WO2023280321A1 - 取箱装置和机器人 - Google Patents

取箱装置和机器人 Download PDF

Info

Publication number
WO2023280321A1
WO2023280321A1 PCT/CN2022/104749 CN2022104749W WO2023280321A1 WO 2023280321 A1 WO2023280321 A1 WO 2023280321A1 CN 2022104749 W CN2022104749 W CN 2022104749W WO 2023280321 A1 WO2023280321 A1 WO 2023280321A1
Authority
WO
WIPO (PCT)
Prior art keywords
box
assembly
taking
push plate
plate
Prior art date
Application number
PCT/CN2022/104749
Other languages
English (en)
French (fr)
Inventor
李晓伟
王启铭
秦智慧
王鹏飞
袁李
王海超
Original Assignee
北京极智嘉科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202121566645.3U external-priority patent/CN216140684U/zh
Priority claimed from CN202122079403.8U external-priority patent/CN218560007U/zh
Priority claimed from CN202111058253.0A external-priority patent/CN115771688A/zh
Priority claimed from CN202122181459.4U external-priority patent/CN216154654U/zh
Priority claimed from CN202122584103.5U external-priority patent/CN216582519U/zh
Priority claimed from CN202220578679.2U external-priority patent/CN217577206U/zh
Application filed by 北京极智嘉科技股份有限公司 filed Critical 北京极智嘉科技股份有限公司
Priority to EP22837066.4A priority Critical patent/EP4368540A1/en
Publication of WO2023280321A1 publication Critical patent/WO2023280321A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0492Storage devices mechanical with cars adapted to travel in storage aisles

Definitions

  • the present application relates to the field of warehousing, in particular, to a box picking device and a robot.
  • the box picking mechanisms such as suction cup type, lifting type, and fork type are used to access the container, which can reduce the minimum spacing of the container to 40mm.
  • the box picking mechanism in the related art is limited by the transmission principle of the mechanism, the complexity of the hardware, and the accuracy of the sensor. Problems such as large volume, loud noise, short service life, easy failure of unboxing, and low efficiency of unboxing.
  • the embodiment of the present application proposes a box picking device, which has high box picking accuracy, and can reduce the minimum distance between adjacent boxes, thereby improving storage density and warehouse utilization.
  • the box taking device of the embodiment of the present application includes: a mounting frame, on which an accommodating space is formed; At least part of the box assembly can be docked with one end of the cargo box adjacent to the box retrieval assembly in the front-rear direction, so that the box retrieval assembly can pull or push while the box retrieval assembly moves in the front-rear direction
  • the container enters and exits the accommodating space.
  • the beneficial effect of the present disclosure is that: the box-taking device provided by the present disclosure, by setting the box-taking part, and enabling the box-taking part to be docked with one end of the container, makes the box-taking device only act on the container when picking up and placing the container One end towards the handling robot, so that the box picking part does not need to extend into the gap between the two boxes to grab the box, or the box picking part can only extend into the front side of the box for box docking and Pick and place, thereby reducing or avoiding the interference of the picking piece on the adjacent container of the target container, thereby reducing the required gap between two adjacent containers on the inventory container, and improving the position of the container on the inventory container
  • the distribution density of the storage container will not or reduce the push or collision of other boxes on the storage container, which is conducive to maintaining the stability of the storage container on the storage container and facilitating the subsequent pick-and-place operations of the boxes.
  • the robot in the embodiment of the present application includes: a chassis; a door frame, the door frame is set on the chassis; a lifting assembly, the lifting assembly is configured to move up and down along the door frame; a box picking device, the box picking device The device is connected with the lift assembly and the box taking device to drive the box taking device to move up and down relative to the door frame, and the box taking device is the box taking device described in any one of the above embodiments.
  • FIG. 1 is a schematic structural diagram of a handling robot and a container provided in Embodiment 1 of the present disclosure
  • FIG. 2 is a schematic diagram of a disassembled structure of a handling robot provided in Embodiment 1 of the present disclosure
  • Fig. 3 is the partial enlarged view of I place in Fig. 2;
  • FIG. 4 is a partial structural schematic diagram of a handling robot provided in Embodiment 1 of the present disclosure.
  • Fig. 5 is a schematic diagram of the back structure of the lifting mechanism provided by Embodiment 1 of the present disclosure.
  • Fig. 6 is a schematic structural view of the lifting mechanism, the box-taking device and the cargo box provided by Embodiment 1 of the present disclosure
  • Fig. 7 is a schematic diagram of the disassembled structure of the lifting mechanism and the box-taking device provided by Embodiment 1 of the present disclosure
  • Fig. 8 is a schematic structural diagram of a box-taking device provided in Embodiment 1 of the present disclosure.
  • Fig. 9 is a schematic structural diagram of a box-taking device and a rotating mechanism provided in Embodiment 1 of the present disclosure.
  • Fig. 10 is a schematic diagram of the state of the case-taking device according to Embodiment 5 of the present disclosure when transferring a container;
  • Figure 11 is a sectional view of Figure 10
  • Fig. 12 is a schematic structural view of a box-taking device according to Embodiment 5 of the present disclosure, in which the support assembly is removed;
  • Fig. 13 is a schematic left view of Fig. 12;
  • Fig. 14 is a state diagram of the case-taking device in contact with the container according to Embodiment 5 of the present disclosure, and the support assembly is not shown;
  • Fig. 15 is a schematic cross-sectional view of the push plate assembly according to Embodiment 5 of the present disclosure
  • Fig. 16 is an enlarged schematic view of A in Fig. 15;
  • Fig. 17 is a schematic view of the state of the push plate assembly when the box removing device according to the fifth embodiment of the present disclosure is moved to the second position.
  • Fig. 18 is a schematic diagram of the three-dimensional structure of the sixth embodiment of the cargo handling robot provided by the present disclosure in use;
  • Fig. 19 is a partial enlarged view of place A in Fig. 18;
  • Fig. 20 is a front structural schematic view of the auxiliary support device in the extended state in the structure shown in Fig. 19;
  • Figure 21 is a partial enlarged view at B in the figure.
  • Fig. 22 is a front structural schematic view of the auxiliary support device in the retracted state in the structure shown in Fig. 21;
  • Figure 23 is a partial enlarged view at C in Figure 22;
  • Fig. 24 is a schematic perspective view of the three-dimensional structure of the auxiliary support device shown in Fig. 23;
  • Fig. 25 is a front structural schematic view of the auxiliary supporting device shown in Fig. 24;
  • Fig. 26 is a schematic structural diagram of a robot provided in Embodiment 9 of the present disclosure.
  • Fig. 27 is a schematic diagram of the first structure of the telescopic fork device provided by Embodiment 9 of the present disclosure.
  • Fig. 28 is a second structural schematic diagram of the telescopic fork device provided by Embodiment 9 of the present disclosure.
  • Fig. 29 is a schematic diagram of a state where the telescopic fork device provided by Embodiment 9 of the present disclosure is not in place.
  • Hooking assembly 171 claw; 172 bracket; 173 first signal board; 174 first sensor; 175 first reset member; 18. push plate assembly; 181. base; 1831, annular protrusion; 184, elastic member; 185, second signal plate; 186, second sensor; 187, base; 188, rotating shaft; 19, support assembly; 191, support seat; 1911, guide groove; 192. Support component; 1921. Guide piece; 1922. Pulley; 2. Temporary storage partition; 3. Chassis; 31. Driving wheel; 4. Door frame; 5. Auxiliary support device; 50. Fixed base; 51.
  • Support element; 52 first connecting rod; 53, second connecting rod; 54, first lower hinge shaft; 55, first upper hinge shaft; 56, second lower hinge shaft; 57, second upper hinge shaft; 58 , driving component; 6, lifting component; 61, lifting frame; 611, lifting horizontal frame; 6111, main lifting plate; 6112, hoarding plate; 6113, limit slot; , lifting transmission assembly; 621, driving gear; 622, rack; 63, lifting drive; 64, synchronous shaft; 65, shaft transmission assembly; 66, guide assembly; 7, rotating mechanism; 71, slewing bearing; Gear ring gear; 72, rotating pulley; 73, rotating drive motor; 74, rotating transmission belt; 75, limit column; 81, yoke unit; 811, arm plate; 812, hook piece; 813, claw seat; 8131 , Positioning hole; 8132, Gap; 814, Skateboard part; 815, Limiting plate; 82, Adjusting assembly; 821, Adjusting drive motor; 822, Lead screw; 823,
  • Belt fixing piece 10. Connecting frame; 101. Base; 102. Connecting column; 103. Reinforcing seat; 30. Telescopic fork device; 301 Multi-stage telescopic mechanism; Rear finger; 304, in-position detection device; 305, moving tray; 40, material rack.
  • Embodiment 1 As shown in FIG. 1, this embodiment provides a handling robot 100, which is used to carry and pick and place cargo boxes 20. It is mainly used in the warehousing and logistics industry. Cases 20 are picked, placed and transported for order-based pick-up or put-up operations. It can also be applied to other places where cargo boxes 20 or goods need to be transported.
  • the application of the transport robot 100 in this embodiment is only exemplary, and this embodiment does not specifically limit it.
  • the handling robot 100 provided in this embodiment includes a chassis 3 , a door frame 4 , a box picking component, a lifting component 6 , a detection component and a controller.
  • the chassis 3 is used to realize the movement of the handling robot 100 on the ground, so as to realize the transportation of the cargo box 20 by the handling robot 100;
  • the door frame 4 is arranged on the chassis 3 for fixing and supporting the box-taking assembly;
  • the lifting assembly 6 is liftably arranged on the door frame 4 to pick up the cargo box 20 on the inventory container or place the cargo box 20 on the inventory container;
  • the detection assembly is used to detect the working state of the handling robot 100 and the state of the external environment; control
  • the controller is used to obtain order information of warehousing and logistics, and based on the order information and the detection results of the detection components, intelligently regulate the operation of the handling robot 100 .
  • the coordinate system of the handling robot 100 is established in the directions shown in Figures 1 and 2, wherein the X direction is the length direction of the door frame 4 of the drive wheel 31, the Y direction is the width direction of the door frame 4, and the Z direction is is the height direction of the door frame 4.
  • the door frame 4 includes two support columns 41 opposite and spaced along the X direction, each support column 41 is vertically arranged, and the lower ends of the support columns 41 are connected to the chassis 3 .
  • the supporting rod part 411 is a hollow rod-shaped structure, and the cavities of the two supporting rod parts 411 connected up and down are connected.
  • the door frame 4 also includes a connecting rod (not shown), the upper end of the connecting rod is inserted in the upper supporting rod part 411, the lower end is inserted in the lower supporting rod part 411, and the connecting rod and the two supporting rod parts 411 pass through Screw connection.
  • a connecting frame 10 is provided on the top of the chassis 3 , and the connecting frames 10 and the supporting columns 41 are provided in one-to-one correspondence.
  • the connecting frame 10 includes a base 101 and a connecting column 102 vertically protruding from the base 101.
  • the base 101 is detachably connected to the upper end surface of the chassis 3.
  • the two connecting columns 102 correspond to the two supporting rod parts 411 of the supporting column 41. set up.
  • the connecting column 102 is inserted into the interior of the corresponding supporting rod part 411 and connected with the supporting rod part 411 through a screw, and the lower end of the supporting column 41 abuts against the upper surface of the base 101 .
  • a reinforcing seat 103 is connected between the base 101 and the outer side wall of the support rod portion 411 to enhance the connection strength between the support column 41 and the connecting frame 10 .
  • the lifting assembly 6 includes a lifting frame 61 , a lifting drive member 63 and a lifting transmission assembly 62 .
  • the lifting drive member 63 is transmission-connected with the lifting transmission assembly 62
  • the lifting frame 61 is connected on the lifting transmission assembly 62
  • the box-taking assembly is installed on the lifting frame 61 .
  • the lifting driver 63 is installed on the lifting frame 61
  • the lifting transmission assembly 62 includes a rack 622 laid on the support column 41 and a driving gear 621 meshing with the rack 622
  • the driving gear 621 is in transmission connection with the lifting driving member 63 .
  • the shaft transmission assembly 65 includes two pulleys sleeved on the output shaft of the lifting motor and the synchronous shaft 64 respectively, and a belt wound between the two pulleys.
  • the elevating frame 61 includes an elevating horizontal frame 611 and an elevating vertical frame 612.
  • the elevating horizontal frame 611 is arranged horizontally and is used for installing the box-taking assembly.
  • the vertical frame 612 is provided with a guide assembly 66, and the guide assembly 66 is used to realize the sliding connection between the lifting vertical frame 612 and the support column 41 and the guidance of the vertical movement.
  • the lifting horizontal frame 611 includes a main lifting plate 6111 and a surrounding plate 6112 which is arranged on the side of the main lifting plate 6111 downwards.
  • the surrounding plate 6112 is surrounded by the main lifting plate 6111 to form a receiving groove.
  • the lifting drive member 63, part of the synchronous shaft 64 and the shaft transmission assembly 65 are all located in the receiving groove. Both ends of the synchronous shaft 64 pass through the hoisting plate 6112 and the corresponding lifting frame 612 and extend out of the lifting frame 61 , the driving gear 621 and the guide assembly 66 are located on the side of the lifting frame 612 away from the hoisting plate 6112 .
  • the box-taking assembly includes a mounting frame 12, a box-taking drive assembly 11 arranged on one side of the mounting frame 12, and a box-taking assembly for picking up the container 20, and the mounting frame 12 is installed on the lifting frame 61 On the lifting horizontal frame 611 of the container, and the mounting frame 12 is formed with accommodating space; the box-taking assembly has a box-taking part 131, and the box-taking part 131 can be detachably connected with one end of the cargo box 20; the box-taking drive assembly 11 is installed on the installation on the frame 12, and the box picking drive assembly 11 drives the box picking assembly to move along the first direction of the box picking assembly to pull or push the container 20 into and out of the accommodating space, so that the container 20 is moved between the handling robot 100 and the inventory container transfer.
  • the box picking component and handling robot 100 provided by the present disclosure, by setting the box picking part 131, the box picking part 131 does not need to extend into the gap between the two cargo boxes 20 to clamp the cargo box 20, or it can make the picking
  • the box part 131 only extends into the front end side of the container 20 for docking and picking of the container 20, thereby reducing or avoiding the interference of the container taking part 131 on the adjacent container 20 of the target container 20, thereby reducing inventory
  • the required gap between two adjacent cargo boxes 20 on the container increases the arrangement density of the cargo boxes 20 on the inventory container, and does not or reduces the push or collision to other cargo boxes 20 on the inventory container, Good for maintaining the stability of the cargo case on the inventory container.
  • one end refers to the front side of one end of the cargo box 20 and the part of the other side of the cargo box 20 close to the side of the front side.
  • one end of the cargo box 20 It refers to the end of the cargo box 20 facing the handling robot 100 .
  • the first direction can be parallel to the X direction, that is, the direction of picking and placing the container is the same as the running direction of the handling robot, and the first direction can also be perpendicular to the X direction, that is, the direction of picking and placing the container is the same as that of the handling robot.
  • the direction of operation is vertical.
  • the box-taking drive assembly 11 includes a box-taking motor 111 and two box-taking transmission assemblies 112 that are opposite and spaced apart along the second direction of the box-taking assembly.
  • the box-taking motor 111 is used to drive the box-taking transmission assembly 112 to move.
  • the box assembly is connected between the two box fetching transmission assemblies 112, and the synchronous action of the two driving transmission assemblies drives the box fetching assembly to move, and the above-mentioned accommodating space is formed between the two box fetching transmission assemblies 112 .
  • the movement stability and reliability of the box-taking assembly can be improved.
  • only one box-taking transmission assembly 112 may be provided, and the box-taking assembly is also provided with a sliding guide assembly.
  • the sliding guide assembly is opposite to the box-taking transmission assembly 112 and arranged at intervals. Accommodating space is formed between the components 112, and the two ends of the box-taking component are respectively connected to the sliding guide component and the box-taking transmission component 112, that is, the sliding guide component assists the movement of the box-taking component and prevents the box-taking component from shifting when moving.
  • the box picking transmission assembly 112 includes a driving pulley 1121 and a driven pulley 1122 that are opposite and spaced along the first direction, and a transmission belt 1123 wound on the driving pulley 1121 and the driven pulley 1122 .
  • the synchronous transmission assembly 113 includes a transmission shaft 1131 extending along the second direction and an intermediate transmission assembly 1132 connected between the box unloading motor 111 and the transmission shaft 1131, and the two driving pulleys 1121 are respectively fixedly sleeved on both ends of the transmission shaft 1131 .
  • the transmission shaft 1131 is parallel and spaced apart from the output shaft of the box-taking motor 111 .
  • the intermediate transmission assembly 1132 includes two intermediate pulleys respectively sleeved on the box-taking motor 111 and the transmission shaft 1131 and an intermediate transmission belt wound on the two intermediate pulleys.
  • the box-taking motor 111 is arranged at intervals above the transmission shaft 1131 , that is, two intermediate pulleys are arranged at intervals up and down. This arrangement can reduce the size of the box picking assembly in the first direction and improve the compactness of the structure while facilitating the cargo box 20 to fully enter the accommodation space between the two box picking transmission assemblies 112 .
  • the box removing motor 111 can also be arranged at the bottom of the installation frame 12 and below the transmission shaft 1131 .
  • At least two rotating shaft seats 114 are arranged at intervals along the second direction on the installation frame 12 , and the transmission shaft 1131 is rotatably mounted on the rotating shaft seats 114 .
  • there are three rotating shaft seats 114 two rotating shaft seats 114 are respectively arranged at both ends of the transmission shaft 1131 , and the other rotating shaft seat 114 is arranged at the middle of the transmission shaft 1131 .
  • a bearing is sleeved between the rotating shaft seat 114 and the transmission shaft 1131 to improve the smooth rotation of the transmission shaft 1131 .
  • the box-taking motor 111 is installed on the installation frame 12 through the motor base 116 , preferably, the lower end of the motor base 116 is installed on the rotating shaft base 114 located in the middle.
  • the height of the box-taking motor 111 can be raised, the height of the motor base 116 can also be reduced, thereby improving the compactness of the structure.
  • the box-taking motor 111 and the synchronous transmission assembly 113 are all arranged on one side of the mounting frame 12.
  • the mounting frame 12 is provided with a detection piece 14.
  • Part 14 is a photoelectric sensor used to detect the moving stroke of the box-taking assembly along the first direction, and the detection part 14 is connected with the controller of the handling robot 100 in communication, so that the controller can control the movement of the box-taking assembly according to the detection signal of the detection part 14. Run, avoid getting box assembly and getting box motor 111 to collide.
  • the installation frame 12 includes a horizontally arranged installation base plate 121 and an installation side plate 122 vertically arranged on the installation base plate 121.
  • Two installation side plates 122 are arranged at intervals along the second direction, and two box-taking transmission assemblies 112 are installed on the two sides respectively. Install the inner side of the side plate 122.
  • the height of the installation side plate 122 is higher than that of the case removal transmission assembly 112 , so that the installation side plate 122 can protect the case removal transmission assembly 112 .
  • the driven pulley 1122 is rotatably mounted on the mounting side plate 122 .
  • a wheel mounting part 115 is connected to the mounting side plate 122.
  • the wheel mounting part 115 includes a wheel shaft part 1151 and a socket part. Section 1151 on.
  • an insertion hole 1221 is opened on the installation side part, and the axle part 1151 is inserted into the insertion hole 1221 , so as to improve the installation and positioning of the driven pulley 1122 on the installation side plate 122 .
  • the box-taking assembly includes a connecting piece 132 and a box-taking piece 131.
  • the connecting piece 132 extends along the second direction, and its two ends are respectively connected to two transmission belts 1123.
  • the box-taking piece 131 is connected to the length of the connecting piece 132. In the middle position of the direction, the box picker 131 is used to pick up the cargo box 20 .
  • the connecting piece 132 is preferably connected to the upper belt portion of the transmission belt 1123 to avoid interference with the driven pulley 1122 and the driving pulley 1121 during movement.
  • the box removal assembly further includes two belt fixing pieces 133 connected to both ends of the connecting piece 132 , the belt fixing piece 133 is detachably connected to the connecting piece 132 , and the belt fixing piece 133 is detachably connected to the driving belt 1123 .
  • the box-retrieving component 131 can be switched between two states of being connected to at least one side of the container 20 and being disconnected.
  • the box picking part 131 can carry the cargo box 20 into the accommodating space, thereby transferring the cargo box 20 in the inventory container to the handling robot, or carrying the cargo box 20 out of the storage space.
  • the box picking member 131 is disconnected from the cargo box 20 .
  • the box-removing part 131 is preferably magnetically connected, hooked or clamped to one side of the box body 20 , so as to improve the convenience of connecting and disconnecting the box-taking part 131 and the box body 20 .
  • the box-taking part 131 is hooked to one side of the cargo box 20, while improving the connection convenience between the box-taking part 131 and the cargo box 20, the structure of the box-taking part 131 can also be simplified, and the hooking
  • the box-taking part 131 includes a vertically connected connecting plate portion 1311 and a hook plate portion 1312, the connecting plate portion 1311 is horizontally arranged and connected to the connecting piece 132, and the hooking plate portion 1312 is vertically arranged and is located at the connecting piece 132 away from the box-taking motor.
  • the lower end of the hook plate portion 1312 is connected to the upper surface of the connecting plate portion 1311 .
  • the cargo box 20 is provided with a mating portion 202 that cooperates with the hook plate portion 1312 .
  • the mating portion 202 has an L-shaped structure, one end of which is vertically connected to the side of the box body 201 of the cargo box 20, and the other side is arranged to extend downward, and the mating portion 202 forms an opening facing the side of the box body 201.
  • the lower hook groove, the hook plate part 1312 can be inserted into the hook groove.
  • the hook plate part 1312 is inserted into the hook groove from the lower side of the mating part 202.
  • the installation base plate 121 is provided with a friction strip 15, the friction strip 15 is protruded on the upper surface of the installation base plate 121, and the friction The strip 15 extends in a first direction.
  • the bottom surface of the cargo box 20 abuts against the upper surface of the friction strip 15 to avoid direct contact between the bottom surface of the cargo box 20 and the installation bottom plate 121 .
  • a plurality of friction strips 15 are arranged at intervals along the second direction, so that the width of a single friction strip 15 can be reduced while ensuring the stability of supporting the container 20 .
  • the transport robot 100 also includes a plurality of temporary storage partitions 2 arranged at intervals along the height direction of the door frame 4, and each temporary storage partition 2 is vertically connected with the support column 41, Each temporary storage partition 2 can be used to temporarily store a container 20 .
  • the handling robot 100 can transport a plurality of cargo boxes 20 at one time, improving the efficiency of the handling of the cargo boxes 20 .
  • the box-taking assembly and the temporary storage partition 2 are respectively located on opposite sides of the door frame 4, and the box-taking assembly is connected with the lifting frame 61 through the rotating mechanism 7, so that the taking-out
  • the box assembly rotates around the vertical axis to change the orientation of the opening of the accommodating space, so that the box removal drive assembly 11 can drive the box removal assembly to realize the transfer of the cargo box 20 between the mounting frame 12 and the temporary storage partition 2 .
  • the rotating mechanism 7 includes a rotary bearing 71, a rotary drive motor 73, and a rotary transmission assembly.
  • the rotary drive motor 73 is installed on the mounting frame 12, and the mounting frame 12 and the rotary bearing
  • the inner ring of 71 is connected
  • the elevating frame 61 is fixedly connected with the outer ring of the slewing bearing 71
  • the rotation transmission assembly is connected between the outer ring of the slewing bearing 71 and the rotary drive motor 73, and is used to drive the outer ring of the slewing bearing 71 to be opposite to the inner ring. turn.
  • the rotary drive motor 73 is installed on the mounting frame 12, so that when the box-taking assembly is rotating, the rotary drive motor 73 is followed, so as to prevent the setting of the rotary drive motor 73 from interfering with the rotation of the box-taking assembly.
  • the outer ring of the slewing bearing 71 is formed with a pulley ring gear 711, and the rotation transmission assembly includes a rotating pulley 72 sleeved on the output shaft of the rotating drive motor 73 and a rotating pulley 72 and a pulley ring gear.
  • the output shaft of the rotary drive motor 73 is vertically arranged. When the rotary drive motor 73 rotates, it drives the rotary transmission belt 74 to rotate through the rotary pulley 72, thereby driving the outer ring and the inner ring of the slewing bearing 71 to rotate relative to each other.
  • an inner positioning ring 1211 is provided on the lower surface of the installation bottom plate 121 , and the slewing bearing 71 is sleeved on the inner positioning ring 1211 .
  • the upper surface of the lifting assembly 6 is provided with a positioning convex ring 6114, the positioning convex ring 6114 is coaxially arranged with the slewing bearing 71, and the outer ring of the slewing bearing 71 abuts against the upper surface of the positioning convex ring 6114, and the positioning convex ring 6114 is detachable connect.
  • the setting of the positioning convex ring 6114 and the inner positioning ring 1211 can realize the installation and positioning of the slewing bearing 71 on the installation frame 12 and the lifting assembly 6 respectively, and improve the installation accuracy.
  • one of the bottom surface of the mounting frame 12 and the top surface of the lifting assembly 6 is provided with a limiting groove 6113, and the other is provided with a limiting column 75, and the end of the limiting column 75 is inserted.
  • the limiting groove 6113 is an arc-shaped groove coaxially arranged with the slewing bearing 71, and the central angle corresponding to the arc-shaped groove is the angle range within which the box-taking assembly can rotate.
  • Embodiment 2 This embodiment provides a handling robot 100 and a warehousing and logistics system, and the structure of the handling robot 100 provided in this embodiment is basically the same as that of Embodiment 1, and there are only differences in some structural settings. The same structure as the first embodiment will be described in detail.
  • a plurality of temporary storage partitions 2 are arranged at intervals along the vertical direction on the door frame 4 .
  • the temporary storage partition 2 includes a partition part and baffle parts arranged on two opposite sides of the partition part. The baffle part and the partition part enclose to form a temporary storage space with an opening facing away from the door frame 4 .
  • the installation bottom plate 121 of the box taking assembly is a U-shaped structure with an opening facing the temporary storage partition 2, which includes a horizontal plate and a vertical plate connected to both ends of the horizontal plate.
  • the box-taking motor 111 is installed on the horizontal board; the two vertical boards are respectively located on the opposite sides of the temporary storage partition 2, and the two box-taking transmission components 112 are respectively installed on the two vertical boards.
  • the box-taking assembly is located above the temporary storage partition 2 and on the side where the temporary storage partition 2 is installed on the door frame 4 .
  • Embodiment 3 provides a handling robot and a storage logistics system, and the structure of the handling robot provided in this embodiment is basically the same as that of Embodiment 1, only there are differences in the settings of the box picking component and the box picking drive component. Example The same structure as the first embodiment will not be repeated.
  • the box picking member 131 includes two arm plates 134 opposite and spaced apart along the first direction and a connection assembly connected between the first ends of the two arm plates 134, the connection assembly Connected with the box-taking drive assembly 11 , a hook 1341 protrudes from the second end of the arm plate 134 toward the other arm plate 134 , and the hook 1341 can hook the vertical rib 204 on the surface of the container 20 .
  • the box-taking transmission assembly 112 includes a meshing gear and rack 1124 , the rack 1124 is laid on the installation base plate 121 along the first direction, and the gear and the rack 1124 are meshed and connected with the box-taking motor 111 in transmission.
  • the box assembly also includes a drive frame 16, the box motor 111 and the box assembly are installed on the drive frame 16, and one end of the drive frame 16 is supported on the box transmission assembly 112 by the engagement of the gear and the rack 1124, and the other end Attached to the slider of the slide guide assembly.
  • the gears include a driving gear 1125 connected to the drive shaft of the box-taking motor 111 and an intermediate gear 1126 meshing with the driving gear 1125, the intermediate gear 1126 meshing with the rack 1124, and the intermediate gear 1126 meshing with the driving gear.
  • 1125 are arranged side by side up and down, thereby the height of the box-taking motor 111 can be increased, and interference with the installation base plate 121 can be avoided.
  • Embodiment 4 provides a box-taking assembly and a handling robot, and the box-taking assembly provided by this embodiment is basically the same as that of Embodiment 7, only the structure of the fork arm unit 81 is different, and this embodiment does not compare with The same structure as the fourth embodiment will be described in detail.
  • a hook is provided at the front end of the arm plate 811, and the hook is rotatably connected with the arm plate 811.
  • the arm plate 811 is provided with a rotating drive member, which is connected with the hook, and is used to drive the hook to rotate.
  • the hook piece selectively protrudes from the side of the arm plate 811 facing the other fork arm unit 81 . That is, in the yoke unit 81 provided in this embodiment, when the hook 812 protrudes from the side of the arm plate 811 facing the other yoke unit 81, the hook can be used to move the vertical ribs or grooves on both sides of the front end of the container tank wall.
  • the yoke unit 81 can be separated from the container more conveniently, that is, when the yoke unit 81 is docked or separated from the container, it can There is no need to adjust the distance between the two yoke units 81 .
  • the pick-and-place and transport of containers of different sizes can be realized, the difficulty of docking and separating the fork arm unit 81 and the container can also be reduced.
  • Embodiment 5 This embodiment provides a handling robot 100 and a warehousing and logistics system, and the structure of the handling robot 100 provided in this embodiment is the same as that of Embodiment 1, only the structure of the box picking component is different. The same structure as the first embodiment will be described in detail.
  • the box-taking device 1 can move towards the direction close to the cargo box 20 and away from the cargo box 20.
  • the direction in which the box-taking device 1 is close to the cargo box 20 is taken as the forward direction, and the direction in which the box-taking device 1 is away from the cargo box 20 For the backward, the technical solution of the present application will be described.
  • the box-taking assembly of the embodiment of the present disclosure includes a push plate assembly 18 and a hook assembly 17 , the push plate assembly 18 can move along the front and rear directions, and the hook assembly 17 is arranged on the push plate assembly 18 and There is a claw 171, and the hooking assembly 17 can rotate forward and backward relative to the push plate assembly 18.
  • the box-taking assembly has a first position and a second position. In the first position, the front end of the claw 171 protrudes forward The push plate assembly 18, in the second position, the hooking assembly 17 is rotated backward by a first preset angle relative to the push plate assembly 18, the push plate assembly 18 is suitable for contacting the container 20, and the claw 171 is suitable for contacting the container 20 Cooperate.
  • the push plate assembly 18 can move in the front-rear direction, thereby driving the hook assembly 17 to move in the front-rear direction.
  • the hook assembly 17 is located above the push plate assembly 18. handle, so that the pulling container 20 moves.
  • the push pedal assembly 18 is used to fit the rear end surface of the cargo box 20 so that after the push pedal assembly 18 is fully attached to the rear end surface of the cargo box 20, the hook claw 171 stretches into the handle on the cargo box 20 to realize the hook.
  • the cooperation of pawl 171 and container 20 is used to fit the rear end surface of the cargo box 20 so that after the push pedal assembly 18 is fully attached to the rear end surface of the cargo box 20, the hook claw 171 stretches into the handle on the cargo box 20 to realize the hook. The cooperation of pawl 171 and container 20.
  • the claw 171 When the box-taking assembly is in the first position, the claw 171 is not in contact with the cargo box 20 or the claw 171 is just in contact with the cargo box 20, but there is no interaction force between the claw 171 and the cargo box 20, and the claw 171 is relatively pushed
  • the plate assembly 18 protrudes forward.
  • the push plate assembly 18 drives the hooking assembly 17 to continue to move forward, the claw 171 is subjected to the force of the container 20 to rotate backward until the container assembly is in the second position, and the claw 171 is subjected to the force of the container 20 to move backward. Then rotate the first preset angle, now the push plate assembly 18 is in contact with the rear end surface of the cargo box 20, and the claw 171 cooperates with the handle of the cargo box 20.
  • the embodiment of the present disclosure proposes a box-taking assembly, the box-taking assembly cooperates with the push plate assembly 18 through the hooking assembly 17, and when the pushing plate assembly 18 is in full contact with the cargo box 20, the hooking assembly 17 and the The cooperation of the cargo case 20 can improve the accuracy of taking out the case.
  • the box-taking assembly is always located at the rear side of the cargo box 20, and the space on both sides of the cargo box 20 can not be occupied, so that the gap between two adjacent cargo boxes 20 is reduced. Small, the distance between two cargo boxes 20 can be reduced to 20mm, or even smaller, so as to increase the storage density and thus improve the storage utilization rate.
  • the hooking assembly 17 further includes a bracket 172 , the bracket 172 is rotatably connected to the push plate assembly 18 , the claw 171 is disposed at the front end of the bracket 172 , and the claw 171 extends out of the bracket 172 forward.
  • the front end surface of the claw 171 is in front of the front end surface of the bracket 172 .
  • the bracket 172 extends along the up and down direction, the upper end of the bracket 172 is fixedly connected with the pawl 171 , and the lower end of the bracket 172 is rotatably connected with the push plate assembly 18 , so as to facilitate the rotation of the hook assembly 17 relative to the push plate assembly 18 .
  • the hooking assembly 17 further includes a first signal board 173 and a first sensor 174, the first sensor 174 is arranged in the bracket 172, the first signal board 173 is arranged on the bracket 172 and can be moved up and down relative to the bracket 172 Moving, in the first position, one end of the first signal plate 173 protrudes from the claw 171 , and in the second position, the other end of the first signal plate 173 can trigger the first sensor 174 .
  • the inside of the bracket 172 has a cavity
  • the first sensor 174 is installed in the cavity
  • the first signal board 173 can move up and down on the bracket 172 .
  • the upper end of the first signal plate 173 protrudes upward from the claw 171, and in the second position, the first signal The lower end of the plate 173 can trigger the first sensor 174 .
  • the first signal plate 173 When the box-taking assembly moves from the first position to the second position, the first signal plate 173 is in contact with the handle of the cargo box 20, and the first signal plate 173 moves downward relative to the bracket 172 after being subjected to the force of the handle until the first signal plate 173 The upper end of the signal plate 173 is flush with the upper end of the claw 171, at this moment, the lower end of the first signal plate 173 triggers the first sensor 174, and the first sensor 174 transmits the signal to the controller, and the controller determines that the claw 171 is in contact with the container 20.
  • the handle fits.
  • the claw 171 needs to cooperate with the upper end of the handle
  • the first signal plate 173 when the box-taking assembly is in the first position, the first signal plate 173 is not in contact with the handle of the cargo box 20, and a part of the first signal plate 173 is lower than the hook.
  • the first signal plate 173 contacts the handle of the cargo box 20, and the first signal plate 173 moves upward relative to the support 172 after receiving the force of the handle until the first signal
  • the above-mentioned part of the plate 173 is flush with the lower end of the claw 171.
  • the first sensor 174 is arranged in the bracket 172, which is convenient for protecting the first sensor 174, and it is convenient to use the first signal plate 173 and the first sensor 174 to detect whether the claw 171 moves. to the second position, thereby improving the degree of automation of the box removal assembly.
  • the claw 171 has a through hole (not shown in the figure), one end of the first signal board 173 extends out of the claw 171 through the through hole, and the lower end of the first signal board 173 is located in the bracket 172 .
  • the claw 171 has a through hole penetrating in the up and down direction, and the upper end of the first signal plate 173 can be Go through the through hole and move up and down relative to the through hole.
  • the lower end of the first signal plate 173 is disposed in the bracket 172 , and the first signal plate 173 is located above the first sensor 174 .
  • the box removal assembly further includes a first reset member 175, the first reset member 175 is connected to the push plate assembly 18 and the bracket 172, and the first reset member 175 has an active force for urging the bracket 172 to return to the first position.
  • the upper end of the first reset member 175 is connected to the bracket 172
  • the lower end of the first reset member 175 is connected to the push plate assembly 18 .
  • the box removing assembly of the present disclosure utilizes the first reset member 175 so that the bracket 172 can return from the second position to the first position.
  • the box-taking assembly further includes a base 187 and a rotating shaft 188, the base 187 is arranged on the push plate assembly 18, and the rotating shaft 188 is passed through the bottom end of the base 187 and the bracket 172 to The bracket 172 and the base 187 are rotatably connected.
  • the base 187 is used to connect the bracket 172 and the push plate assembly 18, the base 187 is fixedly connected with the push plate assembly 18, the base 187 and the bracket 172 are provided with hinge holes penetrating along the left and right directions, and the rotating shaft 188 is provided on the hinge.
  • the bracket 172 is connected to the base 187 through the hole. Therefore, the box removal assembly of this embodiment utilizes the base 187 and the rotating shaft 188 to facilitate the rotation of the bracket 172 relative to the base 187, and the base 187 and the rotating shaft 188 are simple in structure and easy to process.
  • the push plate assembly 18 includes a base 181 and a push plate 182 , the push plate 182 is arranged on the front side of the base 181 , and the push plate 182 is at a position relative to the base 181 Moveable in the front-back direction, the box-taking assembly also has a third position between the first position and the second position. In the third position, the hooking assembly 17 rotates backward with respect to the support assembly 19 at a second preset angle. The second predetermined angle is smaller than the first predetermined angle, and the push plate 182 is spaced apart from the base 181 in the front-rear direction. In the second position, the push plate 182 abuts against the base 181 .
  • the push plate 182 is spaced apart from the base 181 , and the push plate 182 can move along the front and rear directions. In other words, the push plate 182 can be close to the base 181 or away from the base 181 .
  • the robot first moves to the vicinity of the shelf, and then the box picking assembly is in the first position.
  • the box 20 is in contact, but there is no interaction force between the claw 171 and the box 20 , and the push plate 182 is not in contact with the rear end surface of the box 20 .
  • the box assembly continues to move forward to the third position. At this time, the hook 171 contacts the container 20 and rotates backward to the second preset angle.
  • the front end of the push plate 182 contacts the rear end of the container 20, and the push plate The rear end surface of 182 is not in contact with base 181 .
  • the push plate assembly 18 further includes a guide piece 183, the front end of the guide piece 183 is connected to the push plate 182, and at least part of the guide piece 183 extends into the base 181 and is opposite to each other.
  • the base 181 can move in the front-back direction.
  • the guide piece 183 extends along the front-rear direction, the front end of the guide piece 183 is fixedly connected with the push plate 182 , and the rear end of the guide piece 183 extends into the base 181 . Therefore, the box removing assembly of the embodiment of the present disclosure can use the guide member 183 to guide the movement of the push plate 182, so that the pushing plate 182 moves along the front and rear directions, thereby improving the reliability of the box removing assembly.
  • the guide piece 183 is a pin shaft
  • the base 181 is provided with a guide hole or a guide groove, and the guide piece 183 can cooperate with the guide hole or the guide groove.
  • the box removing assembly of this embodiment utilizes a plurality of guides 183, which can make the movement of the push plate 182 more stable, thereby improving the reliability of the box removing assembly.
  • the push plate assembly 18 further includes an elastic member 184, the elastic member 184 is located in the base 181, one end of the elastic member 184 abuts against the guide member 183, and the elastic member 184 The other end abuts against the base 181 , and the elastic member 184 has an elastic force to promote the forward movement of the guide member 183 .
  • the guide piece 183 can drive the elastic piece 184 to move when moving.
  • the elastic piece 184 is a tension spring or a compression spring.
  • the elastic piece 184 is a compression spring.
  • the front end of the elastic piece 184 is connected with the guide piece 183.
  • the rear end is connected with the rear wall of the base 181 , when the guide member 183 moves backward, the elastic member 184 is compressed to prompt the guide member 183 to move forward.
  • the elastic member 184 is an extension spring, the front end of the elastic member 184 is connected with the front wall of the base 181, and the rear end of the elastic member 184 is connected with the guide member 183, when the guide member 183 moves backward, after the elastic member 184 is subjected to the tension, The guide 183 is urged to move forward. Therefore, in this embodiment, the push plate assembly 18 utilizes the elastic member 184 to push the guide member 183 to move forward, thereby pushing the push plate 182 to move forward, so that the push plate 182 is reset.
  • the guide member 183 has an annular protrusion 1831 located in the base 181 , and one end of the elastic member 184 abuts against the annular protrusion 1831 . Specifically, one end of the elastic member 184 abuts against the annular protrusion 1831 , and the other end of the elastic member 184 abuts against the base 181 .
  • the push plate 182 when the push plate 182 is in contact with the cargo box 20, the push plate 182 can be closely attached to the rear end of the cargo box 20, thereby improving the grip of the hook. 171 and the matching accuracy of the container 20, thereby ensuring the accuracy of taking the case.
  • the push plate assembly 18 further includes a second signal plate 185 and a second sensor 186, the second sensor 186 is located in the base 181, and the front end of the second signal plate 185 is connected to the The push plate 182 is connected, and in the second position, at least part of the second signal plate 185 is located in the base 181 and can trigger the second sensor 186 .
  • the second sensor 186 and the second signal plate 185 are arranged oppositely in the front-rear direction, the front end of the second signal plate 185 is outside the base 181 and fixed on the push plate 182, and the rear end of the second signal plate 185 extends into Base 181.
  • the second sensor 186 is electrically connected to the controller.
  • the push plate 182 At the first position, the push plate 182 is not in contact with the base 181 , and the second signal plate 185 does not trigger the second sensor 186 at this time.
  • the push plate 182 When in the third position, the push plate 182 is spaced apart from the base 181 in the front-rear direction, and the push plate 182 is in contact with the rear end surface of the container 20.
  • the box-taking assembly continues to move forward, the push plate 182 is received by the container.
  • the box unloading assembly of the embodiment of the present disclosure utilizes the second signal plate 185 and the second sensor 186 to facilitate detection of whether the push plate assembly 18 moves to the second position, thereby improving the degree of automation of the box unloading assembly.
  • FIGS. 15 to 16 there are at least two push plate assemblies 18, and the at least two push plate assemblies 18 are arranged at intervals in a first direction, and the first direction is orthogonal to the front-rear direction and the up-down direction.
  • the hooking assembly 17 is located between adjacent push plate assemblies 18 .
  • the box-taking assembly further includes a support assembly 19, the support assembly 19 includes a support base 191 and a support member 192, and the support member 192 is arranged on the support base 191 and is opposite to the support base. 191 can move forward and backward, and the support member 192 is mounted on the bottom of the push plate assembly 18 .
  • the auxiliary support assembly 19 is connected to the push plate assembly 18 , and the auxiliary support assembly 19 can move relative to the support base 191 in the front and back directions, thereby driving the push plate assembly 18 and the hook assembly 17 to move on the support base 191 .
  • the box picking assembly of this embodiment can transfer the cargo box 20 to the support base 191 by using the support assembly 19 , or transfer the cargo box 20 from the support base 191 to the shelf.
  • Embodiment 6 In order to solve the problem that the door frame assembly shakes when the cargo handling robot 10 picks and places the material box at a high position, the present disclosure provides a cargo handling robot with an anti-shaking function.
  • the cargo handling robot includes a chassis 3, a door frame 4, a lift Assembly 6 and at least two auxiliary support devices 5; wherein, the door frame 4 is arranged on the chassis 3, the lifting assembly 6 is configured to move up and down along the door frame 4, and at least two auxiliary support devices 5 are controlled by respective drive assemblies , and are respectively distributed on opposite sides of the cargo handling robot, at least two auxiliary support devices 5 are configured to abut against or separate from the material rack on the corresponding side of the cargo handling robot relative to the cargo handling robot.
  • the auxiliary supporting device 5 can be arranged on opposite sides of the lifting assembly 6 , so that the auxiliary supporting device 5 can move on the mast 4 along with the lifting assembly 6 . After the lifting assembly 6 moves to a suitable position, the auxiliary supporting device 5 protrudes to opposite sides of the lifting assembly 6 respectively, and offsets against the material rack on the corresponding side of the lifting assembly 6, thereby ensuring the stability of the container handling robot.
  • the auxiliary supporting device 5 may be arranged on two opposite sides of the door frame 4 .
  • it can be arranged in the upper area, the middle area or the lower area of the door frame 4 according to the demand, and the door frame 4 can be kept on the adjacent two material rack supports by the auxiliary support device 5, which ensures the stability of the container handling robot when picking up and returning the box. sex.
  • the auxiliary support device 5 may also be connected to the temporary storage mechanism, which will not be described in detail here.
  • the auxiliary supporting device 5 may be disposed on opposite sides of the chassis 3 .
  • the auxiliary support devices 5 on opposite sides of the chassis 3 stretch out to contact the material racks on the corresponding side, thereby stabilizing the chassis 3 of the cargo handling robot. Keep it between two adjacent racks. Even if the gantry assembly shakes when the box is retrieved and returned at a high position on the material rack, the robot can be prevented from toppling over, which improves the safety of the cargo handling robot when it is working.
  • the auxiliary support devices 5 on both sides are controlled by their own drive components. That is, the cargo handling robot can respectively drive the auxiliary support device 5 to extend out of the corresponding position according to the actual distance between the side and the corresponding material rack, so that the cargo handling robot can make adaptive adjustments according to factors such as uneven ground and vehicle body tilt, to avoid Auxiliary supporting device 5 makes the action of twisting forcibly to door frame 4.
  • the cargo handling robot also includes two auxiliary support devices 5, which are controlled by respective drive assemblies and are respectively arranged on opposite sides of the door frame 4. These two auxiliary support devices 5 are configured to be opposite to each other.
  • the material rack 40 protruding from the door frame 4 to the side corresponding to the door frame 4 abuts or separates.
  • Fig. 40 and Fig. 41 are three-dimensional schematic diagrams of the auxiliary support device 5 shown in Fig. 34.
  • the auxiliary support element 51 includes a fixed base 50, and is telescopically connected by a telescopic mechanism.
  • the supporting element 51 on the fixed base 50 wherein the telescoping mechanism is controlled by the driving assembly 58 and is configured to drive the supporting element 51 to move relative to the fixed base 50 to contact or separate from the material rack 40 on the corresponding side.
  • FIG. 25 please refer to FIG. 25 together.
  • the fixed base 50 is specifically a square plate, which is fixedly connected on the side wall of the door frame 4 by means of threaded connection or bonding, and the support element 51 has the same shape as the fixed base 50, and the support element 51 expands and contracts through a telescopic mechanism Connected to the fixed base 50 in a manner, the telescoping mechanism drives the support element 51 to move away from or close to the support element 51 under the action of the drive assembly 58 .
  • the telescoping mechanism includes a scissors unit, and the scissors unit includes a first link mechanism and a second link mechanism that are arranged crosswise and hinged together at the intersection point.
  • one end of the first link mechanism is hinged to the fixed base 50, and the other end is movably connected to the support element 51 in a slidable manner;
  • one end of the second link mechanism is hinged to the support element 51, The other end is movably connected to the fixed base 50 in a slidable manner.
  • the first connecting rod 52 mechanism includes two first connecting rods 52 arranged in parallel
  • the second connecting rod 53 mechanism includes two second connecting rods 53 arranged in parallel, wherein the two first connecting rods 52 have the same
  • the two ends are hinged on the same hinge axis
  • the same ends of the two second connecting rods 53 are hinged on the same hinge axis
  • the first connecting rod 52 and the second connecting rod 53 on the same side intersect and are hinged together.
  • the lower ends of the two first connecting rods 52 are hinged on the first lower hinge shaft 54
  • the upper ends of the two first connecting rods 52 are respectively hinged on the two first upper hinge shafts 55 arranged coaxially.
  • the support element 51 is provided with two elongated holes 5a, and the two first upper hinge shafts 55 respectively pass through the two A strip-shaped hole 5a and slide up and down relative to the support member 51 along the strip-shaped hole 5a.
  • the lower ends of the two second connecting rods 53 are respectively hinged on two second lower hinge shafts 56 coaxially arranged, and the two second lower hinge shafts 56 are fixedly or rotatably connected to the support element 51;
  • the upper ends of the second connecting rods 53 are all hinged on the second upper hinge shaft 57, and the second upper hinge shaft 57 is movably connected to the fixed base 50 in a slidable manner.
  • the fixed base 50 is also provided with Two elongated holes 5a, the second upper hinge shaft 57 passes through the two elongated holes 5a and can slide along the elongated holes 5a under the action of external force.
  • the drive assembly 58 that drives this retractable mechanism includes a screw rod push rod motor, the casing of the screw rod push rod motor is fixedly connected on the fixed base 50, and its drive shaft is fixedly connected with the second upper hinge shaft 57 to control the forward rotation of the motor or Reversing can make its driving shaft drive the second upper hinge shaft 57 to slide up and down along the elongated hole 5a.
  • the second upper hinge shaft 57 slides upwards along the elongated hole 5a, and at this moment, the first linkage mechanism and the second linkage mechanism of the scissors unit retract, and then the Both the fixed base 50 and the supporting element 51 move in a direction gradually approaching each other, that is, the cargo handling robot as a whole is in the working state in FIG. It is not against the material rack 40 on the corresponding side, and the auxiliary supporting device 5 has no supporting function at this time.
  • Embodiment 7 The design height of the existing multi-container robot is relatively high, and the safety requirements for the operation of the whole machine are very high.
  • the telescopic fork mechanism When the telescopic fork mechanism is in an abnormal state, the fork may not be able to be retracted in place. At this time, if the robot continues to make follow-up actions, it will cause danger to the robot, the shelf container, and even the staff. Therefore, it is particularly important to detect whether the telescopic fork mechanism is recovered in place.
  • the robot 100 also includes a telescopic fork device 30 that can move up and down along the height direction of the mast 4 , and a lifting assembly 6 that drives the telescopic fork device 30 to move up and down along the height direction of the mast 4 .
  • a telescopic fork device 30 that can move up and down along the height direction of the mast 4
  • a lifting assembly 6 that drives the telescopic fork device 30 to move up and down along the height direction of the mast 4 .
  • the side of the door frame 4 facing away from the assembled temporary storage partition 2 is slidably provided with a lifting assembly 6 along its height direction, and the lifting assembly 6 can adopt any one of a rack and pinion mechanism, a lead screw mechanism or a synchronous belt mechanism way to complete the drive, so that the lifting assembly 6 is vertically lifted along the door frame 4.
  • the lifting assembly 6 is provided with a telescopic fork device 30 for retrieving and returning the container; the telescopic fork device 30 is lifted to different heights along with the elevating assembly 6, and the container of different heights is retrieved and returned.
  • the telescopic fork device 30 When the telescopic fork device 30 is connected to the lifting assembly 6 , the telescopic fork device 30 is connected to the lifting assembly 6 through a rotating assembly, and the rotating assembly is used to drive the telescopic fork device 30 to rotate horizontally.
  • the telescopic fork device 30 includes a moving tray 305 connected to the lifting assembly 6, the moving tray 305 is connected to the lifting assembly 6 through a rotating assembly, and the moving tray 305 can rotate around the center of the rotating assembly.
  • the mobile pallet 305 moves in place with the shelves and the temporary storage partitions 2 on each floor.
  • the telescopic fork device 30 can pick and place containers from the shelves on both sides of the roadway, thereby realizing two-way retrieval and return of containers .
  • the telescopic fork device 30 also includes a multi-stage telescopic machine 301 oppositely arranged along both sides of the mobile pallet 305; there are two multi-stage telescopic machines 301, and at least three scale.
  • the multi-stage telescopic machine 301 is a three-stage telescopic mechanism, it includes: a first arm fixed on the moving tray 305, an intermediate arm slidably connected to the first arm, and a final arm slidably connected to the intermediate arm. The three arms can slide along the direction of picking up goods, so as to realize the expansion and contraction of the multi-stage telescopic machine 301 along the direction of picking up goods.
  • a front finger 302 When raising the operation of picking up and returning the container, a front finger 302 is rotatably connected to the front end of the opposite end arm along the picking direction, and a rear finger 303A is fixedly arranged at the rear end of the opposite end arm along the picking direction. Both the front finger 302 and the rear finger 303A move along with the distal arm along the picking direction. It can be seen from the above description that whether the multi-stage telescopic machine 301 is a three-stage telescopic mechanism or a four-stage telescopic mechanism, the assembly positions of the front finger 302 and the rear finger 303A remain unchanged, and they are all assembled on the last arm.
  • the front finger 302 is connected to the end arm through the rotation of the steering gear, and the front finger 302 has two positions: a working position and an avoidance position.
  • the steering gear drives the front finger 302 to rotate to a horizontal position.
  • the two front fingers 302 are opposite to each other, so that when the multi-stage telescopic machine 301 shrinks, the container to be transported can be pulled.
  • the rear finger 303A is fixedly mounted on the end of the distal arm far away from the front finger 302; As shown in Figure 27, two rear dial fingers 303A can be arranged oppositely.
  • the cargo boxes on the mobile pallet 305 are blocked and pushed by the rear dial fingers 303A on both sides.
  • the cargo case on the mobile pallet 305 is pushed to the shelf or the temporary storage partition 2 of the robot itself.
  • the rear finger 303B can also be integrally connected between the end arms on both sides, and also block and push the container on the mobile pallet 305 during the extension process of the multi-stage telescopic machine 301 .
  • the telescopic fork device 30 may fail to retract the fork in an abnormal state.
  • the robot 1 continues to perform follow-up actions, it will cause danger to the robot, the shelf container and even the staff.
  • the present application utilizes the rear finger 303A fixedly arranged as a positioning mark to detect the arrival information of the multi-stage telescoping machine 301 .
  • the telescopic fork device 30 further includes: an in-position detection device 304 for detecting the position of the rear finger 303A.
  • the in-position detecting device 304 is fixedly mounted on the moving tray 305 and is used for detecting the position information of the rear finger 303A.
  • the in-position detection device 304 is any one of a diffuse reflection sensor, a laser sensor, a micro switch or a travel switch arranged on the moving tray 305 and corresponding to the rear finger 303A.
  • there are two rear dialing fingers 303A arranged oppositely there are two arrival detection devices 304 , which correspond to the two rear dialing fingers 303A respectively.
  • the number of in-position detection devices 304 can be one or two.
  • the control device which adopts one of a PLC controller and a single-chip controller industrial computer.
  • the control device receives the position information of the rear finger 303A fed back by the position detection device 304, it controls the corresponding work of the multi-stage telescopic machine 301, the chassis 3, the lifting assembly 6 and the rotating assembly, which are commonly used technical means in the existing control methods. I won't go into too much detail here.
  • the control device controls the chassis 3 , the lifting assembly 6 and the rotating assembly to lock.
  • the control device is also used to control the chassis 3, the lifting assembly 6 and the rotating assembly to release the locked state when the finger 303A does not exceed the set position after detection by the in-position detection device 304 .
  • the setting position is a reasonable interval, so that the rear finger 303A can run to this interval under the slight mechanical movement error and control error, and at the same time ensure that the rear finger 303A runs to this interval.
  • the chassis 3 moves to the shelf of the container to be picked, and the lifting assembly 6 drives the telescopic fork device 30 to rise to the same height as the container to be picked. shelf layer, the front dial finger 302 is in the avoidance position at this moment.
  • the multi-stage telescopic machine 301 extends from the terminal arm along the middle arm on both sides of the box to be picked up.
  • the position detection device 304 detects that the position of the rear finger 303A exceeds the set position, and the control device controls the chassis. 3.
  • the lifting assembly 6 and the rotating assembly are in a locked state.
  • the middle arm extends along the first arm until the front finger 302 is located at the back of the container.
  • the steering gear rotates so that the front finger 302 is located at the working position, and then the front finger 302 pulls the container from the shelf to the mobile pallet 305 during the retraction process of the multi-stage telescopic machine 301 .
  • the in-position detection device 304 detects that the rear finger 303A returns to the set position, and controls the chassis 3, the lifting assembly 6 and the rotating assembly to unlock state.
  • the control device controls the lifting assembly 6 to drive the telescopic fork device 30 to lift to a position equal to the second floor of the temporary storage partition in a suitable space, and controls the rotating assembly to drive the moving tray 305 to rotate 90 degrees.
  • the steering gear drives the front finger 302 to be in the avoidance position, and the multi-stage telescopic machine 301 pushes the container on the mobile tray 305 to the temporary storage partition 2 by the rear finger 303A during the extension process.
  • the position detection device 304 detects that the position of the rear finger 303A exceeds the set position.
  • the control device controls the chassis 3, the lifting assembly 6 and the rotating assembly to be in a locked state.
  • the rear finger 303A is used as a fixed-point mechanism while limiting the container, and the position detection device 304 detects whether the position of the rear finger 303A is in place, so that the robot can perform subsequent operations and improve the operating safety of the robot.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the terms “one embodiment,” “some embodiments,” “example,” “specific examples,” or “some examples” mean specific features, structures, materials, or features described in connection with the embodiment or examples. Features are included in at least one embodiment or example of the present application. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

本申请的实施例公开了一种取箱装置和机器人,所述取箱装置包括推板组件和钩取组件,所述推板组件可沿前后方向移动,所述钩取组件设在所述推板组件上且具有钩爪,且所述钩取组件相对于所述推板组件可向前和向后转动,所述取箱装置具有第一位置和第二位置,在所述第一位置,所述钩爪的前端向前伸出所述推板组件,在所述第二位置,所述钩取组件相对于所述推板组件向后转动第一预设角度,所述推板组件适于与货箱接触,所述钩爪适于与所述货箱配合。本申请实施例的取箱装置取箱精度高,而且可以减小相邻货箱的最小间距,提高了仓储密度和仓库利用率。

Description

取箱装置和机器人
相关申请的交叉引用
本申请要求申请号为202121566645.3且申请日为2021年07月09日的中国专利申请、申请号为202122079403.8且申请日为2021年08月31日的中国专利申请、申请号为202122181459.4且申请日为2021年09月09日的中国专利申请、申请号为202111058253.0且申请日为2021年09月09日的中国专利申请、申请号为202122584103.5且申请日为2021年10月26日的中国专利申请以及申请号为202220578679.2且申请日为2022年03月16日的中国专利申请的优先权和权益,上述中国专利申请的全部内容在此通过引用并入本申请。
技术领域
本申请涉及仓储领域,具体地,涉及一种取箱装置和机器人。
背景技术
随着自动化仓储技术的不断发展进步,仓库存储密度也在不断提高。相关技术中,仓库存储过程中利用吸盘式、托举式、抱叉式等取箱机构进行货箱的存取,可以将货箱的最小间距缩小到40mm。
然而,相关技术中的取箱机构受到机构传动原理、硬件复杂程度、传感器精度等限制,货箱的最小间距很难继续缩小,无法进一步提高仓储密度,提高仓储利用率,而且还存在结构复杂、体积大、噪音大、使用寿命短、取箱容易失败、取箱效率不高等问题。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请的实施例提出一种取箱装置,该取箱装置取箱精度高,而且可以减小相邻货箱的最小间距,提高了仓储密度和仓库利用率。
本申请实施例的取箱装置包括:安装架,所述安装架上形成有容置空间;取箱组件,所述取箱组件沿前后方向可移动地设在所述安装座上,所述取箱组件的至少部分可与货箱在所述前后方向上邻近所述取箱组件的一端对接,以在所述取箱组件沿所述前后方向运动的同时,所述取箱组件能够拉动或推动所述货箱进出所述容置空间。
本公开的有益效果在于:本公开提供的取箱装置,通过设置取箱件,并使取箱件能够与货箱一端对接,使得取箱装置在取放货箱时,可以仅作用于货箱朝向搬运机器人的一端,使得取箱件无需伸入两个货箱之间的间隙之中对货箱进行夹取,或可以使得取箱件仅伸入货箱的前端侧部进行货箱对接与取放,从而减小或避免取箱件对目标货箱的相邻货箱的干涉,进而能够减小库存容器上相邻两个货箱之间所需的间隙,提高货箱在库存容器上的排布密度,且不会或者减小对位于库存容器上的其他货箱的推动或者碰撞,有利于保持货箱在库存容器上的稳定性,方便后续的货箱取放操作。
本申请实施例的机器人包括:底盘;门架,所述门架设在所述底盘上;升降组件,所述升降组件被配置为沿着所述门架上下移动;取箱装置,所述取箱装置与所述升降组件与所述取箱装置相连以驱动所述取箱装置相对于所述门架可上下移动,所述取箱装置为上述任一实施例所述的取箱装置。
附图说明
图1是本公开实施例一提供的搬运机器人与货箱的结构示意图;
图2是本公开实施例一提供的搬运机器人的拆分结构示意图;
图3是图2中I处的局部放大图;
图4是本公开实施例一提供的搬运机器人的部分结构示意图;
图5是本公开实施例一提供的升降机构的背面结构示意图;
图6是本公开实施例一提供的升降机构、取箱装置及货箱的结构示意图;
图7是本公开实施例一提供的升降机构与取箱装置的拆分结构示意图;
图8是本公开实施例一提供的取箱装置的结构示意图;
图9是本公开实施例一提供的取箱装置和旋转机构的结构示意图;
图10是本公开实施例五的取箱装置在转移货箱时的状态示意图;
图11是图10的剖视图;
图12是本公开实施例五的取箱装置的结构示意图,其中去除了支撑组件;
图13是图12的左视示意图;
图14是本公开实施例五的取箱装置与货箱接触的状态图,且未示出支撑组件;
图15是本公开实施例五的推板组件的剖视示意图;图16是图15中A处的放大示意图;
图17是本公开实施例五的取箱装置移动至第二位置时,推板组件的状态示意图。
图18是本公开所提供的货物搬运机器人的具体实施例六在使用状态下的立体结构示意图;
图19是图18中A处的局部放大图;
图20是图19所示结构中辅助支撑装置位于伸出状态时的主视结构示意图;
图21是图中B处的局部放大图;
图22是图21所示结构中辅助支撑装置位于缩回状态时的主视结构示意图;
图23是图22中C处的局部放大图;
图24是图23所示辅助支撑装置的立体结构示意图;
图25是图24所示辅助支撑装置的主视结构示意图;
图26是本公开实施例九提供的机器人的结构示意图;
图27是本公开实施例九提供的伸缩叉装置的第一种结构示意图;
图28是本公开实施例九提供的伸缩叉装置的第二种结构示意图;
图29是本公开实施例九提供的伸缩叉装置未到位的状态示意图。
附图标记:
100、搬运机器人;20、货箱;201、箱体;202、配接部;2021、第一连接部;2022、第一插板部;203、连带部;2031、第二连接部;2032、第二插板部;204、竖直筋条;1、取箱装置;11、取箱驱动组件;111、取箱电机;112、取箱传动组件;1121、主动带轮;1122、从动带轮;1123、传动带;1124、齿条;1125、主动齿轮;1126、中间齿轮;113、同步传动组件;1131、传动轴;1132、中间传动组件;114、转轴座;115、轮安装件;116、电机座;1151、轮轴部;12、安装架;121、安装底板;1211、定位环;122、安装侧板;1221、插孔;1222、紧固孔;13、取箱组件;131、取箱件;1311、连接板部;1312、勾板部;132、连接件;133、带固定件;134、臂板;1341、勾件;14、检测件;15、摩擦条;16、驱动架;17、钩取组件;171钩爪;172支架;173第一信号板;174第一传感器;175第一复位件;18、推板组件;181、基座;182、推板;183、导向件;1831、环形凸起;184、弹性件;185、第二信号板;186、第二传感器;187、底座;188、转轴;19、支撑组件;191、支撑座;1911、导引槽;192、支撑部件;1921、导引件;1922、滑轮;2、暂存隔板;3、底盘;31、驱动轮;4、门架;5、辅助支撑装置;50、固定基座;51、支撑元件;52、第一连杆;53、第二连杆;54、第一下铰接轴;55、第一上铰接轴;56、第二下铰接轴;57、第二上铰接轴;58、驱动组件;6、升降组件;61、升降架;611、升降横架;6111、主升降板;6112、围板;6113、限位槽;6114、定位凸环;612、升降竖架;62、升降传动组件;621、主动齿轮;622、齿条;63、升降驱动件;64、同步轴;65、轴传动组件;66、导向组件;7、旋转机构;71、回转轴承;711、带轮齿圈;72、旋转带轮;73、旋转驱动电机;74、旋转传动皮带;75、限位柱;81、叉臂单元;811、臂板;812、勾件;813、爪座;8131、定位孔;8132、缺口;814、滑板部;815、限位板;82、调节组件;821、调节驱动电机;822、丝杠;823、螺母座;8231、圆柱部;8232、固定板部;83、固定架;831、支撑座;832、连接支架;8321、横支板部;8322、纵支板部;8323、底座部;8324、延伸座部;84、调节导向组件;841、Y向导轨;842、Y向滑块;85、带固定件;10、连接架;101、底座;102、连接柱;103、加强座;30、伸缩叉装置;301多级伸缩机构;302前拨指;303A、后拨指;303B、后拨指;304、到位检测装置;305、移动托盘;40、料架。
具体实施方式
下面详细描述本公开的实施例,实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图描述根据本公开实施例的取箱装置和机器人。
实施例一如图1所示,本实施例提供了一种搬运机器人100,用于实现对货箱20的搬运和取放,其主要应用于仓储物流行业,对存放有订单货物或快递的货箱20进行取放和运输,以实现基于订单的取货或上货操作。其也可以应用到需要对货箱20或货物进行搬运的其他场所,本实施例中对搬运机器人100的应用仅为示例性,本实施例不对此进行具体限制。
如图1所示,本实施例提供的搬运机器人100包括底盘3、门架4、取箱组件、升降组件6、检测组件和控制器。其中,底盘3用于实现搬运机器人100在地面上的移动,以实现搬运机器人100对货箱20的运输;门架4设置在底盘3上,用于固定和支撑取箱组件;取箱组件通过升降组件6可升降地设置在门架4上,以拾取库存容器上的货箱20或将货箱20放置至库存容器上;检测组件用于检测搬运机器人100的工作状态及外界环境状态;控制器用于获取仓储物流的订单信息,并基于订单信息和检测组件的检测结果,对搬运机器人100的运行进行智能化调控。
为方便后续描述,以图1和图2所示方向建立搬运机器人100的坐标系,其中,X方向为驱动轮31的门架4的长度方向,Y方向为门架4的宽度方向,Z方向为门架4的高度方向。
如图2和图3所示,门架4包括沿X方向相对且间隔设置的两个支撑柱41,每个支撑柱41均竖直设置,支撑柱41的下端与底盘3连接。支撑杆部411为空心杆状结构,上下对接的两个支撑杆部411的空腔连通。门架4还包括连接杆(未示出),连接杆的上端插入位于上部的支撑杆部411内,下端插入位于下部的支撑杆部411内,且连接杆与两个支撑杆部411均通过螺纹件连接。通过将支撑杆部411设置成空心杆状结构,能够提高两个支撑段的连接便利性,同时还能够减轻门架4的整体重量
为方便底盘3与支撑柱41的连接,底盘3的顶部设置有连接架10,连接架10与支撑柱41一一对应设置。连接架10包括底座101和竖直凸设在底座101上的连接柱102,底座101可拆卸连接于底盘3上端面,两个连接柱102与支撑柱41的两个支撑杆部411一一对应设置。连接柱102插入对应支撑杆部411的内部并与支撑杆部411通过螺纹件连接,支撑柱41的下端抵接在底座101的上表面。优选地,底座101和支撑杆部411的外侧壁之间连接有加强座103,以增强支撑柱41与连接架10的连接强度。
如图4-图6所示,升降组件6包括升降架61、升降驱动件63和升降传动组件62。升降驱动件63与升降传动组件62传动连接,升降架61连接于升降传动组件62上,取箱组件安装于升降架61上。升降驱动件63安装于升降架61上,升降传动组件62包括铺设在支撑柱41上的齿条622以及与齿条622啮合的主动齿轮621,主动齿轮621与升降驱动件63传动连接。轴传动组件65包括分别套设在升降电机输出轴上及同步轴64上的两个带轮以及绕设在两个带轮之间的皮带。
进一步地,升降架61包括升降横架611和升降竖架612,升降横架611水平设置并用于安装取箱组件,升降竖架612竖直设置且与升降传动组件62一一对应,每个升降竖架612上均设置有导向组件66,导向组件66用于实现升降竖架612与支撑柱41的滑动连接和竖直方向运动的导向。
升降横架611包括主升降板6111以及向下围设于主升降板6111周侧的围板6112,围板6112与主升降板6111合围形成有容纳槽,两个升降竖架612分别位于围板6112的相对两侧。升降驱动件63以及部分同步轴64及轴传动组件65均位于容纳槽内。同步轴64的两端穿过围板6112及对应的升降竖架612并伸出升降架61的外侧,主动齿轮621以及导向组件66位于升降竖架612远离围板6112的一侧。如图6-图8所示,取箱组件包括安装架12、设置于安装架12一侧的取箱驱动组件11以及用于拾取货箱20的取箱组件,安装架12安装于升降架61的升降横架611上,且安装架12上形成有容置空间;取箱组件具有取箱件131,取箱件131能够与货箱20的一端可拆卸连接;取箱驱动组件11安装于安装架12上,且取箱驱动组件11驱动取箱组件沿取箱组件的第一方向运动,以拉动或推动货箱20进出容置空间,以实现货箱20在搬运机器人100以及库存容器之间的转移。
本公开提供的取箱组件和搬运机器人100,通过设置取箱件131,使得取箱件131无需伸入两个货箱20之间的间隙之中对货箱20进行夹取,或可以使得取箱件131仅伸入货箱20的前端侧部进行货箱20对接与取放,从而减小或避免取箱件131对目标货箱20的相邻货箱20的干涉,进而能够减小库存容器上相邻两个货箱20之间所需的间隙,提高货箱20在库存容器上的排布密度,且不会或者减小对位于库存容器上的其他货箱20的推动或者碰撞,有利于保持货箱在库存容器上的稳定性。值的说明的是,上述一端,指的是货箱20的一端的正侧面及货箱20的其他侧面靠近该端正侧面的部分,在货箱20放置在库存容器上时,货箱20的一端指的是货箱20朝向搬运机器 人100的一端。
在本实施例中,第一方向可以与X方向平行,即货箱取放的方向与搬运机器人的运行方向相同,第一方向也可以与X方向垂直,即货箱取放的方向与搬运机器人运行的方向垂直。优选地,取箱驱动组件11包括取箱电机111和沿取箱组件的第二方向相对且间隔设置的两个取箱传动组件112,取箱电机111用于驱动取箱传动组件112动作,取箱组件连接于两个取箱传动组件112之间,且两个驱动传动组件的同步动作带动取箱组件运动,两个取箱传动组件112之间形成上述的容置空间。通过设置两个取箱传动组件112,能够提高取箱组件的运动平稳性和可靠性。
在其他一个实施例中,也可以是取箱传动组件112仅设置一个,取箱组件还设置有滑动导向组件,滑动导向组件与取箱传动组件112相对且间隔设置,滑动导向组件和取箱传动组件112之间形成容纳空间,取箱组件的两端分别连接于滑动导向组件和取箱传动组件112,即滑动导向组件辅助取箱组件的运动,防止取箱组件在移动的时候发生偏移。
取箱电机111仅设置一个,且取箱电机111通过同步传动组件113与两个取箱传动组件112连接,从而降低成本,且保证两个取箱传动组件112的同步性。在本实施例中,取箱传动组件112包括沿第一方向相对且间隔设置的主动带轮1121和从动带轮1122以及绕设在主动带轮1121和从动带轮1122上的传动带1123。同步传动组件113包括沿第二方向延伸的传动轴1131以及连接在取箱电机111和传动轴1131之间的中间传动组件1132,两个主动带轮1121分别固定套设于传动轴1131的两端。传动轴1131与取箱电机111的输出轴平行且间隔设置。中间传动组件1132包括分别套设在取箱电机111及传动轴1131上的两个中间带轮以及绕设在两个中间带轮上的中间传动皮带。
优选地,取箱电机111间隔设置于传动轴1131的上方,即两个中间带轮上下间隔设置。该种设置,能够在方便货箱20完全进入两个取箱传动组件112之间的容置空间的同时,减小取箱组件在第一方向上的尺寸,提高结构紧凑性。在其他实施例中,取箱电机111也可以设置在安装架12的底部,并位于传动轴1131的下方。
为提高传动轴1131的设置稳定性,安装架12上沿第二方向间隔设置有至少两个转轴座114,传动轴1131转动穿设于转轴座114。在本实施例中,转轴座114设置有三个,其中两个转轴座114分别设置于传动轴1131的两端,另一个转轴座114设置在传动轴1131的中部。转轴座114与传动轴1131之间套设有轴承,以提高传动轴1131的转动顺畅性。且取箱电机111通过电机座116安装于安装架12上,优选地,电机座116的下端安装于位于中部的转轴座114上。由此,够在抬高取箱电机111的高度的同时,也能够降低电机座116的高度,提高结构紧凑性。
取箱电机111及同步传动组件113均设置于安装架12的一侧,为避免取箱组件在沿第一方向运动的时候碰撞到取箱电机111,安装架12上设置有检测件14,检测件14为光电传感器用于检测取箱组件沿第一方向的移动行程,且检测件14与搬运机器人100的控制器通信连接,以使控制器能够根据检测件14的检测信号控制取箱组件的运行,避免取箱组件与取箱电机111发生碰撞。
安装架12包括水平设置的安装底板121以及垂直设置在安装底板121上的安装侧板122,安装侧板122沿第二方向间隔设置有两个,且两个取箱传动组件112分别安装于两个安装侧板122的内侧。安装侧板122的高度高于取箱传动组件112的高度,从而使得安装侧板122能够对取箱传动组件112进行保护。
在本实施例中,从动带轮1122转动安装于安装侧板122上。具体地,安装侧板122上连接有轮安装件115,轮安装件115包括轮轴部1151和插接部,插接部与安装侧板122可拆卸连接,从动带轮1122转动套设在轮轴部1151上。进一步地,安装侧部上开设有插孔1221,轮轴部1151插设于插孔1221中,从而提高从动带轮1122在安装侧板122上的安装定位。
在本实施例中,取箱组件包括连接件132和取箱件131,连接件132沿第二方向延伸,且两端分别与两个传动带1123连接,取箱件131连接于连接件132部长度方向的中部位置,取箱件131用于对货箱20进行拾取。连接件132优选与传动带1123的上侧皮带部连接,以避免在运动的时候与从动带轮1122和主动带轮1121相干涉。
更为优选地,取箱组件还包括连接于连接件132部两端的两个带固定件133,带固定件133与连接件132可拆卸连接,带固定件133与传动带1123可拆卸连接。
取箱件131能够与货箱20的至少一面保持连接和解除连接两种状态中切换。当取箱件131与货箱20保持连接状态时,取箱件131能够携带货箱20进入容置空间中,从而将库存容器中的货箱20转移至搬运机器人,或携带货箱20退出容置空间,以搬运机器人上的货箱20转移至库存容器上。当货箱20完全转移至容置空间中时,或货箱完全进入库存容器的货位上时,取箱件131与货箱20解除连接。取箱件131优选与箱体20的一侧面采用磁吸连接、钩接或者卡接,以提高取箱件131与箱体20的连接和解除连接的便利性。
在本实施例中,取箱件131与货箱20的一侧面钩接,在提高取箱件131与货箱20的连接便利性的同时,也能够简化取箱件131的结构,且钩接的实现,无需设置驱动件,即可实现取箱件131与箱体20的分离或连接,成本较低。具体地,取箱件131包括垂直连接的连接板部1311和勾板部1312,连接板部1311水平设置并与连接件132连接,勾板部1312竖直设置且位于连接件132远离取箱电机111的一侧,勾板部1312的下端与连接板部1311的上表面连接。
为方便取箱件131对货箱20的钩取,货箱20上设置有与勾板部1312配合的配接部202。在本实施例中,配接部202呈L型结构,其一端垂直连接于货箱20箱体201的侧面上,另一侧设置向下延伸,配接部202与箱体201侧面形成开口朝下的钩槽,勾板部1312能够插入钩槽中。
在本实施例中,勾板部1312从配接部202的下侧插入钩槽中,此时,在取箱件131连接货箱20时,仅需采用升降组件6调节取箱件131的上下位置,搬运机器人100整体无需移动,取箱的便利性强。
进一步地,为降低安装底板121与货箱20之间的摩擦以及降低对安装底板121的磨损,安装底板121上设置有摩擦条15,摩擦条15凸设于安装底板121的上表面,且摩擦条15沿第一方向延伸。当货箱20进入两个安装侧板122之间时,货箱20底面与摩擦条15上表面抵接,以避免货箱20底面与安装底板121直接接触。优选地,摩擦条15沿第二方向间隔设置有多个,从而能够在保证在对货箱20的支承稳定性的同时,减小单个摩擦条15的宽度。
如图1所示,在本实施例中,搬运机器人100还包括多个沿门架4的高度方向间隔设置的暂存隔板2,每个暂存隔板2均与支撑柱41垂直连接,每个暂存隔板2均能用于暂存一个货箱20。以此设置,能够使搬运机器人100能够一次性搬运多个货箱20,提高货箱20搬运的效率。为避免取箱组件与暂存隔板2相干涉,取箱组件和暂存隔板2分别位于门架4的相对两侧,且取箱组件与升降架61通过旋转机构7连接,以使取箱组件绕竖直轴线转动,改变容置空间的开口朝向,以使得取箱驱动组件11能够驱动取箱组件实现货箱20在安装架12和暂存隔板2之间的转移。
如图7-图9所示,在本实施例中,旋转机构7包括回转轴承71、旋转驱动电机73以及旋转传动组件,旋转驱动电机73安装于安装架12上,且安装架12与回转轴承71的内圈连接,升降架61与回转轴承71的外圈固定连接,旋转传动组件连接于回转轴承71外圈与旋转驱动电机73之间,用于带动回转轴承71的外圈和内圈相对转动。将旋转驱动电机73安装于安装架12上,能够使得取箱组件在转动时,旋转驱动电机73跟随随动,避免旋转驱动电机73的设置干涉取箱组件的转动。进一步地,回转轴承71的的外圈形成有带轮齿圈711,旋转传动组件包括套设在旋转驱动电机73输出轴上的旋转带轮72以及绕设在旋转带轮72和带轮齿圈711上旋转传动皮带74。旋转驱动电机73输出轴竖直设置,当旋转驱动电机73转动时,其通过旋转带轮72带动旋转传动皮带74转动,从而带动回转轴承71的外圈与内圈相对转动。
为了安装回转轴承71,安装底板121的下表面设有内定位环1211,回转轴承71套设在内定位环1211上。升降组件6的上表面设有定位凸环6114,定位凸环6114与回转轴承71同轴设置,且回转轴承71的外圈抵接于定位凸环6114上表面,并与定位凸环6114可拆卸连接。定位凸环6114和内定位环1211的设置,能够实现回转轴承71分别在安装架12和升降组件6上的安装定位,提高安装精度。为限制取箱组件相对升降架61的旋转角度,安装架12的底面和升降组件6的顶面中的一个设置有限位槽6113,另一个设有限位柱75,限位柱75的末端插设于限位槽6113 中,且限位槽6113为与回转轴承71同轴设置的弧形槽,弧形槽对应的圆心角即为取箱组件能够转动的角度范围。
实施例二本实施例提供了一种搬运机器人100及仓储物流系统,且本实施例提供的搬运机器人100的结构基本与实施例一相同,仅部分结构设置上存在差异,本实施例不再对与实施例一相同的结构进行赘述。在本实施例中,门架4上沿竖直方向间隔设置有多个暂存隔板2,取箱组件设置在暂存隔板2的同侧且能够在升降组件6的带动下升降。暂存隔板2包括隔板部和设置于隔板部相对两侧的挡板部,挡板部和隔板部合围形成开口背离门架4的暂存空间。
取箱组件的安装底板121呈开口朝向暂存隔板2的U型结构,其包括横板部和连接于横板部两端的纵板部,横板部位于门架4远离暂存隔板2的一侧,取箱电机111安装于横板部上;两个纵板部分别位于暂存隔板2的相对两侧,且两个取箱传动组件112分别安装于两个纵板部上,取箱组件组件位于暂存隔板2的上方并位于门架4安装有暂存隔板2的一侧。
实施例三本实施例提供了一种搬运机器人及仓储物流系统,且本实施例提供的搬运机器人的结构基本与实施例一相同,仅取箱组件及取箱驱动组件的设置存在差异,本实施例不再对与实施例一相同的结构进行赘述。如图10所示,在本实施例中,取箱件131包括沿第一方向相对且间隔设置的两个臂板134以及连接于两个臂板134第一端之间的连接组件,连接组件与取箱驱动组件11连接,臂板134的第二端沿朝向另一臂板134的方向凸设有勾件1341,勾件1341能够钩挂货箱20表面的竖向凸筋204。取箱传动组件112包括啮合的齿轮和齿条1124,齿条1124沿第一方向铺设在安装底板121上,齿轮与齿条1124啮合并与取箱电机111传动连接。取箱组件还包括驱动架16,取箱电机111及取箱组件均安装于驱动架16上,且驱动架16的一端通过齿轮与齿条1124的啮合支承于取箱传动组件112上,另一端连接于滑动导向组件的滑动件上。进一步地,在本实施例中,齿轮包括与取箱电机111的驱动轴连接的主动齿轮1125及与主动齿轮1125啮合的中间齿轮1126,中间齿轮1126与齿条1124啮合,中间齿轮1126与主动齿轮1125上下并排设置,由此能够提高取箱电机111的高度,避免与安装底板121干涉。
实施例四本实施例提供了一种取箱组件及搬运机器人,且本实施例提供的取箱组件与实施例七基本相同,仅叉臂单元81的结构存在差异,本实施例不再对与实施例四相同的结构进行赘述。
在本实施例中,臂板811的前端设置有勾件,勾件与臂板811转动连接,臂板811上设置有旋转驱动件,旋转驱动件与勾件连接,用于驱动勾件转动,以使勾件选择性地凸出臂板811朝向另一叉臂单元81的一面。即,本实施例提供的叉臂单元81,当勾件812凸出臂板811朝向另一叉臂单元81的一面时,勾件可用于拨动容器前端两侧的竖向凸筋或者凹槽槽壁。当勾件812未凸出臂板811朝向另一叉臂单元81的一面时,叉臂单元81能够更为方便地与容器脱离,即在实现叉臂单元81与容器的对接或者分离时,可以无需调节两个叉臂单元81之间的间距。由此,在能够实现对不同尺寸的容器的取放和搬运的同时,还能够降低叉臂单元81与容器的对接和分离难度。
实施例五本实施例提供了一种搬运机器人100及仓储物流系统,且本实施例提供的搬运机器人100的结构与实施例一相同,仅取箱组件结构存在差异,本实施例不再对与实施例一相同的结构进行赘述。取箱装置1可朝向靠近货箱20和远离货箱20的方向移动,为了便于描述,下面以取箱装置1靠近货箱20的方向为前向,以取箱装置1远离货箱20的方向为后向,来描述本申请的技术方案。
如图10至图17所示,本公开实施例的取箱组件包括推板组件18和钩取组件17,推板组件18可沿前后方向移动,钩取组件17设在推板组件18上且具有钩爪171,且钩取组件17相对于推板组件18可向前和向后转动,取箱组件具有第一位置和第二位置,在第一位置,钩爪171的前端向前伸出推板组件18,在第二位置,钩取组件17相对于推板组件18向后转动第一预设角度,推板组件18适于与货箱20接触,钩爪171适于与货箱20配合。具体地,推板组件18可以在前后方向上移动,从而带动钩取组件17在前后方向上移动,钩取组件17位于推板组件18的上方,钩取组件17用于钩取货箱20上的提手,以便拉动货箱20移动。推板组件18用于和货箱20的后端 面贴合以便在推板组件18与货箱20的后端面完全贴合后,钩爪171伸入在货箱20上的提手内,实现钩爪171与货箱20的配合。取箱组件在第一位置时,钩爪171未与货箱20接触或者钩爪171刚与货箱20接触,但钩爪171和货箱20之间没有相互作用力,而且钩爪171相对推板组件18向前凸出。推板组件18带动钩取组件17继续向前移动时,钩爪171受到货箱20的作用力向后转动,直至取箱组件位于第二位置时,钩爪171受到货箱20的作用力向后转动第一预设角度,此时推板组件18与货箱20的后端面接触,钩爪171与货箱20的提手配合。为此,本公开实施例提出一种取箱组件,该取箱组件通过钩取组件17和推板组件18相配合,且在推板组件18与货箱20完全接触时,钩取组件17与货箱20配合,可以提高取箱精度。而且在存取货箱20的过程中的任意位置,取箱组件始终位于货箱20后侧,不会占用货箱20两侧的空间,使得相邻的两个货箱20之间的间隙减小,可以将两个货箱20之间的间距缩小到20mm,甚至更小,提高仓储密度,进而提高仓储利用率。
在一些实施例中,钩取组件17还包括支架172,支架172可转动地与推板组件18相连,钩爪171设在支架172的前端,且钩爪171向前伸出支架172。具体地,如图13和图14所示,钩爪171的前端面在支架172的前端面的前方。支架172沿着上下方向延伸,支架172的上端与钩爪171固定连接,支架172的下端与推板组件18可转动地连接,从而方便钩取组件17相对推板组件18转动。
在一些实施例中,钩取组件17还包括第一信号板173和第一传感器174,第一传感器174设在支架172内,第一信号板173设在支架172上且相对于支架172可上下移动,在第一位置,第一信号板173的一端伸出钩爪171,在第二位置,第一信号板173的另一端可触发第一传感器174。
具体地,支架172的内部具有空腔,第一传感器174安装在空腔内,第一信号板173在支架172上可以沿着上下方向移动。如图13和14所示,钩爪171需与提手的下端配合的实施例中,在第一位置,第一信号板173的上端向上伸出钩爪171,在第二位置,第一信号板173的下端可触发第一传感器174。
在钩爪171需与提手的下端配合的实施例中,如图13和图14所示,取箱组件在第一位置时,第一信号板173未与货箱20的提手接触,第一信号板173的上端高于钩爪171的上端。取箱组件从第一位置移动至第二位置时,第一信号板173与货箱20的提手接触,第一信号板173受到提手的作用力后相对支架172向下移动,直至第一信号板173的上端与钩爪171的上端平齐,此时第一信号板173的下端触发第一传感器174,第一传感器174将信号传递给控制器,控制器判定钩爪171与货箱20的提手配合。
在钩爪171需与提手的上端配合的实施例中,取箱组件在第一位置时,第一信号板173未与货箱20的提手接触,第一信号板173的一部分低于钩爪171的下端。取箱组件从第一位置移动至第二位置时,第一信号板173与货箱20的提手接触,第一信号板173受到提手的作用力后相对支架172向上移动,直至第一信号板173的上述一部分与钩爪171的下端平齐,此时第一信号板173的下端触发第一传感器174,第一传感器174将信号传递给控制器,控制器判定钩爪171与货箱20的提手配合。由此,本公开实施例的取箱组件,将第一传感器174设在支架172内,便于保护第一传感器174,而且利用第一信号板173和第一传感器174便于检测到钩爪171是否移动至第二位置,从而提高取箱组件的自动化程度。
在一些实施例中,钩爪171具有通孔(图中未示出),第一信号板173的一端通过通孔伸出钩爪171,第一信号板173的下端位于所支架172内。具体地,钩爪171需与提手的下端配合的实施例中,如图13和图14所示,在钩爪171上具有沿着上下方向贯穿的通孔,第一信号板173的上端可以穿过通孔并相对通孔沿着上下方向移动。第一信号板173的下端设在支架172内,且第一信号板173位于第一传感器174的上方。当取箱组件移动至第二位置时,当第一信号板173的上端受到提手的作用力后向下移动,第一信号板173的下端可以触发第一传感器174。
在一些实施例中,取箱组件还包括第一复位件175,第一复位件175连接推板组件18和支架172,第一复位件175具有促使支架172回到第一位置的作用力。具体地,如图14所示,第一复 位件175的上端与支架172相连,第一复位件175的下端与推板组件18相连。当取箱组件在第二位置时,钩爪171与货箱20接触时,钩爪171受到货箱20的作用力向后移动,从而带动支架172相对推板组件18向后转动,此时第一复位件175受到来自支架172的作用力。当钩爪171离开货箱20时,第一复位件175使得支架172向前转动,从而使得钩爪171回到第一位置。由此,本公开的取箱组件利用第一复位件175使得支架172可以从第二位置回到第一位置。
在一些实施例中,如图10和图12所示,取箱组件还包括底座187和转轴188,底座187设在推板组件18上,转轴188穿设在底座187和支架172的底端以可转动地连接支架172和底座187。
具体地,底座187用于连接支架172和推板组件18,底座187与推板组件18固定连接,底座187和支架172上均设有沿着左右方向贯穿的铰接孔,转轴188穿设在铰接孔内从而将支架172连接在底座187上。由此,本实施例的取箱组件利用底座187和转轴188,便于支架172相对底座187转动,而且底座187和转轴188结构简单,便于加工。
在一些实施例中,如图15至图17所示,推板组件18包括基座181和推板182,推板182设在基座181的前侧,且推板182相对于基座181在前后方向上可移动,取箱组件还具有位于第一位置和第二位置之间的第三位置,在第三位置,钩取组件17相对于支撑组件19向后转动第二预设角度,第二预设角度小于第一预设角度,推板182与基座181在前后方向上间隔开,在第二位置,推板182与基座181抵接。具体地,推板182和基座181间隔设置,推板182可沿着前后方向移动,换言之,推板182可以靠近基座181或者远离基座181。当取箱组件去货架上取货箱20时,机器人先移动至货架附近,然后取箱组件位于第一位置,此时钩爪171未与货箱20的后端面接触或者钩爪171刚与货箱20接触,但钩爪171和货箱20之间没有相互作用力,推板182未与货箱20的后端面接触。取箱组件继续向前移动至第三位置,此时钩爪171与货箱20接触后向后转动至第二预设角度,推板182的前端面与货箱20的后端面接触,推板182的后端面未与基座181接触。取箱组件继续向前移动至第二位置,此时钩爪171继续向后转动且转动至第一预设角度,推板182的前端面与货箱20的后端面接触,且推板182的后端面与基座181接触。
在一些实施例中,如图12至图14所示,推板组件18还包括导向件183,导向件183的前端与推板182相连,导向件183的至少部分伸入基座181内且相对于基座181可在前后方向上移动。
具体地,导向件183沿着前后方向延伸,导向件183的前端与推板182固定连接,导向件183的后端伸入基座181内。由此,本公开实施例的取箱组件利用导向件183可以对推板182的移动起导向作用,从而使得推板182沿着前后方向移动,进而有利于提高取箱组件的可靠性。可选地,导向件183为销轴,基座181上设有导向孔或导向槽,导向件183可以与导向孔或导向槽配合。
在一些实施例中,如图15至图17所示,导向件183为至少两个,至少两个导向件183在第一方向上间隔布置,第一方向(如图15所示的左右方向)正交于前后方向和上下方向。例如,如图31所示,导向件183为2个,2个导向件183在左右方向上间隔布置,每个导向件183的前端与同一个推板182相连,每个导向件183的后端伸入基座181中。由此,本实施例的取箱组件利用多个导向件183,可以使得推板182的移动更加的平稳,从而提高取箱组件的可靠性。
在一些实施例中,如图15至图17所示,推板组件18还包括弹性件184,弹性件184位于基座181内,弹性件184的一端与导向件183抵接,弹性件184的另一端与基座181抵接,弹性件184具有促使导向件183向前移动的弹性力。具体地,导向件183在移动时可以带动弹性件184移动,弹性件184为拉簧或者压簧,例如,弹性件184为压簧,弹性件184的前端与导向件183相连,弹性件184的后端与基座181的后壁相连,导向件183向后移动时,弹性件184受到压缩后,促使导向件183向前移动。或者,弹性件184为拉簧,弹性件184的前端与基座181的前壁相连,弹性件184的后端与导向件183相连,导向件183向后移动时,弹性件184受到拉力后,促使导向件183向前移动。由此,本实施例中推板组件18利用弹性件184可以促使导向件183向前移动,从而推动推板182向前移动,以使推板182复位。
在一些实施例中,如图16和图17所示,导向件183上具有环形凸起1831,环形凸起1831 位于基座181内,弹性件184的一端与环形凸起1831抵接。具体地,弹性件184的一端抵接在环形凸起1831上,弹性件184的另一端抵接在基座181上。由此,利用环形凸起1831,导向件183和弹性件184的相互作用,使得推板182在与货箱20接触时,推板182与货箱20的后端可以紧密贴合,提高钩爪171和货箱20的配合精度,进而保证取箱精度。
在一些实施例中,如图16和图17所示,推板组件18还包括第二信号板185和第二传感器186,第二传感器186位于基座181内,第二信号板185的前端与推板182相连,在第二位置,第二信号板185的至少部分位于基座181内且可触发第二传感器186。具体地,第二传感器186和第二信号板185在前后方向上相对布置,第二信号板185的前端在基座181外面且固定在推板182上,第二信号板185的后端伸入基座181中。第二传感器186与控制器电性连接。
在第一位置时,推板182与基座181未接触,此时第二信号板185没有触发第二传感器186。在第三位置时,推板182与基座181之间在前后方向上间隔开,推板182与货箱20的后端面接触,在取箱组件继续向前移动时,推板182受到货箱20的作用力后,推板182与基座181之间的间隔缩小,直至推板182与基座181相接触,使得第二信号板185触发第二传感器186,第二传感器186将信号传递给控制器,控制器判定此时推板182与货箱20紧密贴合,则此时取箱组件位于至第二位置。由此,本公开实施例的取箱组件,利用第二信号板185和第二传感器186便于检测推板组件18是否移动至第二位置,从而提高取箱组件的自动化程度。
在一些实施例中,如图15至图16所示,推板组件18为至少两个,至少两个推板组件18在第一方向上间隔布置,第一方向正交于前后方向和上下方向,钩取组件17位于相邻推板组件18之间。由此,利用两个推板组件18与钩取组件17配合,在转移货箱20的过程中,使得货箱20的受力平稳,从而提高取箱组件的可靠性。
在一些实施例中,如图10至图12所示,取箱组件还包括支撑组件19,支撑组件19包括支撑座191和支撑部件192,支撑部件192设在支撑座191上且相对于支撑座191可沿前后方向移动,支撑部件192安装在推板组件18的底部。具体地,辅助支撑组件19与推板组件18相连,辅助支撑组件19可以相对支撑座191在前后方向上移动,从而带动推板组件18和钩取组件17在支撑座191上移动。取箱组件去货架上取货箱20时,当取箱组件移动至第二位置时,利用支撑部件192带动钩取组件17和推板组件18向后移动,进而带动货箱20向后移动,从而将货箱20从货架上移动至支撑座191上。由此,本实施例的取箱组件利用支撑组件19可以将货箱20转移至支撑座191上,或者将货箱20从支撑座191转移至货架上。
实施例六为了解决货物搬运机器人10在高位取放料箱时门架组件晃动的问题,本公开提供一种具备防晃动功能的货物搬运机器人,该货物搬运机器人包括底盘3、门架4、升降组件6和至少两个辅助支撑装置5;其中,门架4设置在底盘3上,升降组件6被配置为沿着门架4上下移动,至少两个辅助支撑装置5受控于各自的驱动组件,并分别分布在货物搬运机器人相对的两侧,至少两个辅助支撑装置5被构造为相对于货物搬运机器人伸出至与货物搬运机器人对应侧的料架相抵或分离。
在本公开一个实施例中,辅助支撑装置5可以设置在升降组件6相对的两侧,这使得辅助支撑装置5可以随着升降组件6在门架4上移动。当升降组件6移动至合适的位置后,辅助支撑装置5分别向升降组件6相对的两侧伸出,与升降组件6对应侧的料架相抵,保证了货箱搬运机器人的平稳。
在本公开一个实施例中,辅助支撑装置5可以设置在门架4上相对的两侧。例如可以根据需求设置在门架4的上部区域、中部区域或者下部区域,通过辅助支撑装置5可以将门架4保持在相邻两个料架支架,保证了取还箱时货箱搬运机器人的平稳性。需要说明的是,辅助支撑装置5也可以连接在暂存机构上,在此不再具体说明。
在本公开一个实施例中,辅助支撑装置5可以设置在底盘3相对的两侧。例如当底盘3中的行走机构带动整个货物搬运机器人移动至目标位置后,底盘3相对两侧的辅助支撑装置5伸出至与对应侧的料架相抵,由此可将货物搬运机器人底盘3稳固地保持在相邻两个料架之间。即使在 料架高位取还箱时造成了门架组件的晃动,也可以避免机器人倾倒,提高了货物搬运机器人工作时的安全性。
本公开的货物搬运机器人,两侧的辅助支撑装置5受控于各自的驱动组件。即货物搬运机器人可以根据该侧与相应料架之间的实际距离分别驱动辅助支撑装置5伸出相应的位置,由此货物搬运机器人可以根据地面不平、车体倾斜等因素作自适应调整,避免辅助支撑装置5对门架4做出强行扭转的动作。
参见图18-图25。货物搬运机器人还包括两个辅助支撑装置5,这两个辅助支撑装置5受控于各自的驱动组件,并分别设置在门架4相对的两侧,这两个辅助支撑装置5被构造为相对于门架4伸出至与门架4对应侧的料架40相抵或分离。
详细地,参见图40和图41,该图是图34所示辅助支撑装置5的立体结构示意图本实施例中,辅助支撑元件51包括固定基座50,以及通过伸缩机构以可伸缩的方式连接在固定基座50上的支撑元件51,其中伸缩机构受控于驱动组件58且被构造为驱动支撑元件51相对于固定基座50移动至与对应侧的料架40相抵或分离。为了便于更好地理解辅助支撑装置5的结构,请一并参见图25。其中,固定基座50具体为方形板,其通过螺纹连接或粘接等方式固定连接在门架4的侧壁上,支撑元件51与固定基座50形状相同,支撑元件51通过伸缩机构以伸缩的方式连接在固定基座50上,在驱动组件58的作用下伸缩机构带动支撑元件51向远离或靠近支撑元件51移动。
伸缩机构包括剪叉单元,剪叉单元包括交叉布置且在交叉点位置铰接在一起的第一连杆机构和第二连杆机构。其中,第一连杆机构的一个端部与固定基座50铰接,另一个端部以可滑动的方式活动连接在支撑元件51上;第二连杆机构的一个端部与支撑元件51铰接,另一个端部以可滑动的方式活动连接在固定基座50上。
详细地,第一连杆52机构包括平行设置的两个第一连杆52,第二连杆53机构包平行设置的两个第二连杆53,其中,两个第一连杆52的相同端铰接在同一铰接轴上,两个第二连杆53的相同端铰接在同一铰接轴,同侧的第一连杆52和第二连杆53交叉且铰接在一起。更为详细地,两个第一连杆52的下端均铰接在第一下铰接轴54上,两个第一连杆52的上端分别铰接在同轴设置的两个第一上铰接轴55上,而这两个第一上铰接轴55均以可滑动的方式活动连接在支撑元件51上,支撑元件51上开设有两个长条形孔5a,两个第一上铰接轴55分别贯穿两个长条形孔5a并且沿该长条形孔5a相对于支撑元件51上下滑动。同样,两个第二连杆53的下端分别铰接在同轴设置的两个第二下铰接轴56上,两个第二下铰接轴56固定或可转动的连接在支撑元件51上;两个第二连杆53的上端均铰接在第二上铰接轴57上,第二上铰接轴57以可滑动的方式活动连接在固定基座50上,具体地,该固定基座50上也开设有两个长条形孔5a,第二上铰接轴57贯穿者两个长条形孔5a并且可在外力作用下沿该长条形孔5a滑动。
驱动该伸缩机构的驱动组件58包括丝杆推杆电机,丝杆推杆电机的机壳固定连接在固定基座50上,其驱动轴与第二上铰接轴57固定连接,控制电机正转或反转即可使其驱动轴带动第二上铰接轴57沿长条形孔5a上下滑动。具体地,当推杆丝杆电机正转时,第二上铰接轴57沿长条形孔5a向上滑动,此时剪叉单元的第一连杆机构和第二连杆机构回缩,继而使固定基座50和支撑元件51两者沿逐渐靠近彼此的方向运动,也就是货物搬运机器人整体位于图22中工作状态,即辅助支撑装置5相对于门架4位于缩回状态,其支撑元件51并未与对应侧的料架40相抵,此时辅助支撑装置5没有提到支撑作用。反之,当推杆丝杆电机反转时,第二上铰接轴57沿与之对应的长条形孔5a向下滑动,此时剪叉单元的第一连杆机构和第二连杆机构扩张,从而使固定基座50和支撑元件51两者沿逐渐远离彼此的方向运动,也即货物搬运机器人整体位于图22中工作状态,即辅助支撑装置5相对于门架4位于伸出状态,其支撑元件51伸出至与对应侧的料架40相抵,此时辅助支撑装置5利用相对侧的两个料架40支撑门架4,防止其晃动。
实施例七现有的多货箱机器人的设计高度较高,整机运行的安全性要求很高。伸缩叉机构在异常状态下有可能出现抱叉无法收回到位的情况,此时机器人如果继续做后续动作会对机器人、货架货箱甚至工作人员产生危险。由此,检测伸缩叉机构是否回收到位尤为重要。
下面结合附图26-图29对本申请实施例提供的机器人进行说明。
机器人100还包括可沿门架4的高度方向升降移动的伸缩叉装置30,以及驱动伸缩叉装置30沿门架4的高度方向升降移动的升降组件6。示例性的,门架4背向装配暂存隔板2的一面沿其高度方向滑动设置有升降组件6,升降组件6可采用齿轮齿条机构、丝杠机构或同步带机构中的任意一种方式完成驱动,使升降组件6沿门架4进行垂直升降。
参考图26和图27,升降组件6上设置有用于取还货箱的伸缩叉装置30;伸缩叉装置30随升降组件6进行升降至不同高度,对不同层高的货箱进行取还操作。
在伸缩叉装置30与升降组件6连接时,伸缩叉装置30通过旋转组件与升降组件6连接,该旋转组件用于带动伸缩叉装置30水平旋转。示例性的,伸缩叉装置30包括有一个连接在升降组件6上的移动托盘305,移动托盘305通过旋转组件连接在升降组件6上,移动托盘305可绕旋转组件中心转动。移动托盘305与货架和每层暂存隔板2均移动到位配合,在旋转组件的驱动下,伸缩叉装置30可实现对巷道两侧的货架上取放货箱,从而实现双向取还货箱。
在具体实现取还货箱操作时,伸缩叉装置30还包括沿移动托盘305的两侧相对设置的多级伸缩机301;多级伸缩机301设置有两个,多级伸缩机301至少为三级伸缩。多级伸缩机301为三级伸缩机构时包括:固定设置在移动托盘305上的首节臂、滑动连接首节臂的中间臂以及滑动连接中间臂的末节臂。三个臂可沿取货方向滑动,以实现多级伸缩机301沿取货方向伸缩。
在提高取还货箱操作时,在相对设置的末节臂沿取货方向的前端转动连接有前拨指302,相对设置的末节臂沿取货方向的后端固定设置有后拨指303A。前拨指302以及后拨指303A均沿取货方向随末节臂移动。以上描述可以看出,多级伸缩机301无论是三级伸缩机构或是四级伸缩机构等时,前拨指302和后拨指303A的装配位置不变,均为装配在末节臂上。
前拨指302通过舵机转动连接在末节臂上,前拨指302具有两个位置:工作位及避让位。前拨指302在工作时,舵机带动前拨指302转动到水平位置。两个前拨指302相对而置,以便于在多级伸缩机301收缩时,可拉动待搬运货箱。
末节臂远离前拨指302的一端固定装配有后拨指303A;设有的后拨指303A用于将移动托盘305上的货箱推送至货架或暂存隔板2上进行存放。如图27中所示,后拨指303A可相对设置有两个,在多级伸缩机301延伸过程中,对移动托盘305上的货箱由两侧的后拨指303A实现拦挡推动,从而将移动托盘305上的货箱推送至货架或者是机器人自身的暂存隔板2上。
如图28中所示,后拨指303B也可一体式连接在两侧的末节臂之间,同样在多级伸缩机301延伸过程中对移动托盘305上的货箱实现拦挡推送。继续参阅图29,伸缩叉装置30在异常状态下有可能出现抱叉无法收回到位的情况,此时机器人1如果继续做后续动作会对机器人、货架货箱甚至工作人员产生危险。为此,本申请利用固定式设置的后拨指303A作为定位标识,检测多级伸缩机301的到位信息。
在具体检测后拨指303A的位置信息时,伸缩叉装置30还包括:用于检测后拨指303A位置的到位检测装置304。该到位检测装置304固定装配在移动托盘305上,用于检测后拨指303A的位置信息。到位检测装置304为设置在移动托盘305上且与后拨指303A相对应的漫反射传感器、激光传感器、微动开关或形行程开关中的任意一种。在后拨指303A为相对设置的两个时,到位检测装置304的个数为两个,且分别与两个后拨指303A一一对应。在后拨指303B为一体式连接在两侧末节臂之间时,到位检测装置304的个数可为一个或两个。同时还包括有控制装置,该控制装置采用PLC控制器、单片机控制器工控计算机中的其中一种。且控制装置接收到位检测装置304反馈的后拨指303A位置信息后,控制多级伸缩机301、底盘3、升降组件6以及旋转组件等对应工作,均为现有控制方法中常用的技术手段,在此不做过多赘述。
控制装置在到位检测装置304检测到后拨指303A的位置超出设定位置时,控制底盘3、升降组件6以及旋转组件锁死。控制装置还用于在到位检测装置304检测后拨指303A未超出设定位置时,控制底盘3、升降组件6以及旋转组件解除锁死状态。需要具体说明的,该设定位置位为一个合理的区间,使得在微小的机械运动误差和控制误差下后拨指303A可以运行到此区间内,同时 保证后拨指303A运行到此区间后整机做升降、旋转、行走动作时不会剐蹭到自身其余部件、货架、货箱等。
上述描述可看出,在将货架上的货箱取至机器人100上运输时,底盘3移动至待取货箱的货架,升降组件6带动伸缩叉装置30升高至与待取货箱等高的货架层,此时前拨指302处于避让位。如图29所示,多级伸缩机301在待取货箱的两侧依次由末节臂沿中间臂延伸,此时到位检测装置304检测到后拨指303A位置超出设定位置,控制装置控制底盘3、升降组件6以及旋转组件处于锁死状态。在末节臂完全延伸后中间臂沿首节臂延伸,直至前拨指302位于货箱的背面。舵机转动使前拨指302位于工作位,随后在多级伸缩机301回缩过程中,前拨指302将货箱由货架拉至移动托盘305上。如图28或图29所示,在中间臂和末节臂逐渐收缩到位后,到位检测装置304检测到后拨指303A回位至设定位置,控制底盘3、升降组件6及旋转组件解除锁死状态。
从而,控制装置控制升降组件6带动伸缩叉装置30升降至与合适空位的暂存隔板2层等高位置,控制旋转组件带动移动托盘305回转90度。舵机带动前拨指302处于避让位,多级伸缩机301在延伸过程中由后拨指303A将移动托盘305上的货箱推送至暂存隔板2上存放。并在后拨指303A移动过程中,到位检测装置304检测到后拨指303A位置超出设定位置,此时,控制装置控制底盘3、升降组件6以及旋转组件处于锁死状态。反之,将暂存隔板2上的货箱放置在货架上存放时,同样采取上述方式进行操作,在此不做过多赘述。本公开中,通过后拨指303A限位货箱的同时作为定点机构,到位检测装置304检测后拨指303A位置是否到位后,方可使机器人进行后续操作,提高机器人的运行安全性。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。在本申请中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。尽管已经示出和描述了上述实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域普通技术人员对上述实施例进行的变化、修改、替换和变型均在本申请的保护范围内。

Claims (25)

  1. 一种取箱装置,其特征在于,包括:
    安装架,所述安装架上形成有容置空间;
    取箱组件,所述取箱组件沿前后方向可移动地设在所述安装座上,所述取箱组件的至少部分可与货箱在所述前后方向上邻近所述取箱组件的一端对接,以在所述取箱组件沿所述前后方向运动的同时,所述取箱组件能够拉动或推动所述货箱进出所述容置空间。
  2. 根据权利要求1所述的取箱装置,其特征在于,所述取箱组件包括勾板部,所述勾板部能够与所述货箱的所述一端的端面上的钩槽钩接或脱离。
  3. 根据权利要求1或2所述的取箱装置,其特征在于,所述取箱组件包括沿第一方向相对且间隔设置的两个叉臂单元,所述第一方向正交于上下方向和前后方向,两个所述叉臂单元能够分别伸入所述货箱的所述一端的相对两侧以拨动或夹持所述货箱,两个所述叉臂单元之间的距离能够调节。
  4. 根据权利要求3所述的取箱装置,其特征在于,所述叉臂单元包括臂板和设置在所述臂板前端的勾件,所述勾件能够凸出所述臂板朝向另一所述叉臂单元的一侧,以勾接所述货箱的所述一端的侧面的竖向凸筋或凹槽槽壁,所述勾件与所述臂板转动连接,且所述叉臂单元包括旋转驱动件,所述旋转驱动件安装于所述臂板上,且所述旋转驱动件用于驱动所述勾件相对所述臂板转动,以使所述勾件选择性地凸出所述臂板朝向另一所述叉臂单元的一面。
  5. 根据权利要求3所述的取箱装置,其特征在于,所述叉臂单元包括垂直连接的臂板和限位板,两个所述叉臂单元的所述臂板相对且间隔设置,所述臂板用于夹持或拨动所述货箱,所述限位板位于所述臂板朝向另一所述叉臂单元的一侧,且所述限位板连接于所述臂板的后端,所述限位板用于推动所述货箱移动。
  6. 根据权利要求3所述的取箱装置,其特征在于,所述取放组件还包括:
    固定架,能沿所述第一方向滑动地设置在所述安装架上;
    调节组件,设置在所述固定架,所述调节组件用于驱动至少一个所述叉臂单元沿所述第一方向运动,以调节两个所述叉臂单元之间的间距。
  7. 根据权利要求6所述的取箱装置,其特征在于,所述调节组件与两个所述叉臂单元连接,且所述调节组件用于同步驱动两个所述叉臂单元相向或相背运动。
  8. 根据权利要求1所述的取箱装置,其特征在于,所述取箱组件包括:
    推板组件,所述推板组件可沿前后方向移动;
    钩取组件,所述钩取组件设在所述推板组件上且具有钩爪,且所述钩取组件相对于所述推板组件可向前和向后转动,
    所述取箱组件具有第一位置和第二位置,在所述第一位置,所述钩爪的前端向前伸出所述推板组件,在所述第二位置,所述钩取组件相对于所述推板组件向后转动第一预设角度,所述推板组件适于与货箱的所述一端接触,所述钩爪适于与所述货箱的所述一端配合。
  9. 根据权利要求8所述的取箱装置,其特征在于,所述钩取组件还包括支架,所述支架可转动地与所述推板组件相连,所述钩爪设在所述支架的前端,且所述钩爪向前伸出所述支架。
  10. 根据权利要求9所述的取箱装置,其特征在于,所述钩取组件还包括第一信号板和第一传感器,所述第一传感器设在支架内,所述第一信号板设在所述支架上且相对于所述支架可上下移动,在所述第一位置,所述第一信号板的一端伸出所述钩爪,在所述第二位置,所述第一信号板的另一端可触发所述第一传感器。
  11. 根据权利要求9所述的取箱装置,其特征在于,还包括第一复位件,所述第一复位件连接所述推板组件和所述支架,所述第一复位件具有促使所述支架回到所述第一位置的作用力。
  12. 根据权利要求8-11中任一项所述的取箱装置,其特征在于,所述推板组件包括基座和推板,所述推板设在所述基座的前侧,且所述推板相对于所述基座在前后方向上可移动,
    所述取箱组件还具有位于所述第一位置和第二位置之间的第三位置,在所述第三位置,所述钩取组件相对于所述支撑组件向后转动第二预设角度,所述第二预设角度小于所述第一预设角度, 所述推板与所述基座在前后方向上间隔开,在所述第二位置,所述推板与所述基座抵接。
  13. 根据权利要求12所述的取箱装置,其特征在于,所述推板组件还包括导向件,所述导向件的前端与所述推板相连,所述导向件的至少部分伸入所述基座内且相对于所述基座可在前后方向上移动。
  14. 根据权利要求13所述的取箱装置,其特征在于,所述推板组件还包括弹性件,所述弹性件位于所述基座内,所述弹性件的一端与所述导向件抵接,所述弹性件的另一端与所述基座抵接,所述弹性件具有促使所述导向件向前移动的弹性力。
  15. 根据权利要求14所述的取箱装置,其特征在于,所述导向件上具有环形凸起,所述环形凸起位于所述基座内,所述弹性件的一端与所述环形凸起抵接。
  16. 根据权利要求12所述的取箱装置,其特征在于,所述推板组件还包括第二信号板和第二传感器,所述第二传感器位于所述基座内,所述第二信号板的前端与所述推板相连,在所述第二位置,所述第二信号板的至少部分位于所述基座内且可触发所述第二传感器。
  17. 根据权利要求12所述的取箱装置,其特征在于,在所述前后方向和上下方向形成的投影面内,所述推板的前端面的投影为向前凸出的弧形。
  18. 根据权利要求12所述的取箱装置,其特征在于,所述推板组件为至少两个,至少两个所述推板组件在第一方向上间隔布置,所述第一方向正交于所述前后方向和上下方向,所述钩取组件位于相邻所述推板组件之间。
  19. 根据权利要求1-18中任一项所述的取箱装置,其特征在于,还包括取箱驱动组件,所述取箱驱动组件设置于所述安装架上,所述取箱驱动组件与所述取箱组件相连以驱动所述取箱组件沿前后方向运动。
  20. 根据权利要求19所述的取箱装置,其特征在于,所述取箱驱动组件包括:
    取箱电机,安装于所述安装架上;
    取箱传动组件,沿第一方向间隔设置有两个,所述取箱组件连接于两个所述取箱传动组件之间,两个所述取箱传动组件之间形成所述容置空间,所述取箱电机通过所述取箱传动组件驱动所述取箱组件沿前后方向移动。
  21. 一种机器人,其特征在于,包括:
    底盘;门架,所述门架设在所述底盘上;
    升降组件,所述升降组件被配置为沿着所述门架上下移动;
    取箱装置,所述取箱装置与所述升降组件与所述取箱装置相连以驱动所述取箱装置相对于所述门架可上下移动,所述取箱装置为权利要求1-20中任一项所述的取箱装置。
  22. 根据权利要求21所述的机器人,其特征在于,还包括:
    至少两个辅助支撑装置,至少两个所述辅助支撑装置受控于各自的驱动组件,并分别分布在所述机器人相对的两侧,至少两个所述辅助支撑装置被构造为相对于所述机器人伸出至与所述机器人两侧的料架相抵或分离。
  23. 根据权利要求22所述的机器人,其特征在于,所述辅助支撑装置包括固定基座,以及通过伸缩机构以可伸缩的方式连接在所述固定基座上的支撑元件;所述伸缩机构受控于所述驱动组件且被构造为驱动所述支撑元件相对于所述固定基座移动至于对应侧的所述料架相抵或分离。
  24. 根据权利要求21-23中任一项所述的机器人,其特征在于,还包括伸缩叉装置,所述升降组件与所述伸缩叉装置相连以驱动所述伸缩叉装置相对于所述门架可上下移动,所述取箱装置设在伸缩叉装置上,所述伸缩叉装置包括与所述升降组件连接的移动托盘;沿所述移动托盘的两侧相对设置的多级伸缩机构,其中,每个所述多级伸缩机构设置有用于限位货箱的后拨指;
    所述伸缩叉装置还包括:用于检测所述后拨指位置的到位检测装置,控制装置,所述控制装置用于在所述到位检测装置检测到所述后拨指的位置超出设定位置时,控制所述底盘及所述升降组件锁死。
  25. 根据权利要求24所述的机器人,其特征在于,所述控制装置还用于在所述到位检测装置检测所述后拨指未超出所述设定位置时,控制所述底盘及所述升降组件解除锁死状态。
PCT/CN2022/104749 2021-07-09 2022-07-08 取箱装置和机器人 WO2023280321A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22837066.4A EP4368540A1 (en) 2021-07-09 2022-07-08 Box picking apparatus and robot

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202121566645.3U CN216140684U (zh) 2021-07-09 2021-07-09 一种机器人
CN202121566645.3 2021-07-09
CN202122079403.8 2021-08-31
CN202122079403.8U CN218560007U (zh) 2021-08-31 2021-08-31 一种取箱装置、搬运机器人及仓储物流系统
CN202111058253.0A CN115771688A (zh) 2021-09-09 2021-09-09 货物搬运机器人及其控制方法
CN202122181459.4 2021-09-09
CN202122181459.4U CN216154654U (zh) 2021-09-09 2021-09-09 货物搬运机器人
CN202111058253.0 2021-09-09
CN202122584103.5 2021-10-26
CN202122584103.5U CN216582519U (zh) 2021-10-26 2021-10-26 一种取容器装置、搬运机器人及仓储物流系统
CN202220578679.2 2022-03-16
CN202220578679.2U CN217577206U (zh) 2022-03-16 2022-03-16 取箱装置和机器人

Publications (1)

Publication Number Publication Date
WO2023280321A1 true WO2023280321A1 (zh) 2023-01-12

Family

ID=84801336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104749 WO2023280321A1 (zh) 2021-07-09 2022-07-08 取箱装置和机器人

Country Status (2)

Country Link
EP (1) EP4368540A1 (zh)
WO (1) WO2023280321A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117755710A (zh) * 2024-02-18 2024-03-26 安徽乾德智能科技有限公司 一种上下运输存取智能分拣库

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030091411A1 (en) * 2001-11-13 2003-05-15 Diehm Ronald C. Automated storage extraction system
CN206970149U (zh) * 2017-06-13 2018-02-06 廊坊科德智能仓储装备股份有限公司 勾拉式货叉
CN209522153U (zh) * 2019-01-31 2019-10-22 深圳市海柔创新科技有限公司 一种搬运机器人及其货叉组件
CN111137808A (zh) * 2018-11-02 2020-05-12 杭州海康机器人技术有限公司 搬运小车
CN212402315U (zh) * 2020-05-12 2021-01-26 深圳市海柔创新科技有限公司 搬运机器人
CN212952423U (zh) * 2020-06-10 2021-04-13 北京极智嘉科技有限公司 一种搬运机器人及仓储物流系统
CN112758588A (zh) * 2021-01-28 2021-05-07 北京极智嘉科技股份有限公司 一种货箱搬运系统、机器人和货箱搬运方法
CN215624515U (zh) * 2021-06-15 2022-01-25 杭州慧盈智能科技有限公司 一种用于仓储物流的搬运设备
CN216582519U (zh) * 2021-10-26 2022-05-24 北京极智嘉科技股份有限公司 一种取容器装置、搬运机器人及仓储物流系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030091411A1 (en) * 2001-11-13 2003-05-15 Diehm Ronald C. Automated storage extraction system
CN206970149U (zh) * 2017-06-13 2018-02-06 廊坊科德智能仓储装备股份有限公司 勾拉式货叉
CN111137808A (zh) * 2018-11-02 2020-05-12 杭州海康机器人技术有限公司 搬运小车
CN209522153U (zh) * 2019-01-31 2019-10-22 深圳市海柔创新科技有限公司 一种搬运机器人及其货叉组件
CN212402315U (zh) * 2020-05-12 2021-01-26 深圳市海柔创新科技有限公司 搬运机器人
CN212952423U (zh) * 2020-06-10 2021-04-13 北京极智嘉科技有限公司 一种搬运机器人及仓储物流系统
CN112758588A (zh) * 2021-01-28 2021-05-07 北京极智嘉科技股份有限公司 一种货箱搬运系统、机器人和货箱搬运方法
CN215624515U (zh) * 2021-06-15 2022-01-25 杭州慧盈智能科技有限公司 一种用于仓储物流的搬运设备
CN216582519U (zh) * 2021-10-26 2022-05-24 北京极智嘉科技股份有限公司 一种取容器装置、搬运机器人及仓储物流系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117755710A (zh) * 2024-02-18 2024-03-26 安徽乾德智能科技有限公司 一种上下运输存取智能分拣库
CN117755710B (zh) * 2024-02-18 2024-05-03 安徽乾德智能科技有限公司 一种上下运输存取智能分拣库

Also Published As

Publication number Publication date
EP4368540A1 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
US20230211949A1 (en) Transfer robot, box retrieval method, cargo box loading method and warehouse logistics system
US5328316A (en) Automatic storage and retrieval system having an extendible bin extraction mechanism with pop-up tabs
CN210883786U (zh) 一种搬运机器人
WO2023231984A1 (zh) 取放货装置及搬运机器人
WO2023280321A1 (zh) 取箱装置和机器人
JP2021138552A (ja) 物品搬送装置
US11884314B2 (en) Laterally operating payload handling device
WO2022156780A1 (zh) 一种货箱搬运系统和机器人
WO2023280320A1 (zh) 取箱装置和机器人
CN210794507U (zh) 一种物料移载车及其系统
CN219057402U (zh) 一种取货箱设备及机器人
CN215796164U (zh) 货叉组件、搬运机器人和仓储系统
CN214734185U (zh) 一种新型主动伸缩系统及自动搬运设备
JP5765577B2 (ja) スタッカークレーン
CN215158010U (zh) 货叉组件、搬运机器人及仓储系统
CN112573060B (zh) 一种搬运机器人
KR20230119232A (ko) 접근 스테이션 구획을 포함하는 자동화 보관 및 회수시스템
CN219585769U (zh) 货叉装置及仓储机器人
CN219238165U (zh) 取货机构及取货装置
CN216140684U (zh) 一种机器人
CN218987713U (zh) 机器人及仓储系统
CN218023498U (zh) 容器搬运设备
WO2024088314A1 (zh) 搬运机器人及容器取放方法
JP5305080B2 (ja) 物品収納設備
CN115924800A (zh) 货叉装置及仓储机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837066

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022837066

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022837066

Country of ref document: EP

Effective date: 20240209