WO2023276708A1 - 増粘剤および接着剤組成物 - Google Patents

増粘剤および接着剤組成物 Download PDF

Info

Publication number
WO2023276708A1
WO2023276708A1 PCT/JP2022/024212 JP2022024212W WO2023276708A1 WO 2023276708 A1 WO2023276708 A1 WO 2023276708A1 JP 2022024212 W JP2022024212 W JP 2022024212W WO 2023276708 A1 WO2023276708 A1 WO 2023276708A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
methacrylic resin
thickener
less
solution
Prior art date
Application number
PCT/JP2022/024212
Other languages
English (en)
French (fr)
Inventor
昂 岩田
大二郎 千葉
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to KR1020237044239A priority Critical patent/KR20240011776A/ko
Priority to JP2023531794A priority patent/JPWO2023276708A1/ja
Priority to EP22832858.9A priority patent/EP4365253A1/en
Priority to CN202280037259.6A priority patent/CN117460803A/zh
Publication of WO2023276708A1 publication Critical patent/WO2023276708A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to thickeners and adhesive compositions.
  • organic thickeners are used to adjust the viscosity of the product and improve handling.
  • thickeners using methacrylic resin compositions have high transparency and weather resistance as transparent resins, as well as affinity with alkyl cyanoacrylates, etc., and chemical resistance. is also excellent.
  • Methacrylic resin compositions are widely used as thickeners for adhesives because they rapidly dissolve in monomers while maintaining transparency.
  • cyanoacrylate adhesives in particular have high anionic polymerizability possessed by the main component, alkyl cyanoacrylate, which initiates polymerization with a slight amount of moisture or weak anions such as impurities, and strengthens various materials in a short time. can be joined to Therefore, it is used as an instant adhesive in a wide range of fields such as industrial, medical and household use.
  • cyanoacrylate adhesives Due to its high polymerizability, cyanoacrylate adhesives are transported and stored in an environment that is somewhat isolated from the outside air, such as in a closed container. However, cyanoacrylate adhesives may be handled under hot and humid conditions depending on the transportation, storage, or usage conditions, and the viscosity of cyanoacrylate adhesives increases when exposed to such conditions for a long period of time. Therefore, improvements are required.
  • cyanoacrylate-based adhesives sometimes have a peculiar odor caused by the thickening agent contained in the adhesive, and reduction of odor is also required.
  • Patent Document 1 discloses an acrylic thickener with a characteristic molecular weight distribution that is highly soluble in methyl methacrylate.
  • Patent Document 2 discloses a thickener containing a methacrylic resin that exhibits excellent stability when exposed to methyl methacrylate at 50°C/95% Rh.
  • Patent Document 3 describes that a cyanoacrylate-based adhesive composition contains a poly(meth)acrylate having a weight average molecular weight of 200,000 to 500,000 as a thickener.
  • Patent Document 1 does not describe the solubility in alkyl cyanoacrylates and the long-term storage stability when dissolved in alkyl cyanoacrylates, which easily polymerize under the influence of slight moisture or impurities.
  • Patent Document 2 provides a thickener with excellent long-term stability in methyl methacrylate by introducing a specific structure at the end of the resin. is not listed.
  • a cyanoacrylate adhesive is composed by adding various stabilizers, and there is no mention of the contribution of the acrylic thickener itself to stabilization.
  • the present inventors conducted extensive research, and surprisingly, after dissolving in ethyl cyanoacrylate, the viscosity change rate when left at 60 ° C. for 48 hours was within a specific range. Thus, the inventors have found that a thickener having excellent long-term storage stability can be obtained, and have completed the present invention.
  • a thickener comprising a methacrylic resin having a weight average molecular weight (Mw) of 85,000 to 1,500,000,
  • the viscosity (Pa s) at 25 ° C. of the ethyl cyanoacrylate solution of the methacrylic resin is ⁇ 1
  • the solution is left at 60°C for 48 hours, cooled to 25°C, and the viscosity (Pa s) of the solution at 25°C after cooling is ⁇ 2, ⁇ 1 and ⁇ 2 are 1.0 ⁇ 2/ ⁇ 1 ⁇ 5.0 satisfy (however, When the Mw of the methacrylic resin is 85,000 or more and less than 300,000, the concentration of the methacrylic resin in the solution is 20% by mass, When the Mw of the methacrylic resin is 300,000 or more and less than 800,000, the concentration of the methacrylic resin in the solution is 10% by mass, When the Mw of the methacrylic resin is 800,000 or more and 1,500,000 or less
  • the methacrylic resin contains 90 to 99.8% by mass of methyl methacrylate monomer units, 0.1 to 8% by mass of aromatic vinyl monomer units, and 0.1 to 8% by mass of acrylic acid ester monomer units.
  • the present invention can be suitably used as a thickener for adhesives, and in particular, when used as a thickener for cyanoacrylate adhesives, it suppresses the increase in viscosity and solidification during storage of the object to be thickened, and the product is improved.
  • a thickener that can improve storage stability can be provided.
  • this embodiment the form for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail.
  • the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.
  • the "methacrylic resin” contains 80% by mass or more of methyl methacrylate monomer units as monomer units, and has a weight average molecular weight (Mw) of 85,000 to 1,500. ,000.
  • the thickener of this embodiment contains at least a methacrylic resin.
  • the thickener may contain only the methacrylic resin, or may contain the methacrylic resin and other resins. It is preferable that the resin component of the thickener is only methacrylic resin.
  • the thickener may contain the methacrylic resin individually by 1 type or in combination of 2 or more types. In one example, the thickener more preferably consists of only a single methacrylic resin as the resin component.
  • the thickener can be suitably used as a thickener for adhesives, particularly as a thickener for cyanoacrylate adhesives.
  • the viscosity (Pa s) of the ethyl cyanoacrylate solution of the methacrylic resin at 25°C is defined as ⁇ 1, the solution is left at 60°C for 48 hours, cooled to 25°C, and after cooling at 25°C where ⁇ 2 is the viscosity (Pa ⁇ s) of the solution of , ⁇ 1 and ⁇ 2 satisfy 1.0 ⁇ 2/ ⁇ 1 ⁇ 5.0.
  • ⁇ ratio When ⁇ 2/ ⁇ 1 (hereinafter sometimes simply referred to as “ ⁇ ratio”) is 1.0 or more and 5.0 or less, after dissolving the thickener in alkyl cyanoacrylate, it is allowed to stand at room temperature for a long time (for example, (several months) can maintain viscosity and adhesion performance even when left unattended.
  • the temperature at which the methacrylic resin is dissolved in ethyl cyanoacrylate is preferably 50°C or higher. After dissolving the methacrylic resin, the temperature of the solution is set to 25° C. and the viscosity ⁇ 1 is measured.
  • the solution After measuring the viscosity ⁇ 1 of the solution at 25°C, the solution is heated to 60°C. Then, the solution is left at 60° C. for 48 hours, cooled to 25° C., and the viscosity ⁇ 2 of the solution at 25° C. after cooling is measured.
  • “left at 60°C for 48 hours” means that the elapsed time from placing the solution in an oven at 60°C is 48 ⁇ 1 hours.
  • the ratio of ⁇ is preferably 1.0 or more and 4.5 or less, more preferably 1.0 or more and 4.0 or less. If the ratio of ⁇ is less than 1.0, the viscosity will decrease after dissolution, and it will not function as a thickener. If the ratio of ⁇ exceeds 5.0, it may solidify during long-term storage such as several months or when the temperature rises during transportation, or the strength as an adhesive after solidification may deteriorate. .
  • the concentration of the methacrylic resin in the ethyl cyanoacrylate solution is 20% by mass when the Mw of the methacrylic resin is 85,000 or more and less than 300,000, and when the Mw of the methacrylic resin is 300,000 or more and less than 800,000, 10% by mass, and 7% by mass when the Mw of the methacrylic resin is 800,000 or more and 1,500,000 or less.
  • the Mw of the entire methacrylic resin should be measured and the above concentration determined from that Mw.
  • the methacrylic resin preferably contains 90 to 99.9% by mass of methyl methacrylate monomer units and 0.1 to 10% by mass of alkyl acrylate monomer units.
  • the methacrylic resin may or may not contain monomer units other than methyl methacrylate monomer units and alkyl acrylate monomer units.
  • the alkyl acrylate monomer unit preferably has an alkyl group with 4 or more carbon atoms.
  • alkyl acrylate monomer units having an alkyl group of 4 or more carbon atoms include acrylic acids having an alkyl group of 4 to 8 carbon atoms, such as n-butyl acrylate, sec-butyl acrylate, and 2-ethylhexyl acrylate.
  • Monomeric units derived from alkyl are preferably used.
  • the number of carbon atoms in the alkyl group of the alkyl acrylate monomer unit is preferably 4 to 8.
  • n-butyl acrylate monomer units are particularly preferred.
  • the methacrylic resin may be composed only of methyl methacrylate monomer units and alkyl acrylate monomer units having an alkyl group of 4 or more carbon atoms, or other vinyl copolymers copolymerizable with methyl methacrylate. Other monomeric units such as monomeric units may be further included.
  • Other monomeric units may be vinyl monomers copolymerizable with methyl methacrylate.
  • the alkyl group has a carbon number of 1 to 1 with respect to 100% by mass of the total monomer units constituting the methacrylic resin.
  • the mass ratio of the monomer units derived from the alkyl acrylate of 3 is preferably less than 0.1% by mass, more preferably not contained.
  • the mass ratio of the monomer unit derived from methyl methacrylate with respect to 100% by mass of the methacrylic resin is 90 to 99.9% by mass from the viewpoint of suppressing odor when dissolved (for example, when dissolved in alkyl cyanoacrylate). is preferably More preferably 95 to 99.8% by mass, still more preferably 97 to 99.8% by mass, particularly preferably 98 to 99.8% by mass.
  • the mass ratio of the alkyl acrylate monomer unit to 100 mass% of the methacrylic resin is preferably 0.1 to 10 mass%. More preferably 0.2 to 5% by mass, still more preferably 0.2 to 3% by mass, and particularly preferably 0.2 to 2% by mass. If it exceeds 5% by mass, when dissolved in an alkyl cyanoacrylate or the like, the remaining alkyl acrylate monomer and impurities derived therefrom generate a peculiar odor, which is not preferable. If it is less than 0.1% by mass, the odor-improving effect obtained by copolymerizing the alkyl acrylate monomer units is not exhibited, which is not preferable.
  • other monomer units may be copolymerized within a range that does not impair the effects of the present invention.
  • methacrylic The mass ratio of monomer units derived from other vinyl monomers copolymerizable with methyl acid is preferably 0 to 20 parts by mass, more preferably 15 parts by mass or less, and still more preferably 10 parts by mass. Below, it is 5 mass parts or less especially preferably.
  • the total mass ratio of monomer units derived from methyl methacrylate and alkyl acrylate monomer units having an alkyl group having 4 or more carbon atoms in 100 parts by mass of the methacrylic resin is preferably 80 parts by mass or more. More preferably 85 parts by mass or more, still more preferably 90 parts by mass or more, still more preferably 95 parts by mass or more, and particularly preferably 100 parts by mass.
  • the methacrylic resin preferably contains aromatic vinyl monomer units.
  • the aromatic vinyl monomer unit can improve the storage stability of the cyanoacrylate adhesive, it is speculated that the electron-withdrawing property of the aromatic group is weak and the monomer with low anionic polymerizability is incorporated.
  • the methacrylic resin preferably contains 90 to 99.9% by mass of methyl methacrylate monomer units and 0.1 to 10% by mass of aromatic vinyl monomer units.
  • the aromatic vinyl monomeric units are monomeric units derived from styrene.
  • the content of the aromatic vinyl monomer unit is 0.2% by mass or more, 0.3% by mass or more, 0.5% by mass or more, and 1.0% by mass with respect to 100% by mass of the methacrylic resin. % by mass or more, 1.5% by mass or more, 2.0% by mass or more, 2.5% by mass or more, 3.0% by mass or more, 3.5% by mass or more, 4.0% by mass or more, 4.5% by mass % or more, 5.0 mass % or more, 6.0 mass % or more, 7.0 mass % or more, 8.0 mass % or more, or 9.0 mass % or more.
  • the content of the aromatic vinyl monomer unit is 10.0% by mass or less, 9.0% by mass or less, 8.0% by mass or less, 7.0% by mass or less, based on 100% by mass of the methacrylic resin. 0% by mass or less, 6.0% by mass or less, 5.0% by mass or less, 4.5% by mass or less, 4.0% by mass or less, 3.5% by mass or less, 3.0% by mass or less, 2.5 % by mass or less, 2.0% by mass or less, 1.5% by mass or less, 1.0% by mass or less, or 0.5% by mass or less. If it exceeds 10% by mass, the production efficiency is lowered, and the residual aromatic vinyl monomer may give off a peculiar odor, which is not preferable. If it is less than 0.1% by mass, the effect of improving the storage stability when added as a thickener to a cyanoacrylate adhesive cannot be obtained, which is not preferable.
  • the methacrylic resin contains 90 to 99.9% by mass of methyl methacrylate monomer units, and at least one selected from the group consisting of alkyl acrylate monomer units and aromatic vinyl monomer units. and a total of 0.1 to 10% by mass.
  • the methacrylic resin has a weight average molecular weight of 85,000 to 1,500,000 as measured by gel permeation chromatography (GPC). If Mw is less than 85,000, the amount of thickening agent used for making syrup (a solution in which methacrylic resin is dissolved) a predetermined viscosity increases, and mechanical properties of the obtained adhesive may be inferior. I don't like it. On the other hand, Mw is 1,500,000 or less from the viewpoint of solubility and property stability.
  • a particularly preferred molecular weight varies depending on the desired viscosity and required properties when dissolved, but is preferably 85,000 or more and less than 300,000 when used at a relatively low viscosity or when it is desired to improve the dissolution rate. . On the other hand, in the case of high viscosity use, or when it is desired to obtain a desired viscosity by adding a small amount, it is preferably 300,000 or more and 1,500,000 or less.
  • the methacrylic resin preferably has a moisture content of 0.01% or more and 1% or less. Attempting to keep the moisture content lower may result in the need for prolonged drying. From the viewpoint of productivity, it is preferably 0.01% or more. On the other hand, if it exceeds 1%, the storage stability after dissolution in a cyanoacrylate such as ethyl cyanoacrylate tends to deteriorate, so the content is preferably 1% or less. It is more preferably 0.01% or more and 0.8% or less, still more preferably 0.02% or more and 0.7% or less, and most preferably over 0.03% and less than 0.7%.
  • the storage period of the thickener of the present invention before being dissolved in an adhesive such as a cyanoacrylate adhesive may be long, and the methacrylic resin absorbs moisture during that time. It is preferable to reduce the initial moisture as much as possible.
  • the moisture content can be measured by the method described in Examples below, and is measured by the drying method.
  • the drying method is a method in which 10.0 g of methacrylic resin is held at 70° C., the measurement is completed when the weight loss rate for 10 seconds becomes 0.02% or less, and the total weight loss rate is taken as the moisture content. be.
  • the moisture content of the methacrylic resin (for example, the methacrylic resin of pellets and beads) can be adjusted, for example, by drying the slurry after polymerization.
  • Methods for drying methacrylic resin include hot air drying, in which hot air is sent into the tank from a hot air fan or blow heater, etc., and vacuum drying, in which the system is decompressed and then heated as necessary. Drying, barrel drying that removes moisture by rotating the obtained polymer in a container, spin drying that uses centrifugal force to dry, airflow drying that dries while transferring the resin in the pipe with hot air, specific temperature and a fluidized bed dryer in which the bottom of the tank is opened and closed and the material is dropped into the next drying tank after being dried for a certain period of time.
  • the thickener of this embodiment can be used for producing syrup for artificial marble, paints, adhesives, and the like.
  • the thickener of this embodiment is particularly preferably used for cyanoacrylate adhesives.
  • the cyanoacrylate-based adhesive contains an alkyl cyanoacrylate as a main component (for example, an adhesive having a mass ratio of 50% by mass or more relative to 100% by mass of the adhesive, more preferably 70% by mass or more) is preferable.
  • the alkyl cyanoacrylates include cyanoacrylates having an alkyl group having 1 to 10 carbon atoms, such as methyl cyanoacrylate, ethyl cyanoacrylate, propyl cyanoacrylate, isopropyl cyanoacrylate, butyl cyanoacrylate, isobutyl cyanoacrylate, octyl cyanoacrylate; cyanoacrylate, ethoxyethyl cyanoacrylate and the like. Generally, ethyl cyanoacrylate is often used.
  • the ratio Mw/Mn of the weight average molecular weight Mw to the number average molecular weight Mn of the methacrylic resin measured by gel permeation chromatography (GPC) is preferably 1.7 or more and 2.5 or less. From the viewpoint of ease of manufacture, it is more preferably 1.8 or more. From the viewpoint of suppressing undissolved residue during dissolution and improving solubility, it is more preferably less than 2.5, still more preferably 2.4 or less, particularly preferably 2.3 or less, and particularly preferably less than 2.3.
  • the weight average molecular weight and number average molecular weight are measured by GPC.
  • a calibration curve is prepared in advance from the elution time and weight average molecular weight.
  • the molecular weight of each sample can be determined from the calibration curve. Specifically, it may be measured by the method described in Examples below.
  • the shape of the methacrylic resin is not particularly specified, it is preferably in the form of pellets, flakes, beads or powder. From the viewpoint of shortening the dissolution time and reducing unmelted matter, it is preferably in the form of beads or powder.
  • the methacrylic resin preferably has a volume average particle size of 50 to 500 ⁇ m when used in the form of beads.
  • the volume average particle size is more preferably 70-400 ⁇ m, most preferably 100-350 ⁇ m.
  • volume average particle size refers to the volume particle size that can be measured by the method described in Examples below.
  • the mass ratio of particles having a particle size of 710 ⁇ m or more to 100% by mass of methacrylic resin is 5 mass from the viewpoint of obtaining high solubility in alkyl cyanoacrylate and from the viewpoint of adjusting the ratio of ⁇ . % or less, more preferably 3 mass % or less, still more preferably 1 mass % or less, particularly preferably 0.5 mass % or less, particularly preferably 0.1 mass % or less.
  • the mass ratio of particles having a particle size of 710 ⁇ m or more can be measured, for example, by the method described in Examples below. Methods for adjusting the mass ratio of particles having a particle size of 710 ⁇ m or more include reducing the particle size of the suspending agent and conducting polymerization under stable conditions.
  • a methacrylic resin can be produced, for example, by using monomers constituting the methacrylic resin, a polymerization initiator, a chain transfer agent, a suspending agent, other additives, and the like.
  • polymerization initiator when using free radical polymerization, di-t-butyl peroxide, lauryl peroxide, dilauroyl peroxide, t-butylperoxy 2-ethylhexanoate, 1,1-bis(t -Butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) peroxides such as cyclohexane, azobisisobutyronitrile, azobisisovaleronitrile, 1, General azo-based radical polymerization initiators such as 1-azobis(1-cyclohexanecabonitrile) can be used, and these may be used alone or in combination of two or more. A combination of these radical initiators and a suitable reducing agent may be used as a redox initiator.
  • the polymerization initiator is generally used in the range of 0.001 to 1% by mass with respect to 100% by mass of the total mass of the monomers.
  • a generally used chain transfer agent can be used to adjust the molecular weight.
  • Chain transfer agents include, for example, n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, 2-ethylhexylthioglycolate, ethylene glycol dithioglycolate, trimethylolpropane tristhioglycolate, pentaerythritol tetrakis (thioglyco mercaptans such as latex) are preferably used.
  • the chain transfer agent may be used in the range of 0.001 to 1% by mass with respect to 100% by mass of the total mass of the monomers.
  • the amount of chain transfer agent is determined depending on the desired molecular weight.
  • suspension polymerization gives particulate resin beads and emulsion polymerization gives powdery resin beads, they are advantageous in terms of operation when dissolving an appropriate amount as a thickening agent for adjusting syrup to a desired viscosity.
  • Suspension polymerization is preferable because the polymerization time of suspension polymerization is shorter than that of emulsion polymerization.
  • suspension polymerization it is preferable to keep the molecular weight distribution within the above range.
  • Two-stage polymerization is not preferable because impurities derived from the suspending agent increase.
  • a method for polymerizing the methacrylic resin it is preferable to use a method in which a suspending agent having an average particle size of 10 to 40 ⁇ m is dispersed in water and polymerized. Above all, it is preferable to disperse a suspending agent having an average particle size of 10 to 40 ⁇ m in water and carry out one-step suspension polymerization.
  • the suspending agent dispersed in the suspension polymerization water with an average particle size of 10 to 40 ⁇ m. This makes it possible to control the standard deviation of the volume particle size of the methacrylic resin (for example, methacrylic resin beads), stabilize the polymerization behavior, reduce the amount of heat removal, and improve the productivity.
  • the average particle size of the suspending agent can be adjusted by appropriately selecting the particle size of the suspending agent used. Furthermore, by mixing powders with different particle sizes, a suspension agent with an appropriate average particle size can be obtained.
  • the pH of the aqueous phase it is preferable to adjust the pH of the aqueous phase to a range of 4 to 7.
  • the pH it is preferable to adjust the pH within this range, the standard deviation of the particle size of the beads can be controlled, and the polymerization behavior can be stabilized.
  • the temperature of the suspension agent it is preferable to raise the temperature of the suspension agent to 50°C to 90°C in advance, and then put it into the water (50°C to 90°C) in the reactor.
  • the average particle size of the methacrylic resin for example, methacrylic resin beads
  • its variation can be adjusted.
  • an inorganic suspension agent rather than an organic suspension agent.
  • an organic suspending agent there is a tendency for the dispersion of the average particle size of the beads to become too small.
  • organic suspending agents include polyvinyl alcohol, methylcellulose, ethylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, gelatin, and polyvinyl acetate.
  • the inorganic suspending agent preferably contains an inorganic compound containing calcium and/or aluminum in consideration of the stability after dissolution in the alkyl cyanoacrylate. , calcium carbonate, and aluminum hydroxide. In particular, from the viewpoint of stability after dissolution, it is more preferable to contain an inorganic compound containing aluminum.
  • the suspension agent may further contain a suspension aid such as polyethylene glycol, sodium ethylenediaminetetraacetate, sodium lauryl sulfate, and the like.
  • the suspension aid may be contained in an amount of 0.01 to 10% by mass based on 100% by mass of the suspending agent.
  • the suspending agent is preferably used by mixing it with the monomer raw material in water.
  • ⁇ Washing method> In the method for producing a methacrylic resin, it is preferable to carry out an operation such as acid washing, water washing, alkali washing, or the like in order to remove the suspending agent.
  • the number of times these washing operations are performed may be selected optimally from the operational efficiency and the removal efficiency of the suspending agent, and may be repeated once or multiple times.
  • the optimum temperature for washing may be selected in consideration of the efficiency of removing the suspending agent and the degree of coloring of the resulting polymer, and is preferably 20 to 100°C. It is more preferably 30 to 95°C, still more preferably 40 to 95°C, and particularly preferably 50 to 80°C.
  • the washing time per washing is preferably 10 to 180 minutes, more preferably 10 to 180 minutes from the viewpoint of washing efficiency, reduction of odor when used as a thickener, and stability of dissolution in cyanoacrylate. is 20-150 minutes.
  • the pH of the cleaning solution used for cleaning should be within a range where the suspending agent can be removed, but is preferably pH 1-12.
  • the pH for acid washing is preferably pH 1 to 5, more preferably pH 1.2 to 4, from the viewpoint of the removal efficiency of the suspending agent and the color tone of the resulting polymer.
  • the acid used in this case is not particularly limited as long as it can remove the suspending agent, but conventionally known inorganic acids and organic acids can be used. Examples of acids that are preferably used include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, boric acid, and the like as inorganic acids, each of which may be used in the form of a diluted solution diluted with water or the like.
  • organic acids examples include those having a carboxyl group, a sulfo group, a hydroxy group, a thiol group, and an enol.
  • Nitric acid, sulfuric acid, and an organic acid having a carboxyl group are more preferable in consideration of the effect of removing the suspending agent and the color tone of the resulting resin.
  • the thickener of this embodiment may optionally contain other additives.
  • the additive is not particularly limited as long as the effect of the present invention can be exhibited, and may be appropriately selected according to the purpose.
  • additives include, but are not limited to, UV absorbers, heat stabilizers, light stabilizers; plasticizers; flame retardants; flame retardant aids; curing agents; curing accelerators; Conductive agent; Stress relaxation agent; Release agent; Crystallization accelerator; Hydrolysis inhibitor; Lubricant; ; Dyes; Sensitizers; Colorants; Anti-settling agents; Anti-sagging agents; Fillers; is mentioned.
  • the methacrylic resin obtained by the method described above may be used as it is, or it may be mixed with another methacrylic resin composition to serve as a thickener.
  • the thickener of the present embodiment is particularly suitable for use as a cyanoacrylate (preferably alkyl cyanoacrylate, more preferably ethyl cyanoacrylate) thickener.
  • cyanoacrylate preferably alkyl cyanoacrylate, more preferably ethyl cyanoacrylate
  • the mass ratio of the methacrylic resin in the thickener is preferably 80 to 100% by mass, more preferably 90 to 100% by mass, and particularly preferably 99 to 100% by mass with respect to 100% by mass of the thickener. %.
  • the thickener preferably has a Yellowness Index (YI) value of 0.1 to 2, more preferably 0.2, when the thickener is dissolved in acetone at a concentration of 10% by mass and measured with a cell having a thickness of 1 cm. to 1.9, more preferably 0.3 to 1.8.
  • YI Yellowness Index
  • the methacrylic resin contained in the thickener is dissolved in acetone at a concentration of 10% by mass, and the YI value measured with a cell having a thickness of 1 cm is preferably 0.1 to 2, more preferably 0.2 to 1.9, more preferably 0.3 to 1.8.
  • a method of setting the YI value within the above range a method of obtaining a methacrylic resin by one-step polymerization instead of two-step polymerization may be mentioned.
  • the pH of the supernatant liquid aqueous phase measured at room temperature is 2 or more and 9 or less. is preferred. More preferably 3 or more, particularly preferably 3.5, from the viewpoints of keeping the hue particularly good when the thickener is dissolved and used, solubility in cyanoacrylate, and suppression of odors derived from residues. That's it. From the viewpoint of enhancing storage stability after dissolution in cyanoacrylate or the like, it is preferably 8.5 or less, more preferably 8 or less, and most preferably 7.5 or less.
  • the methacrylic resin contained in the thickener 20 g was stirred and dispersed, and then allowed to stand.
  • the following are preferable. More preferably 3 or more, particularly preferably 3.5, from the viewpoints of keeping the hue particularly good when the thickener is dissolved and used, solubility in cyanoacrylate, and suppression of odors derived from residues. That's it. From the viewpoint of enhancing storage stability after dissolution in cyanoacrylate or the like, it is preferably 8.5 or less, more preferably 8 or less, and most preferably 7.5 or less.
  • the mass ratio of particles with a particle size of 710 ⁇ m or more to 100% by mass of the thickener is preferably 5% by mass or less, more preferably 3% by mass, from the viewpoint of obtaining high solubility in the cyanoacrylate adhesive. % or less, more preferably 1 mass % or less, particularly preferably 0.5 mass % or less, particularly preferably 0.1 mass % or less.
  • the mass ratio of particles having a particle size of 710 ⁇ m or more can be measured, for example, by the method described in Examples below.
  • the thickener of the present embodiment is preferably used for cyanoacrylate adhesives.
  • the cyanoacrylate-based adhesive contains the thickener of this embodiment and a cyanoacrylate (preferably alkyl cyanoacrylate). Furthermore, additives may be included.
  • the adhesive preferably has a viscosity of 0.5 to 10 Pa ⁇ s at 25°C.
  • this viscosity is the viscosity measured with a Brookfield viscometer.
  • Methods for adjusting the viscosity of the adhesive within the above range include adjusting the weight-average molecular weight of the methacrylic resin and adjusting the concentration of the methacrylic resin or the thickening agent in the adhesive.
  • cyanoacrylate preferably alkyl cyanoacrylate, more preferably ethyl cyanoacrylate
  • mass percent concentration 10 to 30% with respect to 100% by mass of the adhesive.
  • weight percent concentration 12-28%, more preferably 15-25%.
  • the melting temperature is preferably 30°C or higher from the viewpoint of ease of melting, and preferably 80°C or lower from the viewpoint of stability.
  • Example 1 Production of methacrylic resin beads used as a thickener] (Example 1) -Adjustment of suspending agent- 5 kg of water, 130 g of aluminum hydroxide having an average particle size of 33 ⁇ m, 0.39 g of sodium lauryl sulfate, and 2.3 g of EDTA were put into a container equipped with a stirrer equipped with four inclined paddle blades, and mixed to obtain a mixed solution (a1). rice field. The average particle size of the suspending agent in the mixture (a1) was 33 ⁇ m, and the obtained mixture (a1) had a pH of 5.5. The resulting mixture (a1) was heated to 70°C.
  • the resulting polymer slurry was then cooled to 50°C. 20% by mass sulfuric acid was added to the polymer slurry to dissolve the suspending agent to obtain a polymerization reaction solution.
  • the resulting polymerization reaction solution was passed through a 1.68 mm mesh sieve to remove agglomerates, filtered, and separated into bead-like methacrylic resin particles and a suspended waste liquid.
  • the pH of the suspended waste liquid was 3.3.
  • ion-exchanged water at about 70°C is added in an amount approximately equal to the bead-shaped methacrylic resin particles, and the mixture is stirred, washed, and filtered, and similarly washed again with ion-exchanged water at about 70°C. (washed with water twice in total) to obtain a slurry-like polymer solution.
  • An aqueous sodium hydroxide solution was added dropwise to the obtained slurry-like polymer solution to adjust the pH to 8.5, followed by stirring and washing.
  • the slurry polymer solution was filtered, and ion-exchanged water at 70° C. was added and stirred to wash.
  • the resulting slurry polymer solution had a pH of 6.1.
  • the obtained resin beads were dried with an air flow (30 Nm 3 /hr) at 150°C using a flash dryer, and then dried at 90°C for 5 minutes with a fluidized bed dryer (25 Nm 3 /hr) to obtain a methacrylic resin. got the beads.
  • Example 3 Methacrylic resin beads were obtained in the same manner as in Example 1, except that the composition of the starting monomer material was changed to that shown in Table 1.
  • Example 4 Methacrylic resin beads were obtained in the same manner as in Example 1, except that the temperature of the flash dryer was 100°C.
  • Suspension polymerization was carried out for 150 minutes while maintaining a temperature of about 80° C., and the reaction was substantially completed to obtain a polymer slurry.
  • the slurry of polymer (I) was then stirred at 80° C. for 60 minutes.
  • 20 kg of methyl methacrylate, 100 g of butyl acrylate, 35 g of NOM, and 40 g of LPO were blended to prepare a monomer raw material (2).
  • Monomer raw material (2) was charged into the reactor, and suspension polymerization was subsequently carried out at about 80° C. for 90 minutes. The temperature was then raised to 92° C. at a rate of 1° C./min and held for 60 minutes to substantially complete the polymerization reaction and obtain a polymer slurry.
  • Example 6 Except for changing the temperature of ion-exchanged water to about 25° C. and washing once, the same treatment as in Example 1 was carried out to obtain methacrylic resin beads.
  • the pH of the slurry liquid after washing was 4.6.
  • Example 7 Except that the amount of ion-exchanged water was changed to about half of the amount of the bead-like polymer and the number of times of washing was changed to one, the same treatment as in Example 6 was carried out to obtain methacrylic resin beads.
  • the pH of the slurry liquid was 3.5.
  • Example 8 Except for washing with a small amount of 20% by mass sulfuric acid in addition to ion-exchanged water, the same treatment as in Example 6 was performed to obtain methacrylic resin beads.
  • the pH of the slurry liquid was 2.0.
  • Example 9 By the same formulation and treatment as in Example 1, the bead-like methacrylic resin particles and the suspended waste liquid were separated. Then, except that the pH was adjusted to 9, the same treatment as in Comparative Example 3 was performed to obtain methacrylic resin beads.
  • Example 10 Suspending agent - 5 kg of water, 130 g of aluminum hydroxide having an average particle size of 23 ⁇ m, 0.39 g of sodium lauryl sulfate, and 2.3 g of EDTA were added to a container equipped with a stirrer equipped with four inclined paddle blades, and mixed to obtain a mixed solution (a2). rice field.
  • the average particle size of the suspending agent in the mixture (a2) was 23 ⁇ m, and the resulting mixture had a pH of 5.5.
  • the resulting mixture (a2) was heated to 70°C.
  • the polymerization reaction solution is passed through a 1.68 mm mesh sieve to remove agglomerates, and the resulting suspension is filtered through a filter cloth to separate the bead-like methacrylic resin particles and the waste suspension liquid. separated. Thereafter, deionized water heated to 70° C. was added in an amount approximately equal to that of the bead-like polymer, and the subsequent operations were carried out in the same manner as in Example 1 to obtain resin beads.
  • Methacrylic resin beads were obtained in the same manner as in Example 1, except that the monomer raw material was changed to the type and composition shown in Table 3.
  • suspension polymerization was carried out for 110 minutes while maintaining the temperature at about 80°C, then the temperature was raised to 93°C at a rate of 1°C/min, and the temperature was maintained at about 93°C for 45 minutes to substantially complete the polymerization reaction.
  • a polymer slurry was obtained. Polymerization time was shortened due to the increased amount of LPO in the initiator. Then, the mixture was cooled to 50° C. and 20% by mass sulfuric acid was added to dissolve the suspending agent. Next, the polymerization reaction solution was filtered through a filter cloth to separate the bead-like methacrylic resin particles and the suspended waste liquid. The pH of the suspended waste liquid at that time was 3.3.
  • ion-exchanged water warmed to about 70°C in approximately the same amount as the bead-shaped polymer is added, stirred, washed, and filtered, and similarly, the washing operation with ion-exchanged water at about 70°C is performed once again. to obtain a slurry-like polymer solution (washed twice with water in total).
  • An aqueous sodium hydroxide solution was added dropwise to the obtained slurry-like polymer solution to adjust the pH to 8.5, followed by stirring and washing. After filtering with a filter cloth and further adding deionized water heated to 70° C. and stirring and washing, the resulting slurry polymer solution had a pH of 6.1.
  • the obtained undried resin beads were dried with an air stream (30 Nm 3 /hr) at 150°C using a flash dryer, and then dried at 90°C for 5 minutes with a fluidized bed dryer (25 Nm 3 /hr). , to obtain methacrylic resin beads.
  • the proportion of particles of 710 ⁇ m or more in the obtained beads was 5.1%.
  • Example 17 (Example 17) -Adjustment of suspending agent- 5 kg of water, 130 g of aluminum hydroxide having an average particle size of 33 ⁇ m, 0.39 g of sodium lauryl sulfate, and 2.3 g of EDTA were put into a container equipped with a stirrer equipped with four inclined paddle blades, and mixed to obtain a mixed solution (a1). rice field.
  • the average particle size of the suspending agent in the mixture (a1) was 33 ⁇ m, and the obtained mixture (a1) had a pH of 5.5.
  • the resulting mixture (a1) was heated to 70°C.
  • the resulting polymer slurry was then cooled to 50°C. 20% by mass sulfuric acid was added to the polymer slurry to dissolve the suspending agent to obtain a polymerization reaction solution.
  • the resulting polymerization reaction solution was passed through a 1.68 mm mesh sieve to remove agglomerates, filtered, and separated into bead-like methacrylic resin particles and a suspended waste liquid.
  • the pH of the suspended waste liquid was 3.3.
  • ion-exchanged water at about 70°C is added in an amount approximately equal to the bead-shaped methacrylic resin particles, and the mixture is stirred, washed, and filtered, and similarly washed again with ion-exchanged water at about 70°C. (washed with water twice in total) to obtain a slurry-like polymer solution.
  • An aqueous sodium hydroxide solution was added dropwise to the obtained slurry-like polymer solution to adjust the pH to 8.5, followed by stirring and washing.
  • the slurry polymer solution was filtered, and ion-exchanged water at 70° C. was added and stirred to wash.
  • the resulting slurry polymer solution had a pH of 6.1.
  • the obtained resin beads were dried with an air flow (30 Nm 3 /hr) at 150°C using a flash dryer, and then dried at 90°C for 5 minutes with a fluidized bed dryer (25 Nm 3 /hr) to obtain a methacrylic resin. got the beads.
  • Methacrylic resin beads were obtained in the same manner as in Example 17, except that the composition of the starting monomer material was changed to that shown in Table 1.
  • Example 25 Suspending agent - 5 kg of water, 130 g of aluminum hydroxide having an average particle size of 23 ⁇ m, 0.39 g of sodium lauryl sulfate, and 2.3 g of EDTA were added to a container equipped with a stirrer equipped with four inclined paddle blades, and mixed to obtain a mixed solution (a2). rice field.
  • the average particle size of the suspending agent in the mixture (a2) was 23 ⁇ m, and the resulting mixture had a pH of 5.5.
  • the resulting mixture (a2) was heated to 70°C.
  • the polymerization reaction solution is passed through a 1.68 mm mesh sieve to remove agglomerates, and the resulting suspension is filtered through a filter cloth to separate the bead-like methacrylic resin particles and the waste suspension liquid. separated.
  • ion-exchanged water heated to 70° C. was added in approximately the same amount as the bead-like polymer, and the subsequent operations were carried out in the same manner as in Example 17 to obtain methacrylic resin beads.
  • Detector RI (differential refraction) detector Detection sensitivity: 3.0 mV/min Column temperature: 40°C Sample: 20 mL of tetrahydrofuran solution of 0.02 g of methacrylic resin Injection volume: 10 ⁇ L Developing solvent: tetrahydrofuran, flow rate: 0.6 mL/min 0.1 g/L of 2,6-di-t-butyl-4-methylphenol (BHT) was added as an internal standard. As standard samples for the calibration curve, the following 10 types of polymethyl methacrylate (manufactured by Polymer Laboratories; PMMA Calibration Kit MM-10) with known monodisperse peak top molecular weights and different molecular weights were used.
  • Mw weight average molecular weight
  • Mw/Mn molecular weight distribution
  • MMA volatilization amount The MMA volatilization amount was measured using GC-6890 and MSD-5973 manufactured by Agilent. 5 mg of methacrylic resin beads were heated in a pyrolysis furnace at 60° C. for 10 minutes, and the generated gas was trapped in a column HP5-MS cooled with liquid nitrogen. The amount of generated gas that was trapped was analyzed by GC/MS to quantify the amount of MMA volatilization.
  • II-5 (YI value of acetone solution)
  • a solution obtained by dissolving the obtained methacrylic resin beads in acetone at a mass percent concentration of 10% was placed in a cell having a thickness of 1 cm, and a color difference meter (TC-8600A manufactured by Tokyo Denshoku Co., Ltd., light source: 10-C) was measured. was used to measure the YI value according to JIS K7105.
  • the concentration of the thickener was 10% by mass
  • 8 g of the thickener and 72 g of ethyl cyanoacrylate were dissolved.
  • the thickener with a weight average molecular weight of 85,000 or more and less than 300,000 is dissolved in ethyl cyanoacrylate at a concentration of 20% by mass
  • the thickener with a weight average molecular weight of 300,000 or more and less than 800,000 is dissolved in 10 mass. %
  • a thickener having a concentration of 300,000 or more and less than 800,000 was dissolved at a concentration of 7% by mass, cooled, and the viscosity ⁇ 1 was measured at 25°C.
  • the viscosity ⁇ 2 was measured at 25°C.
  • a B-type viscometer digital viscometer LVDV Next manufactured by Eiko Seiki Co., Ltd.
  • Viscosity was measured at a spindle speed of 60 rpm. If the measurement range is exceeded at 60 rpm, reduce the rotation speed and measure. If the viscosity is high, the amount to be added may be adjusted at the time of syrup production to adjust the viscosity appropriately.
  • the thickener with a weight average molecular weight of 85,000 or more and less than 300,000 is dissolved in ethyl cyanoacrylate at a concentration of 20% by mass, and the thickener with a weight average molecular weight of 300,000 or more and less than 800,000 is dissolved in 10 mass.
  • 300,000 or more and less than 800,000 thickeners were dissolved at a concentration of 7% by mass and ranked from A to D according to the dissolution time.
  • B All thickeners dissolved within 60 minutes
  • C Almost all thickeners dissolved over 60 minutes
  • D Thickeners did not dissolve
  • the present invention can be suitably used as a thickener for adhesives, and in particular, when used as a thickener for cyanoacrylate adhesives, it suppresses the increase in viscosity and solidification during storage of the object to be thickened, and the product is improved.
  • a thickener that can improve storage stability can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

本発明の目的は、接着剤用増粘剤として好適に利用でき、接着剤用途、とりわけシアノアクリレート系接着剤用増粘剤として利用した時に、長期間の保管安定性に優れた増粘剤を提供すること。Mw85,000~1,500,000のメタクリル樹脂を含む増粘剤であって、メタクリル樹脂のエチルシアノアクリレート溶液の25℃での粘度をη1とし、溶液を60℃で48時間放置し、25℃まで冷却し、冷却後の25℃での溶液の粘度をη2としたとき、1.0≦η2/η1≦5.0を満たす増粘剤(ただし、メタクリル樹脂のMwに応じて、溶液のメタクリル樹脂の濃度は、20質量%、10質量%または7質量%である)

Description

増粘剤および接着剤組成物
 本発明は、増粘剤および接着剤組成物に関する。
 塗料または接着剤等の製造においては、製品の粘度を調整してハンドリング性を向上させる目的から有機系の増粘剤が用いられる。有機系の増粘剤の中でも、メタクリル系樹脂組成物を用いた増粘剤は、透明樹脂として高い透明性および耐候性を有しているうえ、アルキルシアノアクリレート等との親和性および耐薬品性にも優れている。メタクリル系樹脂組成物は、透明性を維持しながら迅速にモノマー中に溶解することから、接着剤用増粘剤として広く利用されている。
 接着剤の中でも特にシアノアクリレート系接着剤は、主成分であるアルキルシアノアクリレートが有する高いアニオン重合性によって、わずかな水分または不純物などの微弱なアニオンによって重合を開始し、各種材料を短時間で強固に接合することができる。そのため、瞬間接着剤として、工業用、医療用及び家庭用等の広範な分野において使用されている。
 その高い重合性から、シアノアクリレート系接着剤は、密閉容器など、ある程度外気と遮断された環境下で運搬および保管される。しかし、シアノアクリレート系接着剤は、運搬、保管または使用条件によっては高温多湿条件下で扱われることもあり、このような条件下に長期間置かれた場合、シアノアクリレート系接着剤の粘度が上昇する場合もあるため、改良が求められている。
 また、シアノアクリレート系接着剤は、接着剤が含有する増粘剤に起因する特異な臭気を有することがあり、臭気の低減も求められている。
 特許文献1には、メタクリル酸メチルへの溶解性に優れる、分子量分布に特徴を持たせたアクリル系増粘剤が開示されている。
 特許文献2では、メタクリル酸メチル中で50℃/95%Rh下で曝した際の安定性に優れたメタクリル系樹脂を含む増粘剤が開示されている。
 特許文献3には、シアノアクリレート系接着剤組成物中に200,000~500,000の重量平均分子量を有するポリ(メタ)アクリル酸アルキルを増粘剤として含有することが記載されている。
特許5131956号公報 特開2018-178076号公報 特公平4-15267号公報
 特許文献1では、アルキルシアノアクリレートへの溶解性、及びわずかな水分または不純物の影響で重合しやすいアルキルシアノアクリレートへ溶解した際の長期間の保管安定性については記載されていない。
 特許文献2では、樹脂の末端に特定の構造を導入することで、メタクリル酸メチル中での長期安定性に優れた増粘剤を提供しているが、アルキルシアノアクリレート中での長期安定性については記載されていない。
 特許文献3では、各種安定剤を加えてシアノアクリレート系接着剤が構成されており、アクリル系増粘剤自体による安定化への寄与については記載されていない。
 そこで本発明においては、接着剤用増粘剤として好適に利用でき、とりわけシアノアクリレート系接着剤用増粘剤として利用した時に、長期間の保管安定性に優れた増粘剤を提供することを課題とする。
 上記課題を解決するため、本発明者らは鋭意研究を重ねた結果、驚くべきことに、エチルシアノアクリレートに溶解後、60℃で48時間放置したときの粘度変化率が特定の範囲となることで、長期間の保管安定性に優れた増粘剤が得られることを見出し、本発明を完成させるに至った。
 すなわち、本発明は以下の通りである。
[1]
 重量平均分子量(Mw)85,000~1,500,000のメタクリル樹脂を含む増粘剤であって、
 前記メタクリル樹脂のエチルシアノアクリレート溶液の25℃での粘度(Pa・s)をη1とし、
 前記溶液を60℃で48時間放置し、25℃まで冷却し、冷却後の25℃での前記溶液の粘度(Pa・s)をη2としたとき、
 η1およびη2が、
 1.0≦η2/η1≦5.0
を満たす
 (ただし、
 前記メタクリル樹脂のMwが85,000以上300,000未満の場合、前記溶液の前記メタクリル樹脂の濃度が、20質量%であり、
 前記メタクリル樹脂のMwが300,000以上800,000未満の場合、前記溶液の前記メタクリル樹脂の濃度が、10質量%であり、
 前記メタクリル樹脂のMwが800,000以上1,500,000以下の場合、前記溶液の前記メタクリル樹脂の濃度が、7質量%である)、増粘剤。
[2]
前記メタクリル樹脂が、メタクリル酸メチル単量体単位90~99.9質量%およびアクリル酸アルキル単量体単位0.1~10質量%を含有することを特徴とする、[1]の増粘剤。
[3]
前記アクリル酸アルキル単量体単位のアルキル基の炭素数が4以上である、[2]の増粘剤。
[4]
前記メタクリル樹脂が、メタクリル酸メチル単量体単位90~99.9質量%および芳香族ビニル単量体単位0.1~10質量%を含有する、[1]に記載の増粘剤。
[5]
 前記メタクリル樹脂が、メタクリル酸メチル単量体単位90~99.8質量%、芳香族ビニル単量体単位0.1~8質量%およびアクリル酸エステル単量体単位0.1~8質量%を含有する、[4]に記載の増粘剤。
[6]
 前記アクリル酸アルキル単量体単位のアルキル基の炭素数が4以上である、[5]に記載の増粘剤。
[7]
 前記メタクリル樹脂が、乾燥法にて測定した水分率が0.01%以上1%以下である、[1]~[3]のいずれかの増粘剤。
[8]
 前記メタクリル樹脂が、平均粒子径が50~500μmのビーズ状である、[1]~[4]のいずれかの増粘剤。
[9]
 前記増粘剤100質量%に対して、粒径710μm以上の粒子の質量割合が5質量%以下である、[5]の増粘剤。
[10]
 [1]~[6]のいずれかの増粘剤を1~30%含む、シアノアクリレート系接着剤組成物。
 本発明によれば、接着剤用増粘剤として好適に利用でき、とりわけシアノアクリレート系接着剤用増粘剤として利用した時に、増粘対象の保管中の粘度増大、固化を抑制し、製品の保管安定性を改善できる増粘剤を提供することができる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本実施形態において、「メタクリル樹脂」は、別段の記載のない限り、単量体単位としてメタクリル酸メチル単量体単位を80質量%以上含み、重量平均分子量(Mw)85,000~1,500,000である樹脂をいう。
[増粘剤]
 本実施形態の増粘剤は、メタクリル樹脂を少なくとも含む。増粘剤は、メタクリル樹脂のみを含んでいてもよいし、メタクリル樹脂と、その他の樹脂とを含んでいてもよい。増粘剤は、樹脂成分が、メタクリル樹脂のみであることが好ましい。また、増粘剤は、メタクリル樹脂を1種単独で、または2種以上組み合わせて含んでいてもよい。一例では、増粘剤は、樹脂成分として、単一のメタクリル樹脂のみからなることがより好ましい。
 増粘剤は、接着剤用増粘剤、特に、シアノアクリレート系接着剤用増粘剤として好適に利用できる。
<粘度比>
 本実施形態では、メタクリル樹脂のエチルシアノアクリレート溶液の25℃での粘度(Pa・s)をη1とし、前記溶液を60℃で48時間放置し、25℃まで冷却し、冷却後の25℃での前記溶液の粘度(Pa・s)をη2としたとき、η1およびη2が、1.0≦η2/η1≦5.0を満たす。η2/η1(以下、単に「ηの比」ということがある)が1.0以上5.0以下となることで、増粘剤をアルキルシアノアクリレートに溶解させた後、常温で長時間(例えば数か月)放置された場合であっても粘度および接着性能を維持することができる。
 メタクリル樹脂をエチルシアノアクリレートに溶解する温度は、50℃以上であることが好ましい。メタクリル樹脂を溶解後、溶液の温度を25℃にして、粘度η1を測定する。
 溶液の25℃での粘度η1を測定した後、溶液を60℃に昇温する。そして、溶液を60℃で48時間放置し、25℃まで冷却し、冷却後の25℃での前記溶液の粘度η2を測定する。ここで、60℃で48時間放置とは、60℃のオーブンに溶液を入れてからの経過時間が48±1時間の間であることを指す。
 ηの比を1.0以上5.0以下に調整するための手段としては、アクリル酸アルキル単量体単位を一定量共重合すること、芳香族ビニル単量体単位を少量共重合させること、メタクリル樹脂の水分率を調整すること、粒径710μm以上の粒子の重量割合を低減すること、増粘剤を水に分散させた際の水相のpHが2以上9以下となるよう酸/アルカリ洗浄を行うこと、増粘剤中の不純物をできるだけ減らすことなどが挙げられ、これらを複数組み合わせることが好ましい。
 ηの比は、好ましくは1.0以上4.5以下、より好ましくは1.0以上4.0以下である。ηの比が1.0未満であると溶解後に粘度が下がってしまい増粘剤として機能しない。ηの比が5.0を超えると数か月間などの長期の保管や、移送時に気温が上がるなどした場合に固化してしまったり、固化後の接着剤としての強度が劣ったりするおそれがある。
 エチルシアノアクリレート溶液中のメタクリル樹脂の濃度は、メタクリル樹脂のMwが85,000以上300,000未満の場合、20質量%であり、メタクリル樹脂のMwが300,000以上800,000未満の場合、10質量%であり、メタクリル樹脂のMwが800,000以上1,500,000以下の場合、7質量%である。
 エチルシアノアクリレート溶液中にMwの範囲が異なるメタクリル樹脂が含まれる場合、メタクリル樹脂全体のMwを測定し、そのMwから上記濃度を決めればよい。
(メタクリル樹脂)
 メタクリル樹脂は、メタクリル酸メチル単量体単位90~99.9質量%およびアクリル酸アルキル単量体単位0.1~10質量%を含有することが好ましい。メタクリル樹脂は、メタクリル酸メチル単量体単位およびアクリル酸アルキル単量体単位以外のその他の単量体単位を含んでいてもよいし、含まなくてもよい。
 アクリル酸アルキル単量体単位は、炭素数4以上のアルキル基を有することが好ましい。炭素数4以上のアルキル基を有するアクリル酸アルキル単量体単位としては、アクリル酸n-ブチル、アクリル酸sec-ブチル、アクリル酸2-エチルヘキシル等の炭素数4~8のアルキル基を有するアクリル酸アルキルに由来する単量体単位が好ましく用いられる。メタクリル樹脂のシアノアクリレート溶液のにおい低減の観点から、アクリル酸アルキル単量体単位のアルキル基の炭素数は、4~8が好ましい。入手のしやすさ、シアノアクリレートへ溶解時のにおい低減の観点から、アクリル酸n-ブチル単量体単位が特に好ましい。
 メタクリル樹脂は、メタクリル酸メチル単量体単位と炭素数4以上のアルキル基を有するアクリル酸アルキル単量体単位とのみから構成されていてもよいし、メタクリル酸メチルに共重合可能な他のビニル単量体単位等のその他の単量体単位をさらに含んでいてもよい。
 その他の単量体単位としては、メタクリル酸メチルと共重合可能なビニル単量体であってよく、具体的には、アルキル基の炭素数が2~18のメタクリル酸アルキル;アルキル基の炭素数が1~3のアクリル酸アルキル;アクリル酸やメタクリル酸等のα,β-不飽和酸;マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸及びそれらのアルキルエステル;スチレン、α-メチルスチレン、ベンゼン環に置換基を有するスチレン等の芳香族ビニル化合物;アクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物;無水マレイン酸、マレイミド、N-置換マレイミド;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート等のエチレングリコール又はそのオリゴマーの両末端水酸基をアクリル酸またはメタクリル酸でエステル化したもの;ネオペンチルグリコールジ(メタ)アクリレート、ジ(メタ)アクリレート等の2個のアルコールの水酸基をアクリル酸又はメタクリル酸でエステル化したもの;トリメチロールプロパン、ペンタエリスリトール等の多価アルコール誘導体をアクリル酸又はメタクリル酸でエステル化したもの;ジビニルベンゼン等の多官能モノマー;等が挙げられ、これらは、単独或いは2種類以上を併用して用いることが出来る。におい抑制の観点から、アルキル基の炭素数が1~3のアクリル酸アルキルを含有する場合は、メタクリル樹脂を構成する全単量体単位100質量%に対して、アルキル基の炭素数が1~3のアクリル酸アルキルに由来する単量体単位の質量割合が、0.1質量%未満であることが好ましく、含有しないことがより好ましい。
 メタクリル樹脂100質量%に対する、メタクリル酸メチルに由来する単量体単位の質量割合は、溶解した時(例えば、アルキルシアノアクリレートに溶解した時)のにおい抑制の観点から、90~99.9質量%であることが好ましい。より好ましくは95~99.8質量%、さらに好ましくは97~99.8質量%、特に好ましくは98~99.8質量%である。
 メタクリル樹脂100質量%に対する、アクリル酸アルキル単量体単位の質量割合は0.1~10質量%であることが好ましい。より好ましくは0.2~5質量%、さらに好ましくは0.2~3質量%、特に好ましくは0.2~2質量%である。5質量%超となると、アルキルシアノアクリレート等へ溶解した時に、残存するアクリル酸アルキル単量体やそれに由来する不純物等により特異なにおいが発生するため好ましくない。0.1質量%未満ではアクリル酸アルキル単量体単位を共重合させて得られるにおいの改善効果を発揮しないため好ましくない。
 本実施形態においては、本発明の効果を損ねない範囲で、その他の単量体単位を共重合させてもよい。シアノアクリレート等への溶解性や溶解時のにおいなどを考慮すると、メタクリル酸メチル及び炭素数4以上のアルキル基を有するアクリル酸アルキル単量体単位の合計量を100質量部としたときに、メタクリル酸メチルに共重合可能な他のビニル単量体に由来する単量体単位の質量割合は、0~20質量部であることが好ましく、より好ましくは15質量部以下、さらに好ましくは10質量部以下、特に好ましくは5質量部以下である。
 メタクリル樹脂100質量部中、メタクリル酸メチルに由来する単量体単位及び炭素数4以上のアルキル基を有するアクリル酸アルキル単量体単位の合計質量割合は、80質量部以上であることが好ましく、より好ましくは85質量部以上、さらに好ましくは90質量部以上、さらに好ましくは95質量部以上、特に好ましくは100質量部である。
 シアノアクリレート系接着剤の保管安定性を改良できる観点から、メタクリル樹脂は、芳香族ビニル単量体単位を含むことが好ましい。芳香族ビニル単量体単位によってシアノアクリレート系接着剤の保管安定性を改良できるメカニズムについては、芳香族基の電子求引性が弱く、アニオン重合性が低いモノマーが組み込まれるためと推測される。
 メタクリル樹脂は、メタクリル酸メチル単量体単位90~99.9質量%および芳香族ビニル単量体単位0.1~10質量%を含有することが好ましい。一実施形態では、芳香族ビニル単量体単位は、スチレンに由来する単量体単位である。
 一実施形態では、芳香族ビニル単量体単位の含有量は、メタクリル樹脂100質量%に対して、0.2質量%以上、0.3質量%以上、0.5質量%以上、1.0質量%以上、1.5質量%以上、2.0質量%以上、2.5質量%以上、3.0質量%以上、3.5質量%以上、4.0質量%以上、4.5質量%以上、5.0質量%以上、6.0質量%以上、7.0質量%以上、8.0質量%以上または9.0質量%以上である。別の実施形態では、芳香族ビニル単量体単位の含有量は、メタクリル樹脂100質量%に対して、10.0質量%以下、9.0質量%以下、8.0質量%以下、7.0質量%以下、6.0質量%以下、5.0質量%以下、4.5質量%以下、4.0質量%以下、3.5質量%以下、3.0質量%以下、2.5質量%以下、2.0質量%以下、1.5質量%以下、1.0質量%以下または0.5質量%以下である。10質量%を超えると、生産効率が悪くなり、また残存する芳香族ビニル単量体により特異なにおいが発生する場合があり好ましくない。0.1質量%未満であるとシアノアクリレート接着剤に増粘剤として添加した際の保管安定性の改善効果が得られないため好ましくない。
 一実施形態では、メタクリル樹脂は、メタクリル酸メチル単量体単位90~99.9質量%と、アクリル酸アルキル単量体単位および芳香族ビニル単量体単位からなる群より選択される1種以上の合計0.1~10質量%とを含有する。
<重量平均分子量>
 メタクリル樹脂は、ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量が、85,000~1,500,000である。Mwが85,000未満では、シラップ(メタクリル樹脂を溶解した溶液)を所定の粘度にするための増粘剤の使用量が増えるため、得られる接着剤等の機械特性が劣る場合もあるため、好ましくない。一方、Mwは、溶解性や特性安定性の観点から、1,500,000以下である。特に好ましい分子量については、溶解させた際に所望する粘度、要求特性により異なるが、比較的低粘度での使用の場合や、溶解速度を向上したい場合は、85,000以上300,000未満が好ましい。一方、高粘度での使用の場合や、少量添加で所望の粘度を得たい場合は、300,000以上1,500,000以下が好ましい。
<水分率>
 メタクリル樹脂は、水分率が0.01%以上1%以下であることが好ましい。水分率をより低く抑えようとすると、長時間乾燥の必要性が生じることがある。生産性の観点からから、0.01%以上であることが好ましい。一方、1%を超えるとエチルシアノアクリレート等のシアノアクリレートへ溶解後の貯蔵安定性が悪くなる傾向があるため、1%以下であることが好ましい。より好ましくは0.01%以上0.8%以下、更に好ましくは0.02%以上0.7%以下、最も好ましくは0.03%を超えて0.7%未満である。使用様態によっては、シアノアクリレート系接着剤などの接着剤に本発明の増粘剤を溶かす前の増粘剤の保存期間が長くなる場合があり、その間にメタクリル樹脂が吸湿するため、メタクリル樹脂の初期の水分をできるだけ減らすことが好ましい。
 ここで水分率は、後述の実施例に記載の方法で測定することができ、乾燥法にて測定する。乾燥法とは、10.0gのメタクリル樹脂を70℃に保持し、10秒間の重量減少率が0.02%以下になったところで測定終了し、合計の重量減少率を水分率とする方法である。
 メタクリル樹脂(例えば、ペレットやビーズのメタクリル樹脂)の水分率は、例えば、重合後のスラリー等の乾燥方法で調整することができる。
 メタクリル樹脂を乾燥する方法としては、熱風機やブローヒーター等から槽内に熱風を送ることにより乾燥を行う熱風乾燥、系内を減圧した上で必要に応じて加温することで乾燥を行う真空乾燥、得られた重合体を容器中で回転させることにより水分を飛ばすバレル乾燥、遠心力を利用して乾燥させるスピン乾燥、熱風で配管内の樹脂を移送しながら乾燥させる気流乾燥、特定の温度で一定時間乾燥した後槽底が開閉し次の乾燥槽へ落下させる流動床乾燥機等が挙げられる。
 水分率を上記範囲とするためには、懸濁重合終了後、得られたスラリーを気流乾燥機及び/又は流動床乾燥機で乾燥させることが好ましい。この際、最終的な水分量が低いと処理に時間がかかるため生産性が悪く、またスラリー送液工程においてポンプアップ不良が起きる等の問題が生じることがある。
 本実施形態の増粘剤は人工大理石向けシラップの製造や、塗料、接着剤などに用いることができる。
 本実施形態の増粘剤は、特にシアノアクリレート系接着剤用に用いることが好ましい。ここでシアノアクリレート系接着剤としては、主成分としてアルキルシアノアクリレートを含有するもの(例えば、接着剤100質量%に対して、アルキルシアノアクリレートの質量割合が50質量%以上であるもの、より好ましくは70質量%以上であるもの)が好ましい。
 アルキルシアノアクリレートとしては、メチルシアノアクリレート、エチルシアノアクリレート、プロピルシアノアクリレート、イソプロピルシアノアクリレート、ブチルシアノアクリレート、イソブチルシアノアクリレート、オクチルシアノアクリレート等の炭素数1~10のアルキル基を有するシアノアクリレート;メトキシエチルシアノアクリレート、エトキシエチルシアノアクリレート等が挙げられる。一般にエチルシアノアクリレートが用いられることが多い。
 ゲルパーミエーションクロマトグラフィー(GPC)で測定した、メタクリル樹脂の重量平均分子量Mwと数平均分子量Mnの比Mw/Mnは、1.7以上2.5以下であることが好ましい。製造の容易さの観点から、より好ましくは1.8以上である。また、溶解時の溶け残り抑制、溶解性向上の観点から、より好ましくは2.5未満、さらに好ましくは2.4以下、とりわけ好ましくは2.3以下、特に好ましくは2.3未満である。
 なお、重量平均分子量及び数平均分子量は、GPCで測定される。あらかじめ、単分散の重量平均分子量が既知である試薬として入手可能な標準メタクリル樹脂と、高分子量成分から溶出される分析ゲルカラムを用い、溶出時間と重量平均分子量から検量線を作成しておく。その検量線から各試料の分子量を測定することが出来る。具体的に、後述の実施例に記載の方法により測定してよい。
 メタクリル樹脂の形状は特に規定されないが、ペレット状、フレーク状、ビーズ状または粉体状であることが好ましい。溶解時間を短縮したり、未溶融物を減少させたりする観点から、ビーズ状または粉体状であることが好ましい。
<体積平均粒子径>
 メタクリル樹脂では、ビーズ状で使用する際の体積平均粒子径は50~500μmであることが好ましい。溶解時間は粒子径が小さいほど短くなるため、450μm以下であることが好ましく、作業時のビーズの飛散を抑制する点と未溶融物を減少させる観点から、50μm以上であることが好ましい。体積平均粒子径は、より好ましくは70~400μm、最も好ましくは100~350μmである。
 本明細書において、体積平均粒子径は、後述の実施例に記載の方法で測定することができる体積粒子径をいう。
 メタクリル樹脂(好ましくはメタクリル樹脂ビーズ)100質量%に対する粒径710μm以上である粒子の質量割合は、アルキルシアノアクリレートに対して高い溶解性を得る観点及び、ηの比を調整する観点から、5質量%以下であることが好ましく、より好ましくは3質量%以下、さらに好ましくは1質量%以下、とりわけ好ましくは0.5質量%以下、特に好ましくは0.1質量%以下である。粒径710μm以上の粒子の質量割合は、例えば後述する実施例記載の方法で測定することができる。粒径710μm以上の粒子の質量割合を調整する方法としては、懸濁剤の粒径を小さくする、重合を安定な条件でおこなうなどが挙げられる。
<重合方法>
 メタクリル樹脂は、例えば、メタクリル樹脂を構成する単量体と、重合開始剤、連鎖移動剤、懸濁剤、その他添加剤等を用いて製造することができる。
 重合開始剤としては、フリーラジカル重合を用いる場合は、ジ-t-ブチルパーオキサイド、ラウリルパーオキサイド、ジラウロイルパーオキサイド、t-ブチルパーオキシ2-エチルヘキサノエート、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン等のパーオキサイド系や、アゾビスイソブチロニトリル、アゾビスイソバレロニトリル、1,1-アゾビス(1-シクロヘキサンカボニトリル)等のアゾ系の一般的なラジカル重合開始剤を用いることができ、これらは単独でもあるいは2種類以上を併用しても良い。これらのラジカル開始剤と適当な還元剤とを組み合わせてレドックス系開始剤として実施しても良い。
 重合開始剤は、単量体の合計質量100質量%に対して、0.001~1質量%の範囲で用いるのが一般的である。
 メタクリル樹脂の製造方法では、ラジカル重合法で製造する場合には、分子量を調整するために、一般的に用いられている連鎖移動剤を使用できる。
 連鎖移動剤としては、例えば、n-ブチルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタン、2-エチルヘキシルチオグリコレート、エチレングリコールジチオグリコレート、トリメチロールプロパントリスチオグリコート、ペンタエリスリトールテトラキス(チオグリコレート)などのメルカプタン類が好ましく用いられる。
 連鎖移動剤は、単量体の合計質量100質量%に対して、0.001~1質量%の範囲で用いてよい。連鎖移動剤の量は望む分子量に依存して決定される。
 メタクリル樹脂の重合方法としては、懸濁重合または乳化重合を用いることが好ましい。懸濁重合は粒子状、乳化重合は粉末状の樹脂ビーズを与える為、シラップを所望の粘度に調整するための増粘剤として適量を溶解させる際に操作上有利である。
 乳化重合よりも懸濁重合の方の重合時間が短い為、懸濁重合の方が好ましい。
 特に懸濁重合法を用いる場合は、分子量分布を上述の範囲とすることが好ましく、シアノアルキルアクリレート等への溶解時に分子量分布の広さに起因する未溶融物の発生の抑制、溶解後に高い保存安定性を保持すること、を高いレベルで求められる場合、分子量分布が広くなる多段重合ではなく、一段での懸濁重合により得られることが好ましい。二段重合だと懸濁剤由来の不純物が多くなり好ましくない。
 また、メタクリル樹脂の重合方法としては、平均粒子径が10~40μmである懸濁剤を水中に分散させて重合する方法を用いることが好ましい。中でも、平均粒子径が10~40μmである懸濁剤を水中に分散させて一段懸濁重合することが好ましい。
 メタクリル樹脂の製造方法においては、懸濁重合水中に分散する懸濁剤の平均粒子径を10~40μmとして重合することが好ましい。これにより、メタクリル樹脂(例えばメタクリル樹脂ビーズ)の体積粒子径の標準偏差を制御でき、また重合挙動が安定化し徐熱量が下がり、生産性を向上することができる。
 懸濁剤の平均粒子径は、使用する懸濁剤の粒子径を適宜選定することで調整できる。さらに粒子径の異なる粉体を混ぜ合わせることで、適切な平均粒径の懸濁剤を得ることができる。
 メタクリル樹脂の製造方法においては、水相のpHを4~7の範囲に調整することが好ましい。pHが当該範囲に入ることによって、ビーズの粒子径の標準偏差を制御でき、また重合挙動の安定化をはかることができる。
 メタクリル樹脂の製造方法においては、あらかじめ懸濁剤を50℃~90℃に昇温して調整したうえで、反応器内の水中(50℃~90℃)に投入することが好ましい。これによりメタクリル樹脂(例えばメタクリル樹脂ビーズ)の平均粒子径と、そのバラつきを調整することができる。
 メタクリル樹脂の製造方法によっては、有機系の懸濁剤より無機系の懸濁剤を使用することが好ましい。有機系の懸濁剤の場合はビーズの平均粒子径のバラつきが小さくなりすぎる傾向にある。ここで有機系の懸濁剤としては、ポリビニルアルコール、メチルセルロース、エチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、ゼラチン、ポリ酢酸ビニル等が挙げられる。
 無機懸濁剤としては、アルキルシアノアクリレートへの溶解後の安定性等を考慮するとカルシウム及び/又はアルミニウムを含む無機化合物を含むことが好ましく、例えば、リン酸三カルシウム(第3リン酸カルシウム)等のリン酸カルシウム、炭酸カルシウム、水酸化アルミニウム等の無機化合物が挙げられる。特に、溶解後の安定性の観点から、アルミニウムを含む無機化合物を含むことがより好ましい。
 また、懸濁剤は、さらに、ポリエチレングリコール、エチレンジアミン四酢酸ナトリウム、ラウリル硫酸ナトリウム等の懸濁助剤を含んでいてもよい。懸濁助剤は、懸濁剤100質量%に対して、0.01~10質量%含んでいてよい。
 懸濁剤は、水中にモノマー原料とともに混合して用いることが好ましい。
<洗浄方法>
 メタクリル樹脂の製造方法においては、懸濁剤除去のために、酸洗浄や水洗、アルカリ洗浄等の操作を行うことが好ましい。これらの洗浄操作を行う回数は、作業効率と懸濁剤の除去効率から最適な回数を選べばよく、一回でも複数回繰り返してもよい。
 洗浄を行う際の温度は懸濁剤の除去効率や得られる重合体の着色度合等を考慮して最適な温度を選べばよく、20~100℃であることが好ましい。より好ましくは30~95℃、更に好ましくは40~95℃、特に好ましくは50~80℃である。
 また、洗浄時の一回あたりの洗浄時間は、洗浄効率、増粘剤として使用した際のにおいの低減、シアノアクリレートへの溶解安定性の観点から10~180分であることが好ましく、より好ましくは20~150分である。
 洗浄時に使用する洗浄液のpHは、懸濁剤除去が可能な範囲であればよいが、好ましくはpH1~12である。酸洗浄を行う場合のpHは、懸濁剤の除去効率や得られる重合体の色調の観点からpH1~5であることが好ましく、より好ましくはpH1.2~4である。その際使用する酸としては、懸濁剤除去が可能なものであればよく、特に規定はされないが、従来公知の無機酸、有機酸を使用することができる。好適に使用される酸の一例を挙げると、無機酸としては塩酸、硝酸、硫酸、リン酸、硼酸等が挙げられ、それぞれ水等で希釈された希釈溶液で使用してもよい。有機酸としては、カルボキシル基やスルホ基、ヒドロキシ基、チオール基、エノールを有するものが挙げられる。懸濁剤の除去効果や得られる樹脂の色調を考慮すると、より好ましくは硝酸、硫酸、カルボキシル基を有する有機酸である。
 酸洗浄後には、シアノアクリレートへの溶解時の溶け残りを抑制する観点から、更に水洗やアルカリ洗浄を行うことが好ましい。より好ましくは50℃以上の温水で洗浄を実施する方法であり、さらに好ましくは50℃以上の温水で洗浄を実施した後にさらにアルカリ洗浄及び/又は50℃以上の温水で洗浄を実施する方法である。
 洗浄後のスラリーのpHが2以上9以下、好ましくは4以上7以下、さらに好ましくは5以上6.8以下、特に好ましくは5.5以上6.5以下に調整することで、シアノアクリレートへ溶解させたときの貯蔵安定性に優れ、耐光性にも優れた増粘剤を得ることができる。
(添加剤)
 本実施形態の増粘剤は、任意選択的にその他の添加剤を配合してもよい。添加剤は、本発明の効果を発揮できる限り特に限定されることなく、目的に応じて、適宜選択されてよい。
 添加剤としては、以下に限定されるものではないが、例えば、紫外線吸収剤、熱安定剤、光安定剤;可塑剤;難燃剤;難燃助剤;硬化剤;硬化促進剤;帯電防止剤;導電性付与剤;応力緩和剤;離型剤;結晶化促進剤;加水分解抑制剤;潤滑剤;衝撃付与剤;摺動性改良剤;相溶化剤;核剤;強化剤;流動調整剤;染料;増感剤;着色剤;沈降防止剤;タレ防止剤;充填剤;消泡剤;光拡散性微粒子;防錆剤;抗菌剤;防カビ剤;防汚剤;導電性高分子等が挙げられる。
 本実施形態の増粘剤は、上述の方法で得られたメタクリル樹脂をそのまま増粘剤として用いてもよいし、さらに、その他のメタクリル樹脂組成物と混合して増粘剤としてもよい。
 本実施形態の増粘剤は、特にシアノアクリレート(好ましくはアルキルシアノアクリレート、より好ましくはエチルシアノアクリレート)系増粘剤用途に好適に使用できる。
 増粘剤中のメタクリル樹脂の質量割合としては、増粘剤100質量%に対して、80~100質量%であることが好ましく、より好ましくは90~100質量%、特に好ましくは99~100質量%である。
<アセトン溶液のYI値>
 増粘剤は、増粘剤を10質量%の濃度でアセトンに溶かし、厚み1cmセルで測定したYellowness Index(YI)値が、0.1~2であることが好ましく、より好ましくは0.2~1.9、更に好ましくは0.3~1.8である。
 また、増粘剤中に含まれるメタクリル樹脂を10質量%の濃度でアセトンに溶かし、厚み1cmセルで測定したYI値が、0.1~2であることが好ましく、より好ましくは0.2~1.9、更に好ましくは0.3~1.8である。
 YI値が上記範囲に入ることで、溶解後の安定性、色相、耐光性に優れた接着剤を得ることができる。YI値を上記範囲とする方法としては、2段重合ではなく1段重合によりメタクリル樹脂を得る方法等が挙げられる。
<増粘剤を水に分散させた際の水相のpH>
 増粘剤は、増粘剤20gと100gの純水とを攪拌分散させたあと静置し、固形分を沈降させた後に常温で測定した上澄み液水相のpHが、2以上9以下であることが好ましい。増粘剤を溶解させて使用する際の色相を特に良好に保つこと、シアノアクリレートへの溶解性、残存物に由来するにおいを抑制する観点から、より好ましくは3以上、とりわけ好ましくは3.5以上である。シアノアクリレート等への溶解後の貯蔵安定性を高める観点から、8.5以下であることが好ましく、さらに好ましくは8以下、とりわけ好ましくは7.5以下である。
 また、増粘剤中に含まれるメタクリル樹脂20gと100gの純水とを攪拌分散させたあと静置し、固形分を沈降させた後に常温で測定した上澄み液水相のpHが、2以上9以下であることが好ましい。増粘剤を溶解させて使用する際の色相を特に良好に保つこと、シアノアクリレートへの溶解性、残存物に由来するにおいを抑制する観点から、より好ましくは3以上、とりわけ好ましくは3.5以上である。シアノアクリレート等への溶解後の貯蔵安定性を高める観点から、8.5以下であることが好ましく、さらに好ましくは8以下、とりわけ好ましくは7.5以下である。
<粒径710μm以上の粒子の質量割合>
 増粘剤100質量%に対する、粒径710μm以上の粒子の質量割合は、シアノアクリレート系接着剤に対して高い溶解性を得る観点から、5質量%以下であることが好ましく、より好ましくは3質量%以下、さらに好ましくは1質量%以下、とりわけ好ましくは0.5質量%以下、特に好ましくは0.1質量%以下である。粒径710μm以上の粒子の質量割合は、例えば後述する実施例記載の方法で測定することができる。
 [接着剤]
 本実施形態の増粘剤はシアノアクリレート系接着剤に用いられることが好ましい。ここでシアノアクリレート系接着剤は本実施形態の増粘剤とシアノアクリレート(好ましくは、アルキルシアノアクリレート)とを含む。さらに添加剤を含んでいてもよい。
 接着剤は、25℃での粘度が0.5~10Pa・sであることが好ましい。ここでこの粘度はB型粘度計で測定した粘度である。
 より好ましくは1~9Pa・s、更に好ましくは2~8Pa・sである。当該範囲となることでハンドリング性に優れた接着剤が得られる。接着剤の粘度を上記範囲に調整する方法としては、メタクリル樹脂の重量平均分子量を調整すること、接着剤中のメタクリル樹脂又は増粘剤の濃度を調整すること等が挙げられる。
 具体的な濃度としては、接着剤100質量%に対して、10~30%の質量パーセント濃度でシアノアクリレート(好ましくはアルキルシアノアクリレート、より好ましくはエチルシアノアクリレート)に溶解することが好ましく、より好ましくは12~28%の質量パーセント濃度、さらに好ましくは15~25%の質量パーセント濃度である。
 溶解させる際の温度は溶けやすさの観点から30℃以上が好ましく、安定性の観点から80℃以下が好ましい。
 以下の実施例、比較例を用いて更に具体的に説明する。
<原料>
 用いた原料は下記のものである。
 メタクリル酸メチル(MMA):旭化成製(重合禁止剤として中外貿易製2,4-ジメチル-6-t-ブチルフェノールを2.5質量ppm含有)
 アクリル酸メチル(MA):三菱ケミカル製(重合禁止剤として、4-メトキシフェノールを15ppm含有)
 アクリル酸ブチル(BA):東亜合成製(重合禁止剤として、4-メトキシフェノールを15質量ppm含有)
 スチレン(St):旭化成株式会社製(重合禁止剤として、4-t-ブチルカテコールを12ppm含有)
 アクリル酸エチルヘキシル(EHA):東京化成工業製
 n-オクチルメルカプタン(NOM):アルケマ製
 2-エチルヘキシルチオグリコレート(EHTG):アルケマ製
 ラウロイルパーオキサイド(LPO):日本油脂製
 第3リン酸カルシウム日本化学工業製
 炭酸カルシウム:日東粉化工業製、NN#200、平均粒子径14.8μm
 ラウリル硫酸ナトリウム:富士フィルム和光純薬製、懸濁助剤として使用
 エチレンジアミン4酢酸4ナトリウム2水和物(EDTA):キシダ化学製
 水酸化アルミニウム:日本軽金属製、SBX73,B303,B153,B103を用いて、それぞれを適宜混合することで平均粒径を調整した
[I.増粘剤に用いるメタクリル樹脂ビーズの製造]
(実施例1)
-懸濁剤の調整-
 4枚傾斜パドル翼を取り付けた攪拌機を有する容器に、水5kg、平均粒子径33μmの水酸化アルミニウム130g、ラウリル硫酸ナトリウム0.39g、EDTA2.3gを投入、混合し、混合液(a1)を得た。混合液(a1)中の懸濁剤の平均粒子径は33μmであり、得られた混合液(a1)のpHは5.5であった。得られた混合液(a1)を70℃まで加熱した。
-重合反応-
 次いで、60Lの反応器に水25kgを投入して80℃に昇温し、その反応器に、混合液(a1)3kgと、表1に示す配合のモノマー原料21kgと、EHTG60gと、LPO43gとを混合したモノマー溶液を投入した。その後、約80℃の温度を保って懸濁重合を行い、モノマー溶液を投入してから140分後に発熱のピークが観測された。その後、93℃まで1℃/minの速度で昇温した後、45分間約93℃の温度を保持し、重合反応を実質終了して重合体スラリーを得た。次に、得られた重合体スラリーを50℃まで冷却した。その重合体スラリーに、懸濁剤を溶解させるために20質量%硫酸を投入して重合反応溶液を得た。次に、得られた重合反応溶液を、1.68mmメッシュの篩にかけて凝集物を除去して、濾過し、ビーズ状のメタクリル樹脂粒子と懸濁廃液とに分離した。その懸濁廃液のpHは3.3であった。
-洗浄工程-
 その後、ビーズ状のメタクリル樹脂粒子とおおよそ等量の約70℃のイオン交換水を加えて攪拌、洗浄、および濾過を実施し、同様に約70℃のイオン交換水での洗浄をさらにもう一度実施し(合計で2回水洗浄)、スラリー状重合体溶液を得た。得られたスラリー状重合体溶液に、水酸化ナトリウム水溶液を滴下してpHを8.5に調整し、攪拌し洗浄を行った。そのスラリー状重合体溶液を濾過し、さらに70℃のイオン交換水を加えて攪拌し洗浄を行った。得られたスラリー状重合体溶液のpHは6.1であった。その後、そのスラリー状重合体溶液を濾過し、樹脂ビーズを得た。得られた樹脂ビーズは、気流乾燥機を用いて150℃の気流(30Nm/hr)で乾燥した後、流動床乾燥機(25Nm/hr)で90℃、5分間乾燥を行い、メタクリル樹脂ビーズを得た。得られたメタクリル樹脂ビーズの重量平均分子量は142,000、Mw/Mn=1.9であった。
(実施例2)
 実施例1と同様の方法で混合液(a1)を調製した。次いで、モノマー原料の配合を表1のように変更したこと以外は実施例1と同様に、重合体スラリーを形成し、濾過し、ビーズ状のメタクリル樹脂粒子を得た。その後、水洗浄を3回行ったこと以外は、実施例1と同様に洗浄を行い、スラリー状重合体溶液を得た。得られたスラリー状重合体溶液のpHは6.0であった。その後、そのスラリー状重合体溶液を濾過し、樹脂ビーズを得た。得られた樹脂ビーズを実施例1と同様に乾燥し、メタクリル樹脂ビーズを得た。得られたビーズの重量平均分子量は136,000、Mw/Mn=2.0であった。
(実施例3、実施例5)
 モノマー原料の配合を表1に記載の配合に変更した以外は実施例1と同様にして、メタクリル樹脂ビーズを得た。
(実施例4)
 気流乾燥機の温度を100℃とした以外は実施例1と同様にして、メタクリル樹脂ビーズを得た。
(比較例1)
 モノマー原料の配合をMMAのみとした以外は実施例1と同様にして、メタクリル樹脂ビーズを得た。
(比較例2)二段重合での重合例
 4枚傾斜パドル翼を取り付けた攪拌機を有する容器に、水2kg、第三リン酸カルシウム65g、炭酸カルシウム39g、ラウリル硫酸ナトリウム0.39gを投入し、懸濁剤液(A)を得た。メタクリル酸メチル3900g、アクリル酸ブチル20g、EHTG42g、LPO28gを配合してモノマー原料(1)を調製した。次いで、60Lの反応器に水26kgを投入して80℃に昇温し、懸濁剤液(A)全量、及びモノマー原料(1)を投入した。約80℃の温度を保って150分間懸濁重合を行い、反応を実質終了して重合体のスラリーを得た。その後、重合体(I)のスラリーを80℃で60分間攪拌した。次に、メタクリル酸メチル20kg、アクリル酸ブチル100g、NOM35g、LPO40gを配合してモノマー原料(2)を調整した。その反応器にモノマー原料(2)を投入し、引き続き約80℃で90分懸濁重合を行った。次いで92℃まで1℃/minの速度で昇温した後、60分間保持し、重合反応を実質終了して重合体スラリーを得た。
 次に、実施例1と同様に濾過、洗浄および乾燥を行い、メタクリル樹脂ビーズを得た。得られたメタクリル樹脂ビーズの重量平均分子量は124,000、Mw/Mn=2.6であった。
(実施例6)
 イオン交換水の温度を約25℃に変更して洗浄回数を1回としたこと以外は、実施例1と同様に処理を行い、メタクリル樹脂ビーズを得た。洗浄後のスラリー液のpHは4.6であった。
(実施例7)
 イオン交換水の量をビーズ状重合体のおおよそ半分に変更して洗浄回数を1回としたこと以外は、実施例6と同様に処理を行い、メタクリル樹脂ビーズを得た。スラリー液のpHは3.5であった。
(実施例8)
 イオン交換水に加えて少量の20質量%硫酸を用いて洗浄したこと以外は、実施例6と同様に処理を行い、メタクリル樹脂ビーズを得た。スラリー液のpHは2.0であった。
(比較例3)
 実施例3と同様の配合と処理で、ビーズ状のメタクリル樹脂粒子と懸濁廃液とに分離した。その後、ビーズ状のメタクリル樹脂粒子とおおよそ等量の常温の水を加えたのち水酸化ナトリウム水溶液を加えてpHを10.5となるように調整して攪拌、洗浄、および濾過して樹脂ビーズを得た。得られた樹脂ビーズを実施例3と同様に乾燥し、メタクリル樹脂ビーズを得た。
(実施例9)
 実施例1と同様の配合と処理で、ビーズ状のメタクリル樹脂粒子と懸濁廃液とに分離した。その後、pHを9としたこと以外は、比較例3と同様に処理を行い、メタクリル樹脂ビーズを得た。
(比較例4)
 気流乾燥機の温度を80℃とした以外は実施例1と同様の配合と、重合方法でメタクリル樹脂ビーズを得た。
(実施例10)
-懸濁剤-
 4枚傾斜パドル翼を取り付けた攪拌機を有する容器に、水5kg、平均粒子径23μmの水酸化アルミニウム130g、ラウリル硫酸ナトリウム0.39g、EDTA2.3gを投入、混合し、混合液(a2)を得た。混合液(a2)中の懸濁剤の平均粒子径は23μmであり、得られた混合液のpHは5.5であった。得られた混合液(a2)を70℃まで加熱した。60Lの反応器に水27kg、混合液(a2)3kg、表2に示す配合割合のモノマー原料16kg、EHTG13g、LPO25gを投入し混合し、反応器の反応温度を80℃で150分重合を行い、その後、93℃に1℃/minの速度で昇温した後、45分間熟成し、重合反応を実質終了して重合体スラリーを得た。次に50℃まで冷却して懸濁剤を溶解させるために20質量%硫酸を投入した。次に、重合反応溶液を、1.68mmメッシュの篩にかけて凝集物を除去した上で、得られた懸濁液を、濾布を通して濾過し、ビーズ状のメタクリル樹脂粒子と、懸濁廃液とに分離した。その後、ビーズ状の重合体とおおよそ等量の70℃に加温したイオン交換水を加えて以降の操作は実施例1と同様に行い、樹脂ビーズを得た。得られた樹脂ビーズの重量平均分子量は402,000、Mw/Mn=2.2であった。
(実施例11)
 モノマー原料中、EHTGの量を8gとした以外は実施例10と同様の組成、重合方法で、メタクリル樹脂ビーズを得た。モノマー投入から発熱ピークが観測されるまでの時間は120分であった。得られた樹脂ビーズの重量平均分子量は654,000、Mw/Mn=2.2であった。
(実施例12)
 使用する水の量を30kgとし、EHTGを添加せずに重合を行った以外は実施例10と同様の組成、重合方法で、メタクリル樹脂ビーズを得た。モノマー投入から発熱ピークが観測されるまでの時間は100分であった。得られた樹脂ビーズの重量平均分子量は1,250,000、Mw/Mn=2.4であった。
(実施例13、14、15、16)
 モノマー原料を表3に示す種類と配合に変更したこと以外は実施例1と同様にしてメタクリル樹脂ビーズを得た。
(比較例5)
 4枚傾斜パドル翼を取り付けた攪拌機を有する容器に、水2kg、第三リン酸カルシウム65g、炭酸カルシウム39g、ラウリル硫酸ナトリウム0.39gを投入し、懸濁剤液(A)を得た。次いで、60Lの反応器に水21kgを投入して80℃に昇温し、懸濁剤液(A)及び、表1に示す配合割合のモノマー原料21kg及び、EHTG60g、LPO63gを混合した調合溶液を投入した。その後、約80℃を保って110分間懸濁重合を行い、次いで93℃に1℃/minの速度で昇温した後、45分間約93℃の温度を保持し、重合反応を実質終了して重合体スラリーを得た。開始剤のLPOを増量したため、重合時間が短縮された。次に50℃まで冷却して懸濁剤を溶解させるために20質量%硫酸を投入した。次に、重合反応溶液を、濾布を通して濾過し、ビーズ状のメタクリル樹脂粒子と懸濁廃液とに分離した。その際の懸濁廃液のpHは3.3であった。その後、ビーズ状の重合体とおおよそ等量の約70℃に温めたイオン交換水を加えて攪拌・洗浄、濾過を実施し、同様に約70℃のイオン交換水での洗浄操作をさらにもう一度実施し、スラリー状重合体溶液を得た(合計で2回水洗浄)。得られたスラリー状重合体溶液に、水酸化ナトリウム水溶液を滴下してpHを8.5に調整し、攪拌・洗浄を行った。濾し布で濾過し、さらに70℃に加温したイオン交換水を加えて攪拌、洗浄したところ、得られたスラリー状重合体溶液のpHは6.1であった。その後、濾し布で濾過し、樹脂ビーズを得た。得られた未乾燥の樹脂ビーズは、気流乾燥機を用いて150℃の気流(30Nm/hr)で乾燥した後、流動床乾燥機(25Nm/hr)で90℃、5分乾燥を行い、メタクリル樹脂ビーズを得た。得られたビーズ中の710μm以上の粒子割合は5.1%であった。
(実施例17)
-懸濁剤の調整-
 4枚傾斜パドル翼を取り付けた攪拌機を有する容器に、水5kg、平均粒子径33μmの水酸化アルミニウム130g、ラウリル硫酸ナトリウム0.39g、EDTA2.3gを投入、混合し、混合液(a1)を得た。混合液(a1)中の懸濁剤の平均粒子径は33μmであり、得られた混合液(a1)のpHは5.5であった。得られた混合液(a1)を70℃まで加熱した。
-重合反応-
 次いで、60Lの反応器に水25kgを投入して80℃に昇温し、その反応器に、混合液(a1)3kgと、表1に示す配合のモノマー原料21kgと、EHTG60gと、LPO43gとを混合したモノマー溶液を投入した。その後、約80℃の温度を保って懸濁重合を行い、モノマー溶液を投入してから140分後に発熱のピークが観測された。その後、93℃まで1℃/minの速度で昇温した後、45分間約93℃の温度を保持し、重合反応を実質終了して重合体スラリーを得た。次に、得られた重合体スラリーを50℃まで冷却した。その重合体スラリーに、懸濁剤を溶解させるために20質量%硫酸を投入して重合反応溶液を得た。次に、得られた重合反応溶液を、1.68mmメッシュの篩にかけて凝集物を除去して、濾過し、ビーズ状のメタクリル樹脂粒子と懸濁廃液とに分離した。その懸濁廃液のpHは3.3であった。
-洗浄工程-
 その後、ビーズ状のメタクリル樹脂粒子とおおよそ等量の約70℃のイオン交換水を加えて攪拌、洗浄、および濾過を実施し、同様に約70℃のイオン交換水での洗浄をさらにもう一度実施し(合計で2回水洗浄)、スラリー状重合体溶液を得た。得られたスラリー状重合体溶液に、水酸化ナトリウム水溶液を滴下してpHを8.5に調整し、攪拌し洗浄を行った。そのスラリー状重合体溶液を濾過し、さらに70℃のイオン交換水を加えて攪拌し洗浄を行った。得られたスラリー状重合体溶液のpHは6.1であった。その後、そのスラリー状重合体溶液を濾過し、樹脂ビーズを得た。得られた樹脂ビーズは、気流乾燥機を用いて150℃の気流(30Nm/hr)で乾燥した後、流動床乾燥機(25Nm/hr)で90℃、5分間乾燥を行い、メタクリル樹脂ビーズを得た。得られたメタクリル樹脂ビーズの重量平均分子量は143,000、Mw/Mn=1.9であった。NMR測定の結果、仕込み通りの組成のメタクリル樹脂が得られていることを確かめた。
(実施例18~24)
 モノマー原料の配合を表1に記載の配合に変更した以外は実施例17と同様にして、メタクリル樹脂ビーズを得た。
 (実施例25)
-懸濁剤-
 4枚傾斜パドル翼を取り付けた攪拌機を有する容器に、水5kg、平均粒子径23μmの水酸化アルミニウム130g、ラウリル硫酸ナトリウム0.39g、EDTA2.3gを投入、混合し、混合液(a2)を得た。混合液(a2)中の懸濁剤の平均粒子径は23μmであり、得られた混合液のpHは5.5であった。得られた混合液(a2)を70℃まで加熱した。60Lの反応器に水27kg、混合液(a2)3kg、表1に示す配合割合のモノマー原料16kg、EHTG13g、LPO25gを投入し混合し、反応器の反応温度を80℃で150分重合を行い、その後、93℃に1℃/minの速度で昇温した後、45分間熟成し、重合反応を実質終了して重合体スラリーを得た。次に50℃まで冷却して懸濁剤を溶解させるために20質量%硫酸を投入した。次に、重合反応溶液を、1.68mmメッシュの篩にかけて凝集物を除去した上で、得られた懸濁液を、濾布を通して濾過し、ビーズ状のメタクリル樹脂粒子と、懸濁廃液とに分離した。その後、ビーズ状の重合体とおおよそ等量の70℃に加温したイオン交換水を加えて以降の操作は実施例17と同様に行い、メタクリル樹脂ビーズを得た。得られたメタクリル樹脂ビーズの重量平均分子量は403,000、Mw/Mn=2.3であった。
(実施例26)
 EHTGの量を8gとした以外は実施例9と同様の組成、重合方法で、メタクリル樹脂ビーズを得た。モノマー投入から発熱ピークが観測されるまでの時間は120分であった。得られたメタクリル樹脂ビーズの重量平均分子量は653,000、Mw/Mn=2.2であった。
(実施例27)
 使用する水の量を30kgとし、EHTGを添加せずに重合を行った以外は実施例9と同様の組成、重合方法で、メタクリル樹脂ビーズを得た。モノマー投入から発熱ピークが観測されるまでの時間は100分であった。得られたメタクリル樹脂ビーズの重量平均分子量は1,250,000、Mw/Mn=2.4であった。
(比較例6、7)
 モノマー原料の配合を表4に記載の配合に変更した以外は実施例17と同様にして、メタクリル樹脂ビーズを得た。
[II.メタクリル樹脂の物性]
(II-1)(重量平均分子量、分子量分布)
 実施例、比較例で得られたメタクリル樹脂ビーズの重量平均分子量、分子量分布を下記の装置、及び条件で測定した。
 測定装置:東ソー株式会社製ゲルパーミエーションクロマトグラフィー(HLC-83
20GPC) カラム:TSKguardcolumn SuperH-H 1本、TSKgel SuperHM-M 2本、TSKgel SuperH2500 1本を順に直列接続して使用した。
 本カラムでは、高分子量が早く溶出し、低分子量は溶出する時間が遅い。
 検出器  :RI(示差屈折)検出器
 検出感度 :3.0mV/min
 カラム温度:40℃
 サンプル :0.02gのメタクリル樹脂のテトラヒドロフラン20mL溶液
 注入量  :10μL
 展開溶媒 :テトラヒドロフラン、流速;0.6mL/min
       内部標準として、2,6-ジ-t-ブチル-4-メチルフェノール(BHT)を、0.1g/L添加。
 検量線用標準サンプルとして、単分散のピークトップ分子量が既知で分子量が異なる以下の10種のポリメタクリル酸メチル(Polymer Laboratories製;PMMA Calibration Kit M-M-10)を用いた。
            ピークトップ分子量(Mp)
   標準試料1    1,916,000
   標準試料2      625,500
   標準試料3      298,900
   標準試料4      138,600
   標準試料5       60,150
   標準試料6       27,600
   標準試料7       10,290
   標準試料8        5,000
   標準試料9        2,810
   標準資料10         850
 上記の条件で、メタクリル樹脂の溶出時間に対する、RI検出強度を測定した。
 GPC溶出曲線におけるエリア面積と、3次近似式の検量線を基にメタクリル樹脂の重量平均分子量(Mw)、分子量分布(Mw/Mn)を求めた。
(II-2)(体積平均粒子径、D10
 特開2021-017561号の段落[0045]と同じ条件で測定した。
(II-3)(水分率)
 SHIMADZU MOISTURE BALANCE MOC-120Hを用いて、10.0gのメタクリル樹脂ビーズを70℃に保持し、10秒間の重量減少率が0.02%以下になったところで測定終了し、合計の重量減少率を水分率とした。
(II-4)(MMA揮発量)
 Agilent社製GC-6890,MSD-5973を用いて、MMA揮発量を測定した。メタクリル樹脂ビーズ5mgを熱分解炉で60℃で10分加熱し、発生したガスを液体窒素で冷却したカラムHP5-MSでトラップした。トラップされた発生ガス分をGC/MSで分析し、MMA揮発量を定量した。
(II-5)(アセトン溶液のYI値)
 得られたメタクリル樹脂ビーズを10%の質量パーセント濃度でアセトンに溶かした溶液を、厚み1cmセルに入れて、色差計(有限会社東京電色社製、TC-8600A、光源:10-C)を用いて、JIS K7105に準拠してYI値を測定した。
(II-6)(増粘剤を水に分散させた際の水相のpH)
 メタクリル樹脂ビーズ20gと100gの純水とを分散させたあと静置し、固形分を沈降させた後に常温で上澄み液のpHを測定した。
 測定機器:pHメーター F-52(HORIBA)
 電極:スタンダードToupH 電極 9615S-10D
(II-7)(710μm以上の粒子の割合)
 メタクリル樹脂ビーズ約100gを用いて、JIS-Z8801に基づく、篩(東京スクリーン製JTS-200-45-31(目開き710μm)、JTS-200-45-44(目開き500μm),35(目開き355μm),36(目開き300μm),37(目開き250μm),38(目開き150μm),61(受け皿))を用いて篩い分け試験機TSK B-1を用いて振動力MAXにて10分間篩いを行ったときの各篩に残った粒子重量を測定し、目開き710μmの篩上に残った粒子の割合(710μm以上の粒子径成分割合)を測定した。測定は3回実施し、その平均値で割合を算出した。
 [710μm以上の粒子の割合]=100×[目開き710μmの篩上に残った粒子重量]/[篩分け試験機に供したサンプル重量](%)
(II-8)(エチルシアノアクリレート溶液の粘度)
 スターラー付きオイルバスにシリコーンオイルを入れ、50℃に加熱する。110mLのネジ口瓶(直径50mm)に増粘剤16g、エチルシアノアクリレート64g(増粘剤20質量%の場合)と回転子を入れ、ネジ口瓶の蓋を閉める。オイルバスにネジ口瓶を入れ、スターラーを回転(150rpm)させ、メタクリル樹脂ビーズをエチルシアノアクリレートに溶解し、メタクリル樹脂のエチルシアノアクリレート溶液であるシラップを得た。増粘剤の濃度が10質量%の場合は、増粘剤8g、エチルシアノアクリレート72gの比率で溶解させた。重量平均分子量が85,000以上300,000未満の増粘剤は、エチルシアノアクリレートに20質量%の濃度で溶解させ、重量平均分子量が300,000以上800,000未満の増粘剤は10質量%の濃度で溶解させ、300,000以上800,000未満の増粘剤は、7質量%の濃度で溶解させて、冷却し、25℃で粘度η1を測定した。また、そのシラップを60℃で48時間放置した後、25℃で粘度η2を測定した。粘度測定機器はB型粘度計(英弘精機製デジタル粘度計LVDV Next)を使用した。シラップを40mLの測定管に量り取り、測定管を粘度計に設置して粘度測定を開始した。スピンドルの回転数60rpmで粘度を測定した。60rpmで測定範囲を越えた場合は回転数を落として測定する。粘度の高いものは、シラップ製造時に添加量を調整し、適切な粘度に調整すればよい。
[III.増粘剤の評価]
 実施例、比較例で得られたメタクリル樹脂ビーズを増粘剤として用いて、以下の評価を行った。
(III-1)(におい)
 400gのメタクリル樹脂ビーズをポリ容器(密閉式、500mLのアイボーイ広口瓶)に入れ、60℃で2時間加熱した後30℃まで放冷した後、においを5人の評価者が嗅ぎ、以下の基準で点数化した。そして、5人の点数の平均値によって、においの強さをA~Dにランク付けした。
6:耐えられないにおい
5:非常に鼻につくにおい
4:鼻につくにおい
3:強烈に感じられるが鼻につかない
2:感じる(軽微)が鼻につかない
1:感じにくい。
この評価を5人で行い、その平均から、
A(においが非常に弱い):点数の平均値が2以下
B(においが非常に弱い):点数の平均値が2超3以下
C(良好):点数の平均値が3超4以下
D(不良):点数の平均値が4超
とした。
(III-2)(溶解速度)
 スターラー付きオイルバスにシリコーンオイルを入れ、50℃に加熱する。110mLのネジ口瓶(直径50mm)に増粘剤16g、エチルシアノアクリレート64g(増粘剤20質量%の場合)と回転子を入れ、ネジ口瓶の蓋を閉める。オイルバスにネジ口瓶を入れ、スターラーを回転(150rpm)させて測定を開始した。瓶中の増粘剤がエチルシアノアクリレートに溶けるまでの時間を測定した。重量平均分子量が85,000以上300,000未満の増粘剤は、エチルシアノアクリレートに20質量%の濃度で溶解させ、重量平均分子量が300,000以上800,000未満の増粘剤は10質量%の濃度で溶解させ、300,000以上800,000未満の増粘剤は、7質量%の濃度で溶解させ、溶解時間に応じてA~Dにランク付けした。
A:45分以内に増粘剤がすべて溶けた
B:60分以内に増粘剤がすべて溶けた
C:60分を超えて増粘剤がほぼ溶けた
D:増粘剤が溶解しなかった
(III-3)(溶解後の長期安定性)
 上記と同様にメタクリル樹脂ビーズを50℃でエチルシアノアクリレートにそれぞれの分子量に応じた濃度で溶解してサンプルを調製した。そのサンプルを25℃で90日放置後、下記の基準で長期安定性を評価した。
A(長期安定性に極めて優れる):サンプルが流動性を保っており、接着剤として問題なく使用できる
B(長期安定性に優れる):サンプルの流動性が若干低下しているものの接着剤として問題なく使用できる
C(長期安定性が良好):サンプルの流動性が低下しているが、固化はしておらず、塗布および接着ができる
D(長期安定性が不良):サンプルが固化した
(III-4)(耐光性)
 長期安定性の評価でエチルシアノアクリレートに溶解させたサンプルについて、一部を抜き出し、密閉式の透明な100mLの容器にいれ、直射日光の当たる室外で1か月間放置した。放置後、サンプルの状態に応じて、以下の基準で耐光性を評価した。基準AとBは、耐光性が合格である。
A:サンプルが流動性を保っていた
B:サンプルの流動性が大きく低下した
C:サンプルが固化した
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1と比較例1、実施例8と比較例2,3を比較すると、ηの比の値が低いことで、溶解後の安定性が優れることがわかる。実施例1と比較例4を比較すると、ηの比の値が低いことで、溶解後の安定性が優れ、また炭素数4以上のアルキル基を有するアクリル酸アルキル単量体を所定量含有することで、シアノアクリレート溶解後のにおいが低減することがわかる。
 本発明によれば、接着剤用増粘剤として好適に利用でき、とりわけシアノアクリレート系接着剤用増粘剤として利用した時に、増粘対象の保管中の粘度増大、固化を抑制し、製品の保管安定性を改善できる増粘剤を提供することができる。

Claims (10)

  1.  重量平均分子量(Mw)85,000~1,500,000のメタクリル樹脂を含む増粘剤であって、
     前記メタクリル樹脂のエチルシアノアクリレート溶液の25℃での粘度(Pa・s)をη1とし、
     前記溶液を60℃で48時間放置し、25℃まで冷却し、冷却後の25℃での前記溶液の粘度(Pa・s)をη2としたとき、
     η1およびη2が、
     1.0≦η2/η1≦5.0
    を満たす
     (ただし、
     前記メタクリル樹脂のMwが85,000以上300,000未満の場合、前記溶液の前記メタクリル樹脂の濃度が、20質量%であり、
     前記メタクリル樹脂のMwが300,000以上800,000未満の場合、前記溶液の前記メタクリル樹脂の濃度が、10質量%であり、
     前記メタクリル樹脂のMwが800,000以上1,500,000以下の場合、前記溶液の前記メタクリル樹脂の濃度が、7質量%である)、増粘剤。
  2.  前記メタクリル樹脂が、メタクリル酸メチル単量体単位90~99.9質量%およびアクリル酸アルキル単量体単位0.1~10質量%を含有することを特徴とする、請求項1に記載の増粘剤。
  3.  前記アクリル酸アルキル単量体単位のアルキル基の炭素数が4以上である、請求項2に記載の増粘剤。
  4.  前記メタクリル樹脂が、メタクリル酸メチル単量体単位90~99.9質量%および芳香族ビニル単量体単位0.1~10質量%を含有する、請求項1に記載の増粘剤。
  5.  前記メタクリル樹脂が、メタクリル酸メチル単量体単位90~99.8質量%、芳香族ビニル単量体単位0.1~8質量%およびアクリル酸エステル単量体単位0.1~8質量%を含有する、請求項4に記載の増粘剤。
  6.  前記アクリル酸アルキル単量体単位のアルキル基の炭素数が4以上である、請求項5に記載の増粘剤。
  7.  前記メタクリル樹脂が、乾燥法にて測定した水分率が0.01%以上1%以下である、請求項1又は2に記載の増粘剤。
  8.  前記メタクリル樹脂が、平均粒子径が50~500μmのビーズ状である、請求項1に記載の増粘剤。
  9.  前記増粘剤100質量%に対して、粒径710μm以上の粒子の質量割合が5質量%以下である、請求項8に記載の増粘剤。
  10.  請求項1に記載の増粘剤を1~30%含む、シアノアクリレート系接着剤組成物。
PCT/JP2022/024212 2021-07-01 2022-06-16 増粘剤および接着剤組成物 WO2023276708A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237044239A KR20240011776A (ko) 2021-07-01 2022-06-16 증점제 및 접착제 조성물
JP2023531794A JPWO2023276708A1 (ja) 2021-07-01 2022-06-16
EP22832858.9A EP4365253A1 (en) 2021-07-01 2022-06-16 Thickener and adhesive composition
CN202280037259.6A CN117460803A (zh) 2021-07-01 2022-06-16 增粘剂和粘合剂组合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021110257 2021-07-01
JP2021-110257 2021-07-01
JP2021135087 2021-08-20
JP2021-135087 2021-08-20

Publications (1)

Publication Number Publication Date
WO2023276708A1 true WO2023276708A1 (ja) 2023-01-05

Family

ID=84692348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024212 WO2023276708A1 (ja) 2021-07-01 2022-06-16 増粘剤および接着剤組成物

Country Status (5)

Country Link
EP (1) EP4365253A1 (ja)
JP (1) JPWO2023276708A1 (ja)
KR (1) KR20240011776A (ja)
TW (1) TWI824583B (ja)
WO (1) WO2023276708A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4206295A4 (en) * 2020-09-29 2024-03-20 Asahi Chemical Ind THICKENER FOR CYANOACRYLATE-BASED ADHESIVE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026576A (ja) * 1988-06-24 1990-01-10 Taoka Chem Co Ltd 白色α−シアノアクリレート接着剤組成物
JP2002201436A (ja) * 2001-01-09 2002-07-19 Taoka Chem Co Ltd α−シアノアクリレート系接着剤組成物
JP2003507494A (ja) * 1999-08-12 2003-02-25 クロージャー メディカル コーポレイション 増粘剤を含む無菌シアノアクリレート溶液
JP2020012060A (ja) * 2018-07-18 2020-01-23 東亞合成株式会社 2−シアノアクリレート系接着剤組成物
JP2021017561A (ja) 2019-07-18 2021-02-15 旭化成株式会社 増粘剤

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2050602A5 (ja) 1969-06-18 1971-04-02 Elf
JP2933978B2 (ja) 1990-05-10 1999-08-16 コニカ株式会社 分光吸収特性に優れたピロール系染料
JP7401178B2 (ja) 2017-04-07 2023-12-19 旭化成株式会社 樹脂組成物、増粘剤
JP6892036B1 (ja) * 2019-08-26 2021-06-18 Dic株式会社 2液型接着剤、積層体、成型体、包装材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026576A (ja) * 1988-06-24 1990-01-10 Taoka Chem Co Ltd 白色α−シアノアクリレート接着剤組成物
JP2003507494A (ja) * 1999-08-12 2003-02-25 クロージャー メディカル コーポレイション 増粘剤を含む無菌シアノアクリレート溶液
JP2002201436A (ja) * 2001-01-09 2002-07-19 Taoka Chem Co Ltd α−シアノアクリレート系接着剤組成物
JP2020012060A (ja) * 2018-07-18 2020-01-23 東亞合成株式会社 2−シアノアクリレート系接着剤組成物
JP2021017561A (ja) 2019-07-18 2021-02-15 旭化成株式会社 増粘剤

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4206295A4 (en) * 2020-09-29 2024-03-20 Asahi Chemical Ind THICKENER FOR CYANOACRYLATE-BASED ADHESIVE

Also Published As

Publication number Publication date
TW202302674A (zh) 2023-01-16
JPWO2023276708A1 (ja) 2023-01-05
TWI824583B (zh) 2023-12-01
KR20240011776A (ko) 2024-01-26
EP4365253A1 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
CN102807721B (zh) 具有优异的抗冲击强度和透明度的用于聚甲基丙烯酸甲酯树脂的抗冲改性剂及其制备方法
WO2023276708A1 (ja) 増粘剤および接着剤組成物
JP5695823B2 (ja) シーラー用塗料組成物
JP2024009330A (ja) 増粘剤
CN103314020B (zh) 甲基丙烯酸甲酯聚合物的制造方法
CN101787104A (zh) 透明树脂组合物及其制备方法
EP1944344B1 (en) Resin composition for plastic coating and plastic coating using the same
WO2006108570A1 (en) Aqueous vinyl coating compositions
JP5131956B2 (ja) 増粘剤およびその製造方法
JP5547459B2 (ja) シーラー用樹脂エマルション
JP7353727B2 (ja) シアノアクリレート系接着剤用増粘剤
JP2015067694A (ja) (メタ)アクリル系架橋微粒子およびその製造方法
CN110402257B (zh) 乳液、乳液的制备方法及使用乳液形成涂膜的方法
JP5547460B2 (ja) シーラー用樹脂組成物
JP6935183B2 (ja) 熱可塑性樹脂用粒子、及びその製造方法
CN117460803A (zh) 增粘剂和粘合剂组合物
JP3637794B2 (ja) メタクリル酸メチル系重合体ビーズの製造方法
JP3794578B2 (ja) 水性蛍光樹脂組成物及びその製造方法
JP2007284465A (ja) メタクリル系樹脂成形品の製造方法
JP5953182B2 (ja) アルカリ可溶性樹脂及びそれを用いた粘度調整剤
WO2023082116A1 (zh) 一种pmma共聚功能树脂及其制备方法
JP2006282935A (ja) 粒状ビニル系重合体及び熱硬化性樹脂組成物
JP4857728B2 (ja) 無機物粒子含有メタクリル樹脂の製法
JPH08333422A (ja) (メタ)アクリル酸系共重合体、水分散体および用途
JP2000026560A (ja) 分散機能を有する両性樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832858

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531794

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280037259.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237044239

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237044239

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022832858

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022832858

Country of ref document: EP

Effective date: 20240201