WO2022156780A1 - 一种货箱搬运系统和机器人 - Google Patents

一种货箱搬运系统和机器人 Download PDF

Info

Publication number
WO2022156780A1
WO2022156780A1 PCT/CN2022/073277 CN2022073277W WO2022156780A1 WO 2022156780 A1 WO2022156780 A1 WO 2022156780A1 CN 2022073277 W CN2022073277 W CN 2022073277W WO 2022156780 A1 WO2022156780 A1 WO 2022156780A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
container
assembly
size
box
Prior art date
Application number
PCT/CN2022/073277
Other languages
English (en)
French (fr)
Inventor
刘凯
王启明
秦智慧
张楠
肖玉辉
李晓伟
陈曦
王鹏飞
Original Assignee
北京极智嘉科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202120169819.6U external-priority patent/CN214651060U/zh
Priority claimed from CN202120509197.7U external-priority patent/CN214932938U/zh
Priority claimed from CN202110553883.9A external-priority patent/CN115367012A/zh
Priority claimed from CN202121304572.0U external-priority patent/CN215361551U/zh
Priority claimed from CN202121532346.8U external-priority patent/CN215286573U/zh
Priority claimed from CN202111058253.0A external-priority patent/CN115771688A/zh
Application filed by 北京极智嘉科技股份有限公司 filed Critical 北京极智嘉科技股份有限公司
Priority to US18/273,521 priority Critical patent/US20240092579A1/en
Priority to GB2311726.0A priority patent/GB2618012A/en
Publication of WO2022156780A1 publication Critical patent/WO2022156780A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses
    • B65G1/1375Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses the orders being assembled on a commissioning stacker-crane or truck
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0492Storage devices mechanical with cars adapted to travel in storage aisles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed

Definitions

  • the present disclosure is applied to the field of robot task scheduling, and in particular, relates to a cargo box handling system and a robot.
  • the container picking mechanism set on the robot will pick up the goods.
  • the capacity needs to be adapted to the largest size of the various container sizes, which will inevitably lead to a waste of the capacity of the unloading mechanism.
  • the size of the unloading mechanism is also larger due to the need to handle the maximum size of the container, so it needs to be matched in size.
  • the relatively small size of the container storage space is used to store the container storage space, which will result in wasted container storage space and low utilization rate of the container storage space.
  • the purpose of the present disclosure is to provide a container handling system and a robot, so as to solve the defect of low utilization rate of container storage space in a warehousing operation scenario.
  • the present disclosure provides a container handling system, which includes containers with various container sizes, a controller, a first robot, and a second robot; the first robot is provided with a first container retrieval mechanism, The second robot is provided with a second box taking mechanism;
  • the first robot can transport the cargo box whose size is within the first size range; the second robot can transport the cargo box whose size is within the second size range;
  • the controller is configured to, in response to a case handling request, send a first request to the first robot if it is determined that the size of the target container to be handled by the case handling request is within the first size range.
  • a transport instruction in the case of determining that the size of the target container to be transported by the container transport request is within the second size range, sending a second transport instruction to the second robot;
  • the first robot is configured to obtain and transport the target container by using the first container retrieval mechanism in response to the first handling instruction;
  • the second robot is configured to acquire and transport the target container by using the second container retrieval mechanism in response to the second transport instruction.
  • the present disclosure provides a robot including the second robot in the above-mentioned embodiments.
  • the first robot and the second robot can handle containers of different sizes, in the warehousing operation scenario, the above two robots are used for mixed operation to pick and place containers with various container sizes, which can improve the storage space of the containers. usage rate.
  • FIG. 1a shows a schematic diagram of a cargo box handling system provided by the present disclosure
  • FIG. 1b shows a schematic diagram of an application scenario provided by the present disclosure for the mixed operation of the first robot and the second robot;
  • FIG. 2 shows a schematic structural diagram of a first robot provided by the present disclosure
  • FIG. 3 shows a flow chart of the first robot moving a target container provided by the present disclosure
  • Fig. 4 shows the structural schematic diagram of the second box taking mechanism provided by the present disclosure
  • Fig. 5a shows a schematic structural diagram of the second robot provided with the first sensor assembly provided by the present disclosure
  • FIG. 5b shows a schematic structural diagram of a second robot provided with a second sensor assembly provided by the present disclosure
  • Figure 5c shows a schematic structural diagram of the second robot provided by the present disclosure
  • FIG. 6 is a schematic three-dimensional structure diagram of the first robot provided by the present disclosure in a use state
  • Figure 6a is a partial enlarged view at A in Figure 6;
  • FIG. 7 is a schematic front view of the structure of the structure shown in FIG. 6 when the auxiliary support device is in an extended state;
  • Fig. 7a is a partial enlarged view at B in Fig. 7;
  • FIG. 8 is a schematic front view of the structure of the structure shown in FIG. 6 when the auxiliary support device is in a retracted state;
  • Fig. 8a is a partial enlarged view at C in Fig. 8;
  • Fig. 9 is the three-dimensional structure schematic diagram of the auxiliary support device shown in Fig. 6;
  • Figure 10 is a schematic front view of the structure of the auxiliary support device shown in Figure 9;
  • FIG. 11 is a schematic three-dimensional structure diagram of the first robot provided by the present disclosure in a use state
  • Figure 12 is a front view of the structure shown in Figure 11;
  • Fig. 13 is a three-dimensional schematic diagram of the auxiliary support device in Fig. 11;
  • Figure 14 is a schematic three-dimensional structural diagram of the assembly of the auxiliary support device and the lifting assembly in Figure 11;
  • 15 is a schematic structural diagram of the first robot provided by the present disclosure and the inventory container when the support mechanism is opened;
  • Figure 16 is a partial enlarged view at I in Figure 15;
  • 17 is a schematic structural diagram of the first robot provided by the present disclosure and the inventory container when the support mechanism is stored;
  • Fig. 18 is a partial enlarged view of J in Fig. 17;
  • FIG. 19 is a schematic structural diagram of a first robot provided by the present disclosure.
  • 20 is a schematic structural diagram of the support mechanism provided by the present disclosure when it is in an open state
  • Figure 21 is a partial enlarged view at K in Figure 20;
  • 22 is a schematic structural diagram of the support mechanism provided by the present disclosure when it is in a stored state
  • Figure 23 is a partial enlarged view at L in Figure 22;
  • FIG. 24 is a schematic structural diagram of a chassis provided by the present disclosure.
  • Figure 25 is a schematic structural diagram of the drive wheel assembly and the elastic adjustment assembly provided by the present disclosure.
  • FIG. 26 is an exploded view of the chassis provided by the present disclosure.
  • FIG. 27 is a side view of a chassis provided by the present disclosure.
  • FIG. 28 is a schematic diagram of the chassis provided by the present disclosure when overcoming obstacles
  • 29 is an exploded schematic view of the universal wheel assembly and the buffer assembly provided by the present disclosure.
  • FIG. 30 is a schematic structural diagram of the handling robot provided by the present disclosure when the stand is in a vertical state;
  • 31 is a schematic structural diagram of the handling robot provided by the present disclosure when the stand is in a substantially horizontal state;
  • 32 is a schematic structural diagram of the handling robot provided by the present disclosure in an assembled handling state
  • Figure 34 is a partial structural schematic diagram of the stand and the lifting mechanism provided by the present disclosure.
  • FIG. 35 is a schematic structural diagram of the lifting mechanism provided by the present disclosure.
  • references herein to "a plurality or several” means two or more.
  • "And/or" which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" generally indicates that the associated objects are an "or" relationship.
  • the present disclosure provides a cargo box handling system.
  • the first robot and the second robot are used in a mixed operation mode to pick and place cargo boxes with various cargo box sizes, which can improve the efficiency of the cargo box. Storage space usage.
  • the first robot and the second robot provided by the present disclosure may include microcontrollers with certain computing capabilities.
  • the above-mentioned first robot and the second robot can be realized by a single chip control method.
  • FIG. 1a is a schematic diagram of a cargo box handling system provided by the present disclosure
  • the system includes cargo boxes with various cargo box sizes (such as cargo box 101-1, cargo box 101-2, cargo box 101 -3), the controller 102, the first robot 103 and the second robot 104.
  • the first robot 103 is provided with a first box picking mechanism
  • the second robot 103 is provided with a second box picking mechanism.
  • the above-mentioned first box picking mechanism and the second box picking mechanism are used to obtain the cargo box, which can realize the transport of the cargo box. .
  • the cargo box 101 carried by the present disclosure may be a rectangular cargo box, and the size of the cargo box may be the dimensions of the length ⁇ width ⁇ height of the rectangular cargo box, or it can also be the long side, the wide side and the high side of the rectangular cargo box.
  • the dimension of the length of any of the sides It can be selected according to the actual application scenario, which is not limited here.
  • the first robot can handle a container whose size is within a first size range.
  • the first size range may include a range consisting of a first size threshold and a second size threshold, where the second size threshold is greater than the first size threshold.
  • the range composed of the first size threshold and the second size threshold may be the size range of the cargo box corresponding to the cargo box 101-1.
  • the second robot can handle a container whose size is within a second size range.
  • the second size range may include a range consisting of a third size threshold and a fourth size threshold, where the fourth size threshold is greater than the third size threshold.
  • the range formed by the third size threshold and the fourth size threshold may be the size range of the cargo box corresponding to the cargo box 101-2, or may be the size range of the cargo box corresponding to the cargo box 101-3.
  • the first size threshold, the second size threshold, the third size threshold, and the fourth size threshold may be arranged according to management experience or actual needs, which are not limited in the present disclosure.
  • the second size threshold may be less than or equal to the third size threshold.
  • the controller 102 can be configured on the server, independently set, or set on the first robot or the second robot, and is used to respond to a request for moving a container sent by the console 105 .
  • the controller 102 may be a software system running on the server, with data storage and information processing capabilities, and can communicate with the first robot and the second robot, hardware input system through wireless or wire , other software system connection.
  • the controller 102 has a processor 1021 and a memory 1022, and the memory 1022 can store the container size of each container in the warehouse.
  • the controller 102 when the controller 102 can only provide the size range of the target container, the controller 102 is configured to, in response to the container handling request, determine the target container to be transported by the container handling request. When the size of the box is within the first size range, send the first transport instruction to the first robot; when it is determined that the size of the target container to be transported by the container transport request is within the second size range, send the first transport instruction to the second robot. The robot sends a second handling instruction.
  • the container handling request may include a target container position and/or a target container size.
  • the controller 102 can provide a specific target container size of the target container
  • the controller is configured to, when determining the size of the target container to be transported by the container transport request, be in the first If the size is within the size range, determine the target container size of the target container, and generate a first transport instruction based on the target container size; after determining that the size of the target container to be transported by the container transport request is within the second size range In this case, a target container size of the target container is determined, and a second handling instruction is generated based on the target container size.
  • the worker can make the controller 102 work through the console 105 , and the controller 102 wirelessly communicates with the first robot 103 and the second robot 104 , and sends the first transport to the first robot 103 by sending the first transport to the first robot 103 command, and send a second transport command to the second robot 104 to control the mixed operation of the first robot and the second robot, so as to complete the transport work of containers of various container sizes.
  • the sizes of the first size range and the second size range may be arranged according to management experience or actual requirements, which are not limited in the present disclosure.
  • the present disclosure divides the shelves for storing cargo boxes into a first storage space 1061 and a second storage space 1062.
  • the goods can be sorted according to the type and/or model of the goods. Packing into containers of different container sizes can be seen in FIG. 1b, which is a schematic diagram of an application scenario in which the first robot and the second robot operate in a mixed manner.
  • the containers in the first size range are stored in the first storage space 1061
  • the containers in the second size range are stored in the second storage space 1062 .
  • the controller 102 determines the position of the target container based on the container handling request, if it is determined based on the target position information that the target container is in the first storage space 1061, it sends a first operation instruction to the first robot; if Based on the target position information, it is determined that the target container is in the second storage space 1062, and a second operation instruction is sent to the second robot.
  • the first storage space 1061 can store the cargo boxes whose size is within the first size range
  • the second storage space 1062 can store the cargo boxes whose size is within the second size range.
  • the first operation instruction includes the movement path information of the first robot; the second operation instruction includes the movement path information of the second robot.
  • the first operation instruction may be for the controller 102 to instruct the first robot to acquire and transport the target container stored in the first storage space 1061 according to the first movement path;
  • the second operation instruction may be for the controller 102 to instruct the second robot to follow the The second movement path acquires and transports the target container stored in the second storage space 1062 .
  • the worker can make the controller 102 work through the console 105, the controller 102 communicates wirelessly with the first robot 103 and the second robot 104, and plans moving paths for the first robot 103 and the second robot 104 according to the target position of the container , where the first robot can run in the first channel or the second channel, that is, the first movement path is set on the first channel or the second channel; the second robot can only run in the second channel, that is, the second movement path is only It can be set on the second channel.
  • the width value of the first channel is smaller than that of the second channel, and the width of the first channel can only pass the first robot, which can save warehouse space.
  • the first channel and the second channel can be divided into several sub-areas (ie cells), the first robot 103 and the second robot 104 move cell by cell to form a movement trajectory.
  • the first robot 103 is configured to, in response to the first transport instruction, acquire and transport the target container by using the first container retrieval mechanism.
  • the box picking size of the first box picking mechanism may be fixedly set to be greater than or equal to the first size threshold , and is smaller than the second size threshold, in this case, the first container taking mechanism can handle the container whose size is greater than or equal to the first size threshold and smaller than the second size threshold.
  • the first robot After responding to the first handling instruction, the first robot obtains and transports the target container by using the first container-fetching mechanism whose size is not adjustable.
  • the size of the first box picking mechanism provided on the first robot is 650mm ⁇ 500mm ⁇ 400mm, then the first robot can carry a container or commodity below 650mm ⁇ 500mm ⁇ 400mm, and the first robot responds to the first robot.
  • the first container taking mechanism can transport containers of different sizes, such as 600mm ⁇ 400mm ⁇ 400mm, 600mm ⁇ 450mm ⁇ 350mm or 600mm ⁇ 450mm ⁇ 400mm.
  • the size of the first box picking mechanism provided on the first robot 103 can be adjusted, and the first telescopic arm hooking mechanism provided on the first box picking mechanism can be used to transport the boxes on the first box.
  • the first robot when the first transport instruction provides the first robot with the target container size of the target container, the first robot is configured to respond to the first The handling instruction is to adjust the size of the first container fetching mechanism to match the size of the target container, and use the adjusted first container fetching mechanism to obtain and transport the target container.
  • the first box removal mechanism includes a first telescopic arm hook mechanism, a first adjustment mechanism and a third motor, the third motor is connected to the first adjustment mechanism, and the first adjustment mechanism is driven by the third motor to drive the third motor.
  • a telescopic arm hooking mechanism moves along the movement direction of the first robot to adjust the size of the first box taking mechanism.
  • the first robot may also detect the target container of the target container through the third sensor component size, and complete the task of acquiring and handling the target container.
  • a third sensor assembly may also be provided on the first container retrieval mechanism, and the first robot is configured to run to the position of the target container in response to the first handling instruction. At this time, the third sensor assembly may be used.
  • the sensor component collects the target box size of the target box, adjusts the box size of the first box picking mechanism based on the target box size to match the target box size, and uses the adjusted first box picking mechanism to acquire and transport the target cargo box.
  • the setting position of the third sensor assembly reference may be made to the setting position of the first sensor assembly described below, as shown in FIG. 5a.
  • the first robot is further provided with a fourth sensor component, and the first robot is located in a known target container
  • the actual size of the target cargo box collected by the fourth sensor assembly may also be used to verify whether the size of the target cargo box matches the actual size of the cargo box.
  • the first robot determines the size of the check box and the target container based on the check size of the container collected by the fourth sensor component. Whether the sizes match; if they match, use the adjusted first container retrieval mechanism to obtain and transport the target container; In the case that the size of the box taking out of the box mechanism matches the verification size of the cargo box, the adjusted first box taking mechanism is used to acquire and transport the target box.
  • the setting position of the fourth sensor assembly reference may be made to the setting position of the second sensor assembly described below, as shown in FIG. 5b.
  • the third sensor assembly and the fourth sensor assembly may be sensor assemblies capable of measuring distance, such as a vision sensor or a depth sensor, and the specific sensor types are not specifically limited herein.
  • the first robot 103 is configured to, in response to the first operation instruction, move along the planned path indicated by the first operation instruction to the location where the container is taken out to acquire and transport the target container.
  • the first robot includes a first robot body 31, a first lifting gantry 32 and a first temporary storage mechanism 33; the first box taking mechanism is arranged on the first lifting gantry 32, and the first lifting gantry 32 is arranged on the first robot on the central axis of the body; the first lifting gantry 32 includes a third guide rail; the first box taking mechanism 34 is slidably connected with the third guide rail, and can slide along the third guide rail; the first temporary storage mechanism 33 is arranged on the first lifting gantry 32 away from the first container retrieval mechanism 34 ; after the first container retrieval mechanism 34 acquires the target container, it places the target container on the first temporary storage mechanism 33 .
  • the second robot 104 is configured to, in response to the second transport instruction, acquire and transport the target container using the second container retrieval mechanism.
  • the box size of the second box removal mechanism can be set to be greater than or equal to the third size threshold and smaller than the fourth size threshold.
  • the second robot can obtain a container whose size is greater than or equal to the third size threshold and smaller than the fourth size threshold.
  • the second robot 104 is configured to, in response to the second handling instruction, adjust the size of the second box picking mechanism to match the size of the second box picking mechanism.
  • the target container size is matched, and the adjusted second container retrieval mechanism is used to obtain and transport the target container.
  • FIG. 4 which is a schematic diagram of the second box taking mechanism.
  • the second telescopic arm hooking mechanism provided on the second container unloading mechanism can be used to carry any container size within the first size range.
  • the second box taking mechanism includes a second telescopic arm hooking mechanism, a second adjusting mechanism and a first motor, the first motor is connected with the second adjusting mechanism, and the second adjusting mechanism is driven by the first motor 401 to drive The second telescopic arm hooking mechanism moves along the movement direction of the second robot to adjust the box taking size of the second box taking mechanism.
  • the second adjustment mechanism may include a first belt assembly and a first guide rail 403, the first belt assembly includes a first belt 402-1 and a first pulley 402-2, and the first belt 402-1 is provided with a drive Block 404; the second telescopic arm hooking mechanism is fixedly connected to the driving block 404, the second telescopic arm hooking mechanism includes a moving base 405-1 and an inserting part 405-2, and the inserting part 405-2 is arranged on the moving base 405- 1, the moving base 405-1 is slidably arranged on the first guide rail 403.
  • the first motor 401 is arranged at one end of the first belt assembly, the first pulley 402-2 is driven by the first motor 401 to rotate, and the first belt 402-1 is driven by the first pulley 402-2 to drive the second pulley 402-2.
  • the telescopic arm hooking mechanism moves to adjust the box-taking size of the second box-taking mechanism.
  • a second motor 406 and a second belt assembly are also provided on the second box taking mechanism, wherein the inserting and taking part 405-2 is fixedly connected to the third belt in the second belt assembly;
  • the three belts are arranged on the moving base 405-1; the third belt in the second belt assembly drives the insertion and extraction part 405-2 to move under the driving of the second motor 406 to obtain the target container.
  • the second belt assembly includes a second belt 407-1, a second pulley 407-2, a feather key shaft 407-3, a feather key nut 407-4, a third belt 407-5 and a third pulley 407- 6.
  • the second pulley 407-2 is connected to the second motor 406 and the feather key shaft 407-3
  • the third pulley 407-6 is connected to the feather key shaft 407-3 through the feather key nut 407-4, and is fixedly mounted on the movable seat 405 at the same time.
  • the third belt 407-5 is fixedly connected with the insertion and extraction part 405-2.
  • the second belt 407-1 drives the feather key shaft 407-3 to rotate, and the feather key shaft 407-3 rotates.
  • the third pulley 407-6 is driven to rotate, and then the second telescopic arm hooking mechanism is driven to extend and retract, so as to complete the task of acquiring the target cargo box.
  • the second adjustment mechanism may include a lead screw assembly, wherein the lead screw assembly includes a lead screw and a nut, the second telescopic arm hooking mechanism is provided on the nut; the lead screw is sleeved on the nut .
  • the first motor is arranged at one end of the screw assembly, the screw rotates under the driving of the motor, the nut moves along the screw under the driving of the screw, and the second telescopic arm hooking mechanism moves under the driving of the nut to adjust the extraction of the second box taking mechanism. box size.
  • Fig. 5a is a schematic structural diagram of a second robot provided with a first sensor assembly.
  • the second robot can also detect the target container size of the target container through the first sensor component 51 to complete the acquisition of the target container and handling tasks.
  • a first sensor assembly 51 may be provided on the second container picking mechanism 52 ; the second robot is configured to, in response to the second handling instruction, run to the picking position of the target container, and use the first sensor component 51 Collect the target box size of the target box, and adjust the box size of the second box taking mechanism 52 based on the target box size to match the target box size, and use the adjusted second box taking mechanism 52 to obtain and transport the target cargo box.
  • FIG. 5b is a schematic structural diagram of a second robot provided with a second sensor assembly.
  • the second robot may also be provided with a second sensor assembly 54; the second robot may also use the actual size of the target container collected by the second sensor assembly 54 when the target container size of the target container is known. Verify that the target box size matches the actual box size.
  • the second robot determines the size of the container to be checked and the target size based on the check size of the container collected by the second sensor assembly 54 Whether the container sizes match; if they match, use the adjusted second container retrieval mechanism 52 to acquire and transport the target container; if they do not match, adjust the second container retrieval mechanism 52 using the container verification size , when it is determined that the size of the second container removal mechanism 52 matches the checked size of the container, the adjusted second container removal mechanism 52 is used to acquire and transport the target container.
  • the first sensor assembly and the second sensor assembly may be sensor assemblies capable of measuring distance, such as a vision sensor or a depth sensor, and the specific sensor types are not specifically limited herein.
  • the second robot 104 is configured to, in response to the second operation instruction, move along the planned path indicated by the second operation instruction to the location where the container is picked up to acquire and transport the target container.
  • Fig. 5c it is a schematic structural diagram of the second robot.
  • the second box taking mechanism is arranged on the second lifting gantry 53
  • the second lifting gantry 53 is arranged on the central axis of the second robot body 55
  • the second lifting gantry 53 includes a second guide rail;
  • the second box taking mechanism 52 Being slidably connected with the second guide rail, the second box taking mechanism 52 can slide along the second guide rail under the driving of the synchronous belt drive assembly, the chain drive assembly, or the rack drive assembly.
  • the second robot may also be provided with a plurality of second temporary storage mechanisms; the second temporary storage mechanisms are arranged on the side of the second lifting gantry away from the second box picking mechanism; the second box picking mechanism obtains the target goods After the case, the target case is placed on the second escrow mechanism.
  • the first robot and the second robot are used for mixed operation to pick and place containers with various container sizes, which can improve the utilization rate of the container storage space.
  • each of the first robot and the second robot includes a chassis, a gantry, a lift assembly and at least two auxiliary support devices.
  • the gantry in the first robot is a first lifting gantry, and the first robot body includes a chassis; the gantry in the second robot is a second lifting gantry, and the second robot body also includes a chassis.
  • the first robot 103 includes a first robot body 31 , a first lifting gantry 32 , a lifting assembly 35 , and a first box taking mechanism 34 , and the first robot body 31 includes a chassis 311 .
  • the chassis 311 may be the main component of an AGV or other walking robot, on which functional components such as a navigation system and a walking system are configured, including components such as wheels and suspensions.
  • the robot completes various movements such as traveling and turning on the ground, so that the first robot walks in the roadway between the material racks 6 .
  • the lifting assembly 35 is mounted on the first lifting gantry 32 and can move along the extending direction of the first lifting gantry 32 under the driving force of its own driving element.
  • the first unloading mechanism 34 is connected with the lifting assembly 35, and the first unloading mechanism 34 can drive the holding fork to extend and retract through its own configured driving element, so as to complete the storage and retrieval actions of the materials of different shelf layers.
  • FIG. 7 is a schematic front view of the structure shown in FIG. 6 when the auxiliary support device is in the extended state
  • FIG. 7 a schematic view of the front view of the auxiliary support device when the auxiliary support device is in a retracted state.
  • the two auxiliary support devices 7 are controlled by respective drive assemblies and are respectively disposed on opposite sides of the first lifting gantry 32 , and the two auxiliary support devices 7 are configured to be relatively A lift gantry 32 extends to abut or separate from the material frame 6 on the side corresponding to the first lift gate 32 .
  • Fig. 6a, Fig. 7, Fig. 7a, Fig. 8 and Fig. 8a together, wherein Fig. 6a is a partial enlargement of A in Fig. 6 Fig. 7a is a partial enlarged view of B in Fig. 7 , and Fig. 8a is a partial enlarged view of C in Fig. 8 .
  • FIG. 9 is a schematic three-dimensional structural diagram of the auxiliary support device 7 shown in FIG. 6 .
  • the auxiliary support element 71 includes a fixed base 70, and a support element 71 telescopically connected to the fixed base 70 through a telescopic mechanism, wherein the telescopic mechanism is controlled by the driving assembly 78 and is configured to drive The support element 71 is moved relative to the fixed base 70 to abut or separate from the material rack 6 on the corresponding side.
  • FIG. 10 is a schematic front view of the structure of the auxiliary support device 7 shown in FIG. 9 .
  • the fixed base 70 is specifically a square plate, which is fixedly connected to the side wall of the first lift gantry 32 by means of screw connection or bonding.
  • the supporting element 71 has the same shape as the fixed base 70.
  • the mechanism is connected to the fixed base 70 in a telescopic manner, and the telescopic mechanism drives the support element 71 to move away from or close to the support element 71 under the action of the drive assembly 78 .
  • the fixing base 70 is fixed on the first lifting gantry 32 , and its fixing position may be the lower region, the middle region or the upper region along the extending direction of the first lifting gantry 32 .
  • the fixed base 70 can also be disposed on the lifting assembly 35 or the first box taking mechanism 34 , so that it can reach any position in the extending direction of the first lifting gantry 32 with the lifting assembly 35 .
  • the telescopic mechanism includes a scissor unit, and the scissor unit includes a first link mechanism and a second link mechanism that are arranged in a cross and hinged together at the intersection point.
  • one end of the first link mechanism is hinged with the fixed base 70, and the other end is movably connected to the support element 71 in a slidable manner;
  • one end of the second link mechanism is hinged with the support element 71, The other end is movably connected to the fixed base 70 in a slidable manner.
  • the first link 72 mechanism includes two first links 72 arranged in parallel
  • the second link 73 mechanism includes two second links 73 arranged in parallel, wherein the two first links 72 are the same
  • the ends are hinged on the same hinge shaft
  • the same ends of the two second links 73 are hinged on the same hinge shaft
  • the first link 72 and the second link 73 on the same side are crossed and hinged together.
  • the lower ends of the two first connecting rods 72 are both hinged on the first lower hinge shafts 74, and the upper ends of the two first connecting rods 72 are hinged on the two first upper hinge shafts 75 arranged coaxially respectively.
  • the two first upper hinge shafts 75 are movably connected to the support element 71 in a slidable manner, the support element 71 is provided with two elongated holes 7a, and the two first upper hinge shafts 75 penetrate through the two one elongated hole 7a and slide up and down relative to the support member 71 along the elongated hole 7a.
  • the lower ends of the two second connecting rods 73 are respectively hinged on two second lower hinge shafts 76 arranged coaxially, and the two second lower hinge shafts 76 are fixedly or rotatably connected to the supporting element 71; two The upper ends of the second connecting rods 73 are all hinged on the second upper hinge shaft 77, and the second upper hinge shaft 77 is movably connected to the fixed base 70 in a slidable manner.
  • the fixed base 70 is also provided with Two elongated holes 7a, the second upper hinge shaft 77 penetrates through the two elongated holes 7a and can slide along the elongated holes 7a under the action of external force.
  • the drive assembly 78 that drives the telescopic mechanism includes a lead screw push rod motor, the casing of the lead screw push rod motor is fixedly connected to the fixed base 70, and its drive shaft is fixedly connected to the second upper hinge shaft 77 to control the motor to rotate forward or backward.
  • the second upper hinge shaft 77 can be driven by its driving shaft to slide up and down along the elongated hole 7a by reversing it.
  • the second upper hinge shaft 77 slides upward along the elongated hole 7a, at this time the first link mechanism and the second link mechanism of the scissor unit retract, thereby making the Both the fixed base 70 and the supporting element 71 move in a direction gradually approaching each other, that is, the first robot is in the working state as a whole as shown in FIG.
  • the supporting element 71 does not abut against the material rack 6 on the corresponding side, and the auxiliary supporting device 7 does not mention the supporting function at this time.
  • the structure of the first robot is basically the same as that of the above-mentioned embodiment, and the main difference between the two lies in the specific structure of the auxiliary support device 7.
  • the specific structure of the auxiliary support device 7 in this embodiment is described in detail, and the same parts as those in the previous embodiment will not be repeated.
  • the reference numerals of other functional components are the same as those in the drawings ( FIGS. 6 to 10 ) of the above-mentioned embodiment.
  • FIG. 11 is a schematic three-dimensional structure diagram of the first robot provided by the present disclosure in a use state
  • FIG. 12 is a front view of the structure shown in FIG. 11
  • FIG. 13 is the auxiliary support device in FIG. 11
  • 7 is a schematic diagram of the three-dimensional structure.
  • the auxiliary support element 71 ′ includes a fixed base 70 ′, and a support element 71 ′ connected to the fixed base 70 ′ in a telescopic manner through a telescopic mechanism, wherein the telescopic mechanism is controlled
  • the drive assembly 77' is configured to drive the support element 71' to move relative to the fixed base 70' to abut or separate from the material rack 6 on the corresponding side.
  • the fixed base 70' includes a base plate 700', a rear vertical plate 701', a left side plate 702' and a right side plate 703' fixedly connected to the lower surface of the base plate 700', and the rear vertical plate 701' and the left side plate Guide grooves 704' are formed between 702'.
  • the supporting element 71 ′ is specifically a quadrangular prism, and the supporting element 71 ′ is driven by the telescopic mechanism to extend or retract into the guiding groove 704 ′ under the action of the driving assembly 77 ′, thereby realizing the supporting element 71 ′.
  • the base plate 700 ′ of the fixing base 70 ′ is fixed on the lower surface of the lifting assembly 35 , so that the supporting element 71 ′ is located within the width range of the first robot in the retracted state.
  • the fixed base plate 700 ′ can also be fixedly connected to the lower, middle or upper regions of the first lifting gantry 32 along its extending direction, as long as the auxiliary support device 7 ′ is in the retracted state. It only needs to be located within the width range of the first robot, and can be extended from the width direction of the first robot when it is extended. It should be noted that the width of the first robot refers to the dimension in the vertical distance between the two material racks where it is located.
  • the auxiliary support device 7 ′ is connected to the lifting assembly 35 , which can move along the extending direction of the first lifting gantry 32 along with the lifting assembly 35 , so that it can be located at any position of the first lifting gantry 32
  • the supporting function is mentioned in the counteracting with the corresponding side material frame 6 , and the auxiliary function of the auxiliary supporting device 7 ′ is flexible and can meet the supporting requirements of different positions.
  • FIG. 14 In order to better understand the position and assembly relationship between the auxiliary support device 7 ′ and the lifting assembly 35 , please refer to FIG. 14 .
  • FIG. 14 In order to better understand the position and assembly relationship between the auxiliary support device 7 ′ and the lifting assembly 35 , please refer to FIG. 14 .
  • FIG. 14 In order to better understand the position and assembly relationship between the auxiliary support device 7 ′ and the lifting assembly 35 , please refer to FIG. 14 .
  • FIG. 14 In order to better understand the position and assembly relationship between the auxiliary support device 7 ′ and the lifting assembly 35 ,
  • the telescopic mechanism includes a lead screw nut drive mechanism controlled by a drive assembly 77 ′, and the lead screw nut drive mechanism is configured to drive the support element 71 ′ relative to the fixed base 70 ′ under the action of the drive assembly 77 ′ Move to abut or separate from the material rack 6' on the corresponding side.
  • the lead screw 72' of the lead screw nut transmission mechanism is rotatably connected to the left side plate 702' and the right side plate 703' of the fixed base 70' through a structure such as a bearing, and the nut part includes a fixed connection with each other.
  • the nut block 73' and the slider 74' the nut block 73' is located between the left side plate 702' and the right side plate 703' and is threadedly connected with the screw rod 72', the slider 74' is provided with a chute, the base plate 700 A sliding rail 75' extending axially along the screw rod 72' is fixedly connected to the ', the sliding block 74' is slidably connected to the sliding rail 75' through the sliding groove, and the sliding block 74' is fixedly connected to the supporting element 71'.
  • the support element 71 ′ is guided and matched with the base plate 700 ′ through the guide rail assembly, and the nut block 73 ′ threadedly connected with the lead screw 72 ′ is directly connected to the support element 71 ′.
  • the drive assembly 77' includes a motor, the casing of the motor is fixedly connected to the right side plate 703', and its armature shaft is used to drive the screw rod 72' to rotate, and the nut block 73' can be opposite to the nut block 73' by controlling the steering of the armature shaft of the motor.
  • the sliding of the lead screw 72' in the left or right direction makes the slider 74' drive the supporting element 71' to extend or retract from the guide groove 704' of the fixed base 70' to the fixed base 70' inside the guide groove 704'.
  • an abutment plate 76' is hinged at the end of the support element 71', specifically, the support element 71'
  • An installation slot is opened, one end of the abutting plate 76' is inserted into the installation slot and is hinged with the supporting element 71' through a hinge shaft. installed in the slot.
  • the abutment plate 76' has a first position and a second position: in the first position, the abutment plate 76' is accommodated and pre-compressed in the guide groove 704' of the fixed base 70', and the abutment plate 76' and The extension direction of the support element 71 ′ is kept consistent; in the second position, the abutment plate 76 ′ is disengaged from the guide groove 704 ′ of the fixed base 70 ′, and the abutment plate 76 ′ rotates to the support element 71 under the elastic restoring force 'At a predetermined angle.
  • the abutment plate 76 ′ can be elastically connected to the support element 71 ′ through a torsion spring, and in the second position, the abutment plate 76 ′ is connected to the support element 71 under the action of the elastic force of the torsion spring. 'Set at a 90° angle.
  • the open end of the fixed base 70' located in the guide groove 704' is also provided with an inclined pressing plate 705', which is configured to be used when the supporting element 71' is retracted to the fixed base.
  • an inclined pressing plate 705' When in the guide groove 704' of the seat 70', it is used to contact the abutment plate 76' to push the abutment plate 76'.
  • the inclined pressing plate 705' extends outward with respect to the opening end of the guide groove 704'.
  • auxiliary support device in the two embodiments is described in detail in the foregoing with reference to the accompanying drawings. That is, when the first robot reaches the lanes of the two target material racks 6, if it is necessary to pick and place the material box at a high position, it will control the two auxiliary support devices to extend to offset the two material racks 6 on the corresponding side respectively, and then control the The lifting assembly 35 drives the first box taking mechanism 34 to reach the target position to take out the material box, which can prevent the first lifting gantry 32 from shaking. In this process, how to precisely control the extension distance of the support element of the auxiliary support device so that the auxiliary support element can just offset the corresponding side material frame 6 when extended is a technical problem that needs to be considered by those skilled in the art.
  • At least one of the first robots provided by the above embodiments further includes a distance detection sensor, which is configured to detect the distance information from the first robot to the material rack 6, and the two auxiliary support devices are configured as The corresponding distance is extended according to the distance information detected by the distance detection sensor.
  • the distance detection sensor is specifically a distance measuring element such as an infrared distance sensor.
  • distance detection sensors are provided on both sides of the first lifting gantry 32, and these distance detection sensors detect the relationship between each auxiliary support device and its respective According to the distance information between the material racks 6 on the corresponding side, the two auxiliary support elements protrude a corresponding distance according to the detected distance information with the material racks 6 on the corresponding side and just offset the material racks 6 .
  • the distance detection sensor is disposed on one side of the first lifting gantry 32, which is used to detect the distance between the side of the first lifting gantry 32 and the material rack 6 on the side corresponding to the side. The distance is the distance between the detected side of the first lifting gantry 32 and the side material rack 6 corresponding to the side of the first lifting gantry 32 .
  • the first robot further includes a computing unit configured to determine the first robot based on the distance between two adjacent material racks 6, the width of the first robot, and the distance information detected by the distance detection sensor. The distance between the other side of the lifting door frame 32 and its corresponding side material frame 6 .
  • the distance between two adjacent material racks and the width of the first robot are fixed values, which can be stored in corresponding storage units in advance.
  • the width of the first robot is a relative concept, which may be the width of the widest position of the first robot, the width of the gantry, or the width of other reference positions on the first robot, which will not be detailed here. illustrate.
  • the first robot further includes a detection unit and a control unit, wherein the detection unit is configured to detect a current parameter of the driving component of the auxiliary support device, and the control unit accepts the current parameter obtained by the detection unit, and when the current When the parameter is greater than the threshold, the control unit issues an instruction to control the drive assembly to stop driving.
  • the current threshold preset in the control unit is the current value during normal operation when the drive components (motors, etc.) of the auxiliary support device are guaranteed to be free from external resistance. If the actual current of the drive components is greater than the current value, then It means that the drive assembly is subjected to an external force, that is, the auxiliary support element is in contact with the corresponding side material frame 6, and at this time, the drive assembly is controlled to stop driving.
  • the first robot includes a detection switch such as a proximity switch or a pressure switch.
  • the detection switch is provided on the auxiliary device at a position where the corresponding material rack 6 contacts, which is higher than the resistance of the support element 71 in the previous embodiment.
  • the contact surface or, in the latter embodiment, the abutment surface of the abutment plate 76', and the detection switch is configured to be triggered when the auxiliary support element is extended into contact with the corresponding side rack 6, for issuing control An electrical signal for the drive assembly to stop driving.
  • the first robot includes two auxiliary supporting devices, and the telescopic directions of the two auxiliary supporting devices relative to the first lifting gantry 32 are exactly opposite, so that one of the auxiliary supporting devices and the first lifting gantry 32 are in opposite directions.
  • the material rack 6 on the right side of the gantry 32 abuts against the material rack 6 on the left side of the first lifting gantry 32 .
  • the first robot may include more than two auxiliary support devices, that is, the number of auxiliary support devices may be an integer greater than two.
  • the second robot of the present disclosure also includes at least two auxiliary supporting devices, and the specific structure of the second robot can be referred to the description of the first robot above, which will not be repeated here.
  • each of the first robot and the second robot includes each comprising a chassis, a gantry disposed on the chassis, a first box taking mechanism, or the second box taking The mechanism can be lifted and lowered on the gantry, and support mechanisms are provided on opposite sides of the gantry.
  • the supporting mechanism is configured to be triggered and opened when the first or second container taking mechanism is raised to a set height, so that the supporting mechanisms on both sides of the gantry are respectively supported by the robot (the first robot or the second robot) on both sides of the stock container.
  • the gantry in the first robot is a first lifting gantry, and the first robot body includes a chassis; the gantry in the second robot is a second lifting gantry, and the second robot body also includes a chassis.
  • each compartment 1071 is provided with a plurality of cargo box storage positions at intervals along the length direction, each cargo box storage position can be set with one cargo box or several cargo boxes along the depth direction, and one or more cargo boxes can be set inside the cargo box. variety of goods.
  • the specific structure of the stock container 107 can be set with reference to the prior art, and the number of the compartments 1071 on the stock container 107 and the height of each compartment 1071 can be set according to requirements.
  • the inventory container can be a shelf, a material rack, etc.; it can also be a cargo box.
  • the following description takes the first robot 103 as an example.
  • the first robot 103 includes a chassis 311 , a first lifting gantry 32 , a first box taking mechanism 34 and a support mechanism 8 .
  • the chassis 311 has the function of autonomous movement
  • the first lifting gantry 32 is vertically arranged on the chassis 311
  • the first box taking mechanism 34 is vertically movably arranged on the first lifting gantry 32, so as to carry out the lifting of containers of different heights.
  • the opposite sides of the first lift gantry 32 are provided with support mechanisms 8, and the support mechanisms 8 are configured to be triggered and opened when the first box removal mechanism 34 is raised to a set height, so that the first lift
  • the support mechanisms 8 on both sides of the gantry 32 are respectively supported on the stock containers 107 on the opposite sides of the first robot 103 .
  • the first box picking mechanism 34 can be placed on the storage container 107
  • the first lift gantry 32 can be assisted by the storage containers 107 on both sides to avoid shaking of the first lift gate 32 and the first container retrieval mechanism 34 due to the raised center of gravity of the first container retrieval mechanism 34 and other problems, improve the stability and safety of the first box taking mechanism 34 for taking and placing the cargo box.
  • the support mechanism 8 has an open state capable of being supported on the stock container 107 and a stored state stored in the first lift gantry 32.
  • the first unloading mechanism 34 is capable of actuating the support mechanism 8 when ascending and descending to a set height. , so that the support mechanism 8 can be switched between the storage state and the open state.
  • This arrangement can avoid using the detection device to detect the position of the first box taking mechanism 34 and avoid using the driving device to drive the support mechanism 8 to switch between the open position and the storage position.
  • the support mechanism 8 adopts a purely mechanical structure, and the cost is low.
  • the position of the first box taking mechanism 34 may be detected by the position detection device, and a driving device for driving the support mechanism 8 to perform state transition may be provided, and the driving device is electrically connected with the position detection device, so that the driving device The operation of the support mechanism 8 can be controlled according to the detection signal of the position detection device.
  • an XYZ coordinate system is established in the direction shown in Figure 19, wherein the Z direction is the vertical direction, the XY plane is the horizontal plane, the X direction is the first direction, the Y direction is the second direction, and X, Y, and Z satisfy the right-handed direction. Coordinate Law. And it can be understood that the XYZ coordinate system shown in FIG. 15 is the local coordinate system of the first robot 103 .
  • the chassis 311 includes a body and a driving wheel mechanism disposed on the body.
  • the driving wheel mechanism includes a driving wheel located at the bottom of the body and a driving unit located inside the body and driving the driving wheel to rotate.
  • the driving wheel mechanism may be, but is not limited to, a differential drive.
  • the driving shafts of the driving wheels are arranged along the X direction, that is, when the first robot 103 runs in a straight line, the first robot 103 runs along the Y direction. When the first robot 103 runs along the running channel to between two oppositely arranged stock containers 107 , the two stock containers 107 are located on opposite sides of the first robot 103 along the Y direction, respectively.
  • the first lift gantry 32 includes uprights 3201 that are opposite and spaced along the X direction.
  • the uprights 3201 may adopt an integral structure, or may adopt a segmented structure connected along the Z direction.
  • a top beam 3202 is connected between the top ends of the two uprights 3201 to improve the structural strength of the first lifting gantry 32 .
  • a plurality of temporary storage partitions are arranged on the first lifting gantry 32 at intervals along the height direction, and the containers picked up by the first box picking mechanism 34 are temporarily stored on the temporary storage partitions.
  • the heights of several temporary storage baffles are all lower than the set height, so as to avoid the problem of poor stability caused by the high center of gravity of the first lifting gantry 32 .
  • the first box taking mechanism 34 is located between the two uprights 3201 , and the first box taking mechanism 34 is connected to the first lifting gantry 32 through the lifting assembly 35 .
  • the first unloading mechanism 34 includes a temporary storage tray, a telescopic fork assembly, a rotating assembly and a container unloading assembly.
  • the temporary storage tray is connected to the first lifting gantry 32 and has a temporary storage position for the temporary storage box; the telescopic fork assembly can be relatively temporary.
  • the storage tray is horizontally telescopic to realize the transfer of the cargo box between the first robot 103 and the storage container 107; the box picking assembly is used to pick up the cargo box; the telescopic fork assembly is connected with the temporary storage tray through the rotating assembly, so that the telescopic fork assembly can be Rotate relative to the first lifting mast 32 to change the telescopic direction of the telescopic fork.
  • the telescopic fork assembly when the first robot 103 is in the moving state, the telescopic fork assembly extends in the Y direction, and when the first robot 103 is located between the two stock containers 107, the telescopic fork assembly is rotated by the rotating assembly to be disposed in the X direction, and is arranged along the X direction.
  • the X-direction expands and contracts to realize the switching between the temporary storage position and the storage container 107 ; when the cargo box is transported between the temporary storage partition and the temporary storage position, the telescopic fork assembly expands and contracts along the Y direction.
  • the structural settings of the chassis 311 , the first lifting gantry 32 , the lifting assembly 35 , the first box taking mechanism 34 and the temporary storage partition can refer to the prior art, for example, refer to the settings in the patent application CN202010524246.4. Structures other than the mechanism 8 are not specifically limited.
  • the support mechanism 8 includes a support member 81, the support member 81 is rotatably connected with the column 3201 on the corresponding side of the first lift gantry 32, and the rotation axis of the support member 81 is arranged along the Y direction, thereby reducing the contact between the support member 81 and the storage container when the support member 81 rotates. 107 Interference.
  • the support member 81 has a support portion 8112 that can be supported on the storage container 107. When the support member 81 is unfolded from the storage state to the open state, the support portion 8112 is turned downward in a direction away from the support mechanism 8 on the other side. It is ensured that the support portion 8112 can be supported on the partition 1071 of the storage container 107 .
  • the support member 81 has an opening trigger portion 8121 and a storage trigger portion 8111.
  • the opening trigger portion 8121 is located inside the first lifting door frame 32 and protrudes from the inner side of the upright column 3201.
  • the first box removal mechanism 34 pushes upward to open the trigger portion 8121 to drive the support member 81 to rotate from the storage state to the open state; when the support mechanism 8 is in the open state, the trigger portion is stored.
  • 8111 is located on the inner side of the first lift gantry 32 and protrudes from the inner surface of the upright column 3201.
  • the first box removal mechanism 34 presses down on the storage trigger portion. 8111, so that the support 81 is rotated from the open state to the storage state.
  • the support portion 8112 is provided with a weight-increasing structure, which is used to increase the weight of the support portion 8112, so that when the support mechanism 8 is in the open state, the supporting member The center of 81 is offset to the side close to the storage container 107 , so that the support portion 8112 can be stably supported on the partition 1071 of the storage container 107 under the action of gravity.
  • the support member 81 has an F-shaped structure, which includes a main support arm 811 forming the vertical side of the F-shaped structure and a bushing respectively forming the two lateral sides of the F-shaped structure part 813 and trigger arm 812.
  • the main support arm 811 is rotatably connected to the first lift gantry 32 , the first end of the main support arm 811 forms a receiving trigger portion 8111 , and the second end of the main support arm 811 is connected to the bushing portion 813 to form a supporting portion 8112 , the bushing One end of the trigger arm 812 is connected to the main support arm 811, and the other end of the trigger arm 812 forms an open trigger portion 8121.
  • the support mechanism 8 is in the storage position, the main support arm 811 is arranged substantially vertically, and the bushing portion 813 and the trigger arm 812 are both located on the side of the main support arm 811 facing the other side of the support mechanism 8 , and the bushing portion 813 is located at the trigger arm 813 .
  • the support member 81 has a simple structure and is easy to process.
  • the structure of the support member 81 described above is only an exemplary structure.
  • the support member 81 also adopts other structural forms, such as a plate-shaped structure or a rod-shaped structure of other shapes, as long as the triggering portion 8121 is opened. , the setting of the trigger part 8111 and the support part 8112 can be accommodated.
  • the side of the trigger portion 8121 for contacting with the first box taking mechanism 34 is opened, and the side and/or support of the trigger portion 8111 for contacting the first box taking mechanism 34 are accommodated
  • the side of the part 8112 in contact with the storage container 107 is provided with a shock absorption layer for reducing the vibration when the support 1 contacts the first box taking mechanism 34 and/or reduces the vibration when the support 1 contacts the storage container 107 .
  • At least one side of the upright column 3201 along the Y direction is provided with a support member 81 , thereby preventing the upright column 3201 from interfering with the rotation of the support member 81 .
  • the above-mentioned support members 81 are provided on opposite sides of the upright column 3201 along the Y direction, so as to improve the support stability and reliability.
  • a rotating shaft 83 is connected between the two support members 81, and the rotating shaft 83 is arranged along the Y direction.
  • the rotating shaft 83 can be integrally formed with the support member 81 , or can be connected by welding, plugging or other connection methods.
  • the support mechanism 8 further includes an installation frame 82 , the installation frame 82 is detachably connected with the first lift gate frame 32 , and the installation frame 82 is rotatably connected with the rotating shaft 83 .
  • the installation of the mounting frame 82 can reduce the cost of improving the first lifting gantry 32 , so that the first robot 103 can be improved based on the existing structure, has strong versatility, and simplifies the processing of the first lifting gantry 32 .
  • a shaft hole may be formed through the column 3201 along the Y direction, the rotating shaft 83 may rotate through the shaft hole, and at least one of the two supports 81 may be detachably connected to the rotating shaft 83 .
  • the mounting bracket 82 includes a mounting plate portion 821 and a bushing portion 822 .
  • the mounting plate portion 821 is located on the side of the first lift gantry 32 away from the other side support mechanism 8 , and the mounting plate portion 821 is detachably connected to the upright column 3201 .
  • the shaft sleeve portion 822 is located on the side of the mounting plate portion 821 away from the first lift gantry 32 , and the rotating shaft 83 rotates through the shaft sleeve portion 822 .
  • the structural arrangement of the mounting bracket 82 can improve the convenience of the connection between the mounting bracket 82 and the first gantry 32 and the rotating shaft 83 , and because the mounting bracket 82 is located outside the first gantry 32 , the number of supporting mechanisms 8 can be reduced. Interference with the lift assembly 35 and the first box removal mechanism 34 .
  • the rotating shaft 83 and/or the shaft sleeve portion 822 can be made of wear-resistant materials, or a wear-resistant bushing can be provided between the rotating shaft 83 and the shaft sleeve portion 822, so as to improve the wear resistance and use of the support mechanism 8 life.
  • a connecting portion 823 is protruded from the side of the mounting plate portion 821 away from the upright column 3201 , the connecting portion 823 extends along the Y direction, and a shaft sleeve portion 822 is connected to the connecting portion 823 away from the mounting plate portion 821 .
  • the arrangement of the connecting portion 823 is more conducive to realizing the connection between the shaft sleeve portion 123 and the mounting plate portion 821 .
  • the mounting plate portion 821 , the connecting portion 823 and the bushing portion 822 may be integrally formed, or the connecting portion 823 and the mounting plate portion 821 may be integrally formed, and the bushing portion 822 and the connecting portion 823 are welded together.
  • the support member 81 uses a mechanical triggering method for state switching, in order to prevent the first box taking mechanism 34 from coming out of contact with the opening trigger portion 8121 or the storage trigger portion 8111, the support member 81 has not been rotated to the set position, the support mechanism 8
  • An auxiliary actuating structure 84 is also provided, and the auxiliary actuating structure 84 is configured to drive the supporting member 81 to continue to rotate to the open position after the first unloading mechanism 34 rises to be out of contact with the opening trigger 8121, and when the first unloading The mechanism 34 descends to the storage trigger portion 8111 and then drives the support member 81 to continue to rotate to the storage position.
  • the auxiliary actuating structure 84 includes a cam 841 and a reed 842 , the cam 841 is connected to the rotating shaft 83 , the reed 842 is connected to the mounting bracket 82 , and the cam 841 can squeeze the reed when it rotates with the rotating shaft 83 . 842, so that the reed 842 can apply an elastic restoring force to the rotating shaft 83 through the cam 841 to urge the rotating shaft 83 to continue to rotate.
  • the cam 841 is located at the end of the rotating shaft 83 and exposed to the sleeve portion 822, the reed 842 is connected to the end of the sleeve portion 822 and is located outside the rotating shaft 83, and the minimum distance between the reed 842 and the rotating shaft 83 is greater than
  • the position of the distance is the maximum deformation position of the reed 842 .
  • the cam 841 rotates to the maximum deformation position over the reed 842 .
  • the reed 842 is located on the side of the rotating shaft 83 facing the first lift gantry 32 , and the reed 842 is inclined relative to the mounting plate portion 821 .
  • the cam 841 has a symmetrically arranged teardrop-shaped structure, the large end of which is connected to the rotating shaft 83 , and the small end is pressed against the reed 842 . More preferably, the cam 841 and the rotating shaft 83 are integrally formed
  • the cam 841 is connected to the outer surface of the rotating shaft 83 and is located outside the sleeve part 822, the reed 842 is connected to the sleeve part 822, and the minimum distance between the reed 842 and the rotating shaft 83 is smaller than that of the cam 841 protruding from the rotating shaft
  • the maximum height of 83 the cam 841 can press the reed 842 in the process of rotating with the rotating shaft 83, so that the reed 842 is deformed, and when the first box taking mechanism 34
  • one auxiliary actuating structure 84 is provided at each end of the rotating shaft 83 to improve the actuation stability and reliability.
  • the auxiliary actuating structure 84 may also use a torsion spring, one end of the torsion spring is connected to the support member 81 , and the other end of the torsion spring is connected to the mounting bracket 82 .
  • the auxiliary actuating structure 84 may be a magnetic attraction structure.
  • a first magnetic attraction member such as a magnet
  • a first magnetic attraction member such as a magnet
  • the second magnetic attraction piece and the third magnetic attraction piece can be realized by controlling the magnetic attraction force between the first magnetic attraction piece and the second magnetic attraction piece and designing the position of the first magnetic attraction piece on the rotating shaft 83 .
  • the magnetic attraction force between the first magnetic attraction member and the second magnetic attraction member is greater than that between the first magnetic attraction member and the second magnetic attraction member.
  • the magnetic attraction force between the first magnetic attraction member and the third magnetic attraction member is greater than that between the second magnetic attraction member and the first magnetic attraction member. Magnetic attraction between suction parts.
  • the support mechanism 8 is also provided with a rotation limit structure.
  • a limit opening 8221 is defined on the side wall of the sleeve portion 822 , and the two side walls of the limit opening 8221 along the circumferential direction of the sleeve portion 822 are the first limit wall and the second limit wall, respectively.
  • a limiting protrusion 831 is protruded on the shaft 83 , the limiting protrusion 831 is movably penetrated in the limiting opening 8221 , and when the limiting protrusion 831 is in contact with the first limiting wall, the support mechanism 8 is at the first limit When the limiting protrusion 831 is in contact with the second limiting wall, the support mechanism 8 is at the second limit position.
  • the first limit position is preferably the position when the support mechanism 8 is in the stored state
  • the second limit position may be the position when the support mechanism 8 is in the open state. However, it can be understood that the second limit position may also be a position after being rotated from the open position to the storage position.
  • the rotation limit structure includes a limit opening 8221 and a limit protrusion 831.
  • the rotation limit structure can also adopt other existing structures that can realize the rotation limit, such as in One side of the support member 81 facing the other support member 81 is provided with an arc-shaped limit groove, a limit protrusion is protruded on the rotating shaft 83, and the limit protrusion is slidably arranged in the arc-shaped limit groove.
  • the central angle corresponding to the position slot controls the rotation angle of the support member 81 .
  • the limiting opening 8221 is a long opening extending along the length direction of the shaft sleeve portion 822, and the limiting protrusion 831 is a long plate-like structure, so as to improve the structural strength and the limiting reliability.
  • the installation position of the support mechanism 8 relative to the first lifting door frame 32 is adjustable in the height direction, so that the height of the support mechanism 8 can be adjusted, so that the support mechanism 8 can be better adapted to different types of storage containers 107 .
  • the structure that can adjust the connection position of the two structures in height is relatively conventional.
  • a mounting hole extending in the vertical direction is provided on the mounting plate portion 821, and a threaded hole is provided on the column 3201.
  • the height of the support mechanism 8 is adjusted by the locking position of the threaded connector in this embodiment, which is not limited in this embodiment, and will not be described in detail.
  • each upright 3201 is provided with a supporting mechanism 8, but the present disclosure is not limited to this, each upright 3201 may also be provided with several supporting mechanisms 8 at intervals along the height direction, and the two uprights 3201 on the The support mechanisms 8 are arranged in a one-to-one correspondence, and each pair of support mechanisms 8 corresponds to a set height.
  • support mechanisms are also provided on opposite sides of the second lifting gantry of the second robot of the present disclosure.
  • the specific structure of the second robot refer to the description of the first robot above, which will not be repeated here.
  • the present disclosure provides a chassis 311 that can adjust the pressure applied to the ground.
  • Both the first robot and the second robot of the present disclosure include a chassis, and the chassis includes a chassis body, a first driving wheel assembly, and an elastic adjustment assembly.
  • the following description takes the first robot as an example.
  • FIG. 24 is a schematic structural diagram of the chassis 311 provided by the present disclosure.
  • the chassis 311 includes: a chassis body, a first driving wheel assembly and a fixed caster 3113 .
  • the first driving wheel assembly is used to drive the chassis body to move, and the fixed casters 3113 are used to assist the first driving wheel assembly to support the chassis body.
  • the number of the first drive wheel assemblies is two, and the two first drive wheel assemblies are symmetrically arranged on both sides of the middle of the chassis body; there are multiple fixed casters 3113, and the multiple fixed casters 3113 are symmetrically arranged on the chassis.
  • the front and rear ends of the body are two ends of the body.
  • the chassis 311 provided by the embodiment of the present disclosure further includes an elastic adjustment assembly 3111, and the elastic adjustment assembly 3111 is used to apply pressure changes to the first driving wheel assembly, so that the first driving wheel assembly can adjust the driving wheel pair for different application scenarios. The amount of positive pressure on the ground.
  • FIG. 25 is a schematic structural diagram of the drive wheel assembly and the elastic adjustment assembly provided by the present disclosure.
  • the first driving wheel assembly is hinged to the chassis body and can rotate relative to the chassis body.
  • the chassis body is provided with a second hinge seat 31114, and the first drive wheel assembly is hinged with the second hinge seat 31114 through a pin shaft.
  • the axis of the pin shaft is parallel to the ground, so that when the driving assembly 112 rotates around the pin shaft, the height direction can be changed.
  • the second hinge seat 31114 and the chassis body can be detachably fixedly connected, so that when the first driving wheel assembly fails, it can be detached for maintenance.
  • the second hinge seat 31114 is fixedly connected to the chassis body through a threaded connection such as a bolt or a screw.
  • the first drive wheel assembly includes an assembly plate (not shown in the figure) that is rotatably connected to the second hinge base 31114 and a drive wheel that is fixedly mounted on the assembly plate.
  • the drive wheel rotates with the assembly plate, thereby changing the drive during the rotation process.
  • the positive pressure of the wheel to the ground is suitable for different loads and uneven ground conditions, and the adaptability of walking is better.
  • the elastic adjustment assembly 3111 includes a damping rod assembly and a driving mechanism.
  • the damping rod assembly is hinged with the first driving wheel assembly, and is used to provide damping of the first driving wheel assembly; when the number of the first driving wheel assembly is two, the corresponding number of the damping rod assembly is two , the two damping rod assemblies and the two first driving wheel assemblies are hinged in one-to-one correspondence.
  • the driving mechanism is used to adjust the stroke of the shock-absorbing rod assembly, so as to adjust the magnitude of the positive pressure applied by the first driving wheel assembly to the ground.
  • the driving mechanism includes a mounting plate 31117, which is slidably assembled on the chassis body.
  • the chassis body is provided with guide rails 31120, and the extending direction of the guide rails 31120 is perpendicular to the arrangement direction of the two first driving wheel assemblies.
  • the mounting plate 31117 is slidably assembled on the guide rail 31120, and can slide back and forth in the direction toward and away from the first driving wheel assembly.
  • Two or more of the guide rails 31120 can be symmetrically opened to ensure the stable movement of the mounting plate 31117 along the guide rails 31120 .
  • the damping rod assembly is a rod-shaped structure, and the first end of the damping rod assembly is hinged with the first driving wheel assembly; the second end of the damping rod assembly is hinged with the mounting plate 31117 .
  • the structure of the damping rod assembly is first described below.
  • the damping rod assembly includes a mounting shaft 31111 , a spring 31121 and a sliding sleeve 31115 .
  • the sliding sleeve 31115 is sleeved on the installation shaft 31111 and can slide relative to the installation shaft 31111 to realize the expansion and contraction of the vibration damping rod assembly.
  • the spring 31121 is sleeved on the installation shaft 31111 , and one end of the spring 31121 presses the end of the installation shaft 31111 away from the sliding sleeve 31115 , and the other end presses the sliding sleeve 31115 .
  • the installation shaft 31111 is hinged with the first drive wheel assembly through the hinge pin 31113, that is, the installation shaft 31111 and one end of the assembly plate of the first drive wheel assembly
  • the upper part is hinged, so that the hinge point between the installation shaft 31111 and the first drive wheel assembly is higher than the hinge point between the first drive wheel assembly and the second hinge seat 31114, so that the drive wheel of the first drive wheel assembly and the damping rod assembly are arranged in rows On both sides of the hinge point of the first drive wheel assembly and the second hinge seat 31114.
  • the first driving wheel assembly can be pushed to rotate relative to the hinge point between the first driving wheel assembly and the second hinge base 31114 .
  • the hinge point between the mounting shaft 31111 and the first drive wheel assembly is higher than the hinge between the first drive wheel assembly and the second hinge seat 31114 point, so that the compressive force of the spring 31121 drives the first driving wheel assembly to rotate downward around the second hinge seat 31114, thereby increasing the increase of the positive pressure of the driving wheel on the ground.
  • the mounting plate 31117 When the second end of the damping rod assembly is hinged with the mounting plate 31117, the mounting plate 31117 is symmetrically provided with a first hinge seat 31116, and when there are two damping rod assemblies, the corresponding number of the first hinge seat 31116 is two and the two first hinge seats 31116 are hinged to the two damping rod assemblies in one-to-one correspondence.
  • the sliding sleeve 31115 of each damping rod assembly is hinged with the corresponding first hinge seat 31116 through a pin. During the sliding process of the mounting plate 31117 along the guide rail 31120 , the sliding sleeve 31115 can be pushed to slide relative to the mounting shaft 31111 by the mounting plate 31117 .
  • the spring 31121 when the mounting plate 31117 slides toward the first driving wheel assembly, the spring 31121 is compressed, and the force exerted by the spring 31121 on the first driving wheel assembly increases; when the mounting plate 31117 slides away from the first driving wheel assembly, The spring 31121 restores part of its elastic deformation, and the pressure applied to the first drive wheel assembly is reduced.
  • the driving mechanism further includes a driving device, which is used for driving the mounting plate 31117 to slide.
  • the driving device is located between the two damping rod assemblies to ensure that when the driving device drives the mounting plate 31117 to slide, the two damping rod assemblies receive a balanced force.
  • the driving device drives the mounting plate 31117 to slide relative to the chassis body
  • the driving device can lock the driving mounting plate 31117 at least at the first setting position or the second setting position, and the mounting plate 31117 slides from the first setting position to In the second setting position, the compression amount of the two springs 31121 increases.
  • the first setting position is far away from the first driving wheel assembly
  • the second setting position is close to the first driving wheel assembly.
  • the driving device is a screw driving member
  • the screw driving member includes: a first fixing seat 31119 and a second fixing seat 31122 that are fixedly arranged on the chassis body, and the mounting plate 31117 slides on the first fixing seat 31119. and the second fixing seat 31122 to define the sliding distance of the mounting plate 31117 by the first fixing seat 31119 and the second fixing seat 31122 .
  • the mounting plate 31117 presses against the first fixing seat 31119; when the mounting plate 31117 slides to the second setting position, the mounting plate 31117 presses against the first fixing seat 31119.
  • Two fixed seats 31122 are fixedly arranged on the chassis body, and the mounting plate 31117 slides on the first fixing seat 31119.
  • the lead screw driver further includes a lead lever 31118 penetrated through the first fixed seat 31119 and the second fixed seat 31122, and the lead lever 31118 can rotate relative to the first fixed seat 31119 and the second fixed seat 31122.
  • the screw lever 31118 penetrates through the mounting plate 31117 and is threadedly connected to the mounting plate 31117 . During the rotation of the screw lever 31118 , the mounting plate 31117 can be driven to slide along the length direction of the screw lever 31118 through screw fit.
  • the lead screw driver also includes a drive motor 31123, the drive motor 31123 is fixedly assembled on the chassis body, and the end of the lead lever 31118 away from the first fixing seat 31119 is connected to the output shaft of the drive motor 31123, and the drive motor 31123 can drive the drive during operation.
  • the screw lever 31118 rotates, the mounting plate 31117 slides along the length of the screw lever 31118, and drives the sliding sleeves 31115 on both sides to slide relative to the mounting shaft 31111 during the sliding process.
  • the driving device can also adopt any one of the electric push rod or the cylinder fixedly arranged on the chassis body. Plate 31117 is fixedly attached. Alternatively, the driving device can also adopt any linear motion driving device.
  • the chassis 3111 can be used in a variety of scenarios, which greatly enhances the stability of the whole machine, and in the event of a failure, the positive pressure of the adjustment drive wheel to the ground becomes smaller, so that the robot can be pushed away manually for maintenance. .
  • the second robot of the present disclosure also includes a chassis, and the specific structure of the second robot can refer to the description of the first robot above, which will not be repeated here.
  • the first robot and the second robot provided by the embodiments of the present disclosure both include a chassis, and the chassis includes a chassis assembly and a support platform.
  • the chassis assembly includes two hinged chassis; a second driving wheel assembly disposed on one of the chassis, and a universal wheel assembly connected with each chassis through a buffer assembly; the supporting platform is connected with the two chassis respectively through the adjustment assembly .
  • the main structure of the chassis 311 of the first robot includes two parts: a chassis assembly and a supporting platform 40 , wherein the chassis assembly is used as a walking part of the chassis 311 , and when the chassis 311 is used, the chassis assembly It is used to contact the ground and drive the chassis robot to move.
  • the support platform 40 is used as a bearing component of the chassis 311 , and is mainly used for bearing other equipment of the robot or components such as material boxes, such as components of the robot such as a gantry.
  • the chassis assembly mainly includes two hinged chassis, which are named as the first chassis 10 and the second chassis 20 for the convenience of description.
  • first chassis 10 and the second chassis 20 are hinged, the robot can walk , the first chassis 10 and the second chassis 20 can rotate relative to each other, thereby improving the adaptability of the chassis assembly.
  • one of the first chassis 10 and the second chassis 20 is provided with a second driving wheel assembly, and FIG. 26 illustrates that the second driving wheel assembly 30 is disposed on the first chassis 10, but it should be understood that the present disclosure
  • the embodiment does not limit the arrangement of the second driving wheel assembly 30.
  • the second driving wheel assembly 30 can be arranged on the first chassis 10 shown in FIG. 26 or on the second chassis 20, as long as it is located on the first chassis 10 and the hinge of the second chassis 20 is sufficient.
  • each chassis is provided with a caster wheel assembly 60 , and each chassis is supported by the caster wheel assembly 60 and the second driving wheel assembly 30 .
  • first chassis 10 one end of the first chassis 10 is provided with a second driving wheel assembly 30, and the opposite end is provided with a universal wheel assembly 60, which can be realized by the second driving wheel assembly 30 and the universal wheel assembly 60. Support for the first chassis 10 .
  • a recessed area 11 for accommodating the universal wheel assembly 60 is provided on each chassis.
  • a concave area 11 is provided at the corner of the first chassis 10 to accommodate the universal wheel assembly 60 , and the concave area 11 is formed by bending the first chassis 10 .
  • the height of the first chassis 10 is lowered, thereby lowering the center of gravity of the first chassis 10, and improving the stability during walking.
  • the second chassis 20 also adopts the same supporting manner as the first chassis 10 , which will not be repeated here.
  • the support platform 40 is a plate-like structure, which is connected with the first chassis 10 and the second chassis 20 respectively through the adjustment assembly 50 .
  • the adjustment assembly 50 may be a link assembly, and the support platform 40 is hinged with the first chassis 10 and the second chassis 20 respectively through the link assembly.
  • the connecting rod assembly includes a first connecting rod and a second connecting rod, two ends of the first connecting rod are hinged with the support platform 40 and the first chassis 10 respectively; one end of the second connecting rod is fixedly connected with the second chassis 20, and the other end It is hinged with the support platform 40 , or, one end of the second link is hinged with the second chassis 20 , and the other end is fixedly connected with the support platform 40 .
  • the hinge axis of the above-mentioned hinge structure is parallel to the hinge axis of the first chassis 10 and the second chassis 20 .
  • the number of the first connecting rod and the second connecting rod is not specifically limited in this disclosure, the number of the first connecting rod can be different, such as two or three, and the number of the second vertical rod can be one , two, three, etc. different numbers.
  • the number of the first link or the second link is multiple, the multiple first links are arranged in a single row, and the arrangement direction is parallel to the hinge axis of the first chassis 10 and the second chassis 20 .
  • the second link is also set in the same way.
  • the first chassis 10 and the second chassis 20 can be rotated relative to each other through the hinge joint (the double arrow shown in the figure), so that the second driving wheel assembly 30 and the universal wheel assembly are both connected with Ground fit.
  • the support platform 40 transmits the gravity of the carried articles to the first chassis 10 and the second chassis 20 through the adjustment assembly 50, which changes the force of the chassis 311, so that the chassis can better adapt to the ground and reduce the warping of the chassis 311. lifting or overloading.
  • the adjustment assembly 50 adopts a multi-link design (the first link and the second link), so that the chassis 311 has a strong ability to overcome obstacles.
  • the angle is half or approximately half of the obstacle clearance angle of the chassis 311, and at the same time, the force exerted by the adjusting assembly 50 on the support platform 40 acts on the first chassis 10 and the second chassis 20 respectively, so that the positive pressure of the second driving wheel assembly 30 on the ground is compared large, improving the grip effect of the chassis 311.
  • each chassis is provided with two Two universal wheel assemblies 60; and two universal wheel assemblies 60 are located at two corners of the corresponding chassis.
  • each chassis is supported by four wheels (two drive wheels and two swivel wheels).
  • the universal wheel assembly 60 is connected to each chassis through the buffer assembly 70 .
  • the buffer assembly 70 can provide buffering to the caster wheel assembly 60 in the vertical direction, so that the caster wheel assembly 60 slides in the vertical direction.
  • FIG. 29 shows an exploded schematic view of the universal wheel assembly 60 and the buffer assembly 70 .
  • the buffer assembly 70 includes a buffer pad 71 and a connection assembly 72; wherein the buffer pad 71 is a component that plays a buffering effect in the buffer assembly 70, and the connection assembly 72 serves as a fixed connection structure for connecting the universal wheel assembly 60 with the corresponding chassis.
  • the first chassis 10 , the corresponding buffer pad 71 and the universal wheel assembly 60 will be described below.
  • the connecting assembly 72 is used to connect the universal wheel assembly 60 with the first chassis 10 .
  • the connecting assembly 72 is fixedly connected with the first chassis 10, and the universal wheel assembly 60 is slidably assembled on the connecting assembly 72 and can slide in the vertical direction.
  • the buffer pad 71 is sleeved on the connecting assembly 72 and is located between the universal wheel assembly 60 and the corresponding chassis. When the universal wheel assembly 60 slides in the vertical direction, elastic force can be provided by the buffer pad 71 to ensure its contact effect with the ground.
  • connection assembly 72 includes a bolt 723 and a sleeve 721 sleeved on the bolt 723; both ends of the sleeve 721 are pressed against the chassis and the nut of the bolt 723, and the universal wheel assembly 60 is sleeved on the sleeve
  • the barrel 721 is slidable along the length of the sleeve 721 .
  • a chassis 10 and the nut of the bolt 723, and the universal wheel assembly 60 is sleeved on the sleeve 721, and can slide along the length direction (vertical direction) of the sleeve 721, so as to prevent the universal wheel assembly 60 from sliding Influenced by the threads on the screw.
  • the connecting assembly 72 when the connecting assembly 72 is provided, the connecting assembly 72 further includes a washer 722 sleeved on the screw rod of the bolt 723 ; the washer 722 is located between the nut and the universal wheel assembly 60 .
  • the washer 722 and the buffer pad 71 are respectively provided on both sides of the universal wheel assembly 60, so as to avoid the rigid collision between the universal wheel assembly 60 and the nut, and improve the performance of the universal wheel assembly 60. security.
  • both the buffer pad 71 and the washer 722 can be made of polyurethane material, the buffer pad 71 is a polyurethane pad, and the washer 722 is a polyurethane washer, so as to have a better elastic effect.
  • a plurality of hollow structures may be arranged on the buffer pad 71 , and the plurality of hollow structures may be hollow holes or hollow grids, etc.
  • the cushion pad 71 has better elasticity.
  • the above-mentioned universal wheel assembly 60 may include a support plate 61 and a universal wheel 62 rotatably connected with the support plate 61 .
  • the buffer pad 71 is located between the support plate 61 and the corresponding chassis, and the support plate 61 is sleeved on the sleeve 721.
  • the opposite sides of the support plate 61 are respectively provided with a buffer pad 71 and a washer 722 to improve the universal wheel assembly. 60 buffer effect.
  • connection components 72 In order to ensure the stability of the connection between the universal wheel assembly 60 and the first chassis 10, four connecting assemblies 72 can be used to connect the universal wheel assembly 60 and the first chassis 10, of course, three, five, six There are different numbers of connection components 72, which are not specifically limited in the embodiments of the present disclosure.
  • two universal wheel assemblies 60 are respectively arranged on the first chassis 10 and the second chassis 20, and the buffer assemblies 70 are provided to ensure that four The wheels (two driving wheels and two universal wheels 62 ) can support the same side (chassis), which improves the stability of the chassis 311 .
  • the second robot of the present disclosure also includes the chassis of the above-mentioned embodiments.
  • the chassis of the second robot refer to the description of the first robot above, and details are not repeated here.
  • both the first robot and the second robot of the present disclosure include a chassis and a gantry, the gantry is disposed on the chassis, and the lower end of the gantry is rotatably connected to the chassis, so that the gantry can be in a vertical state and When the roughly horizontal state is switched, the first or second box picking mechanism can be raised and lowered on the gantry, and used for picking and placing the boxes on the stock container.
  • the gantry includes at least two frame segments spliced along the height direction, two adjacent frame segments are detachably connected, and the lower end of the lowermost frame segment rotates with the chassis connect.
  • the gantry of the first robot is the first lifting gantry
  • the first lifting gantry is arranged on the chassis of the first robot
  • the lower end of the first lifting gantry is rotatably connected to the chassis of the first robot
  • the first lifting gantry is The box-taking mechanism can be lifted and lowered on the first lifting gantry.
  • the gantry of the second robot is the second lifting gantry
  • the second lifting gantry is arranged on the chassis of the second robot
  • the lower end of the second lifting gantry is connected in rotation with the chassis of the second robot
  • the second box taking mechanism can be raised and lowered is arranged on the second lifting gantry.
  • the handling robot includes a mobile chassis 311 , a first lifting gantry 32 , a first box taking mechanism 34 and a lifting assembly 35 .
  • the movable chassis 311 has the function of autonomous movement; the first lifting gantry 32 is arranged on the movable chassis 311, and one end of the first lifting gantry 32 is rotatably connected with the moving chassis 311, so that the first lifting gantry 32 can be vertically Switching between the straight state and the substantially horizontal state; the first box taking mechanism 34 is movably arranged on the first lifting door frame 32 through the lifting assembly 35, so as to realize the movement of the cargo box between the first lifting door frame 32 and the storage container. transmission.
  • the first gantry 32 can be switched between a substantially horizontal state and a vertical state, thereby enabling the transport robot to In the normal use process, it is in a vertical state to realize the transportation of the cargo box; when the transportation robot is assembled, the first lifting gantry 32 is first in a roughly horizontal state, and the lifting assembly 35, the first box taking mechanism 34 and other structures It is assembled on the first lifting gantry 32, and then one end of the first lifting gantry 32 is rotatably connected to the mobile chassis 311, and by rotating the first lifting gantry 32, the first lifting gantry 32 is in a vertical state. Realize the assembly of the handling robot.
  • the transport robot provided in this embodiment can realize the assembly of the upper structure of the first gantry 32 when the first gantry 32 is in a substantially horizontal state, and avoid high-altitude operations caused by the high height of the first gantry 32 , reduce assembly difficulty and assembly cost, and improve assembly efficiency.
  • the stand is in a substantially horizontal state means that the length direction of the stand is parallel to the horizontal direction, or there is a small included angle between the length direction and the horizontal direction of the stand, such as 20 angle below °.
  • the upper end surface of the mobile chassis 311 is provided with a rotating connecting block, which is detachably connected to the moving chassis 311, and the rotating connecting block is provided with a rotating connecting block.
  • the lower end of the first lifting gantry 32 is connected with a connecting block
  • the connecting block is provided with a second shaft hole
  • the first shaft hole is opposite to the second shaft hole
  • the first shaft hole and the second rotating shaft hole are provided with a rotating shaft
  • the rotating shaft extends along the first direction, and the first lifting gantry 32 can rotate around the axis of the rotating shaft.
  • two connecting blocks are arranged at intervals along the second direction, the rotating connecting blocks and the rotating shafts are arranged in a one-to-one correspondence with the connecting blocks, and the connecting blocks are installed on both ends of the first lifting gantry 32 along the first direction, to reduce interference.
  • the above-mentioned rotational connection structure between the moving chassis 311 and the first lifting gantry 32 is only an exemplary structure, and any prior art can realize the rotational connection between the first lifting gantry 32 and the moving chassis 311, so as to realize the first A configuration in which the gantry 32 is switched between a vertical state and a substantially horizontal state is within the scope of the present disclosure.
  • the switching between the vertical state and the substantially horizontal state of the first lifting gantry 32 can be performed by manually rotating the first lifting gantry 32, or it can be automatically driven by a rotary drive device.
  • the rotary drive device is preferably arranged independently of the handling robot, and the rotary drive device is detachably connected to the first lifting gantry 32, so that after the handling robot is assembled and debugged, the rotary drive device can be removed from the handling robot to avoid the handling robot. Carrying the rotary drive device to work, reducing the load of the handling robot and improving the use flexibility of the rotary drive device.
  • the rotary drive device is preferably driven by a piston cylinder.
  • the cylinder body of the piston cylinder is fixed on the ground of the transport robot through a mounting bracket, so as to realize the fixation of the cylinder body relative to the mobile chassis 311, and the end of the piston rod is detachably connected to the first lifting gantry 32. and the piston rod is arranged at a set angle with respect to the horizontal direction, so that the extension action of the piston rod drives the first lifting gantry 32 to rotate.
  • the structure of the above-mentioned rotary drive device is only an exemplary structure.
  • other existing structure forms of the rotary drive device can also be used to realize the rotation of the first lifting gantry 32, such as rotating
  • the motor is directly connected or connected to the rotating shaft through a transmission component to drive the rotating shaft to rotate, thereby driving the first lifting gantry 32 to rotate and so on.
  • the structure of the existing rotary drive device capable of realizing the rotation of the structure with a larger length is relatively common, which is not specifically limited in the present disclosure.
  • the handling robot further includes a locking assembly, which is used to lock the first lifting gantry 32 and the first lifting gantry 32 when the first lifting gantry 32 is in the vertical state.
  • the locking assembly includes several threaded parts, the upper end surface of the moving chassis 311 is provided with threaded holes, the lower end of the first lifting door frame 32 is provided with connecting through holes, and the moving chassis 311 is connected to the first lifting door
  • the frame 32 is fastened and connected by threaded members pierced through the threaded holes and the connecting through holes. That is, when the first gantry 32 is in a horizontal position, the first gantry 32 is connected with the moving chassis 311 through a rotating shaft.
  • the chassis 311 is fastened with screws.
  • the first lift gantry 32 includes at least The two frame body segments 321 are detachably connected between two adjacent frame body segments 321 , and the lower end of the frame body segment 321 at the lowermost layer is rotatably connected with the moving chassis 311 .
  • the length of each frame segment 321 can be shortened by arranging the first lift gantry 32 into a plurality of spliced frame segments 321 . Thereby, the difficulty of processing, handling and assembling of the first lifting gantry 32 is reduced, and the convenience and stability of handling before assembling are improved.
  • each rack body segment 321 there are three frame sections 321 , but the present disclosure is not limited thereto, and the number of frame sections 321 may be specifically set according to the total length of the first lifting gantry 32 .
  • the height of each rack body segment 321 is between 1 m and 2 m, which facilitates the handling of each rack body segment 321 .
  • each frame body segment 321 along the first direction is larger than the size of the frame body segment 321 along the second direction, and the second direction is perpendicular to the first direction.
  • the several frame segments 321 may be arranged side by side on the moving chassis 311 along the second direction.
  • the frame body segments 321 and other structures can be placed on the mobile chassis 311, and by moving the mobile chassis 311, the frame body segments 321 and the like to be assembled can be moved to the assembly station, and the components on the handling robot can be improved.
  • the convenience of transportation can further reduce the assembly cost and improve the assembly efficiency.
  • the size of the mobile chassis 311 in the first direction is smaller than the size of the mobile chassis 311 in the second direction.
  • the dimension of the direction is greater than 1.5 times its dimension in the first direction.
  • the opposite sides of the movable chassis 311 along the first direction are parallel and spaced apart, and the side faces are perpendicular to the second direction, thereby ensuring the arrangement space of the first lifting gantry 32 and improving the structural stability. compactness.
  • the two side surfaces of the movable chassis 311 that are opposite and spaced along the second direction are arc surfaces, and two ends of the arc surfaces are respectively connected to the two parallel side surfaces, so as to improve the aesthetic appearance of the movable chassis 311 .
  • each frame body segment 321 is provided with an auxiliary support portion.
  • the auxiliary support portion is supported on the ground.
  • the arrangement stability of the frame body segment 321 is improved, so as to facilitate the assembly of the first lifting door frame 32 and other structures. Mounting on a gantry 32.
  • the auxiliary support part is detachably connected to the frame body segment 321, so that after the transport robot is assembled, the auxiliary support part can be removed from the frame body segment 321, so as to prevent the setting of the auxiliary support part from affecting the handling robot Container handling work.
  • each frame body segment 321 includes two supporting frames 3211 opposite and spaced along the first direction. A space for the box taking mechanism 34 to move.
  • the lowermost frame segment 321 also includes a base frame 3212 connected between the bottom ends of the two support frames 3211.
  • the base frame 3212 is arranged on the upper end surface of the mobile chassis 311 to increase the contact area with the mobile chassis 311 and improve the The assembly stability and connection reliability of the first lifting gantry 32 and the mobile chassis 311 .
  • the frame body segment 321 located at the uppermost end also includes a top frame 3213 connected between the two ends of the two support frames 3211. The setting of the top frame 3213 is used to prevent the two The support frames 3211 are relatively swaying, which further improves the stability of the first lifting gantry 32 .
  • each support frame 3211 includes two support rods 32111 opposite and spaced apart along the second direction, a connecting rod 32112 is connected between the two support rods 32111, and the connecting rod 32112 is along the support A plurality of rods 32111 are provided at intervals in the longitudinal direction.
  • This arrangement can reduce the weight and installation cost of the support frame 3211 while ensuring the structural strength and rigidity of the support frame 3211 .
  • both the support rod 32111 and the connecting rod 32112 are made of square steel to further simplify processing.
  • each support frame 3211 is connected with a connecting seat 32113, and the connecting seat 32113 has a connecting plate perpendicular to the splicing direction, and the two connected frame sections are connected to each other.
  • the connecting plates at the splices of the segments 321 abut against each other, and the two connecting plates that are attached to each other are detachably connected by bolts.
  • the two adjacent frame segments 321 may also be connected by other connection structures, such as setting a butt link between the ends of the two support frames 3211 between the adjacent two frame segments 321 The butt links between the two adjacent frame segments 321 abut against each other, and the butt links of the two adjacent frame segments 321 are detachably connected by bolts.
  • the first lifting gantry 32 also includes a connection 322, the support rod 32111 is a hollow rod, the two ends of the connection 322 are respectively inserted into the support rods 32111 of the two adjacent frame segments 321, and the connection 322 is connected to the The corresponding support rods 32111 are detachably connected.
  • the connection 322 By arranging the connection 322, the stability and reliability of the connection between the two adjacent frame segments 321 can be improved, and the structural strength and rigidity of the spliced part of the two frame segments 321 can be improved.
  • the frame body segment 321 may also adopt other structures, for example, the main bodies of the two support frames 3211 of the frame body segment 321 may adopt a plate-like structure, as long as the entire first extraction can be achieved. The installation, support and operation of the box mechanism 34 and the lifting assembly 35 are sufficient.
  • the lift assembly 35 includes a lift frame 351 and a drive transmission assembly, and the drive transmission assembly can drive the lift frame 351 to move along the height direction of the first lift gantry 32 .
  • the box mechanism 34 is detachably disposed on the lifting frame 351 . This arrangement facilitates the installation and disassembly of the first box taking mechanism 34 , and enables the first box taking mechanism 34 to be installed on the lifting frame 351 after the entire assembly is completed, thereby improving the installation efficiency of the first box taking mechanism 34 .
  • the drive transmission assembly adopts a chain transmission, which includes a lift drive motor 352 and a sprocket chain assembly.
  • the sprocket chain assembly includes a driving sprocket 353 , a driven sprocket 354 and a chain 355 .
  • the elevating drive motor 352 is installed on the elevating frame 351, and its drive shaft is arranged along the first direction; the driving sprocket 353 is drivingly connected with the drive shaft of the elevating drive motor 352; there are two driven sprockets 354, two driven The sprockets 354 are located on the upper and lower sides of the drive sprocket 353 respectively, and the centers of the two drive sprockets 353 and the two driven sprockets 354 are not located on the same straight line; the chains 355 are arranged along the extension direction of the first lifting gantry 32 , and its upper and lower ends are fixed on the first lifting gantry 32, and the chain 355 is wound around a driven sprocket 354, a driving sprocket 353 and another driven sprocket 354 in turn, so that the chain 355 An " ⁇ "-shaped structure is formed at the driving sprocket 353 and the driven sprocket 354 .
  • the structure of the above-mentioned drive transmission assembly enables the chain 355 to be fixedly installed on the first lifting gantry 32, so that during the operation of the lifting assembly 35, the chain 355 maintains a stable position, that is, the chain 355 can be in the first lifting gantry.
  • 32 is in a horizontal position for assembly, and the lift drive motor 352, the lift frame 351, etc. can be assembled at the bottom of the first lift gate frame 32 when the first lift gate frame 32 is in a vertical position, reducing assembly difficulty and improving assembly convenience.
  • one sprocket chain assembly is provided on each of the support frames 3211 on both sides (the support frames 3211 of several frame body segments 321 on the same side form a set of support frames) to improve the stability and reliability of the lift transmission.
  • the elevating drive motor 352 is drivingly connected to the two driving sprockets 353 on both sides through the synchronous transmission assembly 256 to reduce the number of elevating drive motors 352 and improve the transmission synchronization of the sprocket chain assemblies on both sides.
  • one lift driving motor 352 may also be provided corresponding to each sprocket chain assembly.
  • the synchronous transmission assembly 256 includes a synchronous shaft 3563 arranged horizontally along the first direction, a driving pulley 3561 sleeved on the driving shaft of the elevating drive motor 352, a driven pulley 3562 sleeved on the synchronous shaft 3563, and a driven pulley 3562 sleeved on the synchronous shaft 3563.
  • the synchronous belt 3564 on the pulley 3561 and the driven pulley 3562, and the two driving sprockets 353 are respectively sleeved on both ends of the synchronous shaft 3563.
  • the rotation of the elevating drive motor 352 is transmitted to the synchronous belt 3564 through the driving pulley 3561, and is transmitted to the synchronous shaft 3563 through the synchronous belt 3564 and the driven pulley 3562, and then drives the synchronous shaft 3563 to rotate, that is, drives the synchronous shaft 3563 to rotate.
  • the upper drive sprocket 353 rotates.
  • the cost of the lift assembly 35 can be reduced, the assembly and maintenance of the lift drive mechanism can be facilitated, and the service life of the lift assembly 35 can be increased.
  • the sprocket chain assembly can also be replaced by other lifting transmission assemblies capable of converting the rotation of the motor into linear operation, such as a rack and pinion assembly, a lead screw nut assembly, and the like.
  • the lifting frame 351 includes two mounting plates 3511 arranged opposite to each other and spaced apart, and a mounting cross frame 3512 connected between the two mounting plate frames 3511.
  • the lifting and driving motor 352 is installed on the mounting cross frame 3512.
  • the two ends of the synchronizing shaft 3563 are rotatably mounted on the two mounting plates 3511, and the driven sprocket 354 is rotatably mounted on the corresponding mounting plate 3511.
  • the mounting plate frame 3511 mainly includes a main mounting plate 35111, the main mounting plate 35111 is perpendicular to the first direction, and four sides of the main mounting plate 35111 are bent inward to form a folded edge portion 35112.
  • the mounting plate frame 3511 also includes a sprocket mounting seat 35113 opposite to the main mounting plate 35111 and arranged at intervals.
  • the sprocket mounting seat 35113 is detachably connected to the flange portion 35112, and the driven sprocket 354 is rotatably mounted on the sprocket mounting seat 35113.
  • the driven sprocket 354 is located between the sprocket mounting seat 35113 and the main mounting plate 35111 . This arrangement can shield the driven sprocket 354 to prevent the first box taking mechanism 34 or the external structure from colliding with the driven sprocket 354 .
  • the lift assembly 35 further includes a lift guide assembly, and the mounting plate frame 3511 is slidably connected to the support frame 3211 on the corresponding side through the lift guide assembly.
  • the lift guide assembly includes a first guide wheel set, the first guide wheel set includes a first guide wheel 357, the first guide wheel 357 is rotatably mounted on the mounting plate frame 3511, and the first guide wheel
  • the rotation axis of 357 is arranged along the second direction, the first guide wheel 357 is in rolling contact with the side of the support rod 32111 facing the other side of the support frame 3211, and each support frame 3211 is provided with a corresponding first guide wheel set.
  • the arrangement of the first guide wheel 357 can realize the position limit of the lifting frame 351 along the first direction, and further improve the guiding stability and reliability.
  • the main mounting plate 35111 is provided with an escape opening
  • the rotation axis of the first guide wheel 357 is located on the inner side of the main installation plate 35111, and part of the first guide wheel 357 is exposed to the outside of the main installation plate 35111 through the escape opening and is connected to the support Rod 32111 is in rolling contact.
  • the arrangement of the escape opening can reduce the size of the first guide wheel 357, and at the same time, can also reduce the distance between the main mounting plate 35111 and the support rod 32111, thereby increasing the space between the two main mounting plates 35111, improving the The structure is compact, and the structural interference with the first box taking mechanism 34 is reduced.
  • the first guide wheel 357 can also be directly mounted on the outer side of the main mounting plate 35111 .
  • the lift guide assembly further includes a second guide wheel set, the second guide wheel set includes at least two second guide wheels 358 , and the second guide wheels 358 are rotatably installed on a part of the mounting plate frame 3511 away from the other mounting plate frame 3511 .
  • the rotation axis of the second guide wheel 358 is arranged along the first direction, and at least two second guide wheels 358 are respectively in rolling contact with the opposite side walls of the two support rods 32111 of the support frame 3211 .
  • the arrangement of the second guide wheel 358 can prevent the lifting frame 351 from moving in the second direction relative to the first lifting gantry 32 and improve the movement stability of the lifting frame 351 .
  • the support rods 32111 on each side can be correspondingly provided with two or more second guide wheels 358, and two or more second guide wheels 358 can be provided on both sides.
  • the number of the second guide wheels 358 on the support rod 32111 can be the same or different, and can be set in the direction of the extension of the support rod 32111 facing or dislocated, as long as it is ensured that the support rod 32111 on each side is correspondingly provided with at least One second guide wheel 358 is sufficient.
  • both the first guide wheel 357 and the second guide wheel 358 include an installation shaft, a bearing sleeved on the installation shaft, and a roller sleeved outside the bearing.
  • the outer ring of the roller and the bearing are fixed, and the installation shaft is The inner ring of the bearing is fixed.
  • the first guide wheel 357 and the second guide wheel 358 may also adopt other existing roller structures, which are not further limited in this embodiment.
  • the first box taking mechanism 34 is detachably installed on the lifting frame 351, and the first box taking mechanism 34 can adopt the structure in the patent application 202010524246.4, and can also adopt the structure of other existing first box taking mechanism 34.
  • the structure of the box-taking mechanism 34 is not specifically limited.
  • the handling robot further includes a plurality of first temporary storage mechanisms 33 . It is detachably connected with the first lifting door frame 32 . By arranging the first temporary storage mechanism 33 detachably connected to the first gantry 32, the first temporary storage mechanism 33 can be assembled after the first gantry 32 is installed in a horizontal state, thereby improving assembly efficiency.
  • first temporary storage mechanisms 33 are installed on the lowermost frame segment 321, and in the initial installation state, the first box removal mechanism 34 and the first temporary storage mechanism 33 are respectively located in the first lift Opposite sides of the gantry 32 .
  • the first temporary storage mechanism 33 can be assembled when the first lifting gantry 32 is in a vertical state, so as to prevent the first temporary storage mechanism 33 from being scratched when the first lifting gantry 32 switches states.
  • the first temporary storage mechanism 33 is arranged on the lower frame section 321, and can be installed manually, which is quicker and more convenient, and can lower the overall center of gravity of the transport robot after assembly.
  • first temporary storage mechanisms 33 are provided. In other embodiments, the number and position of the first temporary storage mechanisms 33 may be specifically limited according to requirements.
  • the second robot of the present disclosure also includes the gantry and the lifting assembly of the above-mentioned embodiments.
  • the gantry and the lifting assembly of the above-mentioned embodiments For the specific structure of the second robot, refer to the description of the first robot above, which will not be repeated here.
  • the present disclosure also provides a robot, which can be considered to include the second robot in the above-mentioned embodiments.
  • a robot which can be considered to include the second robot in the above-mentioned embodiments.
  • the tasks performed by the robot are similar to those performed by the second robot, and repeated parts will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Stacking Of Articles And Auxiliary Devices (AREA)
  • Manipulator (AREA)
  • Container Filling Or Packaging Operations (AREA)
  • Specific Conveyance Elements (AREA)

Abstract

一种货箱搬运系统和应用于该系统的机器人。该货箱搬运系统包括具有多种货箱尺寸的货箱、控制器(102)、第一机器人(103)和第二机器人(104);第一机器人(103)上设置有第一取箱机构,第二机器人(104)上设置有第二取箱机构(104)。控制器(102)配置为,响应于货箱搬运请求,在确定货箱搬运请求所要搬运的目标货箱的尺寸在第一尺寸范围内的情况下,向第一机器人(103)发送第一搬运指令;在确定货箱搬运请求所要搬运的目标货箱的尺寸在第二尺寸范围内的情况下,向第二机器人(104)发送第二搬运指令。在仓储作业场景中,利用上述两种机器人混合作业,取放具有多种货箱尺寸的货箱,能够提高货箱存储空间的使用率。

Description

一种货箱搬运系统和机器人
相关申请的交叉引用
本申请要求申请号为202120169819.6且申请日为2021年01月21日的中国专利申请、申请号为202120509197.7且申请日为2021年03月10日的中国专利申请、申请号为202110553883.9且申请日为2021年05月20日的中国专利申请、申请号为202121304572.0且申请日为2021年06月10日的中国专利申请、申请号为202121532346.8且申请日为2021年07月07日的中国专利申请以及申请号为202111058253.0且申请日为2021年09月09日的中国专利申请的优先权和权益,上述中国专利申请的全部内容在此通过引用并入本申请。
技术领域
本公开应用于机器人任务调度领域,具体而言,涉及一种货箱搬运系统和机器人。
背景技术
在仓储作业场景中,经常会需要搬运具有多种货箱尺寸的货箱,如果场地里使用一种机器人去搬运多种货箱尺寸的货箱,则该机器人上设置的取箱机构的取货能力需要适应多种货箱尺寸中的最大尺寸,这样必定会造成取箱机构能力的浪费,同时取箱机构的尺寸也因需要搬运最大尺寸的货箱而设置的体型较大,从而需要尺寸匹配的货箱存储空间来存储相对较小尺寸的货箱,会导致货箱存储空间浪费,货箱存储空间使用率低。
发明内容
本公开的目的在于提供一种货箱搬运系统和机器人,用以解决在仓储作业场景中,货箱存储空间使用率低的缺陷。
第一方面,本公开提供了一种货箱搬运系统,具有多种货箱尺寸的货箱、控制器、第一机器人和第二机器人;所述第一机器人上设置有第一取箱机构,所述第二机器人上设置有第二取箱机构;
所述第一机器人可搬运货箱尺寸在第一尺寸范围内的货箱;所述第二机器人可搬运货箱尺寸在第二尺寸范围内的货箱;
所述控制器配置为,响应于货箱搬运请求,在确定所述货箱搬运请求所要搬运的目标货箱的尺寸在所述第一尺寸范围内的情况下,向所述第一机器人发送第一搬运指令;在确定所述货箱搬运请求所要搬运的目标货箱的尺寸在所述第二尺寸范围内的情况下,向所述第二机器人发送第二搬运指令;
所述第一机器人配置为,响应于所述第一搬运指令,利用所述第一取箱机构获取并搬运所述目标货箱;
所述第二机器人配置为,响应于所述第二搬运指令,利用所述第二取箱机构获取并搬运所述目标货箱。
第二方面,本公开提供了一种机器人,所述机器人包括上述实施例中的第二机器人。
本公开提供的一种货箱搬运系统和机器人,其有益效果至少在于:
由于第一机器人和第二机器人可搬运不同尺寸范围内的货箱,在仓储作业场景中,利用上述两种机器人混合作业,取放具有多种货箱尺寸的货箱,能够提高货箱存储空间的使用率。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
图1a示出了本公开所提供的一种货箱搬运系统的示意图;
图1b示出了本公开所提供的为第一机器人和第二机器人混合作业的应用场景示意图;
图2示出了本公开所提供的第一机器人的结构示意图;
图3示出了本公开所提供的第一机器人搬运目标货箱的流程图;
图4示出了本公开所提供的第二取箱机构的结构示意图;
图5a示出了本公开所提供的设置有第一传感器组件的第二机器人的结构示意图;
图5b示出了本公开所提供的设置有第二传感器组件的第二机器人的结构示意图;
图5c示出了本公开所提供的第二机器人的结构示意图;
图6是本公开所提供的第一机器人在使用状态下的立体结构示意图;
图6a是图6中A处的局部放大图;
图7是图6所示结构中辅助支撑装置位于伸出状态时的主视结构示意图;
图7a是图7中B处的局部放大图;
图8是图6所示结构中辅助支撑装置位于缩回状态时的主视结构示意图;
图8a是图8中C处的局部放大图;
图9是图6所示辅助支撑装置的立体结构示意图;
图10是图9所示辅助支撑装置的主视结构示意图;
图11是本公开所提供的第一机器人在使用状态下的立体结构示意图;
图12是图11所示结构的主视图;
图13是图11中辅助支撑装置的立体结构示意图;
图14图11中辅助支撑装置和升降组件两者装配体的立体结构示意图;
图15是本公开提供的第一机器人在支撑机构打开时与库存容器的结构示意图;
图16是图15中I处的局部放大图;
图17是本公开提供的第一机器人在支撑机构收纳时与库存容器的结构示意图;
图18是图17中J处的局部放大图;
图19是本公开提供的第一机器人的结构示意图;
图20是本公开提供的支撑机构处于打开状态时的结构示意图;
图21是图20中K处的局部放大图;
图22是本公开提供的支撑机构处于收纳状态时的结构示意图;
图23是图22中L处的局部放大图;
图24是本公开提供的底盘的结构示意图;
图25是本公开提供的驱动轮组件和弹性调节组件的结构示意图;
图26是本公开提供的底盘的爆炸图;
图27是本公开提供的底盘的侧视图;
图28是本公开提供的底盘越障时的示意图;
图29是本公开提供的万向轮组件及缓冲组件的分解示意图;
图30是本公开提供的搬运机器人在立架处于竖直状态时的结构示意图;
图31是本公开提供的搬运机器人在立架处于大致水平状态时的结构示意图;
图32是本公开提供的搬运机器人处于组装搬运状态下的结构示意图;
图33是本公开提供的立架的拆分结构示意图;
图34是本公开提供的立架与升降机构的部分结构示意图;
图35是本公开提供的升降机构的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合本公开实施例中附图,对本公开中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本公开的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
另外,本公开中的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以 便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。
在本文中提及的“多个或者若干个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
经研究发现,在仓储作业场景中,经常会需要搬运具有多种货箱尺寸的货箱,如果场地里使用一种机器人去搬运多种货箱尺寸的货箱,则该机器人上设置的取箱机构的取货能力需要适应多种货箱尺寸中的最大尺寸,这样必定会造成取箱机构能力的浪费,同时取箱机构的尺寸也因需要搬运最大尺寸的货箱而设置的体型较大,从而需要尺寸匹配的货箱存储空间来存储相对较小尺寸的货箱,会导致货箱存储空间浪费,货箱存储空间使用率低。
基于上述研究,本公开提供了一种货箱搬运系统,在仓储作业场景中,利用第一机器人和第二机器人混合作业的方式,取放具有多种货箱尺寸的货箱,能够提高货箱存储空间的使用率。
针对以上方案所存在的缺陷,均是发明人在经过实践并仔细研究后得出的结果,因此,上述问题的发现过程以及下文中本公开针对上述问题所提出的解决方案,都应该是发明人在本公开过程中对本公开做出的贡献。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
为便于对本公开进行理解,首先对本公开所公开的一种货箱搬运系统进行详细介绍,本公开所提供的第一机器人和第二机器人中可以包括具有一定计算能力的微控制器,在一些可能的实现方式中,上述第一机器人和第二机器人可以通过单片机控制方式来实现。
参见图1a所示,其为本公开提供的一种货箱搬运系统的示意图,该系统包括具有多种货箱尺寸的货箱(比如货箱101-1、货箱101-2、货箱101-3)、控制器102、第一机器人103和第二机器人104。第一机器人103上设置有第一取箱机构,第二机器人103上设置有第二取箱机构,上述的第一取箱机构和第二取箱机构用于获取货箱,能够实现货箱搬运。
本公开所搬运的货箱101可以为矩形货箱,货箱尺寸可以是矩形货箱的长×宽×高的尺寸,或者,还可以是矩形货箱的长边、宽边和高边这三边中任意一边长的尺寸。可以根据实际应用场景进行选择,在此不进行限定。
这里,第一机器人可搬运货箱尺寸在第一尺寸范围内的货箱,第一尺寸范围可以包括由第一尺寸阈值和第二尺寸阈值组成的范围,第二尺寸阈值大于第一尺寸阈值。第一尺寸阈值和第二尺寸阈值组成的范围可以是货箱101-1对应的货箱尺寸范围。第二机器人可搬运货箱尺寸在第二尺寸范围内的货箱,第二尺寸范围可以包括由第三尺寸阈值和第四尺寸阈值组成的范围,第四尺寸阈值大于第三尺寸阈值。第三尺寸阈值和第四尺寸阈值组成的范围可以是货箱101-2对应的货箱尺寸范围,或者可以是货箱101-3对应的货箱尺寸范围。其中,第一尺寸阈值、第二尺寸阈值、第三尺寸阈值和第四尺寸阈值可以根据管理经验或者实际需求进行安排,本公开对此不进行限定。
这里,第二尺寸阈值可以小于或等于第三尺寸阈值。
控制器102可以配置在服务器上、独立设置、设置在第一机器人或第二机器人上,用于响应操控台105发送的货箱搬运请求。
在控制器102配置在服务器的情况下,控制器102可以为在服务器上运行的、具有数据存储、信息处理能力的软件系统,可通过无线或有线与第一机器人和第二机器人、硬件输入系统、其它软件系统连接。控制器102具有处理器1021和存储器1022,存储器1022可以存储仓库中每一货箱的货箱尺寸。
在一种可能的实施方式中,在控制器102仅能提供目标货箱的尺寸范围的情况下,控制器102配置为,响应于货箱搬运请求,在确定货箱搬运请求所要搬运的目标货箱的尺寸在第一尺寸范围内的情况下,向第一机器人发送第一搬运指令;在确定货箱搬运请求所要搬运的目标货箱的尺寸在第二尺寸范围内的情况下,向第二机器人发送第二搬运指令。
其中,货箱搬运请求可以包括有目标货箱位置和/或目标货箱尺寸。
在一种可能的实施方式中,在控制器102能够提供目标货箱的具体目标货箱尺寸的情况下,控制器配置为,在确定货箱搬运请求所要搬运的目标货箱的尺寸在第一尺寸范围内的情况下,确定目标货箱的 目标货箱尺寸,并基于目标货箱尺寸生成第一搬运指令;在确定货箱搬运请求所要搬运的目标货箱的尺寸在第二尺寸范围内的情况下,确定目标货箱的目标货箱尺寸,并基于目标货箱尺寸生成第二搬运指令。
具体实施时,如图1a所示,工作人员可以通过操作台105使控制器102工作,控制器102与第一机器人103和第二机器人104进行无线通信,通过向第一机器人103发送第一搬运指令,向第二机器人104发送第二搬运指令,控制第一机器人和第二机器人混合作业,能够完成对多种货箱尺寸的货箱的搬运工作。
这里,第一尺寸范围和第二尺寸范围的大小可以根据管理经验或者实际需求进行安排,本公开对此不进行限定。
在一种可能的实施方式中,本公开为了提高仓库空间使用率,将存储货箱的货架划分为第一存储空间1061和第二存储空间1062,可以根据货物的种类和/或型号,将货物打包到不同货箱尺寸的货箱中,可以参见图1b所示,其为第一机器人和第二机器人混合作业的应用场景示意图。将第一尺寸范围的货箱存放到第一存储空间1061、第二尺寸范围的货箱存放到第二存储空间1062。
具体实施时,控制器102在基于货箱搬运请求,确定出目标货箱位置后,如果基于目标位置信息确定目标货箱在第一存储空间1061,则向第一机器人发送第一运行指令;如果基于目标位置信息确定目标货箱在第二存储空间1062,则向第二机器人发送第二运行指令。其中,第一存储空间1061可以存储货箱尺寸在第一尺寸范围内的货箱,第二存储空间1062可以存储货箱尺寸在第二尺寸范围内的货箱。第一运行指令包括第一机器人的移动路径信息;第二运行指令,包括第二机器人的移动路径信息。
具体地,第一运行指令可以为控制器102指示第一机器人按照第一移动路径获取并搬运存储在第一存储空间1061的目标货箱;第二运行指令可以为控制器102指示第二机器人按照第二移动路径获取并搬运存储在第二存储空间1062的目标货箱。
这里,工作人员可以通过操作台105使控制器102工作,控制器102与第一机器人103和第二机器人104进行无线通信,根据目标货箱位置为第一机器人103和第二机器人104规划移动路径,其中,第一机器人可以运行在第一通道或第二通道,即第一移动路径设置在第一通道或第二通道上;第二机器人只能运行在第二通道,即第二移动路径只能设置在第二通道上,需要说明的是,第一通道的宽度值比第二通道的宽度值小,且第一通道所设置的宽度仅能通过第一机器人,能够节省仓库使用空间。进一步的,为了方便为第一机器人103和第二机器人104规划第一移动路径和第二移动路径,可以将第一通道和第二通道,划分为若干个子区域(即单元格),第一机器人103和第二机器人104逐个单元格地进行移动从而形成移动轨迹。
第一机器人103配置为,响应于第一搬运指令,利用第一取箱机构获取并搬运目标货箱。
在一种可能的实施方式中,第一机器人103上设置的第一取箱机构的取箱尺寸不可调节,则可以将第一取箱机构的取箱尺寸固定设置为大于或等于第一尺寸阈值,并且小于第二尺寸阈值,此时,第一取箱机构可以搬运货箱尺寸大于或等于第一尺寸阈值,并小于第二尺寸阈值的货箱。第一机器人在响应于第一搬运指令后,利用不可调节取箱尺寸的第一取箱机构获取并搬运目标货箱。
示例性的,第一机器人上设置的第一取箱机构的取箱尺寸为650mm×500mm×400mm,则第一机器人能够搬运650mm×500mm×400mm以下的货箱或商品,第一机器人响应于第一搬运指令,利用第一取箱机构可以搬运600mm×400mm×400mm、600mm×450mm×350mm或600mm×450mm×400mm等不同规格尺寸的货箱。
在一种可能的实施方式中,第一机器人103上设置的第一取箱机构的取箱尺寸可调节,则可以利用第一取箱机构上设置的第一伸缩臂勾取机构,搬运在第一尺寸范围内的、任意货箱尺寸的货箱,具体实施时,在第一搬运指令为第一机器人提供目标货箱的目标货箱尺寸的情况下,第一机器人配置为,响应于第一搬运指令,调整第一取箱机构的取箱尺寸与目标货箱尺寸相匹配,并利用调整后的第一取箱机构获取并搬运目标货箱。
这里,第一取箱机构包括第一伸缩臂勾取机构、第一调节机构和第三电机,第三电机与第一调节机构连接,并且第一调节机构在第三电机的驱动下,带动第一伸缩臂勾取机构沿第一机器人运动方向移动,以调节第一取箱机构的取箱尺寸。第一调节机构的具体结构可以参见下述第二调节机构的具体结构,在此不再赘述。
在一种可能的实施方式中,在第一搬运指令未曾为第一机器人提供目标货箱的目标货箱尺寸的情况下,第一机器人还可以通过第三传感器组件检测目标货箱的目标货箱尺寸,完成目标货箱的获取和搬运的任务。具体实施时,第一取箱机构上还可以设置有第三传感器组件,第一机器人配置为,响应于第一搬运指令,运行至目标货箱的取箱位置处,此时,可以利用第三传感器组件采集目标货箱的目标货箱尺寸,并基于目标货箱尺寸调整第一取箱机构的取箱尺寸与目标货箱尺寸相匹配,并利用调整后的第一取箱机构获取并搬运目标货箱。其中,第三传感器组件的设置位置可以参见下述第一传感器组件的设置位置,如图5a所示。
这里,第一取箱机构的结构可以参见下述第二取箱机构的结构,在此不再赘述。参见图2所示,其为第一机器人搬运目标货箱的流程图,在一种可能的实施方式中,第一机器人上还设置有第四传感器组件,第一机器人在已知目标货箱的目标货箱尺寸的情况下,还可以利用第四传感器组件采集到的目标货箱的货箱实际尺寸校验目标货箱尺寸是否与货箱实际尺寸相匹配。具体实施时,第一机器人在调整第一取箱机构的取箱尺寸与目标货箱尺寸相匹配后,基于第四传感器组件采集的货箱校验尺寸,判断货箱校验尺寸与目标货箱尺寸是否相匹配;如果相匹配,则利用调整后的第一取箱机构获取并搬运目标货箱;如果不相匹配,则利用货箱校验尺寸调整第一取箱机构,在确定第一取箱机构的取箱尺寸与货箱校验尺寸相匹配的情况下,利用调整后的第一取箱机构获取并搬运目标货箱。其中,第四传感器组件的设置位置可以参见下述第二传感器组件的设置位置,如图5b所示。
上述,第三传感器组件和第四传感器组件可以为能够测距离的传感器组件,比如视觉传感器或深度传感器等,具体传感器类型在此不进行具体限定。
在一种可能的实施方式中,第一机器人103配置为,响应于第一运行指令,并沿第一运行指令指示的规划路径移动到取箱位置处获取并搬运目标货箱。
参见图3所示,其为第一机器人的结构示意图。第一机器人包括第一机器人本体31、第一提升门架32和第一暂存机构33;第一取箱机构设置在第一提升门架32上,第一提升门架32设置在第一机器人本体的中轴线上;第一提升门架32包括第三导轨;第一取箱机构34与第三导轨滑动连接,可沿第三导轨滑动;第一暂存机构33设置在第一提升门架32的远离第一取箱机构34的一侧;第一取箱机构34在获取到目标货箱之后,将目标货箱放置于第一暂存机构33上。
第二机器人104配置为,响应于第二搬运指令,利用第二取箱机构获取并搬运目标货箱。
这里,在第二取箱机构的取箱尺寸不可调节的情况下,可以将第二取箱机构的取箱尺寸设置为大于或等于第三尺寸阈值,并且小于第四尺寸阈值,此时,第二机器人能够获取到货箱尺寸大于或等于第三尺寸阈值,并小于第四尺寸阈值的货箱。
在一种可能的实施方式中,在第二取箱机构的取箱尺寸可调节的情况下,第二机器人104配置为,响应于第二搬运指令,调整第二取箱机构的取箱尺寸与目标货箱尺寸相匹配,并利用调整后的第二取箱机构获取并搬运目标货箱。参见图4所示,其为第二取箱机构的示意图。
这里,由于第二取箱机构的取箱尺寸可以调节,因此,可以利用第二取箱机构上设置的第二伸缩臂勾取机构,搬运在在第一尺寸范围内的、任意货箱尺寸的货箱。在第二取箱机构上包括第二伸缩臂勾取机构、第二调节机构和第一电机,第一电机与第二调节机构连接,并且第二调节机构在第一电机401的驱动下,带动第二伸缩臂勾取机构沿第二机器人运动方向移动,以调节第二取箱机构的取箱尺寸。
具体地,该第二调节机构可以包括第一皮带组件和第一导轨403,第一皮带组件包括第一皮带402-1和第一带轮402-2,第一皮带402-1上设置有驱动块404;第二伸缩臂勾取机构与驱动块404固定连接,第二伸缩臂勾取机构包括移动座405-1和插取部件405-2,插取部件405-2设置在移动座405-1上,移动座405-1滑动设置在第一导轨403上。第一电机401设置在第一皮带组件的一端,第一带轮402-2在第一电机401的带动下旋转,第一皮带402-1在第一带轮402-2的带动下带动第二伸缩臂勾取机构移动,以调节第二取箱机构的取箱尺寸。
另外,在第二取箱机构上还设置有第二电机406和第二皮带组件,其中插取部件405-2固定连接在第二皮带组件中的第三皮带上;第二皮带组件中的第三皮带设置在移动座405-1上;第二皮带组件中的第三皮带在第二电机406的驱动下带动插取部件405-2移动,以获取目标货箱。
具体地,第二皮带组件包括第二皮带407-1、第二带轮407-2、滑键轴407-3、滑键母407-4、第三 皮带407-5和第三带轮407-6。第二带轮407-2连接第二电机406和滑键轴407-3,第三带轮407-6通过滑键母407-4与滑键轴407-3相连,同时固定安装在移动座405-1上,第三皮带407-5与插取部件405-2固定连接,在第二电机406的驱动下,第二皮带407-1带动滑键轴407-3转动,滑键轴407-3带动第三带轮407-6转动,进而带动第二伸缩臂勾取机构伸缩,能够完成获取目标货箱的任务。
在另一种可能的实施方式中,第二调节机构可以包括有丝杠组件,其中,丝杠组件包括有螺杆和螺母,第二伸缩臂勾取机构设置在螺母上;螺杆套接在螺母上。第一电机设置在丝杠组件的一端,螺杆在电机的带动下旋转,螺母在螺杆带动下沿螺杆移动,第二伸缩臂勾取机构在螺母带动下移动,以调节第二取箱机构的取箱尺寸。
在一种可能的实施方式中,可以参见图5a所示,其为设置有第一传感器组件的第二机器人的结构示意图。在第二搬运指令未曾为第二机器人提供目标货箱的目标货箱尺寸的情况下,第二机器人还可以通过第一传感器组件51检测目标货箱的目标货箱尺寸,完成目标货箱的获取和搬运的任务。具体实施时,第二取箱机构52上可以设置有第一传感器组件51;第二机器人配置为,响应于第二搬运指令,运行至目标货箱的取箱位置处,利用第一传感器组件51采集目标货箱的目标货箱尺寸,并基于目标货箱尺寸调整第二取箱机构52的取箱尺寸与目标货箱尺寸相匹配,并利用调整后的第二取箱机构52获取并搬运目标货箱。
在一种可能的实施方式中,可以参见图5b所示,其为设置有第二传感器组件的第二机器人的结构示意图。第二机器人还可以设置有第二传感器组件54;第二机器人在已知目标货箱的目标货箱尺寸的情况下,还可以利用第二传感器组件54采集到的目标货箱的货箱实际尺寸校验目标货箱尺寸是否与货箱实际尺寸相匹配。具体实施时,第二机器人在调整第二取箱机构52的取箱尺寸与目标货箱尺寸相匹配后,基于第二传感器组件54采集的货箱校验尺寸,判断货箱校验尺寸与目标货箱尺寸是否相匹配;如果相匹配,则利用调整后的第二取箱机构52获取并搬运所述目标货箱;如果不相匹配,则利用货箱校验尺寸调整第二取箱机构52,在确定第二取箱机构52的取箱尺寸与货箱校验尺寸相匹配的情况下,利用调整后的第二取箱机构52获取并搬运所述目标货箱。
上述,第一传感器组件和第二传感器组件可以为能够测距离的传感器组件,比如视觉传感器或深度传感器等,具体传感器类型在此不进行具体限定。
在一种可能的实施方式中,第二机器人104配置为,响应于第二运行指令,并沿第二运行指令指示的规划路径移动到取箱位置处获取并搬运目标货箱。
需要说明的是,第二伸缩臂勾取机构伸缩方向与第二机器人运动方向垂直。可以参见图5c所示,其为第二机器人的结构示意图。第二取箱机构设置在第二提升门架53上,第二提升门架53设置在第二机器人本体55的中轴线上,第二提升门架53包括第二导轨;第二取箱机构52与第二导轨滑动连接,第二取箱机构52在同步带传动组件,或者链条传动组件,或者齿条传动组件的带动下,可沿第二导轨滑动。
这里,第二机器人还可以设置有多个第二暂存机构;第二暂存机构设置在第二提升门架的远离第二取箱机构的一侧;第二取箱机构在获取到目标货箱之后,将目标货箱放置于所述第二暂存机构上。
通过上述系统,可以知道本公开在仓储作业场景中,利用第一机器人和第二机器人混合作业的方式,取放具有多种货箱尺寸的货箱,能够提高货箱存储空间的使用率。
在一种可能的实施方式中,第一机器人和第二机器人中的每一者包括底盘、门架、升降组件和至少两个辅助支撑装置。第一机器人中的门架为第一提升门架,第一机器人本体包括底盘;第二机器人中门架为第二提升门架,第二机器人本体也包括底盘。
以第一机器人103为例,参见图6,该图是本公开所提供的第一机器人在使用状态下的立体结构示意图。第一机器人103包括第一机器人本体31、第一提升门架32、升降组件35、第一取箱机构34,第一机器人本体31包括底盘311。其中,底盘311具体可以为AGV或者其它行走机器人的主要部件,其上配置有导航系统、行走系统等功能元件,其包括车轮、悬挂等组件,底盘311作为其他组件的承载基体,可使第一机器人完成在地面上的各种行进、转向等运动,以使第一机器人行走于料架6之间的巷道内。
升降组件35安装于第一提升门架32上,并且在其自身驱动元件的驱动力下可以沿着第一提升门架32的延伸方向移动。第一取箱机构34与升降组件35连接,第一取箱机构34可通过其自身配置的驱动 元件驱动抱叉伸出和收回,以完成不同货架层的料箱存取动作。为了便于更好地理解第一机器人的结构,请一并结合图7和图8,其中,图7是图6所示结构中辅助支撑装置位于伸出状态时的主视结构示意图,图8是图6所示结构中辅助支撑装置位于缩回状态时的主视结构示意图。
继续参见图6至图8,两个辅助支撑装置7受控于各自的驱动组件,并分别设置在第一提升门架32相对的两侧,这两个辅助支撑装置7被构造为相对于第一提升门架32伸出至与第一提升门架32对应侧的料架6相抵或分离。为了便于更好地理解辅助支撑装置7的具体结构及其工作原理,请一并参见图6a、图7、图7a、图8和图8a,其中,图6a是图6中A处的局部放大图,图7a是图7中B处的局部放大图,图8a是图8中C处的局部放大图。
在一种可能的实施方式中,参见图9,该图是图6所示辅助支撑装置7的立体结构示意图。本实施方式中,辅助支撑元件71包括固定基座70,以及通过伸缩机构以可伸缩的方式连接在固定基座70上的支撑元件71,其中伸缩机构受控于驱动组件78且被构造为驱动支撑元件71相对于固定基座70移动至与对应侧的料架6相抵或分离。为了便于更好地理解辅助支撑装置7的结构,请一并参见图10,该图是图9所示辅助支撑装置7的主视结构示意图。
其中,固定基座70具体为方形板,其通过螺纹连接或粘接等方式固定连接在第一提升门架32的侧壁上,支撑元件71与固定基座70形状相同,支撑元件71通过伸缩机构以伸缩的方式连接在固定基座70上,在驱动组件78的作用下伸缩机构带动支撑元件71向远离或靠近支撑元件71移动。
需要说明的是,本实施方式中固定基座70固定在第一提升门架32上,其固定位置可以为沿第一提升门架32延伸方向的下部区域、中部区域或上部区域。当然,固定基座70也可以设置在升降组件35或第一取箱机构34上,使其可以随升降组件35到达第一提升门架32延伸方向的任意位置。
伸缩机构包括剪叉单元,剪叉单元包括交叉布置且在交叉点位置铰接在一起的第一连杆机构和第二连杆机构。其中,第一连杆机构的一个端部与固定基座70铰接,另一个端部以可滑动的方式活动连接在支撑元件71上;第二连杆机构的一个端部与支撑元件71铰接,另一个端部以可滑动的方式活动连接在固定基座70上。
详细地,第一连杆72机构包括平行设置的两个第一连杆72,第二连杆73机构包平行设置的两个第二连杆73,其中,两个第一连杆72的相同端铰接在同一铰接轴上,两个第二连杆73的相同端铰接在同一铰接轴,同侧的第一连杆72和第二连杆73交叉且铰接在一起。
更为详细地,两个第一连杆72的下端均铰接在第一下铰接轴74上,两个第一连杆72的上端分别铰接在同轴设置的两个第一上铰接轴75上,而这两个第一上铰接轴75均以可滑动的方式活动连接在支撑元件71上,支撑元件71上开设有两个长条形孔7a,两个第一上铰接轴75分别贯穿两个长条形孔7a并且沿该长条形孔7a相对于支撑元件71上下滑动。
同样,两个第二连杆73的下端分别铰接在同轴设置的两个第二下铰接轴76上,两个第二下铰接轴76固定或可转动的连接在支撑元件71上;两个第二连杆73的上端均铰接在第二上铰接轴77上,第二上铰接轴77以可滑动的方式活动连接在固定基座70上,具体地,该固定基座70上也开设有两个长条形孔7a,第二上铰接轴77贯穿者两个长条形孔7a并且可在外力作用下沿该长条形孔7a滑动。
驱动该伸缩机构的驱动组件78包括丝杆推杆电机,丝杆推杆电机的机壳固定连接在固定基座70上,其驱动轴与第二上铰接轴77固定连接,控制电机正转或反转即可使其驱动轴带动第二上铰接轴77沿长条形孔7a上下滑动。
具体地,当推杆丝杆电机正转时,第二上铰接轴77沿长条形孔7a向上滑动,此时剪叉单元的第一连杆机构和第二连杆机构回缩,继而使固定基座70和支撑元件71两者沿逐渐靠近彼此的方向运动,也就是第一机器人整体位于图3中工作状态,即辅助支撑装置7相对于第一提升门架32位于缩回状态,其支撑元件71并未与对应侧的料架6相抵,此时辅助支撑装置7没有提到支撑作用。
反之,当推杆丝杆电机反转时,第二上铰接轴77沿与之对应的长条形孔7a向下滑动,此时剪叉单元的第一连杆机构和第二连杆机构扩张,从而使固定基座70和支撑元件71两者沿逐渐远离彼此的方向运动,也即第一机器人整体位于图2中工作状态,即辅助支撑装置7相对于第一提升门架32位于伸出状态,其支撑元件71伸出至与对应侧的料架6相抵,此时辅助支撑装置7利用相对侧的两个料架6支撑第一提升门架32,防止其晃动。
在一种可能的实施方式中,第一机器人的结构基本上与上述实施方式相同,两者的主要区别在于辅助支撑装置7的具体结构不同,为了保持文本简洁,下面将结合说明书附图11至图14,来详细地说明本实施方式中辅助支撑装置7的具体结构,其中与前文实施方式相同的部分不再赘述。需要说明的是,图11至图14中除了辅助支撑装置7外,其他功能组件的附图标记与上述实施方式的附图(图6至图10)中的附图标记相同。
参见图11至图13,其中,图11是本公开所提供的第一机器人在使用状态下的立体结构示意图;图12是图11所示结构的主视图;图13是图11中辅助支撑装置7的立体结构示意图。
首先参见图13,本实施方式中,辅助支撑元件71'包括固定基座70',以及通过伸缩机构以可伸缩的方式连接在固定基座70'上的支撑元件71',其中伸缩机构受控于驱动组件77'且被构造为驱动支撑元件71'相对于固定基座70'移动至与对应侧的料架6相抵或分离。
其中,固定基座70'包括基板700'以及固定连接在基板700'下板面的后立板701'、左侧板702'和右侧板703',并且后立板701'和左侧板702'之间形成导向槽704'。支撑元件71'具体为一个四棱柱杆,该支撑元件71'在驱动组件77'作用下被驱动伸缩机构从导向槽704'伸出或者回缩至导向槽704'内,继而实现支撑元件71'相对于固定基座70'运动至与对应侧的料架6相抵或分离的目的。
本实施方式中,固定基座70'的基板700'固定在升降组件35的下板面,以使支撑元件71'在回缩状态下位于第一机器人的宽度范围内。在另一些实施方式中,该固定基板700'也可以固定连接在第一提升门架32的沿其延伸方向的下部区域、中部区域或上部区域,只要保证辅助支撑装置7'在缩回状态下位于第一机器人的宽度范围内,而其伸出时能从第一机器人的宽度方向伸出即可。需要说明的是,第一机器人的宽度是指其所在两个料架之间垂直距离上的尺寸。
另外,本实施方式中辅助支撑装置7'连接在升降组件35上,其可以随升降组件35沿中第一提升门架32的延伸方向上移动,从而可以在第一提升门架32的任意位置与对应侧料架6相抵提到支撑作用,辅助支撑装置7'的辅助功能灵活,可以满足不同位置的支撑需求。为了便于更好理解辅助支撑装置7'与升降组件35的位置及装配关系,请一并参见图14,图14是图11中辅助支撑装置和升降组件两者装配体的立体结构示意图。
继续参见图13,伸缩机构包括受控于驱动组件77'的丝杆螺母传动机构,丝杆螺母机构传动机构被构造成在驱动组件77'作用下驱动支撑元件71'相对于固定基座70'移动至与对应侧的料架6'相抵或分离。
详细地,丝杆螺母传动机构的丝杆72'通过轴承等结构以可转动的方式连接在固定基座70'的左侧板702'和右侧板703'上,其螺母部分包括相互固定连接的螺母块73'和滑块74',螺母块73'位于左侧板702'和右侧板703'之间并且与丝杆72'螺纹连接,滑块74'上开设有滑槽,基板700'上固定连接有沿丝杆72'轴向延伸的滑轨75',滑块74'通过滑槽和滑轨75'滑动连接,滑块74'又与支撑元件71'固定连接。当然,也可以是,支撑元件71'通过导轨组件与基板700'导向配合在一起,丝杆72'螺纹连接的螺母块73'直接与支撑元件71'连接在一起。
驱动组件77'包括电机,电机的机壳固定连接在右侧板703'上,其电枢轴用于驱动丝杆72'转动,控制电机的电枢轴的转向即可实现螺母块73'相对于丝杆72'的沿向左或向右方向上的滑动,继而使滑块74'带动支撑元件71'由固定基座70'的导向槽704'伸出或缩回至固定基座70'的导向槽704'内。
在本公开一个实施方式中,为了提高辅助支撑装置7'支撑料架6的稳定性,本实施方式中在支撑元件71'的端部铰接有抵接板76',具体地,支撑元件71'开设了安装槽,抵接板76'的一个端部插入安装槽内并通过铰接轴与支撑元件71'铰接,该抵接板76'的抵接面成T字型结构,其竖直部插入安装槽内。
抵接板76'具有第一位置和第二位置:在第一位置时,抵接板76'被收纳且预压紧在固定基座70'的导向槽704'内,抵接板76'与支撑元件71'的延伸方向保持一致;在第二位置时,抵接板76'与固定基座70'的导向槽704'脱离,抵接板76'在弹性恢复力下转动至与支撑元件71'呈预定角度。
在本公开一个实施方式中,抵接板76'可通过扭簧和支撑元件71'弹性连接,并且在第二位置时,在扭簧的弹性力作用下使抵接板76'与支撑元件71'呈90°角度设置。
为了简化辅助支撑装置7'整体结构,固定基座70'上位于导向槽704'的开口端还设置了倾斜压板705',该倾斜压板705'被构造成当支撑元件71'缩回至固定基座70'的导向槽704'中时,用于与抵接板 76'接触以将抵接板76'推到。该倾斜压板705'相对于导向槽704'的开口端向外侧延伸。
前文中结合附图详细地说明了两个实施例方式中辅助支撑装置的具体结构及其工作原理。即当第一机器人达到两个目标料架6的巷道内后,如果需要高位取放料箱,则控制两个辅助支撑装置伸出至分别与对应侧的两个料架6相抵,然后再控制升降组件35带动第一取箱机构34到达目标位置取放料箱,可防止第一提升门架32晃动。在此过程中,如何精准控制辅助支撑装置的支撑元件的伸出距离,以使辅助支撑元件伸出时恰能与对应侧料架6相抵,这是本领域技术人员需要考虑的技术问题。
为此,上述实施方式所提供的第一机器人至少一者还包括距离检测传感器,该距离检测传感器被配置为用于检测第一机器人至料架6的距离信息,两个辅助支撑装置被配置为根据距离检测传感器检测的距离信息伸出相应的距离。
比如,该距离检测传感器具体为红外线距离传感器等测距元件,在一些实施方式中,第一提升门架32两侧都设置了距离检测传感器,这些距离检测传感器分别检测每个辅助支撑装置与各自对应侧的料架6之间的距离信息,两个辅助支撑元件根据检测到的与对应侧的料架6的距离信息伸出相应的距离恰与料架6相抵。
而在另一些实施方式中,该距离检测传感器设置在第一提升门架32的其中一侧,其用于检测第一提升门架32该侧至与该侧对应一侧料架6之间的距离,即检测第一提升门架32该侧至与第一提升门架32该侧对应一侧料架6之间的距离。并且,第一机器人还包括计算单元,该计算单元被配置为用于基于相邻两个料架6之间的距离、所述第一机器人的宽度、距离检测传感器检测的距离信息来确定第一提升门架32另一侧至其对应侧料架6之间的距离。在该实施方式中,邻两个所述料架之间的距离、第一机器人的宽度均是固定值,可以预先储存在相应的存储单元中。其中,第一机器人的宽度是相对的概念,其可以是第一机器人最宽位置的宽度,也可以是门架的宽度,还可以是第一机器人上其它参考位置的宽度,在此不再具体说明。
还有一些实施方式中,第一机器人还包括检测单元和控制单元,其中,检测单元被配置为用于检测辅助支撑装置的驱动组件的电流参数,控制单元接受检测单元获得的电流参数,当电流参数大于阈值时,控制单元发出控制驱动组件停止驱动的指令。
也就是说,控制单元内预设的该电流阈值是保证辅助支撑装置的驱动组件(电机等)不受外部阻力时正常工工作时的电流值,如果驱动组件的实际电流大于该电流值,则说明驱动组件受到了外力,即辅助支撑元件和对应侧料架6相抵,此时控制驱动组件停止驱动。
还有一些实施方式中,第一机器人包括接近开关或压力开关等检测开关,该检测开关设置在辅助装置装置上用于相应料架6接触的位置,比前一个实施方式中支撑元件71的抵接面上或者是后一个实施方式中抵接板76'的抵接面上,并且该检测开关被配置为当辅助支撑元件伸出至与对应侧料架6接触时被触发,用于发出控制驱动组件停止驱动的电信号。
为了保证辅助支撑装置能准确地与料架6相抵,可以择一使用或者组合使用上述几个实施方式的技术方案,本领域技术人员可以根据实际需要选定即可,本文在此不再赘述。
另外,需要说明的是,前文实施方式中第一机器人均包括两个辅助支撑装置,这两个辅助支撑装置相对于第一提升门架32的伸缩方向恰好相反,从而使一者与第一提升门架32右侧的料架6相抵,另一者与第一提升门架32左侧的料架6相抵。可以理解,在另一些实施方式中第一机器人可以包括两个以上的辅助支撑装置,即辅助支撑装置的数量可以为大于2的整数个。
可以理解的是,本公开的第二机器人也包括至少两个辅助支撑装置,第二机器人的具体结构参见前文第一机器人的描述,此处不再赘述。
在一种可能的实施方式中,第一机器人和第二机器人中的每一者包括每一者包括底盘、设置于所述底盘上的门架,第一取箱机构或所述第二取箱机构可升降地设置于门架上,门架的相对两侧均设置有支撑机构。
支撑机构被配置为当第一取箱机构或第二取箱机构升高至设定高度后被触发打开,以使门架两侧的支撑机构分别支撑于机器人(第一机器人或第二机器人)两侧的库存容器上。第一机器人中的门架为第一提升门架,第一机器人本体包括底盘;第二机器人中门架为第二提升门架,第二机器人本体也包括底盘。
可以理解的是,在仓储作业场景中,待搬运的货箱放置在库存容器107上,运行通道位于两个间隔的库存容器107之间,库存容器107包括沿竖向方向间隔设置的多个隔层1071,每个隔层1071上沿长度方向间隔设置多个货箱存放位,每个货箱存放位可以设置一个货箱或沿纵深方向设置若干个货箱,货箱内部可以设置一种或多种货品。库存容器107的具体结构可以参考现有技术进行设置,且库存容器107上的隔层1071数量和每个隔层1071的高度可以根据需求进行设置。在本公开中,库存容器可以为货架、料架等;也可以为货箱。
下面以第一机器人103为例进行描述。
如图15-图19所示,第一机器人103包括底盘311、第一提升门架32、第一取箱机构34及支撑机构8。底盘311具备自主移动功能,第一提升门架32竖直设置于底盘311上,第一取箱机构34可竖直移动地设置于第一提升门架32上,以对不同高度的货箱进行取放;第一提升门架32的相对两侧均设置有支撑机构8,且支撑机构8被配置为当第一取箱机构34升高至设定高度后被触发打开,以使第一提升门架32两侧的支撑机构8分别支承于第一机器人103相对两侧的库存容器107上。
本实施方式提供的第一机器人103,通过设置能够在第一取箱机构34升高设定高度后被触发打开的支撑机构8,可以使第一取箱机构34在取放库存容器107上的高层货箱时,第一提升门架32可以由两侧的库存容器107辅助支撑,避免因第一取箱机构34的重心抬高而导致第一提升门架32和第一取箱机构34晃动等问题,提高第一取箱机构34对货箱的取放稳定性和安全性。
支撑机构8具有能够支承于库存容器107上的打开状态和收纳于第一提升门架32的收纳状态,优选地,第一取箱机构34能够在升降至经过设定高度时致动支撑机构8,以使支撑机构8在收纳状态和打开状态之间切换。该种设置,能够避免采用检测装置检测第一取箱机构34的位置及避免采用驱动装置驱动支撑机构8在打开位置和收纳位置之间切换,支撑机构8采用纯机械式结构,成本较低。
在其他实施方式中,也可以是通过位置检测装置检测第一取箱机构34的位置,且设置驱动支撑机构8进行状态转换的驱动装置,驱动装置与位置检测装置电性连接,以使驱动装置能够根据位置检测装置的检测信号控制支撑机构8的运行。
为方便描述,以图19所示方向建立XYZ坐标系,其中Z方向为竖直方向,XY平面为水平面,且X方向为第一方向,Y方向为第二方向,X、Y和Z满足右手坐标法则。且可以理解的是,图15所示的XYZ坐标系为第一机器人103的局部坐标系。
底盘311包括机体和设置于机体上的驱动轮机构,驱动轮机构包括位于机体底部的驱动轮和位于机体内部且驱动驱动轮转动的驱动单元,驱动轮机构可以但不限定为差速驱动。驱动轮的驱动轴沿X方向设置,即当第一机器人103直线运行时,第一机器人103沿Y方向运行。当第一机器人103沿运行通道运行至相对设置的两个库存容器107之间时,两个库存容器107分别位于第一机器人103沿Y方向的相对两侧。
第一提升门架32包括沿X方向相对且间隔设置的立柱3201,立柱3201可以采用整体式结构,也可以采用沿Z方向连接的分段式结构。优选地,两个立柱3201顶端之间连接有顶梁3202,以提高第一提升门架32的结构强度。
优选地,第一提升门架32上沿高度方向间隔设置有多个暂存隔板,第一取箱机构34从库存容器107拾取的货箱暂存至暂存隔板上。优选地,若干个暂存隔板的高度均低于设定高度,以避免第一提升门架32重心过高导致的稳定性差的问题。
第一取箱机构34位于两个立柱3201之间,且第一取箱机构34通过升降组件35与第一提升门架32连接。第一取箱机构34包括暂存托盘、伸缩叉组件、旋转组件及取箱组件,暂存托盘与第一提升门架32连接,且具有暂存货箱的暂存位;伸缩叉组件能够相对暂存托盘水平伸缩,以实现货箱在第一机器人103和库存容器107之间的传输;取箱组件用于拾取货箱;伸缩叉组件通过旋转组件与暂存托盘连接,以使伸缩叉组件能够相对第一提升门架32转动,以改变伸缩叉的伸缩方向。
即,当第一机器人103处于移动状态时,伸缩叉组件沿Y方向延伸,当第一机器人103位于两个库存容器107之间时,伸缩叉组件通过旋转组件转动至呈X方向设置,且沿X方向伸缩以实现货箱在暂存位和库存容器107中的切换;当货箱在暂存隔板和暂存位传输时,伸缩叉组件沿Y方向伸缩。
底盘311、第一提升门架32、升降组件35、第一取箱机构34及暂存隔板的结构设置可以参考现有 技术,如可以参考专利申请CN202010524246.4中的设置,本公开对支撑机构8以外的结构不做具体限制。
支撑机构8包括支撑件81,支撑件81与第一提升门架32对应侧的立柱3201转动连接,且支撑件81的转动轴线沿Y方向设置,由此可以减少支撑件81转动时与库存容器107的干涉。支撑件81具有能够支承于库存容器107上的支撑部8112,支撑件81由收纳状态展开至打开状态时,支撑部8112沿远离另一侧支撑机构8的方向向下翻转,由此可以更好地保证支撑部8112能够支承于库存容器107的隔层1071上。
支撑件81具有打开触发部8121和收纳触发部8111,当支撑机构8处于打开状态时,打开触发部8121位于第一提升门架32的内侧并凸出立柱3201的内侧面,当第一取箱机构34向上运行至经过设定高度位置时,第一取箱机构34向上顶动打开触发部8121以带动支撑件81由收纳状态转动至打开状态;当支撑机构8处于打开状态时,收纳触发部8111位于第一提升门架32的内侧并凸出立柱3201的内表面,当第一取箱机构34向下运行至经过设定高度位置时,第一取箱机构34向下抵压收纳触发部8111,以使支撑件81由打开状态转动至收纳状态。
为进一步地提高支撑机构8在打开状态时的支撑稳定性,支撑部8112上设置有增重结构,增重结构用于增加支撑部8112的重量,以使支撑机构8处于打开状态时,支撑件81的中心向靠近库存容器107一侧偏移,以使支撑部8112能够在重力作用下稳定支承于库存容器107的隔层1071上。
如图20-23所示,为简化支撑件81的结构,支撑件81呈F型结构,其包括形成F型结构竖边的主支撑臂811和分别形成F型结构两个横边的轴套部813和触发臂812。主支撑臂811与第一提升门架32转动连接,主支撑臂811的第一端形成收纳触发部8111,主支撑臂811的第二端与轴套部813连接并形成支撑部8112,轴套部813形成增重结构;触发臂812的一端与主支撑臂811连接,触发臂812的另一端形成打开触发部8121。当支撑机构8处于收纳位置时,主支撑臂811大致竖直设置,且轴套部813和触发臂812均位于主支撑臂811朝向另一侧支撑机构8的一侧,轴套部813位于触发臂812的上方。该种支撑件81的结构简单,易于加工。
可以理解的是,上述支撑件81的结构仅为示例性结构,在其他实施方式中,支撑件81还采用其他结构形式,如板状结构或其他形状的杆状结构,只要满足打开触发部8121、收纳触发部8111和支撑部8112的设置即可。
优选地,为减小第一机器人103的振动,打开触发部8121用于与第一取箱机构34接触的一面、收纳触发部8111用于与第一取箱机构34接触的一面和/或支撑部8112与库存容器107接触的一面设置有减震层,用于减小支撑件1与第一取箱机构34接触时的振动和/或减小支撑件1与库存容器107接触时的振动。
优选地,立柱3201沿Y方向的至少一侧外部设置有支撑件81,由此能够避免立柱3201干涉支撑件81的转动。在本实施方式中,立柱3201的沿Y方向的相对两侧均设置有上述的支撑件81,以提高支撑稳定性和可靠性。更为优选地,两个支撑件81之间连接有转动轴83,转动轴83沿Y方向设置。转动轴83可以与支撑件81一体成型,也可以采用焊接、插接等连接方式连接。
为提高支撑机构8与第一提升门架32的连接便利性,支撑机构8还包括安装架82,安装架82与第一提升门架32可拆卸连接,且安装架82与转动轴83转动连接。安装架82的设置,能够降低对第一提升门架32的改进成本,从而使第一机器人103能够更好地基于现有结构进行改进,通用性强,且简化第一提升门架32的加工。在其他实施方式中,也可以是立柱3201沿Y方向贯通开设轴孔,转动轴83转动穿设于轴孔中,且两个支撑件81中的至少一个与转动轴83可拆卸连接。
安装架82包括安装板部821和轴套部822,安装板部821位于第一提升门架32远离另一侧支撑机构8的一侧,且安装板部821与立柱3201可拆卸连接。轴套部822位于安装板部821远离第一提升门架32的一侧,转动轴83转动穿设于轴套部822中。该种安装架82的结构设置,能够提高安装架82与第一提升门架32和转动轴83的连接便利性,且由于安装架82位于第一提升门架32的外侧,能够减少支撑机构8与升降组件35及第一取箱机构34之间的干涉。
进一步地,转动轴83和/或轴套部822可以采用耐磨材料制成,或转动轴83与轴套部822之间可以设置耐磨衬套,以提高支撑机构8的耐磨性能和使用寿命。
优选地,安装板部821远离立柱3201的一面凸设有连接部823,连接部823沿Y方向延伸,且连接部823远离安装板部821的一测连接有轴套部822。连接部823的设置,更有利于实现轴套部123与安装板部821之间的连接。安装板部821、连接部823及轴套部822可以一体成型,也可以是连接部823与安装板部821一体成型,且轴套部822与连接部823焊接连接。
由于支撑件81采用机械式触发方式进行状态切换,为避免第一取箱机构34与打开触发部8121或收纳触发部8111脱离接触后,支撑件81还未转动至设定位置,支撑机构8上还设置有辅助致动结构84,辅助致动结构84被配置为当第一取箱机构34上升至与打开触发部8121脱离接触后带动支撑件81继续转动至打开位置,以及当第一取箱机构34下降至与收纳触发部8111脱离接触后带动支撑件81继续转动至收纳位置。
在本实施方式中,辅助致动结构84包括凸轮841和簧片842,凸轮841连接于转动轴83,簧片842连接于安装架82,凸轮841能够在随转动轴83转动时挤压簧片842,以使簧片842能够通过凸轮841向转动轴83施加促使转动轴83继续转动的弹性恢复力。
优选地,凸轮841位于转动轴83的端部并外露于轴套部822,簧片842连接于轴套部822的末端并位于转动轴83的外侧,簧片842与转动轴83的最小距离大于凸轮841凸出转动轴83外表面的最大高度,且凸轮841抵压于簧片842距离转动轴83的最近的位置时,簧片842的变形程度最大,即簧片842与转动轴83具有最小距离的位置为簧片842的最大变形位置。当第一取箱机构34与打开触发部8121或收纳触发部8111脱离接触时,凸轮841转动至越过簧片842的最大变形位置。
优选地,簧片842位于转动轴83朝向第一提升门架32的一侧,且簧片842相对安装板部821倾斜设置。
优选地,凸轮841呈对称设置的水滴状结构,其大端与转动轴83连接,小端抵压簧片842,转动轴83的中心轴线位于凸轮841的对称面上。更为优选地,凸轮841与转动轴83一体成型
凸轮841连接于转动轴83的外表面且位于轴套部822的外部,簧片842连接于轴套部822上,且簧片842与转动轴83之间的最小距离小于凸轮841凸出转动轴83的最大高度,凸轮841在随转动轴83转动的过程中能抵压簧片842,以使簧片842发生变形,且当第一取箱机构34
优选地,辅助致动结构84于转动轴83的两端各设置一个,以提高致动稳定性和可靠性。
在其他实施方式中,辅助致动结构84还可以采用扭簧,扭簧的一端与支撑件81连接,扭簧的另一端与安装架82连接。在其他另一实施方式中,辅助致动结构84可以为磁吸结构,如在转动轴83上设置第一磁吸件,如磁铁,在安装架82于转动轴83的上下两侧分别设置第二磁吸件和第三磁吸件,如金属板,通过控制第一磁吸件和第二磁吸件之间的磁吸力及设计第一磁吸件在转动轴83上的位置,能够实现当支撑件81从收纳状态转动至与第一取箱机构34脱离接触后,第一磁吸件与第二磁吸件之间的磁吸力大于第一磁吸件与第二磁吸件之间的磁吸力,当支撑件81从打开状态转动至与第一取箱机构34脱离接触后,第一磁吸件与第三磁吸件之间的磁吸力大于第二磁吸件与第一磁吸件之间的磁吸力。
进一步地,为限定支撑件81转动的角度,支撑机构8上还设置有转动限位结构。在本实施方式中,轴套部822的侧壁开设有限位口8221,限位口8221沿轴套部822周向上的两个侧壁分别为第一限位壁和第二限位壁,转动轴83上凸设有限位凸起831,限位凸起831活动穿设于限位口8221中,且当限位凸起831与第一限位壁抵接时,支撑机构8处于第一极限位置,当限位凸起831与第二限位壁抵接时,支撑机构8处于第二极限位置。第一极限位置优选为支撑机构8处于收纳状态时的位置,第二极限位置可以为支撑机构8处于打开状态时的位置。但可以理解的是,第二极限位置也可以为从打开位置继续向远离收纳位置转动后的位置。
即,在本实施方式中,转动限位结构包括限位口8221和限位凸起831,在其他实施方式中,转动限位结构还可以采用现有其他能够实现转动限位的结构,如在支撑件81朝向另一支撑件81的一侧面设置弧形限位槽,在转动轴83上凸设限位凸起,限位凸起滑动设置于弧形限位槽中,通过控制弧形限位槽对应的圆心角,控制支撑件81的转动角度。
优选地,限位口8221为沿轴套部822长度方向延伸的长条口,限位凸起831为长条板状结构,以提高结构强度和限位可靠性。
进一步地,支撑机构8相对第一提升门架32的安装位置在高度方向上可调,从而能够调节支撑机 构8的高度,以使支撑机构8能够更好地适用于不同类型的库存容器107的设置和不同高度的库存容器107的需求。能够调节两个结构在高度上连接位置的结构较为常规,如在安装板部821上开设沿竖直方向延伸的安装孔,在立柱3201上开设螺纹孔,通过调节穿设于螺纹孔和安装孔中的螺纹连接件的锁紧位置调节支撑机构8的高度等,本实施方式对此不做限制,也不再一一赘述。
在本实施方式中,每个立柱3201均设置有一个支撑机构8,但本公开并不限于此,每个立柱3201也可以沿高度方向间隔设置若干个支撑机构8,且两个立柱3201上的支撑机构8一一对应设置,每对支撑机构8均对应一个设定高度。
可以理解的是,本公开的第二机器人的第二提升门架的相对两侧也均设置有支撑机构,第二机器人的具体结构参见前文第一机器人的描述,此处不再赘述。
在一种实施方式中,本公开提供了一种可调整施加到地面压力的底盘311。本公开的第一机器人和第二机器人均包括底盘,底盘包括底盘本体、第一驱动轮组件以及弹性调节组件。
下面以第一机器人为例进行说明。
参考图24,图24是本公开提供的底盘311的结构示意图。本公开中底盘311包括:底盘本体,第一驱动轮组件以及固定脚轮3113。其中,第一驱动轮组件用于驱动底盘本体运动,而固定脚轮3113用于协助第一驱动轮组件支撑底盘本体。示例性的,第一驱动轮组件的个数为两个,两个第一驱动轮组件对称设置在底盘本体的中部两侧;固定脚轮3113具有多个,且多个固定脚轮3113对称设置在底盘本体的前后两端。
由上述结构可知,底盘311在运动时,通过第一驱动轮组件施加到地面的压力来保证底盘311在行驶时的抓地力。为此,本公开实施方式提供的底盘311还包括弹性调节组件3111,该弹性调节组件3111用于对第一驱动轮组件施加压力变化,使第一驱动轮组件针对不同的应用场景调节驱动轮对地面的正压力大小。
参考图25,图25是本公开提供的驱动轮组件和弹性调节组件的结构示意图。首先说明第一驱动轮组件与底盘本体之间的连接方式,第一驱动轮组件与底盘本体铰接并可相对底盘本体转动。具体连接时,底盘本体上设置有第二铰接座31114,第一驱动轮组件通过销轴与第二铰接座31114铰接。其中,销轴的轴线平行于地面,以使得驱动组件112在绕销轴转动时,可在高度方向上变化。
第二铰接座31114与底盘本体可采用可拆卸的固定连接,从而在第一驱动轮组件故障时可进行拆卸维修。示例性的,第二铰接座31114通过螺栓或螺钉等螺纹连接件与底盘本体固定连接。
第一驱动轮组件包括与第二铰接座31114转动连接的装配板(图中并未标示)以及固定安装在装配板上的驱动轮,该驱动轮随装配板转动,从而在转动过程中改变驱动轮对地面的正压力大小,以适应不同载荷和地面高低不平情况,行走的适应性更好。
弹性调节组件3111包括减振杆组件以及驱动机构。减振杆组件与第一驱动轮组件铰接,并用于提供第一驱动轮组件的减振;在第一驱动轮组件的个数为两个时,对应的减振杆组件的个数为两个,两个减振杆组件与两个第一驱动轮组件一一对应铰接。驱动机构用于调整减振杆组件的行程,以调整第一驱动轮组件施加到地面的正压力大小。
驱动机构包括安装板31117,安装板31117滑动装配在底盘本体上。其中,底盘本体设置有导轨31120,导轨31120的延伸方向垂直于两个第一驱动轮组件的排列方向。安装板31117滑动装配在导轨31120上,并可沿朝向第一驱动轮组件和远离第一驱动轮组件的方向往返滑动。
导轨31120可对称开设有两条或两条以上,保障安装板31117沿导轨31120稳定移动。
减振杆组件为杆状结构,减振组件的第一端与第一驱动轮组件铰接;减振杆组件的第二端与安装板31117铰接。为方面描述减振组件分别与第一驱动轮组件和安装板31117的配合,下面先说明减振杆组件的结构。
减振杆组件包括安装轴31111、弹簧31121以及滑动套31115。滑动套31115套装在安装轴31111上,并可相对安装轴31111滑动,以实现减振杆组件的伸缩。弹簧31121套装在安装轴31111,且弹簧31121的一端抵压安装轴31111远离滑动套31115的一端,另一端抵压滑动套31115。
在减振杆组件的第一端与第一驱动轮组件铰接时,安装轴31111通过铰接销轴31113与第一驱动轮组件铰接,即为安装轴31111与第一驱动轮组件的装配板的一端上部铰接,从而使安装轴31111与第一 驱动轮组件的铰接点高于第一驱动轮组件与第二铰接座31114的铰接点,使得第一驱动轮组件的驱动轮以及减振杆组件分列在第一驱动轮组件与第二铰接座31114的铰接点的两侧。在减振杆组件伸缩量变化时,可推动第一驱动轮组件相对第一驱动轮组件与第二铰接座31114的铰接点转动。例如,在滑动套31115滑动抵压弹簧31121时,弹簧31121压缩力增大过程中,因安装轴31111与第一驱动轮组件的铰接点高于第一驱动轮组件与第二铰接座31114的铰接点,从而使弹簧31121的压缩力带动第一驱动轮组件绕第二铰接座31114向下转动,从而增大驱动轮对地面正压力的增大。
在减振杆组件的第二端与安装板31117铰接时,安装板31117对称设置有第一铰接座31116,在减振杆组件为两个时,对应的第一铰接座31116的个数为两个,且两个第一铰接座31116与两个减振杆组件一一对应铰接。每个减振杆组件的滑动套31115与对应的第一铰接座31116通过销轴铰接。在安装板31117沿导轨31120滑动过程,通过安装板31117可推动滑动套31115相对安装轴31111滑动。示例性的,在安装板31117朝向第一驱动轮组件滑动时,弹簧31121被压缩,弹簧31121施加到第一驱动轮组件上的力增大;在安装板31117远离第一驱动轮组件滑动时,弹簧31121恢复部分弹性形变,施加到第一驱动轮组件上的压力减小。
驱动机构还包括有驱动装置,该驱动装置用于驱动安装板31117滑动。示例性的,驱动装置位于两个减振杆组件之间,以保证在驱动装置带动安装板31117滑动时,两个减振杆组件受力均衡。
在驱动装置驱动安装板31117相对底盘本体滑动时,驱动装置可将驱动安装板31117至少锁定在第一设定位置或第二设定位置,并且安装板31117由所述第一设定位置滑动到所述第二设定位置时,两个弹簧31121的压缩量增大。其中,第一设定位置远离第一驱动轮组件,第二设定位置靠近第一驱动轮组件。由上述描述可看出,在安装板31117靠近第一驱动轮组件时,弹簧31121被压缩,因此施加到第一驱动轮组件上的力增大。
作为一个可选的方案,驱动装置为丝杠驱动件,丝杠驱动件包括:固定设置在底盘本体上的第一固定座31119和第二固定座31122,安装板31117滑动位于第一固定座31119和第二固定座31122之间,以通过第一固定座31119和第二固定座31122限定安装板31117的滑动距离。示例性的,在安装板31117滑动到第一设定位置时,安装板31117抵压在第一固定座31119上;在安装板31117滑动到第二设定位置时,安装板31117抵压在第二固定座31122上。
丝杠驱动件还包括穿设在第一固定座31119和第二固定座31122的丝杠杆31118,丝杠杆31118可相对第一固定座31119和第二固定座31122转动。丝杠杆31118贯穿安装板31117并于安装板31117螺纹连接,在丝杠杆31118转动过程中可通过螺纹配合驱动安装板31117沿丝杠杆31118的长度方向滑动。
丝杠驱动件还包括有驱动电机31123,驱动电机31123固定装配在底盘本体上,且丝杠杆31118远离第一固定座31119的一端与驱动电机31123的输出轴连接,驱动电机31123在工作时可带动丝杠杆31118转动,安装板31117沿丝杠杆31118的长度方向滑动,并在滑动过程中带动两侧的滑动套31115相对安装轴31111滑动。
应理解,除了上述实施方式的丝杠驱动件外,驱动装置还可以采用固定设置在底盘本体上的电动推杆或气缸中的任意一种驱动装置,电动推杆和气缸的驱动端均与安装板31117固定连接。或者驱动装置还可采用任意一种直线运动的驱动装置。
由以上描述中可以看出,在驱动机构驱动减振杆组件对第一驱动轮组件施加压力的变化,使铰接在底盘本体上的第一驱动轮组件对应转动,驱动轮对地面的正压力产生变化,使底盘3111可应用于多种场景,从而极大的增强了整机稳定性,并在发生故障时,调节驱动轮对地面的正压力变小,使人工便可将机器人进行推离维修。
可以理解的是,本公开的第二机器人也包括底盘,第二机器人的具体结构参见前文第一机器人的描述,此处不再赘述。
在另一种实施方式中,本公开实施方式提供的第一机器人和第二机器人均包括底盘,底盘包括底盘组件以及支撑平台。其中,底盘组件包括铰接的两个底盘;设置在其中一个底盘上的第二驱动轮组件,以及通过缓冲组件与每个底盘连接的万向轮组件;支撑平台通过调整组件分别与两个底盘连接。
下面以第一机器人为例进行说明。首先参考图26,本公开实施方式提供的第一机器人的底盘311的主体结构包含两部分:底盘组件以及支撑平台40,其中,底盘组件作为底盘311的行走部件,在底盘 311使用时,底盘组件用于与地面接触,并驱动底盘机器人运动。支撑平台40作为底盘311的承载部件,其主要用于承载机器人的其他设备或者料箱等部件,如门架等机器人的部件。
底盘组件主要包含铰接的两个底盘,为方便描述,将其分别命名为第一底盘10和第二底盘20,第一底盘10和第二底盘20在采用铰接的方式时,可使得机器人在行走时,第一底盘10和第二底盘20之间可相对转动,从而提高底盘组件的适应能力。其中,第一底盘10和第二底盘20中的一个底盘上设置有第二驱动轮组件,在图26中示例出了第二驱动轮组件30设置在第一底盘10,但应理解,本公开实施方式对第二驱动轮组件30的设置不做限定,第二驱动轮组件30即可设置图26所示的第一底盘10,也可设置在第二底盘20,只需其位于第一底盘10和第二底盘20的铰接处即可。
另外,在每个底盘上设置有万向轮组件60,通过万向轮组件60和第二驱动轮组件30实现对每个底盘的支撑。以第一底盘10为例,第一底盘10的一端设置有第二驱动轮组件30,相对的另一端设置有万向轮组件60,通过第二驱动轮组件30以及万向轮组件60可实现对第一底盘10的支撑。
为方便设置万向轮组件60,在每个底盘上设置有用于容纳万向轮组件60的凹陷区域11。如图27中所示,第一底盘10的边角处设置有一个凹陷区域11容纳万向轮组件60,该凹陷区域11通过第一底盘10折弯形成。从而降低第一底盘10的高度,进而降低第一底盘10的重心,提高行走时的稳定性。
同理,第二底盘20也采用与第一底盘10相同的支撑方式,在此不再赘述。
支撑平台40为一个板状结构,其通过调整组件50分别与第一底盘10和第二底盘20连接。示例性的,调整组件50可为连杆组件,支撑平台40通过连杆组件分别与第一底盘10和第二底盘20铰接。其中,连杆组件包含第一连杆和第二连杆,第一连杆的两端分别与支撑平台40及第一底盘10铰接;第二连杆一端与第二底盘20固定连接,另一端与支撑平台40铰接,或者,第二连杆的一端与第二底盘20铰接,另一端与支撑平台40固定连接。上述铰接结构的铰接的轴线与第一底盘10和第二底盘20铰接的轴线平行。
第一连杆和第二连杆的个数在本公开不做具体限定,第一连杆的个数可为两个、三个等不同的个数,第二立杆的个数可为一个、两个、三个等不同的个数。但应理解,在第一连杆或第二连杆的个数为多个时,多个第一连杆呈单排排列,且排列方平行于第一底盘10和第二底盘20铰接的轴线。同理,第二连杆也采用相同的方式设置。
参考图28,如图28中所示第一底盘10和第二底盘20之间可通过铰接处相对转动(图示的双箭头),从而使得第二驱动轮组件30以及万向轮组件均与地面贴合。另外,支撑平台40通过调整组件50将承载的物品的重力传递到第一底盘10和第二底盘20上,改变了底盘311的受力,使得底盘可以更好的适应地面,降低了底盘311翘起或受力过重的情况。另外,调整组件50采用多连杆设计(第一连杆和第二连杆),使得底盘311越障能力强,在底盘311越障时,通过调整组件50的调整,使得支撑平台40的晃动角度是底盘311越障角度的一半或近似一半,同时调整组件50将支撑平台40施加的力分别作用在第一底盘10和第二底盘20,从而使得第二驱动轮组件30对地面正压力比较大,提高底盘311的抓地效果。
继续参考图26和图27,在第一底盘10和第二底盘20铰接时,为保证第一底盘10和第二底盘20适应地面,在设置万向轮组件60时,每个底盘设置有两个万向轮组件60;且两个万向轮组件60位于对应底盘的两个边角处。
此时,每个底盘均通过四个轮支撑(两个驱动轮以及两个万向轮)。为保证每个底盘的稳定性,在设置万向轮组件60时,万向轮组件60通过缓冲组件70与每个底盘连接。缓冲组件70可在竖直方向给万向轮组件60提供缓冲,从而使得万向轮组件60沿竖直方向滑动。
一并参考图29,图29中示出了万向轮组件60以及缓冲组件70的分解示意图。缓冲组件70包括缓冲垫71以及连接组件72;其中,缓冲垫71是缓冲组件70中起到缓冲效果的部件,连接组件72作为固定连接结构用于将万向轮组件60与对应的底盘连接。下面以第一底盘10及对应的缓冲垫71及万向轮组件60进行说明。
连接组件72用于将万向轮组件60与第一底盘10连接。在装配时,连接组件72与第一底盘10固定连接,万向轮组件60滑动装配在连接组件72并可沿竖直方向滑动。而缓冲垫71套装在连接组件72上,并位于万向轮组件60及对应的底盘之间。在万向轮组件60沿竖直方向滑动时,可通过缓冲垫71 提供弹力,保证其与地面的接触效果。
作为一个可选的方案,连接组件72包括螺栓723以及套装在螺栓723上的套筒721;套筒721的两端分别抵压在底盘及螺栓723的螺帽,万向轮组件60套装在套筒721,并可沿套筒721的长度方向滑动。在装配时,首先将套筒721套装在螺栓723的螺杆上,之后将螺杆穿过万向轮组件60,旋紧在第一底盘10,此时,套筒721的两端分别抵压在第一底盘10以及螺栓723的螺帽上,而万向轮组件60套装在套筒721上,并可沿套筒721的长度方向(竖直方向)滑动,从而避免万向轮组件60在滑动时受到螺杆上的螺纹影响。
作为一个可选的方案,为提高缓冲的效果,在设置连接组件72时,连接组件72还包括套装在螺栓723的螺杆上的垫圈722;垫圈722位于螺帽与万向轮组件60之间。在装配万向轮组件60时,万向轮组件60的两侧分别设置有垫圈722以及缓冲垫71,从而避免万向轮组件60与螺帽之间的硬性碰撞,提高了万向轮组件60的安全性。
示例性的,缓冲垫71和垫圈722均可采用聚氨酯材料制备而成,缓冲垫71为聚氨酯垫,垫圈722为聚氨酯垫圈,从而较好的弹性效果。
另外,为提高缓冲垫71的缓冲效果,在设置缓冲垫71时,可在缓冲垫71上设置多个镂空结构,多个镂空结构可为镂空孔、或者镂空网格等不同的结构,以使得缓冲垫71具有更好的弹性。
作为一个示例,上述的万向轮组件60可包括支撑板61,以及与支撑板61转动连接的万向轮62。在装配时,缓冲垫71位于支撑板61及对应的底盘之间,并且支撑板61套装在套筒721,支撑板61相对的两侧分别有缓冲垫71和垫圈722,以提高万向轮组件60的缓冲效果。
为保证万向轮组件60与第一底盘10之间连接的稳定性,可采用四个连接组件72将万向轮组件60与第一底盘10连接,当然也可采用三个、五个、六个等不同个数的连接组件72,在本公开实施方式中不做具体限定。
由上述描述可看出,本公开实施方式中,采用在第一底盘10和第二底盘20上分别设置两个万向轮组件60,并通过设置的缓冲组件70保证每个底盘上的四个轮(两个驱动轮和两个万向轮62)可以支撑同一片面(底盘),提高了底盘311的稳定性。
可以理解的是,本公开的第二机器人也包括上述实施方式的底盘,第二机器人的底盘的具体结构参见前文第一机器人的描述,此处不再赘述。
在一种实施方式中,本公开的第一机器人和第二机器人均包括底盘和门架,门架设置于底盘上,门架的下端与底盘转动连接,以使门架能够在竖直状态和大致水平状态件切换,第一取箱机构或第二取箱机构可升降地设置于门架上,并用于货箱在库存容器上的取放。
其中,门架包括沿高度方向拼接设置的至少两个架体分段,相邻两个所述架体分段可拆卸连接,位于最下方的所述架体分段的下端与所述底盘转动连接。
可以理解的是,第一机器人的门架为第一提升门架,第一提升门架设置于第一机器人的底盘上,第一提升门架的下端与第一机器人的底盘转动连接,第一取箱机构可升降地设置于第一提升门架上。第二机器人的门架为第二提升门架,第二提升门架设置于第二机器人的底盘上,第二提升门架的下端与第二机器人的底盘转动连接,第二取箱机构可升降地设置于第二提升门架上。
下面以第一机器人为例进行描述。如图30-图35所示,本实施方式提供的搬运机器人包括移动底盘311、第一提升门架32、第一取箱机构34及升降组件35。其中,移动底盘311具备自主移动功能;第一提升门架32设置于移动底盘311上,且第一提升门架32的一端与移动底盘311转动连接,以使第一提升门架32可以在竖直状态和大致水平状态间切换;第一取箱机构34通过升降组件35可升降地设置于第一提升门架32上,用于实现货箱在第一提升门架32及库存容器之间的传输。
本实施方式提供的搬运机器人,通过使第一提升门架32的下端与移动底盘311转动连接,可以实现第一提升门架32在大致水平状态和竖直状态间的切换,从而能够使得搬运机器人在正常使用过程中处于竖直状态,实现对货箱的搬运;在搬运机器人进行组装时,使第一提升门架32首先处于大致水平状态,将升降组件35、第一取箱机构34等结构组装在第一提升门架32上,然后将第一提升门架32一端与移动底盘311转动连接,并通过转动第一提升门架32,使第一提升门架32处于竖直状态,即可实 现对搬运机器人的组装。即,本实施方式提供的搬运机器人,能够实现第一提升门架32处于大致水平状态时,对第一提升门架32上结构的组装,避免第一提升门架32高度过高造成的高空作业,降低组装难度和组装成本,提高组装效率。
值得说明的是,上述及下文中的立架呈大致水平状态是指立架的长度方向与水平方向平行,或者立架的长度方向与水平方向之间存在一个较小的夹角,如存在20°以下的夹角。
实施方式实施方式为实现移动底盘311与第一提升门架32的转动连接,移动底盘311的上端面设置有转动连接块,转动连接块与移动底盘311可拆卸连接,且转动连接块上开设有第一轴孔。第一提升门架32的下端连接有连接块,连接块上开设有第二轴孔,第一轴孔与第二轴孔正对,且第一轴孔和第二转轴孔穿设有转轴,转轴沿第一方向延伸,第一提升门架32能够绕转轴的轴线转动。
在本实施方式中,连接块沿第二方向间隔设置有两个,转动连接块和转轴均与连接块一一对应设置,且连接块安装于第一提升门架32沿第一方向两端,以减小干涉。但可以理解的是,上述移动底盘311与第一提升门架32的转动连接结构仅为示例性结构,现有技术中任何可以实现第一提升门架32与移动底盘311转动连接,以实现第一提升门架32在竖直状态和大致水平状态间切换的结构均在本公开的保护范围内。
第一提升门架32在竖直状态和大致水平状态之间的切换可以通过人工转动第一提升门架32进行,也可以采用旋转驱动装置进行自动驱动。旋转驱动装置优选相对搬运机器人独立设置,且旋转驱动装置与第一提升门架32可拆卸连接,由此当搬运机器人组装和调试完毕后,可以将旋转驱动装置从搬运机器人上拆除,避免搬运机器人携带旋转驱动装置工作,减小搬运机器人的负载,提高旋转驱动装置的使用灵活性。
旋转驱动装置优选采用活塞缸驱动,活塞缸的缸体通过安装支架固定在搬运机器人所在地面上,以实现缸体相对移动底盘311的固定,活塞杆的末端可拆卸连接于第一提升门架32上,且活塞杆相对于水平方向呈设定夹角设置,以使活塞杆的伸长动作带动第一提升门架32转动。
值得说明的是,上述的旋转驱动装置的结构仅为示例性结构,在其他实施方式中,还可以采用现有其他的旋转驱动装置的结构形式实现第一提升门架32的转动,如采用旋转电机直连或通过传动组件连接转轴,以带动转轴转动,从而带动第一提升门架32转动等。现有能够实现长度尺寸较大的结构的转动的旋转驱动装置的结构较为常见,本公开对此不做具体限制。
为保证第一提升门架32在竖直状态下的结构稳定性,搬运机器人还包括锁定组件,锁定组件用于在第一提升门架32处于竖直状态时,锁定第一提升门架32与移动底盘311的相对位置。优选地,在本实施方式中,锁定组件包括若干个螺纹件,移动底盘311的上端面设置有螺纹孔,第一提升门架32的下端设置有连接通孔,移动底盘311与第一提升门架32通过穿设于螺纹孔和连接通孔中的螺纹件紧固连接。即,在第一提升门架32处于水平位置时,第一提升门架32与移动底盘311通过转轴转动连接,在第一提升门架32处于竖直状态后,第一提升门架32与移动底盘311通过螺纹件紧固连接。
如图30-图33所示,为进一步地降低搬运机器人的加工和组装难度,且提高对高层库存容器的取放便利性,优选地,第一提升门架32包括沿延伸方向拼接设置的至少两个架体分段321,相邻两个架体分段321之间可拆卸连接,位于最下层的架体分段321的下端与移动底盘311转动连接。该种设置,当第一提升门架32的高度较高时,能够通过将第一提升门架32设置成多个拼接的架体分段321,能够缩短每个架体分段321的长度,从而降低第一提升门架32的加工、搬运和组装难度,提高组装前搬运的便利性和稳定性。
在本实施方式中,架体分段321设置有三个,但是本公开并不限于此,架体分段321的个数可以根据第一提升门架32的总长进行具体设置。优选地,每个架体分段321的高度在1m~2m之间,方便对每个架体分段321的搬运。
进一步地,每个架体分段321沿第一方向的尺寸大于架体分段321沿第二方向的尺寸,第二方向与第一方向垂直。在若干个架体分段321未拼接时,若干个架体分段321可以沿第二方向并排设置在移动底盘311上。该种设置,可以将架体分段321等结构均放置在移动底盘311上,通过移动底盘311的移动,携带待组装的架体分段321等移动至组装工位,提高搬运机器人上的部件的搬运便利性,从而进一步地降低组装成本,提高组装效率。
为提高架架体分段321在移动底盘311上的放置便利性,移动底盘311在第一方向的尺寸小于移动底盘311在第二方向上的尺寸,更为优选地,移动底盘311在第二方向的尺寸大于1.5倍其在第一方向上的尺寸。
进一步地,移动底盘311沿第一方向相对设置的两侧侧面平行且间隔设置,且该侧面与第二方向垂直,由此能够在保证第一提升门架32的布置空间的同时,提高结构的紧凑性。移动底盘311沿第二方向相对且间隔设置的两个侧面为弧面,弧面的两端分别与两个平行侧面连接,以提高移动底盘311的外形美观性。
为提高第一提升门架32在大致水平状态下时的设置稳定性,每个架体分段321上均设置有辅助支撑部,当立架处于大致水平状态时,辅助支撑部支撑于地面,避免架体分段321的端部悬空设置造成的架体分段321容易弯曲的问题,提高架体分段321的布置稳定性,从而更加方便第一提升门架32的组装及其他结构在第一提升门架32上的安装。更为优选地,辅助支撑部与架体分段321可拆卸连接,以使得在搬运机器人组装完毕后,辅助支撑部可以从架体分段321上拆除,避免辅助支撑部的设置影响搬运机器人对货箱的搬运工作。
为方便第一取箱机构34对货箱的传输,每个架体分段321均包括沿第一方向相对且间隔设置的两个支撑架3211,两个支撑架3211之间形成有供第一取箱机构34活动的空间。位于最下部的架体分段321还包括连接于两个支撑架3211底端之间的底架3212,底架3212设置于移动底盘311上端面,以增大与移动底盘311的接触面积,提高第一提升门架32与移动底盘311的组装稳定性和连接可靠性。进一步地,位于最上端的架体分段321还包括连接于两个支撑架3211两端之间的顶架3213,顶架3213的设置,用于防止第一提升门架32过高时,两个支撑架3211之间相对晃动,进一步地提高第一提升门架32的稳定性。
在本实施方式中,优选地,每个支撑架3211均包括沿第二方向相对且间隔设置的两个支撑杆32111,两个支撑杆32111之间连接有连杆32112,且连杆32112沿支撑杆32111的长度方向间隔设置有多个。该种设置,能够在保证支撑架3211的结构强度和刚度的同时,减轻支撑架3211的重量和设置成本。优选地,支撑杆32111和连杆32112均由方钢制成,以进一步地简化加工。
为提高两个架体分段321之间的连接便利性,每个支撑架3211的端部均连接有连接座32113,连接座32113具有与拼接方向垂直的连接板,相连的两个架体分段321的拼接处的连接板抵接,且相对贴合的两个连接板通过螺栓可拆卸连接。在其他实施方式中,相邻两个架体分段321还可以采用其他的连接结构连接,如在两个支撑架3211的端部之间设置对接连杆相邻两个架体分段321之间的对接连杆相对抵接,且相邻两个架体分段321的对接连杆通过螺栓可拆卸连接。
进一步地,第一提升门架32还包括连接322,支撑杆32111为空心杆,连接322的两端分别插接于相邻两个架体分段321的支撑杆32111中,且连接322均与对应的支撑杆32111可拆卸连接。通过设置连接322,能够提高相邻两个架体分段321之间的连接稳定性和可靠性,提高两个架体分段321拼接处的结构强度和刚度。
可以理解的是,在其他实施方式中,架体分段321还可以采用其他结构,如架体分段321的两个支撑架3211的主体可以采用板状结构,只要能够实现对整个第一取箱机构34和升降组件35的安装、支撑和运行即可。
如图34和35所示,在本实施方式中,升降组件35包括升降架351和驱动传动组件,驱动传动组件能够带动升降架351沿第一提升门架32的高度方向上移动,第一取箱机构34可拆卸设置于升降架351上。该种设置,方便第一取箱机构34的安装和拆卸,能够使得第一取箱机构34整体组装完毕后,再安装于升降架351上,提高第一取箱机构34的安装效率。
优选地,驱动传动组件采用链式传动,其包括升降驱动电机352和链轮链条组件,链轮链条组件包括主动链轮353、从动链轮354及链条355。升降驱动电机352安装于升降架351上,且其驱动轴沿第一方向布置;主动链轮353与升降驱动电机352的驱动轴传动连接;从动链轮354设置有两个,两个从动链轮354分别位于主动链轮353的上下两侧,且两个主动链轮353和两个从动链轮354的中心不位于同一直线上;链条355沿第一提升门架32的延伸方向布置,且其上下两端固设在第一提升门架32上,链条355依次绕设在位于一从动链轮354、主动链轮353及另一从动链轮354上,由此,链条355在主 动链轮353和从动链轮354处形成“Ω”字形结构。
上述驱动传动组件的结构设置,能够使链条355固定安装在第一提升门架32上,从而在升降组件35运行过程中,链条355保持位置稳定的状态,即链条355可以在第一提升门架32处于水平位置时进行组装,升降驱动电机352、升降架351等可以在第一提升门架32处于竖直位置时装配在第一提升门架32的底部,降低装配难度,提高装配便利性。
优选地,链轮链条组件于两侧的支撑架3211上各设置一个(同一侧的若干架体分段321的支撑架3211形成一组支撑架),以提高升降传动的平稳性和可靠性。进一步地,升降驱动电机352通过同步传动组件256传动连接位于两侧的两个主动链轮353,以减少升降驱动电机352的个数,提高两侧的链轮链条组件的传动同步性。在其他实施方式中,升降驱动电机352也可以对应每个链轮链条组件各设置一个。
同步传动组件256包括沿第一方向水平设置的同步轴3563、套设于升降驱动电机352驱动轴上的主动带轮3561、套设在同步轴3563上的从动带轮3562及绕设在主动带轮3561和从动带轮3562上的同步带3564,两个主动链轮353分别套设于同步轴3563的两端。升降驱动电机352的转动,通过主动带轮3561传递至同步带3564,并经同步带3564及从动带轮3562传动至同步轴3563,进而带动同步轴3563转动,即带动套设在同步轴3563上的主动链轮353转动。
在本实施方式中,通过采用链式传动结构作为升降组件35,可以降低升降组件35的成本,方便升降驱动机构的组装和维护,提高升降组件35的使用寿命。在其他实施方式中,链轮链条组件还可以采用其他能够将电机的转动转换为直线运行的升降传动组件进行替代,如齿轮齿条组件、丝杠螺母组件等。
为方便驱动传动组件的安装,升降架351包括相对且间隔设置的两个安装板架3511和连接于两个安装板架3511之间的安装横架3512,升降驱动电机352安装于安装横架3512上,同步轴3563的两端转动安装于两个安装板架3511上,从动链轮354转动安装于对应侧的安装板架3511上。
安装板架3511主要包括主安装板35111,主安装板35111与第一方向垂直,且其四边向内弯折形成有折边部35112。安装板架3511还包括与主安装板35111相对且间隔设置的链轮安装座35113,链轮安装座35113与折边部35112可拆卸连接,从动链轮354转动安装于链轮安装座35113上,且从动链轮354位于链轮安装座35113与主安装板35111之间。该种设置,能够对从动链轮354进行遮挡,防止第一取箱机构34或者外部结构对从动链轮354造成磕碰。
为进一步地提高升降组件35的运行平稳性,升降组件35还包括升降导向组件,安装板架3511通过升降导向组件与对应侧的支撑架3211滑动连接。
具体地,在本实施方式中,升降导向组件包括第一导向轮组,第一导向轮组包括第一导向轮357,第一导向轮357转动安装于安装板架3511上,且第一导向轮357的转动轴线沿第二方向设置,第一导向轮357与支撑杆32111朝向另一侧支撑架3211的一面滚动接触,每一支撑架3211上均对应设置有第一导向轮组。第一导向轮357的设置,能够实现升降架351沿第一方向上的限位,且进一步地提高导向稳定性和可靠性。
优选地,主安装板35111上开设有避让口,第一导向轮357的转动轴位于主安装板35111的内侧,且第一导向轮357部分通过避让口外露于主安装板35111的外侧且与支撑杆32111滚动接触。避让口的设置,能够减小第一导向轮357的尺寸,同时,也能够减小主安装板35111与支撑杆32111之间的间距,从而增大两个主安装板35111之间的空间,提高结构紧凑性,减小与第一取箱机构34之间的结构干涉。其他实施方式中,第一导向轮357也可以直接安装于主安装板35111的外侧。
进一步地,升降导向组件还包括第二导向轮组,第二导向轮组包括至少两个第二导向轮358,第二导向轮358转动安装于安装板架3511远离另一安装板架3511的一侧,且第二导向轮358的转动轴线沿第一方向设置,至少两个第二导向轮358分别与该支撑架3211的两个支撑杆32111相对的侧壁滚动接触。第二导向轮358的设置,能够避免升降架351相对第一提升门架32沿第二方向运动,提高升降架351的运动平稳性。
进一步地,每一侧的支撑杆32111(沿支撑杆延伸方向并排设置的若干个支撑杆为一组支撑杆)均可对应设置有两个或更多个的第二导向轮358,且两侧的支撑杆32111上的第二导向轮358数量可以相同,也可以不同,且可以在支撑杆32111的延伸方向上正对设置或错位设置,只要保证每一侧的支撑杆 32111均对应设置有至少一个第二导向轮358即可。
在本实施方式中,第一导向轮357和第二导向轮358均包括安装轴、套设在安装轴上的轴承以及套设在轴承外的滚筒,滚筒与轴承的外圈固定,安装轴与轴承的内圈固定。在其他实施方式中,第一导向轮357和第二导向轮358还可以采用现有其他滚轮结构,本实施方式对此不做进一步地限制。
第一取箱机构34可拆卸安装于升降架351上,且第一取箱机构34可以采用专利申请202010524246.4中的结构,也可以采用现有其他第一取箱机构34的结构,本公开对第一取箱机构34的结构不做具体限制。
进一步地,如图30所示,搬运机器人还包括若干个第一暂存机构33,若干个第一暂存机构33沿第一提升门架32的延伸方向间隔设置,且第一暂存机构33与第一提升门架32可拆卸连接。通过设置与第一提升门架32可拆卸连接的第一暂存机构33,能够在第一提升门架32在水平状态下安装完毕后,再组装第一暂存机构33,提高组装效率。
优选地,若干个第一暂存机构33均安装于位于最下层的架体分段321上,且在初始安装状态下,第一取箱机构34和第一暂存机构33分别位于第一提升门架32的相对两侧。该种设置,能够在第一提升门架32处于竖直状态时组装第一暂存机构33,以避免第一提升门架32在进行状态切换时,对第一暂存机构33造成刮碰。且第一暂存机构33设置在下层的架体分段321上,人工直接可安装,安装更加快捷便利,同时能够降低组装完毕后的搬运机器人的整体重心。
在本实施方式中,第一暂存机构33设置有六个,在其他实施方式中,第一暂存机构33的个数和位置可以根据需求进行具体限制。
可以理解的是,本公开的第二机器人也包括上述实施方式的门架及升降组件,第二机器人的具体结构参见前文第一机器人的描述,此处不再赘述。
基于上述系统的构思,本公开还提供了一种机器人,可以认为该机器人可以包括上述实施方式中的第二机器人。该机器人结构可以参见上述第二机器人的结构,该机器人的执行的工作任务与第二机器人执行的工作任务相似,重复部分在此不再赘述。利用该机器人可以搬运不同货箱尺寸的货箱,能够提高可搬运的目标货箱所在的货箱存储空间的使用率。
以上所述,仅为本公开较佳的具体实施方式,这些具体实施方式都是基于本公开整体构思下的不同实现方式,而且本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。

Claims (26)

  1. 一种货箱搬运系统,包括:具有多种货箱尺寸的货箱、控制器、第一机器人和第二机器人;其中,
    所述第一机器人上设置有第一取箱机构,所述第二机器人上设置有第二取箱机构,所述第一机器人可搬运货箱尺寸在第一尺寸范围内的货箱,所述第二机器人可搬运货箱尺寸在第二尺寸范围内的货箱;
    所述控制器配置为,响应于货箱搬运请求,在确定所述货箱搬运请求所要搬运的目标货箱的尺寸在所述第一尺寸范围内的情况下,向所述第一机器人发送第一搬运指令;在确定所述货箱搬运请求所要搬运的目标货箱的尺寸在所述第二尺寸范围内的情况下,向所述第二机器人发送第二搬运指令;
    所述第一机器人配置为,响应于所述第一搬运指令,利用所述第一取箱机构获取并搬运所述目标货箱;
    所述第二机器人配置为,响应于所述第二搬运指令,利用所述第二取箱机构获取并搬运所述目标货箱。
  2. 根据权利要求1所述的货箱搬运系统,其中,所述第一取箱机构与所述第二取箱机构中至少一者的取箱尺寸可调节。
  3. 根据权利要求2所述的货箱搬运系统,其中,所述控制器配置为,在确定所述货箱搬运请求所要搬运的目标货箱的尺寸在所述第二尺寸范围内的情况下,确定所述目标货箱的目标货箱尺寸,并基于所述目标货箱尺寸生成所述第二搬运指令;
    所述第二机器人配置为,响应于所述第二搬运指令,调整所述第二取箱机构的取箱尺寸与所述目标货箱尺寸相匹配,并利用调整后的第二取箱机构获取并搬运所述目标货箱,和/或
    所述控制器配置为,在确定所述货箱搬运请求所要搬运的目标货箱的尺寸在所述第一尺寸范围内的情况下,确定所述目标货箱的目标货箱尺寸,并基于所述目标货箱尺寸生成所述第一搬运指令;
    所述第一机器人配置为,响应于所述第一搬运指令,调整所述第一取箱机构的取箱尺寸与所述目标货箱尺寸相匹配,并利用调整后的第一取箱机构获取并搬运所述目标货箱。
  4. 根据权利要求2所述的货箱搬运系统,其中,所述第二取箱机构上设置有第一传感器组件;
    所述第二机器人配置为,响应于所述第二搬运指令,运行至所述目标货箱的取箱位置处,利用所述第一传感器组件采集目标货箱的目标货箱尺寸,并基于所述目标货箱尺寸调整所述第二取箱机构的取箱尺寸与所述目标货箱尺寸相匹配,并利用调整后的第二取箱机构获取并搬运所述目标货箱。
  5. 根据权利要求2所述的货箱搬运系统,其中,所述第二取箱机构包括第二伸缩臂勾取机构、第二调节机构和第一电机,所述第一电机与所述第二调节机构连接,并且所述第二调节机构在所述第一电机的驱动下,带动所述第二伸缩臂勾取机构移动以调节所述第二取箱机构的取箱尺寸。
  6. 根据权利要求5所述的货箱搬运系统,其中,所述第二调节机构包括第一皮带组件;所述第一皮带组件包括第一皮带和第一带轮,所述第一皮带上设置有驱动块;所述第二伸缩臂勾取机构设置在所述驱动块上;
    所述第一电机设置在所述第一皮带组件的一端,所述第一带轮在所述第一电机的带动下旋转,所述第一皮带在所述第一带轮的带动下移动,所述驱动块在所述第一皮带带动下移动,所述第二伸缩臂勾取机构在所述驱动块带动下移动,以调节所述第二取箱机构的取箱尺寸。
  7. 根据权利要求6所述的货箱搬运系统,其中,所述第二调节机构还包括第一导轨;所述第二伸缩臂勾取机构包括移动座和插取部件;
    所述插取部件设置在所述移动座上,所述移动座设置在所述驱动块上;并且所述移动座滑动设置在所述第一导轨上。
  8. 根据权利要求5所述的货箱搬运系统,其中,所述第二调节机构包括丝杠组件;所述丝杠组件包括螺杆和螺母;所述第二伸缩臂勾取机构设置在所述螺母上;所述螺杆套接在所述螺母上;
    所述第一电机设置在所述丝杠组件的一端,所述螺杆在所述电机的带动下旋转,所述螺母在所述螺 杆带动下沿所述螺杆移动,所述第二伸缩臂勾取机构在所述螺母带动下移动,以调节所述第二取箱机构的取箱尺寸。
  9. 根据权利要求7所述的货箱搬运系统,其中,所述第二取箱机构还设置第二电机、第二皮带组件;所述插取部件固定连接在所述第二皮带组件中的第三皮带上;所述第二皮带组件中的第三皮带设置在所述移动座上;
    所述第二皮带组件中的第三皮带在所述第二电机的驱动下带动所述插取部件移动,以获取所述目标货箱。
  10. 根据权利要求5项所述的货箱搬运系统,其中,所述第二伸缩臂勾取机构伸缩方向与所述第二机器人运动方向垂直。
  11. 根据权利要求3或4所述的货箱搬运系统,其中,所述第二机器人还设置有第二传感器组件;
    所述第二机器人在调整所述第二取箱机构的取箱尺寸与所述目标货箱尺寸相匹配后,基于所述第二传感器组件采集的货箱校验尺寸,判断所述货箱校验尺寸与所述目标货箱尺寸是否相匹配;如果相匹配,则利用调整后的第二取箱机构获取并搬运所述目标货箱;如果不相匹配,则利用所述货箱校验尺寸调整所述第二取箱机构,在确定所述第二取箱机构的取箱尺寸与所述货箱校验尺寸相匹配的情况下,利用调整后的第二取箱机构获取并搬运所述目标货箱。
  12. 根据权利要求1所述的货箱搬运系统,其中,所述第二取箱机构设置在第二提升门架上,所述第二提升门架设置在第二机器人本体的中轴线上,所述第二提升门架包括第二导轨;所述第二取箱机构与所述第二导轨滑动连接,可沿所述第二导轨滑动。
  13. 根据权利要求12所述的货箱搬运系统,其中,所述第二机器人设置有多个第二暂存机构;所述第二暂存机构设置在所述第二提升门架的远离所述第二取箱机构的一侧;
    所述第二取箱机构在获取到所述目标货箱之后,将所述目标货箱放置于所述第二暂存机构上。
  14. 根据权利要求3所述的货箱搬运系统,其中,所述第一取箱机构上设置有第三传感器组件;
    所述第一机器人配置为,响应于所述第一搬运指令,运行至所述目标货箱的取箱位置处,利用所述第三传感器组件采集目标货箱的目标货箱尺寸,并基于所述目标货箱尺寸调整所述第一取箱机构的取箱尺寸与所述目标货箱尺寸相匹配,并利用调整后的第一取箱机构获取并搬运所述目标货箱。
  15. 根据权利要求1所述的货箱搬运系统,其中,所述第一机器人包括第一机器人本体、第一提升门架和第一暂存机构;所述第一取箱机构设置在所述第一提升门架上,所述第一提升门架设置在第一机器人本体的中轴线上;
    所述第一提升门架包括第三导轨;所述第一取箱机构与所述第三导轨滑动连接,可沿所述第三导轨滑动;
    所述第一暂存机构设置在所述第一提升门架的远离所述第一取箱机构的一侧;所述第一取箱机构在获取到所述目标货箱之后,将所述目标货箱放置于所述第一暂存机构上。
  16. 根据权利要求1-15中任一项所述的货箱搬运系统,其中,所述第一机器人和所述第二机器人中至少一者包括:
    底盘;
    门架,所述门架设在所述底盘上;
    升降组件,所述升降组件被配置为沿着所述门架上下移动;
    至少两个辅助支撑装置,至少两个所述辅助支撑装置受控于各自的驱动组件,并分别分布在相应机器人的相对两侧,至少两个所述辅助支撑装置被构造为相对于相应机器人伸出至与该机器人两侧的作为库存容器的料架相抵或分离。
  17. 根据权利要求16所述的货箱搬运系统,其中,所述辅助支撑装置包括固定基座,以及通过伸缩机构以可伸缩的方式连接在所述固定基座上的支撑元件;所述伸缩机构受控于所述驱动组件且被构造为驱动所述支撑元件相对于所述固定基座移动至与对应侧的所述料架相抵或分离。
  18. 根据权利要求1所述的货箱搬运系统,其中,所述第一机器人和所述第二机器人中的至少一者包括底盘、设置于所述底盘上的门架,所述第一取箱机构或所述第二取箱机构可升降地设置于所述门架上,所述门架的相对两侧均设置有支撑机构,所述支撑机构被配置为当所述第一取箱机构或所述第二取 箱机构升高至设定高度后被触发打开,以使所述门架两侧的所述支撑机构分别支撑于所述机器人两侧的库存容器上。
  19. 根据权利要求18所述的货箱搬运系统,其中,所述支撑机构具有能够支承于所述库存容器上的打开状态和收纳于所述门架的收纳状态,所述第一取箱机构和所述第二取箱机构中至少一者能够在升降至经过所述设定高度时致动所述支撑机构,以使所述支撑机构在所述收纳状态和所述打开状态之间切换。
  20. 根据权利要求1所述的货箱搬运系统,其中,所述第一机器人和所述第二机器人中的至少一者包括底盘,所述底盘包括底盘本体、第一驱动轮组件以及弹性调节组件;其中,
    所述第一驱动轮组件与所述底盘本体铰接并可相对所述底盘本体转动;
    所述弹性调节组件包括与所述第一驱动轮组件铰接的减振杆组件,所述减振杆组件用于推动所述第一驱动轮组件相对所述底盘本体转动;所述弹性调节组件还包括用于调整所述减振杆组件施加到所述第一驱动轮组件上压力的驱动机构。
  21. 根据权利要求20所述的货箱搬运系统,其中,所述驱动机构包括安装板以及驱动装置;所述安装板滑动装配在所述底盘本体上;所述驱动装置固定在所述底盘本体,并用于驱动所述安装板相对所述底盘本体滑动并可至少锁定在第一设定位置或第二设定位置;其中,
    所述减振杆组件的第一端与所述第一驱动轮组件铰接;所述减振杆组件的第二端与所述安装板铰接;在所述安装板由所述第一设定位置滑动到所述第二设定位置时,所述减振杆组件的压缩量增大。
  22. 根据权利要求1所述的货箱搬运系统,其中,所述第一机器人和所述第二机器人中的至少一者包括底盘,所述底盘包括底盘组件以及支撑平台:其中,
    所述底盘组件包括铰接的两个底盘;设置在其中一个底盘上的第二驱动轮组件,以及通过缓冲组件与每个底盘连接的万向轮组件;
    所述支撑平台通过调整组件分别与所述两个底盘连接。
  23. 根据权利要求22所述的货箱搬运系统,其中,所述缓冲组件包括缓冲垫以及连接组件;所述缓冲垫套装在所述连接组件上;
    所述万向轮组件滑动装配在所述连接组件并可沿竖直方向滑动,所述缓冲垫位于所述万向轮组件及对应的底盘之间。
  24. 根据权利要求1所述的货箱搬运系统,其中,所述第一机器人和所述第二机器人中的至少一者包括:
    底盘;
    门架,其设置于所述底盘上,所述门架的下端与所述底盘转动连接,以使所述门架能够在竖直状态和大致水平状态件切换,
    所述第一取箱机构和所述第二取箱机构中的至少一者可升降地设置于所述门架上,并用于货箱在库存容器上的取放。
  25. 根据权利要求24所述的货箱搬运系统,其中,所述门架包括沿高度方向拼接设置的至少两个架体分段,相邻两个所述架体分段可拆卸连接,位于最下方的所述架体分段的下端与所述底盘转动连接。
  26. 一种应用于权利要求1至25中任一项所述的货箱搬运系统的机器人。
PCT/CN2022/073277 2021-01-21 2022-01-21 一种货箱搬运系统和机器人 WO2022156780A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/273,521 US20240092579A1 (en) 2021-01-21 2022-01-21 Container conveying system and robot
GB2311726.0A GB2618012A (en) 2021-01-21 2022-01-21 Container conveying system and robot

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202120169819.6 2021-01-21
CN202120169819.6U CN214651060U (zh) 2021-01-21 2021-01-21 一种货箱搬运系统和机器人
CN202120509197.7 2021-03-10
CN202120509197.7U CN214932938U (zh) 2021-03-10 2021-03-10 一种搬运机器人及仓储物流系统
CN202110553883.9 2021-05-20
CN202110553883.9A CN115367012A (zh) 2021-05-20 2021-05-20 一种机器人底盘、移动搬运机器人及调整底盘的方法
CN202121304572.0 2021-06-10
CN202121304572.0U CN215361551U (zh) 2021-06-10 2021-06-10 一种机器人底盘及移动搬运机器人
CN202121532346.8U CN215286573U (zh) 2021-07-07 2021-07-07 一种搬运机器人及仓储物流系统
CN202121532346.8 2021-07-07
CN202111058253.0A CN115771688A (zh) 2021-09-09 2021-09-09 货物搬运机器人及其控制方法
CN202111058253.0 2021-09-09

Publications (1)

Publication Number Publication Date
WO2022156780A1 true WO2022156780A1 (zh) 2022-07-28

Family

ID=82548533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073277 WO2022156780A1 (zh) 2021-01-21 2022-01-21 一种货箱搬运系统和机器人

Country Status (5)

Country Link
US (1) US20240092579A1 (zh)
DE (2) DE202022002857U1 (zh)
GB (1) GB2618012A (zh)
TW (1) TWI807606B (zh)
WO (1) WO2022156780A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117429891A (zh) * 2023-05-10 2024-01-23 广州市德奥模具有限公司 一种变速箱体毛坯装箱机构
WO2024078575A1 (zh) * 2022-10-13 2024-04-18 北京极智嘉科技股份有限公司 取箱装置及物流机器人
GB2624291A (en) * 2022-09-30 2024-05-15 Ocado Innovation Ltd Systems and devices for stock management

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7297151B2 (ja) * 2020-07-03 2023-06-23 深▲せん▼怡豊自動化科技有限公司 Agv娯楽運輸工具及び接続組立体

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209192822U (zh) * 2018-11-02 2019-08-02 杭州海康机器人技术有限公司 搬运小车
CN111137808A (zh) * 2018-11-02 2020-05-12 杭州海康机器人技术有限公司 搬运小车
CN111137610A (zh) * 2019-12-26 2020-05-12 北京极智嘉科技有限公司 一种基于密集存储的货箱搬运方法及装置
CN111348362A (zh) * 2019-09-30 2020-06-30 深圳市海柔创新科技有限公司 取货控制方法、装置、搬运装置及机器人
CN111703798A (zh) * 2020-06-09 2020-09-25 北京极智嘉科技有限公司 一种搬运机器人、取箱方法、货箱上货方法及仓储物流系统
CN214651060U (zh) * 2021-01-21 2021-11-09 北京极智嘉科技股份有限公司 一种货箱搬运系统和机器人
CN214932938U (zh) * 2021-03-10 2021-11-30 北京极智嘉科技股份有限公司 一种搬运机器人及仓储物流系统
CN215286573U (zh) * 2021-07-07 2021-12-24 北京极智嘉科技股份有限公司 一种搬运机器人及仓储物流系统
CN215361551U (zh) * 2021-06-10 2021-12-31 北京极智嘉科技股份有限公司 一种机器人底盘及移动搬运机器人

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102488994B1 (ko) * 2017-11-14 2023-01-18 하이 로보틱스 씨오., 엘티디. 운반 로봇 및 운반 로봇에 기반한 픽업 방법
CN212244811U (zh) * 2020-03-09 2020-12-29 深圳市海柔创新科技有限公司 搬运机器人及具有该搬运机器人的搬运系统
CN212291487U (zh) * 2020-03-09 2021-01-05 深圳市海柔创新科技有限公司 一种立式支架
CN111409996A (zh) * 2020-05-13 2020-07-14 北京极智嘉科技有限公司 一种搬运机器人、取箱方法、货箱上货方法及仓储物流系统
CN111703799A (zh) * 2020-06-10 2020-09-25 北京极智嘉科技有限公司 一种搬运机器人、取箱方法、货箱上货方法及仓储物流系统
CN112407727B (zh) * 2020-11-20 2022-12-27 深圳市海柔创新科技有限公司 货物存放方法、装置、机器人、仓储系统和存储介质

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209192822U (zh) * 2018-11-02 2019-08-02 杭州海康机器人技术有限公司 搬运小车
CN111137808A (zh) * 2018-11-02 2020-05-12 杭州海康机器人技术有限公司 搬运小车
CN111348362A (zh) * 2019-09-30 2020-06-30 深圳市海柔创新科技有限公司 取货控制方法、装置、搬运装置及机器人
CN212197049U (zh) * 2019-09-30 2020-12-22 深圳市海柔创新科技有限公司 搬运装置及搬运机器人
CN111137610A (zh) * 2019-12-26 2020-05-12 北京极智嘉科技有限公司 一种基于密集存储的货箱搬运方法及装置
CN111703798A (zh) * 2020-06-09 2020-09-25 北京极智嘉科技有限公司 一种搬运机器人、取箱方法、货箱上货方法及仓储物流系统
CN214651060U (zh) * 2021-01-21 2021-11-09 北京极智嘉科技股份有限公司 一种货箱搬运系统和机器人
CN214932938U (zh) * 2021-03-10 2021-11-30 北京极智嘉科技股份有限公司 一种搬运机器人及仓储物流系统
CN215361551U (zh) * 2021-06-10 2021-12-31 北京极智嘉科技股份有限公司 一种机器人底盘及移动搬运机器人
CN215286573U (zh) * 2021-07-07 2021-12-24 北京极智嘉科技股份有限公司 一种搬运机器人及仓储物流系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2624291A (en) * 2022-09-30 2024-05-15 Ocado Innovation Ltd Systems and devices for stock management
WO2024078575A1 (zh) * 2022-10-13 2024-04-18 北京极智嘉科技股份有限公司 取箱装置及物流机器人
CN117429891A (zh) * 2023-05-10 2024-01-23 广州市德奥模具有限公司 一种变速箱体毛坯装箱机构
CN117429891B (zh) * 2023-05-10 2024-05-03 广州市德奥模具有限公司 一种变速箱体毛坯装箱机构

Also Published As

Publication number Publication date
GB2618012A (en) 2023-10-25
GB202311726D0 (en) 2023-09-13
DE202022002856U1 (de) 2023-10-05
DE202022002857U1 (de) 2023-10-11
TWI807606B (zh) 2023-07-01
US20240092579A1 (en) 2024-03-21
TW202229138A (zh) 2022-08-01

Similar Documents

Publication Publication Date Title
WO2022156780A1 (zh) 一种货箱搬运系统和机器人
WO2020156392A1 (zh) 一种搬运机器人
US10513394B2 (en) Method of use of a robotic frame and power transfer device
US11465840B2 (en) Handling robot
WO2020057571A1 (zh) 可移动式密集存拣装置、组合式仓储系统及其组装方法
KR20220044875A (ko) 운반 로봇 및 운반 로봇에 기반한 픽업 방법
KR20210100081A (ko) 로딩 및 언로딩 장비 및 패키지 로딩 및 언로딩 시스템
CN210883786U (zh) 一种搬运机器人
CN210794517U (zh) 一种搬运机器人
US11597598B2 (en) Handling robot
US11542135B2 (en) Handling robot
CN207632434U (zh) 用于仓库冷库的智能装卸装置
CN111731746A (zh) 一种搬运机器人及仓储物流系统
CN112758588A (zh) 一种货箱搬运系统、机器人和货箱搬运方法
CN216154654U (zh) 货物搬运机器人
KR20200061114A (ko) 승강수단이 구비된 운반 로봇
CN214651060U (zh) 一种货箱搬运系统和机器人
JP2023553949A (ja) 自動貯蔵回収システムのためのデュアルキャリッジアクセスステーションおよびその使用方法
JP2020531382A (ja) 横方向に動作する積載物取扱装置
WO2024037201A1 (zh) 一种仓储机器人
EP4368540A1 (en) Box picking apparatus and robot
CN112573060B (zh) 一种搬运机器人
CN218023498U (zh) 容器搬运设备
CN107445120B (zh) 吨包袋转载装置
WO2024088314A1 (zh) 搬运机器人及容器取放方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742259

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18273521

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 802262

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 202311726

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220121

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/11/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 22742259

Country of ref document: EP

Kind code of ref document: A1