WO2023273805A1 - 货物运送方法、装置、电子设备和存储介质 - Google Patents

货物运送方法、装置、电子设备和存储介质 Download PDF

Info

Publication number
WO2023273805A1
WO2023273805A1 PCT/CN2022/097289 CN2022097289W WO2023273805A1 WO 2023273805 A1 WO2023273805 A1 WO 2023273805A1 CN 2022097289 W CN2022097289 W CN 2022097289W WO 2023273805 A1 WO2023273805 A1 WO 2023273805A1
Authority
WO
WIPO (PCT)
Prior art keywords
goods
fleet
robots
location
delivered
Prior art date
Application number
PCT/CN2022/097289
Other languages
English (en)
French (fr)
Inventor
何家伟
Original Assignee
深圳市海柔创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市海柔创新科技有限公司 filed Critical 深圳市海柔创新科技有限公司
Publication of WO2023273805A1 publication Critical patent/WO2023273805A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0492Storage devices mechanical with cars adapted to travel in storage aisles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses

Definitions

  • the present application relates to intelligent control technology, and in particular to a cargo delivery method, device, electronic equipment and storage medium.
  • autonomous mobile equipment dedicated to cargo handling came into being.
  • These autonomous mobile devices also known as robot cars, can autonomously climb shelves, pick up goods, and deliver goods, greatly improving the efficiency of goods handling in warehouses.
  • the present application provides a cargo transportation method, device, electronic equipment and storage medium, which control the robots to advance in a queue, realize unified control, and simplify the scheduling difficulty of the robots.
  • the present application provides a method for delivering goods, which is applied to a server in a storage system.
  • the storage system includes a shelf area, and the shelf area includes a plurality of shelves. Each shelf includes a multi-storey location.
  • the warehouse The position is used to place goods, and a roadway is set between two adjacent shelves.
  • the method includes:
  • the delivery task information is used to indicate the quantity of goods to be delivered, the current location information of the goods to be delivered, and the target location information of the goods to be delivered;
  • the current location information includes the laneway information, shelf information and warehouse bit information;
  • the delivery task information select a plurality of robots to form at least one fleet
  • plan a travel route for the fleet and send the travel route to the robots in the fleet, so that the robots in the fleet will arrive at the lanes in the shelf area in a queue according to the corresponding travel route and climb to pick up the goods from the corresponding storage positions of the shelves where the corresponding goods to be delivered are located, and/or, after picking up the goods, send the goods to be delivered to the target position of the goods to be delivered in a queue according to the travel route.
  • At least one collective trunk road is set on one side of the shelf area, and the collective trunk road is parallel to the roadway; roadway, said collective arterial road;
  • a first traveling signal is sent to the robots in the fleet, so that the robots in the fleet pass through the main road and enter the lanes of the shelf area in a queue according to the traveling route.
  • the method also includes:
  • a third traveling signal is sent to the robots in the fleet, so that the robots in the fleet leave the shelf area and go to the target position in a formation through the main road.
  • a sky rail for the robot to pass is arranged above the shelf area; the method also includes:
  • the warehousing system also includes a plurality of workstations; the target location of the goods to be transported is a workstation; and according to the delivery task information, selecting a plurality of robots to form at least one fleet includes:
  • the goods to be transported are divided into at least one group, wherein the quantity of the goods to be transported in each group meets the preset requirements, and the current position of the goods to be transported in each group is located in the same lane, and/or , the target location is the same workstation;
  • a convoy is assigned to each group of goods to be delivered, and the number of robots in the fleet matches the number of goods to be delivered in the group.
  • the method also includes:
  • the robots whose target location is the same workstation as the cargo to be delivered are divided into the same sub-team;
  • the target position corresponding to each sub-team determine the diversion node of the sub-team when the team leaves the shelf area and goes to the target position;
  • the method also includes:
  • the location of the merge node is sent to the robots in the at least two fleets, so that the robots in the at least two fleets are merged into the total fleet after arriving at the merge node, and the goods to be delivered are sent to the waiting group in the form of a queue in the total fleet.
  • the destination location of the shipment is sent to the robots in the at least two fleets, so that the robots in the at least two fleets are merged into the total fleet after arriving at the merge node, and the goods to be delivered are sent to the waiting group in the form of a queue in the total fleet.
  • the current positions of the goods to be delivered corresponding to the robots of the same fleet are located in the same lane; after sending the travel route to the robots in the fleet, so that the robots in the fleet follow the corresponding travel route, After arriving in the aisle of the shelf area in the form of a queue and climbing to the corresponding storage position of the shelf where the corresponding goods to be delivered are located to pick up the goods, it also includes:
  • the target positions corresponding to the robots of the fleet are different, it is searched whether there is a matching fleet, wherein the distance between the matching fleet and the roadway corresponding to the fleet is less than a preset distance, and the matching fleet and The time interval for the fleet to enter the corresponding lane is less than the preset interval, and the corresponding target positions of the robots in the matched fleet are different;
  • the fleet and the robots in the matching fleet are re-divided into multiple fleets, and each re-divided
  • the corresponding target position of each robot in the team is the same;
  • the present application provides a method for delivering goods, which is applied to a robot in a storage system.
  • the storage system includes a shelf area, and the shelf area includes a plurality of shelves. Each shelf includes a multi-storey location.
  • the warehouse The position is used to place goods, and a roadway is set between two adjacent shelves.
  • the method includes:
  • the delivery task information is assigned by the server after determining the delivery task information and selecting a plurality of robots to form at least one fleet according to the delivery task information, and the delivery task information is used to indicate the quantity of goods to be delivered , the current location information of the goods to be shipped, and the target location information of the goods to be shipped;
  • the current location information includes the laneway information, shelf information and storage location information;
  • the travel route arrive in the aisle of the shelf area in the form of a queue in the convoy and climb to the corresponding storage position of the shelf where the corresponding goods to be delivered are located to pick up the goods, and/or, after the completion of the pick-up, place the goods to be delivered in a queue
  • the delivered goods are sent to the target location of the goods to be delivered.
  • At least one collective trunk road is set on one side of the shelf area, and the collective trunk road is parallel to the roadway; roadway, said collective arterial road;
  • Arriving in the aisle of the shelf area in the form of a queue in the fleet and climbing to the corresponding storage position of the shelf where the corresponding goods to be transported are located includes:
  • sending the goods to be delivered to the target location of the goods to be delivered in a queue after the picking is completed includes:
  • a sky rail for the robot to pass is arranged above the shelf area
  • Said sending the goods to be delivered to the target position of the goods to be delivered in the form of a queue after picking up the goods including:
  • sending the goods to be delivered to the target location of the goods to be delivered in a queue after the picking is completed includes:
  • the distribution node After arriving at the distribution node, it enters the sub-team, and in the sub-team, the goods to be transported are sent to the target position of the goods to be transported in the form of a queue.
  • sending the goods to be delivered to the target location of the goods to be delivered in a queue after the picking is completed includes:
  • the merging node After arriving at the merging node, it enters the general fleet, and in the general fleet, the goods to be delivered are sent to the target position of the goods to be delivered in the form of a queue.
  • the present application provides a cargo delivery device, which is applied to a storage system, the storage system includes a shelf area, the shelf area includes a plurality of shelves, each shelf includes a multi-layer storage location, and the storage location is used for To place goods, a roadway is set between two adjacent shelves, and the device includes:
  • the transport task determination module is used to determine the transport task information, the transport task information is used to indicate the quantity of the goods to be transported, the current position information of the goods to be transported, and the target position information of the goods to be transported; the current position information includes the Roadway information, shelf information and storage location information;
  • a teaming module configured to select a plurality of robots to form at least one fleet according to the delivery task information
  • a delivery task assignment module configured to assign the delivery task information to each robot in at least one of the fleets
  • a route planning module for each team, planning a route for the team, and sending the route to the robots in the team, so that the robots in the team can form a queue according to the corresponding route. Arrive in the aisle of the shelf area and climb to the corresponding storage position of the shelf where the corresponding goods to be delivered are located to pick up the goods, and/or, after the pick-up is completed, send the goods to be delivered to the goods to be delivered in a queue according to the travel route target location.
  • At least one collective trunk road is set on one side of the shelf area, and the collective trunk road is parallel to the roadway; roadway, said collective arterial road;
  • the device also includes:
  • the first assembly module is used to determine the assembly time of each robot in the fleet and the assembly position of each robot in the assembly main road after sending the travel route to the robots in the fleet;
  • the time and assembly location are sent to the corresponding robots, so that each robot arrives at the assembly location at the assembly time to form a queue; if the first arrival signal sent by all the robots in the fleet is received within the set time, the fleet assembly is determined Complete; send the first traveling signal to the robots in the fleet, so that the robots in the fleet will enter the lanes in the rack area through the main road in a queue according to the traveling route.
  • the device also includes:
  • the second assembly module is used to determine that the fleet has completed picking up the goods if it receives the pickup completion signals sent by all the robots in the fleet; it sends a second travel signal to the robots in the fleet, so that the robots in the fleet can start from the corresponding warehouse location Descend to the designated location of the roadway to gather to form a queue; if the second arrival signal sent by all the robots in the team is received within the set time, it is determined that the team has assembled; send a third traveling signal to the robots in the team to make the team The robots in the queue leave the shelf area and go to the target position through the main road.
  • a sky rail for the robot to pass is arranged above the shelf area; the device also includes:
  • the third assembly module is used to determine that the team has finished picking up the goods if it receives the completion signals sent by all the robots in the team; send the fourth moving signal to the robots in the team, so that the robots in the team climb from the storage position to Gather at the specified location on the sky track to form a queue; if the third arrival signal sent by all the robots in the team is received within the set time, it is determined that the team has assembled; send the fifth travel signal to the robots in the team to make the team in the team The robots leave the shelf area and go to the target position through the sky rail in a queue.
  • the warehousing system also includes a plurality of workstations; the target location of the goods to be delivered is a workstation; the teaming module is specifically used for:
  • the goods to be transported are divided into at least one group, wherein the quantity of the goods to be transported in each group meets the preset requirements, and the current position of the goods to be transported in each group is located in the same lane, and/or , the target location is the same workstation;
  • a convoy is assigned to each group of goods to be delivered, and the number of robots in the fleet matches the number of goods to be delivered in the group.
  • the device also includes:
  • the distribution module is used for each team, if the target position of the goods to be transported by the team contains different workstations, then divide the robots whose target position of the goods to be transported are the same workstation into the same sub-team; according to the corresponding
  • the target position of the fleet is determined to be split into the split node of the sub-team during the process of leaving the shelf area to the target location; the position of the split node is sent to the corresponding robot, so that the robots in the fleet can be split into sub-teams after arriving at the split node, In the sub-convoy, the goods to be delivered are sent to the corresponding workstations in the form of a queue.
  • the device also includes:
  • the merging module is used to determine that at least two fleets are merged into the merge node of the total fleet in the process of leaving the shelf area and going to the target position if the target positions of the goods to be transported by at least two fleets are assigned to the same workstation;
  • the location of the merging node is sent to the robots in the at least two convoys, so that the robots in the at least two convoys arrive at the merging node and merge into the total fleet, and in the total fleet, the goods to be transported are sent to the to-be-conveyed The destination location of the cargo.
  • the current positions of the goods to be delivered corresponding to the robots of the same fleet are located in the same lane; after sending the travel route to the robots in the fleet, so that the robots in the fleet follow the corresponding travel route, After arriving in the aisle of the shelf area in the form of a queue and climbing to the corresponding storage position of the shelf where the corresponding goods to be shipped are located to pick up the goods, the device also includes:
  • the reorganization module is used to find whether there is a matching team if the target positions corresponding to the robots of the team are different, wherein the distance between the matching team and the roadway corresponding to the team is less than a preset distance, so The time interval between the matching team and the team entering the corresponding roadway is less than the preset interval, and the target positions corresponding to the robots in the matching team are different; if there is a matching team, then according to the team and the matching The target position of each robot in the fleet, the robots in the fleet and the matching fleet are re-divided into multiple fleets, and the corresponding target positions of each robot in each fleet obtained by re-dividing are the same; After completion, the fleet moves to the corresponding target position based on the re-partitioning.
  • the present application provides a cargo delivery device, which is applied in a storage system.
  • the storage system includes a shelf area, and the shelf area includes a plurality of shelves.
  • Each shelf includes a multi-layer warehouse location. For placing goods, there are lanes between two adjacent shelves including:
  • the receiving module is configured to receive delivery task information; the delivery task information is assigned by the server after determining the delivery task information and selecting a plurality of robots to form at least one fleet according to the delivery task information, and the delivery task information is used to indicate The quantity of goods to be transported, the current position information of the goods to be transported, and the target position information of the goods to be transported; the current position information includes the laneway information, shelf information and storage location information;
  • the receiving module is also used to receive a travel route; the travel route is planned by the server for the robot fleet;
  • the running module is used to arrive at the aisle of the shelf area in the form of a queue in the convoy according to the travel route and climb up to pick up the corresponding storage position of the shelf where the corresponding goods to be delivered are located, and/or, after the pick-up is completed Send the goods to be delivered to the target location of the goods to be delivered in the form of a queue.
  • At least one collective trunk road is set on one side of the shelf area, and the collective trunk road is parallel to the roadway; roadway, said collective arterial road;
  • the operation module arrives in the aisle of the shelf area in the form of a queue in the fleet and climbs to the corresponding storage position of the shelf where the corresponding goods to be transported are located, it is specifically used for:
  • the operation module when the operation module sends the goods to be transported to the target position of the goods to be transported in a queue after the goods are picked up, it is specifically used for:
  • a sky rail for the robot to pass is arranged above the shelf area
  • the operation module sends the goods to be transported to the target position of the goods to be transported in the form of a queue after picking up the goods, it is specifically used for:
  • the operation module sends the goods to be transported to the target position of the goods to be transported in the form of a queue after picking up the goods, it is specifically used for:
  • the distribution node After arriving at the distribution node, it enters the sub-team, and in the sub-team, the goods to be transported are sent to the target position of the goods to be transported in the form of a queue.
  • the operation module sends the goods to be transported to the target position of the goods to be transported in the form of a queue after picking up the goods, it is specifically used for:
  • the merging node After arriving at the merging node, it enters the general fleet, and in the general fleet, the goods to be delivered are sent to the target position of the goods to be delivered in a queue.
  • the present application provides an electronic device, including: a memory for storing program instructions; a processor for invoking and executing the program instructions in the memory, and performing the method described in the first aspect or the second aspect .
  • the present application provides a computer-readable storage medium, the storage medium stores a computer program, and when the computer program is executed by a processor, the method described in the first aspect or the second aspect is implemented.
  • the present application provides a program product, the program product includes a computer program, and when the computer program is stored and executed by a processor, the method described in the first aspect or the second aspect is implemented.
  • the present application provides a cargo delivery method, device, electronic equipment and storage medium.
  • the goods delivery method is applied to a server in a storage system
  • the storage system includes a shelf area
  • the shelf area includes a plurality of shelves
  • each shelf includes a multi-layer warehouse location
  • the warehouse location is used to place goods.
  • An aisle is provided between two adjacent shelves, and the method includes: determining delivery task information, the delivery task information being used to indicate the quantity of goods to be delivered, the current location information of the goods to be delivered, and the target location information of the goods to be delivered;
  • the current position information includes the laneway information, shelf information and storage location information; according to the delivery task information, select a plurality of robots to form at least one fleet; assign the delivery task information to each of the at least one fleet Robot; for each fleet, plan a travel route for the fleet, and send the travel route to the robots in the fleet, so that the robots in the fleet arrive at the shelf area in a queue according to the corresponding travel route and climb to pick up the goods from the corresponding storage positions of the shelves where the corresponding goods to be delivered are located, and/or, after picking up the goods, send the goods to be delivered to the target position of the goods to be delivered in a queue according to the travel route.
  • the solution of this application can simplify the complexity of path planning and the difficulty of scheduling by forming a team
  • FIG. 1 is a schematic diagram of an application scenario provided by the present application
  • FIG. 2 is a flow chart of a cargo delivery method provided by an embodiment of the present application.
  • Fig. 3 is a top view of a shelf area structure provided by an embodiment of the present application.
  • Fig. 4 is a side view of a shelf area structure provided by an embodiment of the present application.
  • Fig. 5a is a schematic diagram of a fleet split provided by an embodiment of the present application.
  • Fig. 5b is a schematic diagram of a fleet merging provided by an embodiment of the present application.
  • FIG. 6 is a flow chart of another cargo delivery method provided by an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a cargo delivery device provided by an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of another cargo delivery device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Warehousing robots generally work independently and can move freely in the working area. In order to control each robot, path planning is usually performed separately for each robot. However, as the scale of storage increases and the use of robot cars increases, the travel routes between many robots become intertwined and complicated. In order to prevent path conflicts between robots from causing mutual obstruction, the storage system needs to comprehensively consider the path planning of each robot, which leads to an increase in the complexity of path planning for each robot in the storage system and increased scheduling difficulty.
  • the present application proposes a cargo delivery method, device, electronic equipment, and storage medium.
  • FIG. 1 is a schematic diagram of an application scenario provided by the present application.
  • the application scenario includes a terminal device 10 , several workstations 20 , several robots 30 , a warehouse 40 , and a shelf 50 storing multiple pieces of goods in the warehouse.
  • the terminal device 10 may be any type of electronic computing platform or device, serving as the control center of the entire warehouse system. According to actual needs, it can have corresponding storage space or computing power to provide one or more application services or functions, such as receiving orders, distributing orders, issuing orders, controlling robots to perform pick-and-place tasks, etc.
  • the workstation 20 is an integrated device available for shipping operations. According to the actual shipping process or design requirements, there are one or more different types of action mechanisms and functional modules, such as the sowing wall for temporary storage of goods, the manipulator for sorting goods, etc.
  • the number of workstations can be determined by one or more indicators such as warehouse floor area, construction cost, cargo flow, and shipping efficiency. For example, it can be set to 3 or more.
  • the robot 30 is an automatic device with a walking mechanism, which can move between the workstation 20 and the warehouse 40, and carry boxes for pick-and-place operations.
  • the running mechanism can adopt any suitable type of power system.
  • the robot 30 can simultaneously load at least one container at a time.
  • the warehouse 40 is an area for storing containers.
  • a plurality of shelves 50 can be set in the warehouse 40, and each shelf 50 can be multi-layered, and each layer has a plurality of warehouse locations, and the warehouse locations can be used to place containers, and store at least one kind of goods in each container.
  • the container refers to a container for carrying goods, which may be a pallet, a box, or the like.
  • the passage between every two shelves is called the laneway.
  • the warehousing system can assign tasks to the robot 30 according to the order situation. At the same time, in order to control the robot 30 to reach the target position corresponding to the task smoothly from the current position, it also plans the route for the robot 30 . Then the cargo case of the specified location in the shelf 50 can be moved to other positions in the workstation 20 or the warehouse 40 according to the task, and the cargo case of other positions in the workstation 20 or the warehouse 40 can also be moved to the designated location in the shelf 50.
  • the cargo delivery method provided by the embodiment of the present disclosure can be applied to form at least one fleet of several robots 30, and then assign the delivery tasks to these fleets, and plan the travel route for each fleet, so that the vehicles in the fleet can The robot can reach the corresponding location to perform its own delivery tasks.
  • Fig. 2 is a flow chart of a method for delivering goods provided by an embodiment of the present application.
  • the method of this embodiment is applied to a server in a storage system, and the storage system includes a shelf area, and the shelf area includes multiple shelves , each shelf includes a multi-layer storage location, the storage location is used to place goods, and there is an aisle between two adjacent shelves.
  • the method of this embodiment may include:
  • the transport task information is used to indicate the quantity of the goods to be transported, the current location information of the goods to be transported, and the target location information of the goods to be transported.
  • Shipping tasks can be generated based on pending outbound orders.
  • the commodities corresponding to an order to be dispatched include commodity a stored in location A and commodity b stored in location B, and the order needs to be sorted out of the warehouse at the workstation. Accordingly, it can be determined that the delivery task information includes: 2 pieces of goods to be delivered, the current location is location A (a) and location B (b), and the target location is the workstation.
  • the orders to be shipped are generally processed in batches, so the delivery task information can be determined according to the information of at least one order to be shipped.
  • the current location of the goods to be delivered refers to the current location of the goods to be delivered; the target location of the goods to be delivered refers to the location where the goods to be delivered need to be sent.
  • the position where a certain item may appear includes a certain storage location on a certain shelf, a certain workbench, etc.
  • the current location and target location of the goods to be delivered can be determined according to actual needs. For example, in the above scenario of an order to be shipped, the current location is location A, and the target location is the workstation. For another example, in the scenario of sorting out inventory, it may be necessary to move goods c from location C to location D, then the current location is location C, and the target location is location D.
  • the embodiment of the present application uses the current location of the goods as an example for description.
  • the current location information includes information on the aisle, shelf, and location.
  • this method is not limited to be used only in this scenario, in fact, the steps in the method are similar in other scenarios.
  • a corresponding number of robots can be selected according to the quantity of goods to be delivered to form at least one convoy, so as to deliver the goods to be delivered.
  • the correspondence between the quantity of goods to be transported and the number of robots does not mean that the quantities are equal, but that the quantity of goods to be transported is less than or equal to the quantity of goods that can be transported by robots. For example, a robot that can deliver up to 4 loads can actually be made to deliver 1 load or 2 loads or 3 loads or 4 loads.
  • the trolleys that are currently idle can be selected first to ensure delivery efficiency.
  • the cars currently in other tasks can be reserved. For example, new task information can be added to the task list of the car currently in other tasks, so that it will automatically join the fleet to perform new tasks after completing the current task.
  • the cars in the idle state and the cars in other tasks can be divided into different fleets, so that the fleet of idle cars can perform the delivery task first to ensure the delivery efficiency to the greatest extent.
  • S203 Distribute delivery task information to each robot in at least one fleet.
  • the allocation process it can be determined which robot is allocated to which fleet according to the current location of the goods to be delivered and/or the target location of the goods to be delivered.
  • goods with similar current positions and/or target positions can be assigned to robots in the same fleet, so as to make the routes of the robots in the same fleet more repeatable and make the path planning of the storage system less complex.
  • S202 and S203 can be exchanged, that is, the delivery task is first assigned to the robot, and then the robot is divided into each fleet, which is not limited in this application.
  • S204 For each fleet, plan a traveling route for the fleet, and send the traveling route to the robots in the fleet, so that the robots in the fleet will arrive in the lanes of the shelf area in a queue according to the corresponding traveling route and climb to their respective corresponding roadways. Pick up the goods from the corresponding storage location of the shelf where the goods to be delivered are located, and/or, after picking up the goods, send the goods to be delivered to the target position of the goods to be delivered in a queue according to the travel route.
  • the current location of the goods may be in different storage locations, they are all in the shelf area. Thus, robots within the fleet can reach the racking area via the same path.
  • the current location of the goods to be delivered and/or the area where the target location of the goods to be delivered is located may be used as the endpoint of the route to plan for the team.
  • the server can send the planned travel route to each robot in the fleet.
  • each robot in the fleet receives the travel route and travels in the fleet through autonomous navigation.
  • the server may send the planned travel route to the leader robot in the fleet (the first robot in the forward direction of the fleet), and correspondingly, the leader robot in the fleet receives the travel route and proceeds through autonomous navigation. Other robots can follow the lead robot.
  • each robot in the fleet can navigate to the warehouse corresponding to the vehicle by itself to pick up or release the goods.
  • the goods delivery method provided in this embodiment is applied to the server in the storage system.
  • the storage system includes a shelf area, and the shelf area includes a plurality of shelves.
  • a roadway is set between them, the method includes: determining the delivery task information, the delivery task information is used to indicate the quantity of goods to be transported, the current position information of the goods to be transported, and the target position information of the goods to be transported; the current position information includes the roadway Information, shelf information and warehouse location information; according to the delivery task information, select a plurality of robots to form at least one fleet; assign the delivery task information to each robot in at least one fleet; for each fleet, plan the route for the fleet, and Send the traveling route to the robots in the convoy, so that the robots in the convoy will arrive at the aisle in the shelf area in a queue according to the corresponding traveling route and climb up to the corresponding warehouse where the respective goods to be delivered are located to pick up the goods.
  • the solution of this application can simplify the complexity of path planning and the difficulty of scheduling by forming a team for robots and planning routes for the convoy, controlling the convoy to travel in a queue, and no longer planning a route for each car separately.
  • the teaming area is set on one side of the shelf area, and is called the collection trunk road.
  • Figure 3 is a top view of the shelf area. Referring to Figure 3, it can be seen that the collection trunk road and the roadway Parallel; at least one main road is provided on the other side of the shelf area, and the main road is connected to the roadway and the collection road.
  • Robot convoys can gather in the main road to form a convoy, and enter the roadway through the main road in the form of a queue.
  • the above method also includes: determining the assembly time of each robot in the fleet, and the assembly position of each robot in the assembly road; sending the assembly time and assembly position to the corresponding Robots, so that each robot arrives at the assembly location at the assembly time to form a queue; if the first arrival signal sent by all the robots in the fleet is received within the set time, it is determined that the fleet is assembled; send the first arrival signal to the robots in the fleet A traveling signal, so that the robots in the convoy enter the aisle of the shelf area through the main road in a queue according to the traveling route.
  • This embodiment has described the process of forming a robot fleet.
  • the server determines the assembly time of each robot in the convoy and the assembly position of each robot in the assembly road, it is sent to the corresponding robot.
  • the robot gathers at the large assembly location at the assembly time to form a queue.
  • the first arrival signal may include information such as the identification and arrival time of the vehicle. If the server receives the first arrival signal sent by all the robots in a convoy within the set time, it can be determined that the convoy has assembled and can start. Then the first traveling signal can be sent to the robots in the convoy.
  • the robot starts after receiving the first traveling signal, follows the planned traveling route, and enters the laneway of the shelf area through the main road.
  • the distance between the front and rear robots can be kept stable within a certain distance range, and the queue form can be maintained.
  • the robots in the convoy can arrive at the corresponding storage location to pick up the goods, and then arrive at the designated location to gather and leave after the pick-up is completed.
  • the process of leaving the shelf area may include: if the pickup completion signals sent by all the robots in the fleet are received, then it is determined that the pickup of the fleet is complete; The corresponding storage location descends to the specified location of the roadway to gather to form a queue; if the second arrival signal sent by all the robots in the team is received within the set time, it is determined that the team has assembled; a third travel signal is sent to the robots in the team , so that the robots in the fleet leave the shelf area to the target location through the main road in a queue.
  • the robot After the robot picks up the goods, it can send a pick-up completion signal to the server.
  • the server can confirm that the entire fleet has finished picking up the goods and can leave the shelf area. Then, a second traveling signal is sent to the robots in the convoy.
  • the robot leaves the current storage location, descends to a designated location in the roadway, and forms a queue again. The robot sends the second arrival signal to the server after arriving at the designated position in the roadway.
  • the server after the server receives the second arrival signal sent by all the robots in the team, it can determine that the team has assembled, and then sends the third moving signal to the robots in the team. Signal.
  • the robot after receiving the third traveling signal, the robot continues to follow the planned traveling route, and leaves the shelf area to the target location through the main road.
  • FIG. 4 is a side view of the shelf area.
  • Above the shelf 45 there is a sky rail for the robot to pass through.
  • the other end of the sky rail can touch the ground, and the robot can finally descend through the sky rail. to the ground.
  • the robots can run on the ground of the shelf area (such as the robot 41 and the robot 42 ), and also can run on the sky track of the shelf area (such as the robot 43 and the robot 44 ).
  • the process of leaving the shelf area may include: if receiving the pickup completion signal sent by all the robots in the fleet, then determine that the fleet has finished picking up the goods; Climb to the designated location on the sky track to gather and form a queue; if the third arrival signal sent by all the robots in the team is received within the set time, it is determined that the team has assembled; send the fifth traveling signal to the robots in the team to make The robots in the fleet leave the shelf area to the target location through the sky rail in a queue.
  • the robot After the robot picks up the goods, it can send a pick-up completion signal to the server.
  • the server can confirm that the entire fleet has finished picking up the goods and can leave the shelf area. Therefore, the fourth traveling signal is sent to the robots in the fleet.
  • the robot leaves the current storage location, climbs up to the designated location on the sky track, and forms a queue again. The robot sends the third arrival signal to the server after arriving at the designated position on the sky track.
  • the server after the server receives the third arrival signal sent by all the robots in the fleet, it can determine that the convoy is assembled, and then sends the third arrival signal to the robots in the convoy. Five marching signals.
  • the robot after receiving the fifth travel signal, the robot continues to follow the planned travel route, and leaves the shelf area to the target position through the sky track.
  • the setting manner of the sky track in Fig. 4 is only an example.
  • the sky rail can also be connected to other areas in the warehouse, such as the workbench, so that the robot can reach other areas through the sky rail without passing through the ground, so that the robot driving on the ground will not form a path.
  • Conflicts can further reduce the complexity of server path planning.
  • the target location of the goods to be delivered may be a workstation in the storage system.
  • the above S202 may specifically include: dividing the goods to be transported into at least one group according to the transport task information, wherein the quantity of goods to be transported in each group meets the preset requirements, and the current location of the goods to be transported in each group is located in the same lane, And/or, the target location is the same workstation; a fleet is assigned to each group of goods to be delivered, and the number of robots in the fleet matches the number of goods to be delivered in the group.
  • the convoy can also be divided into at least two sub-convoys.
  • the process of shunting may include: for each fleet, if the target position of the goods to be delivered by the team includes different workstations, then divide the robots whose target position of the goods to be delivered is the same workstation into the same sub-team; The target location corresponding to each sub-team, determine the diversion node of the sub-team when the fleet leaves the shelf area to the target location; send the position of the diversion node to the corresponding robot, so that the robots in the fleet can be split after arriving at the diversion node For the sub-team, the goods to be delivered are sent to the corresponding workstations in the form of queues in the sub-team.
  • the robots whose target positions are the same workstation can be divided into the same sub-team.
  • the division is not necessarily reflected in the sorting and distance between robots, it can be just to add the identification of the sub-teams to these robots.
  • the target position of each sub-team is the same workstation, and the sub-teams correspond to different workstations.
  • a diversion node can be determined in the path, and the position of the diversion node can be sent to the corresponding robot in the sub-convoy.
  • the robots in the convoy reach the distribution node, they are split into sub-convoys by changing the direction of travel and so on.
  • Each sub-convoy has its own unified end point, and can continue to travel in the form of a queue to send the goods to be delivered to the corresponding workstation.
  • the convoy L0 travels from roadway 1 to point a, and is split into two sub-convoys L1 and L2. L1 turns and continues to work station 1, and L2 continues to travel to work station 2.
  • the process of merging may include: if there are at least two fleets assigned to the same workstation for the goods to be delivered, determining that at least two fleets are merged into the total fleet during the process of leaving the shelf area for the target location Merge node; send the position of the merge node to the robots in at least two fleets, so that the robots in the at least two fleets will merge into the total fleet after arriving at the merge node, and send the goods to be delivered to the queues in the total fleet.
  • the destination location of the cargo may include: if there are at least two fleets assigned to the same workstation for the goods to be delivered, determining that at least two fleets are merged into the total fleet during the process of leaving the shelf area for the target location Merge node; send the position of the merge node to the robots in at least two fleets, so that the robots in the at least two fleets will merge into the total fleet after arriving at the merge node, and send the goods to be delivered to the queues in the total fleet.
  • the time interval between two or more convoys that can be merged and arrive at the merge node is less than or equal to a preset value. That is, the distance between the two convoys cannot be too long, otherwise one of the convoys may have to wait for a long time, which will reduce the delivery efficiency.
  • the team L3 travels from the roadway 2 to point b
  • the team L4 travels from the roadway 3 to point b
  • the traveling route is sent to the robots in the convoy, so that the robots in the convoy arrive at the aisle in the shelf area in a queue according to the corresponding traveling route and climb to the corresponding warehouse of the shelf where the respective goods to be delivered are located.
  • the process of reorganization may include: if the target positions corresponding to the robots of the fleet are different, then find out whether there is a matching fleet, wherein the distance between the matching fleet and the laneway corresponding to the fleet is less than the preset distance, The time interval between the matching fleet and the fleet entering the corresponding lane is less than the preset interval, and the corresponding target positions of the robots in the matching fleet are different; The fleet and the robots in the matching fleet are re-divided into multiple fleets, and the corresponding target positions of each robot in each fleet are the same after the re-division; control each robot to move to the corresponding target based on the re-divided fleet after the completion of picking up the goods Location.
  • a unified path can be planned to go to the lane where the current location is located.
  • the queue will not be resumed to continue moving, but to find out whether there is a robot in the same fleet or some robots with the same target position as a robot in the fleet. If so, then the robots with the same target position in two or more convoys can be reorganized into a convoy, which is equivalent to re-dividing the original two or more convoys into multiple convoys.
  • the route can be sent to individual robots. After receiving the new path, each robot can travel in the queue to the target position.
  • This method of re-dividing the fleet can continue to advance in the re-divided fleet in the form of a queue without the need for each robot to navigate independently after the entire fleet has been picked up, which can relatively reduce the complexity of server path planning. .
  • FIG. 6 is a flow chart of a method for delivering goods provided by an embodiment of the present application.
  • the method of this embodiment is applied to a robot in a storage system.
  • the storage system includes a shelf area, and the shelf area includes multiple shelves. Each shelf includes multiple shelves. Layer storage location, the storage location is used to place goods, and there is an aisle between two adjacent shelves.
  • the method of this embodiment includes:
  • the delivery task information is allocated by the server after determining the delivery task information and selecting a plurality of robots to form at least one fleet according to the delivery task information.
  • the transport task information is used to indicate the quantity of the goods to be transported, the current location information of the goods to be transported, and the target location information of the goods to be transported; the current position information includes the laneway information, shelf information and storage location information.
  • one side of the shelf area is provided with at least one collective trunk road, which is parallel to the roadway; the other side of the shelf area is provided with at least one passage trunk road, and the passage trunk road connects the roadway and the collection trunk road;
  • the goods to be delivered are sent to the target location of the goods to be delivered in the form of a queue, including:
  • a sky rail for the robot to pass is set above the shelf area
  • the goods to be delivered are sent to the target location of the goods to be delivered in the form of a queue, including:
  • the goods to be delivered are sent to the target location of the goods to be delivered in the form of a queue, including:
  • the distribution node After arriving at the distribution node, it enters the sub-team, and in the sub-team, the goods to be transported are sent to the target position of the goods to be transported in the form of a queue.
  • the goods to be delivered are sent to the target location of the goods to be delivered in the form of a queue, including:
  • the merging node After arriving at the merging node, it enters the general fleet, and in the general fleet, the goods to be delivered are sent to the target position of the goods to be delivered in a queue.
  • the method in this embodiment has the same or corresponding features as the method in the foregoing embodiments, and can achieve the same technical effect, and the implementation manner thereof will not be repeated here.
  • Fig. 7 is a schematic structural diagram of a cargo transport device provided by an embodiment of the present application.
  • the cargo transport device 700 of this embodiment is applied to a storage system.
  • the storage system includes a shelf area, and the shelf area includes multiple Each shelf includes a multi-layer warehouse location, and the warehouse location is used to place goods, and an aisle is arranged between two adjacent shelves.
  • the transport device 700 includes: a transport task determination module 701, a teaming module 702, and a transport task assignment module 703 , a route planning module 704 .
  • the transport task determination module 701 is used to determine the transport task information, and the transport task information is used to indicate the quantity of the goods to be transported, the current location information of the goods to be transported, and the target location information of the goods to be transported; the current position information includes information on the roadway, Shelf information and location information;
  • Teaming module 702 for selecting a plurality of robots to form at least one fleet according to the delivery task information
  • Transport task allocation module 703, configured to distribute transport task information to each robot in at least one fleet
  • the route planning module 704 is used to plan a traveling route for each fleet, and send the traveling route to the robots in the fleet, so that the robots in the fleet can arrive in the lanes of the shelf area in a queue according to the corresponding traveling route And climb to the corresponding storage position of the shelf where the corresponding goods to be transported are located to pick up the goods, and/or, after picking up the goods, send the goods to be transported to the target position of the goods to be transported in the form of a queue according to the travel route.
  • one side of the shelf area is provided with at least one assembly trunk road, which is parallel to the roadway; the other side of the shelf area is provided with at least one passage trunk road, and the passage trunk road connects the roadway and the collection trunk road;
  • the cargo delivery device 700 also includes:
  • the first assembly module 705 is used to determine the assembly time of each robot in the fleet and the assembly position of each robot in the assembly road after the route is sent to the robots in the fleet; the assembly time and assembly position are sent to Corresponding robots, so that each robot arrives at the assembly location at the assembly time to form a queue; if the first arrival signal sent by all the robots in the fleet is received within the set time, it is determined that the fleet is assembled; to the robots in the fleet The first traveling signal is sent, so that the robots in the convoy enter the aisle of the shelf area through the main road in a queue according to the traveling route.
  • the device 700 also includes:
  • the second assembly module 706 is used to determine that the fleet has finished picking up the goods if it receives the pickup completion signals sent by all the robots in the fleet; send a second travel signal to the robots in the fleet, so that the robots in the fleet can start from the corresponding warehouse If the second arrival signal sent by all the robots in the team is received within the set time, it is determined that the team is assembled; the third travel signal is sent to the robots in the team so that The robots in the convoy leave the shelf area to the target location in a queue through the main road.
  • a sky rail for the robot to pass is arranged above the shelf area; the device 700 also includes:
  • the third assembly module 707 is used to determine that the fleet has finished picking up the goods if receiving the completion signals sent by all the robots in the fleet; to send the fourth traveling signal to the robots in the fleet, so that the robots in the fleet can climb from the storage position Gather at the designated location on the sky rail to form a queue; if the third arrival signal sent by all the robots in the team is received within the set time, it is determined that the team has assembled; send the fifth moving signal to the robots in the team to make the team The robots in the queue leave the shelf area to the target position through the sky rail.
  • the warehousing system also includes a plurality of workstations; the target location of the goods to be delivered is a workstation; the teaming module 702 is specifically used for:
  • the goods to be transported are divided into at least one group, wherein the quantity of goods to be transported in each group meets the preset requirements, and the current position of the goods to be transported in each group is located in the same lane, and/or, the target position is the same workstation;
  • the cargo delivery device 700 also includes:
  • the distribution module 708 is used for each team, if the target position of the goods to be delivered by the team includes different workstations, then divide the robots whose target position of the goods to be delivered is the same workstation into the same sub-team; according to each sub-team Corresponding to the target location, determine the splitting node of the fleet as a sub-team during the process of leaving the shelf area to the target location; send the splitting node position to the corresponding robot, so that the robots in the fleet can be split into sub-teams after arriving at the splitting node , send the goods to be delivered to the corresponding workstations in the form of a queue in the sub-team.
  • the cargo delivery device 700 also includes:
  • the merging module 709 is used to determine that at least two fleets are merged into the merge node of the total fleet during the process of leaving the shelf area and going to the target position if the target positions of the goods to be transported are all assigned to the same workstation by at least two fleets; Send the location of the merging node to the robots in at least two fleets, so that the robots in the at least two convoys will merge into the total fleet after reaching the merging node, and send the goods to be delivered to the destination of the goods in the form of a queue in the total fleet Location.
  • the goods delivery device 700 After climbing up to pick up the goods from the corresponding storage positions of the shelves where the corresponding goods to be transported are located in the aisle, the goods delivery device 700 also includes:
  • the reorganization module 710 is used to find whether there is a matching team if the corresponding target positions of the robots of the team are different, wherein the distance between the matching team and the roadway corresponding to the team is less than the preset distance, and the matching team and the team enter The time interval of the corresponding roadway is less than the preset interval, and the corresponding target positions of the robots in the matching fleet are different;
  • the robots are re-divided into multiple fleets, and the corresponding target positions of each robot in each re-divided fleet are the same; after the completion of picking up the goods, each robot is controlled to move to the corresponding target position based on the re-divided fleet.
  • the device in this embodiment can be used to execute the above server method, and its implementation principles and technical effects are similar, and will not be repeated here.
  • Fig. 8 is a schematic structural diagram of a cargo conveying device provided by an embodiment of the present application. As shown in Fig. 8, the cargo conveying device 800 of this embodiment is applied in a storage system. Each shelf includes a multi-layer storage space, the storage space is used to place goods, and an aisle is provided between two adjacent shelves.
  • the goods delivery device 800 includes: a receiving module 801 and an operating module 802 .
  • the receiving module 801 is used to receive delivery task information; the delivery task information is assigned by the server after determining the delivery task information and selecting a plurality of robots to form at least one fleet according to the delivery task information, and the delivery task information is used to indicate the quantity of goods to be delivered , the current location information of the goods to be delivered, and the target location information of the goods to be delivered; the current location information includes the laneway information, shelf information and storage location information;
  • the receiving module 801 is also used to receive the traveling route; the traveling route is planned by the server for the robot fleet;
  • the running module 802 is used to arrive at the aisle of the shelf area in the form of a queue in the convoy according to the traveling route and climb to pick up the corresponding storage position of the shelf where the corresponding goods to be delivered are located, and/or, after the pick-up is completed, use
  • the queue form sends the goods to be delivered to the target location of the goods to be delivered.
  • one side of the shelf area is provided with at least one assembly trunk road, which is parallel to the roadway; the other side of the shelf area is provided with at least one passage trunk road, and the passage trunk road connects the roadway and the collection trunk road;
  • the operation module 802 arrives in the aisle of the shelf area in the form of a queue in the fleet and climbs to the corresponding storage position of the shelf where the corresponding goods to be delivered are located, it is specifically used for:
  • the operation module 802 when the operation module 802 sends the goods to be delivered to the target location of the goods to be delivered in a queue after the delivery is completed, it is specifically used for:
  • a sky rail for the robot to pass is set above the shelf area
  • the operation module 802 sends the goods to be delivered to the target position of the goods to be delivered in the form of a queue after picking up the goods, it is specifically used for:
  • the operation module 802 sends the goods to be delivered to the target position of the goods to be delivered in the form of a queue after picking up the goods, it is specifically used for:
  • the distribution node After arriving at the distribution node, it enters the sub-team, and in the sub-team, the goods to be transported are sent to the target position of the goods to be transported in the form of a queue.
  • the operation module 802 sends the goods to be delivered to the target position of the goods to be delivered in the form of a queue after picking up the goods, it is specifically used for:
  • the merging node After arriving at the merging node, it enters the general fleet, and in the general fleet, the goods to be delivered are sent to the target position of the goods to be delivered in a queue.
  • the device of this embodiment can be used to implement the above robot method, and its implementation principle and technical effect are similar, and will not be repeated here.
  • FIG. 9 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 900 of this embodiment includes: a memory for storing program instructions; a processor for calling and Execute the program instructions in the memory to perform the above-mentioned server or robot method.
  • the present application also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and when the computer program is executed by a processor, the above-mentioned server or robot method is realized.
  • the present application also provides a program product, the program product includes a computer program, and the computer program stores and implements the above server or robot method when executed by a processor.
  • the aforementioned program can be stored in a computer-readable storage medium.
  • the program executes the steps including the above-mentioned method embodiments; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other various media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本申请提供一种货物运送方法、装置、电子设备和存储介质。货物运送方法包括:确定运送任务信息,运送任务信息用于指示待运送货物的数量、待运送货物的当前位置信息、待运送货物的目标位置信息;当前位置信息包括所在的巷道信息、货架信息和库位信息;根据运送任务信息,选择多个机器人组成至少一个车队;将运送任务信息分配给至少一个车队中的每个机器人;对于每一车队,为车队规划行进路线,并将行进路线发送给车队中的机器人,以使车队中的机器人按照对应的行进路线,以队列形式到达货架区域的巷道内并爬升至各自对应的待运送货物所在的货架的对应库位取货,和/或,在取货完成后按照行进路线以队列形式将待运送货物送往待运送货物的目标位置。

Description

货物运送方法、装置、电子设备和存储介质
本申请要求于2021年06月30日提交中国专利局、申请号为202110745081.8、申请名称为“货物运送方法、装置、电子设备和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能控制技术,尤其涉及一种货物运送方法、装置、电子设备和存储介质。
背景技术
在传统的仓储行业当中,货物的搬运移动需要消耗大量的人力成本和时间成本。为了节省人力成本的支出,结合智能控制技术,专用于货物搬运的自主移动设备应运而生。这些自主移动设备也被称为机器人小车,可以自主地爬升货架、拿取货物、运送货物,将仓库中的货物搬运效率大大提升。
这些机器人小车一般独立作业,可在工作区域内自由移动。随着仓储规模增大,机器人小车使用增多,行进路线交错复杂。导致系统对各小车的路径规划的复杂度提升,调度难度增加。
申请内容
本申请提供一种货物运送方法、装置、电子设备和存储介质,控制机器人按照队列的方式行进,实现统一控制,简化机器人的调度难度。
第一方面,本申请提供一种货物运送方法,应用于仓储系统中的服务器,所述仓储系统包括货架区域,所述货架区域包括多个货架,每一货架包括多层库位,所述库位用于放置货物,相邻两货架之间设置有巷道,所述方法包括:
确定运送任务信息,所述运送任务信息用于指示待运送货物的数量、待运送货物的当前位置信息、待运送货物的目标位置信息;所述当前位置信息包括所在的巷道信息、货架信息和库位信息;
根据所述运送任务信息,选择多个机器人组成至少一个车队;
将所述运送任务信息分配给至少一个所述车队中的每个机器人;
对于每一车队,为所述车队规划行进路线,并将所述行进路线发送给所述车队中的机器人,以使所述车队中的机器人按照对应的行进路线,以队列形式到达货架区域的巷道内并爬升至各自对应的待运送货物所在的货架的对应库位取货,和/或,在取货完成后按照行进路线以队列形式将待运送货物送往待运送货物的目标位置。
可选的,所述货架区域的一侧设置有至少一条集合干道,所述集合干道与所述巷道平行;所述货架区域的另一侧设置有至少一条通行干道,所述通行干道连通所述巷道、所述集合干道;
在将所述行进路线发送给所述车队中的机器人之后,还包括:
确定车队中每个机器人的集合时间、每个机器人在所述集合干道中的集合位置;
将所述集合时间和集合位置分别发送给对应的机器人,以使各机器人在集合时间到达集合位置集合,形成队列;
若在设定时间内接收到车队内全部机器人发送的第一到达信号,则确定该车队集合完毕;
向车队中的机器人发送第一行进信号,以使车队中的机器人按照行进路线以队列形式通过所述通行干道进入货架区域的巷道内。
可选的,所述方法还包括:
若接收到车队内全部机器人发送的取货完成信号,则确定车队取货完毕;
向车队中的机器人发送第二行进信号,以使车队中的机器人从对应的库位下降至巷道指定位置集合,形成队列;
若在设定时间内接收到车队内全部机器人发送的第二到达信号,则确定该车队集合完毕;
向车队中的机器人发送第三行进信号,以使车队中的机器人以队列形式通过所述通行干道离开货架区域去往目标位置。
可选的,所述货架区域上方设置有用于供机器人通行的天轨;所述方法还包括:
若接收到车队内全部机器人发送的取货完成信号,则确定车队取货完毕;
向车队中的机器人发送第四行进信号,以使车队中的机器人从库位爬升至天轨指定位置集合,形成队列;
若在设定时间内接收到车队内全部机器人发送的第三到达信号,则确定该车队集合完毕;
向车队中的机器人发送第五行进信号,以使车队中的机器人以队列形式通过天轨离开货架区域去往目标位置。
可选的,所述仓储系统还包括多个工作站;所述待运送货物的目标位置为工作站;所述根据所述运送任务信息,选择多个机器人组成至少一个车队,包括:
根据所述运送任务信息,将所述待运送货物划分为至少一组,其中,每组待运送货物的数量满足预设要求,且每组待运送货物的当前位置位于同一巷道内,和/或,目标位置为同一工作站;
为每一组待运送货物分配一个车队,所述车队内的机器人数量与该组待运送货物的数量相匹配。
可选的,所述方法还包括:
针对每个车队,若车队分配到的待运送货物的目标位置包含不同的工作站,则将待运送货物的目标位置为同一工作站的机器人划分到同一个子车队;
根据各个子车队对应的目标位置,确定车队在离开货架区域前往目标位置的过程中分流为子车队的分流节点;
将分流节点位置发送给对应的机器人,以使车队中的机器人到达分流节点后拆分为子车队,在子车队中以队列形式将待运送货物送往对应的工作站。
可选的,所述方法还包括:
若存在至少两个车队分配到的待运送货物的目标位置均为同一工作站,则确定至少两个车队在离开货架区域前往目标位置的过程中合并为总车队的合并节点;
将合并节点位置发送给所述至少两个车队中的机器人,以使所述至少两个车队中的机器人到达合并节点后合并为总车队,在总车队中以队列形式将 待运送货物送往待运送货物的目标位置。
可选的,同一车队的机器人对应的待运送货物的当前位置位于同一巷道内;在将所述行进路线发送给所述车队中的机器人,以使所述车队中的机器人按照对应的行进路线,以队列形式到达货架区域的巷道内并爬升至各自对应的待运送货物所在的货架的对应库位取货之后,还包括:
若所述车队的各机器人对应的目标位置不同,则查找是否存在相匹配车队,其中,所述相匹配车队与所述车队对应的巷道之间的距离小于预设距离,所述相匹配车队与所述车队进入对应巷道的时间间隔小于预设间隔,且所述相匹配车队中各机器人对应的目标位置不同;
若存在相匹配车队,则根据所述车队与所述相匹配车队中各机器人的目标位置,将所述车队与所述相匹配车队中的机器人重新划分为多个车队,重新划分得到的每一车队中各机器人对应的目标位置相同;
控制各机器人在取货完成后,基于重新划分的车队移动至对应的目标位置。
第二方面,本申请提供一种货物运送方法,应用于仓储系统中的机器人,所述仓储系统包括货架区域,所述货架区域包括多个货架,每一货架包括多层库位,所述库位用于放置货物,相邻两货架之间设置有巷道,所述方法包括:
接收运送任务信息;所述运送任务信息是服务器在确定运送任务信息并根据所述运送任务信息,选择多个机器人组成至少一个车队后分配的,所述运送任务信息用于指示待运送货物的数量、待运送货物的当前位置信息、待运送货物的目标位置信息;所述当前位置信息包括所在的巷道信息、货架信息和库位信息;
接收行进路线;所述行进路线是服务器为机器人所在车队规划的;
按照所述行进路线,在车队中以队列形式到达货架区域的巷道内并爬升至对应的待运送货物所在的货架的对应库位取货,和/或,在取货完成后以队列形式将待运送货物送往待运送货物的目标位置。
可选的,所述货架区域的一侧设置有至少一条集合干道,所述集合干道与所述巷道平行;所述货架区域的另一侧设置有至少一条通行干道,所述通行干道连通所述巷道、所述集合干道;
所述在车队中以队列形式到达货架区域的巷道内并爬升至对应的待运 送货物所在的货架的对应库位取货,包括:
接收服务器发送的集合时间和集合位置;
在到达集合位置后,向服务器发送第一到达信号;
接收到服务器发送的第一行进信号后,根据运送任务信息,到达货架区域的巷道内并爬升至对应的库位取货。
可选的,所述在取货完成后以队列形式将待运送货物送往待运送货物的目标位置,包括:
在取货完成后,向服务器发送取货完成信号;
接收到服务器发送的第二行进信号后,从库位下降至巷道指定位置集合,形成队列;
在到达巷道指定位置后,向服务器发送第二到达信号;
接收到服务器发送的第三行进信号后,在车队中以队列形式通过所述通行干道离开货架区域去往目标位置。
可选的,所述货架区域上方设置有用于供机器人通行的天轨;
所述在取货完成后以队列形式将待运送货物送往待运送货物的目标位置,包括:
在取货完成后,向服务器发送取货完成信号;
接收到服务器发送的第四行进信号后,从库位爬升至天轨指定位置集合,形成队列;
在到达天轨指定位置后,向服务器发送第三到达信号;
接收到服务器发送的第五行进信号后,在车队中以队列形式通过天轨离开货架区域去往目标位置。
可选的,所述在取货完成后以队列形式将待运送货物送往待运送货物的目标位置,包括:
接收服务器发送的分流节点位置;
在到达分流节点后进入子车队,在子车队中以队列形式将待运送货物送往待运送货物的目标位置。
可选的,所述在取货完成后以队列形式将待运送货物送往待运送货物的目标位置,包括:
接收服务器发送的合并节点位置;
在到达合并节点后进入总车队,在总车队中以队列形式将待运送货物送 往待运送货物的目标位置。
第三方面,本申请提供一种货物运送装置,应用于仓储系统,所述仓储系统包括货架区域,所述货架区域包括多个货架,每一货架包括多层库位,所述库位用于放置货物,相邻两货架之间设置有巷道,所述装置包括:
运送任务确定模块,用于确定运送任务信息,所述运送任务信息用于指示待运送货物的数量、待运送货物的当前位置信息、待运送货物的目标位置信息;所述当前位置信息包括所在的巷道信息、货架信息和库位信息;
组队模块,用于根据所述运送任务信息,选择多个机器人组成至少一个车队;
运送任务分配模块,用于将所述运送任务信息分配给至少一个所述车队中的每个机器人;
路线规划模块,用于对于每一车队,为所述车队规划行进路线,并将所述行进路线发送给所述车队中的机器人,以使所述车队中的机器人按照对应的行进路线,以队列形式到达货架区域的巷道内并爬升至各自对应的待运送货物所在的货架的对应库位取货,和/或,在取货完成后按照行进路线以队列形式将待运送货物送往待运送货物的目标位置。
可选的,所述货架区域的一侧设置有至少一条集合干道,所述集合干道与所述巷道平行;所述货架区域的另一侧设置有至少一条通行干道,所述通行干道连通所述巷道、所述集合干道;
所述装置还包括:
第一集合模块,用于在将所述行进路线发送给所述车队中的机器人之后,确定车队中每个机器人的集合时间、每个机器人在所述集合干道中的集合位置;将所述集合时间和集合位置分别发送给对应的机器人,以使各机器人在集合时间到达集合位置集合,形成队列;若在设定时间内接收到车队内全部机器人发送的第一到达信号,则确定该车队集合完毕;向车队中的机器人发送第一行进信号,以使车队中的机器人按照行进路线以队列形式通过所述通行干道进入货架区域的巷道内。
可选的,所述装置还包括:
第二集合模块,用于若接收到车队内全部机器人发送的取货完成信号,则确定车队取货完毕;向车队中的机器人发送第二行进信号,以使车队中的机器人从对应的库位下降至巷道指定位置集合,形成队列;若在设定时 间内接收到车队内全部机器人发送的第二到达信号,则确定该车队集合完毕;向车队中的机器人发送第三行进信号,以使车队中的机器人以队列形式通过所述通行干道离开货架区域去往目标位置。
可选的,所述货架区域上方设置有用于供机器人通行的天轨;所述装置还包括:
第三集合模块,用于若接收到车队内全部机器人发送的取货完成信号,则确定车队取货完毕;向车队中的机器人发送第四行进信号,以使车队中的机器人从库位爬升至天轨指定位置集合,形成队列;若在设定时间内接收到车队内全部机器人发送的第三到达信号,则确定该车队集合完毕;向车队中的机器人发送第五行进信号,以使车队中的机器人以队列形式通过天轨离开货架区域去往目标位置。
可选的,所述仓储系统还包括多个工作站;所述待运送货物的目标位置为工作站;所述组队模块,具体用于:
根据所述运送任务信息,将所述待运送货物划分为至少一组,其中,每组待运送货物的数量满足预设要求,且每组待运送货物的当前位置位于同一巷道内,和/或,目标位置为同一工作站;
为每一组待运送货物分配一个车队,所述车队内的机器人数量与该组待运送货物的数量相匹配。
可选的,所述装置还包括:
分流模块,用于针对每个车队,若车队分配到的待运送货物的目标位置包含不同的工作站,则将待运送货物的目标位置为同一工作站的机器人划分到同一个子车队;根据各个子车队对应的目标位置,确定车队在离开货架区域前往目标位置的过程中分流为子车队的分流节点;将分流节点位置发送给对应的机器人,以使车队中的机器人到达分流节点后拆分为子车队,在子车队中以队列形式将待运送货物送往对应的工作站。
可选的,所述装置还包括:
合并模块,用于若存在至少两个车队分配到的待运送货物的目标位置均为同一工作站,则确定至少两个车队在离开货架区域前往目标位置的过程中合并为总车队的合并节点;将合并节点位置发送给所述至少两个车队中的机器人,以使所述至少两个车队中的机器人到达合并节点后合并为总车队,在总车队中以队列形式将待运送货物送往待运送货物的目标位置。
可选的,同一车队的机器人对应的待运送货物的当前位置位于同一巷道内;在将所述行进路线发送给所述车队中的机器人,以使所述车队中的机器人按照对应的行进路线,以队列形式到达货架区域的巷道内并爬升至各自对应的待运送货物所在的货架的对应库位取货之后,所述装置还包括:
重组模块,用于若所述车队的各机器人对应的目标位置不同,则查找是否存在相匹配车队,其中,所述相匹配车队与所述车队对应的巷道之间的距离小于预设距离,所述相匹配车队与所述车队进入对应巷道的时间间隔小于预设间隔,且所述相匹配车队中各机器人对应的目标位置不同;若存在相匹配车队,则根据所述车队与所述相匹配车队中各机器人的目标位置,将所述车队与所述相匹配车队中的机器人重新划分为多个车队,重新划分得到的每一车队中各机器人对应的目标位置相同;控制各机器人在取货完成后,基于重新划分的车队移动至对应的目标位置。
第四方面,本申请提供一种货物运送装置,应用于仓储系统中,所述仓储系统包括货架区域,所述货架区域包括多个货架,每一货架包括多层库位,所述库位用于放置货物,相邻两货架之间设置有巷道包括:
接收模块,用于接收运送任务信息;所述运送任务信息是服务器在确定运送任务信息并根据所述运送任务信息,选择多个机器人组成至少一个车队后分配的,所述运送任务信息用于指示待运送货物的数量、待运送货物的当前位置信息、待运送货物的目标位置信息;所述当前位置信息包括所在的巷道信息、货架信息和库位信息;
所述接收模块,还用于接收行进路线;所述行进路线是服务器为机器人所在车队规划的;
运行模块,用于按照所述行进路线,在车队中以队列形式到达货架区域的巷道内并爬升至对应的待运送货物所在的货架的对应库位取货,和/或,在取货完成后以队列形式将待运送货物送往待运送货物的目标位置。
可选的,所述货架区域的一侧设置有至少一条集合干道,所述集合干道与所述巷道平行;所述货架区域的另一侧设置有至少一条通行干道,所述通行干道连通所述巷道、所述集合干道;
所述运行模块在车队中以队列形式到达货架区域的巷道内并爬升至对应的待运送货物所在的货架的对应库位取货时,具体用于:
接收服务器发送的集合时间和集合位置;
在到达集合位置后,向服务器发送第一到达信号;
接收到服务器发送的第一行进信号后,根据运送任务信息,到达货架区域的巷道内并爬升至对应的库位取货。
可选的,所述运行模块在取货完成后以队列形式将待运送货物送往待运送货物的目标位置时,具体用于:
在取货完成后,向服务器发送取货完成信号;
接收到服务器发送的第二行进信号后,从库位下降至巷道指定位置集合,形成队列;
在到达巷道指定位置后,向服务器发送第二到达信号;
接收到服务器发送的第三行进信号后,在车队中以队列形式通过所述通行干道离开货架区域去往目标位置。
可选的,所述货架区域上方设置有用于供机器人通行的天轨;
所述运行模块在取货完成后以队列形式将待运送货物送往待运送货物的目标位置时,具体用于:
在取货完成后,向服务器发送取货完成信号;
接收到服务器发送的第四行进信号后,从库位爬升至天轨指定位置集合,形成队列;
在到达天轨指定位置后,向服务器发送第三到达信号;
接收到服务器发送的第五行进信号后,在车队中以队列形式通过天轨离开货架区域去往目标位置。
所述运行模块在取货完成后以队列形式将待运送货物送往待运送货物的目标位置时,具体用于:
接收服务器发送的分流节点位置;
在到达分流节点后进入子车队,在子车队中以队列形式将待运送货物送往待运送货物的目标位置。
所述运行模块在取货完成后以队列形式将待运送货物送往待运送货物的目标位置时,具体用于:
接收服务器发送的合并节点位置;
在到达合并节点后进入总车队,在总车队中以队列形式将待运送货物送往待运送货物的目标位置。
第五方面,本申请提供一种电子设备,包括:存储器,用于存储程序指 令;处理器,用于调用并执行所述存储器中的程序指令,执行第一方面或第二方面所述的方法。
第六方面,本申请提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时,实现第一方面或第二方面所述的方法。
第七方面,本申请提供一种程序产品,所述程序产品包括计算机程序,所述计算机程序存储被处理器执行时实现第一方面或第二方面所述的方法。
本申请提供了一种货物运送方法、装置、电子设备和存储介质。其中,货物运送方法,应用于仓储系统中的服务器,所述仓储系统包括货架区域,所述货架区域包括多个货架,每一货架包括多层库位,所述库位用于放置货物,相邻两货架之间设置有巷道,所述方法包括:确定运送任务信息,所述运送任务信息用于指示待运送货物的数量、待运送货物的当前位置信息、待运送货物的目标位置信息;所述当前位置信息包括所在的巷道信息、货架信息和库位信息;根据所述运送任务信息,选择多个机器人组成至少一个车队;将所述运送任务信息分配给至少一个所述车队中的每个机器人;对于每一车队,为所述车队规划行进路线,并将所述行进路线发送给所述车队中的机器人,以使所述车队中的机器人按照对应的行进路线,以队列形式到达货架区域的巷道内并爬升至各自对应的待运送货物所在的货架的对应库位取货,和/或,在取货完成后按照行进路线以队列形式将待运送货物送往待运送货物的目标位置。本申请的方案通过为机器人组队并为车队规划路线,控制车队按队列方式行进,不再单独为每个小车规划路线,可以简化路径规划复杂度和调度难度。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的一种应用场景的示意图;
图2为本申请一实施例提供的一种货物运送方法的流程图;
图3为本申请一实施例提供的一种货架区域结构的俯视图;
图4为本申请一实施例提供的一种货架区域结构的侧视图;
图5a为本申请一实施例提供的一种车队分流的示意图;
图5b为本申请一实施例提供的一种车队合并的示意图;
图6为本申请一实施例提供的另一种货物运送方法的流程图;
图7为本申请一实施例提供的一种货物运送装置的结构示意图;
图8为本申请一实施例提供的另一种货物运送装置的结构示意图;
图9为本申请一实施例提供的一种电子设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
仓储机器人一般独立作业,可在工作区域内自由移动。为了对每个机器人进行控制,一般单独为每个机器人进行路径规划。但随着仓储规模增大,机器人小车使用增多,众多机器人之间的行进路线变得交错复杂。为了防止机器人之间路径冲突导致互相造成阻碍,就需要仓储系统综合考虑每个机器人的路径规划,导致仓储系统对各个机器人的路径规划的复杂度提升,调度难度增加。
因此,本申请提出一种货物运送方法、装置、电子设备和存储介质。通过为机器人组建车队,并对车队进行统一路径规划,减小路径规划的考量因素,降低路径规划复杂度,提高调度效率。
图1为本申请提供的一种应用场景的示意图。如图1所示,该应用场景中包括终端设备10、若干工作站20、若干机器人30、仓库40、仓库中存储有多件货物的货架50。
终端设备10可以是任何类型的电子计算平台或设备,作为整个仓库系统的控制中心。根据实际需求,其可以具备相应的存储空间或计算能力,以提供一项或多项应用服务或功能,例如接收订单、分配订单、下发订单、控制 机器人执行取放货任务等。
工作站20是可供进行出货操作的集成化设备。根据实际的出货过程或设计需求,设置有一个或多个不同类型的动作机构及功能模块,例如用于暂存货物的播种墙、分拣货物的机械手等。工作站的数量可以有仓库的占地面积、建设成本、货物流量、出货效率等一种或多种指标决定。例如可以设置为3个或更多。
机器人30是具有行走机构,可以在工作站20与仓库40之间移动,搬运货箱以进行取放货操作的自动化设备。该行走机构可以采用任何合适类型的动力系统。机器人30可以一次同时装载至少一个货箱。
仓库40是用于存放货箱的区域。为了便于管理,仓库40中可以设置多个货架50,每个货架50可以为多层,每层有多个库位,库位可用于放置货箱,每个货箱中存放至少一种货物。其中,货箱指承载货物的容器,可能为托盘、箱体等。每两个货架之间的通道叫做巷道。
仓储系统可以根据订单情况分配任务给机器人30,同时,为了控制机器人30顺利从当前所在位置到达任务对应的目标位置,还为机器人30规划行进的路线。则可以根据任务将货架50中指定库位的货箱搬运到工作站20或仓库40中的其它位置,也可以将工作站20或仓库40中的其它位置的货箱搬运到货架50中指定库位。在该场景的货物搬运过程中,可以应用本公开实施例提供的货物运送方法,将若干机器人30组成至少一个车队,然后将运送任务分配给这些车队,针对每个车队规划行进路线,使车队中的机器人可以到达对应的位置执行自己的运送任务。
图2为本申请一实施例提供的一种货物运送方法的流程图,如图2所示,本实施例的方法应用于仓储系统中的服务器,仓储系统包括货架区域,货架区域包括多个货架,每一货架包括多层库位,库位用于放置货物,相邻两货架之间设置有巷道。本实施例的方法可以包括:
S201、确定运送任务信息。
其中,运送任务信息用于指示待运送货物的数量、待运送货物的当前位置信息、待运送货物的目标位置信息。
运送任务可以根据待出库订单生成。例如,某待出库订单对应的商品包括存放于A库位的商品a和存放于B库位的商品b,需要在工作站将此订单分拣出库。据此,可以确定运送任务信息包含:待运送货物2件,当前位置 为A库位(a)和B库位(b),目标位置为工作站。在实际中,待出库订单一般为批量处理,因此可以根据至少一个待出库订单的信息确定运送任务信息。
顾名思义,待运送货物的当前位置是指,待运送货物当前所在的位置;待运送货物的目标位置是指,需要将待运送货物送往的位置。在仓储系统中,某件货物可能出现在的位置包括某个货架上的某个库位中、某个工作台等位置。根据实际的需求可以确定待运送货物的当前位置和目标位置。例如,上述待出库订单的场景中,当前位置为A库位,目标位置为工作站。又例如,在对库存进行整理的场景中,可能需要将货物c从C库位移动到D库位,则当前位置为C库位,目标位置为D库位。
为了便于对方法进行详尽的描述,本申请实施例以货物的当前位置为库位为例进行描述,对应的,当前位置信息包括所在的巷道信息、货架信息和库位信息。但并不限定本方法仅用于此场景中,实际上,在其它场景中方法中的各步骤具有相似性。
S202、根据运送任务信息,选择多个机器人组成至少一个车队。
在确定运送任务信息后,即可根据待运送货物的数量选择对应数量的机器人组成至少一个车队,以便对待运送货物进行运送。待运送货物的数量与机器人的数量对应并不是指数量相等,而是指待运送货物的数量小于或等于机器人可运送的货物的数量。例如,某机器人最多可运送4个货物,实际上,可以使其运送1个货物或2个货物或3个货物或4个货物。
在选择过程中,可以优先选则当前处于空闲状态的小车,以保证运送效率。当空闲小车较少,无法满足全部运送任务时,可以预定当前处于其它任务中的小车。例如,可以将新的任务信息添加到当前处于其它任务中的小车的任务列表里,使其在完成当前任务后自动加入车队执行新任务。当然,在后者这一场景中,可以优先选择完成当前任务最快的小车进行组队,尽量保证运送效率。同时,还可以将处于空闲状态的小车和处于其它任务中的小车分别划分在不同车队,这样,空闲状态的小车的车队可以先执行运送任务,以最大限度地保证运送效率。
在一些场景中,还可以在仓库中设定一个组队区域,用于机器人组队,并从该位置以队列的形式出发去往其它位置。
S203、将运送任务信息分配给至少一个车队中的每个机器人。
在分配过程中,可根据待运送货物的当前位置和/或待运送货物的目标位置货物位置确定分配到哪个车队的哪个机器人。优选的,可以将当前位置和/或目标位置相近的货物分配给同一车队的机器人,尽量使同一车队内的机器人的路线的重复度更高,使仓储系统的路径规划的复杂度更低。
S202和S203的顺序可以交换,也即先将运送任务分配给机器人,再将机器人划分到各个车队,本申请中不做限定。
S204、对于每一车队,为车队规划行进路线,并将行进路线发送给车队中的机器人,以使车队中的机器人按照对应的行进路线,以队列形式到达货架区域的巷道内并爬升至各自对应的待运送货物所在的货架的对应库位取货,和/或,在取货完成后按照行进路线以队列形式将待运送货物送往待运送货物的目标位置。
尽管货物的当前位置可能在不同库位,但是都在货架区域。因此,车队内的机器人可以通过相同的路径到达货架区域。在对车队进行路线的规划时,可以以待运送货物的当前位置和/或待运送货物的目标位置所在的区域作为路线的端点为车队进行规划。
服务器可以将规划好的行进路线发送给车队中的每个机器人,相对应的,车队中的每个机器人接收行进路线,分别通过自主导航的方式在车队中行进。
或者,服务器可以将规划好的行进路线发送给车队中的领队机器人(车队前进方向上的第一个机器人),相对应的,车队中的领队机器人接收行进路线,通过自主导航的方式行进。其它机器人则可以跟随领队机器人行进。
在车队到达路线的端点(货架区域)后,车队内的每个机器人可以自行导航到本车对应的库位进行取货或放货操作。
本实施例提供的货物运送方法,应用于仓储系统中的服务器,仓储系统包括货架区域,货架区域包括多个货架,每一货架包括多层库位,库位用于放置货物,相邻两货架之间设置有巷道,该方法包括:确定运送任务信息,运送任务信息用于指示待运送货物的数量、待运送货物的当前位置信息、待运送货物的目标位置信息;当前位置信息包括所在的巷道信息、货架信息和库位信息;根据运送任务信息,选择多个机器人组成至少一个车队;将运送任务信息分配给至少一个车队中的每个机器人;对于每一车队,为车队规划行进路线,并将行进路线发送给车队中的机器人,以使车队中的机器人按照对应的行进路线,以队列形式到达货架区域的巷道内并爬升至各自对应的待 运送货物所在的货架的对应库位取货,和/或,在取货完成后按照行进路线以队列形式将待运送货物送往待运送货物的目标位置。本申请的方案通过为机器人组队并为车队规划路线,控制车队按队列方式行进,不再单独为每个小车规划路线,可以简化路径规划复杂度和调度难度。
对应于上述的组队区域,本实施例中将组队区域设置在货架区域的一侧,并称之为集合干道,图3是货架区域的俯视图,参考图3可以看到,集合干道与巷道平行;货架区域的另一侧设置有至少一条通行干道,通行干道连通巷道、集合干道。机器人车队可以在集合干道中集合组成车队,以队列的形式通过通行干道进入巷道中。在将行进路线发送给车队中的机器人之后,上述的方法还包括:确定车队中每个机器人的集合时间、每个机器人在集合干道中的集合位置;将集合时间和集合位置分别发送给对应的机器人,以使各机器人在集合时间到达集合位置集合,形成队列;若在设定时间内接收到车队内全部机器人发送的第一到达信号,则确定该车队集合完毕;向车队中的机器人发送第一行进信号,以使车队中的机器人按照行进路线以队列形式通过通行干道进入货架区域的巷道内。
本实施例说明了机器人车队的组队过程。服务器确定车队中每个机器人的集合时间、每个机器人在集合干道中的集合位置后,下发给对应的机器人。相应的,机器人接收到组队的集合时间和集合位置信息后,在集合时间到大集合位置集合,组成队列。并在到达集合位置后向服务器发送第一到达信号,第一到达信号可以包含本车的标识、到达时间等信息。如果在设定的时间内服务器接收到一个车队内全部机器人发送的第一到达信号,则可以确定该车队已经集合完毕,可以出发。然后可以向车队中的机器人发送第一行进信号,相应的,机器人接收到第一行进信号后启动,遵循规划的行进路线前进,通过通行干道进入货架区域的巷道内。在行进过程中可以保持前后两机器人之间的距离稳定在一定距离范围内,维持队列形式。
在车队到达巷道后,车队中的机器人可到达相应的库位进行取货,在取货完成后再到达指定位置集合离开。具体的,离开货架区域的过程可以包括:若接收到车队内全部机器人发送的取货完成信号,则确定车队取货完毕;向车队中的机器人发送第二行进信号,以使车队中的机器人从对应的库位下降至巷道指定位置集合,形成队列;若在设定时间内接收到车队内全部机器人发送的第二到达信号,则确定该车队集合完毕;向车队中的 机器人发送第三行进信号,以使车队中的机器人以队列形式通过通行干道离开货架区域去往目标位置。
机器人在取货完成后可以向服务器发送取货完成信号,相应的,服务器在接收到车队内全部机器人发送的取货完成信号后,可以确定整个车队取货完成,可以离开货架区域。于是,向车队中的机器人发送第二行进信号,相应的,机器人在接收到第二行进信号后,离开当前所在的库位,下降至巷道的指定位置集合,再次形成队列。机器人在到达巷道指定位置后向服务器发送第二到达信号,相应的,服务器在接收到车队内全部机器人发送的第二到达信号后,可以确定车队集合完毕,于是向车队中的机器人发送第三行进信号。相应的,机器人在接收到第三行进信号后,继续遵循规划的行进路线前进,通过通行干道离开货架区域去往目标位置。
在另一种场景中,参考图4,图4为货架区域的侧视图,在货架45上方设置有用于供机器人通行的天轨,天轨的另一端可以对接地面,机器人可以通过天轨最终下降到地面。机器人可以在货架区的地面运行(例如机器人41和机器人42),也可以在货架区的天轨上运行(例如机器人43和机器人44)。则离开货架区域的过程可以包括:若接收到车队内全部机器人发送的取货完成信号,则确定车队取货完毕;向车队中的机器人发送第四行进信号,以使车队中的机器人从库位爬升至天轨指定位置集合,形成队列;若在设定时间内接收到车队内全部机器人发送的第三到达信号,则确定该车队集合完毕;向车队中的机器人发送第五行进信号,以使车队中的机器人以队列形式通过天轨离开货架区域去往目标位置。
机器人在取货完成后可以向服务器发送取货完成信号,相应的,服务器在接收到车队内全部机器人发送的取货完成信号后,可以确定整个车队取货完成,可以离开货架区域。于是,向车队中的机器人发送第四行进信号,相应的,机器人在接收到第四行进信号后,离开当前所在的库位,向上爬升至天轨的指定位置集合,再次形成队列。机器人在到达天轨的指定位置后向服务器发送第三到达信号,相应的,服务器在接收到车队内全部机器人发送的第三到达信号后,可以确定车队集合完毕,于是向车队中的机器人发送第五行进信号。相应的,机器人在接收到第五行进信号后,继续遵循规划的行进路线前进,通过天轨离开货架区域去往目标位置。
图4中的天轨的设置方式仅为一种示例。在其它实现方式中,也可以 将天轨与仓库内的其它区域,例如工作台等区域对接,使机器人通过天轨可以不经过地面即到达其它区域,这样与地面行驶的机器人不会形成路径上的冲突,可以进一步降低服务器路径规划的复杂度。
在一些场景中,待运送货物的目标位置可以为仓储系统中的工作站。上述的S202具体可以包括:根据运送任务信息,将待运送货物划分为至少一组,其中,每组待运送货物的数量满足预设要求,且每组待运送货物的当前位置位于同一巷道内,和/或,目标位置为同一工作站;为每一组待运送货物分配一个车队,车队内的机器人数量与该组待运送货物的数量相匹配。
待运送货物较多时,可以先对其进行分组,一组待运送货物分配给一个车队。车队中机器人的数量过多会导致队列过长,也会增加服务器路径规划的复杂度。因此就需要控制车队的长度,这样,每个车队可以运送的待运送货物的数量就需要满足预设的要求。另外,可以优先选择将当前位置位于同一巷道内,和/或,目标位置为同一工作站的待运送货物划分到同一组,以分配给同一个车队,增加车队内各机器人在路径上的重合度,进一步降低服务器路径规划的复杂度。另外,分配的车队中机器人的数量需与待运送货物的数量匹配,也即上述实施例中所说的,待运送货物的数量小于或等于车队内机器人可运送的货物的数量。
在一些场景中,可能无法保证每个车队所分配的全部待运送货物的目标位置都是同一工作站。在这种情况下,还可以对车队进行分流,划分出至少两个子车队。具体的,分流的过程可以包括:针对每个车队,若车队分配到的待运送货物的目标位置包含不同的工作站,则将待运送货物的目标位置为同一工作站的机器人划分到同一个子车队;根据各个子车队对应的目标位置,确定车队在离开货架区域前往目标位置的过程中分流为子车队的分流节点;将分流节点位置发送给对应的机器人,以使车队中的机器人到达分流节点后拆分为子车队,在子车队中以队列形式将待运送货物送往对应的工作站。
针对某个车队,如果这个车队中分配到的待运送货物的目标位置包含不同的工作站,则可以将待运送货物的目标位置为同一工作站的机器人划分到同一个子车队。这里的划分,不一定体现在机器人之间的排序和距离上,可以是仅仅对这些机器人添加所属子车队的标识。划分后,每个子车队的目标位置是同一工作站,而各子车队之间对应不同工作站。这时,就可以在路径 中确定一个分流节点,并把分流节点位置发送给对应的子车队内的机器人。车队中的机器人在到达分流节点后,通过变换行进方向等方式拆分成子车队。每个子车队又有了自己的统一的终点,可以以队列形式继续行进将待运送货物送往对应的工作站。
参考图5a,车队L0从巷道1行进到a点,拆分成两个子车队L1和L2,L1转向继续行进到工作站①,L2继续行进到工作站②。
在另一些实施例中,可能有两个或两个以上的车队分配到的待运送货物的目标位置均为同一工作站。在这种情况下,还可以对车队进行合并,形成一个更大的车队。具体的,合并的过程可以包括:若存在至少两个车队分配到的待运送货物的目标位置均为同一工作站,则确定至少两个车队在离开货架区域前往目标位置的过程中合并为总车队的合并节点;将合并节点位置发送给至少两个车队中的机器人,以使至少两个车队中的机器人到达合并节点后合并为总车队,在总车队中以队列形式将待运送货物送往待运送货物的目标位置。
针对某几个车队,如果这几个车队中分配到的待运送货物的目标位置都是同一个工作站,则可以在规划的路径中设置合并节点,并将合并节点的位置发送给这几个车队中的机器人。相应的,各机器人行进到合并节点时,通过变换行进方向等方式合并成总车队,可以以队列形式继续行进将待运送货物送往目标位置。
优选的,可以合并的两个或两个以上的车队到达合并节点的位置的时间间隔小于或等于预设值。即,两个车队之间不能相隔太长时间,否则其中一个车队可能需要等待过长时间,又会降低运送效率。
参考图5b,车队L3从巷道2行进到b点,车队L4从巷道3行进到b点,合并成一个总车队L5继续行进到工作站③。
在另一些实施例中,可能存在两个或两个以上的车队中的机器人对应的待运送货物的当前位置位于同一巷道内,但对应的目标位置不同。在这种情况下,还可以对车队进行重组。具体的,在将行进路线发送给车队中的机器人,以使车队中的机器人按照对应的行进路线,以队列形式到达货架区域的巷道内并爬升至各自对应的待运送货物所在的货架的对应库位取货之后,进行重组的过程可以包括:若车队的各机器人对应的目标位置不同,则查找是否存在相匹配车队,其中,相匹配车队与车队对应的巷道之间的距离小于预 设距离,相匹配车队与车队进入对应巷道的时间间隔小于预设间隔,且相匹配车队中各机器人对应的目标位置不同;若存在相匹配车队,则根据车队与相匹配车队中各机器人的目标位置,将车队与相匹配车队中的机器人重新划分为多个车队,重新划分得到的每一车队中各机器人对应的目标位置相同;控制各机器人在取货完成后,基于重新划分的车队移动至对应的目标位置。
如果某个车队中机器人对应的待运送货物的当前位置位于同一巷道内,但对应的目标位置基本各不相同,可以规划统一的路径前往当前位置所在的巷道。不过,在取货完成后,暂不恢复队列继续行进,而是查找附近是否有情况相似的车队中有与该车队中某个机器人或某些机器人目标位置相同的机器人。如果有,则可以将两个或两个以上车队中目标位置相同的机器人重新组成车队,相当于将原有的两个或两个以上车队重新划分为多个车队。为重新划分的车队规划前往目标位置的路径后,即可将路径发送给各个机器人。各机器人在接收到新路径后即可在队列中行进至目标位置。
这种重新划分车队的方式,可以在整个车队取货完成后,无需每个机器人单独导航,而是继续以队列的形式在重新划分的车队中前进,相对来说可以减少服务器路径规划的复杂度。
图6为本申请一实施例提供的一种货物运送方法的流程图,本实施例的方法应用于仓储系统中的机器人,仓储系统包括货架区域,货架区域包括多个货架,每一货架包括多层库位,库位用于放置货物,相邻两货架之间设置有巷道。如图6所示,本实施例的方法包括:
S601、接收运送任务信息;运送任务信息是服务器在确定运送任务信息并根据运送任务信息,选择多个机器人组成至少一个车队后分配的。
运送任务信息用于指示待运送货物的数量、待运送货物的当前位置信息、待运送货物的目标位置信息;当前位置信息包括所在的巷道信息、货架信息和库位信息。
S602、接收行进路线;行进路线是服务器为机器人所在车队规划的。
S603、按照行进路线,在车队中以队列形式到达货架区域的巷道内并爬升至对应的待运送货物所在的货架的对应库位取货,和/或,在取货完成后以队列形式将待运送货物送往待运送货物的目标位置。
可选的,货架区域的一侧设置有至少一条集合干道,集合干道与巷道平行;货架区域的另一侧设置有至少一条通行干道,通行干道连通巷道、 集合干道;
在车队中以队列形式到达货架区域的巷道内并爬升至对应的待运送货物所在的货架的对应库位取货,包括:
接收服务器发送的集合时间和集合位置;
在到达集合位置后,向服务器发送第一到达信号;
接收到服务器发送的第一行进信号后,根据运送任务信息,到达货架区域的巷道内并爬升至对应的库位取货。
可选的,在取货完成后以队列形式将待运送货物送往待运送货物的目标位置,包括:
在取货完成后,向服务器发送取货完成信号;
接收到服务器发送的第二行进信号后,从库位下降至巷道指定位置集合,形成队列;
在到达巷道指定位置后,向服务器发送第二到达信号;
接收到服务器发送的第三行进信号后,在车队中以队列形式通过通行干道离开货架区域去往目标位置。
可选的,货架区域上方设置有用于供机器人通行的天轨;
在取货完成后以队列形式将待运送货物送往待运送货物的目标位置,包括:
在取货完成后,向服务器发送取货完成信号;
接收到服务器发送的第四行进信号后,从库位爬升至天轨指定位置集合,形成队列;
在到达天轨指定位置后,向服务器发送第三到达信号;
接收到服务器发送的第五行进信号后,在车队中以队列形式通过天轨离开货架区域去往目标位置。
可选的,在取货完成后以队列形式将待运送货物送往待运送货物的目标位置,包括:
接收服务器发送的分流节点位置;
在到达分流节点后进入子车队,在子车队中以队列形式将待运送货物送往待运送货物的目标位置。
可选的,在取货完成后以队列形式将待运送货物送往待运送货物的目标位置,包括:
接收服务器发送的合并节点位置;
在到达合并节点后进入总车队,在总车队中以队列形式将待运送货物送往待运送货物的目标位置。
本实施例的方法与上述实施例的方法有相同或相对应的特征,可以达到相同的技术效果,其实现方式不再赘述。
图7为本申请一实施例提供的一种货物运送装置的结构示意图,如图7所示的,本实施例的货物运送装置700,应用于仓储系统,仓储系统包括货架区域,货架区域包括多个货架,每一货架包括多层库位,库位用于放置货物,相邻两货架之间设置有巷道,运送装置700包括:运送任务确定模块701、组队模块702、运送任务分配模块703、路线规划模块704。
运送任务确定模块701,用于确定运送任务信息,运送任务信息用于指示待运送货物的数量、待运送货物的当前位置信息、待运送货物的目标位置信息;当前位置信息包括所在的巷道信息、货架信息和库位信息;
组队模块702,用于根据运送任务信息,选择多个机器人组成至少一个车队;
运送任务分配模块703,用于将运送任务信息分配给至少一个车队中的每个机器人;
路线规划模块704,用于对于每一车队,为车队规划行进路线,并将行进路线发送给车队中的机器人,以使车队中的机器人按照对应的行进路线,以队列形式到达货架区域的巷道内并爬升至各自对应的待运送货物所在的货架的对应库位取货,和/或,在取货完成后按照行进路线以队列形式将待运送货物送往待运送货物的目标位置。
可选的,货架区域的一侧设置有至少一条集合干道,集合干道与巷道平行;货架区域的另一侧设置有至少一条通行干道,通行干道连通巷道、集合干道;
货物运送装置700还包括:
第一集合模块705,用于在将行进路线发送给车队中的机器人之后,确定车队中每个机器人的集合时间、每个机器人在集合干道中的集合位置;将集合时间和集合位置分别发送给对应的机器人,以使各机器人在集合时间到达集合位置集合,形成队列;若在设定时间内接收到车队内全部机器人发送的第一到达信号,则确定该车队集合完毕;向车队中的机器人发送第一行进信 号,以使车队中的机器人按照行进路线以队列形式通过通行干道进入货架区域的巷道内。
可选的,装置700还包括:
第二集合模块706,用于若接收到车队内全部机器人发送的取货完成信号,则确定车队取货完毕;向车队中的机器人发送第二行进信号,以使车队中的机器人从对应的库位下降至巷道指定位置集合,形成队列;若在设定时间内接收到车队内全部机器人发送的第二到达信号,则确定该车队集合完毕;向车队中的机器人发送第三行进信号,以使车队中的机器人以队列形式通过通行干道离开货架区域去往目标位置。
可选的,货架区域上方设置有用于供机器人通行的天轨;装置700还包括:
第三集合模块707,用于若接收到车队内全部机器人发送的取货完成信号,则确定车队取货完毕;向车队中的机器人发送第四行进信号,以使车队中的机器人从库位爬升至天轨指定位置集合,形成队列;若在设定时间内接收到车队内全部机器人发送的第三到达信号,则确定该车队集合完毕;向车队中的机器人发送第五行进信号,以使车队中的机器人以队列形式通过天轨离开货架区域去往目标位置。
可选的,仓储系统还包括多个工作站;待运送货物的目标位置为工作站;组队模块702,具体用于:
根据运送任务信息,将待运送货物划分为至少一组,其中,每组待运送货物的数量满足预设要求,且每组待运送货物的当前位置位于同一巷道内,和/或,目标位置为同一工作站;
为每一组待运送货物分配一个车队,车队内的机器人数量与该组待运送货物的数量相匹配。
可选的,货物运送装置700还包括:
分流模块708,用于针对每个车队,若车队分配到的待运送货物的目标位置包含不同的工作站,则将待运送货物的目标位置为同一工作站的机器人划分到同一个子车队;根据各个子车队对应的目标位置,确定车队在离开货架区域前往目标位置的过程中分流为子车队的分流节点;将分流节点位置发送给对应的机器人,以使车队中的机器人到达分流节点后拆分为子车队,在子车队中以队列形式将待运送货物送往对应的工作站。
可选的,货物运送装置700还包括:
合并模块709,用于若存在至少两个车队分配到的待运送货物的目标位置均为同一工作站,则确定至少两个车队在离开货架区域前往目标位置的过程中合并为总车队的合并节点;将合并节点位置发送给至少两个车队中的机器人,以使至少两个车队中的机器人到达合并节点后合并为总车队,在总车队中以队列形式将待运送货物送往待运送货物的目标位置。
可选的,同一车队的机器人对应的待运送货物的当前位置位于同一巷道内;在将行进路线发送给车队中的机器人,以使车队中的机器人按照对应的行进路线,以队列形式到达货架区域的巷道内并爬升至各自对应的待运送货物所在的货架的对应库位取货之后,货物运送装置700还包括:
重组模块710,用于若车队的各机器人对应的目标位置不同,则查找是否存在相匹配车队,其中,相匹配车队与车队对应的巷道之间的距离小于预设距离,相匹配车队与车队进入对应巷道的时间间隔小于预设间隔,且相匹配车队中各机器人对应的目标位置不同;若存在相匹配车队,则根据车队与相匹配车队中各机器人的目标位置,将车队与相匹配车队中的机器人重新划分为多个车队,重新划分得到的每一车队中各机器人对应的目标位置相同;控制各机器人在取货完成后,基于重新划分的车队移动至对应的目标位置。
本实施例的装置,可以用于执行上述服务器的方法,其实现原理和技术效果类似,此处不再赘述。
图8为本申请一实施例提供的一种货物运送装置的结构示意图,如图8所示的,本实施例的货物运送装置800应用于仓储系统中,仓储系统包括货架区域,货架区域包括多个货架,每一货架包括多层库位,库位用于放置货物,相邻两货架之间设置有巷道,货物运送装置800包括:接收模块801、运行模块802。
接收模块801,用于接收运送任务信息;运送任务信息是服务器在确定运送任务信息并根据运送任务信息,选择多个机器人组成至少一个车队后分配的,运送任务信息用于指示待运送货物的数量、待运送货物的当前位置信息、待运送货物的目标位置信息;当前位置信息包括所在的巷道信息、货架信息和库位信息;
接收模块801,还用于接收行进路线;行进路线是服务器为机器人所在车队规划的;
运行模块802,用于按照行进路线,在车队中以队列形式到达货架区域的巷道内并爬升至对应的待运送货物所在的货架的对应库位取货,和/或,在取货完成后以队列形式将待运送货物送往待运送货物的目标位置。
可选的,货架区域的一侧设置有至少一条集合干道,集合干道与巷道平行;货架区域的另一侧设置有至少一条通行干道,通行干道连通巷道、集合干道;
运行模块802在车队中以队列形式到达货架区域的巷道内并爬升至对应的待运送货物所在的货架的对应库位取货时,具体用于:
接收服务器发送的集合时间和集合位置;
在到达集合位置后,向服务器发送第一到达信号;
接收到服务器发送的第一行进信号后,根据运送任务信息,到达货架区域的巷道内并爬升至对应的库位取货。
可选的,运行模块802在取货完成后以队列形式将待运送货物送往待运送货物的目标位置时,具体用于:
在取货完成后,向服务器发送取货完成信号;
接收到服务器发送的第二行进信号后,从库位下降至巷道指定位置集合,形成队列;
在到达巷道指定位置后,向服务器发送第二到达信号;
接收到服务器发送的第三行进信号后,在车队中以队列形式通过通行干道离开货架区域去往目标位置。
可选的,货架区域上方设置有用于供机器人通行的天轨;
运行模块802在取货完成后以队列形式将待运送货物送往待运送货物的目标位置时,具体用于:
在取货完成后,向服务器发送取货完成信号;
接收到服务器发送的第四行进信号后,从库位爬升至天轨指定位置集合,形成队列;
在到达天轨指定位置后,向服务器发送第三到达信号;
接收到服务器发送的第五行进信号后,在车队中以队列形式通过天轨离开货架区域去往目标位置。
运行模块802在取货完成后以队列形式将待运送货物送往待运送货物的目标位置时,具体用于:
接收服务器发送的分流节点位置;
在到达分流节点后进入子车队,在子车队中以队列形式将待运送货物送往待运送货物的目标位置。
运行模块802在取货完成后以队列形式将待运送货物送往待运送货物的目标位置时,具体用于:
接收服务器发送的合并节点位置;
在到达合并节点后进入总车队,在总车队中以队列形式将待运送货物送往待运送货物的目标位置。
本实施例的装置,可以用于执行上述机器人的方法,其实现原理和技术效果类似,此处不再赘述。
图9为本申请一实施例提供的一种电子设备的结构示意图,如图9所示的,本实施例的电子设备900,包括:存储器,用于存储程序指令;处理器,用于调用并执行存储器中的程序指令,执行上述服务器或机器人的方法。
本申请还提供一种计算机可读存储介质,存储介质存储有计算机程序,计算机程序被处理器执行时,实现上述服务器或机器人的方法。
本申请还提供一种程序产品,程序产品包括计算机程序,计算机程序存储被处理器执行时实现上述服务器或机器人的方法。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (19)

  1. 一种货物运送方法,其特征在于,应用于仓储系统中的服务器,所述仓储系统包括货架区域,所述货架区域包括多个货架,每一货架包括多层库位,所述库位用于放置货物,相邻两货架之间设置有巷道,所述方法包括:
    确定运送任务信息,所述运送任务信息用于指示待运送货物的数量、待运送货物的当前位置信息、待运送货物的目标位置信息;所述当前位置信息包括所在的巷道信息、货架信息和库位信息;
    根据所述运送任务信息,选择多个机器人组成至少一个车队;
    将所述运送任务信息分配给至少一个所述车队中的每个机器人;
    对于每一车队,为所述车队规划行进路线,并将所述行进路线发送给所述车队中的机器人,以使所述车队中的机器人按照对应的行进路线,以队列形式到达货架区域的巷道内并爬升至各自对应的待运送货物所在的货架的对应库位取货,和/或,在取货完成后按照行进路线以队列形式将待运送货物送往待运送货物的目标位置。
  2. 根据权利要求1所述的方法,其特征在于,所述货架区域的一侧设置有至少一条集合干道,所述集合干道与所述巷道平行;所述货架区域的另一侧设置有至少一条通行干道,所述通行干道连通所述巷道、所述集合干道;
    在将所述行进路线发送给所述车队中的机器人之后,还包括:
    确定车队中每个机器人的集合时间、每个机器人在所述集合干道中的集合位置;
    将所述集合时间和集合位置分别发送给对应的机器人,以使各机器人在集合时间到达集合位置集合,形成队列;
    若在设定时间内接收到车队内全部机器人发送的第一到达信号,则确定该车队集合完毕;
    向车队中的机器人发送第一行进信号,以使车队中的机器人按照行进路线以队列形式通过所述通行干道进入货架区域的巷道内。
  3. 根据权利要求2所述的方法,其特征在于,还包括:
    若接收到车队内全部机器人发送的取货完成信号,则确定车队取货完毕;
    向车队中的机器人发送第二行进信号,以使车队中的机器人从对应的 库位下降至巷道指定位置集合,形成队列;
    若在设定时间内接收到车队内全部机器人发送的第二到达信号,则确定该车队集合完毕;
    向车队中的机器人发送第三行进信号,以使车队中的机器人以队列形式通过所述通行干道离开货架区域去往目标位置。
  4. 根据权利要求1所述的方法,其特征在于,所述货架区域上方设置有用于供机器人通行的天轨;所述方法还包括:
    若接收到车队内全部机器人发送的取货完成信号,则确定车队取货完毕;
    向车队中的机器人发送第四行进信号,以使车队中的机器人从库位爬升至天轨指定位置集合,形成队列;
    若在设定时间内接收到车队内全部机器人发送的第三到达信号,则确定该车队集合完毕;
    向车队中的机器人发送第五行进信号,以使车队中的机器人以队列形式通过天轨离开货架区域去往目标位置。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述仓储系统还包括多个工作站;所述待运送货物的目标位置为工作站;所述根据所述运送任务信息,选择多个机器人组成至少一个车队,包括:
    根据所述运送任务信息,将所述待运送货物划分为至少一组,其中,每组待运送货物的数量满足预设要求,且每组待运送货物的当前位置位于同一巷道内,和/或,目标位置为同一工作站;
    为每一组待运送货物分配一个车队,所述车队内的机器人数量与该组待运送货物的数量相匹配。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    针对每个车队,若车队分配到的待运送货物的目标位置包含不同的工作站,则将待运送货物的目标位置为同一工作站的机器人划分到同一个子车队;
    根据各个子车队对应的目标位置,确定车队在离开货架区域前往目标位置的过程中分流为子车队的分流节点;
    将分流节点位置发送给对应的机器人,以使车队中的机器人到达分流节点后拆分为子车队,在子车队中以队列形式将待运送货物送往对应的工作站。
  7. 根据权利要求5所述的方法,其特征在于,还包括:
    若存在至少两个车队分配到的待运送货物的目标位置均为同一工作站,则确定至少两个车队在离开货架区域前往目标位置的过程中合并为总车队的合并节点;
    将合并节点位置发送给所述至少两个车队中的机器人,以使所述至少两个车队中的机器人到达合并节点后合并为总车队,在总车队中以队列形式将待运送货物送往待运送货物的目标位置。
  8. 根据权利要求1-4任一项所述的方法,其特征在于,同一车队的机器人对应的待运送货物的当前位置位于同一巷道内;在将所述行进路线发送给所述车队中的机器人,以使所述车队中的机器人按照对应的行进路线,以队列形式到达货架区域的巷道内并爬升至各自对应的待运送货物所在的货架的对应库位取货之后,还包括:
    若所述车队的各机器人对应的目标位置不同,则查找是否存在相匹配车队,其中,所述相匹配车队与所述车队对应的巷道之间的距离小于预设距离,所述相匹配车队与所述车队进入对应巷道的时间间隔小于预设间隔,且所述相匹配车队中各机器人对应的目标位置不同;
    若存在相匹配车队,则根据所述车队与所述相匹配车队中各机器人的目标位置,将所述车队与所述相匹配车队中的机器人重新划分为多个车队,重新划分得到的每一车队中各机器人对应的目标位置相同;
    控制各机器人在取货完成后,基于重新划分的车队移动至对应的目标位置。
  9. 一种货物运送方法,其特征在于,应用于仓储系统中的机器人,所述仓储系统包括货架区域,所述货架区域包括多个货架,每一货架包括多层库位,所述库位用于放置货物,相邻两货架之间设置有巷道,所述方法包括:
    接收运送任务信息;所述运送任务信息是服务器在确定运送任务信息并根据所述运送任务信息,选择多个机器人组成至少一个车队后分配的,所述运送任务信息用于指示待运送货物的数量、待运送货物的当前位置信息、待运送货物的目标位置信息;所述当前位置信息包括所在的巷道信息、货架信息和库位信息;
    接收行进路线;所述行进路线是服务器为机器人所在车队规划的;
    按照所述行进路线,在车队中以队列形式到达货架区域的巷道内并爬升 至对应的待运送货物所在的货架的对应库位取货,和/或,在取货完成后以队列形式将待运送货物送往待运送货物的目标位置。
  10. 根据权利要求9所述的方法,其特征在于,所述货架区域的一侧设置有至少一条集合干道,所述集合干道与所述巷道平行;所述货架区域的另一侧设置有至少一条通行干道,所述通行干道连通所述巷道、所述集合干道;
    所述在车队中以队列形式到达货架区域的巷道内并爬升至对应的待运送货物所在的货架的对应库位取货,包括:
    接收服务器发送的集合时间和集合位置;
    在到达集合位置后,向服务器发送第一到达信号;
    接收到服务器发送的第一行进信号后,根据运送任务信息,到达货架区域的巷道内并爬升至对应的库位取货。
  11. 根据权利要求10所述的方法,其特征在于,所述在取货完成后以队列形式将待运送货物送往待运送货物的目标位置,包括:
    在取货完成后,向服务器发送取货完成信号;
    接收到服务器发送的第二行进信号后,从库位下降至巷道指定位置集合,形成队列;
    在到达巷道指定位置后,向服务器发送第二到达信号;
    接收到服务器发送的第三行进信号后,在车队中以队列形式通过所述通行干道离开货架区域去往目标位置。
  12. 根据权利要求9所述的方法,其特征在于,所述货架区域上方设置有用于供机器人通行的天轨;
    所述在取货完成后以队列形式将待运送货物送往待运送货物的目标位置,包括:
    在取货完成后,向服务器发送取货完成信号;
    接收到服务器发送的第四行进信号后,从库位爬升至天轨指定位置集合,形成队列;
    在到达天轨指定位置后,向服务器发送第三到达信号;
    接收到服务器发送的第五行进信号后,在车队中以队列形式通过天轨离开货架区域去往目标位置。
  13. 根据权利要求9-12任一项所述的方法,其特征在于,所述在取货 完成后以队列形式将待运送货物送往待运送货物的目标位置,包括:
    接收服务器发送的分流节点位置;
    在到达分流节点后进入子车队,在子车队中以队列形式将待运送货物送往待运送货物的目标位置。
  14. 根据权利要求9-12任一项所述的方法,其特征在于,所述在取货完成后以队列形式将待运送货物送往待运送货物的目标位置,包括:
    接收服务器发送的合并节点位置;
    在到达合并节点后进入总车队,在总车队中以队列形式将待运送货物送往待运送货物的目标位置。
  15. 一种货物运送装置,其特征在于,应用于仓储系统,所述仓储系统包括货架区域,所述货架区域包括多个货架,每一货架包括多层库位,所述库位用于放置货物,相邻两货架之间设置有巷道,所述装置包括:
    运送任务确定模块,用于确定运送任务信息,所述运送任务信息用于指示待运送货物的数量、待运送货物的当前位置信息、待运送货物的目标位置信息;所述当前位置信息包括所在的巷道信息、货架信息和库位信息;
    组队模块,用于根据所述运送任务信息,选择多个机器人组成至少一个车队;
    运送任务分配模块,用于将所述运送任务信息分配给至少一个所述车队中的每个机器人;
    路线规划模块,用于对于每一车队,为所述车队规划行进路线,并将所述行进路线发送给所述车队中的机器人,以使所述车队中的机器人按照对应的行进路线,以队列形式到达货架区域的巷道内并爬升至各自对应的待运送货物所在的货架的对应库位取货,和/或,在取货完成后按照行进路线以队列形式将待运送货物送往待运送货物的目标位置。
  16. 一种货物运送装置,其特征在于,应用于仓储系统中,所述仓储系统包括货架区域,所述货架区域包括多个货架,每一货架包括多层库位,所述库位用于放置货物,相邻两货架之间设置有巷道包括:
    接收模块,用于接收运送任务信息;所述运送任务信息是服务器在确定运送任务信息并根据所述运送任务信息,选择多个机器人组成至少一个车队后分配的,所述运送任务信息用于指示待运送货物的数量、待运送货物的当前位置信息、待运送货物的目标位置信息;所述当前位置信息包括所在的巷 道信息、货架信息和库位信息;
    所述接收模块,还用于接收行进路线;所述行进路线是服务器为机器人所在车队规划的;
    运行模块,用于按照所述行进路线,在车队中以队列形式到达货架区域的巷道内并爬升至对应的待运送货物所在的货架的对应库位取货,和/或,在取货完成后以队列形式将待运送货物送往待运送货物的目标位置。
  17. 一种电子设备,其特征在于,包括:
    存储器,用于存储程序指令;
    处理器,用于调用并执行所述存储器中的程序指令,执行如权利要求1-14任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时,实现如权利要求1-14任一项所述的方法。
  19. 一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序被处理器执行时实现权利要求1-14任一项所述的方法。
PCT/CN2022/097289 2021-06-30 2022-06-07 货物运送方法、装置、电子设备和存储介质 WO2023273805A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110745081.8A CN113387098B (zh) 2021-06-30 2021-06-30 货物运送方法、装置、电子设备和存储介质
CN202110745081.8 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023273805A1 true WO2023273805A1 (zh) 2023-01-05

Family

ID=77624944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097289 WO2023273805A1 (zh) 2021-06-30 2022-06-07 货物运送方法、装置、电子设备和存储介质

Country Status (3)

Country Link
CN (1) CN113387098B (zh)
TW (1) TW202302431A (zh)
WO (1) WO2023273805A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116362652A (zh) * 2023-06-01 2023-06-30 上海仙工智能科技有限公司 一种运输分拨任务调度方法及系统、存储介质
CN116674920A (zh) * 2023-04-25 2023-09-01 中国铁建电气化局集团有限公司 一种智能化运输方法、装置、设备和存储介质
CN117808027A (zh) * 2024-03-01 2024-04-02 迈赫机器人自动化股份有限公司 一种焊装车身库管理系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113387098B (zh) * 2021-06-30 2023-01-24 深圳市海柔创新科技有限公司 货物运送方法、装置、电子设备和存储介质
CN114022088B (zh) * 2022-01-07 2022-04-19 浙江凯乐士科技集团股份有限公司 立体库管理方法、装置、电子设备及计算机可读存储介质
CN115366708A (zh) * 2022-09-26 2022-11-22 北京融安特智能科技股份有限公司 无人档案库房机器人管理方法、装置、电子设备和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107293110A (zh) * 2017-07-25 2017-10-24 维沃移动通信有限公司 一种车队控制方法及终端
WO2020233227A1 (zh) * 2019-05-23 2020-11-26 北京京东尚科信息技术有限公司 仓储任务处理方法、装置、仓储系统以及存储介质
CN112068571A (zh) * 2020-09-28 2020-12-11 四川紫荆花开智能网联汽车科技有限公司 一种用于无人驾驶的车辆编队系统和方法
CN112099491A (zh) * 2020-08-20 2020-12-18 上海姜歌机器人有限公司 机器人排队方法、机器人和计算机可读存储介质
CN112793979A (zh) * 2021-02-06 2021-05-14 武昌理工学院 一种仓储物流机器人集群避障及协同路径规划系统及方法
CN113387098A (zh) * 2021-06-30 2021-09-14 深圳市海柔创新科技有限公司 货物运送方法、装置、电子设备和存储介质
CN113467449A (zh) * 2021-06-30 2021-10-01 深圳市海柔创新科技有限公司 车队控制方法、装置、电子设备和存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2923474C (en) * 2013-09-09 2022-06-21 Dematic Corp. Autonomous mobile picking
CN103587869B (zh) * 2013-11-05 2015-07-08 无锡普智联科高新技术有限公司 基于总线方式的多机器人物流仓储系统及其控制方法
US9733646B1 (en) * 2014-11-10 2017-08-15 X Development Llc Heterogeneous fleet of robots for collaborative object processing
CN104555222A (zh) * 2014-12-25 2015-04-29 北京物资学院 一种基于潜入式agv的储分一体化系统和方法
US9637310B1 (en) * 2016-08-02 2017-05-02 Amazon Technologies, Inc. Mobile robot group for moving an item
CN110119861A (zh) * 2018-02-07 2019-08-13 北京京东尚科信息技术有限公司 调度无人车的方法、装置及计算机可读存储介质
CN109178759A (zh) * 2018-07-19 2019-01-11 长沙格力暖通制冷设备有限公司 空中物流方法、装置、物流设备及计算机可读存储介质
US10401870B1 (en) * 2018-11-15 2019-09-03 Grey Orange Pte. Ltd. System and method for handling items using movable-bots
CN112978190B (zh) * 2019-06-29 2023-07-25 深圳市海柔创新科技有限公司 取货任务分配方法及其货品分拣系统
WO2021031441A1 (zh) * 2019-08-16 2021-02-25 苏州科瓴精密机械科技有限公司 路径规划方法、系统,机器人及可读存储介质
CN112966977A (zh) * 2021-03-31 2021-06-15 深圳市库宝软件有限公司 任务分配方法、装置、控制终端和仓储系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107293110A (zh) * 2017-07-25 2017-10-24 维沃移动通信有限公司 一种车队控制方法及终端
WO2020233227A1 (zh) * 2019-05-23 2020-11-26 北京京东尚科信息技术有限公司 仓储任务处理方法、装置、仓储系统以及存储介质
CN112099491A (zh) * 2020-08-20 2020-12-18 上海姜歌机器人有限公司 机器人排队方法、机器人和计算机可读存储介质
CN112068571A (zh) * 2020-09-28 2020-12-11 四川紫荆花开智能网联汽车科技有限公司 一种用于无人驾驶的车辆编队系统和方法
CN112793979A (zh) * 2021-02-06 2021-05-14 武昌理工学院 一种仓储物流机器人集群避障及协同路径规划系统及方法
CN113387098A (zh) * 2021-06-30 2021-09-14 深圳市海柔创新科技有限公司 货物运送方法、装置、电子设备和存储介质
CN113467449A (zh) * 2021-06-30 2021-10-01 深圳市海柔创新科技有限公司 车队控制方法、装置、电子设备和存储介质

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116674920A (zh) * 2023-04-25 2023-09-01 中国铁建电气化局集团有限公司 一种智能化运输方法、装置、设备和存储介质
CN116674920B (zh) * 2023-04-25 2024-01-23 中国铁建电气化局集团有限公司 一种智能化运输方法、装置、设备和存储介质
CN116362652A (zh) * 2023-06-01 2023-06-30 上海仙工智能科技有限公司 一种运输分拨任务调度方法及系统、存储介质
CN116362652B (zh) * 2023-06-01 2023-10-31 上海仙工智能科技有限公司 一种运输分拨任务调度方法及系统、存储介质
CN117808027A (zh) * 2024-03-01 2024-04-02 迈赫机器人自动化股份有限公司 一种焊装车身库管理系统
CN117808027B (zh) * 2024-03-01 2024-05-24 迈赫机器人自动化股份有限公司 一种焊装车身库管理系统

Also Published As

Publication number Publication date
CN113387098A (zh) 2021-09-14
CN113387098B (zh) 2023-01-24
TW202302431A (zh) 2023-01-16

Similar Documents

Publication Publication Date Title
WO2023273805A1 (zh) 货物运送方法、装置、电子设备和存储介质
JP7019935B2 (ja) シェルフアレイ用の入出庫制御方法及び搬送システム
CN111344726B (zh) 自动化设施之间的动态卡车路线规划的方法和系统
CN110182527B (zh) 用于货架阵列的出入库控制方法和搬运系统
CN109835651A (zh) 货物分拣方法、服务器和系统
JP2022533784A (ja) 倉庫保管タスク処理方法と装置、倉庫保管システム、およびストレージ媒体
CN110182529B (zh) 用于货架阵列的出入库控制方法和搬运系统
CN208828557U (zh) 一种运输车
WO2020151724A1 (zh) 一种智能仓储系统、货物取放方法及其后台处理终端
CN105184527A (zh) 一种基于agv的仓储方法
WO2023273817A1 (zh) 车队控制方法、装置、电子设备和存储介质
KR20170081672A (ko) 물체의 전달 서비스를 제공하기 위한 컴퓨터 시스템 및 방법
JP2022535079A (ja) 自動運行車両及び選択員の動的割当兼協調化
CN110182528B (zh) 用于货架阵列的出入库控制方法和搬运系统
CN111830952A (zh) 实体店铺内的运输车调度方法及装置
JP2023534586A (ja) 貨物のピッキングを実現するための立体倉庫の搬送スケジューリングシステム及び方法
CN113682704A (zh) 任务分配方法、装置、服务器和存储介质
AU2021308322B2 (en) A controller and method for transporting devices
WO2021238728A1 (zh) 一种库存管理方法及系统
CN111123865B (zh) 一种基于点阵地图的多导航车协同调度方法
Siciliano et al. Concept development and evaluation of order assignment strategies in a highly-dynamic, hybrid pallet storage and retrieval system
Zhu et al. AGV scheduling strategy based on the A* algorithm
JP7192184B1 (ja) 無人移送車による多層ピッキングシステム
TW202241783A (zh) 倉儲單元以及倉儲系統
CN117808402A (zh) 一种特种盐仓储系统的自动化仓储方法、装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE