプセル型硬化剤が一体となったマスターバッチに対して、(A)エポキシ樹脂と(B)マイクロカプセル型硬化剤と(C)反応性希釈剤と成分(D)の化合物を添加すること等は、本実施形態のエポキシ樹脂組成物の製造方法に含まれる。混合の方法も特に制限はなく、例えば、プラネタリミキサを用いた方法や三本ロールを用いた方法等から適宜選択できる。また、(B)マイクロカプセル型硬化剤は上述したいずれの方法で製造してもよい。
〔硬化性樹脂組成物の製造方法〕
 本実施形態のエポキシ樹脂組成物は、マスターバッチ型エポキシ樹脂硬化剤として使用して硬化性樹脂組成物を製造することもできる。すなわち、本実施形態のエポキシ樹脂組成物に、エポキシ樹脂及びその他の硬化剤等を添加して、硬化性樹脂組成物を製造することができる。かかる場合、硬化性樹脂組成物も本発明の実施形態に含まれる。
 硬化性樹脂組成物は、本実施形態のエポキシ樹脂組成物と、(A)エポキシ樹脂や(B)マイクロカプセル型硬化剤のコア成分として挙げた硬化剤やその他添加剤で挙げたもの等とを、3本ロール等のミキシングロール、ディゾルバ、プラネタリミキサ、ニーダ、押出し機等を用いて均一になるまで充分に混合することで得ることができる。
 本実施形態のエポキシ樹脂組成物、硬化性樹脂組成物、及び後述するフィルム用のエポキシ樹脂組成物調合液は、30℃~80℃の温度にて1~168時間の加熱処理を施すこともできる。加温方法は、特に制限はないが、例えば、オーブン、インキュベーター、水浴、油浴、等で加温する方法が挙げられる。また、温度履歴も特に制限はなく、例えば、段階的に昇温させてもよく、一挙に昇温させてもよい。
 加熱処理により、低温で反応する余剰な官能基の反応を収束させることができる。
〔エポキシ樹脂組成物、及び硬化性樹脂組成物の具体的な態様〕
 本実施形態のエポキシ樹脂組成物、及びこれを用いた硬化性樹脂組成物は、以下に限定されないが、アンダーフィル材やリレー封止材等の電気電子部品の封止材料、絶縁材、接着剤、導電性材料や繊維強化プラスチックのマトリックス樹脂、モーターコイルの含浸固着材等に好適である。
 例えば、アンダーフィル材においては、半導体チップと基板間へ迅速に浸透するための低粘度性と浸透時の加熱に対する安定性、及び100℃以上での優れた硬化性が求められるが、本実施形態のエポキシ樹脂組成物は、これら全ての特性を兼備する。さらに、半導体チップの大面積化に対しても、本実施形態のエポキシ樹脂組成物は、熱の伝わり方が不均一な場合でも十分な硬化領域を確保できる観点から好適である。
 また、繊維強化プラスチックのマトリックス樹脂やモーターコイルの含侵固着材は、微細な繊維、又はコイルの隙間への浸透性と浸透時の安定性、及び硬化性が求められるが、本実施形態のエポキシ樹脂組成物は、これら全ての特性を兼備するため、好適である。
 本実施形態のエポキシ樹脂組成物を用いた硬化性樹脂組成物も同様の特性を有することから、上述する態様に対して好適である。
(本実施形態のエポキシ樹脂組成物を含むフィルム)
 本実施形態のフィルムは、本実施形態のエポキシ樹脂組成物を含む樹脂組成物層を有する。
 この際、エポキシ樹脂組成物は、エポキシ樹脂硬化剤又は硬化促進剤として機能することもできる。本実施形態のエポキシ樹脂組成物は、低粘度性、耐溶剤性、保存安定性、硬化性に優れており、フィルムに好適である。
 本実施形態のフィルムは、例えば、所定の支持体と、後述するエポキシ樹脂組成物調合液から支持体上に形成された樹脂組成物層とを有し、必要により、前記樹脂組成物層の支持体と反対側の表面に保護層を有していてもよい。
<フィルム用のエポキシ樹脂組成物調合液の調製方法>
 フィルムの樹脂組成物層を形成するためのエポキシ樹脂組成物調合液の調製方法としては、例えば、本実施形態のエポキシ樹脂組成物と、(A)エポキシ樹脂、(B)マイクロカプセル型硬化剤のコア成分として挙げた硬化剤、その他添加剤、成分(E):フィルム形成用ポリマー等を混合し、さらに成分(F):有機溶媒を添加し、プラネタリミキサ等で混合する方法が挙げられる。
 前記(E)フィルム形成用ポリマーとしては、エポキシ樹脂組成物調合液を塗工後に有機溶媒を乾燥させてフィルム化した際に、ひび割れやハジキや過剰なフローを抑制する効果を有し、フィルム形状を維持する効果のあるポリマー全般を使用できる。このような成分(E)としては、以下に限定されないが、例えば、フェノキシ樹脂、ポリビニルブチラール樹脂、ポリビニルアセタール樹脂、ポリアクリル樹脂、ポリイミド樹脂並びに、カルボキシル基、ヒドロシキシル基、ビニル基及びアミノ基等の官能基を有するエラストマー類等が挙げられる。
 (E)フィルム形成用ポリマーはバインダーポリマーと呼ばれることもある。
 (F)有機溶媒としては、特に制限はなく、公知のものを使用できる。以下に限定されないが、例えば、トルエン、キシレン、シクロヘキサン、ミネラルスピリット、ソルベントナフサ等の炭化水素類;アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等のケトン類;酢酸エチル、酢酸-n-ブチル、プロピレングリコールモノメチルエチルエーテルアセテート等のエステル類;メタノール、イソプロパノール、n-ブタノール、ブチルセロソルブ、ブチルカルビトール等のアルコール類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒等が挙げられる。
<支持体>
 支持体としては、有機溶剤乾燥時の温度に耐えられる材料が好ましい。このような支持体としては、以下に限定されないが、例えば、ポリエチレンテレフタレートフィルム、ポリビニルアルコールフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリ塩化ビニリデンフィルム、塩化ビニリデン共重合フィルム、ポリメタクリル酸メチル共重合体フィルム、ポリスチレンフィルム、ポリアクリロニトリルフィルム、スチレン共重合体フィルム、ポリアミドフィルム、セルロース誘導体フィルム等が挙げられる。
 これらのフィルムとしては、必要に応じ延伸されたものも使用可能である。
<保護層>
 保護層としては、樹脂組成物層の表面の平滑性を十分に保つことができる材料が好ましい。このような保護層としては、以下に限定されないが、ポリエチレンフィルム、ポリプロピレンフィルム、易剥離処理されたポリエチレンテレフタレートフィルム、オリエンティッドポリプロピレンフィルム等が好ましく使用できる。
<フィルムの製造方法>
 本実施形態のフィルムは、支持体及び樹脂組成物層、並びに必要により保護層を順次積層することにより、製造することができる。
 支持体、樹脂組成物層、及び保護層の積層方法としては、公知の方法を採用することができる。
 例えば、本実施形態のエポキシ樹脂組成物と、(F)有機溶剤を含む調合液を調製し、先ず、支持体上にアプリケーター、バーコーター等公知の方法を用いて塗布して乾燥させ、支持体上に樹脂組成物層を形成する。乾燥方法としては特に制限はないが、例えば、オーブンや熱風吹きつけ等が挙げられる。また、乾燥温度や時間についても特に制限はないが、十分に溶剤を除去しつつ、過剰な加熱による支持体の変形と乾燥時における樹脂組成物層の余剰な反応を抑制する観点から、50℃~160℃の温度範囲内、1分~30分の乾燥時間内で乾燥することが好ましく、80℃~150℃、3分~25分で乾燥することがより好ましい。なお、乾燥温度については、一定温度であってもよく、温度勾配をかけてもよい。次いで、必要により、形成された樹脂組成物層上に保護層を積層することにより、フィルムを製造することができる。
<フィルムの具体的な態様>
 本実施形態のフィルムは、以下に限定されないが、例えば、層間絶縁フィルム、フィルム型ソルダーレジスト、封止シート、導電性フィルム、異方導電性フィルム、熱伝導性フィルム等として利用できる。
 本実施形態のエポキシ樹脂組成物は、耐溶剤性、保存安定性に優れているため、これを含むフィルム用エポキシ樹脂組成物調合液の塗工可能時間を長くすることが可能であると共に、得られたフィルムの保管可能期間を長くすることができる。特に、従来は冷凍保存が一般的であるフィルムに対しても冷蔵から常温付近での保管を可能とする。
 また、本実施形態のエポキシ樹脂組成物は低粘度性を有しているため、これを含む調合液の粘度コントロールが容易であると共に、支持体上への塗工性も優れている。
 さらに、本実施形態のエポキシ樹脂組成物を含む樹脂組成物層は、フィルム貼り付け時の加熱により十分に低粘度化し、かつ、フィルム作製工程、及び保管中での安定性にも優れていることから、フィルム作製後でのエポキシ化合物の反応が抑制され、低粘度性を長期間維持できる。これらの特性により、本実施形態のフィルムは、凹凸追従性に優れ、基材に対して空隙なく貼り合わせることができる。
 さらにまた、本実施形態のエポキシ樹脂組成物は、100℃付近での優れた硬化性を有することから、本実施形態のフィルムは優れた硬化性をも有する。
 以上の特性は層間絶縁フィルム、フィルム型ソルダーレジスト、封止シート、導電性フィルム、異方導電性フィルム、熱伝導性フィルムに共通して要求されるものであるため、本実施形態のフィルムはこれらの態様に好適である。
〔硬化物〕
 本実施形態の硬化物は、上述した本実施形態のエポキシ樹脂組成物、及び本実施形態のフィルムの硬化物である。
 本実施形態の硬化物は、本実施形態のエポキシ樹脂組成物、及びフィルムに対し、加熱処理を施すことにより製造できる。
 加熱処理は、例えば、オーブン等の加熱炉での加熱処理や熱圧着等により実施することができる。また、加熱条件は特に制限はなく、エポキシ樹脂組成物の組成や加熱処理装置に応じて適宜選択できる。
 本実施形態の硬化物は、機械強度に優れている。
 以下、本実施形態について、具体的な実施例及び比較例を挙げて説明するが、本実施形態は、以下の実施例及び比較例に限定されるものではない。
 なお、以下において「部」及び「%」は、特に断りがない限り質量基準である。
〔マイクロカプセル型硬化剤の製造方法〕
(製造例1)
 ビスフェノールA型エポキシ樹脂A-1(エポキシ当量186g/eq、全塩素量600ppm、加水分解性塩素量50ppm、以下「エポキシ樹脂A-1」という。)50質量部と、ビスフェノールF型エポキシ樹脂A-2(エポキシ当量172g/eq、全塩素量500ppm、加水分解性塩素量100ppm、以下「エポキシ樹脂A-2」という。)50質量部と、硬化剤コア成分b-1(旭化成社製、円形度0.93の固体のアミンアダクト、以下「コアb-1」という。)100質量部と、カプセル化剤c-1(日本ポリウレタン社製:MR-400)10質量部を添加し、分散及び混合した後、55℃で5時間反応させて、エポキシ樹脂に分散したマイクロカプセル型硬化剤B-1を得た。
(製造例2)
 「エポキシ樹脂A-1」50質量部と、「エポキシ樹脂A-2」50質量部と、「コアb-1」100質量部と、カプセル化剤c-2(東ソー社製:T-80)10質量部を添加し、分散及び混合した後、55℃で5時間反応させて、エポキシ樹脂に分散したマイクロカプセル型硬化剤B-2を得た。
(製造例3)
 「エポキシ樹脂A-1」50質量部と、「エポキシ樹脂A-2」50質量部と、「コア成分b-1」100質量部と、カプセル化剤c-3(東ソー社製:コロネート1391)7質量部と、カプセル化剤c-4(旭化成社製:デュラネートTUL-100)3質量部を添加し、分散及び混合した後、55℃で5時間反応させて、エポキシ樹脂に分散したマイクロカプセル型硬化剤B-3を得た。
〔エポキシ樹脂組成物の調製〕
 下記表1~表3の成分表に示す配合部数となるように、(A)エポキシ樹脂、(B)マイクロカプセル型硬化剤、(C)反応性希釈剤、成分(D):式(1)で表される化合物を、それぞれ計量し、混合した後、55℃条件下で48時間ろ過を行い、エポキシ樹脂組成物を得た。
 下記表1~表3に記載の(A)エポキシ樹脂の配合部数は、製造例1、2、3で作製した「エポキシ樹脂に分散したマイクロカプセル型硬化剤」を添加する際に同時に配合されることとなるエポキシ樹脂を含めたエポキシ樹脂組成物全体におけるエポキシ樹脂量である。従って、下記表1~表3に記載の「(B)マイクロカプセル型硬化剤」の配合部数は、コアとシェルから成るマイクロカプセル型硬化剤そのものの配合部数である。
〔特性の測定及び評価方法〕
(エポキシ樹脂組成物の初期粘度測定)
 E型粘度計(TVE-35H、東機産業株式会社社製)を用いて、室温(25℃)にてエポキシ樹脂組成物を調製した直後の粘度(初期粘度)を測定した。
 十分な隙間浸透性、及びフィルムを構成する樹脂組成物層の製造適正の観点から、初期粘度は、4500mPa・s以下が好ましく、3500mPa・s以下がより好ましく、3000mPa・s以下がさらに好ましいものとして評価した。
(保存安定性:保存安定性粘度倍率)
 エポキシ樹脂組成物を調製した直後の初期粘度と、エポキシ樹脂組成物を40℃、7日間放置後での経過時粘度とを、E型粘度計を用いて室温(25℃)にて測定し、下記数式(1)にて保存安定性粘度倍率を算出した。
 保存安定性粘度倍率=40℃、7日放置後経過時粘度/初期粘度 ・・・・数式(1)
 保存安定性粘度倍率は、1.2以下が好ましく、1.1以下がより好ましく、1.0がさらに好ましいものとして評価した。
(レオメーター測定により動的粘度が所定の粘度になる温度(100℃付近での硬化性))
 レオメーター(HAAKE MARS、Thermo scientific製)により、昇温速度5℃/分、オシレーションモード(f=1Hz)にて、エポキシ樹脂組成物を25℃から200℃まで昇温した際の、動的粘度η’-温度曲線を取得した。
 得られた動的粘度-温度曲線から、動的粘度が10mPa・sとなる温度:T(℃)を確認した。
 温度:T(℃)に応じて以下の評価を行った。
 T≦95℃     ・・・・・◎
 95℃<T≦105℃ ・・・・〇
 105℃<T≦110℃ ・・・△
 110℃<T    ・・・・・×
(硬化領域)
 縦:550mm×幅350mm×厚み2mmのテフロン(登録商標)製の型に、エポキシ樹脂組成物を開口部まで十分に流し入れ、加熱炉にて設定温度100℃で25分間加熱した。
 加熱完了後、テフロン(登録商標)製型から取り外した硬化体の体積をVc、エポキシ樹脂組成物を流し入れた体積をV0とし、下記数式(2)にて硬化領域を算出した。
 硬化領域(%)=100×Vc/V0 ・・・・・・数式(2)
 硬化領域の割合(%)に応じて以下の基準により評価を行った。
 ◎ 硬化領域:100% 
 〇 硬化領域:80%以上100%未満
 △ 硬化領域:50%以上80%未満
 × 硬化領域:50%未満
 エポキシ樹脂組成物を硬化させた際の、硬化領域が大きい程、硬化領域熱の伝わり方が不十分な場合においても、十分な硬化領域を確保できる観点から優れている、と評価した。
 すなわち、評価が良好な方から、◎、〇、△、×の順であるものとして表中に示した。
(耐溶剤安定性)
 実施例1~19、比較例2のエポキシ樹脂組成物80質量部に、溶剤としてMEK(メチルエチルケトン)20質量部を混合してサンプルを調製した。
 得られたサンプルを50℃にて加温し、流動性が消失するまでの時間(h)を測定した。
 流動性が消失するまでの時間は、0.5時間(h)以上が好ましく、1時間(h)がより好ましく、2時間(h)以上がさらに好ましいものとして評価した。
(エポキシ樹脂組成物を用いたフィルムの作製時安定性)
 フェノキシ樹脂(InChem社製、商品名「PKHB」)50質量部、ビスフェノールA型液状エポキシ樹脂(三菱ケミカル社製、商品名「jER828」)50質量部、MEK100質量部を混合溶解して溶液を得、この溶液100質量部に、実施例1~19、比較例2のいずれかのエポキシ樹脂組成物20質量部を混合してフィルム用エポキシ樹脂組成物用調合液を調製した。
 この調合液を、支持体であるポリエチレンテレフタレートフィルム(厚み50μm)上に、乾燥膜厚40μmとなるように塗工した後、120℃に予熱しておいたオーブンにて5分間加熱乾燥した後、前記支持体と反対面を易剥離処理されたポリエチレンテレフタレートフィルムで保護し、フィルムを得た。これらを、それぞれ実施例20~38、比較例4のフィルムとする。
 得られたフィルムについて、フーリエ変換式赤外分光光度計(FT/IR-6600、日本分光社製)によりFT-IRスペクトルを測定した。
 加熱乾燥により強度変化のないエポキシ樹脂及びフェノキシ樹脂のメチレン基由来の2920cm-1付近の吸収P1を基準として、エポキシ基由来の915cm-1付近の吸収P2との強度比P2/P1を、硬化剤成分であるエポキシ樹脂組成物中のマイクロカプセル型硬化剤成分を抜いた組成で同様にしてフィルムを作製した場合の強度比P20/P10(P10は2920cm-1付近の吸収、P20はエポキシ基由来の915cm-1付近の吸収)と比較し、下記数式(3)を用いて、エポキシ消費率を算出した。
エポキシ消費率=100-〔(P2/P1)/(P20/P10)〕×100・・・式(3)
エポキシ消費率に応じて、以下の基準により評価した。
 0%≦エポキシ消費率<10% ・・・・◎
 10%≦エポキシ消費率<15%・・・・〇
 15%≦エポキシ消費率<20%・・・・△
 20%≦エポキシ消費率    ・・・・×
 評価が良好な方から、◎、〇、△、×の順であるものとして表中に示した。
(エポキシ樹脂組成物を用いたフィルムの保存安定性)
 実施例1~19、比較例2のいずれかのエポキシ樹脂組成物を用いて、上述(フィルムの作製時安定性)と同様の方法でフィルムを作製した。その後、フィルムを40℃のオーブンにて7日間保管した。保管後のフィルムについて、前記(フィルムの作製時安定性)と同様の方法で、FT-IRスペクトルを測定し、前記式(3)のP2/P1の値に保管後の値を採用して、保管後エポキシ消費率を算出した。
保管後エポキシ消費率に応じて、以下の基準により評価した。
 0%≦エポキシ消費率<10% ・・・・◎
 10%≦エポキシ消費率<15%・・・・〇
 15%≦エポキシ消費率<20%・・・・△
 20%≦エポキシ消費率    ・・・・×
 評価が良好な方から、◎、〇、△、×の順であるものとして表中に示した。
(エポキシ樹脂組成物を硬化促進剤として用いたフィルムの作製時安定性)
 フェノキシ樹脂(InChem社製、商品名「PKHB」)50質量部、ビスフェノールA型液状エポキシ樹脂(三菱ケミカル社製、商品名「jER828」)50質量部、MEK100質量部を混合溶解して溶液を得、この溶液100質量部に、硬化剤成分としてジシアンジアミド(DICY)2.5質量部、硬化促進剤として実施例1、5、10、15のエポキシ樹脂組成物2質量部を混合してフィルム用エポキシ樹脂材料用調合液を調製した。
 この調合液を用い、前記P20/P10を求めるためのフィルムを作製する際に、硬化剤であるジシアンジアミドとマイクロカプセル型硬化剤を抜いた組成物を用いたこと以外は、上述(フィルムの作製時安定性)と同じ方法で実施例39~42のフィルムを作製し、エポキシ消費率測定及び評価を行った。
 エポキシ消費率に応じて、以下の基準により評価した。
 0%≦エポキシ消費率<10% ・・・・◎
 10%≦エポキシ消費率<15%・・・・〇
 15%≦エポキシ消費率<20%・・・・△
 20%≦エポキシ消費率    ・・・・×
 評価が良好な方から、◎、〇、△、×の順であるものとして表中に示した。
(エポキシ樹脂組成物を硬化促進剤として用いた際のフィルムの保存安定性)
 実施例1、5、10、15のエポキシ樹脂組成物を用いて、前記(エポキシ樹脂組成物を硬化促進剤として用いた際のフィルム作製時安定性)と同様の方法でフィルムを作製した。
 その後、フィルムを40℃のオーブンにて7日間保管した。保管後のフィルムについて、前記(エポキシ樹脂組成物を硬化促進剤として用いたフィルムの作製時安定性)と同様の方法で、FT-IRスペクトルを測定し、前記式(3)のP2/P1の値に保管後の値を採用して、保管後エポキシ消費率を算出した。
保管後エポキシ消費率に応じて、以下の基準により評価した。
 0%≦エポキシ消費率<10% ・・・・◎
 10%≦エポキシ消費率<15%・・・・〇
 15%≦エポキシ消費率<20%・・・・△
 20%≦エポキシ消費率    ・・・・×
 評価が良好な方から、◎、〇、△、×の順であるものとして表中に示した。
(フィルムの硬化性)
 上述した(エポキシ樹脂組成物を用いたフィルムの作製時安定性)及び(エポキシ樹脂組成物を硬化促進剤として用いたフィルムの作製時安定性)に記載された方法でフィルムを作製した。その後、エポキシ樹脂組成物層をアルミ箔に転写し、180℃のオーブンにて1時間硬化させた。
 得られた硬化物の外観、断面を観察し、硬化の可否を判断した。
〔成分記載〕
 以下、下記の表1~表3中の成分(C)、成分(D)を示す。
 なお、成分(C)の粘度は、エポキシ樹脂組成物の初期粘度測定と同様の方法で測定した。
成分(C):
 PGE:フェニルグリシジルエーテル(25℃の粘度6mPa・s)(東京化成工業株式会社製)
 o-CGE:オルト-クレジルグリシジルエーテル(25℃の粘度7mPa・s)(Sigma-Aldrich Japan製)
 tBPGE:t-ブチルフェニルグリシジルエーテル(25℃の粘度20mPa・s)(東京化成工業株式会社製)
 YED216D:1,6-ヘキサンジオールジグリシジルエーテル(25℃の粘度121mPa・s)(三菱ケミカル株式会社製商品名)
成分(D):
 3-フェノキシ-1,2-プロパンジオール (東京化成工業株式会社製)
 メフェネシン           (東京化成工業株式会社製)
 3-フェノキシ-1-プロパノール(東京化成工業株式会社製)
その他成分:
 ニューポールBPE-20:ビスフェノールAにエチレンオキシド付加したポリオール化合物(三洋化成工業株式会社製商品名)
〔実施例1~19〕、〔比較例1~3〕
 表1~表3に示す割合で各成分を配合し、上記方法によりエポキシ樹脂組成物を調製した。
 調製したエポキシ樹脂組成物の各特性について上記方法により測定した。
Figure JPOXMLDOC01-appb-T000020
 
Figure JPOXMLDOC01-appb-T000021
 
Figure JPOXMLDOC01-appb-T000022
 
 実施例と比較例1、2を比較すると、成分(C)と成分(D)を添加することで、優れた保存安定性を維持したまま、低粘度化と反応性の向上が成され、優れた特性バランスを有するエポキシ樹脂組成物を得られることが分かった。
 実施例1と比較例3を比較すると、成分(D)の構造を有する化合物が保存安定性、低粘度化、反応性の向上、の全てに効果があることが分かった。
 実施例1、4を比較すると、成分(C)がPGEの方が低粘度性と反応性において、より優れた特性バランスを示すことが分かった。
 実施例5、10、11を比較すると、成分(D)の量が多い程、低粘度性に優れ、成分(D)の量が少ない程、保存安定性に優れる傾向にあることが分かった。
 実施例10、15、16を比較すると、成分(C)の量が増えるほど、硬化性と保存安定性に優れることが分かった。一方で、実施例1と実施例5を比較した場合は成分(C)が増えるほど保存安定性が低下しているが、これは、実施例10、15、16に含まれる成分(D)の量がより適量で有るため、成分(D)による保存安定性への影響が小さく、かつ成分(C)のシェル内でのスタッキングによる保存安定性向上の効果を付与できたことによるものであることが分かった。また、成分(C)の増量に伴い粘度が低下したため、硬化反応時に成分(D)、及び成分(D)が硬化剤へ配位したものの拡散性が向上し、優れた硬化性を発現した。なお、実施例15と比較例1を比較すると、成分(D)が少量であっても反応性の向上効果があることが分かり、これは成分(D)が触媒的に作用していることが分かった。
 実施例5、13、14を比較すると、成分(A)中のビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の比率を変更しても優れた特性バランスを有するエポキシ樹脂組成物が得られることが分かった。また、成分(A)中のビスフェノールF型エポキシ樹脂の比率が増えるほど、低粘度性と保存安定性に優れることが分かった。
 表4に硬化領域試験の評価結果を示す。
Figure JPOXMLDOC01-appb-T000023
 
 成分(C)、成分(D)を添加することで硬化領域が改善することが分かった。
 表5、表6に耐溶剤性試験の評価結果を示す。
Figure JPOXMLDOC01-appb-T000024
 
Figure JPOXMLDOC01-appb-T000025
 
 実施例と比較例2を比較すると、成分(C)を添加することで、耐溶剤性が向上することが分かった。
 実施例1と実施例5を比較すると、成分(C)の添加量が増えることで耐溶剤性が向上することが分かった。
 また、実施例5、6、7と実施例18を比較すると、成分(C)が芳香環を有する化合物の方が耐溶剤性に優れる事が分かった。さらに、実施例5、6と実施例7を比較すると、成分(C)がPGE及び/又はо-CGEの場合にtBPGEと比較して、優れた耐溶剤性を示すことが分かった。これは、芳香環の置換基が立体障害の小さいものである方が、カプセル膜内部への侵入が容易であり、より緻密な芳香環スタッキングネットワークを形成したためと考えられる。
 さらにまた、実施例5、12と実施例19を比較すると、成分(D)の末端がジオール構造である化合物の方が耐溶剤性に優れることが分かった。
 表7、表8に、実施例1~19、比較例2のエポキシ樹脂組成物を用いた、実施例20~38、比較例4のフィルムの、フィルムの作製時安定性及びフィルムの保存安定性試験の結果を示す。
 
Figure JPOXMLDOC01-appb-T000026
 
Figure JPOXMLDOC01-appb-T000027
 
 実施例20~38と比較例4を比較すると、成分(C)を添加することで、フィルムの作製時安定性とフィルムの保存安定性に優れることが分かった。
 実施例20と実施例24を比較すると、成分(C)の添加量が増えることでフィルムの作製時安定性とフィルムの保存安定性が向上することが分かった。
 実施例24、25、26と実施例37を比較すると、成分(C)が芳香環を有する化合物の方がフィルムの作製時安定性に優れることが分かった。また、実施例24、25と実施例26を比較すると、成分(C)がPGE及び/又はо-CGEの場合にtBPGEと比較して、フィルムの作製時安定性、フィルムの保存安定性の双方に優れることが分かった。
 実施例24、32、33を比較すると、ビスフェノールF型エポキシ樹脂が多い程、フィルムの作製時安定性とフィルムの保存安定性に優れる傾向にあることが分かった。
 表9に、実施例1、5、10、15のエポキシ樹脂組成物を硬化促進剤として用いた、実施例39~42のフィルムの、フィルムの作製時安定性、及びフィルムの保存安定性試験の評価結果を示す。
Figure JPOXMLDOC01-appb-T000028
 
 実施例39~42は優れたフィルム作製時安定性及びフィルム保存安定性を示した。
 表10、表11に、実施例20~42のフィルムの硬化性試験の評価結果を示す。
Figure JPOXMLDOC01-appb-T000029
 
Figure JPOXMLDOC01-appb-T000030
 
 実施例20~42のいずれのフィルムも優れた硬化性を示した。
 以上、本実施形態について説明してきたが、本発明はこれに限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜変更可能である。
 本出願は、2021年7月12日に日本国特許庁に出願された日本特許出願(特願2021-114776)、及び2021年8月18日に日本国特許庁に出願された日本特許出願(特願2021-133229)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のエポキシ樹脂組成物はアンダーフィル等の電気電子部品の絶縁材料、封止材料、接着剤、導電性材料や繊維強化プラスチックのマトリックス樹脂、モーターコイルの含浸固着剤等において産業上の利用可能性を有すると共に、本発明のエポキシ樹脂組成物を硬化剤又は硬化促進剤として用いた、層間絶縁フィルム、フィルム型ソルダーレジスト、封止シート、導電性フィルム、異方導電性フィルム、熱伝導性フィルム等のフィルム、及び、優れた耐溶剤を活かすことのできる、絶縁性接着ペースト、導電性ペースト、異方導電性ペースト、熱伝導性ペースト等の各種ペースト材や各種コーティング用材料、塗料等において産業上の利用可能性を有する。

Claims (17)

  1.  成分(A):エポキシ樹脂と、
     成分(B):マイクロカプセル型硬化剤と、
     成分(C):反応性希釈剤と、
     成分(D):下記式(1)で表される化合物と、
    を、含むエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     
    (式(1)中、Xは2つ以上5つ以下の連続する炭素-炭素結合を有し、Xに含まれる炭素の置換基及びR~Rは、それぞれ、水素、アルキル基、不飽和脂肪族基、芳香族基、ヘテロ原子を含む置換基、ハロゲン原子を含む置換基、及びハロゲン原子からなる群より選ばれる一種である。Xに含まれる炭素の置換基及びR~Rは、それぞれ、同一であっても、異なっていてもよい。また、R~Rから選ばれるいずれかが同一環に存在する縮合環化合物でもよい。)
  2.  前記成分(D)が下記式(2)で表される化合物である、
     請求項1に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
     
    (式(2)中、Xは2つ以上4つ以下の連続する炭素-炭素結合を有し、Xに含まれる炭素の置換基及びR~Rは、それぞれ、水素、アルキル基、不飽和脂肪族基、芳香族基、ヘテロ原子を含む置換基、ハロゲン原子を含む置換基、及びハロゲン原子からなる群より選ばれる一種である。Xに含まれる炭素の置換基及びR~Rは、それぞれ、同一であっても、異なっていてもよい。また、R~Rから選ばれるいずれかが同一環に存在する縮合環化合物でもよい。)
  3.  前記成分(D)が下記式(3)で表される化合物である、
     請求項1又は2に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
     
    (式(3)中、R~Rは、それぞれ、水素、アルキル基、不飽和脂肪族基、芳香族基、ヘテロ原子を含む置換基、ハロゲン原子を含む置換基、及びハロゲン原子からなる群より選ばれる一種である。
     R~Rは、それぞれ、同一であっても、異なっていてもよい。また、R~Rから選ばれるいずれかが同一環に存在する縮合環化合物でもよい。)
  4.  前記成分(D)が下記式(4)で表される化合物である、
     請求項1乃至3のいずれか一項に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
     
    (式(4)中、R~Rは、それぞれ、水素、アルキル基、不飽和脂肪族基、芳香族基、ヘテロ原子を含む置換基、ハロゲン原子を含む置換基、及びハロゲン原子からなる群より選ばれる一種である。
     R~Rは、それぞれ、同一であっても、異なっていてもよい。また、R~Rから選ばれるいずれかが同一環に存在する縮合環化合物でもよい。)
  5.  前記成分(A)エポキシ樹脂が、
     少なくともビスフェノールF型エポキシ樹脂を含む、
     請求項1乃至4のいずれか一項に記載のエポキシ樹脂組成物。
  6.  前記成分(B)マイクロカプセル型硬化剤は、コアの円形度が0.93以上である、
     請求項1乃至5のいずれか一項に記載のエポキシ樹脂組成物。
  7.  前記成分(C)反応性希釈剤は、芳香環を有する化合物である、
     請求項1乃至6のいずれか一項に記載のエポキシ樹脂組成物。
  8.  前記成分(C)反応性希釈剤は、前記芳香環が単環であり、かつ単官能の化合物である、
     請求項1乃至7のいずれか一項に記載のエポキシ樹脂組成物。
  9.  前記成分(C)反応性希釈剤の含有量が、
     前記エポキシ樹脂組成物中、1質量%以上20質量%以下である、
     請求項1乃至8のいずれか一項に記載のエポキシ樹脂組成物。
  10.  前記成分(D)の含有量が、
     前記エポキシ樹脂組成物中、0.001質量%以上5質量%以下である、
     請求項1乃至9のいずれか一項に記載のエポキシ樹脂組成物。
  11.  前記R~Rは、エポキシ基及び下記式(5)の構造(末端ジオール)を含まない、
     請求項1乃至10のいずれか一項に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
     
  12.  支持体と、
     前記支持体上に形成された請求項1乃至11のいずれか一項に記載のエポキシ樹脂組成物を含む樹脂組成物層と、
    を、有するフィルム。
  13.  前記樹脂組成物層が、成分(E):フィルム形成用ポリマーを、さらに含む、
     請求項12に記載のフィルム。
  14.  前記フィルムは、
     層間絶縁フィルム、フィルム型ソルダーレジスト、封止シート、導電性フィルム、異方導電性フィルム、及び熱伝導性フィルムからなる群より選ばれるいずれか一つである、
     請求項12又は13に記載のフィルム。
  15.  請求項12乃至14のいずれか一項に記載のフィルムの製造方法であって、
     前記支持体上に、少なくとも請求項1乃至11のいずれか一項のエポキシ樹脂組成物と、成分(F)有機溶剤とを含む調合液を塗工した後、50~160℃の温度範囲かつ1~30分の時間範囲で、前記成分(F)有機溶剤を乾燥させる工程を含む、
     フィルムの製造方法。
  16.  請求項1乃至11のいずれか一項に記載のエポキシ樹脂組成物の硬化物。
  17.  請求項12乃至14のいずれか一項に記載のフィルムの硬化物。
PCT/JP2022/023186 2021-07-12 2022-06-08 エポキシ樹脂組成物、フィルム、フィルムの製造方法、及び硬化物 WO2023286499A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023535180A JPWO2023286499A1 (ja) 2021-07-12 2022-06-08
CN202280046138.8A CN117580888A (zh) 2021-07-12 2022-06-08 环氧树脂组合物、薄膜、薄膜的制造方法和固化物
KR1020237035613A KR20230157487A (ko) 2021-07-12 2022-06-08 에폭시 수지 조성물, 필름, 필름의 제조 방법, 및 경화물

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-114776 2021-07-12
JP2021114776 2021-07-12
JP2021133229 2021-08-18
JP2021-133229 2021-08-18

Publications (1)

Publication Number Publication Date
WO2023286499A1 true WO2023286499A1 (ja) 2023-01-19

Family

ID=84920019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023186 WO2023286499A1 (ja) 2021-07-12 2022-06-08 エポキシ樹脂組成物、フィルム、フィルムの製造方法、及び硬化物

Country Status (4)

Country Link
JP (1) JPWO2023286499A1 (ja)
KR (1) KR20230157487A (ja)
TW (1) TWI800425B (ja)
WO (1) WO2023286499A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001511170A (ja) * 1997-02-07 2001-08-07 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ エポキシ化合物の製造方法
JP2003007927A (ja) * 2001-06-18 2003-01-10 Somar Corp エリアアレイ端子型表面実装パッケージ補強用アンダーフィル封止剤
JP2004269721A (ja) * 2003-03-10 2004-09-30 Asahi Kasei Chemicals Corp マスターバッチ型硬化剤および一液性エポキシ樹脂組成物
JP2009521589A (ja) * 2005-12-26 2009-06-04 エスケー ケミカルズ カンパニー リミテッド エポキシ樹脂組成物
JP2012007003A (ja) * 2010-06-22 2012-01-12 Shin-Etsu Chemical Co Ltd 実装用封止材及びそれを用いて封止した半導体装置
JP2012007004A (ja) * 2010-06-22 2012-01-12 Shin-Etsu Chemical Co Ltd 実装用封止材及びそれを用いて封止した半導体装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3454437B2 (ja) 1992-10-02 2003-10-06 ナショナル スターチ アンド ケミカル インベストメント ホールディング コーポレイション 低粘度無溶媒の一液型エポキシ樹脂接着性組成物
JP5158088B2 (ja) * 2007-09-20 2013-03-06 日立化成株式会社 エポキシ樹脂用マイクロカプセル型潜在性硬化剤及びその製造方法、並びに一液性エポキシ樹脂組成物及びその硬化物
JP6085130B2 (ja) 2012-09-07 2017-02-22 旭化成株式会社 液状樹脂組成物、及び加工品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001511170A (ja) * 1997-02-07 2001-08-07 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ エポキシ化合物の製造方法
JP2003007927A (ja) * 2001-06-18 2003-01-10 Somar Corp エリアアレイ端子型表面実装パッケージ補強用アンダーフィル封止剤
JP2004269721A (ja) * 2003-03-10 2004-09-30 Asahi Kasei Chemicals Corp マスターバッチ型硬化剤および一液性エポキシ樹脂組成物
JP2009521589A (ja) * 2005-12-26 2009-06-04 エスケー ケミカルズ カンパニー リミテッド エポキシ樹脂組成物
JP2012007003A (ja) * 2010-06-22 2012-01-12 Shin-Etsu Chemical Co Ltd 実装用封止材及びそれを用いて封止した半導体装置
JP2012007004A (ja) * 2010-06-22 2012-01-12 Shin-Etsu Chemical Co Ltd 実装用封止材及びそれを用いて封止した半導体装置

Also Published As

Publication number Publication date
TWI800425B (zh) 2023-04-21
TW202305025A (zh) 2023-02-01
JPWO2023286499A1 (ja) 2023-01-19
KR20230157487A (ko) 2023-11-16

Similar Documents

Publication Publication Date Title
JP4753934B2 (ja) エポキシ樹脂用潜在性硬化剤およびエポキシ樹脂組成物
JP5148292B2 (ja) マイクロカプセル型エポキシ樹脂用硬化剤、マスタ−バッチ型エポキシ樹脂用硬化剤組成物、一液性エポキシ樹脂組成物、および加工品
JP4326524B2 (ja) カプセル型硬化剤及び組成物
JP6484446B2 (ja) エポキシ樹脂用硬化剤、エポキシ樹脂組成物及びこれを含有する材料
JP4911981B2 (ja) 高含水含溶剤エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
JP5158088B2 (ja) エポキシ樹脂用マイクロカプセル型潜在性硬化剤及びその製造方法、並びに一液性エポキシ樹脂組成物及びその硬化物
JP2007204669A (ja) 特定小粒径粒度分布エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
JP4877717B2 (ja) 緩反応性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
JP2007091899A (ja) 高安定性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
WO2010122995A1 (ja) イミダゾール化合物含有マイクロカプセル化組成物、それを用いた硬化性組成物及びマスターバッチ型硬化剤
JP2010053353A (ja) エポキシ樹脂用マイクロカプセル型潜在性硬化剤及びその製造方法、一液性エポキシ樹脂組成物、エポキシ樹脂硬化物、接着剤、接合用フィルム、導電性材料並びに異方導電性材料
JP4877716B2 (ja) 速硬化性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
JP5138685B2 (ja) エポキシ樹脂用硬化剤及びエポキシ樹脂用硬化剤組成物
JP5228644B2 (ja) エポキシ樹脂用マイクロカプセル型潜在性硬化剤及びその製造方法、一液性エポキシ樹脂組成物並びにエポキシ樹脂硬化物
JP5266936B2 (ja) エポキシ樹脂用マイクロカプセル型潜在性硬化剤、一液性エポキシ樹脂組成物及びエポキシ樹脂硬化物
WO2023286499A1 (ja) エポキシ樹脂組成物、フィルム、フィルムの製造方法、及び硬化物
JP6505428B2 (ja) マイクロカプセル型アミン系硬化剤、硬化性樹脂組成物、ファイン化学品及び組成物
JP2021038314A (ja) エポキシ樹脂組成物
CN117580888A (zh) 环氧树脂组合物、薄膜、薄膜的制造方法和固化物
JP5245790B2 (ja) 一液性エポキシ樹脂組成物
JP6909281B2 (ja) 熱硬化性樹脂組成物
JP2023096749A (ja) エポキシ樹脂組成物、フィルム材、及び硬化物
JP2020152818A (ja) エポキシ樹脂組成物
JP2022178390A (ja) エポキシ樹脂組成物、エポキシ樹脂接着剤、及びエポキシ樹脂硬化物
JP2019189833A (ja) エポキシ樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841843

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237035613

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237035613

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023535180

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE