WO2023249092A1 - 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス装置、電子機器、発光体、太陽電池及び光センサー - Google Patents

有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス装置、電子機器、発光体、太陽電池及び光センサー Download PDF

Info

Publication number
WO2023249092A1
WO2023249092A1 PCT/JP2023/023198 JP2023023198W WO2023249092A1 WO 2023249092 A1 WO2023249092 A1 WO 2023249092A1 JP 2023023198 W JP2023023198 W JP 2023023198W WO 2023249092 A1 WO2023249092 A1 WO 2023249092A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
light emitting
ring
Prior art date
Application number
PCT/JP2023/023198
Other languages
English (en)
French (fr)
Inventor
祐一郎 河村
亮 永田
和樹 西村
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2023249092A1 publication Critical patent/WO2023249092A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/90Assemblies of multiple devices comprising at least one organic light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers

Definitions

  • Upconversion is attracting attention as a technology for converting low-energy light into high-energy light. Upconversion is attracting attention as a technology that allows driving with lower energy than the energy of emitted photons.
  • upconversion technology is applied to optical excitation, excitation light with a longer wavelength than the emission can be obtained.
  • excitation light with a longer wavelength than the emission can be obtained.
  • in upconversion using an inorganic compound it is known that visible light can be generated from infrared light by multistage excitation using ff transition of rare earth ions.
  • Non-Patent Document 1 describes an up-conversion element in which a phosphorescent complex (PtOEP) is introduced as a sensitizer into a stacked structure made of organic solid films.
  • PtOEP phosphorescent complex
  • the external quantum efficiency (EQE) is low (about 0.024%), and although there is a possibility of lowering the voltage, lowering the power consumption as an element cannot be expected. has been done. This is because phosphorescent complexes cause concentration quenching, so when a phosphorescent complex is introduced into the light emitting layer (solid thin film) of an organic EL element, it is thought that the phosphorescent complex does not work efficiently in the light emitting layer. In recent years, there has been a need for lower power consumption to further improve the performance of organic EL elements, such as extending the battery life of mobile devices. There is a need for an organic EL element that efficiently exhibits upconversion in its light emitting layer and that can be driven with low power consumption.
  • An object of the present invention is to provide an organic electroluminescent element, an organic electroluminescent device, and an electronic device equipped with the organic electroluminescent device or the organic electroluminescent device, which have a low emission starting voltage and emit light with high efficiency. be.
  • Another object of the present invention is to provide a light-emitting body that has a low emission start voltage and emits light with high efficiency, and a solar cell and a photosensor equipped with the light-emitting body.
  • the difference ⁇ ST (G1) between the lowest excited singlet energy S 1 (G1) of the sensitive material and the energy gap T 77K (G1) at 77 [K] of the first sensitizer is expressed by the following formula (Equation 1).
  • an organic electroluminescent device comprising the above-described organic electroluminescent device according to the one aspect of the present invention and a power source, wherein the power source includes a power generating element that generates a potential difference or current by external stimulation. Equipment is provided.
  • an electronic device equipped with the organic electroluminescent element according to the above-described one aspect of the present invention or the organic electroluminescent device according to the above-described one aspect of the present invention.
  • a light emitter including a first sensitizing part and a first light emitting part, wherein the first sensitizing part includes a first host material and a first sensitizing part.
  • the first light-emitting portion contains a second host material and a first light-emitting compound, and the first host material and the second host material are different from each other.
  • the first sensitizer and the first luminescent compound are different from each other, and have a lowest excited singlet energy S 1 (G1) of the first sensitizer and a lower excitation singlet energy S 1 (G1) of the first sensitizer.
  • ⁇ ST(G1) S 1 (G1)-T 77K (G1) ⁇ 0.5eV...(Math. 1) T 77K (G1)>T 77K (H1)>T 77K (H2)...(Math. 2) S 1 (BD1)>S 1 (G1)...(Math. 3)
  • a solar cell is provided that is equipped with the light emitting body according to the above-described one aspect of the present invention.
  • an organic electroluminescent element, an organic electroluminescent device, and an electronic device equipped with the organic electroluminescent device or the organic electroluminescent device, which have a low emission start voltage and emit light with high efficiency, are provided.
  • FIG. 3 is a diagram for explaining the light emitting mechanism of the stacked light emitting layer according to the first embodiment.
  • FIG. 3 is a diagram for explaining a light emitting mechanism of a fluorescent light emitting layer (single layer).
  • FIG. 3 is a diagram for explaining a light emitting mechanism of a stacked light emitting layer containing a Pt complex.
  • FIG. 1 is a diagram showing a schematic configuration of an example of an organic EL element according to a first embodiment. It is a figure showing the schematic structure of another example of the organic EL element concerning a first embodiment.
  • FIG. 2 is a schematic diagram of an apparatus for measuring transient PL. It is a figure which shows an example of the attenuation curve of transient PL.
  • FIG. 1 is a diagram showing a schematic configuration of an example of an organic EL element according to a first embodiment. It is a figure showing the schematic structure of another example of the organic EL element concerning a first embodiment.
  • FIG. 2 is a schematic diagram of
  • FIG. 2 is a diagram showing a measurement system for a transient EL waveform.
  • FIG. 2 is a diagram showing a method for measuring the emission intensity ratio derived from delayed fluorescence, and is a graph showing temporal changes in the emission intensity of the organic EL devices of Examples 1 to 2 and Comparative Example 1.
  • 2 is a diagram showing a method for measuring the emission intensity ratio derived from delayed fluorescence, and is a graph showing temporal changes in the reciprocal of the square root of the light intensity of the organic EL devices of Examples 1 to 2 and Comparative Example 1.
  • FIG. FIG. 3 is a diagram showing a schematic configuration of an example of an organic EL element according to a second embodiment. It is a figure showing the schematic structure of another example of the organic EL element concerning a second embodiment.
  • the hydrogen atom includes isotopes having different numbers of neutrons, ie, light hydrogen (protium), deuterium (deuterium), and tritium (tritium).
  • a hydrogen atom that is, a light hydrogen atom, a deuterium atom, or Assume that tritium atoms are bonded.
  • a benzene ring has 6 carbon atoms
  • a naphthalene ring has 10 carbon atoms
  • a pyridine ring has 5 carbon atoms
  • a furan ring has 4 carbon atoms.
  • the number of ring carbon atoms in the 9,9-diphenylfluorenyl group is 13
  • the number of ring carbon atoms in the 9,9'-spirobifluorenyl group is 25.
  • the benzene ring is substituted with an alkyl group as a substituent, for example, the number of carbon atoms of the alkyl group is not included in the number of carbon atoms forming the benzene ring.
  • the number of ring carbon atoms in the benzene ring substituted with an alkyl group is 6. Further, when the naphthalene ring is substituted with an alkyl group as a substituent, for example, the number of carbon atoms of the alkyl group is not included in the number of carbon atoms forming the naphthalene ring. Therefore, the number of ring carbon atoms in the naphthalene ring substituted with an alkyl group is 10.
  • the number of ring-forming atoms refers to compounds with a structure in which atoms are bonded in a cyclic manner (e.g., monocyclic, fused ring, and ring assembly) (e.g., monocyclic compound, fused ring compound, bridged compound, carbocyclic compound). Represents the number of atoms that constitute the ring itself (compounds and heterocyclic compounds). Atoms that do not form a ring (for example, a hydrogen atom that terminates a bond between atoms that form a ring) and atoms that are included in a substituent when the ring is substituted with a substituent are not included in the number of ring-forming atoms.
  • the "number of ring-forming atoms" described below is the same unless otherwise specified.
  • the number of ring atoms in the pyridine ring is 6, the number of ring atoms in the quinazoline ring is 10, and the number of ring atoms in the furan ring is 5.
  • the number of hydrogen atoms bonded to the pyridine ring or atoms constituting substituents is not included in the number of atoms forming the pyridine ring. Therefore, the number of ring atoms of the pyridine ring to which hydrogen atoms or substituents are bonded is six.
  • Examples of the "substituted aryl group” include a group in which one or more hydrogen atoms of the "unsubstituted aryl group” in the specific example group G1A below are replaced with a substituent, and a substituted aryl group in the following specific example group G1B. Examples include: The examples of “unsubstituted aryl group” and “substituted aryl group” listed here are just examples, and the "substituted aryl group” described in this specification includes the following specific examples.
  • aryl group (specific example group G1B): o-tolyl group, m-tolyl group, p-tolyl group, para-xylyl group, meta-xylyl group, ortho-xylyl group, para-isopropylphenyl group, meta-isopropylphenyl group, ortho-isopropylphenyl group, para-t-butylphenyl group, meta-t-butylphenyl group, ortho-t-butylphenyl group, 3,4,5-trimethylphenyl group, 9,9-dimethylfluorenyl group, 9,9-diphenylfluorenyl group, 9,9-bis(4-methylphenyl)fluorenyl group, 9,9-bis(4-isopropylphenyl)fluorenyl group, 9,9-bis(4-t-butylphenyl)fluorenyl group, cyanophenyl group, triphenyls
  • heterocyclic group is a cyclic group containing at least one heteroatom as a ring-forming atom. Specific examples of heteroatoms include nitrogen atom, oxygen atom, sulfur atom, silicon atom, phosphorus atom, and boron atom.
  • a “heterocyclic group” as described herein is a monocyclic group or a fused ring group.
  • a “heterocyclic group” as described herein is an aromatic heterocyclic group or a non-aromatic heterocyclic group.
  • substituted or unsubstituted heterocyclic group examples include the following unsubstituted heterocyclic group (specific example group G2A) and substituted heterocyclic group ( Examples include specific example group G2B).
  • unsubstituted heterocyclic group refers to the case where "substituted or unsubstituted heterocyclic group” is “unsubstituted heterocyclic group”
  • substituted heterocyclic group refers to "substituted or unsubstituted heterocyclic group”
  • Heterocyclic group refers to a "substituted heterocyclic group."
  • heterocyclic group refers to "unsubstituted heterocyclic group” and “substituted heterocyclic group.” including both.
  • “Substituted heterocyclic group” means a group in which one or more hydrogen atoms of "unsubstituted heterocyclic group” are replaced with a substituent.
  • Specific examples of the "substituted heterocyclic group” include a group in which the hydrogen atom of the "unsubstituted heterocyclic group” in specific example group G2A is replaced, and examples of substituted heterocyclic groups in specific example group G2B below. Can be mentioned.
  • Specific example group G2A includes, for example, the following unsubstituted heterocyclic groups containing a nitrogen atom (specific example group G2A1), unsubstituted heterocyclic groups containing an oxygen atom (specific example group G2A2), and unsubstituted heterocyclic groups containing a sulfur atom.
  • heterocyclic group (specific example group G2A3), and a monovalent heterocyclic group derived by removing one hydrogen atom from the ring structure represented by the following general formulas (TEMP-16) to (TEMP-33) (Specific example group G2A4).
  • Specific example group G2B includes, for example, the following substituted heterocyclic groups containing a nitrogen atom (specific example group G2B1), substituted heterocyclic groups containing an oxygen atom (specific example group G2B2), and substituted heterocyclic groups containing a sulfur atom.
  • group Specific Example Group G2B3
  • one or more hydrogen atoms of a monovalent heterocyclic group derived from a ring structure represented by the following general formulas (TEMP-16) to (TEMP-33) are substituents.
  • Includes substituted groups (Example Group G2B4).
  • ⁇ Unsubstituted heterocyclic group containing a nitrogen atom (specific example group G2A1): pyrrolyl group, imidazolyl group, pyrazolyl group, triazolyl group, Tetrazolyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, indolyl group, isoindolyl group, indolizinyl group, quinolidinyl group, quinolyl group, isoquinolyl group, cinnolyl group, phthalazinyl group, quinazolinyl group, quinoxalinyl group, benzimidazolyl group, indazolyl group, phenanthrolinyl
  • ⁇ Unsubstituted heterocyclic group containing an oxygen atom (specific example group G2A2): frill group, oxazolyl group, isoxazolyl group, oxadiazolyl group, xanthenyl group, benzofuranyl group, isobenzofuranyl group, dibenzofuranyl group, naphthobenzofuranyl group, benzoxazolyl group, benzisoxazolyl group, phenoxazinyl group, morpholino group, dinaphthofuranyl group, azadibenzofuranyl group, diazadibenzofuranyl group, Azanaphthobenzofuranyl group, and diazanaphthobenzofuranyl group.
  • X A and Y A are each independently an oxygen atom, a sulfur atom, NH, or CH 2 . However, at least one of X A and Y A is an oxygen atom, a sulfur atom, or NH.
  • the monovalent heterocyclic group derived from the represented ring structure includes a monovalent group obtained by removing one hydrogen atom from these NH or CH 2 .
  • Substituted heterocyclic group containing a nitrogen atom (specific example group G2B1): (9-phenyl)carbazolyl group, (9-biphenylyl)carbazolyl group, (9-phenyl)phenylcarbazolyl group, (9-naphthyl)carbazolyl group, diphenylcarbazol-9-yl group, phenylcarbazol-9-yl group, methylbenzimidazolyl group, ethylbenzimidazolyl group, phenyltriazinyl group, biphenylyltriazinyl group, diphenyltriazinyl group, phenylquinazolinyl group, and biphenylylquinazolinyl group.
  • ⁇ Substituted heterocyclic group containing an oxygen atom (specific example group G2B2): phenyldibenzofuranyl group, methyldibenzofuranyl group, t-butyldibenzofuranyl group and a monovalent residue of spiro[9H-xanthene-9,9'-[9H]fluorene].
  • ⁇ Substituted heterocyclic group containing a sulfur atom (specific example group G2B3): phenyldibenzothiophenyl group, methyldibenzothiophenyl group, A t-butyldibenzothiophenyl group and a monovalent residue of spiro[9H-thioxanthene-9,9'-[9H]fluorene].
  • one or more hydrogen atoms of a monovalent heterocyclic group refers to a hydrogen atom bonded to a ring-forming carbon atom of the monovalent heterocyclic group, and at least one of XA and YA is NH. It means one or more hydrogen atoms selected from the hydrogen atom bonded to the nitrogen atom in the case where XA and YA are CH2, and the hydrogen atom of the methylene group when one of XA and YA is CH2.
  • Specific examples (specific example group G3) of the "substituted or unsubstituted alkyl group" described in this specification include the following unsubstituted alkyl groups (specific example group G3A) and substituted alkyl groups (specific example group G3B). ).
  • an unsubstituted alkyl group refers to a case where a "substituted or unsubstituted alkyl group” is an "unsubstituted alkyl group," and a substituted alkyl group refers to a case where a "substituted or unsubstituted alkyl group” is (This refers to the case where it is a "substituted alkyl group.”)
  • alkyl group when it is simply referred to as an "alkyl group,” it includes both an "unsubstituted alkyl group” and a "substituted alkyl group.”
  • “Substituted alkyl group” means a group in which one or more hydrogen atoms in "unsubstituted alkyl group” are replaced with a substituent.
  • substituted alkyl group examples include groups in which one or more hydrogen atoms in the "unsubstituted alkyl group” (specific example group G3A) below are replaced with a substituent, and substituted alkyl groups (specific examples examples include group G3B).
  • the alkyl group in "unsubstituted alkyl group” means a chain alkyl group. Therefore, the "unsubstituted alkyl group” includes a linear "unsubstituted alkyl group” and a branched "unsubstituted alkyl group”.
  • ⁇ Unsubstituted alkyl group (specific example group G3A): methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group and t-butyl group.
  • “Substituted or unsubstituted alkenyl group” Specific examples of the "substituted or unsubstituted alkenyl group" (specific example group G4) described in this specification include the following unsubstituted alkenyl groups (specific example group G4A) and substituted alkenyl groups (specific example group G4B), etc.
  • the term "unsubstituted alkenyl group” refers to the case where "substituted or unsubstituted alkenyl group” is “unsubstituted alkenyl group”
  • “substituted alkenyl group” refers to "substituted or unsubstituted alkenyl group”).
  • unsubstituted alkynyl group refers to the case where "substituted or unsubstituted alkynyl group” is “unsubstituted alkynyl group."
  • "unsubstituted alkynyl group” is referred to as "unsubstituted alkynyl group.”
  • ⁇ alkynyl group'' and ⁇ substituted alkynyl group.'' "Substituted alkynyl group” means a group in which one or more hydrogen atoms in "unsubstituted alkynyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkynyl group” include groups in which one or more hydrogen atoms in the following "unsubstituted alkynyl group” (specific example group G5A) are replaced with a substituent.
  • Substituted cycloalkyl group means a group in which one or more hydrogen atoms in "unsubstituted cycloalkyl group” are replaced with a substituent.
  • Specific examples of the "substituted cycloalkyl group” include the following "unsubstituted cycloalkyl group” (specific example group G6A) in which one or more hydrogen atoms are replaced with a substituent, and a substituted cycloalkyl group. (Specific example group G6B) and the like can be mentioned.
  • G7 Specific examples of the group represented by -Si(R 901 )(R 902 )(R 903 ) described in this specification (specific example group G7) include: -Si(G1)(G1)(G1), -Si (G1) (G2) (G2), -Si (G1) (G1) (G2), -Si(G2)(G2)(G2), -Si(G3)(G3)(G3), and -Si(G6)(G6)(G6) can be mentioned.
  • G1 is a "substituted or unsubstituted aryl group" described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in specific example group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • a plurality of G2's in Si(G2) (G2) (G2) are mutually the same or different.
  • a plurality of G3's in Si(G3) (G3) are mutually the same or different.
  • - A plurality of G6's in Si(G6) (G6) (G6) are mutually the same or different.
  • G8 Specific examples of the group represented by -O-(R 904 ) described in this specification (specific example group G8) include: -O(G1), -O(G2), -O (G3) and -O (G6) can be mentioned.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in specific example group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • G9 Group represented by -S-(R 905 )
  • Specific examples of the group represented by -S-(R 905 ) described in this specification include: -S (G1), -S (G2), -S (G3) and -S (G6) can be mentioned.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in specific example group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • -N(G1) A plurality of G1's in (G1) are mutually the same or different.
  • -N(G2) A plurality of G2's in (G2) are the same or different.
  • -N(G3) A plurality of G3's in (G3) are mutually the same or different.
  • -N(G6) A plurality of G6's in (G6) are mutually the same or different.
  • halogen atom specifically examples include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
  • substituted or unsubstituted fluoroalkyl group refers to a "substituted or unsubstituted alkyl group" in which at least one hydrogen atom bonded to a carbon atom constituting the alkyl group is replaced with a fluorine atom. It also includes a group in which all hydrogen atoms bonded to the carbon atoms constituting the alkyl group in a "substituted or unsubstituted alkyl group” are replaced with fluorine atoms (perfluoro group).
  • ⁇ “Substituted or unsubstituted haloalkyl group” means that at least one hydrogen atom bonded to a carbon atom constituting the alkyl group in the "substituted or unsubstituted alkyl group” is replaced with a halogen atom. It means a group, and also includes a group in which all hydrogen atoms bonded to carbon atoms constituting an alkyl group in a "substituted or unsubstituted alkyl group” are replaced with halogen atoms.
  • the "substituted haloalkyl group" described in this specification includes a group in which one or more hydrogen atoms bonded to the carbon atom of the alkyl chain in the "substituted haloalkyl group” is further replaced with a substituent; Also included are groups in which one or more hydrogen atoms of a substituent in the "haloalkyl group” are further replaced with a substituent.
  • Specific examples of the "unsubstituted haloalkyl group” include a group in which one or more hydrogen atoms in the "alkyl group” (specific example group G3) are replaced with a halogen atom.
  • a haloalkyl group is sometimes referred to as a halogenated alkyl group.
  • a specific example of the "substituted or unsubstituted alkoxy group" described in this specification is a group represented by -O(G3), where G3 is a "substituted or unsubstituted alkoxy group” described in specific example group G3.
  • the number of carbon atoms in the "unsubstituted alkoxy group” is from 1 to 50, preferably from 1 to 30, and more preferably from 1 to 18, unless otherwise specified herein.
  • ⁇ “Substituted or unsubstituted alkylthio group” A specific example of the "substituted or unsubstituted alkylthio group” described in this specification is a group represented by -S(G3), where G3 is the "substituted or unsubstituted alkylthio group” described in specific example group G3. "unsubstituted alkyl group”. Unless otherwise specified herein, the number of carbon atoms in the "unsubstituted alkylthio group” is from 1 to 50, preferably from 1 to 30, and more preferably from 1 to 18.
  • a specific example of the "substituted or unsubstituted aryloxy group” described in this specification is a group represented by -O(G1), where G1 is a "substituted or unsubstituted aryloxy group” described in specific example group G1. or an unsubstituted aryl group.
  • the number of ring carbon atoms in the "unsubstituted aryloxy group" is from 6 to 50, preferably from 6 to 30, and more preferably from 6 to 18, unless otherwise specified herein.
  • a specific example of the "substituted or unsubstituted aralkyl group” described in this specification is a group represented by -(G3)-(G1), where G3 is a group described in specific example group G3. It is a "substituted or unsubstituted alkyl group", and G1 is a "substituted or unsubstituted aryl group” described in the specific example group G1.
  • the substituted or unsubstituted aryl group described herein is preferably a phenyl group, p-biphenyl group, m-biphenyl group, o-biphenyl group, p-terphenyl group, unless otherwise specified herein.
  • the substituted or unsubstituted heterocyclic group described herein is preferably a pyridyl group, a pyrimidinyl group, a triazinyl group, a quinolyl group, an isoquinolyl group, a quinazolinyl group, a benzimidazolyl group, or a phenol group, unless otherwise specified herein.
  • carbazolyl group is specifically any of the following groups unless otherwise specified in the specification.
  • the (9-phenyl)carbazolyl group is specifically any of the following groups, unless otherwise stated in the specification.
  • dibenzofuranyl group and dibenzothiophenyl group are specifically any of the following groups unless otherwise specified in the specification.
  • Q 1 to Q 9 are each independently a hydrogen atom or a substituent.
  • Q 1 to Q 8 are each independently a hydrogen atom or a substituent.
  • the set of two or more adjacent R 930 is one set. is a set of R 921 and R 922 , a set of R 922 and R 923 , a set of R 923 and R 924 , a set of R 924 and R 930 , a set of R 930 and R 925 , a set of R 925 and A set of R 926 , a set of R 926 and R 927 , a set of R 927 and R 928 , a set of R 928 and R 929 , and a set of R 929 and R 921 .
  • the above-mentioned "one or more sets” means that two or more sets of the above-mentioned two or more adjacent sets may form a ring at the same time.
  • R 921 and R 922 combine with each other to form ring Q A
  • R 925 and R 926 combine with each other to form ring Q B
  • the above general formula (TEMP-103) The anthracene compound represented is represented by the following general formula (TEMP-104).
  • a set of two or more adjacent items forms a ring is not only the case where a set of "two" adjacent items are combined as in the example above, but also the case where a set of "three or more adjacent items” form a ring. This also includes the case where two sets are combined.
  • R 921 and R 922 combine with each other to form a ring Q A
  • R 922 and R 923 combine with each other to form a ring Q C
  • the three adjacent to each other (R 921 , R 922 and R 923 ) combine with each other to form a ring and are condensed to the anthracene mother skeleton.
  • the "single ring” or “fused ring” that is formed may be a saturated ring or an unsaturated ring as the structure of only the formed ring. Even if “one set of two adjacent rings” forms a “monocycle” or “fused ring,” the “monocycle” or “fused ring” is a saturated ring, or Can form unsaturated rings.
  • ring Q A and ring Q B formed in the general formula (TEMP-104) are each a “monocyclic ring” or a “fused ring.”
  • the ring Q A and the ring Q C formed in the general formula (TEMP-105) are "fused rings”.
  • Ring Q A and ring Q C in the general formula (TEMP-105) are a condensed ring due to the condensation of ring Q A and ring Q C.
  • ring Q A in the general formula (TMEP-104) is a benzene ring
  • ring Q A is a monocyclic ring.
  • ring Q A in the general formula (TMEP-104) is a naphthalene ring
  • ring Q A is a fused ring.
  • Unsaturated ring means an aromatic hydrocarbon ring or an aromatic heterocycle.
  • “Saturated ring” means an aliphatic hydrocarbon ring or a non-aromatic heterocycle.
  • Specific examples of the aromatic hydrocarbon ring include structures in which the groups listed as specific examples in specific example group G1 are terminated with hydrogen atoms.
  • Specific examples of the aromatic heterocycle include structures in which the aromatic heterocyclic group listed as a specific example in specific example group G2 is terminated with a hydrogen atom.
  • Specific examples of the aliphatic hydrocarbon ring include structures in which the groups listed as specific examples in specific example group G6 are terminated with hydrogen atoms.
  • Form a ring means to form a ring with only a plurality of atoms of a parent skeleton, or with a plurality of atoms of a parent skeleton and one or more arbitrary elements.
  • the ring Q A shown in the general formula (TEMP-104) formed by R 921 and R 922 bonding to each other is a carbon atom of the anthracene skeleton to which R 921 is bonded, and an anthracene bond to which R 922 is bonded. It means a ring formed by a carbon atom in the skeleton and one or more arbitrary elements.
  • R 921 and R 922 form a ring Q A
  • the carbon atom of the anthracene skeleton to which R 921 is bonded the carbon atom of the anthracene skeleton to which R 922 is bonded, and four carbon atoms.
  • R 921 and R 922 form a monocyclic unsaturated ring
  • the ring formed by R 921 and R 922 is a benzene ring.
  • the "arbitrary element” is preferably at least one element selected from the group consisting of carbon element, nitrogen element, oxygen element, and sulfur element, unless otherwise specified in this specification.
  • a bond that does not form a ring may be terminated with a hydrogen atom or the like, or may be substituted with an "arbitrary substituent” described below.
  • the ring formed is a heterocycle.
  • the number of "one or more arbitrary elements" constituting a monocyclic or condensed ring is preferably 2 to 15, more preferably 3 to 12. , more preferably 3 or more and 5 or less.
  • a “monocycle” is preferred among “monocycle” and “fused ring.” Unless otherwise specified herein, the "unsaturated ring” is preferred between the “saturated ring” and the “unsaturated ring”. Unless otherwise stated herein, a “monocycle” is preferably a benzene ring. Unless otherwise stated herein, an “unsaturated ring” is preferably a benzene ring.
  • one or more pairs of two or more adjacent groups are “bonded with each other to form a substituted or unsubstituted monocycle” or “bonded with each other to form a substituted or unsubstituted fused ring”
  • one or more of the pairs of two or more adjacent atoms are bonded to each other to form a bond with a plurality of atoms of the parent skeleton and one or more of the 15 or more atoms.
  • a substituted or unsubstituted "unsaturated ring” is formed with at least one element selected from the group consisting of the following carbon elements, nitrogen elements, oxygen elements, and sulfur elements.
  • the substituent is, for example, the "arbitrary substituent” described below.
  • Specific examples of the substituent in the case where the above-mentioned “single ring” or “fused ring” has a substituent are the substituents described in the section of "Substituent described herein” above.
  • the substituent is, for example, the "arbitrary substituent” described below.
  • the substituent in the case of "substituted or unsubstituted” (herein referred to as "arbitrary substituent")
  • arbitrary substituent For example, unsubstituted alkyl group having 1 to 50 carbon atoms, unsubstituted alkenyl group having 2 to 50 carbon atoms, unsubstituted alkynyl group having 2 to 50 carbon atoms, an unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, -Si(R 901 )(R 902 )(R 903 ), -O-(R 904 ), -S- (R 905 ), -N(R 906 )(R 907 ), Halogen atom, cyano group, nitro group, A group selected from the group consisting of an unsubstituted aryl group having 6 to 50 ring carbon atoms,
  • R 901s When two or more R 901s exist, the two or more R 901s are the same or different, When two or more R 902s exist, the two or more R 902s are the same or different, When two or more R 903s exist, the two or more R 903s are the same or different, When two or more R 904s exist, the two or more R 904s are the same or different, When two or more R 905s exist, the two or more R 905s are the same or different, When two or more R 906s exist, the two or more R 906s are the same or different, When two or more R 907s exist, the two or more R 907s are the same or different.
  • the substituent in the case of "substituted or unsubstituted” is an alkyl group having 1 to 50 carbon atoms, A group selected from the group consisting of an aryl group having 6 to 50 ring carbon atoms and a heterocyclic group having 5 to 50 ring atoms.
  • the substituent in the case of "substituted or unsubstituted” is an alkyl group having 1 to 18 carbon atoms, A group selected from the group consisting of an aryl group having 6 to 18 ring carbon atoms and a heterocyclic group having 5 to 18 ring atoms.
  • the numerical range expressed using "AA-BB” has the numerical value AA written before “AA-BB” as the lower limit, and the numerical value BB written after "AA-BB”. means a range that includes as an upper limit value.
  • the organic electroluminescent device of this embodiment has an anode, a cathode, and a light emitting region disposed between the anode and the cathode, and the light emitting region includes a first sensitizing layer and a first light emitting layer.
  • the first sensitizing layer contains a first host material and a first sensitizer
  • the first emissive layer contains a second host material and a first luminescent material.
  • the difference ⁇ ST (G1) between the lowest excited singlet energy S 1 (G1) of the sensitizer and the energy gap T 77K (G1) at 77 [K] of the first sensitizer is calculated using the following formula (Equation 1 ) is satisfied.
  • ⁇ ST(G1) S 1 (G1)-T 77K (G1) ⁇ 0.5eV...(Math. 1)
  • a stacked light-emitting layer device (upconversion device) that uses a phosphorescent complex as a sensitizer is known.
  • a device using triplet energy transfer is known (see Non-Patent Document 1).
  • EQE external quantum efficiency
  • the first sensitizer that satisfies the above formula (Equation 1) has a small difference ⁇ ST (G1) between the lowest excited singlet energy S 1 (G1) and the energy gap T 77K (G1) at 77 [K]. It shows. This means that the energy required for excitation to the triplet state can be reduced, and energy loss can be reduced.
  • the first sensitizer is preferably a delayed fluorescent material.
  • the light absorption intensity of the first sensitizer is greater than that of the phosphorescent complex. Therefore, the first sensitizer of this embodiment can efficiently generate an excited state in the film even if the concentration in the film is lower than that of the phosphorescent complex. Furthermore, since the first sensitizer of this embodiment has a small ⁇ ST, energy loss can also be suppressed. As described above, the first sensitizer of the present embodiment has a small ⁇ AST in principle and a higher light absorption intensity than a phosphorescent complex, so it has suitable performance as a sensitizer. Therefore, the organic EL element according to this embodiment has a low emission start voltage and emits light with high efficiency.
  • the difference ⁇ ST between the lowest excited singlet energy S 1 (G1) of the first sensitizer and the energy gap T 77K (G1) at 77 [K] of the first sensitizer (G1) satisfies any one of the following mathematical expressions (Equation 11A) to (Equation 11D).
  • Equation 11A S 1 (G1)-T 77K (G1) ⁇ 0.4eV...(Math. 11A)
  • ⁇ ST(G1) S 1 (G1)-T 77K (G1) ⁇ 0.3eV...(Math. 11B)
  • ⁇ ST(G1) S 1 (G1)-T 77K (G1) ⁇ 0.2eV...(Math. 11C)
  • ⁇ ST(G1) S 1 (G1)-T 77K (G1) ⁇ 0.1eV...(Math. 11D)
  • the energy gap T 77K (H2) of the second host material at 77 [K] satisfies the relationship of the following formula (Equation 2).
  • the first host material, the first sensitizer, and the second host material satisfy the relationship of the above formula (Equation 2), the triplet excitons generated within the first sensitizing layer have a higher Rather than the first sensitizer having triplet energy, the sensitizer migrates on the first host material and is more likely to migrate from the first host material onto the second host material in the first emissive layer.
  • the energy gap T 77K (G1) at 77 [K] of the first sensitizer and the energy gap T 77K (H1) at 77 [K] of the first host material are as follows.
  • the relationship of the mathematical formula (Equation 21A) is satisfied.
  • the triplet excitons generated in the first sensitizing layer are It becomes easier to efficiently move from the sensitizer onto the first host material.
  • an energy gap T 77K (H1) at 77 [K] of the first host material and an energy gap T 77K (H2) at 77 [K] of the second host material are The following equation (22) is satisfied.
  • the first light emission containing the second host material is emitted from the first sensitizing layer containing the first host material. Excited triplet energy is efficiently transferred to the layer, and upconversion in the emission region is advantageously expressed.
  • the lowest excited singlet energy S 1 (G1) of the first sensitizer and the lowest excited singlet energy S 1 (BD1) of the first luminescent compound are expressed by the following formula: (Equation 3) is satisfied.
  • the first sensitizing layer has an energy smaller than the lowest excited singlet energy of the first luminescent compound.
  • the organic EL element emits up-conversion light emission.
  • the first sensitizing layer and the first light emitting layer are in direct contact.
  • the light emitting region includes a first sensitizing layer and a first light emitting layer in this order from the anode side
  • the absolute value of the energy level LUMO (G1) of the lowest unoccupied orbital of the first sensitizer and the absolute value of the energy level LUMO (H1) of the lowest unoccupied orbital of the first host material are expressed by the following formula: (Equation 4) is satisfied.
  • the light emitting region when the light emitting region includes a first light emitting layer and a first sensitizing layer in this order from the anode side,
  • the absolute value of the energy level HOMO (G1) of the highest occupied orbital of the first sensitizer and the absolute value of the energy level HOMO (H1) of the highest occupied orbital of the first host material The following formula (Equation 5) is satisfied.
  • the first sensitizer and the first host material are In addition to satisfying the relationship of formula (Math. 5), The absolute value of the energy level HOMO (H2) of the highest occupied orbital of the second host material and the absolute value of the energy level HOMO (BD1) of the highest occupied orbital of the first luminescent compound, The following formula (Equation 51) is satisfied.
  • the method for measuring HOMO and LUMO is as follows.
  • the energy level HOMO of the highest occupied orbital is determined by irradiating the target compound (compound or material) with light and measuring the amount of electrons generated by charge separation using an atmospheric photoelectron spectrometer (manufactured by Riken Keiki Co., Ltd.: AC- 3).
  • the energy level LUMO of the lowest unoccupied orbital is a value measured by differential pulse voltammetry. Details of the differential pulse voltammetry method are as follows.
  • the energy level LUMO of the lowest unoccupied orbital of the object to be measured is a value calculated by the following formula (Equation 1Y).
  • the unit of the energy level LUMO of the lowest unoccupied orbital is eV.
  • LUMO -1.19 ⁇ (Ere-Efc)-4.78eV...(Math. 1Y)
  • Ere and Efc are as follows.
  • the emission start voltage V TH (unit: V) means the voltage when the device is driven at a current density that provides a luminance of 0.01 cd/m 2 .
  • the energy E TH (eV) given to the element when a luminance of 0.01 cd/m 2 is obtained means a value calculated from the following formula (equation Y1).
  • E TH (eV) Emission starting voltage V TH (V) x elementary charge (e)...(number Y1)
  • the energy of the peak of the emission spectrum E PE (eV) refers to the energy value (unit: :eV).
  • “Emission spectrum peak energy E PE (eV)” substantially corresponds to the band gap of the luminescent compound.
  • the method for measuring the emission start voltage V TH is as described in Examples.
  • the "peak energy E PE (eV) of the emission spectrum” uses the measured value of the lowest excited singlet energy S 1 of the luminescent compound contained in the luminescent layer to be measured.
  • the method for measuring the lowest excited singlet energy S1 is as described in Examples.
  • FIG. 1 is a diagram for explaining the light emitting mechanism of the stacked light emitting layer according to this embodiment.
  • FIG. 2A is a diagram for explaining the light emitting mechanism of a fluorescent light emitting layer (single layer).
  • FIG. 2B is a diagram for explaining the light emission mechanism of a stacked light emitting layer containing a Pt complex.
  • TADF represents a delayed fluorescence material (corresponding to the first sensitizer in this embodiment)
  • BH1 represents the first host material
  • BH2 represents the second host material.
  • BH indicates the host material in the fluorescent emitting layer (single layer)
  • BD indicates the luminescent compound (corresponds to the first luminescent compound in this embodiment)
  • V TH indicates the start of luminescence. Indicates voltage.
  • the TADF (delayed fluorescent material) shown in FIG. 1 is, for example, the compound TADF-a used in Example 1 described below, and has a band gap of about 2.4 eV. Therefore, by applying energy of about 2.4 eV to the stacked light emitting layer of FIG. 1, the TADF (delayed fluorescent material) in the first sensitizing layer becomes excited. This approximately 2.4 eV corresponds to the peak energy E PE (eV) of the emission spectrum in the above formula (Equation 6).
  • the excited singlet state S1 and the excited triplet state T1 of TADF are generated. Since the TADF (delayed fluorescent material) satisfies the above formula (Equation 1), the excited singlet state S1 of the TADF intersystem-crosses to the excited triplet state T1 with little energy loss.
  • the excited triplet state T1 generated by intersystem crossing transfers energy to the first host material (BH1) in the first sensitizing layer, and then to the second host material (BH2) in the first light emitting layer. Energy is transferred to (the above formula (Math. 2)).
  • the excited triplet state T1 of the second host material (BH2) is converted to the excited singlet state S1.
  • the energy of this converted excited singlet state S1 is transferred to the luminescent compound (BD) in the excited singlet state S1 higher than the excited singlet state S1 of TADF (delayed fluorescent material) (the above formula ( Equation 3)), the luminescent compound (BD) emits blue light with an energy of about 2.4 eV (light emission starting voltage V TH ⁇ 2.4 V).
  • This approximately 2.4 eV corresponds to the energy E TH (eV) given to the element when a luminance of 0.01 cd/m 2 is obtained in the above formula (Equation 6).
  • the organic EL element including the stacked light emitting layer has a low light emission start voltage V TH and emits light with high efficiency.
  • the luminescent compound (BD) shown in FIG. 2A is a blue luminescent compound.
  • the charge on the BD can be directly transferred. Due to the recombination, the luminescent compound (BD) becomes an excited singlet state S1, and the blue luminescent compound emits blue light.
  • the Pt complex as a phosphorescent complex is brought into an excited state by applying energy (the band gap of the Pt complex is about 2.4 eV) to the stacked light emitting layer.
  • the subsequent light emission mechanism is similar to the light emission mechanism shown in Figure 1, but since the Pt complex has a low light absorption intensity and is prone to concentration quenching, the energy required to bring the Pt complex into an excited state is not enough to emit light.
  • the chemical compound (BD) cannot emit blue light. In order to cause the luminescent compound (BD) to emit blue light, it is necessary to increase the energy applied to the stacked luminescent layer shown in FIG. 2B or to increase the concentration of the Pt complex. Therefore, an organic EL element including a stacked light emitting layer containing a Pt complex cannot emit light with high efficiency.
  • FIG. 3 shows a schematic configuration of an example of the organic EL element according to the first embodiment.
  • the organic EL element 1 includes a transparent substrate 2, an anode 3, a cathode 4, and an organic layer disposed between the anode 3 and the cathode 4.
  • the organic layers include, in order from the anode 3 side, a hole injection layer 6, a hole transport layer 7, a first sensitizing layer 51, a first light emitting layer 52, an electron transport layer 8, and an electron injection layer 9. It is made up of layers.
  • the light emitting region 5 includes a first sensitizing layer 51 and a first light emitting layer 52 in this order from the anode 3 side. It is preferable that the first sensitizing layer 51 and the first light emitting layer 52 are in direct contact with each other.
  • FIG. 4 shows a schematic configuration of another example of the organic EL element according to the first embodiment.
  • the organic EL element 1A includes a transparent substrate 2, an anode 3, a cathode 4, and an organic layer disposed between the anode 3 and the cathode 4.
  • the organic layers include, in order from the anode 3 side, a hole injection layer 6, a hole transport layer 7, a first light emitting layer 52, a first sensitizing layer 51, an electron transport layer 8, and an electron injection layer 9. It is made up of layers.
  • the light emitting region 5A includes a first light emitting layer 52 and a first sensitizing layer 51 in this order from the anode 3 side. It is preferable that the first light emitting layer 52 and the first sensitizing layer 51 are in direct contact with each other.
  • the present invention is not limited to the configuration of the organic EL element shown in FIGS. 3 and 4.
  • An example of an organic EL element having another structure is an organic EL element in which an intervening layer is disposed between the first sensitizing layer 51 and the first light emitting layer 52.
  • the light emitting region 5 may include a first sensitizing layer 51, an intervening layer, and a first light emitting layer 52 in this order from the anode 3 side.
  • the light emitting region 5A may include the first light emitting layer 52, the intervening layer, and the first sensitizing layer 51 in this order from the anode 3 side.
  • the organic EL device of this embodiment has a light emitting region including a first sensitizing layer and a first light emitting layer.
  • the light emitting region of this embodiment may include only the first sensitizing layer and the first light emitting layer, or may include an organic layer different from the first sensitizing layer and the first light emitting layer. .
  • the first sensitizer is not a complex. In one aspect of this embodiment, the first sensitizer does not contain heavy metal elements. Examples of heavy metal elements include iridium, osmium, and platinum. In one aspect of this embodiment, the first sensitized layer does not contain a metal complex. In one aspect of this embodiment, the first sensitized layer does not contain heavy metal elements.
  • the first sensitizer is a compound exhibiting delayed fluorescence (delayed fluorescence material). In one aspect of this embodiment, the first sensitizer is a compound that does not exhibit delayed fluorescence.
  • the first sensitizer is a compound represented by the following general formula (2) or the following general formula (22).
  • R 2001 to R 2008 are bond with each other to form a substituted or unsubstituted monocyclic ring, or bond with each other to form a substituted or unsubstituted fused ring
  • R 2001 to R 2008 that do not form a substituted or unsubstituted monocyclic ring and do not form a substituted or unsubstituted fused ring each independently represent R 1 to R as a substituent in the general formula (2a).
  • the set consisting of R 2009 and R 2010 is bond to each other to form a substituted or unsubstituted monocycle, bond with each other to form a substituted or unsubstituted condensed ring, or bond with parts of adjacent ring structures to form a ring
  • X 201 is CR 2011 R 2012 , NR 2013 , a sulfur atom, or an oxygen atom
  • the set consisting of R 2011 and R 2012 is are combined with each other to form a substituted or unsubstituted monocyclic ring, or are combined with each other to form a substituted or unsubstituted fused ring, R 2013 , and R 2009 , R 2010 , R 2011 and R 2012 which do not form a substituted or unsubstituted monocyclic ring and which do not form a substituted or unsubstituted condensed ring each independently represent the general formula ( It has the same meaning as R 1 to R 8 as substituents in
  • Rx is each independently a hydrogen atom, an unsubstituted aryl group having 6 to 30 ring carbon atoms, an unsubstituted heterocyclic group having 5 to 30 ring atoms, or an unsubstituted is preferably an alkyl group having 1 to 30 carbon atoms.
  • Rx as an unsubstituted heterocyclic group having 5 to 30 ring atoms is a pyridyl group, pyrimidinyl group, triazinyl group, dibenzofuran group. A nyl group or a dibenzothienyl group is preferred.
  • R 1 to R 8 , R 21 to R 28 , R 2001 to R 2008 , R 2009 to R 2010 , and R 2011 to R 2013 as substituents are each independently unsubstituted. is preferably an aryl group having 6 to 30 ring carbon atoms, an unsubstituted heterocyclic group having 5 to 30 ring atoms, or an unsubstituted alkyl group having 1 to 30 ring atoms.
  • One or more sets of two or more adjacent ones of R 171 to R 180 are combined with each other to form a substituted or unsubstituted monocyclic ring, or are combined with each other to form a substituted or unsubstituted fused ring
  • One or more sets of two or more adjacent ones of R 181 to R 190 are are combined with each other to form a substituted or unsubstituted monocyclic ring, or are combined with each other to form a substituted or unsubstituted fused ring
  • One or more sets of two or more adjacent ones of R 191 to R 200 are are combined with each other to form a substituted or unsubstituted monocyclic ring, or are combined with each other to form a substituted or unsubstituted fused ring
  • One or more sets of two or more adjacent ones of R 71 to R 82 are are combined with each other to form a substituted or unsubstituted monocyclic
  • the groups represented by the general formulas (D-21) to (D-25) are preferably any of the groups represented by the following general formulas (2-5) to (2-14). .
  • * represents a bonding site with the carbon atom of the six-membered ring in the general formula (2).
  • One or more sets of two or more adjacent ones of R 101 to R 110 are are combined with each other to form a substituted or unsubstituted monocyclic ring, or are combined with each other to form a substituted or unsubstituted fused ring
  • One or more sets of two or more adjacent ones of R 111 to R 120 are combined with each other to form a substituted or unsubstituted monocyclic ring, or are combined with each other to form a substituted or unsubstituted fused ring
  • One or more sets of two or more adjacent ones of R 121 to R 130 are are combined with each other to form a substituted or unsubstituted monocyclic ring, or are combined with each other to form a substituted or unsubstituted fused ring
  • One or more sets of two or more adjacent ones of R 131 to R 140 are are combined with each other to form a substituted or unsubstituted monocyclic ring
  • X 1 to X 6 are each independently an oxygen atom, a sulfur atom, or CR 151 R 152 ,
  • the set consisting of R 151 and R 152 is are combined with each other to form a substituted or unsubstituted monocyclic ring, or are combined with each other to form a substituted or unsubstituted fused ring
  • One or more sets of two or more adjacent ones of R 201 to R 210 are are combined with each other to form a substituted or unsubstituted monocyclic ring, or are combined with each other to form a substituted or unsubstituted fused ring
  • One or more sets of two or more adjacent ones of R 211 to R 220 are are combined with each other to form a substituted or unsubstituted monocyclic ring, or are combined with each other to form a substituted or unsubstituted fused ring
  • One or more sets of two or more adjacent ones of R 2 are each other to form a substituted or
  • R 201 to R 260 as substituents each independently represent a halogen atom, an unsubstituted aryl group having 6 to 14 ring carbon atoms, and an unsubstituted aryl group having 5 to 14 ring atoms.
  • is a heterocyclic group, an unsubstituted alkyl group having 1 to 6 carbon atoms, R 151 and R 152 as substituents are each independently preferably an unsubstituted aryl group having 6 to 14 ring carbon atoms or an unsubstituted alkyl group having 1 to 6 carbon atoms.
  • R 201 to R 260 as substituents are each independently an unsubstituted aryl group having 6 to 14 ring atoms, an unsubstituted heterocyclic group having 5 to 14 ring atoms, or an unsubstituted heterocyclic group having 5 to 14 ring atoms. is a substituted alkyl group having 1 to 6 carbon atoms, It is more preferable that R 151 and R 152 as substituents are each independently an unsubstituted aryl group having 6 to 14 ring carbon atoms or an unsubstituted alkyl group having 1 to 6 carbon atoms.
  • R 201 to R 260 are hydrogen atoms
  • R 151 and R 152 as substituents are each independently an unsubstituted aryl group having 6 to 14 ring carbon atoms or an unsubstituted alkyl group having 1 to 6 carbon atoms.
  • Ar X is an aryl group of Ar X is each independently a hydrogen atom or a substituent, Ar 5-30 heteroaryl group, substituted or unsubstituted alkyl group having 1-30 carbon atoms, substituted or unsubstituted fluoroalkyl group having 1-30 carbon atoms, substituted or unsubstituted ring-forming carbon number 3-30 Cycloalkyl groups, substituted or unsubstituted aralkyl groups having 7 to 30 carbon atoms, substituted phosphoryl groups, substituted silyl groups, cyano groups, nitro groups, carboxy groups, and those represented by the following general formulas (1a) to (1j) any group selected from the group consisting of groups, n is 0, 1, 2, 3, 4 or 5, and when n is 2, 3, 4 or 5, the plural Ar Xs are the same or different from each other,
  • the ring (A) is a substituted or unsubstituted aromatic hydrocarbon ring, or a substituted or unsubstitute
  • any of X 5 to X 8 is a carbon atom bonded to the nitrogen atom in the ring containing A 2
  • any one of X 5 to X 8 and X 18 is a carbon atom bonded to any one of X 9 to X 12
  • any one of X 9 to 8 and X 18 is a carbon atom bonded to any one of X 9 to X 12 and X 19
  • any one of X 5 to X 8 and X 18 is a carbon atom bonded to any one of X 9 to X 12 and X 19 ; is a carbon atom bonded to any of X 5 to X 8 and X 18
  • any one of X 5 to X 8 is a carbon atom bonded to any one of X 9 to X 12 and X 19
  • any of X 5 to X 8 is a carbon atom that bonds with In the general formula (1c),
  • R 2021 to R 2025 are each independently a hydrogen atom or a substituent, and R 2021 to R 2025 as a substituent are each independently a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
  • a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 30 carbon atoms; Selected from the group consisting of a substituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted phosphoryl group, a substituted silyl group, a cyano group, a nitro group, and a carboxy group.
  • Ara represents a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms.
  • Unsubstituted alkyl group having 1 to 30 carbon atoms substituted or unsubstituted fluoroalkyl group having 1 to 30 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 30 ring-forming carbon atoms, substituted or unsubstituted carbon It is any group selected from the group consisting of 7 to 30 aralkyl groups, substituted phosphoryl groups, and substituted silyl groups. )
  • the first sensitizer is a compound represented by the following general formula (222).
  • R A2 which does not form a substituted or unsubstituted monocyclic ring and which does not form a substituted or unsubstituted condensed ring is each independently a hydrogen atom, a substituted or unsubstituted aryl having 6 to 30 ring carbon atoms; group, substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms, substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, substituted or unsubstituted fluoroalkyl group having 1 to 30 carbon atoms, substituted or From the group consisting of an unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted fused ring
  • R A2 which does not form a substituted or unsubstituted monocyclic ring and which does not form a substituted or unsubstituted condensed ring is each independently a hydrogen atom,
  • At least one of Ar 1 to Ar 5 is any group selected from the group consisting of groups represented by the general formulas (1a) to (1c).
  • Az is substituted or unsubstituted pyridine ring, substituted or unsubstituted pyrimidine ring, A ring structure selected from the group consisting of a substituted or unsubstituted triazine ring, and a substituted or unsubstituted pyrazine ring, c is 0, 1, 2, 3, 4 or 5; When c is 0, Cz and Az are combined with a single bond, When c is 1, 2, 3, 4 or 5, L 23 is A linking group selected from the group consisting of a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, and a substituted or unsubstituted heteroarylene group having 5 to 30 ring atoms, When c is 2, 3, 4 or 5, the plurality of L23s are the same or different, A plurality of L23s combine to form a ring or do not form a ring, Cz is represented by the following general formula (23a).
  • Y21 to Y28 are CR A3 .
  • At least one of Y 25 to Y 28 is a binding site represented by *b, n is 1, 2, 3 or 4,
  • R A4 which does not form a substituted or unsubstituted monocyclic ring and which does not form a substituted or unsubstituted condensed ring is each independently: hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms; a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, Substituted or unsubstituted fluoroalkyl group having 1 to 30 carbon atoms, Substituted or unsubstituted or unsubsti
  • the substituent is a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted naphthyl group.
  • the substituent is preferably any substituent selected from the group consisting of a phenanthryl group, a substituted or unsubstituted terphenyl group, and a substituted or unsubstituted fluorenyl group.
  • R A4 is each independently a hydrogen atom or a substituent, and R A4 as a substituent is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, and a substituted or unsubstituted aryl group having 6 to 30 ring atoms. Preferably, it is any substituent selected from the group consisting of 5 to 30 heteroaryl groups.
  • R A4 as a substituent is a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms
  • R A4 as a substituent is a substituted or unsubstituted carbazolyl group, a substituted or unsubstituted dibenzofuran
  • it is any substituent selected from the group consisting of a nyl group and a substituted or unsubstituted dibenzothiophenyl group.
  • R 45 , R 46 and R 47 as substituents each independently represent a substituted or unsubstituted aryl group having 6 to 30 ring atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms. , and a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms.
  • the first sensitizer can be manufactured by a known method.
  • first sensitizer the compound represented by the above general formula (2) or the above general formula (22) of the present embodiment
  • first sensitizer is not limited to these specific examples of compounds.
  • the first sensitizer is a compound represented by any of the following general formulas (11) to (13).
  • R 1 to R 4 are each independently any of the groups represented by the following general formulas (1-1) to (1-6). , or any group represented by the following general formulas (2-1) to (2-4), provided that at least one of R 1 to R 4 is a group represented by the following general formula (1-1). ) to (1-6), and at least one of R 1 to R 4 is represented by the following general formulas (2-1) to (2-4). Any of the following groups.
  • X 1 is an oxygen atom, a sulfur atom, or CR 151 R 152
  • R 101 to R 110 are each independently a hydrogen atom or a substituent
  • R 151 and R 152 is each independently a hydrogen atom or a substituent
  • R 151 and R 152 combine with each other to form a ring
  • R 101 to R 110 , R 151 and R 152 as substituents are each independently, a substituted or unsubstituted aryl group having 6 to 14 ring carbon atoms, Substituted or unsubstituted heterocyclic group having 5 to 14 ring atoms, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, Substituted or unsubstituted alkylsilyl group having 3 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, a substituted or unsubstituted ary
  • X 2 and R 111 to R 120 have the same meanings as X 1 and R 101 to R 110 in the general formula (1-1), respectively.
  • X 3 and R 121 to R 130 have the same meanings as X 1 and R 101 to R 110 in the general formula (1-1), respectively.
  • X 4 and R 131 to R 140 have the same meanings as X 1 and R 101 to R 110 in the general formula (1-1), respectively.
  • X 5 and R 141 to R 150 have the same meanings as X 1 and R 101 to R 110 in the general formula (1-1), respectively.
  • X 6 and R 61 to R 70 have the same meanings as X 1 and R 101 to R 110 in the general formula (1-1), respectively.
  • R 161 to R 168 are each independently a hydrogen atom or a substituent, halogen atom, R 161 to R 168 as substituents are each independently, a substituted or unsubstituted aryl group having 6 to 14 ring carbon atoms, Substituted or unsubstituted heterocyclic group having 5 to 14 ring atoms, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, Substituted or unsubstituted halogenated alkyl group having 1 to 30 carbon atoms, Substituted or unsubstituted alkylsilyl group having 3 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 14 ring carbon atoms, a substituted or unsubstituted alkylamino group having 2 to 12 carbon
  • R 171 to R 180 each independently represent a hydrogen atom or a substituent
  • R 171 to R 180 as substituents each independently represent the general formula (2-2). These are the same as the substituents listed for R 161 to R 168 in 1).
  • R 181 to R 190 each independently represent a hydrogen atom or a substituent
  • R 181 to R 190 as substituents each independently represent the general formula (2-3). These are the same as the substituents listed for R 161 to R 168 in 1).
  • R 191 to R 200 each independently represent a hydrogen atom or a substituent
  • R 191 to R 200 as substituents each independently represent the general formula (2-4). These are the same as the substituents listed for R 161 to R 168 in 1).
  • Each * independently represents a bonding site with the carbon atom of the benzene ring in the general formulas (11) to (13).
  • one or more of R 161 to R 168 , R 171 to R 180 , R 181 to R 190 and R 191 to R 200 is a hydrogen atom.
  • any one or more of R 161 to R 168 , R 171 to R 180 , R 181 to R 190 and R 191 to R 200 is a substituent. If the substituent has one or more hydrogen atoms, all of the hydrogen atoms are light hydrogen, one or more of the hydrogen atoms is deuterium, or all of the hydrogen atoms are deuterium. is preferably deuterium.
  • the plurality of groups represented by the general formula (1-1) when a plurality of groups represented by the general formula (1-1) are present as R 1 to R 4 , the plurality of groups represented by the general formula (1-1) are present. ) is preferably the same group as each other including substituents, When a plurality of groups represented by the general formula (1-2) are present as R 1 to R 4 , the plurality of groups represented by the general formula (1-2), including substituents, are It is preferable that they are the same groups, When a plurality of groups represented by the general formula (1-3) are present as R 1 to R 4 , the plurality of groups represented by the general formula (1-3), including substituents, are It is preferable that they are the same groups, When a plurality of groups represented by the general formula (1-4) are present as R 1 to R 4 , the plurality of groups represented by the general formula (1-4), including substituents, are It is preferable that they are the same groups, When a plurality of groups represented by the general formula (1-5) are present as R
  • two groups represented by the above general formula (1-1) are selected as the groups for R 1 and R 2
  • two groups represented by the above general formula (1-2) are selected as the group for R 3.
  • the two groups represented by the above general formula (1-1) are preferably the same groups including substituents.
  • the three groups represented by the general formula (1-1) are (R 1 to R 3 groups) are preferably the same groups including substituents.
  • two of R 1 to R 4 are selected from the groups represented by the general formulas (1-1) to (1-6), and the remaining two are selected from the groups represented by the general formulas (1-1) to (1-6), and the remaining two are selected from the groups represented by the general formulas (1-1) to (1-6).
  • the two groups represented by the general formulas (1-1) to (1-6) are both groups represented by the general formula (1-6). It is preferable that the groups are represented by one of the general formulas 1-1) to (1-6) and are the same groups including substituents.
  • R 1 to R 4 are selected from the groups represented by the general formulas (1-1) to (1-6), and the remaining one is selected from the groups represented by the general formulas (2-1) to (1-6).
  • all of the groups represented by the above general formulas (1-1) to (1-6) are represented by one of the general formulas (1-6) and are the same groups including substituents.
  • the three selected groups are represented by general formula (1-1). and preferably the same groups including substituents.
  • a plurality of groups represented by the general formula (2-1) are present as the groups R 1 to R 4
  • a plurality of groups represented by the general formula (2-1) are present.
  • the groups are preferably the same groups including substituents
  • the plurality of groups represented by the general formula (2-2) are present as R 1 to R 4
  • the plurality of groups represented by the general formula (2-2), including substituents are It is preferable that they are the same groups
  • the plurality of groups represented by the general formula (2-3) are present as R 1 to R 4
  • the plurality of groups represented by the general formula (2-3), including substituents are It is preferable that they are the same groups
  • the plurality of groups represented by the general formula (2-4) are present as R 1 to R 4
  • the plurality of groups represented by the general formula (2-4), including substituents are Preferably, they are the same groups.
  • two groups represented by the general formula (2-1) are selected as the groups for R 1 and R 2
  • two groups represented by the general formula (2-2) are selected as the group for R 3.
  • one group represented by the above general formula (1-1) is selected as the group for R 4
  • the two groups represented by the above general formula (2-1) are preferably the same groups including substituents.
  • the three groups represented by the above general formula (2-1) are selected as the groups R 1 to R 3
  • the three groups represented by the above general formula (2-1) are selected.
  • (R 1 to R 3 groups) are preferably the same groups including substituents.
  • two of R 1 to R 4 are selected from the groups represented by the general formulas (2-1) to (2-4), and the remaining two are selected from the groups represented by the general formulas (2-1) to (2-4), and the remaining two are selected from the groups represented by the general formulas (2-1) to (2-4).
  • the two groups represented by the general formulas (2-1) to (2-4) are both the groups represented by the general formulas (2-1) to (2-4). It is preferable that the groups are represented by one of the general formulas of 2-1) to (2-4) and that they are the same groups including substituents.
  • R 1 to R 4 are selected from the groups represented by the general formulas (2-1) to (2-4), and the remaining one is selected from the groups represented by the general formulas (1-1) to (2-4).
  • the groups represented by the above three general formulas (2-1) to (2-4) all of the groups represented by the above general formulas (2-1) to It is preferable that the groups are represented by one of the general formulas (2-4) and are the same groups including substituents.
  • the three selected groups are represented by general formula (2-1). and preferably the same groups including substituents.
  • the first sensitizer is any one of the compounds represented by the following general formulas (101) to (123).
  • D 1 in the general formulas (101) to (123) are preferably the same group.
  • X 1 to X 6 are sulfur atoms.
  • X 1 to X 6 are also preferably CR 151 R 152 .
  • the groups represented by the general formulas (1-1) to (1-6) are the groups represented by the general formula (1-1), the groups represented by the general formula (1-2), or a group represented by the above general formula (1-4) is preferable.
  • the groups represented by general formulas (2-1) to (2-4) include the above general formulas (2-5) to (2-14) and the following general formulas (2-15 ) to (2-17) is preferable.
  • the groups represented by general formulas (2-1) to (2-4) are the groups represented by general formula (2-2) and the groups represented by general formula (2-3). or a group represented by general formula (2-4).
  • the groups represented by general formulas (2-1) to (2-4) are all groups represented by general formula (2-1).
  • the group represented by the general formula (2-1) is a group represented by the general formula (2-5) or a group represented by the general formula (2-15). It is.
  • R 161 to R 168 are each independently: hydrogen atom, A substituted or unsubstituted aryl group having 6 to 14 ring carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
  • R 161 , R 163 , R 166 and R 168 has a substituent has The substituents are each independently: A substituted or unsubstituted aryl group having 6 to 14 ring carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, R 162 , R 164 , R 165 and R 167 are hydrogen atoms.
  • the first sensitizer is represented by the general formulas (101), (106), (107), (110), (111), and (116) to (119).
  • D 1 each independently represents , a group represented by general formula (1-1), a group represented by general formula (1-2), or a group represented by general formula (1-4)
  • D 2 is each independently , any group represented by general formulas (2-5) to (2-14). Note that the plurality of D 1 's are the same or different from each other, and the plurality of D 2 's are the same or different from each other.
  • the first sensitizer is a compound represented by the general formula (11). In one aspect of the present embodiment, the first sensitizer is a compound represented by the general formula (12). In one aspect of this embodiment, the first sensitizer is a compound represented by the general formula (13).
  • R 101 to R 150 , R 151 , R 152 , R 161 to R 168 , R 171 to R 200 and R 171 to R 180 and R 61 to R 70 as substituents are each independently, halogen atom, an unsubstituted aryl group having 6 to 14 ring carbon atoms, an unsubstituted heterocyclic group having 5 to 14 ring atoms, unsubstituted alkyl group having 1 to 6 carbon atoms, unsubstituted halogenated alkyl group having 1 to 6 carbon atoms, unsubstituted alkylsilyl group having 3 to 6 carbon atoms, unsubstituted alkoxy group having 1 to 6 carbon atoms, an unsubstituted aryloxy group having 6 to 14 ring carbon atoms, unsubstituted alkylamino group having 2 to 12 carbon atoms, It is preferably an
  • R 101 to R 150 , R 151 , R 152 , R 161 to R 168 , R 171 to R 200 and R 61 to R 70 are each independently, It is preferably an unsubstituted aryl group having 6 to 14 ring carbon atoms or an unsubstituted alkyl group having 1 to 6 carbon atoms.
  • R 101 to R 150 and R 61 to R 70 are hydrogen atoms
  • R 151 and R 152 are an unsubstituted aryl group having 6 to 14 ring carbon atoms or an unsubstituted alkyl group having 1 to 6 carbon atoms
  • R 161 to R 168 and R 171 to R 200 are hydrogen atoms.
  • the first sensitizer is a compound represented by the following general formula (103A).
  • D 10 is a group represented by the following general formula (1-4A)
  • D 20 is a group represented by the general formula (2-1).
  • a plurality of D 20 's in the general formula (103A) are the same group.
  • a plurality of D 20 's are the same group means that all variables represented by the same symbol in the general formula (2-1) are the same.
  • “Variables in general formula (2-1)” means R 161 to R 168 .
  • R 161s are the same, R 162s are the same, and R 163
  • the R 164s are the same, the R 165s are the same, the R 166s are the same, the R 167s are the same, and the R 168s are the same. That is, the three D20 's in general formula (103A) are the same groups including the substituents.
  • X 40 is an oxygen atom or a sulfur atom
  • R 131 to R 140 have the same meanings as R 131 to R 140 in the general formula (1-4), respectively.
  • * represents the bonding position with the benzene ring in the general formula (103A).
  • X 40 is preferably a sulfur atom. In the general formula (1-4A), it is also preferable that X 40 is an oxygen atom.
  • the group represented by the above general formula (2-1) is represented by the above general formulas (2-5) and (2-9) to (2-17). It is preferable that it is any of the groups mentioned above.
  • * each independently represents the bonding position with the benzene ring in the general formula (103A), and D is deuterium. represents.
  • R 161 to R 168 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 14 ring carbon atoms, or a substituted or unsubstituted aryl group having 1 to 14 ring carbon atoms. It is preferably an alkyl group having 6 carbon atoms, and more preferably a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
  • R 161 , R 163 , R 166 and R 168 has a substituent, and each substituent independently has a number of carbon atoms forming a substituted or unsubstituted ring. It is also preferably a 6-14 aryl group or a substituted or unsubstituted alkyl group having 1-6 carbon atoms, and R 162 , R 164 , R 165 and R 167 are hydrogen atoms.
  • R 161 to R 168 when any one or more of R 161 to R 168 is a hydrogen atom, all of the hydrogen atoms are light hydrogen, or one or more of the hydrogen atoms is deuterium, or all of the hydrogen atoms are preferably deuterium.
  • R 131 to R 140 and R 161 to R 168 as substituents each independently represent a halogen atom, an unsubstituted ring having 6 to 14 carbon atoms, aryl group, unsubstituted heterocyclic group having 5 to 14 ring atoms, unsubstituted alkyl group having 1 to 6 carbon atoms, unsubstituted halogenated alkyl group having 1 to 6 carbon atoms, unsubstituted carbon number 3-6 alkylsilyl group, unsubstituted alkoxy group having 1-6 carbon atoms, unsubstituted aryloxy group having 6-14 ring carbon atoms, unsubstituted alkylamino group having 2-12 carbon atoms, unsubstituted is preferably an alkylthio group having 1 to 6 carbon atoms, or an unsubstituted arylthio group having 6 to 14 ring carbon atoms.
  • R 131 to R 140 and R 161 to R 168 each independently represent a hydrogen atom, a substituted or unsubstituted aryl having 6 to 14 ring carbon atoms, group, a substituted or unsubstituted heterocyclic group having 5 to 14 ring atoms, or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom, a substituted or unsubstituted ring carbon atom It is more preferably an aryl group having 6 to 14 carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, and more preferably a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms. More preferred.
  • R 131 to R 140 and R 161 to R 168 as substituents each independently represent an unsubstituted aryl group having 6 to 14 ring carbon atoms. , or an unsubstituted alkyl group having 1 to 6 carbon atoms.
  • R 137 is a substituent
  • R 137 as a substituent is a substituted or unsubstituted aryl group having 6 to 14 ring carbon atoms, or It is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms
  • R 131 to R 136 and R 138 to R 140 are also preferably hydrogen atoms.
  • R 131 to R 140 and R 161 to R 168 are also preferably hydrogen atoms.
  • first sensitizer compound represented by any one of the above general formulas (11) to (13)
  • first sensitizer is not limited to these specific examples of compounds.
  • Me represents a methyl group.
  • the first sensitizer is a compound represented by the following general formula (1000).
  • Y 1 and Y 2 are each independently a hydrogen atom or a cyano group
  • R 1 and R 2 are each independently, hydrogen atom, cyano group, a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms, A substituted or unsubstituted heteroaryl group having 5 to 40 ring atoms, or a group represented by -N(Rz 1 )(Rz 2 )
  • R 1 and R 2 are not hydrogen atoms at the same time
  • a set consisting of Rz 1 and Rz 2 is bond to each other to form a substituted or unsubstituted monocycle, are bonded to each other to form a substituted or unsubstituted condensed ring, or are not bonded to each other
  • a set consisting of L 1 and Rz 1 is bond to each other to form a substituted or unsubstituted monocycle, are bonded to each other to form a substituted or unsubstituted
  • One embodiment of the compound represented by the general formula (1000) is a compound represented by the following general formula (1000A) or (1000B).
  • R 2 has the same meaning as R 2 in the general formula (1000).
  • the first sensitizer is a compound represented by the following general formula (1001).
  • Y 1 and Y 2 are each independently a hydrogen atom or a cyano group
  • X 1 and X 2 are each independently CH or a nitrogen atom
  • L 1 , L 2 , R 1 and R 2 each independently have the same meaning as L 1 , L 2 , R 1 and R 2 in the general formula (1000).
  • One embodiment of the compound represented by the general formula (1001) is a compound represented by the following general formula (1001A) or (1001B).
  • R 2 has the same meaning as R 2 in the general formula (1001).
  • the first sensitizer is a compound represented by the following general formula (1002).
  • L 1 and L 2 are each independently, single bond, substituted or unsubstituted phenylene group, A divalent group derived from a substituted or unsubstituted biphenylene group, or a substituted or unsubstituted trans distyryl group
  • X 1 and X 2 are each independently, hydrogen atom, a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms, A substituted or unsubstituted heteroaryl group having 5 to 40 ring atoms, or a group represented by -N(Rz 1 )(Rz 2 ),
  • a set consisting of Rz 1 and Rz 2 is bond to each other to form a substituted or unsubstituted monocycle, are bonded to each other to form a substituted or unsubstituted condensed ring, or are not bonded to each other, Rz 1 and Rz 2 , which do not form a substituted or unsubstituted
  • One embodiment of the compound represented by the general formula (1002) is a compound represented by the following general formula (1002A).
  • X 1 and X 2 are each independently synonymous with X 1 and X 2 in the general formula (1002).
  • the first sensitizer is a compound represented by the following general formula (1003).
  • X 3 and X 4 are each independently, hydrogen atom, a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms, A substituted or unsubstituted heteroaryl group having 5 to 40 ring atoms, or a group represented by -N(Rz 1 )(Rz 2 ), A set consisting of Rz 1 and Rz 2 is bond to each other to form a substituted or unsubstituted monocycle, are bonded to each other to form a substituted or unsubstituted condensed ring, or are not bonded to each other, Rz 1 and Rz 2 , which do not form a substituted or unsubstituted monocyclic ring and do not form a substituted or unsubstituted fused ring, are each independently, A substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms, or a substituted or unsubstituted heteroaryl group
  • the first sensitizer is a compound represented by any of the following general formulas (1004A) to (1004D).
  • XA is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms; -N(Rz 1 )(Rz 2 ), Y A is a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 10 ring carbon atoms, Substituted or unsubstituted alkenyl group having 2 to 6 carbon atoms, substituted or unsubstituted alkyloxy group having 1 to 6 carbon atoms, substituted or unsubstituted cycloalkyloxy group having 5 to 10 ring carbon atoms, substituted or
  • Rz 1 and Rz 2 in (-N(Rz 1 )(Rz 2 ) form the substituted or unsubstituted monocycle or the substituted or unsubstituted condensed ring
  • Rz 1 and Rz 2 represent a single bond. They may be bonded to each other to form a single ring or a condensed ring, or may be bonded to each other to form a monocycle or a condensed ring via a substituted or unsubstituted methylene group. (They may be bonded to each other to form a single ring or a fused ring.)
  • One embodiment of the compound represented by the general formula (1004B) is a compound represented by the following general formula (1004B-1).
  • X A and Y A are each independently synonymous with X A and Y A in the general formula (1004B).
  • the first sensitizer is a compound represented by any of the following general formulas (1005A) to (1005D).
  • R 1A to R 6A are each independently synonymous with R 1A to R 2A and R 5A to R 8A in the general formulas (1004A) to (1004D)
  • the set consisting of R 7B and R 8B is bond to each other to form a substituted or unsubstituted monocycle, are bonded to each other to form a substituted or unsubstituted condensed ring, or are not bonded to each other, R 7B and R 8B which do not form a substituted or unsubstituted monocyclic ring and which do not form a substituted or unsubstituted fused ring each independently represent R 1A to R 1A in the general formulas (1004A) to (1004D). It has the same meaning as R 2A and R 5A to R 8A .
  • One embodiment of the compound represented by the general formula (1005B) is a compound represented by the following general formula (1005B-1), (1005B-2), (1005B-3) or (1005B-4).
  • X A and Y A are each independently synonymous with X A and Y A in the general formula (1005B), and R 1005 is a substituted or an unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 50 ring carbon atoms.
  • X A and Y A are each independently synonymous with X A and Y A in the general formula (1005B).
  • the first sensitizer is a compound represented by the following general formula (1006).
  • Ar 104 and Ar 105 are each independently, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms; However, at least one of Ar 104 and Ar 105 is an aryl group substituted with an N,N-diarylamino group. )
  • the aryl group substituted with the N,N-diarylamino group may be one of Ar 104 and Ar 105 , or both Ar 104 and Ar 105 . is preferably both Ar 104 and Ar 105 .
  • both Ar 1 and Ar 2 are aryl groups substituted with N,N-diarylamino groups, those N,N-diarylamino groups may be the same or different from each other, but are the same. It is preferable.
  • one embodiment of the aryl group substituted with an N,N-diarylamino group is a group represented by the following general formula (1006A).
  • Ar 101 is A substituted or unsubstituted arylene group having 6 to 18 ring carbon atoms, or a substituted or unsubstituted heteroarylene group having 5 to 18 ring atoms
  • Ar 102 and Ar 103 are each independently, A substituted or unsubstituted aryl group having 6 to 18 ring carbon atoms, However, the group consisting of Ar 102 and Ar 103 may be connected through a single bond or through a linking group A.
  • * represents a bonding site to the pyrazine ring in general formula (1006).
  • the linking group A is a substituted or unsubstituted methylene group, a substituted or unsubstituted ethylene group, a substituted or unsubstituted vinylene group, a substituted or unsubstituted imino group, an oxygen atom or a sulfur atom.
  • the ethylene group and the vinylene group are substituted with a plurality of substituents, two adjacent substituents may be bonded to each other to form a cyclic structure.
  • the first sensitizer is a compound represented by the following general formula (1007A) or (1007B).
  • R 101 to R 104 are each independently, hydrogen atom, Substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, A substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms, or a substituted or unsubstituted phenyl group,
  • X 101 , Y 101 , X 201 and Y 201 are each independently, hydrogen atom, Substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, A substituted or unsubstituted aromatic amino group, or a substituted or unsubstituted aromatic phosphineoxy group.
  • examples of the aromatic amino group include an alkylamino group, an arylamino group, a dialkylamino group, and a diarylamino group.
  • One embodiment of the compound represented by the general formula (1007A) is the following general formula (1007A-1), and one embodiment of the compound represented by the general formula (1007B) is the following general formula (1007B-1). ).
  • X 101 has the same meaning as X 101 in the general formula (1007A).
  • R 103 , R 104 and X 201 have the same meanings as R 103 , R 104 and X 201 in the general formula (1007B).
  • the first sensitizer is a compound represented by the following general formula (1008) or (1008A).
  • X 9 is a sulfur atom or a selenium atom
  • the set consisting of R 82 and R 83 is bond to each other to form a substituted or unsubstituted monocycle, are bonded to each other to form a substituted or unsubstituted condensed ring, or are not bonded to each other, R 81 and R 84 , and R 82 and R 83 that do not form a substituted or unsubstituted monocycle and do not form a substituted or unsubstituted fused ring each independently represent a hydrogen atom, a hydroxy group, a halogen Atom, cyano group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted alkylthio group having 1 to 20 carbon atoms, substituted or unsubstitute
  • L 8 is A substituted or unsubstituted arylene group having 6 to 40 ring atoms, or a substituted or unsubstituted heteroarylene group having 5 to 40 ring atoms, n1 is 0 or 1, X 1 to X 8 are each independently a nitrogen atom or CR 1008 , provided that at least one of X 1 to X 8 is CR 1008 , One or more of the sets consisting of adjacent R 1008 , bond to each other to form a substituted or unsubstituted monocycle, are bonded to each other to form a substituted or unsubstituted condensed ring, or are not bonded to each other, R 1008 , which does not form a substituted or unsubstituted monocyclic ring and does not form a substituted or unsubstituted fused ring, each independently represents R 81 and R 84 in the general formulas (1008) and (1008A). are synonymous, A
  • One embodiment of the compounds represented by the general formulas (1008) and (1008A) is a compound represented by any of the following general formulas (1008-1) to (1008-7).
  • X 10 is a sulfur atom or a selenium atom
  • R 85 to R 87 each independently correspond to the general formulas (1008) and (1008A)
  • X 9 , R 81 and R 84 each independently have the same meaning as X 9 , R 81 and R 84 in the general formulas (1008) and (1008A).
  • the first sensitizer is a compound represented by any of the following general formulas (1009A) to (1009C).
  • X 9 is a sulfur atom or a selenium atom
  • X is a substituted or unsubstituted arylene group having 6 to 20 ring carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 20 ring atoms
  • Y is a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms
  • Rz 1 and Rz 2 are each independently, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 50 ring carbon atoms
  • R 1 and R 2 are each independently, hydrogen atom, A substituted or unsubstituted carbazolyl group, or a substituted or unsubstituted diphenylamine group, However, at least one of R 1 and R 2 is a hydrogen atom.
  • the first sensitizer is a compound represented by the following general formula (1010).
  • R 1 to R 7 each independently represent a hydrogen atom or a substituent, and the set of R 1 and R 2 , the set of R 2 and R 3 , and the set of R 3 and R 4 any one or more of the set, the set of R 4 and R 5 , the set of R 5 and R 6 , and the set of R 6 and R 7 may be combined with each other to form a ring, R 7 represents a group represented by the following general formula (1010A) or general formula (1010B).
  • Ar 11 is a group derived from a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms, R 11 represents a substituent other than an aryl group, n 11 represents an integer from 1 to the number of substitutable positions in Ar 11 , When n 11 is 2 or more, multiple R 11s are the same or different, provided that at least one R 11 is an electron donating group.
  • R 21 to R 25 each independently represent a hydrogen atom or a substituent, and p is an integer of 0 to 2.
  • R 1 to R 6 , R 11 and R 21 to R 25 as substituents are each independently a halogen atom, an alkyl group, an alkenyl group, Alkynyl group, aryl group, heteroaryl group, halogen atom, hydroxyl group, nitro group, carboxyl group, cyano group, alkoxy group, aryloxy group, acyl group, acyloxy group, carbamoyloxy group (alkoxycarbonyloxy group, etc.), Primary amino group, alkylamino group, arylamino group, dialkylamino group, diarylamino group, alkylarylamino group, acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryl
  • the first sensitizer is a compound represented by the following general formula (1011A) or (1011B).
  • X is a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms or a single bond
  • Z is CR 1 or a nitrogen atom and R 1 in Y and R 1 in Z each independently have the same meaning as R 1 in the general formula (1011A), and when there is a plurality of R 1s , are the plurality of R 1s the same as each other? , or different, and multiple Zs are the same or different.
  • * represents the bonding position.
  • the first sensitizer is a compound represented by the following general formula (1012A) or (1012B).
  • D 1 and D 4 are the same electron donating group or hydrogen atom, or D 1 and D 4 are different electron donating groups, D 2 and D 3 are the same electron donating group or hydrogen atom, or D 2 and D 3 are different electron donating groups,
  • the electron donating group is a substituted or unsubstituted carbazolyl group, a substituted or unsubstituted acridine group, a substituted or unsubstituted phenoxazinyl group, a substituted or unsubstituted phenazinyl group, a substituted or unsubstituted phenazinyl group, and a substituted or unsubstituted phenazinyl group.
  • phenothiazinyl groups substituted or unsubstituted include methyl group, ethyl group, isopropyl group, tert-butyl group, phenyl group, carbazolyl group, substituted or unsubstituted amino group, acridine group, phenazinyl group, fluorenyl group, One or more of dibenzofuran group and dibenzothiophene.
  • the first sensitizer is a compound represented by the following general formula (1013).
  • Z 1 , Z 2 and Z 3 each independently represent a substituent, and the substituent is an atom or atomic group other than a hydrogen atom.
  • the substituents represented by Z 1 , Z 2 and Z 3 each independently include a substituted amino group (e.g., dialkylamino group, diarylamino group, alkylarylamino group, etc.), substituted or unsubstituted
  • a substituted amino group e.g., dialkylamino group, diarylamino group, alkylarylamino group, etc.
  • substituted or unsubstituted A substituted aryl group having 6 to 50 ring atoms and a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms are preferable. It is preferable that Z 1 , Z 2 and Z 3 are the same.
  • the first sensitizer is a compound represented by the following general formula (1014).
  • R 1 to R 8 are bond to each other to form a substituted or unsubstituted monocycle, are bonded to each other to form a substituted or unsubstituted condensed ring, or are not bonded to each other, R 1 to R 8 which do not form a substituted or unsubstituted monocycle and which do not form a substituted or unsubstituted condensed ring each independently represent a hydrogen atom or a substituent ; At least one of them is each independently a group represented by the following general formula (1014A).
  • Ar 1 represents a substituted or unsubstituted phenylene group, or a substituted or unsubstituted naphthylene group.
  • n1 represents 0 or 1.
  • One or more sets of two or more adjacent ones of R 11 to R 20 are bond to each other to form a substituted or unsubstituted monocycle, are bonded to each other to form a substituted or unsubstituted condensed ring, or are not bonded to each other, R 11 to R 20 that do not form a substituted or unsubstituted monocyclic ring and do not form a substituted or unsubstituted condensed ring each independently represent a hydrogen atom or a substituent.
  • R 1 to R 8 and R 11 to R 20 each independently represent a hydrogen atom, a hydroxy group, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, Alkoxy group having 1 to 20 carbon atoms, alkylthio group having 1 to 20 carbon atoms, alkyl-substituted amino group having 1 to 20 carbon atoms, acyl group having 2 to 20 carbon atoms, aryl group having 6 to 40 carbon atoms, 3 carbon atoms -40 heteroaryl group, C2-10 alkenyl group, C2-10 alkynyl group, C2-10 alkoxycarbonyl group, C1-10 alkylsulfonyl group, C1-10 haloalkyl group, amide group, alkylamide group having 2 to 10 carbon atoms, trialkylsilyl group having 3 to 20 carbon atoms, trialkylsilylalkyl group having 4
  • the substituents in the case of "substituted or unsubstituted" for Ar 1 are each independently R 1 to R 8 and R 11 to R in the general formulas (1014) and (1014A). 20 (except for hydrogen atoms).
  • the first sensitizer is a compound represented by the following general formula (1015).
  • X is an oxygen atom or a sulfur atom
  • R 1 to R 8 are bond to each other to form a substituted or unsubstituted monocycle, are bonded to each other to form a substituted or unsubstituted condensed ring, or are not bonded to each other
  • R 1 to R 8 that do not form a substituted or unsubstituted monocyclic ring and do not form a substituted or unsubstituted condensed ring each independently represent a hydrogen atom or a substituent, provided that R 1 to R At least one of 8 is each independently a group represented by any one of the following general formulas (1015A) to (1015E).
  • L 20 , L 30 , L 40 , L 50 and L 60 each independently represent a single bond or a divalent linking group
  • * represents the general formula (1015 ) is bonded to the ring skeleton of
  • One or more sets of two or more adjacent ones of R 21 to R 28 are bond to each other to form a substituted or unsubstituted monocycle, are bonded to each other to form a substituted or unsubstituted condensed ring, or are not bonded to each other
  • One or more sets of two or more adjacent ones of R 31 to R 38 are bond to each other to form a substituted or unsubstituted monocycle, are bonded to each other to form a substituted or unsubstituted condensed ring, or are not bonded to each other
  • the set consisting of R 3a and R 3b is bond to each other to form a substituted or unsubstituted monocycle, are bonded to each other to form a substituted
  • L 20 , L 30 , L 40 , L 50 and L 60 each independently represent a single bond, a substituted or unsubstituted alkenylene group having 2 to 10 carbon atoms, or a substituted Alternatively, a group consisting of an unsubstituted alkynylene group having 2 to 10 carbon atoms, a substituted or unsubstituted arylene group having 6 to 10 ring carbon atoms, a substituted or unsubstituted thiophenediyl group, or a combination thereof is preferable.
  • R 1 to R 8 , R 21 to R 28 , R 31 to R 38 , R 3a , R 3b , R 41 to R 48 , R 4a , R 51 to R 58 and R 61 to R 68 each independently represent a hydrogen atom, a hydroxy group, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and a hydrogen atom having 1 to 20 carbon atoms.
  • alkylthio group alkyl-substituted amino group having 1 to 20 carbon atoms
  • acyl group having 2 to 20 carbon atoms, aryl group having 6 to 40 carbon atoms, heteroaryl group having 3 to 40 carbon atoms
  • the first sensitizer is a compound represented by the following general formula (1016A) or (1016B).
  • R 16A , R 16B and R 16C each independently represent a substituent, and the substituent is an atom or atomic group other than a hydrogen atom.
  • R 16D , R 16E , R 16F and R 16G each independently represent a hydrogen atom or a substituent.
  • the substituents represented by R 16A , R 16B and R 16C are each independently a substituted amino group (for example, dialkylamino group, diarylamino group, alkylarylamino group, etc.), substituted or unsubstituted
  • R 16A , R 16B and R 16C are each independently a substituted amino group (for example, dialkylamino group, diarylamino group, alkylarylamino group, etc.), substituted or unsubstituted
  • a substituted aryl group having 6 to 50 ring atoms and a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms are preferable.
  • R 16D , R 16E , R 16F and R 16G each independently represent a hydrogen atom, a hydroxy group, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, or a C 1 to 20 alkyl group.
  • Aryl group alkenyl group having 2 to 10 carbon atoms, alkynyl group having 2 to 10 carbon atoms, alkoxycarbonyl group having 2 to 10 carbon atoms, alkylsulfonyl group having 1 to 10 carbon atoms, haloalkyl group having 1 to 10 carbon atoms, Amide group, alkylamido group having 2 to 10 carbon atoms, trialkylsilyl group having 3 to 20 carbon atoms, trialkylsilylalkyl group having 4 to 20 carbon atoms, trialkylsilylalkenyl group having 5 to 20 carbon atoms, carbon number Preferably, it is a 5-20 trialkylsilylalky
  • the first sensitizer is not limited to these specific examples of compounds.
  • t-C 4 H 9 represents a tertiary butyl group.
  • the first sensitizer is a delayed fluorescent material. Delayed fluorescence will be explained.
  • the first sensitizer according to this embodiment is preferably a compound that exhibits heat-activated delayed fluorescence generated by such a mechanism.
  • the compound exhibiting heat-activated delayed fluorescence functions as a sensitizer.
  • delayed fluorescence emission can be confirmed by transient PL (Photoluminescence) measurement.
  • Transient PL measurement is a method of irradiating a sample with a pulsed laser to excite it, and measuring the attenuation behavior (transient characteristics) of PL emission after the irradiation is stopped.
  • PL emission in a TADF material is classified into an emission component from singlet excitons generated by initial PL excitation and an emission component from singlet excitons generated via triplet excitons.
  • the lifetime of the singlet exciton generated by the first PL excitation is on the order of nanoseconds, which is very short. Therefore, the light emission from the singlet exciton attenuates quickly after irradiation with the pulsed laser.
  • delayed fluorescence decays slowly because it is emitted from singlet excitons that are generated via long-lived triplet excitons.
  • the luminescence intensity derived from delayed fluorescence can be determined.
  • FIG. 5 A schematic diagram of an exemplary apparatus for measuring transient PL is shown in FIG. An example of a method for measuring transient PL and behavioral analysis of delayed fluorescence using FIG. 5 will be described.
  • the transient PL measurement device 1000 in FIG. 5 includes a pulse laser unit 1010 capable of emitting light of a predetermined wavelength, a sample chamber 1020 that accommodates a measurement sample, a spectrometer 1030 that spectrally spectra the light emitted from the measurement sample, and 2. It includes a streak camera 1040 for forming dimensional images, and a personal computer 1050 for capturing and analyzing two-dimensional images. Note that the measurement of transient PL is not limited to the apparatus shown in FIG. 5.
  • the sample accommodated in the sample chamber 1020 is obtained by forming a thin film doped with a doping material at a concentration of 12% by mass relative to the matrix material on a quartz substrate.
  • the thin film sample housed in the sample chamber 1020 is irradiated with a pulsed laser from the pulsed laser section 1010 to excite the doping material.
  • Emitted light is extracted in a direction 90 degrees with respect to the irradiation direction of the excitation light, the extracted light is separated into spectra by a spectrometer 1030, and a two-dimensional image is formed within a streak camera 1040.
  • a two-dimensional image can be obtained in which the vertical axis corresponds to time, the horizontal axis corresponds to wavelength, and the bright spots correspond to emission intensity.
  • a thin film sample A was prepared as described above using reference compound H1 below as a matrix material and reference compound D1 below as a doping material, and transient PL measurement was performed.
  • Thin film sample B was prepared as described above using the following reference compound H2 as the matrix material and the reference compound D1 as the doping material.
  • FIG. 6 shows attenuation curves obtained from the transient PL measured for thin film sample A and thin film sample B.
  • the fluorescence intensity of the fluorescence emitted from the singlet excited state generated by photoexcitation and the delayed fluorescence emitted from the singlet excited state generated by reverse energy transfer via the triplet excited state is determined.
  • the ratio can be estimated. In materials with delayed fluorescence, the ratio of the intensity of delayed fluorescence that decays slowly to the intensity of fluorescence that decays quickly is relatively large.
  • Prompt light emission is light emission that is observed immediately from the excited state after being excited by pulsed light (light emitted from a pulsed laser) at a wavelength that the delayed fluorescent material absorbs.
  • Delayed light emission is light emission that is not observed immediately after excitation by the pulsed light but is observed afterward.
  • the amount of prompt light emission and delay light emission and the ratio thereof can be determined by a method similar to that described in "Nature 492, 234-238, 2012" (Reference Document 1). Note that the device used to calculate the amount of prompt light emission and delay light emission is not limited to the device described in reference document 1 or the device described in FIG. 5.
  • the first sensitizer is a delayed fluorescence material
  • a sample prepared by the following method is used to measure delayed fluorescence.
  • a compound to be measured (first sensitizer) is dissolved in toluene, and a dilute solution having an absorbance of 0.05 or less at the excitation wavelength is prepared in order to eliminate the contribution of self-absorption.
  • the sample solution is frozen and degassed and then sealed in a cell with a lid under an argon atmosphere, thereby making the sample solution saturated with argon and oxygen-free.
  • the fluorescence spectrum of the above sample solution is measured using a spectrofluorometer FP-8600 (manufactured by JASCO Corporation), and the fluorescence spectrum of an ethanol solution of 9,10-diphenylanthracene is also measured under the same conditions. Using the fluorescence area intensity of both spectra, Morris et al. J. Phys. Chem. The total fluorescence quantum yield is calculated using equation (1) in 80 (1976) 969.
  • the amount of prompt luminescence (immediate luminescence) of the compound to be measured (first sensitizer) is X P and the amount of delayed luminescence (delayed luminescence) is X D , X D / It is preferable that the value of XP is 0.05 or more.
  • the measurement of the amount of prompt emission and delay emission of a compound other than the first sensitizer and the ratio thereof is the same as the measurement of the amount of prompt emission and delay emission of the first sensitizer and the ratio thereof. be.
  • the difference (S 1 ⁇ T 77K ) between the lowest excited singlet energy S 1 and the energy gap T 77K at 77 [K] is defined as ⁇ ST.
  • triplet energy is measured as follows. First, a sample is prepared by sealing a solution in which a compound to be measured is dissolved in an appropriate solvent in a quartz glass tube.
  • the heat-activated delayed fluorescent compound is preferably a compound with a small ⁇ ST.
  • ⁇ ST intersystem crossing and reverse intersystem crossing are likely to occur even in a low temperature (77 [K]) state, and excited singlet states and excited triplet states coexist.
  • the spectrum measured in the same manner as above includes light emission from both the excited singlet state and the excited triplet state, and it is difficult to clearly distinguish from which state the light is emitted.
  • the value of triplet energy is considered to be dominant. Therefore, in this embodiment, although the measurement method is the same as that of the normal triplet energy T, in order to distinguish that they are different in the strict sense, the value measured as follows is referred to as the energy gap T 77K . .
  • the tangent to the rise of the short wavelength side of the phosphorescence spectrum is drawn as follows. When moving on the spectrum curve from the short wavelength side of the phosphorescence spectrum to the maximum value on the shortest wavelength side among the maximum values of the spectrum, consider the tangent at each point on the curve toward the long wavelength side. The slope of this tangent line increases as the curve rises (ie, as the vertical axis increases). The tangent drawn at the point where the value of this slope takes the maximum value (that is, the tangent at the inflection point) is the tangent to the rise of the short wavelength side of the phosphorescence spectrum.
  • a local maximum point with a peak intensity that is 15% or less of the maximum peak intensity of the spectrum is not included in the local maximum value on the shortest wavelength side mentioned above, but is included in the maximum value of the slope that is closest to the local maximum value on the shortest wavelength side.
  • the tangent line drawn at the point where the value is taken is the tangent line to the rise of the short wavelength side of the phosphorescence spectrum.
  • an F-4500 spectrofluorometer manufactured by Hitachi High-Technologies Corporation can be used. Note that the measurement device is not limited to this, and measurement may be performed by combining a cooling device, a low-temperature container, an excitation light source, and a light receiving device.
  • ⁇ Lowest excited singlet energy S 1 Examples of the method for measuring the lowest excited singlet energy S1 using a solution (sometimes referred to as a solution method) include the following method.
  • a 10 ⁇ mol/L toluene solution of the compound to be measured is prepared and placed in a quartz cell, and the absorption spectrum (vertical axis: absorption intensity, horizontal axis: wavelength) of this sample is measured at room temperature (300K).
  • Conversion formula (F2): S 1 [eV] 1239.85/ ⁇ edge
  • Examples of the absorption spectrum measuring device include, but are not limited to, a spectrophotometer manufactured by Hitachi (device name: U3310).
  • the tangent to the falling edge of the long wavelength side of the absorption spectrum is drawn as follows.
  • the slope of this tangent line repeats decreasing and then increasing as the curve falls (that is, as the value on the vertical axis decreases).
  • the tangent line drawn at the point where the slope value takes the minimum value on the longest wavelength side (excluding cases where the absorbance is 0.1 or less) is the tangent to the fall of the long wavelength side of the absorption spectrum. Note that a maximum point with an absorbance value of 0.2 or less is not included in the maximum value on the longest wavelength side.
  • the delayed fluorescence ratio when the light emitting region is made to emit light, the delayed fluorescence ratio is greater than 37.5%. If the delayed fluorescence ratio is greater than 37.5%, it exceeds the theoretical upper limit of the delayed fluorescence ratio (TTF ratio) assuming that delayed fluorescence occurs only by the TTF mechanism, and therefore organic matter with higher internal quantum efficiency An EL element can be realized.
  • the delayed fluorescence ratio corresponds to the ratio of the luminescence intensity derived from delayed fluorescence to the total luminescence intensity.
  • the delayed fluorescence ratio is derived by the following calculation method.
  • the delayed fluorescence ratio can be measured by the transient EL method.
  • the transient EL method is a method of measuring the attenuation behavior (transient characteristics) of EL light emission after the pulse voltage applied to the element is removed.
  • the EL emission intensity is classified into an emission component from singlet excitons generated in the first recombination and an emission component from singlet excitons generated via triplet excitons.
  • the lifetime of the singlet exciton generated in the first recombination is on the order of nanoseconds, which is extremely short, and therefore it decays quickly after the pulse voltage is removed.
  • delayed fluorescence decays slowly because it is emitted from singlet excitons that are generated via long-lived triplet excitons.
  • the emission from delayed fluorescence Strength can be determined. Specifically, it can be determined by the following method.
  • the transient EL waveform is measured as follows (see Figure 7).
  • a pulse voltage waveform output from a voltage pulse generator (PG) 11 is applied to an organic EL element (EL) 12.
  • the applied voltage waveform is taken into the oscilloscope (OSC) 13P.
  • OSC oscilloscope
  • PMT photomultiplier tube
  • the voltage waveform and pulsed light emission are synchronized and taken into a personal computer (PC) 15P.
  • the emission intensity ratio derived from delayed fluorescence (delayed fluorescence ratio in this specification) is defined as follows. Note that the TTF ratio calculation formula described in International Publication No. 2010/134352 can be used to calculate the emission intensity ratio derived from delayed fluorescence. The delayed fluorescence ratio is determined using Equation (4).
  • I is the emission intensity derived from delayed fluorescence
  • the graph in FIG. 8A is an example of measuring a transient EL waveform when a predetermined pulse voltage is applied to the organic EL elements of Examples 1 and 2 and Comparative Example 1, which will be described later, and then the voltage is removed. It shows the change in luminescence intensity over time.
  • the point of time when the pulse voltage was removed was taken as the origin. Note that the graph in FIG. 8A is expressed with the brightness when the voltage is removed as 1. After the voltage is removed, a gradual decay component appears until approximately 4.0E-05 seconds.
  • the emission intensity ratio derived from delayed fluorescence can be calculated in the same manner as in Example 1. Fitting to the straight line is preferably performed by the least squares method. In this case, 1.0. It is preferable to perform fitting using values from E-06 seconds to 1.0E-05 seconds.
  • the first luminescent layer contains a second host material and a first luminescent compound.
  • the second host material is a different compound from the first host material.
  • the first luminescent compound is a different compound from the first sensitizer.
  • Examples of the second host material include a compound selected from the group consisting of the first compound and the second compound described below.
  • Examples of the first luminescent compound include at least one compound selected from the group consisting of a fluorescent material described below, general formula (5), general formula (6), and general formula (3A). It will be done.
  • the first luminescent compound is a compound that emits light with a maximum peak wavelength of 430 nm or more and 480 nm or less. In one aspect of this embodiment, the first luminescent compound is a fluorescent compound that emits fluorescence with a maximum peak wavelength of 500 nm or less. In one aspect of this embodiment, the first luminescent compound is a fluorescent compound that emits fluorescence with a maximum peak wavelength of 430 nm or more and 480 nm or less.
  • the energy gap T 77K (D1) at 77 [K] of the first luminescent compound and the energy gap T 77K (H2) at 77 [K] of the second host material are as follows.
  • the relationship of the mathematical formula (Equation 21B) is satisfied.
  • the triplet excitons generated in the first sensitizing layer are transferred to the first luminescent layer.
  • energy is transferred to the molecules of the second host material rather than to the first luminescent compound, which has a higher triplet energy.
  • triplet excitons generated by recombination of holes and electrons on the second host material do not move to the first light-emitting compound having higher triplet energy.
  • Triplet excitons generated by recombination on molecules of the first luminescent compound quickly transfer energy to molecules of the second host material.
  • the triplet excitons of the second host material do not move to the first luminescent compound, and the triplet excitons efficiently collide with each other on the second host material due to the TTF phenomenon, resulting in singlet excitation. A child is generated.
  • the lowest excited singlet energy S 1 (H2) of the second host material and the lowest excited singlet energy S 1 (D1) of the first luminescent compound are expressed by the following formula (Equation 22B ) satisfies the relationship.
  • the lowest excited singlet energy S 1 of the first luminescent compound is the same as that of the second host material. Since the lowest excited singlet energy S is smaller than 1 , the singlet excitons generated by the TTF phenomenon transfer energy from the second host material to the first luminescent compound, increasing the fluorescence of the first luminescent compound. Contributes to luminescence.
  • the first luminescent compound is a compound that does not contain an azine ring structure in its molecule. In one aspect of this embodiment, the first luminescent compound is not a complex.
  • the first light-emitting layer does not contain a metal complex.
  • the first light emitting layer does not contain a phosphorescent material (dopant material). In one aspect of this embodiment, the first light emitting layer does not contain a heavy metal complex or a phosphorescent rare earth metal complex.
  • heavy metal complexes include iridium complexes, osmium complexes, and platinum complexes.
  • the first light-emitting layer contains the first light-emitting compound at 0.5% by mass or more, or at least 1% by mass of the total mass of the first light-emitting layer. In one aspect of the present embodiment, the first light-emitting layer contains the first light-emitting compound in an amount of 10% by mass or less, 7% by mass or less of the total mass of the first light-emitting layer, or 5% by mass or less of the total mass of the first light-emitting layer. Contains less than % by mass.
  • the first light-emitting layer contains the second host material in an amount of 60% by mass or more, 70% by mass or more, or 80% by mass of the total mass of the first light-emitting layer. 90% by mass or more, or 95% by mass or more.
  • the first light emitting layer contains the second host material in an amount of 99% by mass or less of the total mass of the first light emitting layer.
  • the upper limit of the total content of the second host material and the first luminescent compound in the first luminescent layer is 100% by mass.
  • the thickness of the first light emitting layer is 5 nm or more, or 10 nm or more. If the thickness of the first light-emitting layer is 5 nm or more, triplet excitons that have migrated from the first sensitizing layer to the first light-emitting layer are inhibited from returning to the first sensitizing layer. easy. Moreover, if the film thickness of the first light-emitting layer is 5 nm or more, triplet excitons can be sufficiently separated from the recombination portion in the first sensitizing layer. In one aspect of this embodiment, the film thickness of the first light emitting layer is 20 nm or less. If the film thickness of the first light emitting layer is 20 nm or less, the density of triplet excitons in the first light emitting layer can be improved to make the TTF phenomenon more likely to occur.
  • first host material and the second host material are, for example, a first compound represented by the following general formula (1), the following general formula (1X), or the following general formula (12X). , a first compound represented by general formula (13X), general formula (14X), general formula (15X) or general formula (16X), and a second compound represented by general formula (2) below, etc. Can be mentioned.
  • the first compound can also be used as the first host material and the second host material, and in this case, the general formula (1) used as the second host material, or the following general formula (1X),
  • the compound represented by the general formula (12X), the general formula (13X), the general formula (14X), the general formula (15X) or the general formula (16X) may be conveniently referred to as a second compound.
  • the first host material has the following general formula (1), the following general formula (1X), the general formula (12X), the general formula (13X), the general formula (14X), the general formula ( 15X) and the first compound represented by the general formula (16X).
  • the second host material is selected from a second compound represented by the following general formula (2).
  • the first compound is, for example, the following general formula (1), general formula (1X), general formula (12X), general formula (13X), general formula (14X), general formula ( 15X) or a compound represented by the general formula (16X).
  • the first compound is a compound represented by general formula (1) below.
  • the first compound represented by the following general formula (1) has at least one group represented by the following general formula (11).
  • R 901 , R 902 , R 903 , R 904 , R 905 , R 906 , R 907 , R 801 and R 802 are each independently, hydrogen atom, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms;
  • R 901s When a plurality of R 901s exist, the plurality of R 901s are the same or different from each other, When a plurality of R 902s exist, the plurality of R 902s are the same or different from each other, When a plurality of R 903s exist, the plurality of R 903s are the same or different from each other, When a plurality
  • Ar 101 is preferably a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • Ar 101 is substituted or unsubstituted phenyl group, substituted or unsubstituted naphthyl group, substituted or unsubstituted biphenyl group, substituted or unsubstituted terphenyl group, substituted or unsubstituted pyrenyl group, It is preferably a substituted or unsubstituted phenanthryl group or a substituted or unsubstituted fluorenyl group.
  • the first compound is preferably represented by the following general formula (101).
  • L 101 is preferably a single bond or a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms.
  • R 101 to R 110 are preferably groups represented by the general formula (11).
  • R 101 to R 110 are groups represented by the general formula (11), and Ar 101 is a substituted or unsubstituted group having 6 to 50 ring carbon atoms.
  • An aryl group is preferred.
  • Ar 101 is not a substituted or unsubstituted pyrenyl group
  • L 101 is not a substituted or unsubstituted pyrenylene group
  • the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms as R 101 to R 110 which is not a group represented by the general formula (11) is preferably not a substituted or unsubstituted pyrenyl group.
  • R 101 to R 110 that are not groups represented by the general formula (11) are each independently: hydrogen atom, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, It is preferably a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms.
  • R 101 to R 110 that are not groups represented by the general formula (11) are each independently: hydrogen atom, It is preferably a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms.
  • R 101 to R 110 that are not groups represented by the general formula (11) are preferably hydrogen atoms.
  • the first compound is a compound represented by general formula (1X) below.
  • the group represented by the general formula (11X) is preferably a group represented by the following general formula (111X).
  • X 1 is CR 143 R 144 , an oxygen atom, a sulfur atom, or NR 145 , L 111 and L 112 are each independently, single bond, A substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring atoms, ma is 1, 2, 3 or 4, mb is 1, 2, 3 or 4, ma+mb is 2, 3 or 4, Ar 101 has the same meaning as Ar 101 in the general formula (11), R 141 , R 142 , R 143 , R 144 and R 145 are each independently, hydrogen atom, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, Substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, Substituted or unsubstituted alkenyl group having 2 to 50 carbon atom
  • L 111 is bonded, R 141 is bonded to the remaining three positions of *1 to *4, L 112 is bonded to any one of the positions of *5 to *8, and the remaining three positions of *5 to *8 are bonded.
  • R 142 is attached at three positions.
  • L 111 is bonded to the *2 carbon atom position in the ring structure represented by the general formula (111aX), and L 112 is the group represented by the general formula (111aX).
  • 111aX the group represented by the general formula (111X) is represented by the following general formula (111bX).
  • X 1 , L 111 , L 112 , ma, mb, Ar 101 , R 141 , R 142 , R 143 , R 144 and R 145 each independently represent X 1 , L 111 , L in the general formula (111X) 112 , ma, mb, Ar 101 , R 141 , R 142 , R 143 , R 144 and R 145 , A plurality of R 141s are the same or different from each other, A plurality of R 142 's are the same or different. )
  • the group represented by the general formula (111X) is preferably a group represented by the general formula (111bX).
  • ma is preferably 1 or 2
  • mb is preferably 1 or 2.
  • ma is preferably 1 and mb is preferably 1.
  • Ar 101 is preferably a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • Ar 101 is substituted or unsubstituted phenyl group, substituted or unsubstituted naphthyl group, substituted or unsubstituted biphenyl group, substituted or unsubstituted terphenyl group, Substituted or unsubstituted benz[a]anthryl group, substituted or unsubstituted pyrenyl group, It is preferably a substituted or unsubstituted phenanthryl group or a substituted or unsubstituted fluorenyl group.
  • the compound represented by the general formula (1X) is also preferably represented by the following general formula (101X).
  • R 111 and R 112 indicates the bonding position with L 101
  • one of R 133 and R 134 indicates the bonding position with L 101
  • R 101 to R 110 indicates the bonding position with L 101
  • R 121 to R 130 indicates the bonding position with L 101
  • R 111 or R 112 which is not in the bonding position with L 101 are each independently, hydrogen atom
  • Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms Substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms
  • Substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms
  • L 101 is It is preferably a single bond or a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms.
  • the compound represented by the general formula (1X) is also preferably represented by the following general formula (102X).
  • R 111 and R 112 indicates the bonding position with L 111
  • one of R 133 and R 134 indicates the bonding position with L 112
  • R 101 to R 110 , R 121 to R 130 , R 111 or R 112 which is not in the bonding position with L 111 and R 133 or R 134 which is not in the bonding position with L 112 are each independently, hydrogen atom, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, Substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, Substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, A group represented by -Si(R)
  • ma in the general formula (102X) is preferably 1 or 2
  • mb is preferably 1 or 2.
  • ma is preferably 1 and mb is preferably 1 in the general formula (102X).
  • the group represented by the general formula (11X) is a group represented by the following general formula (11AX) or a group represented by the following general formula (11BX). It is also preferable that
  • the compound represented by the general formula (1X) is also preferably represented by the following general formula (103X).
  • R 101 to R 110 and R 112 are respectively synonymous with R 101 to R 110 and R 112 in the general formula (1X)
  • R 121 to R 131 , L 131 and L 132 have the same meanings as R 121 to R 131 , L 131 and L 132 in the general formula (11BX), respectively.
  • L 131 is also preferably a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms.
  • L 132 is also preferably a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms.
  • R 101 to R 112 are preferably groups represented by the general formula (11).
  • R 101 to R 112 are groups represented by the general formula (11X), and Ar 101 in the general formula (11X) is , a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • Ar 101 is not a substituted or unsubstituted benz[a]anthryl group
  • L 101 is not a substituted or unsubstituted benz[a]antrylene group
  • the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms as R 101 to R 110 which is not a group represented by the general formula (11X) is not a substituted or unsubstituted benz[a]anthryl group. It is also preferable.
  • R 101 to R 112 which are not groups represented by the general formula (11X) are each independently, hydrogen atom, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, It is preferably a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms.
  • R 101 to R 112 which are not groups represented by the general formula (11X) are hydrogen atom, It is preferably a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms.
  • R 101 to R 112 that are not groups represented by the general formula (11X) are preferably hydrogen atoms.
  • the first compound is a compound represented by general formula (12X) below.
  • R 1201 to R 1210 are each independently: hydrogen atom, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, Substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, Substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to
  • a group consisting of two adjacent ones of R 1201 to R 1210 is a group of R 1201 and R 1202 , a group of R 1202 and R 1203 , and a group of R 1203 and R 1204 .
  • a set of R 1204 and R 1205 , a set of R 1205 and R 1206 , a set of R 1207 and R 1208 , a set of R 1208 and R 1209 , and a set of R 1209 and R 1210 .
  • the first compound is a compound represented by general formula (13X) below.
  • none of the groups consisting of two or more adjacent ones of R 1301 to R 1310 which are not groups represented by the general formula (131), bond to each other.
  • the groups consisting of two adjacent ones include the group of R 1301 and R 1302 , the group of R 1302 and R 1303 , the group of R 1303 and R 1304 , and the group of R 1304 and R 1305 . , a set of R 1305 and R 1306 , a set of R 1307 and R 1308 , a set of R 1308 and R 1309 , and a set of R 1309 and R 1310 .
  • the first compound is a compound represented by general formula (14X) below.
  • the first compound is a compound represented by general formula (15X) below.
  • the first compound is a compound represented by general formula (16X) below.
  • the first host material has a connected structure including a benzene ring and a naphthalene ring connected by a single bond in the molecule, and the benzene ring and naphthalene ring in the connected structure each independently further has a single ring or a condensed ring, or is not condensed, and the benzene ring and naphthalene ring in the connected structure are further bonded by crosslinking at at least one moiety other than the single bond. It is also preferable that they are connected. Since the first host material has a connection structure including such crosslinking, it can be expected to suppress deterioration of chromaticity of the organic EL element.
  • the first host material has a connected structure (benzene- ) as the minimum unit; a single ring or a fused ring may be further fused to the benzene ring, or a single ring or a fused ring may be further fused to the naphthalene ring.
  • a connected structure (benzene- ) as the minimum unit; a single ring or a fused ring may be further fused to the benzene ring, or a single ring or a fused ring may be further fused to the naphthalene ring.
  • the first host material contains a naphthalene ring and a naphthalene ring connected by a single bond as represented by the following formula (X3), formula (X4), or formula (X5) in the molecule.
  • one naphthalene ring contains a benzene ring, so it includes a benzene-naphthalene connected structure.
  • the crosslink includes a double bond. That is, It is also preferable that the benzene ring and the naphthalene ring have a structure in which the benzene ring and the naphthalene ring are further connected through a crosslinked structure containing a double bond at a portion other than the single bond.
  • the first host material has a biphenyl structure in which a first benzene ring and a second benzene ring are connected by a single bond in the molecule, and It is also preferable that the first benzene ring and the second benzene ring are further connected by crosslinking at at least one moiety other than the single bond.
  • the first benzene ring and the second benzene ring in the biphenyl structure are further connected by the bridge at one part other than the single bond. Since the first host material has a biphenyl structure including such crosslinking, it can be expected to suppress deterioration of chromaticity of the organic EL element.
  • the crosslink includes a double bond. In one aspect of this embodiment, it is also preferable that the crosslink does not include a double bond.
  • first benzene ring and the second benzene ring in the biphenyl structure are further connected by the bridge at two parts other than the single bond.
  • the first benzene ring and the second benzene ring in the biphenyl structure are further connected by the bridge at two parts other than the single bond, and the bridge connects the double bond. It is also preferable not to include it. Since the first host material has a biphenyl structure including such crosslinking, it can be expected to suppress deterioration of chromaticity of the organic EL element.
  • the biphenyl structure represented by the following formula (BP1)
  • BP1 the biphenyl structure represented by the following formula (BP1)
  • BP15 a connected structure (fused ring) such as the following formulas (BP11) to (BP15).
  • the formula (BP11) has a structure in which one part other than the single bond is connected by a crosslink that does not contain a double bond.
  • the formula (BP12) has a structure in which one part other than the single bond is connected by a crosslink containing a double bond.
  • the formula (BP13) has a structure in which two parts other than the single bond are connected by a crosslink that does not contain a double bond.
  • the formula (BP14) has a structure in which one of the two parts other than the single bond is connected by a crosslink that does not contain a double bond, and the other of the two parts other than the single bond is connected by a crosslink containing a double bond. It is.
  • the formula (BP15) has a structure in which two parts other than the single bond are connected by a crosslink containing a double bond.
  • the first compound can be produced by a known method. Furthermore, the first compound can also be produced by following known methods and using known alternative reactions and raw materials in accordance with the desired product.
  • first compound examples include the following compounds. However, the present invention is not limited to these specific examples of the first compound.
  • D represents a deuterium atom
  • Me represents a methyl group
  • tBu represents a tert-butyl group.
  • R 201 to R 208 are each independently, hydrogen atom, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, Substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, Substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, A group represented by -Si(R 901 )(R 902 )(R 903 ), A group represented by -O-(R 904 ), A group represented by -S-(R 905 ), A group represented by -N(R 906 )(R 907 ), a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms,
  • R 901 , R 902 , R 903 , R 904 , R 905 , R 906 , R 907 , R 801 and R 802 are each independently, hydrogen atom, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms;
  • R 901s When a plurality of R 901s exist, the plurality of R 901s are the same or different from each other, When a plurality of R 902s exist, the plurality of R 902s are the same or different from each other, When a plurality of R 903s exist, the plurality of R 903s are the same or different from each other, When a plurality
  • L 201 and L 202 are each independently, A single bond, or a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms
  • Ar 201 and Ar 202 are preferably each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • Ar 201 and Ar 202 are each independently: phenyl group, naphthyl group, phenanthryl group, biphenyl group, terphenyl group, diphenylfluorenyl group, dimethylfluorenyl group, benzodiphenylfluorenyl group, benzodimethylfluorenyl group, dibenzofuranyl group, dibenzothienyl group, A naphthobenzofuranyl group or a naphthobenzothienyl group is preferred.
  • R 201 to R 208 are each independently: hydrogen atom, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, It is preferably a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, or a group represented by -Si(R 901 )(R 902 )(R 903 ).
  • L 201 is A single bond or an unsubstituted arylene group having 6 to 22 ring carbon atoms
  • Ar 201 is preferably a substituted or unsubstituted aryl group having 6 to 22 ring carbon atoms.
  • R 201 to R 208 are each independently: hydrogen atom, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, It is preferably a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, or a group represented by -Si(R 901 )(R 902 )(R 903 ).
  • R 201 to R 208 in the second compound represented by the general formula (2) are preferably hydrogen atoms.
  • the second compound is also preferably a compound in which L 202 in the general formula (2) is a single bond and Ar 202 is an unsubstituted phenyl group.
  • the second compound is also preferably a compound in which L 202 in the general formula (2) is a single bond and Ar 202 is an unsubstituted 2-naphthyl group.
  • the second compound is also preferably a compound in which L 202 in the general formula (2) is a single bond and Ar 202 is an unsubstituted 1-naphthyl group.
  • the second compound is also preferably a compound in which L 202 in the general formula (2) is an unsubstituted p-phenylene group and Ar 202 is an unsubstituted phenyl group.
  • the second compound is also preferably a compound in which L 202 in the general formula (2) is an unsubstituted m-phenylene group and Ar 202 is an unsubstituted phenyl group.
  • the second compound is also preferably a compound in which L 202 in the general formula (2) is an unsubstituted o-phenylene group and Ar 202 is an unsubstituted phenyl group.
  • the second compound is also preferably a compound in which L 202 in the general formula (2) is an unsubstituted p-phenylene group and Ar 202 is an unsubstituted 1-naphthyl group. .
  • the second compound is also preferably a compound in which L 202 in the general formula (2) is an unsubstituted p-phenylene group and Ar 202 is an unsubstituted 2-naphthyl group. .
  • the second compound may be a compound in which L 202 in the general formula (2) is an unsubstituted 1,4-naphthalenediyl group and Ar 202 is an unsubstituted phenyl group. preferable.
  • the second compound is also preferably a compound in which L 202 in the general formula (2) is an unsubstituted m-phenylene group and Ar 202 is an unsubstituted 2-naphthyl group. .
  • the second compound is also preferably a compound represented by the following general formula (2X).
  • R 201 and R 203 to R 208 each independently have the same meaning as R 201 and R 203 to R 208 in the general formula (2), L 201 , L 202 , Ar 201 and Ar 202 are respectively synonymous with L 201 , L 202 , Ar 201 and Ar 202 in the general formula (2), L 203 has the same meaning as L 201 in the general formula (2), L 201 , L 202 and L 203 are the same or different from each other, Ar 203 has the same meaning as Ar 201 in the general formula (2), Ar 201 , Ar 202 and Ar 203 are the same or different from each other. )
  • the second compound is also preferably a compound in which L 202 in the general formula (2X) is a single bond and Ar 202 is an unsubstituted phenyl group.
  • the second compound is also preferably a compound in which L 202 in the general formula (2X) is a single bond and Ar 202 is an unsubstituted 2-naphthyl group.
  • the second compound is also preferably a compound in which L 202 in the general formula (2X) is a single bond and Ar 202 is an unsubstituted 1-naphthyl group.
  • the second compound is also preferably a compound in which L 202 in the general formula (2X) is an unsubstituted p-phenylene group and Ar 202 is an unsubstituted phenyl group.
  • the second compound is also preferably a compound in which L 202 in the general formula (2X) is an unsubstituted m-phenylene group and Ar 202 is an unsubstituted phenyl group.
  • the second compound is also preferably a compound in which L 202 in the general formula (2X) is an unsubstituted o-phenylene group and Ar 202 is an unsubstituted phenyl group.
  • the second compound is also preferably a compound in which L 202 in the general formula (2X) is an unsubstituted p-phenylene group and Ar 202 is an unsubstituted 1-naphthyl group. .
  • the second compound is also preferably a compound in which L 202 in the general formula (2X) is an unsubstituted p-phenylene group and Ar 202 is an unsubstituted 2-naphthyl group. .
  • the second compound may be a compound in which L 202 in the general formula (2X) is an unsubstituted 1,4-naphthalenediyl group and Ar 202 is an unsubstituted phenyl group. preferable.
  • the second compound is also preferably a compound in which L 202 in the general formula (2X) is an unsubstituted m-phenylene group and Ar 202 is an unsubstituted 2-naphthyl group. .
  • the second compound is also preferably a compound in which L 201 in the general formula (2X) is a single bond and Ar 201 is an unsubstituted phenyl group.
  • the second compound is also preferably a compound in which L 201 in the general formula (2X) is a single bond and Ar 201 is an unsubstituted 2-naphthyl group.
  • the second compound is also preferably a compound in which L 201 in the general formula (2X) is a single bond and Ar 201 is an unsubstituted 1-naphthyl group.
  • the second compound is also preferably a compound in which L 201 in the general formula (2X) is an unsubstituted p-phenylene group and Ar 201 is an unsubstituted phenyl group.
  • the second compound is also preferably a compound in which L 201 in the general formula (2X) is an unsubstituted m-phenylene group and Ar 201 is an unsubstituted phenyl group.
  • the second compound is also preferably a compound in which L 201 in the general formula (2X) is an unsubstituted o-phenylene group and Ar 201 is an unsubstituted phenyl group.
  • the second compound is also preferably a compound in which L 201 in the general formula (2X) is an unsubstituted p-phenylene group and Ar 201 is an unsubstituted 1-naphthyl group. .
  • the second compound is also preferably a compound in which L 201 in the general formula (2X) is an unsubstituted p-phenylene group and Ar 201 is an unsubstituted 2-naphthyl group. .
  • the second compound may be a compound in which L 201 in the general formula (2X) is an unsubstituted 1,4-naphthalenediyl group and Ar 201 is an unsubstituted phenyl group. preferable.
  • the second compound is also preferably a compound in which L 201 in the general formula (2X) is an unsubstituted m-phenylene group and Ar 201 is an unsubstituted 2-naphthyl group. .
  • the second light-emitting layer preferably contains the second compound represented by the general formula (2) as the second host material. Therefore, for example, the second light emitting layer contains the second compound represented by the general formula (2) in an amount of 50% by mass or more of the total mass of the second light emitting layer.
  • R 201 to R 208 which are substituents on the anthracene skeleton, prevent the interaction between molecules from being suppressed.
  • R 201 to R 208 are a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms. It may also be a heterocyclic group having 5 to 50 ring atoms.
  • R 201 to R 208 become bulky substituents such as alkyl groups and cycloalkyl groups, intermolecular interactions are suppressed, electron mobility with respect to the first host material decreases, and the first host material
  • the electron mobility of the material is ⁇ e(H1)
  • the electron mobility of the second host material is ⁇ e(H2)
  • the relationship ⁇ e(H2)> ⁇ e(H1) will not be satisfied.
  • satisfying the relationship ⁇ e(H2)> ⁇ e(H1) reduces the recombination ability of holes and electrons in the first sensitizing layer. can be expected to be suppressed.
  • R 201 to R 208 which are substituents on the anthracene skeleton, are preferably not bulky substituents, and are preferably not an alkyl group or a cycloalkyl group.
  • an alkyl group, a cycloalkyl group, a haloalkyl group, an alkenyl group, an alkynyl group, a group represented by -Si(R 901 )(R 902 )(R 903 ), a group represented by -O-(R 904 ) , a group represented by -S-(R 905 ), a group represented by -N(R 906 )(R 907 ), an aralkyl group, a group represented by -C( O)R 801 , -COOR 802 It is more preferable that it is not a group represented by, a halogen atom, a cyano group, or a nitro group.
  • the substituents in the case of "substituted or unsubstituted" in R 201 to R 208 are the aforementioned substituents that may become bulky, especially substituted or unsubstituted alkyl groups, and substituted or unsubstituted alkyl groups. It is also preferable that it does not contain an unsubstituted cycloalkyl group. Since the substituent in the case of "substituted or unsubstituted" in R 201 to R 208 does not include a substituted or unsubstituted alkyl group or a substituted or unsubstituted cycloalkyl group, an alkyl group, a cycloalkyl group, etc.
  • R 201 to R 208 which are substituents on the anthracene skeleton, are not bulky substituents, and that R 201 to R 208 as substituents are unsubstituted. Furthermore, in the case where the substituents R 201 to R 208 on the anthracene skeleton are not bulky substituents, when a substituent is bonded to R 201 to R 208 as non-bulky substituents, the substituent is also bulky.
  • the second compound can be produced by a known method. Further, the second compound can also be produced by following known methods and using known alternative reactions and raw materials that match the desired product.
  • Specific examples of the second compound include the following compounds. However, the present invention is not limited to these specific examples of the second compound.
  • the first luminescent compound is a fluorescent material.
  • fluorescent materials include bisarylaminonaphthalene derivatives, aryl-substituted naphthalene derivatives, bisarylaminoanthracene derivatives, aryl-substituted anthracene derivatives, bisarylaminopyrene derivatives, aryl-substituted pyrene derivatives, bisarylaminochrysene derivatives, and aryl-substituted pyrene derivatives.
  • Examples of the first luminescent compound include compounds represented by the following general formula (5), general formula (6), or general formula (3A).
  • the first luminescent compound is a compound represented by the following general formula (5).
  • R 501 to R 507 and R 511 to R 517 bond to each other to form a substituted or unsubstituted monocycle, are bonded to each other to form a substituted or unsubstituted condensed ring, or are not bonded to each other, R 501 to R 507 and R 511 to R 517 that do not form a substituted or unsubstituted monocyclic ring and do not form a substituted or unsubstituted fused ring are each independently, hydrogen atom, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, Substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50
  • R 521 and R 522 are each independently, hydrogen atom, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, Substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, A group represented by -Si(R 901 )(R 902 )(R 903 ), A group represented by -O-(R 904 ), A group represented by -S-(R 905 ), A group represented by -N(R 906 )(R 907 ), halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50
  • R 901 , R 902 , R 903 , R 904 , R 905 , R 906 and R 907 are each independently, hydrogen atom, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms; Preferably, it is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, When a plurality of R 901s exist, the plurality of R 901s are the same or different from each other, When a plurality of R 902s exist, the plurality
  • a set consisting of two or more adjacent ones of R 501 to R 507 and R 511 to R 517 includes, for example, a set consisting of R 501 and R 502 , a set consisting of R 502 and R 503 , and R 503. and R 504 , R 505 and R 506 , R 506 and R 507 , R 501 , R 502 , and R 503 , and so on.
  • the compound represented by the general formula (5) is a compound represented by the following general formula (52).
  • R 531 to R 534 and R 541 to R 544 bond to each other to form a substituted or unsubstituted monocycle, are bonded to each other to form a substituted or unsubstituted condensed ring, or are not bonded to each other, R 531 to R 534 , R 541 to R 544 , and R 551 and R 552 which do not form a substituted or unsubstituted monocyclic ring and which do not form a substituted or unsubstituted fused ring are each independently, hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms; R 561 to R 564 are each independently, A substituted or unsubstituted aryl group having 6 to 50 ring atoms, or a substituted
  • the first luminescent compound is a compound represented by the following general formula (6).
  • Ring a, ring b, and ring c are each independently, A substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring atoms, or a substituted or unsubstituted heterocycle having 5 to 50 ring atoms, R 601 and R 602 each independently combine with the a ring, b ring or c ring to form a substituted or unsubstituted heterocycle, or do not form a substituted or unsubstituted heterocycle, R 601 and R 602 which do not form a substituted or unsubstituted heterocycle are each independently, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, Substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloal
  • ring a, ring b, and ring c are rings condensed to the central fused two-ring structure of the general formula (6), which is composed of a boron atom and two nitrogen atoms.
  • the "aromatic hydrocarbon rings" of rings a, b, and c have the same structure as a compound in which a hydrogen atom is introduced into an "aryl group.”
  • the "aromatic hydrocarbon ring" of ring a contains three carbon atoms on the central fused two-ring structure of the general formula (6) as ring-forming atoms.
  • the "aromatic hydrocarbon ring" of ring b and ring c includes two carbon atoms on the central condensed two-ring structure of the general formula (6) as ring-forming atoms.
  • substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring carbon atoms include compounds in which a hydrogen atom is introduced into the "aryl group” described in specific example group G1.
  • the "heterocycle” of rings a, b, and c has the same structure as the compound in which a hydrogen atom is introduced into the above-mentioned “heterocyclic group.”
  • the "heterocycle” of ring a contains three carbon atoms on the central fused two-ring structure of the general formula (6) as ring-forming atoms.
  • the "heterocycle" of ring b and ring c includes two carbon atoms on the central fused two-ring structure of the general formula (6) as ring-forming atoms.
  • Specific examples of the "substituted or unsubstituted heterocycle having 5 to 50 ring atoms” include compounds in which a hydrogen atom is introduced into the "heterocyclic group" described in specific example group G2.
  • R 601 and R 602 may each independently bond to ring a, ring b, or ring c to form a substituted or unsubstituted heterocycle.
  • the heterocycle in this case includes the nitrogen atom on the central fused two-ring structure of the general formula (6).
  • the heterocycle in this case may contain a heteroatom other than a nitrogen atom.
  • the bonding of R 601 and R 602 with ring a, ring b, or ring c means that the atoms forming ring a, ring b, or ring c bond with the atoms forming ring R 601 and R 602 . means.
  • R 601 may be bonded to ring a to form a 2-ring condensed (or 3 or more condensed) nitrogen-containing heterocycle in which the ring containing R 601 and the a ring are condensed.
  • Specific examples of the nitrogen-containing heterocycle include compounds corresponding to a nitrogen-containing heterocyclic group of two or more condensed rings in the specific example group G2. The same applies to the case where R 601 is bonded to ring b, the case where R 602 is bonded to ring a, and the case where R 602 is bonded to ring c.
  • R 601 and R 602 each independently need not be bonded to ring a, ring b, or ring c.
  • ring a, ring b, and ring c in the general formula (6) are each independently a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring carbon atoms. In one embodiment, ring a, ring b, and ring c in the general formula (6) are each independently a substituted or unsubstituted benzene ring or naphthalene ring.
  • R 601 and R 602 in the general formula (6) are each independently: a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms; Preferred is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • the compound represented by the general formula (6) is a compound represented by the following general formula (62).
  • R 601A is combined with one or more selected from the group consisting of R 611 and R 621 to form a substituted or unsubstituted heterocycle, or does not form a substituted or unsubstituted heterocycle
  • R 602A is combined with one or more selected from the group consisting of R 613 and R 614 to form a substituted or unsubstituted heterocycle, or does not form a substituted or unsubstituted heterocycle
  • the R 601A and R 602A that do not form a substituted or unsubstituted heterocycle are each independently, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, Substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50
  • R 901 , R 902 , R 903 , R 904 , R 905 , R 906 and R 907 are each independently, hydrogen atom, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms;
  • R 901s When a plurality of R 901s exist, the plurality of R 901s are the same or different from each other,
  • the plurality of R 902s exist the plurality of R 902s are the same or different from each other,
  • a plurality of R 903s exist the plurality of R 903s are the same or different from each other,
  • a plurality of R 904s exist are each independently,
  • R 601A and R 602A in the general formula (62) are groups corresponding to R 601 and R 602 in the general formula (6), respectively.
  • R 601A and R 611 may be combined to form a 2-ring fused (or 3- or more-ring fused) nitrogen-containing heterocycle in which a ring containing them is fused with a benzene ring corresponding to ring a.
  • Specific examples of the nitrogen-containing heterocycle include compounds corresponding to a nitrogen-containing heterocyclic group of two or more condensed rings in the specific example group G2. The same applies to the case where R 601A and R 621 are combined, the case where R 602A and R 613 are combined, and the case where R 602A and R 614 are combined.
  • R 611 to R 621 are They may be bonded to each other to form a substituted or unsubstituted monocyclic ring, or may be bonded to each other to form a substituted or unsubstituted condensed ring.
  • R 611 and R 612 may be bonded to form a structure in which a benzene ring, indole ring, pyrrole ring, benzofuran ring, benzothiophene ring, etc.
  • the formed condensed ring becomes a naphthalene ring, a carbazole ring, an indole ring, a dibenzofuran ring, or a dibenzothiophene ring.
  • the compound represented by the general formula (6) is a compound represented by the following general formula (42-2).
  • R 611 to R 617 , R 601A and R 602A each independently have the same meaning as R 611 to R 617 , R 601A and R 602A in the general formula (62).
  • X 4 is an oxygen atom or a sulfur atom
  • One or more sets of two or more adjacent ones of R 701 to R 704 are bond to each other to form a substituted or unsubstituted monocycle, are bonded to each other to form a substituted or unsubstituted condensed ring, or are not bonded to each other
  • R 701 to R 704 that do not form a substituted or unsubstituted monocyclic ring and do not form a substituted or unsubstituted fused ring are each independently: hydrogen atom, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, Substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubsti
  • the first luminescent compound is a compound represented by the following general formula (3A).
  • Ra 301 , Ra 302 , Ra 303 , Ra 304 , Ra 305 , Ra 306 , Ra 307 , Ra 308 , Ra 309 and Ra 310 are bond to each other to form a substituted or unsubstituted monocycle, are bonded to each other to form a substituted or unsubstituted condensed ring, or are not bonded to each other,
  • At least one of Ra 301 to Ra 310 is a monovalent group represented by the following general formula (31A)
  • Ra 301 to Ra 310 that do not form a single ring, do not form a condensed ring, and are not monovalent groups represented by the following general formula (31A) are each independently: hydrogen atom, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, Substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted
  • Ara 301 and Ara 302 each independently, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms;
  • La 301 , La 302 and La 303 are each independently, single bond,
  • first luminescent compound (Specific example of first luminescent compound) Specific examples of the first luminescent compound are described below, but these are merely examples, and the first luminescent compound is not limited to the specific examples below.
  • the organic EL device may have one or more organic layers in addition to the first sensitizing layer and the first light emitting layer.
  • the organic layer include at least one layer selected from the group consisting of a hole injection layer, a hole transport layer, an electron barrier layer, a hole barrier layer, an electron injection layer, and an electron transport layer.
  • the organic EL device may be composed of only the first sensitizing layer and the first light emitting layer, but may include, for example, a hole injection layer, a hole transport layer, an electron barrier layer, a hole It may further include at least one layer selected from the group consisting of a barrier layer, an electron injection layer, and an electron transport layer.
  • an intervening layer may be disposed between the first sensitizing layer and the first light emitting layer.
  • the intervening layer is a non-doped layer. In one aspect of this embodiment, the intervening layer does not contain metal atoms.
  • the intervening layer includes an intervening layer material. In one aspect of this embodiment, the intervening layer material is not a luminescent compound.
  • the intervening layer material is not particularly limited, but is preferably a material other than a luminescent compound. Examples of intervening layer materials include: 1) heterocyclic compounds such as oxadiazole derivatives, benzimidazole derivatives, or phenanthroline derivatives; 2) fused aromatic compounds such as carbazole derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, or chrysene derivatives. 3) aromatic amine compounds such as triarylamine derivatives or fused polycyclic aromatic amine derivatives.
  • the intervening layer material is one or both of the first host material contained in the first sensitized layer and the second host material contained in the first light emitting layer. There may be.
  • the intervening layer when the intervening layer contains a plurality of intervening layer materials, the content of each intervening layer material is 10% by mass or more of the total mass of the intervening layer.
  • the intervening layer preferably contains the intervening layer material in an amount of 60% by mass or more of the total mass of the intervening layer, more preferably 70% by mass or more of the total mass of the intervening layer, and the total mass of the intervening layer It is more preferable to contain 80% by mass or more of the total mass of the intervening layer, even more preferably to contain 90 mass% or more of the total mass of the intervening layer, and even more preferably to contain 95 mass% or more of the total mass of the intervening layer. .
  • the intervening layer may contain only one kind of intervening layer material, or may contain two or more kinds of intervening layer materials.
  • the intervening layer contains two or more types of intervening layer materials, the upper limit of the total content of the two or more types of intervening layer materials is 100% by mass. Note that this embodiment does not exclude that the intervening layer includes a material other than the intervening layer material.
  • the intervening layer may be composed of a single layer, or may be composed of two or more laminated layers.
  • the thickness of the intervening layer is not particularly limited, but it is preferably 3 nm or more and 15 nm or less, and more preferably 5 nm or more and 10 nm or less per layer.
  • tandem organic electroluminescent device The tandem organic EL device of the second embodiment is one aspect of the organic EL device of the first embodiment.
  • an organic electroluminescent device having two or more light emitting units arranged between an anode and a cathode is referred to as a tandem organic electroluminescent device (tandem organic EL device).
  • a charge generation layer (corresponding to the first charge generation layer in the second embodiment or the third embodiment) is arranged between each light emitting unit of the tandem organic EL element.
  • the charge generating layer is also commonly referred to as an intermediate layer, intermediate electrode, intermediate conductive layer, electron withdrawal layer, connecting layer, connector layer, or intermediate insulating layer.
  • the charge generation layer is a layer that supplies electrons to a layer disposed closer to the anode than the charge generation layer, and supplies holes to a layer disposed closer to the cathode than the charge generation layer.
  • the charge generation layer can be formed from a known material.
  • the charge generation layer may be composed of one layer or two or more layers. A unit composed of two or more charge generation layers may be referred to as a charge generation unit.
  • the plurality of charge generation layers included in the charge generation unit may have the same or different compositions.
  • a plurality of layers including a light emitting layer disposed between a charge generation layer or a charge generation unit and an anode or a cathode may be referred to as a light emitting unit.
  • the charge generation layer is composed of two layers, the layer disposed closer to the anode than the charge generation layer is referred to as the N layer, and the layer disposed closer to the cathode than the charge generation layer is referred to as the P layer. There is.
  • tandem organic EL device of the second embodiment examples include the following aspects 1 to 4.
  • a tandem organic EL device includes a first light emitting unit including the light emitting region of the first embodiment as a first light emitting region, and a first light emitting unit disposed between the first light emitting unit and the cathode.
  • a second light emitting unit including a charge generation layer and a second light emitting region disposed between the first charge generation layer and the cathode, the first light emitting region being The second light emitting region includes at least a second light emitting layer, the anode, the first light emitting region, the first light emitting layer, and the first light emitting layer.
  • the charge generation layer, the second light emitting region, and the cathode are arranged in this order, and the second light emitting layer contains a third host material and a second light emitting compound.
  • Aspect 2 The tandem organic EL device of Aspect 2 has the same configuration as Aspect 1 except that the arrangement of the first light emitting region and the second light emitting region is changed.
  • a tandem type organic EL device includes a first light emitting unit including the light emitting region of the first embodiment as a first light emitting region, and a first light emitting unit disposed between the first light emitting unit and the anode.
  • a second light emitting unit including a charge generation layer and a second light emitting region disposed between the first charge generation layer and the anode, the first light emitting region being The second light emitting region includes at least a second light emitting layer, the anode, the second light emitting region, and the first light emitting layer.
  • the charge generation layer, the first light emitting region and the cathode are arranged in this order, and the second light emitting layer contains a third host material and a second light emitting compound.
  • the second light emitting region further includes a second sensitizing layer, and the arrangement of the second sensitizing layer and the second light emitting layer is as follows.
  • the points specified in order of the second sensitizing layer and the second light emitting layer from the anode side, and the arrangement of the first sensitizing layer and the first light emitting layer are This is the same as Embodiment 1 or Embodiment 2 except that the order of the first light-emitting layer is specified.
  • the second light-emitting region of Aspect 1 or Aspect 2 includes a second sensitizing layer and the second light-emitting layer
  • the first light-emitting region includes the The first sensitizing layer and the first light-emitting layer are arranged in this order from the anode side, and the second light-emitting region is arranged in the second sensitizing layer from the anode side. layer and the second light-emitting layer are arranged in this order, the second sensitizing layer contains a fourth host material and a second sensitizer, and the third sensitizing layer contains a fourth host material and a second sensitizing material.
  • the host material and the fourth host material are different from each other, and the second sensitizer and the second luminescent compound are different from each other, and the lowest excited singlet energy S of the second sensitizer is different from each other.
  • 1 (G2) and the energy gap T 77K (G2) of the second sensitizer at 77 [K] the difference ⁇ ST (G2) satisfies the following formula (Equation 1A).
  • ⁇ ST(G2) S 1 (G2)-T 77K (G2) ⁇ 0.5eV...(Math. 1A)
  • the second light emitting region in contrast to Aspect 1 or Aspect 2, the second light emitting region further includes a second sensitizing layer, and the arrangement of the second light emitting layer and the second sensitizing layer is as follows.
  • the points specified in the order of the second light emitting layer and the second sensitizing layer from the anode side, and the arrangement of the first light emitting layer and the first sensitizing layer are as follows: This is the same as Aspect 1 or Aspect 2 except that the order of one sensitizing layer is specified.
  • the second light-emitting region of Aspect 1 or Aspect 2 includes a second sensitizing layer and the second light-emitting layer, and the first light-emitting region includes the The first sensitizing layer and the first light-emitting layer are arranged in this order from the anode side, and the second light-emitting region is arranged in the second sensitizing layer from the anode side.
  • the second sensitizing layer contains a fourth host material and a second sensitizer
  • the second sensitizing layer contains a fourth host material and a second sensitizing material
  • the third The host material and the fourth host material are different from each other
  • the second sensitizer and the second luminescent compound are different from each other
  • the lowest excited singlet energy S of the second sensitizer is different from each other.
  • the tandem organic EL device of the second embodiment includes the light emitting region of the first embodiment (the light emitting region including the first sensitizer and the first light emitting layer) as the first light emitting region.
  • the first sensitizer has a small ⁇ AST in principle and a higher light absorption intensity than the phosphorescent complex, so it has suitable performance as a sensitizer. Therefore, according to the tandem type organic EL device of the second embodiment, the light emission starting voltage is low and light is emitted with high efficiency for the same reason as the first embodiment.
  • the first sensitizer and the first light emitting layer of the second embodiment are synonymous with the first sensitizer and the first light emitting layer of the first embodiment.
  • the third host material and the first host material are the same or different.
  • the third host material and the second host material are the same or different.
  • the fourth host material and the first host material are the same or different.
  • the fourth host material and the second host material are the same or different.
  • the second luminescent compound and the first luminescent compound are the same or different from each other.
  • the second luminescent compound and the first sensitizer are different from each other.
  • the second sensitizer and the first sensitizer are the same or different.
  • the second sensitizer and the first luminescent compound are different from each other.
  • Examples of the third host material include materials or compounds similar to the first host material and second host material described in the first embodiment.
  • Examples of the fourth host material include materials or compounds similar to the first host material and second host material described in the first embodiment.
  • Examples of the second sensitizer include materials or compounds similar to the first sensitizer described in the first embodiment.
  • Examples of the second luminescent compound include the same materials or compounds as the first luminescent compound described in the first embodiment.
  • the second light emitting layer may be a phosphorescent light emitting layer. In this case, the second light-emitting layer contains a phosphorescent compound as the second light-emitting compound.
  • the second light emitting region has the same characteristics as the first light emitting region, and as shown in FIG. It is preferable to emit light using the light emitting mechanism shown.
  • the second light-emitting region includes the first sensitizing layer described in the first embodiment as a second sensitizing layer, and the first light-emitting layer described in the first embodiment as a second sensitizing layer. It is preferable to include it as the second light-emitting layer.
  • ⁇ ST(G2) satisfies any of the following equations (12A) to (12D).
  • ⁇ ST(G2) S 1 (G2)-T 77K (G2) ⁇ 0.4eV...(Math. 12A)
  • ⁇ ST(G2) S 1 (G2)-T 77K (G2) ⁇ 0.3eV...(Math. 12B)
  • ⁇ ST(G2) S 1 (G2)-T 77K (G2) ⁇ 0.2eV...(Math. 12C)
  • ⁇ ST(G2) S 1 (G2)-T 77K (G2) ⁇ 0.1eV...(Math. 12D)
  • the energy gap T 77K (H3) of the third host material at 77 [K] satisfies the relationship of the following formula (Equation 2X).

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

陽極(3)と、陰極(4)と、陽極(3)及び陰極(4)の間に配置された発光領域(5)を有し、発光領域(5)は、第一の増感層(51)及び第一の発光層(52)を含み、第一の増感層(51)は、第一のホスト材料と、第一の増感材とを含有し、第一の発光層(52)は、第二のホスト材料と、第一の発光性化合物とを含有し、第一のホスト材料と第二のホスト材料とは、互いに異なり、第一の増感材と第一の発光性化合物とは、互いに異なり、第一の増感材の最低励起一重項エネルギーS1(G1)と、第一の増感材の77[K]におけるエネルギーギャップT77K(G1)との差ΔST(G1)は、数式(数1)を満たす、有機エレクトロルミネッセンス素子(1)。 ΔST(G1)=S1(G1)-T77K(G1)<0.5eV …(数1)

Description

有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス装置、電子機器、発光体、太陽電池及び光センサー
 本発明は、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス装置、電子機器、発光体、太陽電池及び光センサーに関する。
 低いエネルギーの光を高いエネルギーの光に変換する技術として、アップコンバージョンが注目されている。
 発光するフォトンのエネルギーよりも低エネルギーでの駆動が可能な技術として、アップコンバージョンが注目されている。
 アップコンバージョンの技術を光励起に適用した場合、発光よりも長波長の励起光を得ることができる。
 例えば、無機化合物を用いたアップコンバージョンにおいては、希土類イオンのf-f遷移を用いた多段励起により、赤外光から可視光を発生できることが知られている。
 また、有機物を用いた光アップコンバージョンにおいては、複数の励起状態間での相互作用(例えば、Triplet-Triplet Fusion=TTF)により、実際に長波長光励起から短波長光が得られることが知られている。
 一方、アップコンバージョンの技術を電気励起に適用した場合、発光のエネルギー(ボルト(V)を電子ボルト(eV)で表示したもの)よりも低いエネルギー、つまり、より低い印加電圧で発光が得られることが期待される。すなわち、低い印加電圧での発光は、駆動電圧の低電圧化が可能であることを意味する。
 有機エレクトロルミネッセンス素子(有機EL素子と称することがある)に用いられる蛍光素子用材料は、発光層のホストにおいてTTFを起こすことにより、励起三重項を励起一重項に変換し、次いでドーパントへのエネルギー移動を経て発光として再利用することで、高効率化が達成される(例えば、特許文献1)。これは有機固体膜でのアップコンバージョン発光の一種である。
 例えば、非特許文献1には、有機固体膜からなる積層構造に、増感材として燐光錯体(PtOEP)を導入したアップコンバージョン素子が記載されている。
国際公開第2010/134350号
Ting-An Lin et al.,ADVANCED MATERIALS COMMUNICATION,2020,32,1908175
 しかしながら、非特許文献1のアップコンバージョン素子においては、外部量子効率(EQE)が低く(0.024%程度)、低電圧化の可能性はあるものの、素子としての低消費電力化は見込めないとされている。燐光錯体は濃度消光を起こすため、燐光錯体を有機EL素子の発光層(固体薄膜)中に導入した場合、発光層中において燐光錯体が効率的に働かないと考えられるためである。
 近年では、モバイル機器のバッテリーを長持ちさせるなど、有機EL素子の更なる高性能化のニーズとして低消費電力化が求められている。
 発光層中でアップコンバージョンを効率よく発現させ、低消費電力で駆動する有機EL素子が求められている。
 本発明の目的は、発光開始電圧が低く、かつ高効率で発光する有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス装置、及び当該有機エレクトロルミネッセンス素子もしくは当該有機エレクトロルミネッセンス装置を搭載した電子機器を提供することである。
 本発明の別の目的は、発光開始電圧が低く、かつ高効率で発光する発光体、並びに当該発光体を搭載した太陽電池及び光センサーを提供することである。
 本発明の一態様によれば、陽極と、陰極と、前記陽極及び前記陰極の間に配置された発光領域を有し、前記発光領域は、第一の増感層及び第一の発光層を含み、前記第一の増感層は、第一のホスト材料と、第一の増感材とを含有し、前記第一の発光層は、第二のホスト材料と、第一の発光性化合物とを含有し、前記第一のホスト材料と前記第二のホスト材料とは、互いに異なり、前記第一の増感材と前記第一の発光性化合物とは、互いに異なり、前記第一の増感材の最低励起一重項エネルギーS(G1)と、前記第一の増感材の77[K]におけるエネルギーギャップT77K(G1)との差ΔST(G1)は、下記数式(数1)を満たす、有機エレクトロルミネッセンス素子が提供される。
  ΔST(G1)=S(G1)-T77K(G1)<0.5eV …(数1)
 本発明の一態様によれば、前述の本発明の一態様に係る有機エレクトロルミネッセンス素子と、電源とを備え、前記電源は、外部刺激によって電位差又は電流を発生する発電素子を備える、有機エレクトロルミネッセンス装置が提供される。
 本発明の一態様によれば、前述の本発明の一態様に係る有機エレクトロルミネッセンス素子または前述の本発明の一態様に係る有機エレクトロルミネッセンス装置を搭載した電子機器が提供される。
 本発明の一態様によれば、第一の増感部及び第一の発光部を含む発光体であって、前記第一の増感部は、第一のホスト材料と、第一の増感材とを含有し、前記第一の発光部は、第二のホスト材料と、第一の発光性化合物とを含有し、前記第一のホスト材料と前記第二のホスト材料とは、互いに異なり、前記第一の増感材と前記第一の発光性化合物とは、互いに異なり、前記第一の増感材の最低励起一重項エネルギーS(G1)と、前記第一の増感材の77[K]におけるエネルギーギャップT77K(G1)との差ΔST(G1)は、下記数式(数1)を満たし、前記第一の増感材の77[K]におけるエネルギーギャップT77K(G1)と、前記第一のホスト材料の77[K]におけるエネルギーギャップT77K(H1)と、前記第二のホスト材料の77[K]におけるエネルギーギャップT77K(H2)とが下記数式(数2)の関係を満たし、前記第一の増感材の最低励起一重項エネルギーS(G1)と、前記第一の発光性化合物の最低励起一重項エネルギーS(BD1)とが下記数式(数3)の関係を満たす、発光体が提供される。
  ΔST(G1)=S(G1)-T77K(G1)<0.5eV …(数1)
  T77K(G1)>T77K(H1)>T77K(H2) …(数2)
  S(BD1)>S(G1) …(数3)
 本発明の一態様によれば、前述の本発明の一態様に係る発光体を搭載した太陽電池が提供される。
 本発明の一態様によれば、前述の本発明の一態様に係る発光体を搭載した光センサーが提供される。
 本発明の一態様によれば、発光開始電圧が低く、かつ高効率で発光する有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス装置、及び当該有機エレクトロルミネッセンス素子もしくは当該有機エレクトロルミネッセンス装置を搭載した電子機器を提供できる。
 本発明の別の一態様によれば、発光開始電圧が低く、かつ高効率で発光する発光体、並びに当該発光体を搭載した太陽電池及び光センサーを提供できる。
第一実施形態に係る積層型発光層の発光機構を説明するための図である。 蛍光発光層(単層)の発光機構を説明するための図である。 Pt錯体を含む積層型発光層の発光機構を説明するための図である。 第一実施形態に係る有機EL素子の一例の概略構成を示す図である。 第一実施形態に係る有機EL素子の別の一例の概略構成を示す図である。 過渡PLを測定する装置の概略図である。 過渡PLの減衰曲線の一例を示す図である。 過渡EL波形の測定系を示す図である。 遅延蛍光由来の発光強度比の測定方法を示す図であり、実施例1~2及び比較例1の有機EL素子の発光強度の時間変化を示すグラフである。 遅延蛍光由来の発光強度比の測定方法を示す図であり、実施例1~2及び比較例1の有機EL素子の光強度の平方根の逆数の時間変化を示すグラフである。 第二実施形態に係る有機EL素子の一例の概略構成を示す図である。 第二実施形態に係る有機EL素子の別の一例の概略構成を示す図である。 第二実施形態に係る有機EL素子の別の一例の概略構成を示す図である。 第三実施形態に係る有機EL装置の一例の概略構成を示す図である。 第五実施形態に係る発光体の一例の概略構成を示す図である。 第五実施形態に係る発光体の別の一例の概略構成を示す図である。 測定電圧2.40Vで素子を通電した際の実施例1~2及び比較例1の有機EL素子の分光放射輝度スペクトルである。 測定電圧2.45Vで素子を通電した際の実施例1~2及び比較例1の有機EL素子の分光放射輝度スペクトルである。
[定義]
 本明細書において、水素原子とは、中性子数が異なる同位体、即ち、軽水素(protium)、重水素(deuterium)、及び三重水素(tritium)を包含する。
 本明細書において、化学構造式中、「R」等の記号や重水素原子を表す「D」が明示されていない結合可能位置には、水素原子、即ち、軽水素原子、重水素原子、又は三重水素原子が結合しているものとする。
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、及び複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記される「環形成炭素数」については、別途記載のない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジン環は環形成炭素数5であり、フラン環は環形成炭素数4である。また、例えば、9,9-ジフェニルフルオレニル基の環形成炭素数は13であり、9,9’-スピロビフルオレニル基の環形成炭素数は25である。
 また、ベンゼン環に置換基として、例えば、アルキル基が置換している場合、当該アルキル基の炭素数は、ベンゼン環の環形成炭素数に含めない。そのため、アルキル基が置換しているベンゼン環の環形成炭素数は、6である。また、ナフタレン環に置換基として、例えば、アルキル基が置換している場合、当該アルキル基の炭素数は、ナフタレン環の環形成炭素数に含めない。そのため、アルキル基が置換しているナフタレン環の環形成炭素数は、10である。
 本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば、単環、縮合環、及び環集合)の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、及び複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子(例えば、環を構成する原子の結合を終端する水素原子)や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、別途記載のない限り同様とする。例えば、ピリジン環の環形成原子数は6であり、キナゾリン環の環形成原子数は10であり、フラン環の環形成原子数は5である。例えば、ピリジン環に結合している水素原子、又は置換基を構成する原子の数は、ピリジン環形成原子数の数に含めない。そのため、水素原子、又は置換基が結合しているピリジン環の環形成原子数は、6である。また、例えば、キナゾリン環の炭素原子に結合している水素原子、又は置換基を構成する原子については、キナゾリン環の環形成原子数の数に含めない。そのため、水素原子、又は置換基が結合しているキナゾリン環の環形成原子数は10である。
 本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表し、置換されている場合の置換基の炭素数を含めない。ここで、「YY」は、「XX」よりも大きく、「XX」は、1以上の整数を意味し、「YY」は、2以上の整数を意味する。
 本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表し、置換されている場合の置換基の原子数を含めない。ここで、「YY」は、「XX」よりも大きく、「XX」は、1以上の整数を意味し、「YY」は、2以上の整数を意味する。
 本明細書において、無置換のZZ基とは「置換もしくは無置換のZZ基」が「無置換のZZ基」である場合を表し、置換のZZ基とは「置換もしくは無置換のZZ基」が「置換のZZ基」である場合を表す。
 本明細書において、「置換もしくは無置換のZZ基」という場合における「無置換」とは、ZZ基における水素原子が置換基と置き換わっていないことを意味する。「無置換のZZ基」における水素原子は、軽水素原子、重水素原子、又は三重水素原子である。
 また、本明細書において、「置換もしくは無置換のZZ基」という場合における「置換」とは、ZZ基における1つ以上の水素原子が、置換基と置き換わっていることを意味する。「AA基で置換されたBB基」という場合における「置換」も同様に、BB基における1つ以上の水素原子が、AA基と置き換わっていることを意味する。
「本明細書に記載の置換基」
 以下、本明細書に記載の置換基について説明する。
 本明細書に記載の「無置換のアリール基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「無置換の複素環基」の環形成原子数は、本明細書に別途記載のない限り、5~50であり、好ましくは5~30、より好ましくは5~18である。
 本明細書に記載の「無置換のアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20、より好ましくは1~6である。
 本明細書に記載の「無置換のアルケニル基」の炭素数は、本明細書に別途記載のない限り、2~50であり、好ましくは2~20、より好ましくは2~6である。
 本明細書に記載の「無置換のアルキニル基」の炭素数は、本明細書に別途記載のない限り、2~50であり、好ましくは2~20、より好ましくは2~6である。
 本明細書に記載の「無置換のシクロアルキル基」の環形成炭素数は、本明細書に別途記載のない限り、3~50であり、好ましくは3~20、より好ましくは3~6である。
 本明細書に記載の「無置換のアリーレン基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「無置換の2価の複素環基」の環形成原子数は、本明細書に別途記載のない限り、5~50であり、好ましくは5~30、より好ましくは5~18である。
 本明細書に記載の「無置換のアルキレン基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20、より好ましくは1~6である。
・「置換もしくは無置換のアリール基」
 本明細書に記載の「置換もしくは無置換のアリール基」の具体例(具体例群G1)としては、以下の無置換のアリール基(具体例群G1A)及び置換のアリール基(具体例群G1B)等が挙げられる。(ここで、無置換のアリール基とは「置換もしくは無置換のアリール基」が「無置換のアリール基」である場合を指し、置換のアリール基とは「置換もしくは無置換のアリール基」が「置換のアリール基」である場合を指す。)本明細書において、単に「アリール基」という場合は、「無置換のアリール基」と「置換のアリール基」の両方を含む。
 「置換のアリール基」は、「無置換のアリール基」の1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアリール基」としては、例えば、下記具体例群G1Aの「無置換のアリール基」の1つ以上の水素原子が置換基と置き換わった基、及び下記具体例群G1Bの置換のアリール基の例等が挙げられる。尚、ここに列挙した「無置換のアリール基」の例、及び「置換のアリール基」の例は、一例に過ぎず、本明細書に記載の「置換のアリール基」には、下記具体例群G1Bの「置換のアリール基」におけるアリール基自体の炭素原子に結合する水素原子がさらに置換基と置き換わった基、及び下記具体例群G1Bの「置換のアリール基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアリール基(具体例群G1A):
フェニル基、
p-ビフェニル基、
m-ビフェニル基、
o-ビフェニル基、
p-ターフェニル-4-イル基、
p-ターフェニル-3-イル基、
p-ターフェニル-2-イル基、
m-ターフェニル-4-イル基、
m-ターフェニル-3-イル基、
m-ターフェニル-2-イル基、
o-ターフェニル-4-イル基、
o-ターフェニル-3-イル基、
o-ターフェニル-2-イル基、
1-ナフチル基、
2-ナフチル基、
アントリル基、
ベンゾアントリル基、
フェナントリル基、
ベンゾフェナントリル基、
フェナレニル基、
ピレニル基、
クリセニル基、
ベンゾクリセニル基、
トリフェニレニル基、
ベンゾトリフェニレニル基、
テトラセニル基、
ペンタセニル基、
フルオレニル基、
9,9’-スピロビフルオレニル基、
ベンゾフルオレニル基、
ジベンゾフルオレニル基、
フルオランテニル基、
ベンゾフルオランテニル基、
ペリレニル基、及び
下記一般式(TEMP-1)~(TEMP-15)で表される環構造から1つの水素原子を除くことにより誘導される1価のアリール基。
・置換のアリール基(具体例群G1B):
o-トリル基、
m-トリル基、
p-トリル基、
パラ-キシリル基、
メタ-キシリル基、
オルト-キシリル基、
パラ-イソプロピルフェニル基、
メタ-イソプロピルフェニル基、
オルト-イソプロピルフェニル基、
パラ-t-ブチルフェニル基、
メタ-t-ブチルフェニル基、
オルト-t-ブチルフェニル基、
3,4,5-トリメチルフェニル基、
9,9-ジメチルフルオレニル基、
9,9-ジフェニルフルオレニル基、
9,9-ビス(4-メチルフェニル)フルオレニル基、
9,9-ビス(4-イソプロピルフェニル)フルオレニル基、
9,9-ビス(4-t-ブチルフェニル)フルオレニル基、
シアノフェニル基、
トリフェニルシリルフェニル基、
トリメチルシリルフェニル基、
フェニルナフチル基、
ナフチルフェニル基、及び
前記一般式(TEMP-1)~(TEMP-15)で表される環構造から誘導される1価の基の1つ以上の水素原子が置換基と置き換わった基。
・「置換もしくは無置換の複素環基」
 本明細書に記載の「複素環基」は、環形成原子にヘテロ原子を少なくとも1つ含む環状の基である。ヘテロ原子の具体例としては、窒素原子、酸素原子、硫黄原子、ケイ素原子、リン原子、及びホウ素原子が挙げられる。
 本明細書に記載の「複素環基」は、単環の基であるか、又は縮合環の基である。
 本明細書に記載の「複素環基」は、芳香族複素環基であるか、又は非芳香族複素環基である。
 本明細書に記載の「置換もしくは無置換の複素環基」の具体例(具体例群G2)としては、以下の無置換の複素環基(具体例群G2A)、及び置換の複素環基(具体例群G2B)等が挙げられる。(ここで、無置換の複素環基とは「置換もしくは無置換の複素環基」が「無置換の複素環基」である場合を指し、置換の複素環基とは「置換もしくは無置換の複素環基」が「置換の複素環基」である場合を指す。)本明細書において、単に「複素環基」という場合は、「無置換の複素環基」と「置換の複素環基」の両方を含む。
 「置換の複素環基」は、「無置換の複素環基」の1つ以上の水素原子が置換基と置き換わった基を意味する。「置換の複素環基」の具体例は、下記具体例群G2Aの「無置換の複素環基」の水素原子が置き換わった基、及び下記具体例群G2Bの置換の複素環基の例等が挙げられる。尚、ここに列挙した「無置換の複素環基」の例や「置換の複素環基」の例は、一例に過ぎず、本明細書に記載の「置換の複素環基」には、具体例群G2Bの「置換の複素環基」における複素環基自体の環形成原子に結合する水素原子がさらに置換基と置き換わった基、及び具体例群G2Bの「置換の複素環基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
 具体例群G2Aは、例えば、以下の窒素原子を含む無置換の複素環基(具体例群G2A1)、酸素原子を含む無置換の複素環基(具体例群G2A2)、硫黄原子を含む無置換の複素環基(具体例群G2A3)、及び下記一般式(TEMP-16)~(TEMP-33)で表される環構造から1つの水素原子を除くことにより誘導される1価の複素環基(具体例群G2A4)を含む。
 具体例群G2Bは、例えば、以下の窒素原子を含む置換の複素環基(具体例群G2B1)、酸素原子を含む置換の複素環基(具体例群G2B2)、硫黄原子を含む置換の複素環基(具体例群G2B3)、及び下記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基の1つ以上の水素原子が置換基と置き換わった基(具体例群G2B4)を含む。
・窒素原子を含む無置換の複素環基(具体例群G2A1):
ピロリル基、
イミダゾリル基、
ピラゾリル基、
トリアゾリル基、
テトラゾリル基、
オキサゾリル基、
イソオキサゾリル基、
オキサジアゾリル基、
チアゾリル基、
イソチアゾリル基、
チアジアゾリル基、
ピリジル基、
ピリダジニル基、
ピリミジニル基、
ピラジニル基、
トリアジニル基、
インドリル基、
イソインドリル基、
インドリジニル基、
キノリジニル基、
キノリル基、
イソキノリル基、
シンノリル基、
フタラジニル基、
キナゾリニル基、
キノキサリニル基、
ベンゾイミダゾリル基、
インダゾリル基、
フェナントロリニル基、
フェナントリジニル基、
アクリジニル基、
フェナジニル基、
カルバゾリル基、
ベンゾカルバゾリル基、
モルホリノ基、
フェノキサジニル基、
フェノチアジニル基、
アザカルバゾリル基、及びジアザカルバゾリル基。
・酸素原子を含む無置換の複素環基(具体例群G2A2):
フリル基、
オキサゾリル基、
イソオキサゾリル基、
オキサジアゾリル基、
キサンテニル基、
ベンゾフラニル基、
イソベンゾフラニル基、
ジベンゾフラニル基、
ナフトベンゾフラニル基、
ベンゾオキサゾリル基、
ベンゾイソキサゾリル基、
フェノキサジニル基、
モルホリノ基、
ジナフトフラニル基、
アザジベンゾフラニル基、
ジアザジベンゾフラニル基、
アザナフトベンゾフラニル基、及び
ジアザナフトベンゾフラニル基。
・硫黄原子を含む無置換の複素環基(具体例群G2A3):
チエニル基、
チアゾリル基、
イソチアゾリル基、
チアジアゾリル基、
ベンゾチオフェニル基(ベンゾチエニル基)、
イソベンゾチオフェニル基(イソベンゾチエニル基)、
ジベンゾチオフェニル基(ジベンゾチエニル基)、
ナフトベンゾチオフェニル基(ナフトベンゾチエニル基)、
ベンゾチアゾリル基、
ベンゾイソチアゾリル基、
フェノチアジニル基、
ジナフトチオフェニル基(ジナフトチエニル基)、
アザジベンゾチオフェニル基(アザジベンゾチエニル基)、
ジアザジベンゾチオフェニル基(ジアザジベンゾチエニル基)、
アザナフトベンゾチオフェニル基(アザナフトベンゾチエニル基)、及び
ジアザナフトベンゾチオフェニル基(ジアザナフトベンゾチエニル基)。
・下記一般式(TEMP-16)~(TEMP-33)で表される環構造から1つの水素原子を除くことにより誘導される1価の複素環基(具体例群G2A4):
 前記一般式(TEMP-16)~(TEMP-33)において、X及びYは、それぞれ独立に、酸素原子、硫黄原子、NH、又はCHである。ただし、X及びYのうち少なくとも1つは、酸素原子、硫黄原子、又はNHである。
 前記一般式(TEMP-16)~(TEMP-33)において、X及びYの少なくともいずれかがNH、又はCHである場合、前記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基には、これらNH、又はCHから1つの水素原子を除いて得られる1価の基が含まれる。
・窒素原子を含む置換の複素環基(具体例群G2B1):
(9-フェニル)カルバゾリル基、
(9-ビフェニリル)カルバゾリル基、
(9-フェニル)フェニルカルバゾリル基、
(9-ナフチル)カルバゾリル基、
ジフェニルカルバゾール-9-イル基、
フェニルカルバゾール-9-イル基、
メチルベンゾイミダゾリル基、
エチルベンゾイミダゾリル基、
フェニルトリアジニル基、
ビフェニリルトリアジニル基、
ジフェニルトリアジニル基、
フェニルキナゾリニル基、及びビフェニリルキナゾリニル基。
・酸素原子を含む置換の複素環基(具体例群G2B2):
フェニルジベンゾフラニル基、
メチルジベンゾフラニル基、
t-ブチルジベンゾフラニル基、及び
スピロ[9H-キサンテン-9,9’-[9H]フルオレン]の1価の残基。
・硫黄原子を含む置換の複素環基(具体例群G2B3):
フェニルジベンゾチオフェニル基、
メチルジベンゾチオフェニル基、
t-ブチルジベンゾチオフェニル基、及び
スピロ[9H-チオキサンテン-9,9’-[9H]フルオレン]の1価の残基。
・前記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基の1つ以上の水素原子が置換基と置き換わった基(具体例群G2B4):
 前記「1価の複素環基の1つ以上の水素原子」とは、該1価の複素環基の環形成炭素原子に結合している水素原子、XA及びYAの少なくともいずれかがNHである場合の窒素原子に結合している水素原子、及びXA及びYAの一方がCH2である場合のメチレン基の水素原子から選ばれる1つ以上の水素原子を意味する。
・「置換もしくは無置換のアルキル基」
 本明細書に記載の「置換もしくは無置換のアルキル基」の具体例(具体例群G3)としては、以下の無置換のアルキル基(具体例群G3A)及び置換のアルキル基(具体例群G3B)が挙げられる。(ここで、無置換のアルキル基とは「置換もしくは無置換のアルキル基」が「無置換のアルキル基」である場合を指し、置換のアルキル基とは「置換もしくは無置換のアルキル基」が「置換のアルキル基」である場合を指す。)以下、単に「アルキル基」という場合は、「無置換のアルキル基」と「置換のアルキル基」の両方を含む。
 「置換のアルキル基」は、「無置換のアルキル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルキル基」の具体例としては、下記の「無置換のアルキル基」(具体例群G3A)における1つ以上の水素原子が置換基と置き換わった基、及び置換のアルキル基(具体例群G3B)の例等が挙げられる。本明細書において、「無置換のアルキル基」におけるアルキル基は、鎖状のアルキル基を意味する。そのため、「無置換のアルキル基」は、直鎖である「無置換のアルキル基」、及び分岐状である「無置換のアルキル基」が含まれる。尚、ここに列挙した「無置換のアルキル基」の例や「置換のアルキル基」の例は、一例に過ぎず、本明細書に記載の「置換のアルキル基」には、具体例群G3Bの「置換のアルキル基」におけるアルキル基自体の水素原子がさらに置換基と置き換わった基、及び具体例群G3Bの「置換のアルキル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアルキル基(具体例群G3A):
メチル基、
エチル基、
n-プロピル基、
イソプロピル基、
n-ブチル基、
イソブチル基、
s-ブチル基、及び
t-ブチル基。
・置換のアルキル基(具体例群G3B):
ヘプタフルオロプロピル基(異性体を含む)、
ペンタフルオロエチル基、
2,2,2-トリフルオロエチル基、及び
トリフルオロメチル基。
・「置換もしくは無置換のアルケニル基」
 本明細書に記載の「置換もしくは無置換のアルケニル基」の具体例(具体例群G4)としては、以下の無置換のアルケニル基(具体例群G4A)、及び置換のアルケニル基(具体例群G4B)等が挙げられる。(ここで、無置換のアルケニル基とは「置換もしくは無置換のアルケニル基」が「無置換のアルケニル基」である場合を指し、「置換のアルケニル基」とは「置換もしくは無置換のアルケニル基」が「置換のアルケニル基」である場合を指す。)本明細書において、単に「アルケニル基」という場合は、「無置換のアルケニル基」と「置換のアルケニル基」の両方を含む。
 「置換のアルケニル基」は、「無置換のアルケニル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルケニル基」の具体例としては、下記の「無置換のアルケニル基」(具体例群G4A)が置換基を有する基、及び置換のアルケニル基(具体例群G4B)の例等が挙げられる。尚、ここに列挙した「無置換のアルケニル基」の例や「置換のアルケニル基」の例は、一例に過ぎず、本明細書に記載の「置換のアルケニル基」には、具体例群G4Bの「置換のアルケニル基」におけるアルケニル基自体の水素原子がさらに置換基と置き換わった基、及び具体例群G4Bの「置換のアルケニル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアルケニル基(具体例群G4A):
ビニル基、
アリル基、
1-ブテニル基、
2-ブテニル基、及び
3-ブテニル基。
・置換のアルケニル基(具体例群G4B):
1,3-ブタンジエニル基、
1-メチルビニル基、
1-メチルアリル基、
1,1-ジメチルアリル基、
2-メチルアリル基、及び
1,2-ジメチルアリル基。
・「置換もしくは無置換のアルキニル基」
 本明細書に記載の「置換もしくは無置換のアルキニル基」の具体例(具体例群G5)としては、以下の無置換のアルキニル基(具体例群G5A)等が挙げられる。(ここで、無置換のアルキニル基とは、「置換もしくは無置換のアルキニル基」が「無置換のアルキニル基」である場合を指す。)以下、単に「アルキニル基」という場合は、「無置換のアルキニル基」と「置換のアルキニル基」の両方を含む。
 「置換のアルキニル基」は、「無置換のアルキニル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルキニル基」の具体例としては、下記の「無置換のアルキニル基」(具体例群G5A)における1つ以上の水素原子が置換基と置き換わった基等が挙げられる。
・無置換のアルキニル基(具体例群G5A):
エチニル基。
・「置換もしくは無置換のシクロアルキル基」
 本明細書に記載の「置換もしくは無置換のシクロアルキル基」の具体例(具体例群G6)としては、以下の無置換のシクロアルキル基(具体例群G6A)、及び置換のシクロアルキル基(具体例群G6B)等が挙げられる。(ここで、無置換のシクロアルキル基とは「置換もしくは無置換のシクロアルキル基」が「無置換のシクロアルキル基」である場合を指し、置換のシクロアルキル基とは「置換もしくは無置換のシクロアルキル基」が「置換のシクロアルキル基」である場合を指す。)本明細書において、単に「シクロアルキル基」という場合は、「無置換のシクロアルキル基」と「置換のシクロアルキル基」の両方を含む。
 「置換のシクロアルキル基」は、「無置換のシクロアルキル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のシクロアルキル基」の具体例としては、下記の「無置換のシクロアルキル基」(具体例群G6A)における1つ以上の水素原子が置換基と置き換わった基、及び置換のシクロアルキル基(具体例群G6B)の例等が挙げられる。尚、ここに列挙した「無置換のシクロアルキル基」の例や「置換のシクロアルキル基」の例は、一例に過ぎず、本明細書に記載の「置換のシクロアルキル基」には、具体例群G6Bの「置換のシクロアルキル基」におけるシクロアルキル基自体の炭素原子に結合する1つ以上の水素原子が置換基と置き換わった基、及び具体例群G6Bの「置換のシクロアルキル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のシクロアルキル基(具体例群G6A):
シクロプロピル基、
シクロブチル基、
シクロペンチル基、
シクロヘキシル基、
1-アダマンチル基、
2-アダマンチル基、
1-ノルボルニル基、及び
2-ノルボルニル基。
・置換のシクロアルキル基(具体例群G6B):
4-メチルシクロヘキシル基。
・「-Si(R901)(R902)(R903)で表される基」
 本明細書に記載の-Si(R901)(R902)(R903)で表される基の具体例(具体例群G7)としては、
-Si(G1)(G1)(G1)、
-Si(G1)(G2)(G2)、
-Si(G1)(G1)(G2)、
-Si(G2)(G2)(G2)、
-Si(G3)(G3)(G3)、及び
-Si(G6)(G6)(G6)
が挙げられる。ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
 -Si(G1)(G1)(G1)における複数のG1は、互いに同一であるか、又は異なる。
 -Si(G1)(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -Si(G1)(G1)(G2)における複数のG1は、互いに同一であるか、又は異なる。
 -Si(G2)(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -Si(G3)(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。
 -Si(G6)(G6)(G6)における複数のG6は、互いに同一であるか、又は異なる。
・「-O-(R904)で表される基」
 本明細書に記載の-O-(R904)で表される基の具体例(具体例群G8)としては、
-O(G1)、
-O(G2)、
-O(G3)、及び
-O(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
・「-S-(R905)で表される基」
 本明細書に記載の-S-(R905)で表される基の具体例(具体例群G9)としては、
-S(G1)、
-S(G2)、
-S(G3)、及び
-S(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
・「-N(R906)(R907)で表される基」
 本明細書に記載の-N(R906)(R907)で表される基の具体例(具体例群G10)としては、
-N(G1)(G1)、
-N(G2)(G2)、
-N(G1)(G2)、
-N(G3)(G3)、及び
-N(G6)(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
 -N(G1)(G1)における複数のG1は、互いに同一であるか、又は異なる。
 -N(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -N(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。
 -N(G6)(G6)における複数のG6は、互いに同一であるか、又は異なる。
・「ハロゲン原子」
 本明細書に記載の「ハロゲン原子」の具体例(具体例群G11)としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられる。
・「置換もしくは無置換のフルオロアルキル基」
 本明細書に記載の「置換もしくは無置換のフルオロアルキル基」は、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している少なくとも1つの水素原子がフッ素原子と置き換わった基を意味し、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している全ての水素原子がフッ素原子で置き換わった基(パーフルオロ基)も含む。「無置換のフルオロアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。「置換のフルオロアルキル基」は、「フルオロアルキル基」の1つ以上の水素原子が置換基と置き換わった基を意味する。尚、本明細書に記載の「置換のフルオロアルキル基」には、「置換のフルオロアルキル基」におけるアルキル鎖の炭素原子に結合する1つ以上の水素原子がさらに置換基と置き換わった基、及び「置換のフルオロアルキル基」における置換基の1つ以上の水素原子がさらに置換基と置き換わった基も含まれる。「無置換のフルオロアルキル基」の具体例としては、前記「アルキル基」(具体例群G3)における1つ以上の水素原子がフッ素原子と置き換わった基の例等が挙げられる。
・「置換もしくは無置換のハロアルキル基」
 本明細書に記載の「置換もしくは無置換のハロアルキル基」は、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している少なくとも1つの水素原子がハロゲン原子と置き換わった基を意味し、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している全ての水素原子がハロゲン原子で置き換わった基も含む。「無置換のハロアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。「置換のハロアルキル基」は、「ハロアルキル基」の1つ以上の水素原子が置換基と置き換わった基を意味する。尚、本明細書に記載の「置換のハロアルキル基」には、「置換のハロアルキル基」におけるアルキル鎖の炭素原子に結合する1つ以上の水素原子がさらに置換基と置き換わった基、及び「置換のハロアルキル基」における置換基の1つ以上の水素原子がさらに置換基と置き換わった基も含まれる。「無置換のハロアルキル基」の具体例としては、前記「アルキル基」(具体例群G3)における1つ以上の水素原子がハロゲン原子と置き換わった基の例等が挙げられる。ハロアルキル基をハロゲン化アルキル基と称する場合がある。
・「置換もしくは無置換のアルコキシ基」
 本明細書に記載の「置換もしくは無置換のアルコキシ基」の具体例としては、-O(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。「無置換のアルコキシ基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。
・「置換もしくは無置換のアルキルチオ基」
 本明細書に記載の「置換もしくは無置換のアルキルチオ基」の具体例としては、-S(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。「無置換のアルキルチオ基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。
・「置換もしくは無置換のアリールオキシ基」
 本明細書に記載の「置換もしくは無置換のアリールオキシ基」の具体例としては、-O(G1)で表される基であり、ここで、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。「無置換のアリールオキシ基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30であり、より好ましくは6~18である。
・「置換もしくは無置換のアリールチオ基」
 本明細書に記載の「置換もしくは無置換のアリールチオ基」の具体例としては、-S(G1)で表される基であり、ここで、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。「無置換のアリールチオ基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30であり、より好ましくは6~18である。
・「置換もしくは無置換のトリアルキルシリル基」
 本明細書に記載の「トリアルキルシリル基」の具体例としては、-Si(G3)(G3)(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。-Si(G3)(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。「トリアルキルシリル基」の各アルキル基の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20であり、より好ましくは1~6である。
・「置換もしくは無置換のアラルキル基」
 本明細書に記載の「置換もしくは無置換のアラルキル基」の具体例としては、-(G3)-(G1)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」であり、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。従って、「アラルキル基」は、「アルキル基」の水素原子が置換基としての「アリール基」と置き換わった基であり、「置換のアルキル基」の一態様である。「無置換のアラルキル基」は、「無置換のアリール基」が置換した「無置換のアルキル基」であり、「無置換のアラルキル基」の炭素数は、本明細書に別途記載のない限り、7~50であり、好ましくは7~30であり、より好ましくは7~18である。
 「置換もしくは無置換のアラルキル基」の具体例としては、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、及び2-β-ナフチルイソプロピル基等が挙げられる。
 本明細書に記載の置換もしくは無置換のアリール基は、本明細書に別途記載のない限り、好ましくはフェニル基、p-ビフェニル基、m-ビフェニル基、o-ビフェニル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-ターフェニル-4-イル基、o-ターフェニル-3-イル基、o-ターフェニル-2-イル基、1-ナフチル基、2-ナフチル基、アントリル基、フェナントリル基、ピレニル基、クリセニル基、トリフェニレニル基、フルオレニル基、9,9’-スピロビフルオレニル基、9,9-ジメチルフルオレニル基、及び9,9-ジフェニルフルオレニル基等である。
 本明細書に記載の置換もしくは無置換の複素環基は、本明細書に別途記載のない限り、好ましくはピリジル基、ピリミジニル基、トリアジニル基、キノリル基、イソキノリル基、キナゾリニル基、ベンゾイミダゾリル基、フェナントロリニル基、カルバゾリル基(1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、又は9-カルバゾリル基)、ベンゾカルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、ジベンゾフラニル基、ナフトベンゾフラニル基、アザジベンゾフラニル基、ジアザジベンゾフラニル基、ジベンゾチオフェニル基、ナフトベンゾチオフェニル基、アザジベンゾチオフェニル基、ジアザジベンゾチオフェニル基、(9-フェニル)カルバゾリル基((9-フェニル)カルバゾール-1-イル基、(9-フェニル)カルバゾール-2-イル基、(9-フェニル)カルバゾール-3-イル基、又は(9-フェニル)カルバゾール-4-イル基)、(9-ビフェニリル)カルバゾリル基、(9-フェニル)フェニルカルバゾリル基、ジフェニルカルバゾール-9-イル基、フェニルカルバゾール-9-イル基、フェニルトリアジニル基、ビフェニリルトリアジニル基、ジフェニルトリアジニル基、フェニルジベンゾフラニル基、及びフェニルジベンゾチオフェニル基等である。
 本明細書において、カルバゾリル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
 本明細書において、(9-フェニル)カルバゾリル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
 前記一般式(TEMP-Cz1)~(TEMP-Cz9)中、*は、結合位置を表す。
 本明細書において、ジベンゾフラニル基、及びジベンゾチオフェニル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
 前記一般式(TEMP-34)~(TEMP-41)中、*は、結合位置を表す。
 本明細書に記載の置換もしくは無置換のアルキル基は、本明細書に別途記載のない限り、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及びt-ブチル基等である。
・「置換もしくは無置換のアリーレン基」
 本明細書に記載の「置換もしくは無置換のアリーレン基」は、別途記載のない限り、上記「置換もしくは無置換のアリール基」からアリール環上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換のアリーレン基」の具体例(具体例群G12)としては、具体例群G1に記載の「置換もしくは無置換のアリール基」からアリール環上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
・「置換もしくは無置換の2価の複素環基」
 本明細書に記載の「置換もしくは無置換の2価の複素環基」は、別途記載のない限り、上記「置換もしくは無置換の複素環基」から複素環上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換の2価の複素環基」の具体例(具体例群G13)としては、具体例群G2に記載の「置換もしくは無置換の複素環基」から複素環上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
・「置換もしくは無置換のアルキレン基」
 本明細書に記載の「置換もしくは無置換のアルキレン基」は、別途記載のない限り、上記「置換もしくは無置換のアルキル基」からアルキル鎖上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換のアルキレン基」の具体例(具体例群G14)としては、具体例群G3に記載の「置換もしくは無置換のアルキル基」からアルキル鎖上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
 本明細書に記載の置換もしくは無置換のアリーレン基は、本明細書に別途記載のない限り、好ましくは下記一般式(TEMP-42)~(TEMP-68)のいずれかの基である。
 前記一般式(TEMP-42)~(TEMP-52)中、Q~Q10は、それぞれ独立に、水素原子、又は置換基である。
 前記一般式(TEMP-42)~(TEMP-52)中、*は、結合位置を表す。
 前記一般式(TEMP-53)~(TEMP-62)中、Q~Q10は、それぞれ独立に、水素原子、又は置換基である。
 式Q及びQ10は、単結合を介して互いに結合して環を形成してもよい。
 前記一般式(TEMP-53)~(TEMP-62)中、*は、結合位置を表す。
 前記一般式(TEMP-63)~(TEMP-68)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
 前記一般式(TEMP-63)~(TEMP-68)中、*は、結合位置を表す。
 本明細書に記載の置換もしくは無置換の2価の複素環基は、本明細書に別途記載のない限り、好ましくは下記一般式(TEMP-69)~(TEMP-102)のいずれかの基である。
 前記一般式(TEMP-69)~(TEMP-82)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
 前記一般式(TEMP-83)~(TEMP-102)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
 以上が、「本明細書に記載の置換基」についての説明である。
・「結合して環を形成する場合」
 本明細書において、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成するか、互いに結合して、置換もしくは無置換の縮合環を形成するか、又は互いに結合せず」という場合は、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合と、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合と、「隣接する2つ以上からなる組の1組以上が、互いに結合しない」場合と、を意味する。
 本明細書における、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合、及び「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合(以下、これらの場合をまとめて「結合して環を形成する場合」と称する場合がある。)について、以下、説明する。母骨格がアントラセン環である下記一般式(TEMP-103)で表されるアントラセン化合物の場合を例として説明する。
 例えば、R921~R930のうちの「隣接する2つ以上からなる組の1組以上が、互いに結合して、環を形成する」場合において、1組となる隣接する2つからなる組とは、R921とR922との組、R922とR923との組、R923とR924との組、R924とR930との組、R930とR925との組、R925とR926との組、R926とR927との組、R927とR928との組、R928とR929との組、並びにR929とR921との組である。
 上記「1組以上」とは、上記隣接する2つ以上からなる組の2組以上が同時に環を形成してもよいことを意味する。例えば、R921とR922とが互いに結合して環Qを形成し、同時にR925とR926とが互いに結合して環Qを形成した場合は、前記一般式(TEMP-103)で表されるアントラセン化合物は、下記一般式(TEMP-104)で表される。
 「隣接する2つ以上からなる組」が環を形成する場合とは、前述の例のように隣接する「2つ」からなる組が結合する場合だけではなく、隣接する「3つ以上」からなる組が結合する場合も含む。例えば、R921とR922とが互いに結合して環Qを形成し、かつ、R922とR923とが互いに結合して環Qを形成し、互いに隣接する3つ(R921、R922及びR923)からなる組が互いに結合して環を形成して、アントラセン母骨格に縮合する場合を意味し、この場合、前記一般式(TEMP-103)で表されるアントラセン化合物は、下記一般式(TEMP-105)で表される。下記一般式(TEMP-105)において、環Q及び環Qは、R922を共有する。
 形成される「単環」、又は「縮合環」は、形成された環のみの構造として、飽和の環であっても不飽和の環であってもよい。「隣接する2つからなる組の1組」が「単環」、又は「縮合環」を形成する場合であっても、当該「単環」、又は「縮合環」は、飽和の環、又は不飽和の環を形成することができる。例えば、前記一般式(TEMP-104)において形成された環Q及び環Qは、それぞれ、「単環」又は「縮合環」である。また、前記一般式(TEMP-105)において形成された環Q、及び環Qは、「縮合環」である。前記一般式(TEMP-105)の環Qと環Qとは、環Qと環Qとが縮合することによって縮合環となっている。前記一般式(TMEP-104)の環Qがベンゼン環であれば、環Qは、単環である。前記一般式(TMEP-104)の環Qがナフタレン環であれば、環Qは、縮合環である。
 「不飽和の環」とは、芳香族炭化水素環、又は芳香族複素環を意味する。「飽和の環」とは、脂肪族炭化水素環、又は非芳香族複素環を意味する。
 芳香族炭化水素環の具体例としては、具体例群G1において具体例として挙げられた基が水素原子によって終端された構造が挙げられる。
 芳香族複素環の具体例としては、具体例群G2において具体例として挙げられた芳香族複素環基が水素原子によって終端された構造が挙げられる。
 脂肪族炭化水素環の具体例としては、具体例群G6において具体例として挙げられた基が水素原子によって終端された構造が挙げられる。
 「環を形成する」とは、母骨格の複数の原子のみ、あるいは母骨格の複数の原子とさらに1以上の任意の元素で環を形成することを意味する。例えば、前記一般式(TEMP-104)に示す、R921とR922とが互いに結合して形成された環Qは、R921が結合するアントラセン骨格の炭素原子と、R922が結合するアントラセン骨格の炭素原子と、1以上の任意の元素とで形成する環を意味する。具体例としては、R921とR922とで環Qを形成する場合において、R921が結合するアントラセン骨格の炭素原子と、R922とが結合するアントラセン骨格の炭素原子と、4つの炭素原子とで単環の不飽和の環を形成する場合、R921とR922とで形成する環は、ベンゼン環である。
 ここで、「任意の元素」は、本明細書に別途記載のない限り、好ましくは、炭素元素、窒素元素、酸素元素、及び硫黄元素からなる群から選択される少なくとも1種の元素である。任意の元素において(例えば、炭素元素、又は窒素元素の場合)、環を形成しない結合は、水素原子等で終端されてもよいし、後述する「任意の置換基」で置換されてもよい。炭素元素以外の任意の元素を含む場合、形成される環は複素環である。
 単環または縮合環を構成する「1以上の任意の元素」は、本明細書に別途記載のない限り、好ましくは2個以上15個以下であり、より好ましくは3個以上12個以下であり、さらに好ましくは3個以上5個以下である。
 本明細書に別途記載のない限り、「単環」、及び「縮合環」のうち、好ましくは「単環」である。
 本明細書に別途記載のない限り、「飽和の環」、及び「不飽和の環」のうち、好ましくは「不飽和の環」である。
 本明細書に別途記載のない限り、「単環」は、好ましくはベンゼン環である。
 本明細書に別途記載のない限り、「不飽和の環」は、好ましくはベンゼン環である。
 「隣接する2つ以上からなる組の1組以上」が、「互いに結合して、置換もしくは無置換の単環を形成する」場合、又は「互いに結合して、置換もしくは無置換の縮合環を形成する」場合、本明細書に別途記載のない限り、好ましくは、隣接する2つ以上からなる組の1組以上が、互いに結合して、母骨格の複数の原子と、1個以上15個以下の炭素元素、窒素元素、酸素元素、及び硫黄元素からなる群から選択される少なくとも1種の元素とからなる置換もしくは無置換の「不飽和の環」を形成する。
 上記の「単環」、又は「縮合環」が置換基を有する場合の置換基は、例えば後述する「任意の置換基」である。上記の「単環」、又は「縮合環」が置換基を有する場合の置換基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基である。
 上記の「飽和の環」、又は「不飽和の環」が置換基を有する場合の置換基は、例えば後述する「任意の置換基」である。上記の「単環」、又は「縮合環」が置換基を有する場合の置換基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基である。
 以上が、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合、及び「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合(「結合して環を形成する場合」)についての説明である。
・「置換もしくは無置換の」という場合の置換基
 本明細書における一実施形態においては、前記「置換もしくは無置換の」という場合の置換基(本明細書において、「任意の置換基」と呼ぶことがある。)は、例えば、
無置換の炭素数1~50のアルキル基、
無置換の炭素数2~50のアルケニル基、
無置換の炭素数2~50のアルキニル基、
無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
無置換の環形成炭素数6~50のアリール基、及び
無置換の環形成原子数5~50の複素環基からなる群から選択される基等であり、
 ここで、R901~R907は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基である。
 R901が2個以上存在する場合、2個以上のR901は、互いに同一であるか、又は異なり、
 R902が2個以上存在する場合、2個以上のR902は、互いに同一であるか、又は異なり、
 R903が2個以上存在する場合、2個以上のR903は、互いに同一であるか、又は異なり、
 R904が2個以上存在する場合、2個以上のR904は、互いに同一であるか、又は異なり、
 R905が2個以上存在する場合、2個以上のR905は、互いに同一であるか、又は異なり、
 R906が2個以上存在する場合、2個以上のR906は、互いに同一であるか、又は異なり、
 R907が2個以上存在する場合、2個以上のR907は、互いに同一であるか又は異なる。
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
炭素数1~50のアルキル基、
環形成炭素数6~50のアリール基、及び
環形成原子数5~50の複素環基からなる群から選択される基である。
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
炭素数1~18のアルキル基、
環形成炭素数6~18のアリール基、及び
環形成原子数5~18の複素環基からなる群から選択される基である。
 上記任意の置換基の各基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基の具体例である。
 本明細書において別途記載のない限り、隣接する任意の置換基同士で、「飽和の環」、又は「不飽和の環」を形成してもよく、好ましくは、置換もしくは無置換の飽和の5員環、置換もしくは無置換の飽和の6員環、置換もしくは無置換の不飽和の5員環、又は置換もしくは無置換の不飽和の6員環を形成し、より好ましくは、ベンゼン環を形成する。
 本明細書において別途記載のない限り、任意の置換基は、さらに置換基を有してもよい。任意の置換基がさらに有する置換基としては、上記任意の置換基と同様である。
 本明細書において、「AA~BB」を用いて表される数値範囲は、「AA~BB」の前に記載される数値AAを下限値とし、「AA~BB」の後に記載される数値BBを上限値として含む範囲を意味する。
 本明細書において、「A≧B」で表される数式は、Aの値とBの値とが等しいか、又はAの値がBの値よりも大きいことを意味する。
 本明細書において、「A≦B」で表される数式は、Aの値とBの値とが等しいか、又はAの値がBの値よりも小さいことを意味する。
〔第一実施形態〕
(有機エレクトロルミネッセンス素子)
 本実施形態の有機エレクトロルミネッセンス素子は、陽極と、陰極と、前記陽極及び前記陰極の間に配置された発光領域を有し、前記発光領域は、第一の増感層及び第一の発光層を含み、前記第一の増感層は、第一のホスト材料と、第一の増感材とを含有し、前記第一の発光層は、第二のホスト材料と、第一の発光性化合物とを含有し、前記第一のホスト材料と前記第二のホスト材料とは、互いに異なり、前記第一の増感材と前記第一の発光性化合物とは、互いに異なり、前記第一の増感材の最低励起一重項エネルギーS(G1)と、前記第一の増感材の77[K]におけるエネルギーギャップT77K(G1)との差ΔST(G1)は、下記数式(数1)を満たす。
  ΔST(G1)=S(G1)-T77K(G1)<0.5eV …(数1)
 従来の有機EL素子は、発光層として、2以上の発光層が積層された構造(以下、積層型発光層と称することがある)を導入することにより、電気励起時に励起子を生成する発光層と、TTFによるアップコンバージョンを発現させる層とを空間的に分離し、素子の高効率化を図っていた。
 しかしながら、低電圧化を図るために、電気励起により励起三重項のみを選択的に生成することは、通常困難であり、特に青色発光を得るのは困難であった。
 例えば、積層型発光層を導入した有機EL素子において、TTFを利用した青色蛍光素子を発光させる際の閾値電圧は、2.7eV付近であり、発光のエネルギー付近にとどまっている。
 一方、励起三重項状態の効率的な生成については、増感材として燐光錯体を利用した積層型発光層の素子(アップコンバージョン素子)が知られており、アップコンバージョンにより、燐光錯体からTTF分子への三重項エネルギー移動を介した素子が知られている(非特許文献1参照)。しかしながら、前述の通り、燐光錯体を用いた積層型発光層の素子は、外部量子効率(EQE)が低い(0.024%程度)。
 そこで、本発明者らは、増感材として機能する燐光錯体に代えて、前記数式(数1)(ΔST(G1)=S(G1)-T77K(G1)<0.5eV)を満たす第一の増感材を、積層型発光層の有機EL素子に導入することにより、発光効率を高く保持しつつ、発光開始電圧を低くできることを見出した。
 前記数式(数1)を満たす第一の増感材は、最低励起一重項エネルギーS(G1)と、77[K]におけるエネルギーギャップT77K(G1)との差ΔST(G1)が小さいことを示している。これは、三重項状態への励起に必要なエネルギーを小さくでき、エネルギーのロスを低減できることを意味する。第一の増感材は、好適には遅延蛍光性材料である。
 一方、増感材としての燐光錯体(例えばPt錯体)は、三重項状態に励起するには、光の吸収強度が、比較的小さい。そのため、増感材としての機能を発現させるためには、膜中の燐光錯体の濃度を高くするか、エネルギーをロスしても燐光錯体を高いエネルギーで励起させる必要がある。濃度の点については、燐光錯体は濃度消光を生じ易いという問題があるため、膜中の燐光錯体の濃度を高くすることはできない。
 これに対し、本実施形態の第一の増感材(好適には遅延蛍光性材料)は、エネルギーを吸収することで励起一重項状態を介する経路も含め励起三重項状態となる。また、第一の増感材の光の吸収強度は、燐光錯体と比べて大きい。よって、本実施形態の第一の増感材は、燐光錯体に比べて、膜中の濃度を低くしても、効率よく膜内で励起状態を生成できる。さらに、本実施形態の第一の増感材は、ΔSTが小さいので、エネルギーのロスも抑えられる。
 このように、本実施形態の第一の増感材は、原理的にΔSTが小さく、かつ光の吸収強度が燐光錯体よりも高いので、増感材として好適な性能を有する。
 よって、本実施形態に係る有機EL素子によれば、発光開始電圧が低く、かつ高効率で発光する。
 具体的には、例えば、後述の実施例1~12の有機EL素子では、外部量子効率(EQE)2.2%以上で発光し、0.01cd/mの輝度が得られる発光開始電圧は2.40V以上2.50V以下である。後述の実施例1~12の有機EL素子のEQEは、非特許文献1のアップコンバージョン素子に比べ、約1000倍の値である。後述の実施例1~12の有機EL素子の発光開始電圧は、第一の増感材として用いた材料のバンドギャップにほぼ相当する値である。
 以上より、本実施形態に係る有機EL素子は、低消費電圧化のニーズに対し、有望である。
 本実施形態の一態様において、第一の増感材の最低励起一重項エネルギーS(G1)と、第一の増感材の77[K]におけるエネルギーギャップT77K(G1)との差ΔST(G1)は、下記数式(数11A)~(数11D)のいずれかの関係を満たす。
  ΔST(G1)=S(G1)-T77K(G1)<0.4eV …(数11A)
  ΔST(G1)=S(G1)-T77K(G1)<0.3eV …(数11B)
  ΔST(G1)=S(G1)-T77K(G1)<0.2eV …(数11C)
  ΔST(G1)=S(G1)-T77K(G1)<0.1eV …(数11D)
 本実施形態の一態様において、第一の増感材の77[K]におけるエネルギーギャップT77K(G1)と、第一のホスト材料の77[K]におけるエネルギーギャップT77K(H1)と、第二のホスト材料の77[K]におけるエネルギーギャップT77K(H2)とが下記数式(数2)の関係を満たす。
  T77K(G1)>T77K(H1)>T77K(H2) …(数2)
 第一のホスト材料、第一の増感材及び第二のホスト材料が前記数式(数2)の関係を満たすことにより、第一の増感層内で生成した三重項励起子は、より高い三重項エネルギーを有する第一の増感材ではなく、第一のホスト材料上を移動し、さらに第一のホスト材料から第一の発光層中の第二のホスト材料上へ移動し易くなる。
 本実施形態の一態様において、第一の増感材の77[K]におけるエネルギーギャップT77K(G1)と、第一のホスト材料の77[K]におけるエネルギーギャップT77K(H1)とが下記数式(数21)の関係を満たす。
  T77K(G1)-T77K(H1)<0.5eV …(数21)
 本実施形態の一態様において、第一の増感材の77[K]におけるエネルギーギャップT77K(G1)と、第一のホスト材料の77[K]におけるエネルギーギャップT77K(H1)とが下記数式(数21A)の関係を満たす。
  T77K(G1)-T77K(H1)<0.4eV …(数21A)
 第一の増感材及び第一のホスト材料が前記数式(数21)又は(数21A)の関係を満たすことにより、第一の増感層内で生成した三重項励起子が、第一の増感材上から第一のホスト材料上へ効率よく移動し易くなる。
 本実施形態の一態様において、前記第一のホスト材料の77[K]におけるエネルギーギャップT77K(H1)と、前記第二のホスト材料の77[K]におけるエネルギーギャップT77K(H2)とが下記数式(数22)の関係を満たす。
  T77K(H1)-T77K(H2)<0.3eV …(数22)
 第一のホスト材料及び第二のホスト材料が前記数式(数22)の関係を満たすことにより、第一のホスト材料を含む第一の増感層から第二のホスト材料を含む第一の発光層へ励起三重項エネルギーが効率よく移動し、発光領域におけるアップコンバージョンが有利に発現される。
 本実施形態の一態様において、前記第一の増感材の最低励起一重項エネルギーS(G1)と、前記第一の発光性化合物の最低励起一重項エネルギーS(BD1)とが下記数式(数3)の関係を満たす。
  S(BD1)>S(G1) …(数3)
 第一の増感材及び第一の発光性化合物が前記数式(数3)の関係を満たすことにより、第一の増感層に第一の発光性化合物の最低励起一重項エネルギーよりも小さなエネルギーを与えることで有機EL素子が発光するアップコンバージョン発光が発現する。
 本実施形態の一態様において、前記第一の増感層と前記第一の発光層とが、直接、接している。
 本実施形態の一態様において、前記第一の増感層は、前記陽極と前記陰極との間に配置され、前記第一の発光層は、前記第一の増感層と前記陰極との間に配置されている。この態様の場合、発光領域は、陽極側から順に、第一の増感層及び第一の発光層をこの順で含む。
 本実施形態の一態様において、発光領域が、陽極側から順に、第一の増感層及び第一の発光層をこの順で含む場合、
 前記第一の増感材の最低空軌道のエネルギー準位LUMO(G1)の絶対値と、前記第一のホスト材料の最低空軌道のエネルギー準位LUMO(H1)の絶対値とが、下記数式(数4)の関係を満たす。
  |LUMO(G1)|>|LUMO(H1)| …(数4)
 第一の増感材及び第一のホスト材料が前記数式(数4)の関係を満たすことにより、第一の増感層において第一の増感材に電子がトラップされ易くなり、その結果、第一の増感層における正孔と電子との再結合が促進される。
 本実施形態の一態様において、発光領域が、陽極側から順に、第一の増感層及び第一の発光層をこの順で含む場合、第一の増感材及び第一のホスト材料が前記数式(数4)の関係を満たすことに加えて、前記第二のホスト材料の最低空軌道のエネルギー準位LUMO(H2)の絶対値と、前記第一の発光性化合物の最低空軌道のエネルギー準位LUMO(BD1)の絶対値とが、下記数式(数41)の関係を満たす。
  |LUMO(H2)|>|LUMO(BD1)| …(数41)
 第二のホスト材料及び第一の発光性化合物が前記数式(数41)の関係を満たすことにより、第一の発光層において第一の発光性化合物に電子がトラップされにくくなり、その結果、第一の増感層における正孔と電子との再結合が促進される。
 本実施形態の一態様において、前記第一の増感層は、前記陽極と前記陰極との間に配置され、前記第一の発光層は、前記第一の増感層と前記陽極との間に配置されている。この態様の場合、発光領域は、陽極側から順に、第一の発光層及び第一の増感層をこの順で含む。
 本実施形態の一態様において、発光領域が、陽極側から順に、第一の発光層及び第一の増感層をこの順で含む場合、
 前記第一の増感材の最高被占軌道のエネルギー準位HOMO(G1)の絶対値と、前記第一のホスト材料の最高被占軌道のエネルギー準位HOMO(H1)の絶対値とが、下記数式(数5)の関係を満たす。
  |HOMO(G1)|<|HOMO(H1)| …(数5)
 第一の増感材及び第一のホスト材料が前記数式(数5)の関係を満たすことにより、第一の増感層において第一の増感材に正孔がトラップされ易くなり、その結果、第一の増感層における正孔と電子との再結合が促進される。
 本実施形態の一態様において、発光領域が、陽極側から順に、第一の発光層及び第一の増感層をこの順で含む場合、第一の増感材及び第一のホスト材料が前記数式(数5)の関係を満たすことに加えて、
 前記第二のホスト材料の最高被占軌道のエネルギー準位HOMO(H2)の絶対値と、前記第一の発光性化合物の最高被占軌道のエネルギー準位HOMO(BD1)の絶対値とが、下記数式(数51)の関係を満たす。
  |HOMO(H2)|<|HOMO(BD1)| …(数51)
 第二のホスト材料及び第一の発光性化合物が前記数式(数51)の関係を満たすことにより、第一の発光層において第一の発光性化合物に正孔がトラップされにくくなり、その結果、第一の増感層における正孔と電子との再結合が促進される。
 HOMO及びLUMOの測定方法は以下の通りである。
(最高被占軌道のエネルギー準位HOMO)
 最高被占軌道のエネルギー準位HOMOは、測定対象化合物(化合物又は材料)に光を照射し、その際に電荷分離によって生じる電子量を、大気下光電子分光装置(理研計器株式会社製:AC-3)を用いて測定する。
(最低空軌道のエネルギー準位LUMO)
 最低空軌道のエネルギー準位LUMOは、微分パルスボルタンメトリー法で測定した値である。微分パルスボルタンメトリー法の詳細は、次の通りである。
 測定対象物(化合物又は材料)の最低空軌道のエネルギー準位LUMOは、次の数式(数1Y)により算出される値である。最低空軌道のエネルギー準位LUMOの単位は、eVである。
 LUMO=-1.19×(Ere-Efc)-4.78eV …(数1Y)
 数式(数1Y)において、Ere及びEfcは、次の通りである。
  Ere:測定対象物の第一還元電位(DPV,Negative scan)
  Efc:フェロセンの第一酸化電位(DPV,Positive scan),(ca.+0.55V vs Ag/AgCl)
 酸化還元電位は、電気化学アナライザー(ALS社製:CHI852D)を用いて微分パルスボルタンメトリー(DPV)法で測定する。
 測定に用いる試料溶液は、溶媒としてN,N-ジメチルホルムアミド(N,N-dimethylformamide(DMF))を用い、測定対象物を、その濃度が1.0mmol/Lとなるように溶解させ、支持電解質としてのテトラブチルアンモニウムヘキサフルオロホスフェート(tetrabuthylammonium hexafluorophosphate(TBHP))を、その濃度が100mmol/Lとなるように溶解させて調製する。作用電極としては、グラッシーカーボン(glassy carbon)電極を用いる。対向電極としては、白金(Pt)電極を用いる。
(参考文献)M. E. Thompson,et.al.,Organic Electronics,6(2005),p.11-20,Organic Electronics,10(2009),p.515-520
 本実施形態の一態様において、前記有機エレクトロルミネッセンス素子において、発光スペクトルのピークのエネルギーEPE(eV)と、0.01cd/mの輝度が得られる際に素子に与えているエネルギーETH(eV)との差が、下記数式(数6)の関係を満たす。
 ETH-EPE≦0.05eV …(数6)
 本明細書において、発光開始電圧VTH(単位:V)とは、0.01cd/mの輝度が得られる電流密度で素子を駆動した際の電圧を意味する。
 本明細書において、「0.01cd/mの輝度が得られる際に素子に与えているエネルギーETH(eV)」とは、下記数式(数Y1)より算出される値を意味する。
 ETH(eV)=発光開始電圧VTH(V)×電気素量(e)…(数Y1)
 本明細書において、「発光スペクトルのピークのエネルギーEPE(eV)」とは、測定対象の発光層中に含まれる発光性化合物を励起一重項状態S1に励起するのに必要なエネルギー値(単位:eV)を意味する。「発光スペクトルのピークのエネルギーEPE(eV)」は、実質、発光性化合物のバンドギャップに相当する。
 発光開始電圧VTHの測定方法は、実施例に記載の通りである。
 本明細書において、「発光スペクトルのピークのエネルギーEPE(eV)」は、測定対象の発光層中に含まれる発光性化合物の最低励起一重項エネルギーSの測定値を用いる。最低励起一重項エネルギーSの測定方法は、実施例に記載の通りである。
 本実施形態の発光機構の一例について説明する。
 図1は、本実施形態に係る積層型発光層の発光機構を説明するための図である。図2Aは、蛍光発光層(単層)の発光機構を説明するための図である。図2Bは、Pt錯体を含む積層型発光層の発光機構を説明するための図である。
 図1、図2A及び図2B中、TADFは遅延蛍光性材料(本実施形態の場合、第一の増感材に相当)を示し、BH1は第一のホスト材料を示し、BH2は第二のホスト材料を示し、BHは蛍光発光層(単層)中のホスト材料を示し、BDは発光性化合物(本実施形態の場合、第一の発光性化合物に相当)を示し、VTHは発光開始電圧を示す。
(本実施形態の発光機構の一例)
 図1に示すTADF(遅延蛍光性材料)は、例えば、後述の実施例1で用いた化合物TADF-aであり、バンドギャップが約2.4eVである。そのため、図1の積層型発光層に約2.4eVのエネルギーを付与することで、第一の増感層中のTADF(遅延蛍光性材料)は励起状態となる。この約2.4eVは、前記数式(数6)中、発光スペクトルのピークのエネルギーEPE(eV)に相当する。
 上記のように、TADF(遅延蛍光性材料)のバンドギャップに相当するエネルギーを付与することで、TADF(遅延蛍光性材料)の励起一重項状態S1および、励起三重項状態T1を生じるが、さらにTADF(遅延蛍光性材料)は、前記数式(数1)を満たすので、当該TADFの励起一重項状態S1は、少ないエネルギーロスで励起三重項状態T1へ項間交差する。項間交差で生成した励起三重項状態T1は、第一の増感層中の第一のホスト材料(BH1)へエネルギー移動し、さらに第一の発光層中の第二のホスト材料(BH2)へエネルギー移動する(前記数式(数2))。第二のホスト材料(BH2)では、TTF現象が生じ、第二のホスト材料(BH2)の励起三重項状態T1は、励起一重項状態S1へ変換される。この変換された励起一重項状態S1のエネルギーは、TADF(遅延蛍光性材料)の励起一重項状態S1よりも高い励起一重項状態S1の発光性化合物(BD)へエネルギー移動するため(前記数式(数3))、発光性化合物(BD)は、約2.4eVのエネルギーで青色発光する(発光開始電圧VTH≒2.4V)。この約2.4eVは、前記数式(数6)中、0.01cd/mの輝度が得られる際に素子に与えているエネルギーETH(eV)に相当する。
 このように、本実施形態の発光機構では、積層型発光層にTADF(遅延蛍光性材料)を励起状態とするためのエネルギーを付与するだけで、当該TADFの項間交差で生じた励起三重項状態のほぼ全てを第一の発光層へ移動させることができ、発光性化合物(BD)を青色発光させることができる。つまり、図1に示す積層型発光層は、TADF(遅延蛍光性材料)のバンドギャップに相当するエネルギー(前記数式(数6)中、EPE)で積層型発光層を青色発光させることができるので、アップコンバージョンを発現できる発光層と言える。
 よって、当該積層型発光層を備える有機EL素子は、発光開始電圧VTHが低く、かつ高効率で発光する。
(単層の蛍光発光層の発光機構)
 図2Aに示す発光性化合物(BD)は青色発光性化合物である。図2Aの場合、青色発光性化合物を励起状態とするためのエネルギー(青色発光性化合物のバンドギャップが約2.7eV)を単層の蛍光発光層に付与することでBD上での電荷の直接再結合により発光性化合物(BD)が励起一重項状態S1となり、青色発光性化合物は青色発光する。
(積層型発光層の発光機構)
 図2Bの場合、燐光錯体としてのPt錯体を励起状態とするためのエネルギー(Pt錯体のバンドギャップが約2.4eV)を積層型発光層に付与することでPt錯体が励起状態となる。
 その後の発光機構は、図1に示す発光機構と同様であるが、Pt錯体は光の吸収強度が小さく、かつ濃度消光を起こしやすいので、Pt錯体を励起状態とするためのエネルギーだけでは、発光性化合物(BD)を青色発光させることができない。
 発光性化合物(BD)を青色発光させるためには、図2Bに示す積層型発光層に付与するエネルギーを高くするか、Pt錯体の濃度を高くすることが必要である。よって、Pt錯体を含む積層型発光層を備える有機EL素子では、高効率で発光させることができない。
 図3に、第一実施形態に係る有機EL素子の一例の概略構成を示す。
 有機EL素子1は、透光性の基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層と、を含む。有機層は、陽極3側から順に、正孔注入層6、正孔輸送層7、第一の増感層51、第一の発光層52、電子輸送層8及び電子注入層9が、この順番で積層されて構成される。発光領域5は、陽極3側から順に、第一の増感層51及び第一の発光層52を含む。第一の増感層51と第一の発光層52とは、直接、接していることが好ましい。
 図4に、第一実施形態に係る有機EL素子の別の一例の概略構成を示す。
 有機EL素子1Aは、透光性の基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層と、を含む。有機層は、陽極3側から順に、正孔注入層6、正孔輸送層7、第一の発光層52、第一の増感層51、電子輸送層8及び電子注入層9が、この順番で積層されて構成される。発光領域5Aは、陽極3側から順に、第一の発光層52及び第一の増感層51を含む。第一の発光層52と第一の増感層51とは、直接、接していることが好ましい。
 本発明は、図3及び図4に示す有機EL素子の構成に限定されない。別の構成の有機EL素子としては、例えば、第一の増感層51及び第一の発光層52の間に介在層が配置された有機EL素子が挙げられる。図3の場合、発光領域5は、陽極3側から順に、第一の増感層51、介在層及び第一の発光層52を、この順で含んでもよい。図4の場合、発光領域5Aは、陽極3側から順に、第一の発光層52、介在層及び第一の増感層51を、この順で含んでもよい。
 第一実施形態の有機EL素子の構成について説明する。以下、符号の記載は省略することがある。
(発光領域)
 本実施形態の有機EL素子は、第一の増感層及び第一の発光層を含む発光領域を有する。本実施形態の発光領域は、第一の増感層及び第一の発光層のみ含んでいてもよく、第一の増感層及び第一の発光層とは異なる有機層を含んでいてもよい。
(第一の増感層)
 第一の増感層は、第一のホスト材料と、第一の増感材とを含有する。
 第一のホスト材料と、第二のホスト材料とは、互いに異なる化合物である。第一の増感材と、第一の発光性化合物料とは、互いに異なる化合物である。
 第一のホスト材料としては、例えば、後述する第一の化合物及び第二の化合物からなる群から選択される少なくともいずれかの化合物が挙げられる。
 第一の増感材としては、前記数式(数1)を満たす化合物であれば特に限定されないが、例えば、後述する一般式(2)、(22)及び(11)~(13)、(1000)~(1003)、(1004A)~(1004D)、(1005A)~(1005D)、(1006)、(1007A)、(1007B)、(1008)、(1008A)、(1009A)~(1009C)、(1010)、(1011A)、(1011B)、(1012A)、(1012B)、(1013)~(1015)、(1016A)及び(1016B)で表される化合物からなる群から選択される少なくともいずれかの化合物が挙げられる。
 本実施形態の一態様において、第一の増感材は、錯体ではない。
 本実施形態の一態様において、第一の増感材は、重金属元素を含まない。重金属元素としては、例えば、イリジウム、オスミウム、及び白金等が挙げられる。
 本実施形態の一態様において、第一の増感層は、金属錯体を含まない。
 本実施形態の一態様において、第一の増感層は、重金属元素を含まない。
 本実施形態の一態様において、第一の増感材は、遅延蛍光性を示す化合物(遅延蛍光性材料)である。本実施形態の一態様において、第一の増感材は、遅延蛍光性を示さない化合物である。
 本実施形態の一態様において、第一の増感層は、第一の増感材を、第一の増感層の全質量の10質量%以上含有するか、又は25質量%以上含有する。
 本実施形態の一態様において、第一の増感層は、第一の増感材を、第一の増感層の全質量の50質量%以下含有するか、又は25質量%以下含有する。
 本実施形態の一態様において、第一の増感層は、第一のホスト材料を、第一の増感層の全質量の50質量%以上含有するか、60質量%以上含有するか、70質量%以上含有するか、80質量%以上含有するか、90質量%以上含有するか、又は95質量%以上含有する。
 本実施形態の一態様において、第一の増感層は、第一のホスト材料を、第一の増感層の全質量の90質量%以下、含有する。
 本実施形態の一態様において、第一の増感層中の第一のホスト材料及び第一の増感材の合計含有率の上限は、100質量%である。
 本実施形態の一態様において、第一の増感層の膜厚は、3nm以上であるか、又は5nm以上である。第一の増感層の膜厚が3nm以上であれば、第一の増感層において、正孔と電子との再結合を起こすのに充分な膜厚である。
 本実施形態の一態様において、第一の増感層の膜厚は、20nm以下であるか、又は15nm以下である。第一の増感層の膜厚が20nm以下であれば、第一の発光層へ三重項励起子が移動するのに充分に薄い膜厚である。
(第一の増感材)
 本実施形態の一態様において、第一の増感材は、下記一般式(2)又は下記一般式(22)で表される化合物である。
・一般式(2)で表される化合物
Figure JPOXMLDOC01-appb-C000022
(前記一般式(2)において、
 nは、1、2、3又は4であり、
 mは、1、2、3又は4であり、
 qは、0、1、2、3又は4であり、
 m+n+q=6であり、
 CNは、シアノ基であり、
 Dは、下記一般式(2a)、下記一般式(2b)又は下記一般式(2c)で表される基であり、Dが複数ある場合、複数のDは互いに同一であるか又は異なり、
 Rxのうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 Rxが複数ある場合、複数のRxは、互いに同一であるか又は異なり、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRxは、それぞれ独立に、
  水素原子、
  ハロゲン原子、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30の複素環基、
  置換もしくは無置換のアミノ基、
  置換もしくは無置換のカルボニル基、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の炭素数3~30のアルキルシリル基、または
  置換もしくは無置換の環形成炭素数6~60のアリールシリル基であり、
 CN、D及びRxは、それぞれ6員環の炭素原子に結合する。)
Figure JPOXMLDOC01-appb-C000023
(前記一般式(2a)において、
 R~Rのうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR~Rは、それぞれ独立に、
  水素原子、
  ハロゲン原子、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30の複素環基、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の炭素数3~30のアルキルシリル基、
  置換もしくは無置換の環形成炭素数6~60のアリールシリル基、
  ヒドロキシ基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換もしくは無置換の炭素数2~30のアルキルアミノ基、
  置換もしくは無置換の環形成炭素数6~60のアリールアミノ基、
  チオール基、
  置換もしくは無置換の炭素数1~30のアルキルチオ基、または
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基である。
 *は、前記一般式(2)中における六員環の炭素原子との結合部位を表す。)
Figure JPOXMLDOC01-appb-C000024
(前記一般式(2b)において、
 R21~R28のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR21~R28は、それぞれ独立に、前記一般式(2a)におけるR~Rと同義であり、
 Aは、下記一般式(211)又は下記一般式(212)で表される環構造を示し、この環構造Aは、隣接する環構造と任意の位置で縮合し、
 pは、1、2、3又は4であり、
 pが2、3又は4である場合、複数の環構造Aは、互いに同一であるか又は異なり、
 *は、前記一般式(2)中における六員環の炭素原子との結合部位を表す。)
Figure JPOXMLDOC01-appb-C000025
(前記一般式(2c)において、
 R2001~R2008のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR2001~R2008は、それぞれ独立に前記一般式(2a)における置換基としてのR~Rと同義であり、
 Bは、下記一般式(211)又は下記一般式(212)で表される環構造を示し、この環構造Bは、隣接する環構造と任意の位置で縮合し、
 pxは、1、2、3又は4であり、
 pxが2、3又は4である場合、複数の環構造Bは、互いに同一であるか又は異なり、
 Cは、下記一般式(211)又は下記一般式(212)で表される環構造を示し、この環構造Cは、隣接する環構造と任意の位置で縮合し、
 pyは、1、2、3又は4であり、
 pyが2、3又は4である場合、複数の環構造Cは、互いに同一であるか又は異なり、
 *は、前記一般式(2)中における六員環の炭素原子との結合部位を表す。)
Figure JPOXMLDOC01-appb-C000026
(前記一般式(211)において、
 R2009及びR2010からなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  隣接する環構造の一部と互いに結合して環を形成し、
 前記一般式(212)において、X201は、CR20112012、NR2013、硫黄原子、もしくは酸素原子であり、
 R2011及びR2012からなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 R2013、並びに前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR2009、R2010、R2011及びR2012は、それぞれ独立に、前記一般式(2a)における置換基としてのR~Rと同義である。)
 一般式(211)において、R2009及びR2010は、それぞれ独立に、隣接する環構造の一部と互いに結合して環を形成するとは、具体的には、以下の(I)~(IV)のいずれかをいう。
 また、一般式(211)において、R2009及びR2010からなる組が互いに結合して環を形成するとは、具体的には、以下の(V)をいう。
(I)一般式(211)で表される環構造同士が隣接する場合に、隣接する2つの環のうち、一方の環のR2009及び他方の環のR2009の組、一方の環のR2009及び他方の環のR2010の組、並びに一方の環のR2010及び他方の環のR2010の組のいずれか1つ以上の組が互いに結合して環を形成すること。
(II)一般式(211)で表される環構造と、一般式(2b)におけるR25~R28を有するベンゼン環とが隣接する場合に、隣接する2つの環のうち、一方の環のR2009及び他方の環のR25の組、一方の環のR2009及び他方の環のR28の組、一方の環のR2010及び他方の環のR25の組、並びに一方の環のR2010及び他方の環のR28の組のいずれか1つ以上の組が互いに結合して環を形成すること。
(III)一般式(211)で表される環構造と、一般式(2c)におけるR2001~R2004を有するベンゼン環とが隣接する場合に、隣接する2つの環のうち、一方の環のR2009及び他方の環のR2001の組、一方の環のR2009及び他方の環のR2004の組、一方の環のR2010及び他方の環のR2001の組、並びに一方の環のR2010及び他方の環のR2004の組のいずれか1つ以上の組が互いに結合して環を形成すること。
(IV)一般式(211)で表される環構造と、一般式(2c)におけるR2005~R2008を有するベンゼン環とが隣接する場合に、隣接する2つの環のうち、一方の環のR2009及び他方の環のR2005の組、一方の環のR2009及び他方の環のR2008の組、一方の環のR2010及び他方の環のR2005の組、並びに一方の環のR2010及び他方の環のR2008の組のいずれか1つ以上の組が互いに結合して環を形成すること。
(V)一般式(211)で表される環構造のR2009及びR2010からなる組が互いに結合して環を形成すること。すなわち、(V)は、同じ環に結合するR2009及びR2010からなる組が互いに結合して環を形成することをいう。
 前記一般式(2)において、Rxは、それぞれ独立に、水素原子、無置換の環形成炭素数6~30のアリール基、無置換の環形成原子数5~30の複素環基、または無置換の炭素数1~30のアルキル基であることが好ましい。
 Rxが無置換の環形成原子数5~30の複素環基である場合、無置換の環形成原子数5~30の複素環基としてのRxは、ピリジル基、ピリミジニル基、トリアジニル基、ジベンゾフラニル基、またはジベンゾチエニル基であることが好ましい。
 本明細書において、トリアジニル基とは、1,3,5-トリアジン、1,2,4-トリアジン、又は1,2,3-トリアジンから水素原子1つを除いた基をいう。
 トリアジニル基は、1,3,5-トリアジンから水素原子1つを除いた基であることが好ましい。
 前記一般式(2)において、Rxは、それぞれ独立に、水素原子、無置換の環形成炭素数6~30のアリール基、無置換のジベンゾフラニル基、または無置換のジベンゾチエニル基であることがより好ましい。
 前記一般式(2)において、Rxは、水素原子であることがさらに好ましい。
 前記一般式(2)において、置換基としてのR~R、R21~R28、R2001~R2008、R2009~R2010、及びR2011~R2013は、それぞれ独立に、無置換の環形成炭素数6~30のアリール基、無置換の環形成原子数5~30の複素環基、または無置換の炭素数1~30のアルキル基であることが好ましい。
 前記一般式(2)において、前記Dは、下記一般式(D-21)~(D-37)で表される基のいずれかの基であることが好ましい。
・一般式(D-21)~(D-25)で表される基
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
(前記一般式(D-21)~(D-25)において、
 R171~R180のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 R181~R190のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 R191~R200のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 R71~R82のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 R83~R90のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 前記置換もしくは無置換の単環を形成せず、かつ及び前記置換もしくは無置換の縮合環を形成しないR171~R200及びR71~R90は、それぞれ独立に、
  水素原子、
  ハロゲン原子、
  置換もしくは無置換の環形成炭素数6~14のアリール基、
  置換もしくは無置換の環形成原子数5~14の複素環基、
  置換もしくは無置換の炭素数1~6のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の炭素数3~6のアルキルシリル基、
  ヒドロキシ基、
  置換もしくは無置換の炭素数1~6のアルコキシ基、
  置換もしくは無置換の炭素数1~6のハロゲン化アルコキシ基、
  置換もしくは無置換の環形成炭素数6~14のアリールオキシ基、
  置換もしくは無置換の炭素数2~12のアルキルアミノ基、
  チオール基、
  置換もしくは無置換の炭素数1~6のアルキルチオ基、または
  置換もしくは無置換の環形成炭素数6~14のアリールチオ基である。
 *は、前記一般式(2)中における六員環の炭素原子との結合部位を表す。)
 前記一般式(2)において、置換基としてのR171~R200及びR71~R90は、それぞれ独立に、無置換の環形成炭素数6~14のアリール基、無置換の環形成原子数5~14の複素環基、または無置換の炭素数1~6のアルキル基であることが好ましい。
 前記一般式(2)において、R171~R200及びR71~R90は、水素原子であることも好ましい。
 前記一般式(D-21)~(D-25)で表される基は、下記一般式(2-5)~(2-14)で表される基のいずれかの基であることが好ましい。
 前記一般式(2-5)~(2-14)において、*は、前記一般式(2)中における六員環の炭素原子との結合部位を表す。
・一般式(D-26)~(D-31)で表される基
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
(前記一般式(D-26)~(D-31)において、
 R101~R110のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 R111~R120のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 R121~R130のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 R131~R140のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 R141~R150のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 R61~R70のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 R11~R16、並びに前記置換もしくは無置換の単環を形成せず、かつ及び前記置換もしくは無置換の縮合環を形成しないR101~R150及びR61~R70は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~14のアリール基、
  置換もしくは無置換の環形成原子数5~14の複素環基、
  置換もしくは無置換の炭素数1~6のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の炭素数3~6のアルキルシリル基、
  ヒドロキシ基、
  置換もしくは無置換の炭素数1~6のアルコキシ基、
  置換もしくは無置換の環形成炭素数6~14のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~28のアリールアミノ基、
  置換もしくは無置換の炭素数2~12のアルキルアミノ基、
  チオール基、
  置換もしくは無置換の炭素数1~6のアルキルチオ基、または
  置換もしくは無置換の環形成炭素数6~14のアリールチオ基であり、
 置換基としてのR11~R16は、それぞれ独立に、
  置換もしくは無置換の炭素数1~6のアルキル基
  置換もしくは無置換の環形成炭素数6~14のアリール基、
  置換もしくは無置換の環形成原子数5~14の複素環基、
  置換もしくは無置換の炭素数3~6のアルキルシリル基、
  置換もしくは無置換の環形成炭素数6~14のアリールオキシ基、
  置換もしくは無置換の炭素数2~12のアルキルアミノ基、
  置換もしくは無置換の炭素数1~6のアルキルチオ基、または
  置換もしくは無置換の環形成炭素数6~14のアリールチオ基である。
 *は、前記一般式(2)中における六員環の炭素原子との結合部位を表す。)
 前記一般式(2)において、置換基としてのR101~R150及びR61~R70は、それぞれ独立に、無置換の環形成炭素数6~14のアリール基、無置換の環形成原子数5~14の複素環基、または無置換の炭素数1~6のアルキル基であり、
 置換基としてのR11~R16は、それぞれ独立に、無置換の環形成炭素数6~14のアリール基、または無置換の環形成原子数5~14の複素環基であることが好ましい。
 前記一般式(2)において、R101~R150及びR61~R70は、水素原子であり、置換基としてのR11~R16は、それぞれ独立に、無置換の環形成炭素数6~14のアリール基、または無置換の環形成原子数5~14の複素環基であることも好ましい。
・一般式(D-32)~(D-37)で表される基
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
(前記一般式(D-32)~(D-37)において、X~Xは、それぞれ独立に、酸素原子、硫黄原子、またはCR151152であり、
 R151及びR152からなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 R201~R210のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 R211~R220のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 R221~R230のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 R231~R240のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 R241~R250のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 R251~R260のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 前記置換もしくは無置換の単環を形成せず、かつ及び前記置換もしくは無置換の縮合環を形成しないR151、R152及びR201~R260は、それぞれ独立に、
  水素原子、
  ハロゲン原子、
  置換もしくは無置換の環形成炭素数6~14のアリール基、
  置換もしくは無置換の環形成原子数5~14の複素環基、
  置換もしくは無置換の炭素数1~6のアルキル基、
  置換もしくは無置換の炭素数1~6のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の炭素数3~6のアルキルシリル基、
  ヒドロキシ基、
  置換もしくは無置換の炭素数1~6のアルコキシ基、
  置換もしくは無置換の炭素数1~6のハロゲン化アルコキシ基、
  置換もしくは無置換の環形成炭素数6~14のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~28のアリールアミノ基、
  置換もしくは無置換の炭素数2~12のアルキルアミノ基、
  チオール基、
  置換もしくは無置換の炭素数1~6のアルキルチオ基、または
  置換もしくは無置換の環形成炭素数6~14のアリールチオ基である。
 *は、前記一般式(2)中における六員環の炭素原子との結合部位を表す。)
 前記一般式(2)において、置換基としてのR201~R260は、それぞれ独立に、ハロゲン原子、無置換の環形成炭素数6~14のアリール基、無置換の環形成原子数5~14の複素環基、無置換の炭素数1~6のアルキル基であり、
 置換基としてのR151及びR152は、それぞれ独立に、無置換の環形成炭素数6~14のアリール基、または無置換の炭素数1~6のアルキル基であることが好ましい。
 化合物M2において、置換基としてのR201~R260は、それぞれ独立に、無置換の環形成炭素数6~14のアリール基、無置換の環形成原子数5~14の複素環基、または無置換の炭素数1~6のアルキル基であり、
 置換基としてのR151及びR152は、それぞれ独立に、無置換の環形成炭素数6~14のアリール基、または無置換の炭素数1~6のアルキル基であることがより好ましい。
 前記一般式(2)において、R201~R260は、水素原子であり、
 置換基としてのR151及びR152は、それぞれ独立に、無置換の環形成炭素数6~14のアリール基、または無置換の炭素数1~6のアルキル基であることも好ましい。
・一般式(22)で表される化合物
Figure JPOXMLDOC01-appb-C000037
(前記一般式(22)中、Arは、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のフルオロアルキル基、置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換ホスフォリル基、置換シリル基、シアノ基、ニトロ基、カルボキシ基、及び下記一般式(1a)~(1j)で表される基からなる群から選択されるいずれかの基であり、
 ArEWGは、環内に窒素原子を1個以上含む置換もしくは無置換の環形成原子数5~30のヘテロアリール基、または1個以上のシアノ基で置換されている環形成炭素数6~30のアリール基であり、
 Arは、それぞれ独立に、水素原子、または置換基であり、置換基としてのArは、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のフルオロアルキル基、置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換ホスフォリル基、置換シリル基、シアノ基、ニトロ基、カルボキシ基、及び下記一般式(1a)~(1j)で表される基からなる群から選択されるいずれかの基であり、
 nは、0、1、2、3、4又は5であり、nが2、3、4又は5である場合、複数のArは、互いに同一であるか、または異なり、
 環(A)は、置換もしくは無置換の芳香族炭化水素環、又は置換もしくは無置換の複素環であり、環(A)は、5員環、6員環、または7員環であり、ArEWG、Ar及びArは、それぞれ、環(A)を構成する元素に結合し、
 Ar及びArの少なくともいずれかは、下記一般式(1a)~(1j)で表される基からなる群から選択されるいずれかの基である。)
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
(前記一般式(1a)~(1j)中、X~X20は、それぞれ独立に、窒素原子(N)またはRA1が結合する炭素原子(C-RA1)であり、
 前記一般式(1b)において、X~Xのいずれかは、X~X12のいずれかと結合する炭素原子であり、X~X12のいずれかは、X~Xのいずれかと結合する炭素原子であり、
 前記一般式(1c)において、X~Xのいずれかは、Aを含む環における窒素原子と結合する炭素原子であり、
 前記一般式(1e)において、X~X及びX18のいずれかは、X~X12のいずれかと結合する炭素原子であり、X~X12のいずれかは、X~X及びX18のいずれかと結合する炭素原子であり、
 前記一般式(1f)において、X~X及びX18のいずれかは、X~X12及びX19のいずれかと結合する炭素原子であり、X~X12及びX19のいずれかは、X~X及びX18のいずれかと結合する炭素原子であり、
 前記一般式(1g)において、X~Xのいずれかは、X~X12及びX19のいずれかと結合する炭素原子であり、X~X12及びX19のいずれかは、X~Xのいずれかと結合する炭素原子であり、
 前記一般式(1h)において、X~X及びX18のいずれかは、Aを含む環における窒素原子と結合する炭素原子であり、
 前記一般式(1i)において、X~X及びX18のいずれかは、X~X12及びX19を含む環とX13~X16及びX20を含む環とを連結する窒素原子と結合する炭素原子であり、
 前記一般式(1j)において、X~Xのいずれかは、X~X12及びX19を含む環とX13~X16及びX20を含む環とを連結する窒素原子と結合する炭素原子であり、
 複数のRA1のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 前記置換もしくは無置換の単環を形成せず、かつ及び前記置換もしくは無置換の縮合環を形成しないRA1は、それぞれ独立に、
  水素原子、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のフルオロアルキル基、置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換ホスフォリル基、置換シリル基、シアノ基、ニトロ基、及びカルボキシ基からなる群から選択されるいずれかの基であり、
 複数のRA1は、互いに同一であるか、または異なる。
 前記一般式(1a)~(1j)中、*は、環(A)との結合部位を表し、
 前記一般式(1a)~(1j)中、A及びAは、それぞれ独立に、単結合、酸素原子(O)、硫黄原子(S)、C(R2021)(R2022)、Si(R2023)(R2024)、C(=O)、S(=O)、SO、またはN(R2025)である。R2021~R2025は、それぞれ独立に、水素原子、または置換基であり、置換基としてのR2021~R2025は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のフルオロアルキル基、置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換ホスフォリル基、置換シリル基、シアノ基、ニトロ基、及びカルボキシ基からなる群から選択されるいずれかの基であり、
 前記一般式(1a)~(1j)中、Araは、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のフルオロアルキル基、置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換ホスフォリル基、及び置換シリル基からなる群から選択されるいずれかの基である。)
 前記一般式(1a)において、X~Xが、RA1が結合する炭素原子(C-RA1)である場合、複数のRA1は、環を形成しない方が好ましい。
 Araとして好ましくは、置換もしくは無置換の環形成炭素数6~30のアリール基、または置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
 前記一般式(1a)は、Aが単結合である場合に下記一般式(1aa)で表され、AがOである場合に下記一般式(1ab)で表され、AがSである場合に下記一般式(1ac)で表され、AがC(R2021)(R2022)である場合に下記一般式(1ad)で表され、AがSi(R2023)(R2024)である場合に下記一般式(1ae)で表され、AがC(=O)である場合に下記一般式(1af)で表され、AがS(=O)である場合に下記一般式(1ag)で表され、AがSOである場合に下記一般式(1ah)で表され、AがN(R2025)である場合に下記一般式(1ai)で表される。これら下記一般式(1aa)~(1ai)において、X~X、及びR2021~R2025は、前述と同義である。前記一般式(1b)、(1c)、(1e)、(1g)~(1j)についても、A及びAによる環同士の連結態様は、下記一般式(1aa)~(1ai)と同様である。下記一般式(1aa)において、X~Xが、RA1が結合する炭素原子(C-RA1)である場合、置換基としての複数のRA1は、環を形成しない方が好ましい。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 本実施形態に係る第一の増感材は、下記一般式(221)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000044
 前記一般式(221)中の、Ar、ArEWG、Ar、n及び環(A)は、それぞれ、前記一般式(22)中の、Ar、ArEWG、Ar、n及び環(A)と同義である。
 本実施形態の一態様において、第一の増感材は、下記一般式(222)で表される化合物である。
Figure JPOXMLDOC01-appb-C000045
 前記一般式(222)中、Y~Yは、それぞれ独立に、窒素原子(N)、シアノ基が結合する炭素原子(C-CN)またはRA2が結合する炭素原子(C-RA2)であり、Y~Yのうち、少なくとも1つは、NまたはC-CNである。複数のRA2は、互いに同一であるか、または異なる。
 複数のRA2のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRA2は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のフルオロアルキル基、置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換ホスフォリル基、置換シリル基、シアノ基、ニトロ基、及びカルボキシ基からなる群から選択される基であり、
 複数のRA2は、互いに同一であるか、または異なる。
 前記一般式(222)中、Arは、前記一般式(22)中のArと同義である。
 前記一般式(222)中、Ar~Arは、それぞれ独立に、水素原子または置換基であり、置換基としてのAr~Arは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のフルオロアルキル基、置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換ホスフォリル基、置換シリル基、シアノ基、ニトロ基、カルボキシ基、及び前記一般式(1a)~(1c)で表される基からなる群から選択されるいずれかの基である。
 前記一般式(222)中、Ar~Arのいずれか1つ以上が水素原子である場合、当該水素原子の全てが軽水素原子であるか、当該水素原子のうち少なくとも1つ以上が重水素原子であるか、当該水素原子の全てが重水素であることが好ましい。
 前記一般式(222)中、Ar~Arのいずれか1つ以上が置換基であって、当該置換基が水素原子を1つ以上有する場合、当該水素原子の全てが軽水素原子であるか、当該水素原子のうち少なくとも1つ以上が重水素原子であるか、または当該水素原子の全てが重水素原子であることが好ましい。
 前記一般式(222)中、Ar~Arのうち少なくとも一つは、前記一般式(1a)~(1c)で表される基からなる群から選択されるいずれかの基である。
 本実施形態の一態様において、第一の増感材は、下記一般式(11aa)、下記一般式(11bb)、または下記一般式(11cc)で表される化合物である。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
 前記一般式(11aa)、(11bb)及び(11cc)中、Y~Y、RA2、Ar~Ar、X~X16、RA1、及びAraは、それぞれ前述したY~Y、RA2、Ar~Ar、X~X16、RA1、及びAraと同じ意味を表す。
 本実施形態の一態様において、第一の増感材は、例えば、下記一般式(23)で表される化合物である。
Figure JPOXMLDOC01-appb-C000048
 前記一般式(23)において、
 Azは、
  置換または無置換のピリジン環、
  置換または無置換のピリミジン環、
  置換または無置換のトリアジン環、及び
  置換または無置換のピラジン環
 からなる群から選択される環構造であり、
 cは0、1、2、3、4又は5であり、
 cが0のとき、CzとAzとが単結合で結合し、
 cが1、2、3、4又は5のとき、L23は、
  置換または無置換の環形成炭素数6~30のアリーレン基、及び
  置換または無置換の環形成原子数5~30のヘテロアリーレン基
 からなる群から選択される連結基であり、
 cが2、3、4又は5のとき、複数のL23は、互いに同一であるかまたは異なり、
 複数のL23同士が結合して環を形成するかまたは環を形成せず、
 Czは、下記一般式(23a)で表される。
Figure JPOXMLDOC01-appb-C000049
 前記一般式(23a)において、
 Y21乃至Y28は、それぞれ独立に、窒素原子またはCRA3であり、
 複数のRA3のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 前記置換もしくは無置換の単環を形成せず、かつ及び前記置換もしくは無置換の縮合環を形成しないRA3は、それぞれ独立に、
  水素原子、
  置換または無置換の環形成炭素数6~30のアリール基、
  置換または無置換の環形成原子数5~30のヘテロアリール基、
  置換または無置換の炭素数1~30のアルキル基、
  置換または無置換の炭素数1~30のフルオロアルキル基、
  置換または無置換の環形成炭素数3~30のシクロアルキル基、
  置換または無置換の炭素数7~30のアラルキル基、
  置換ホスホリル基、
  置換シリル基、
  シアノ基、
  ニトロ基、及び
  カルボキシ基
 からなる群から選択される基であり、
 複数のRA3は、互いに同一であるかまたは異なり、
 *1は、L23で表される連結基の構造中の炭素原子との結合部位、またはAzで表される環構造中の炭素原子との結合部位を表す。
 Y21乃至Y28は、CRA3であることも好ましい。
 前記一般式(23)におけるcは、0または1であることが好ましい。
 前記Czは、下記一般式(23b)、一般式(23c)または一般式(23d)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
 前記一般式(23b)、一般式(23c)及び一般式(23d)において、Y21乃至Y28、及びY51乃至Y58は、それぞれ独立に、窒素原子またはCRA4であり、
 ただし、前記一般式(23b)中、Y25乃至Y28のうち、少なくとも一つは、Y51乃至Y54のいずれかと結合する炭素原子であり、Y51乃至Y54のうち、少なくとも一つは、Y25乃至Y28のいずれかと結合する炭素原子であり、
 前記一般式(23c)中、Y25乃至Y28のうち、少なくとも一つは、Y51乃至Y58を含有する含窒素縮合環の5員環中の窒素原子と結合する炭素原子であり、
 前記一般式(23d)中、*a及び*bは、それぞれ、Y21乃至Y28のうちのいずれかとの結合部位を表し、Y25乃至Y28のうち、少なくとも一つは、*aで表される結合部位であり、Y25乃至Y28のうち、少なくとも一つは、*bで表される結合部位であり、
 nは、1、2、3又は4であり、
 複数のRA4のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 前記置換もしくは無置換の単環を形成せず、かつ及び前記置換もしくは無置換の縮合環を形成しないRA4は、それぞれ独立に、
  水素原子、
  置換または無置換の環形成炭素数6~30のアリール基、
  置換または無置換の環形成原子数5~30のヘテロアリール基、
  置換または無置換の炭素数1~30のアルキル基、
  置換または無置換の炭素数1~30のフルオロアルキル基、
  置換または無置換の環形成炭素数3~30のシクロアルキル基、
  置換または無置換の炭素数7~30のアラルキル基、
  置換ホスホリル基、
  置換シリル基、
  シアノ基、
  ニトロ基、及び
  カルボキシ基
 からなる群から選択されるいずれかの置換基であり、
 複数のRA4は、互いに同一であるかまたは異なり、
 Z21及びZ21は、それぞれ独立に、酸素原子、硫黄原子、NR45、及びCR4647からなる群から選択されるいずれか一種であり、
 
 R46及びR47からなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 R45、並びに前記置換もしくは無置換の単環を形成せず、かつ及び前記置換もしくは無置換の縮合環を形成しないR46及びR47は、それぞれ独立に、
  水素原子、
  置換または無置換の環形成炭素数6~30のアリール基、
  置換または無置換の環形成原子数5~30のヘテロアリール基、
  置換または無置換の炭素数1~30のアルキル基、
  置換または無置換の炭素数1~30のフルオロアルキル基、
  置換または無置換の環形成炭素数3~30のシクロアルキル基、
  置換または無置換の炭素数7~30のアラルキル基、
  置換ホスホリル基、
  置換シリル基、
  シアノ基、
  ニトロ基、及び
  カルボキシ基
 からなる群から選択されるいずれかの置換基であり、
 複数のR45は、互いに同一であるかまたは異なり、
 複数のR46は、互いに同一であるかまたは異なり、
 複数のR47は、互いに同一であるかまたは異なり、
 *は、Azで表される環構造中の炭素原子との結合部位を表す。
 Z21は、NR45であることが好ましい。
 Z21がNR45である場合、R45は、置換または無置換の環形成炭素数6~30のアリール基であることが好ましい。
 Z22は、NR45であることが好ましい。
 Z22がNR45である場合、R45は、置換または無置換の環形成炭素数6~30のアリール基であることが好ましい。
 Y51乃至Y58は、CRA4であることが好ましく、ただし、この場合、Y51乃至Y58のうち、少なくともいずれかが、前記一般式(23a)で表される環構造と結合する炭素原子である。
 Czは、前記一般式(23d)で表され、nは、1であることも好ましい。
 Azは、置換または無置換のピリミジン環、及び置換または無置換のトリアジン環からなる群から選択される環構造であることが好ましい。
 Azは、置換基を有するピリミジン環、及び置換基を有するトリアジン環からなる群から選択される環構造であり、これらピリミジン環、及びトリアジン環が有する置換基は、置換または無置換の環形成炭素数6~30のアリール基、及び置換または無置換の環形成原子数5~30のヘテロアリール基からなる群から選択される基であることがより好ましく、置換または無置換の環形成炭素数6~30のアリール基であることがさらに好ましい。
 Azとしてのピリミジン環及びトリアジン環が、置換または無置換のアリール基を置換基として有する場合、当該アリール基の環形成炭素数は、6~20であることが好ましく、6~14であることがより好ましく、6~12であることがさらに好ましい。
 Azが、置換または無置換のアリール基を置換基として有する場合、当該置換基は、置換または無置換のフェニル基、置換または無置換のビフェニル基、置換または無置換のナフチル基、置換または無置換のフェナントリル基、置換または無置換のターフェニル基、及び置換または無置換のフルオレニル基からなる群から選択されるいずれかの置換基であることが好ましく、置換または無置換のフェニル基、置換または無置換のビフェニル基、及び置換または無置換のナフチル基からなる群から選択されるいずれかの置換基であることがより好ましい。
 Azが、置換または無置換のヘテロアリール基を置換基として有する場合、当該置換基は、置換または無置換のカルバゾリル基、置換または無置換のジベンゾフラニル基、及び置換または無置換のジベンゾチオフェニル基からなる群から選択されるいずれかの置換基であることが好ましい。
 RA4は、それぞれ独立に、水素原子または置換基であり、置換基としてのRA4は、置換または無置換の環形成炭素数6~30のアリール基、及び置換または無置換の環形成原子数5~30のヘテロアリール基からなる群から選択されるいずれかの置換基であることが好ましい。
 置換基としてのRA4が置換または無置換の環形成炭素数6~30のアリール基である場合、置換基としてのRA4は、置換または無置換のフェニル基、置換または無置換のビフェニル基、置換または無置換のナフチル基、置換または無置換のフェナントリル基、置換または無置換のターフェニル基、及び置換または無置換のフルオレニル基からなる群から選択されるいずれかの置換基であることが好ましく、置換または無置換のフェニル基、置換または無置換のビフェニル基、及び置換または無置換のナフチル基からなる群から選択されるいずれかの置換基であることがより好ましい。
 置換基としてのRA4が置換または無置換の環形成原子数5~30のヘテロアリール基である場合、置換基としてのRA4は、置換または無置換のカルバゾリル基、置換または無置換のジベンゾフラニル基、及び置換または無置換のジベンゾチオフェニル基からなる群から選択されるいずれかの置換基であることが好ましい。
 置換基としてのR45、R46及びR47は、それぞれ独立に、置換または無置換の環形成炭素数6~30のアリール基、置換または無置換の環形成原子数5~30のヘテロアリール基、及び置換または無置換の炭素数1~30のアルキル基からなる群から選択されるいずれかの置換基であることが好ましい。
・第一の増感材の製造方法
 第一の増感材は、公知の方法により製造することができる。
 本実施形態の第一の増感材(前記一般式(2)又は前記一般式(22)で表される化合物)の具体例としては、例えば、以下の化合物が挙げられる。ただし、第一の増感材は、これら化合物の具体例に限定されない。
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
 本実施形態の一態様において、第一の増感材は、下記一般式(11)~(13)のいずれかで表される化合物である。
 前記一般式(11)~(13)において、R~Rは、それぞれ独立に、下記一般式(1-1)~(1-6)で表される基のいずれかの基であるか、または下記一般式(2-1)~(2-4)で表される基のいずれかの基であり、ただし、R~Rのうち少なくとも1つは、下記一般式(1-1)~(1-6)で表される基のいずれかの基であり、R~Rのうち少なくとも1つは、下記一般式(2-1)~(2-4)で表される基のいずれかの基である。
 前記一般式(1-1)において、Xは、酸素原子、硫黄原子、またはCR151152であり、R101~R110は、それぞれ独立に、水素原子もしくは置換基であり、R151及びR152は、それぞれ独立に、水素原子もしくは置換基であるか、又はR151及びR152が互いに結合して環を形成し、
 置換基としてのR101~R110、R151及びR152は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~14のアリール基、
  置換もしくは無置換の環形成原子数5~14の複素環基、
  置換もしくは無置換の炭素数1~6のアルキル基、
  置換もしくは無置換の炭素数3~6のアルキルシリル基、
  置換もしくは無置換の炭素数1~6のアルコキシ基、
  置換もしくは無置換の環形成炭素数6~14のアリールオキシ基、
  置換もしくは無置換の炭素数2~12のアルキルアミノ基、
  置換もしくは無置換の炭素数1~6のアルキルチオ基、または
  置換もしくは無置換の環形成炭素数6~14のアリールチオ基である。
 前記一般式(1-2)において、X及びR111~R120は、それぞれ、前記一般式(1-1)におけるX及びR101~R110と同義である。
 前記一般式(1-3)において、X及びR121~R130は、それぞれ、前記一般式(1-1)におけるX及びR101~R110と同義である。
 前記一般式(1-4)において、X及びR131~R140は、それぞれ、前記一般式(1-1)におけるX及びR101~R110と同義である。
 前記一般式(1-5)において、X及びR141~R150は、それぞれ、前記一般式(1-1)におけるX及びR101~R110と同義である。
 前記一般式(1-6)において、X及びR61~R70は、それぞれ、前記一般式(1-1)におけるX及びR101~R110と同義である。*は、それぞれ独立に、前記一般式(11)~(13)中におけるベンゼン環の炭素原子との結合部位を表す。
 前記一般式(1-1)~(1-6)において、R101~R110、R111~R120、R121~R130、R131~R140、R141~R150、R61~R70、R151及びR152のいずれか1つ以上が水素原子である場合、当該水素原子の全てが軽水素であるか、当該水素原子の内いずれか1つ以上が重水素であるか、または当該水素原子の全てが重水素であることが好ましい。
 前記一般式(1-1)~(1-6)において、R101~R110、R111~R120、R121~R130、R131~R140、R141~R150、R61~R70、R151及びR152のいずれか1つ以上が置換基であって、当該置換基が水素原子を1つ以上有する場合、当該水素原子の全てが軽水素であるか、当該水素原子の内いずれか1つ以上が重水素であるか、または当該水素原子の全てが重水素であることが好ましい。
 前記一般式(2-1)において、R161~R168は、それぞれ独立に、水素原子もしくは置換基であり、
  ハロゲン原子、
 置換基としてのR161~R168は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~14のアリール基、
  置換もしくは無置換の環形成原子数5~14の複素環基、
  置換もしくは無置換の炭素数1~6のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の炭素数3~6のアルキルシリル基、
  置換もしくは無置換の炭素数1~6のアルコキシ基、
  置換もしくは無置換の環形成炭素数6~14のアリールオキシ基、
  置換もしくは無置換の炭素数2~12のアルキルアミノ基、
  置換もしくは無置換の炭素数1~6のアルキルチオ基、または
  置換もしくは無置換の環形成炭素数6~14のアリールチオ基である。
 前記一般式(2-2)において、R171~R180は、それぞれ独立に、水素原子もしくは置換基であり、置換基としてのR171~R180は、それぞれ独立に、前記一般式(2-1)におけるR161~R168について列挙した置換基と同義である。
 前記一般式(2-3)において、R181~R190は、それぞれ独立に、水素原子もしくは置換基であり、置換基としてのR181~R190は、それぞれ独立に、前記一般式(2-1)におけるR161~R168について列挙した置換基と同義である。
 前記一般式(2-4)において、R191~R200は、それぞれ独立に、水素原子もしくは置換基であり、置換基としてのR191~R200は、それぞれ独立に、前記一般式(2-1)におけるR161~R168について列挙した置換基と同義である。*は、それぞれ独立に、前記一般式(11)~(13)中におけるベンゼン環の炭素原子との結合部位を表す。
 前記一般式(2-1)~(2-4)において、R161~R168、R171~R180、R181~R190及びR191~R200のいずれか1つ以上が水素原子である場合、当該水素原子の全てが軽水素であるか、当該水素原子の内いずれか1つ以上が重水素であるか、または当該水素原子の全てが重水素であることが好ましい。
 前記一般式(2-1)~(2-4)において、R161~R168、R171~R180、R181~R190及びR191~R200のいずれか1つ以上が置換基であって、当該置換基が水素原子を1つ以上有する場合、当該水素原子の全てが軽水素であるか、当該水素原子の内いずれか1つ以上が重水素であるか、または当該水素原子の全てが重水素であることが好ましい。
 本実施形態に係る第一の増感材において、R~Rの基として、前記一般式(1-1)で表される基が複数個存在するとき、複数ある一般式(1-1)で表される基は、置換基も含めて互いに同一の基であることが好ましく、
 R~Rの基として、前記一般式(1-2)で表される基が複数個存在するとき、複数ある一般式(1-2)で表される基は、置換基も含めて互いに同一の基であることが好ましく、
 R~Rの基として、前記一般式(1-3)で表される基が複数個存在するとき、複数ある一般式(1-3)で表される基は、置換基も含めて互いに同一の基であることが好ましく、
 R~Rの基として、前記一般式(1-4)で表される基が複数個存在するとき、複数ある一般式(1-4)で表される基は、置換基も含めて互いに同一の基であることが好ましく、
 R~Rの基として、前記一般式(1-5)で表される基が複数個存在するとき、複数ある一般式(1-5)で表される基は、置換基も含めて互いに同一の基であることが好ましく、
 R~Rの基として、前記一般式(1-6)で表される基が複数個存在するとき、複数ある一般式(1-6)で表される基は、置換基も含めて互いに同一の基であることが好ましい。
 すなわち、具体的には例えば、RおよびRの基として、前記一般式(1-1)で表される基が2つ選ばれ、Rの基としては前記一般式(1-2)で表される基が1つ選ばれ、Rの基としては前記一般式(2-1)で表される基が1つ選ばれた場合は、該2つの前記一般式(1-1)で表される基(RおよびRの基)は、置換基も含めて互いに同一の基であることが好ましい。
 また例えば、R~Rの基として、前記一般式(1-1)で表される基が3つ選ばれた場合は、該3つの前記一般式(1-1)で表される基(R~Rの基)は、置換基も含めて互いに同一の基であることが好ましい。
 本実施形態の一態様において、R~Rのうちの2つが、前記一般式(1-1)~(1-6)で表される基から選ばれ、残りの2つが前記一般式(2-1)~(2-4)で表される基から選ばれたとき、2つの前記一般式(1-1)~(1-6)で表される基は、いずれも前記一般式(1-1)~(1-6)のうちの1つの一般式により表され、かつ、置換基も含めて互いに同一の基であることが好ましい。
 また、R~Rのうちの3つが、前記一般式(1-1)~(1-6)で表される基から選ばれ、残りの1つが前記一般式(2-1)~(2-4)で表される基から選ばれたとき、該3つの前記一般式(1-1)~(1-6)で表される基は、いずれも前記一般式(1-1)~(1-6)のうちの1つの一般式により表され、かつ、置換基も含めて互いに同一の基であることが好ましい。
 例えば、R~Rの基として、一般式(1-1)で表される基が3つ選ばれたとき、選ばれた3つの基は、一般式(1-1)で表される基であり、かつ置換基も含めて互いに同一の基であることが好ましい。
 本実施形態の一態様において、R~Rの基として、前記一般式(2-1)で表される基が複数個存在するとき、複数ある一般式(2-1)で表される基は、置換基も含めて互いに同一の基であることが好ましく、
 R~Rの基として、前記一般式(2-2)で表される基が複数個存在するとき、複数ある一般式(2-2)で表される基は、置換基も含めて互いに同一の基であることが好ましく、
 R~Rの基として、前記一般式(2-3)で表される基が複数個存在するとき、複数ある一般式(2-3)で表される基は、置換基も含めて互いに同一の基であることが好ましく、
 R~Rの基として、前記一般式(2-4)で表される基が複数個存在するとき、複数ある一般式(2-4)で表される基は、置換基も含めて互いに同一の基であることが好ましい。
 すなわち、具体的には例えば、RおよびRの基として、前記一般式(2-1)で表される基が2つ選ばれ、Rの基としては前記一般式(2-2)で表される基が1つ選ばれ、Rの基としては前記一般式(1-1)で表される基が1つ選ばれた場合は、該2つの前記一般式(2-1)で表される基(RおよびRの基)は、置換基も含めて互いに同一の基であることが好ましい。
 また例えば、R~Rの基として、前記一般式(2-1)で表される基が3つ選ばれた場合は、該3つの前記一般式(2-1)で表される基(R~Rの基)は、置換基も含めて互いに同一の基であることが好ましい。
 本実施形態の一態様において、R~Rのうちの2つが、前記一般式(2-1)~(2-4)で表される基から選ばれ、残りの2つが前記一般式(1-1)~(1-6)で表される基から選ばれたとき、2つの前記一般式(2-1)~(2-4)で表される基は、いずれも前記一般式(2-1)~(2-4)のうちの1つの一般式により表され、かつ、置換基も含めて互いに同一の基であることが好ましい。
 また、R~Rのうちの3つが、前記一般式(2-1)~(2-4)で表される基から選ばれ、残りの1つが前記一般式(1-1)~(1-6)で表される基から選ばれたとき、該3つの前記一般式(2-1)~(2-4)で表される基は、いずれも前記一般式(2-1)~(2-4)のうちの1つの一般式により表され、かつ、置換基も含めて互いに同一の基であることが好ましい。
 例えば、R~Rの基として、一般式(2-1)で表される基が3つ選ばれたとき、選ばれた3つの基は、一般式(2-1)で表される基であり、かつ置換基も含めて互いに同一の基であることが好ましい。
 本実施形態の一態様において、第一の増感材は、下記一般式(101)~(123)で表される化合物のいずれかの化合物である。
 前記一般式(101)~(123)において、Dは、それぞれ独立に、前記一般式(1-1)~(1-6)で表される基のいずれかの基であり、Dは、それぞれ独立に、前記一般式(2-1)~(2-4)で表される基のいずれかの基であり、複数のDは、互いに同一または異なり、複数のDは、互いに同一または異なる。
 本実施形態の一態様において、前記一般式(101)~(123)におけるDは、互いに同一の基であることが好ましい。
 本実施形態の一態様において、前記一般式(101)~(123)におけるDは、互いに同一の基であることが好ましい。
 すなわち、本実施形態の一態様において、前記一般式(101)~(123)におけるDは、互いに同一の基であり、Dは、互いに同一の基であることがより好ましい。
 本実施形態の一態様において、第一の増感材は、前記一般式(101)、(106)、(107)、(110)、(111)、及び(116)~(119)で表される化合物のいずれかの化合物であることが好ましい。
 前記一般式(1-1)~(1-6)において、X~Xは、酸素原子であることが好ましい。
 前記一般式(1-1)~(1-6)において、X~Xは、硫黄原子であることも好ましい。
 前記一般式(1-1)~(1-6)において、X~Xは、CR151152であることも好ましい。
 本実施形態の一態様において、一般式(1-1)~(1-6)で表される基は、前記一般式(1-1)で表される基、前記一般式(1-2)で表される基、または前記一般式(1-4)で表される基であることが好ましい。
 本実施形態の一態様において、一般式(2-1)~(2-4)で表される基は、前記一般式(2-5)~(2-14)及び下記一般式(2-15)~(2-17)で表される基のいずれかの基であることが好ましい。
Figure JPOXMLDOC01-appb-C000071
 前記一般式(2-5)~(2-17)において、*は、それぞれ独立に、前記一般式(11)~(13)中におけるベンゼン環の炭素原子との結合部位を表し、Dは重水素を表す。
 本実施形態の一態様において、一般式(2-1)~(2-4)で表される基は、一般式(2-2)で表される基、一般式(2-3)で表される基、または一般式(2-4)で表される基である。
 本実施形態の一態様において、一般式(2-1)~(2-4)で表される基は、いずれも一般式(2-1)で表される基であることも好ましい。
 本実施形態の一態様において、前記一般式(2-1)で表される基は、前記一般式(2-5)で表される基または前記一般式(2-15)で表される基である。
 本実施形態の一態様において、第一の増感材が、一般式(2-1)で表される基を有する場合、R161~R168は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~14のアリール基、または
  置換もしくは無置換の炭素数1~6のアルキル基である。
 本実施形態の一態様において、第一の増感材が、一般式(2-1)で表される基を有する場合、R161、R163、R166及びR168の少なくともいずれかに置換基を有し、
 当該置換基は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~14のアリール基、または
  置換もしくは無置換の炭素数1~6のアルキル基であり、
 R162、R164、R165及びR167は水素原子である。
 本実施形態の一態様において、第一の増感材は、前記一般式(101)、(106)、(107)、(110)、(111)、及び(116)~(119)で表される化合物のいずれかの化合物であり、前記一般式(101)、(106)、(107)、(110)、(111)、及び(116)~(119)において、Dは、それぞれ独立に、一般式(1-1)で表される基、一般式(1-2)で表される基、または一般式(1-4)で表される基であり、Dは、それぞれ独立に、一般式(2-5)~(2-14)で表される基のいずれかの基である。
 なお、複数のDは、互いに同一または異なり、複数のDは、互いに同一または異なる。
 本実施形態の一態様において、第一の増感材は、前記一般式(11)で表される化合物である。
 本実施形態の一態様において、第一の増感材は、前記一般式(12)で表される化合物である。
 本実施形態の一態様において、第一の増感材は、前記一般式(13)で表される化合物である。
 前記一般式(1-1)~(1-6)及び(2-1)~(2-4)において、
 置換基としてのR101~R150、R151、R152、R161~R168、R171~R200及びR171~R180及びR61~R70は、それぞれ独立に、
  ハロゲン原子、
  無置換の環形成炭素数6~14のアリール基、
  無置換の環形成原子数5~14の複素環基、
  無置換の炭素数1~6のアルキル基、
  無置換の炭素数1~6のハロゲン化アルキル基、
  無置換の炭素数3~6のアルキルシリル基、
  無置換の炭素数1~6のアルコキシ基、
  無置換の環形成炭素数6~14のアリールオキシ基、
  無置換の炭素数2~12のアルキルアミノ基、
  無置換の炭素数1~6のアルキルチオ基、または
  無置換の環形成炭素数6~14のアリールチオ基であることが好ましい。
 前記一般式(1-1)~(1-6)及び(2-1)~(2-4)において、
 前記置換基としてのR101~R150、R151、R152、R161~R168、R171~R200及びR61~R70は、それぞれ独立に、
  無置換の環形成炭素数6~14のアリール基、または
  無置換の炭素数1~6のアルキル基であることが好ましい。
 前記一般式(1-1)~(1-6)において、
 R101~R150及びR61~R70は、水素原子であり、
 R151及びR152は、無置換の環形成炭素数6~14のアリール基、または無置換の炭素数1~6のアルキル基であり、
 前記(2-1)~(2-4)において、
 R161~R168及びR171~R200は、水素原子であることも好ましい。
 本実施形態の一態様において、第一の増感材は、下記一般式(103A)で表される化合物である。
Figure JPOXMLDOC01-appb-C000072
 前記一般式(103A)において、D10は、下記一般式(1-4A)で表される基であり、D20は、前記一般式(2-1)で表される基である。前記一般式(103A)における複数のD20は、互いに同一の基である。
 「複数のD20は互いに同一の基である」とは、一般式(2-1)内の同じ記号で表される変数同士が全て同一であることを意味する。「一般式(2-1)内の変数」とは、R161~R168を意味する。具体的には、一般式(103A)において、D20を表す「一般式(2-1)で表される基」は、R161同士が同一であり、R162同士が同一であり、R163同士が同一であり、R164同士が同一であり、R165同士が同一であり、R166同士が同一であり、R167同士が同一であり、R168同士が同一である。すなわち、一般式(103A)における3つのD20は、置換基も含めて互いに同一の基である。
Figure JPOXMLDOC01-appb-C000073
 前記一般式(1-4A)において、X40は、酸素原子または硫黄原子であり、R131~R140は、それぞれ、前記一般式(1-4)におけるR131~R140と同義である。
 *は、前記一般式(103A)中におけるベンゼン環との結合位置を表す。
 前記一般式(1-4A)において、X40は、硫黄原子であることが好ましい。
 前記一般式(1-4A)において、X40は、酸素原子であることも好ましい。
 前記一般式(103A)で表される化合物において、前記一般式(2-1)で表される基は、前記一般式(2-5)及び(2-9)~(2-17)で表される基のいずれかの基であることが好ましい。
 前記一般式(2-5)及び(2-9)~(2-17)において、*は、それぞれ独立に、前記一般式(103A)中におけるベンゼン環との結合位置を表し、Dは重水素を表す。
 前記一般式(2-1)において、R161~R168は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~14のアリール基、または置換もしくは無置換の炭素数1~6のアルキル基であることが好ましく、水素原子、または置換もしくは無置換の炭素数1~6のアルキル基であることがより好ましい。
 前記一般式(2-1)において、R161、R163、R166及びR168の少なくともいずれかが置換基を有し、当該置換基は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~14のアリール基、または置換もしくは無置換の炭素数1~6のアルキル基であり、R162、R164、R165及びR167は水素原子であることも好ましい。
 前記一般式(2-1)において、R161~R168のいずれか1つ以上が水素原子である場合、当該水素原子の全てが軽水素であるか、当該水素原子の内いずれか1つ以上が重水素であるか、または当該水素原子の全てが重水素であることが好ましい。
 前記一般式(1-4A)及び(2-1)において、置換基としてのR131~R140及びR161~R168は、それぞれ独立に、ハロゲン原子、無置換の環形成炭素数6~14のアリール基、無置換の環形成原子数5~14の複素環基、無置換の炭素数1~6のアルキル基、無置換の炭素数1~6のハロゲン化アルキル基、無置換の炭素数3~6のアルキルシリル基、無置換の炭素数1~6のアルコキシ基、無置換の環形成炭素数6~14のアリールオキシ基、無置換の炭素数2~12のアルキルアミノ基、無置換の炭素数1~6のアルキルチオ基、または無置換の環形成炭素数6~14のアリールチオ基であることが好ましい。
 前記一般式(1-4A)及び(2-1)において、R131~R140及びR161~R168は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~14のアリール基、置換もしくは無置換の環形成原子数5~14の複素環基、または置換もしくは無置換の炭素数1~6のアルキル基であることが好ましく、水素原子、置換もしくは無置換の環形成炭素数6~14のアリール基、または置換もしくは無置換の炭素数1~6のアルキル基であることがより好ましく、水素原子、または置換もしくは無置換の炭素数1~6のアルキル基であることがさらに好ましい。
 前記一般式(1-4A)及び(2-1)において、置換基としてのR131~R140及びR161~R168は、それぞれ独立に、無置換の環形成炭素数6~14のアリール基、または無置換の炭素数1~6のアルキル基であることがより好ましい。
 前記一般式(1-4A)及び(2-1)において、R137は、置換基であり、置換基としてのR137は、置換もしくは無置換の環形成炭素数6~14のアリール基、または置換もしくは無置換の炭素数1~6のアルキル基であり、R131~R136及びR138~R140は、水素原子であることも好ましい。
 前記一般式(1-4A)及び(2-1)において、R131~R140及びR161~R168は、水素原子であることも好ましい。
 本実施形態の第一の増感材(前記一般式(11)~(13)のいずれかで表される化合物)の具体例としては、例えば、以下の化合物が挙げられる。ただし、第一の増感材は、これら化合物の具体例に限定されない。Meはメチル基を表す。
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
 本実施形態の一態様において、第一の増感材は、下記一般式(1000)で表される化合物である。
Figure JPOXMLDOC01-appb-C000136
(一般式(1000)において、
 Y及びYは、それぞれ独立に、水素原子又はシアノ基であり、
 R及びRは、それぞれ独立に、
  水素原子、
  シアノ基、
  置換もしくは無置換の環形成炭素数6~40のアリール基、
  置換もしくは無置換の環形成原子数5~40のヘテロアリール基、又は
  -N(Rz)(Rz)で表される基であり、
 ただしR及びRは、同時に水素原子ではなく、
 Rz及びRzからなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 L及びRzからなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 L及びRzからなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 L及びRzからなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 L及びRzからなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないL及びLは、それぞれ独立に、
  単結合、
  置換もしくは無置換の炭素数2~18のアルキニレン基、
  置換もしくは無置換の環形成炭素数6~18のアリーレン基、
  置換もしくは無置換の環形成原子数5~18のヘテロアリーレン基、又は
  これらの基のうち2つの基が結合した基であり、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRz及びRzは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~40のアリール基である。)
 前記一般式(1000)で表される化合物の一態様は、下記一般式(1000A)又は(1000B)で表される化合物である。
Figure JPOXMLDOC01-appb-C000137
(前記一般式(1000A)及び(1000B)において、Rは、前記一般式(1000)におけるRと同義である。)
 本実施形態の一態様において、第一の増感材は、下記一般式(1001)で表される化合物である。
Figure JPOXMLDOC01-appb-C000138
(一般式(1001)において、
 Y及びYは、それぞれ独立に、水素原子又はシアノ基であり、
 X及びXは、それぞれ独立に、CH又は窒素原子であり、
 L、L、R及びRは、それぞれ独立に、前記一般式(1000)におけるL、L、R及びRと同義である。)
 前記一般式(1001)で表される化合物の一態様は、下記一般式(1001A)又は(1001B)で表される化合物である。
Figure JPOXMLDOC01-appb-C000139
(前記一般式(1001A)及び(1001B)において、Rは、前記一般式(1001)におけるRと同義である。)
 本実施形態の一態様において、第一の増感材は、下記一般式(1002)で表される化合物である。
Figure JPOXMLDOC01-appb-C000140
(前記一般式(1002)において、
 L及びLは、それぞれ独立に、
  単結合、
  置換もしくは無置換のフェニレン基、
  置換もしくは無置換のビフェニレン基、又は
  置換もしくは無置換のトランスジスチリル基から誘導される2価の基であり、
 X及びXは、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~40のアリール基、
  置換もしくは無置換の環形成原子数5~40のヘテロアリール基、又は
  -N(Rz)(Rz)で表される基であり、
 Rz及びRzからなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRz及びRzは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~40のアリール基、又は
  置換もしくは無置換の環形成炭素数5~40のヘテロアリール基であり、
 Y及びYは、それぞれ独立に、下記一般式(W-1)~(W-21)のいずれかで表される基である。)
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
(前記一般式(W-1)~(W-21)において、*は結合位置を表す。)
 前記一般式(1002)で表される化合物の一態様は、下記一般式(1002A)で表される化合物である。
Figure JPOXMLDOC01-appb-C000143
(前記一般式(1002A)において、X及びXは、それぞれ独立に、前記一般式(1002)におけるX及びXと同義である。)
 本実施形態の一態様において、第一の増感材は、下記一般式(1003)で表される化合物である。
Figure JPOXMLDOC01-appb-C000144
(前記一般式(1003)において、
 X及びXは、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~40のアリール基、
  置換もしくは無置換の環形成原子数5~40のヘテロアリール基、又は
  -N(Rz)(Rz)で表される基であり、
 Rz及びRzからなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRz及びRzは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~40のアリール基、又は
  置換もしくは無置換の環形成炭素数5~40のヘテロアリール基である。)
 本実施形態の一態様において、第一の増感材は、下記一般式(1004A)~(1004D)のいずれかで表される化合物である。
Figure JPOXMLDOC01-appb-C000145
(前記一般式(1004A)~(1004D)において、
 Xは、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50のヘテロアリール基、
  -N(Rz)(Rz)で表される基であり、
 Yは、水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換もしくは無置換の炭素数1~6のアルキル基、置換もしくは無置換の環形成炭素数5~10のシクロアルキル基、置換もしくは無置換の炭素数2~6のアルケニル基、置換もしくは無置換の炭素数1~6のアルキルオキシ基、置換もしくは無置換の環形成炭素数5~10のシクロアルキルオキシ基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成炭素数5~50のヘテロアリール基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、又は-N(Rz)(Rz)で表される基であり、
 R1A~R2A及びR5A~R8Aは、それぞれ独立に、水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換もしくは無置換の炭素数1~10のアルキル基、置換もしくは無置換の環形成炭素数5~10のシクロアルキル基、置換もしくは無置換の炭素数2~6のアルケニル基、置換もしくは無置換の炭素数1~6のアルキルオキシ基、置換もしくは無置換の環形成炭素数5~10のシクロアルキルオキシ基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成炭素数5~50のヘテロアリール基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、又は-N(Rz)(Rz)で表される基であり、
 Rz及びRzからなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRz及びRzは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成炭素数5~50のヘテロアリール基である。)
(-N(Rz)(Rz)におけるRz及びRzが前記置換もしくは無置換の単環もしくは前記置換もしくは無置換の縮合環を形成する場合、Rz及びRzは、単結合を介して互いに結合して単環もしくは縮合環を形成してもよく、置換もしくは無置換のメチレン基を介して互いに結合して単環もしくは縮合環を形成してもよく、酸素原子または硫黄原子を介して互いに結合して単環もしくは縮合環を形成してもよい。)
 前記一般式(1004B)で表される化合物の一態様は、下記一般式(1004B-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000146
(前記一般式(1004B-1)において、X及びYは、それぞれ独立に、前記一般式(1004B)におけるX及びYと同義である。)
 本実施形態の一態様において、第一の増感材は、下記一般式(1005A)~(1005D)のいずれかで表される化合物である。
Figure JPOXMLDOC01-appb-C000147
(前記一般式(1005A)~(1005D)において、X及びYは、それぞれ独立に、前記一般式(1004A)~(1004D)におけるX及びYと同義であり、R1A~R6Aは、それぞれ独立に、前記一般式(1004A)~(1004D)におけるR1A~R2A及びR5A~R8Aと同義であり、
 R7B及びR8Bからなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR7B及びR8Bは、それぞれ独立に、前記一般式(1004A)~(1004D)におけるR1A~R2A及びR5A~R8Aと同義である。)
 前記一般式(1005B)で表される化合物の一態様は、下記一般式(1005B-1)、(1005B-2)、(1005B-3)又は(1005B-4)で表される化合物である。
Figure JPOXMLDOC01-appb-C000148
(前記一般式(1005B-1)及び(1005B-2)において、X及びYは、それぞれ独立に、前記一般式(1005B)におけるX及びYと同義であり、R1005は、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成炭素数5~50のヘテロアリール基である。)
Figure JPOXMLDOC01-appb-C000149
(前記一般式(1005B-3)及び(1005B-4)において、X及びYは、それぞれ独立に、前記一般式(1005B)におけるX及びYと同義である。)
 本実施形態の一態様において、第一の増感材は、下記一般式(1006)で表される化合物である。
Figure JPOXMLDOC01-appb-C000150
(一般式(1006)において、Ar104及びAr105は、それぞれ独立に、
 置換もしくは無置換の環形成炭素数6~50のアリール基、又は
 置換もしくは無置換の環形成原子数5~50のヘテロアリール基であり、
 ただし、Ar104及びAr105の少なくとも一方は、N,N-ジアリールアミノ基が置換したアリール基である。)
 前記一般式(1006)において、N,N-ジアリールアミノ基が置換したアリール基は、Ar104及びAr105のうちの一方であってもよいし、Ar104及びAr105の両方であってもよいが、Ar104及びAr105の両方であることが好ましい。Ar及びArの両方がN,N-ジアリールアミノ基が置換したアリール基であるとき、それらのN,N-ジアリールアミノ基は互いに同一であっても異なっていてもよいが、同一であることが好ましい。
 前記一般式(1006)において、N,N-ジアリールアミノ基が置換したアリール基の一態様は、下記一般式(1006A)で表される基である。
Figure JPOXMLDOC01-appb-C000151
(一般式(1006A)において、
 Ar101は、
  置換もしくは無置換の環形成炭素数6~18のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~18のヘテロアリーレン基であり、
 Ar102及びAr103は、それぞれ独立に、
 置換もしくは無置換の環形成炭素数6~18のアリール基であり、
 ただし、Ar102及びAr103からなる組は、単結合で結合していてもよいし、連結基Aを介して連結していてもよい。
 *は、一般式(1006)におけるピラジン環への結合部位を表す。)
 一般式(1006A)において、連結基Aとしては、置換もしくは無置換のメチレン基、置換もしくは無置換のエチレン基、置換もしくは無置換のビニレン基、置換もしくは無置換のイミノ基、酸素原子または硫黄原子が挙げられる。このうちエチレン基およびビニレン基が複数の置換基で置換されているとき、隣り合う2つの置換基同士は互いに結合して環状構造を形成していてもよい。
 本実施形態の一態様において、第一の増感材は、下記一般式(1007A)又は(1007B)で表される化合物である。
Figure JPOXMLDOC01-appb-C000152
(前記一般式(1007A)及び(1007B)において、
 R101~R104は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~5のアルキル基、
  置換もしくは無置換の炭素数1~5のアルコキシ基、又は
  置換もしくは無置換のフェニル基であり、
 X101、Y101、X201及びY201は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~5のアルキル基、
  置換もしくは無置換の芳香族アミノ基、または
  置換もしくは無置換の芳香族ホスフィンオキシ基である。)
 前記一般式(1007A)及び(1007B)において、芳香族アミノ基としては、例えば、アルキルアミノ基、アリールアミノ基、ジアルキルアミノ基、及びジアリールアミノ基が挙げられる。
 前記一般式(1007A)で表される化合物の一態様は、下記一般式(1007A-1)であり、前記一般式(1007B)で表される化合物の一態様は、下記一般式(1007B-1)である。
Figure JPOXMLDOC01-appb-C000153
(前記一般式(1007A-1)において、X101は、前記一般式(1007A)におけるX101と同義である。)
(前記一般式(1007B-1)において、R103、R104及びX201は、前記一般式(1007B)におけるR103、R104及びX201と同義である。)
 本実施形態の一態様において、第一の増感材は、下記一般式(1008)又は(1008A)で表される化合物である。
Figure JPOXMLDOC01-appb-C000154
(前記一般式(1008)及び(1008A)において、
 Xは、硫黄原子又はセレン原子であり、
 R82及びR83からなる組は、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R81及びR84、並びに前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR82及びR83は、それぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の炭素数1~20のアルキル置換アミノ基、置換もしくは無置換の炭素数6~40のアリール置換アミノ基、置換もしくは無置換の炭素数2~20のアシル基、置換もしくは無置換の環形成炭素数6~40のアリール基、置換もしくは無置換の環形成原子数3~40のヘテロアリール基、置換もしくは無置換の炭素数2~10のアルケニル基、置換もしくは無置換の炭素数2~10のアルキニル基、置換もしくは無置換の炭素数2~10のアルコキシカルボニル基、置換もしくは無置換の炭素数1~10のアルキルスルホニル基、置換もしくは無置換の炭素数1~10のハロアルキル基、置換もしくは無置換のアミド基、置換もしくは無置換の炭素数2~10のアルキルアミド基、置換もしくは無置換の炭素数3~20のトリアルキルシリル基、置換もしくは無置換の炭素数4~20のトリアルキルシリルアルキル基、置換もしくは無置換の炭素数5~20のトリアルキルシリルアルケニル基、置換もしくは無置換の炭素数5~20のトリアルキルシリルアルキニル基、又はニトロ基であり、
 ただし、R81~R84のうち、少なくとも2つは、それぞれ独立に、前記一般式(1008B)で表される基である。)
(前記一般式(1008B)において、Lは、
  置換もしくは無置換の環形成炭素数6~40のアリーレン基、または
  置換もしくは無置換の環形成原子数5~40のヘテロアリーレン基であり、
 n1は、0または1であり、
 X~Xは、それぞれ独立に、窒素原子またはCR1008であり、ただし、X~Xのうち、少なくとも1つはCR1008であり、
 隣接するR1008からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR1008は、それぞれ独立に、前記一般式(1008)及び(1008A)におけるR81及びR84と同義であり、
 複数のR1008は、互いに同一であるか、又は異なる。)
 前記一般式(1008)及び(1008A)で表される化合物の一態様は、下記一般式(1008-1)~(1008-7)のいずれかで表される化合物である。
Figure JPOXMLDOC01-appb-C000155
(前記一般式(1008-1)~(1008-7)において、X10は、硫黄原子又はセレン原子であり、R85~R87は、それぞれ独立に、前記一般式(1008)及び(1008A)におけるR81と同義であり、X、R81及びR84は、それぞれ独立に、前記一般式(1008)及び(1008A)におけるX、R81及びR84と同義である。)
 本実施形態の一態様において、第一の増感材は、下記一般式(1009A)~(1009C)のいずれかで表される化合物である。
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000157
(前記一般式(1009A)~(1009C)において、
 Xは、硫黄原子又はセレン原子であり、
 Xは、
  置換もしくは無置換の環形成炭素数6~20のアリーレン基、
  置換もしくは無置換の環形成原子数3~20のヘテロアリーレン基、
  置換もしくは無置換の環形成炭素数6~20のアリーレン基、及び
  置換もしくは無置換の環形成原子数3~20のヘテロアリーレン基から選択される2つの基または3つの基が結合した基であり、
 Yは、
  置換もしくは無置換の環形成炭素数6~20のアリール基、
  置換もしくは無置換の環形成原子数3~20のヘテロアリール基、又は
  -N(Rz)(Rz)で表される基であり、
 Rz及びRzは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成炭素数5~50のヘテロアリール基であり、
 R及びRは、それぞれ独立に、
  水素原子、
  置換もしくは無置換のカルバゾリル基、又は
  置換もしくは無置換のジフェニルアミン基であり、
 ただし、R及びRの少なくとも一方は水素原子である。)
 本実施形態の一態様において、第一の増感材は、下記一般式(1010)で表される化合物である。
Figure JPOXMLDOC01-appb-C000158
(前記一般式(1010)において、R~Rは、それぞれ独立に、水素原子又は置換基を表し、R及びRの組、R及びRの組、R及びRの組、R及びRの組、R及びRの組、並びにR及びRのいずれか1つ以上の組が互いに結合して環を形成してもよく、
 Rは、下記一般式(1010A)または一般式(1010B)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000159
(前記一般式(1010A)において、
 Ar11は、置換もしくは無置換の環形成炭素数6~40のアリール基から誘導される基であり、
 R11は、アリール基以外の置換基を表し、n11は、1からAr11における置換可能な位置の数までの整数を表し、
 n11が2以上のとき、複数のR11は同一であるか、又は異なり、ただし、少なくとも1つのR11は電子供与基である。)
(前記一般式(1010B)において、R21~R25は、それぞれ独立に、水素原子または置換基を表し、pは0~2の整数である。)
(前記一般式(1010)、(1010A)及び(1010B)において、置換基としてのR~R、R11及びR21~R25は、それぞれ独立に、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、ハロゲン原子、ヒドロキシル基、ニトロ基、カルボキシル基、シアノ基、アルコキシ基、アリールオキシ基、アシル基、アシルオキシ基、カルバモイルオキシ基(アルコキシカルボニルオキシ基など)、第1級アミノ基、アルキルアミノ基、アリールアミノ基、ジアルキルアミノ基、ジアリールアミノ基、アルキルアリールアミノ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルスルホニルアミノ基、アリールスルホニルアミノ基、アルキルチオ基、アリールチオ基、スルホ基、スルファモイル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、イミド基、アルコキシスルホニル基、アリールオキシスルホニル基、トリアルキルシリル基、又はトリアルキルシリルオキシ基である。これらの基は、さらに置換され得る。)
 本実施形態の一態様において、第一の増感材は、下記一般式(1011A)又は(1011B)で表される化合物である。
Figure JPOXMLDOC01-appb-C000160
(前記一般式(1011A)及び(1011B)において、Mは、それぞれ独立に、C(R、NR、O原子、S原子、SO、P(=O)R、Si(R、Ge(R及び下記一般式(M-1)~(M-5)で表される基からなる群から選択され、
 Rは、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、-NO、-N(R、-OR、-SR、-C(=O)R、-P(=O)R、-Si(R、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数2~20のアルケニル基、置換もしくは無置換の炭素数1~20のアルキニル基、置換もしくは無置換の環形成炭素数6~40のアリール基、または置換もしくは無置換の環形成原子数3~40のヘテロアリール基であり、
 Rは、それぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、または置換もしくは無置換の環形成原子数3~30のヘテロアリール基であり、
 複数のMは、互いに同一であるか、又は異なり、
 Rが複数存在する場合、複数のRは、互いに同一であるか、又は異なり、
 Rが複数存在する場合、複数のRは、互いに同一であるか、又は異なる。)
Figure JPOXMLDOC01-appb-I000161
(前記一般式(M-1)~(M-5)において、Xは、置換もしくは無置換の炭素数1~8のアルキル基又は単結合であり、Yは、C(R、NR、カルボニル基、O原子、S原子、SO、P(=O)R、Si(R、Ge(R又は単結合であり、Zは、CR又は窒素原子であり、YにおけるR及びZにおけるRは、それぞれ独立に、前記一般式(1011A)におけるRと同義であり、Rが複数存在する場合、複数のRは、互いに同一であるか、又は異なり、複数のZは同一であるか、又は異なる。*は結合位置を表す。)
 本実施形態の一態様において、第一の増感材は、下記一般式(1012A)又は(1012B)で表される化合物である。
Figure JPOXMLDOC01-appb-C000162
(前記一般式(1012A)及び(1012B)において、
 D及びDは、同じ電子供与基または水素原子であるか、D及びDは異なる電子供与基であり、
 D及びDは、同じ電子供与基または水素原子であるか、D及びDは異なる電子供与基であり、
 電子供与基は、置換もしくは無置換のカルバゾリル基、置換もしくは無置換のアクリジン基、置換もしくは無置換のフェノキサジニル基、置換もしくは無置換のフェナジニル基、置換もしくは無置換のフェナジニル基、および置換もしくは無置換のフェノチアジニル基のうちの1つから選択される。置換もしくは無置換のという場合における置換基は、メチル基、エチ基ル、イソプロピル基、tert-ブチル基、フェニル基、カルバゾリル基、置換もしくは無置換のアミノ基、アクリジン基、フェナジニル基、フルオレニル基、ジベンゾフラン基、ジベンゾチオフェンの1つまたは複数である。)
 本実施形態の一態様において、第一の増感材は、下記一般式(1013)で表される化合物である。
Figure JPOXMLDOC01-appb-C000163
(前記一般式(1013)において、Z、Z及びZは、それぞれ独立に、置換基を表し、置換基は、水素原子以外の原子または原子団である。)
 前記一般式(1013)において、Z、Z及びZが表す置換基は、それぞれ独立に、置換アミノ基(例えば、ジアルキルアミノ基、ジアリールアミノ基、アルキルアリールアミノ基等)、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基であることが好ましい。Z、Z及びZは、互いに同一であることが好ましい。
 本実施形態の一態様において、第一の増感材は、下記一般式(1014)で表される化合物である。
Figure JPOXMLDOC01-appb-C000164
(前記一般式(1014)において、
 R~Rのうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR~Rは、それぞれ独立に、水素原子又は置換基を表し、R~Rの少なくとも1つは、それぞれ独立に、下記一般式(1014A)で表される基である。)
Figure JPOXMLDOC01-appb-C000165
(前記一般式(1014A)において、Arは、置換もしくは無置換のフェニレン基、又は置換もしくは無置換のナフチレン基を表す。n1は、0又は1を表す。
 R11~R20のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR11~R20は、それぞれ独立に、水素原子又は置換基を表す。)
 前記一般式(1014)及び(1014A)において、R~R及びR11~R20は、それぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、シアノ基、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数2~20のアシル基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルスルホニル基、炭素数1~10のハロアルキル基、アミド基、炭素数2~10のアルキルアミド基、炭素数3~20のトリアルキルシリル基、炭素数4~20のトリアルキルシリルアルキル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素数5~20のトリアルキルシリルアルキニル基又はニトロ基であることが好ましい。
 前記一般式(1014A)において、Arの「置換もしくは無置換の」という場合における置換基は、それぞれ独立に、前記一般式(1014)及び(1014A)におけるR~R及びR11~R20(ただし水素原子以外)と同義である。
 本実施形態の一態様において、第一の増感材は、下記一般式(1015)で表される化合物である。
Figure JPOXMLDOC01-appb-C000166
(前記一般式(1015)において、Xは、酸素原子又は硫黄原子であり、
 R~Rのうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR~Rは、それぞれ独立に、水素原子又は置換基を表し、ただし、R~Rの少なくとも1つは、それぞれ独立に、下記一般式(1015A)~(1015E)のいずれかで表される基である。)
Figure JPOXMLDOC01-appb-C000167
(前記一般式(1015A)~(1015E)において、L20、L30、L40、L50及びL60は、それぞれ独立に、単結合または二価の連結基を表し、*は一般式(1015)の環骨格に結合し、
 R21~R28のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R31~R38のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R3a及びR3bからなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R41~R48のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R51~R58のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R61~R68のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR21~R28、R31~R38、R3a、R3b、R41~R48、R4a、R51~R58及びR61~R68は、それぞれ独立に、水素原子または置換基を表す。
 前記一般式(1015A)~(1015E)において、L20、L30、L40、L50及びL60は、それぞれ独立に、単結合、置換もしくは無置換の炭素数2~10のアルケニレン基、置換もしくは無置換の炭素数2~10のアルキニレン基、置換もしくは無置換の環形成炭素数6~10のアリーレン基、置換もしくは無置換のチオフェンジイル基又はこれらの組み合わせからなる基が好ましい。チオフェンジイル基としては、例えば、3,4-チオフェンジイル基、及び2,5-チオフェンジイル基が挙げられる。
 前記一般式(1015)及び(1015A)~(1015E)において、R~R、R21~R28、R31~R38、R3a、R3b、R41~R48、R4a、R51~R58及びR61~R68は、それぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、シアノ基、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数2~20のアシル基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルスルホニル基、炭素数1~10のハロアルキル基、アミド基、炭素数2~10のアルキルアミド基、炭素数3~20のトリアルキルシリル基、炭素数4~20のトリアルキルシリルアルキル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素数5~20のトリアルキルシリルアルキニル基又はニトロ基であることが好ましい。
 本実施形態の一態様において、第一の増感材は、下記一般式(1016A)または(1016B)で表される化合物である。
Figure JPOXMLDOC01-appb-C000168
(前記一般式(1016A)において、R16A、R16B及びR16Cは、それぞれ独立に、置換基を表し、置換基は、水素原子以外の原子または原子団である。)
(前記一般式(1016B)において、R16D、R16E、R16F及びR16Gは、それぞれ独立に、水素原子又は置換基を表す。)
 前記一般式(1016A)において、R16A、R16B及びR16Cが表す置換基は、それぞれ独立に、置換アミノ基(例えば、ジアルキルアミノ基、ジアリールアミノ基、アルキルアリールアミノ基等)、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基であることが好ましい。
 前記一般式(1016B)において、R16D、R16E、R16F及びR16Gは、それぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、シアノ基、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数2~20のアシル基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルスルホニル基、炭素数1~10のハロアルキル基、アミド基、炭素数2~10のアルキルアミド基、炭素数3~20のトリアルキルシリル基、炭素数4~20のトリアルキルシリルアルキル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素数5~20のトリアルキルシリルアルキニル基又はニトロ基であることが好ましい。
 本実施形態の第一の増感材において、前記一般式(1000)~(1003)、(1004A)~(1004D)、(1005A)~(1005D)、(1006)、(1007A)、(1007B)、(1008)、(1008A)、(1009A)~(1009C)、(1010)、(1011A)、(1011B)、(1012A)、(1012B)、(1013)~(1015)、(1016A)及び(1016B)のいずれかで表される化合物の具体例としては、例えば、以下の化合物が挙げられる。ただし、第一の増感材は、これら化合物の具体例に限定されない。t-Cはターシャルブチル基を表す。
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000189
Figure JPOXMLDOC01-appb-C000190
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000210
Figure JPOXMLDOC01-appb-C000211
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000213
Figure JPOXMLDOC01-appb-C000214
Figure JPOXMLDOC01-appb-C000215
Figure JPOXMLDOC01-appb-C000216
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000218
Figure JPOXMLDOC01-appb-C000219
Figure JPOXMLDOC01-appb-C000220
Figure JPOXMLDOC01-appb-C000221
Figure JPOXMLDOC01-appb-C000222
Figure JPOXMLDOC01-appb-C000223
Figure JPOXMLDOC01-appb-C000224
Figure JPOXMLDOC01-appb-C000225
Figure JPOXMLDOC01-appb-C000226
Figure JPOXMLDOC01-appb-C000227
Figure JPOXMLDOC01-appb-C000228
Figure JPOXMLDOC01-appb-C000229
Figure JPOXMLDOC01-appb-C000230
Figure JPOXMLDOC01-appb-C000231
Figure JPOXMLDOC01-appb-C000232
Figure JPOXMLDOC01-appb-C000233
Figure JPOXMLDOC01-appb-C000234
Figure JPOXMLDOC01-appb-C000235
Figure JPOXMLDOC01-appb-C000236
Figure JPOXMLDOC01-appb-C000237
Figure JPOXMLDOC01-appb-C000238
Figure JPOXMLDOC01-appb-C000239
Figure JPOXMLDOC01-appb-C000240
Figure JPOXMLDOC01-appb-C000241
Figure JPOXMLDOC01-appb-C000242
Figure JPOXMLDOC01-appb-C000243
Figure JPOXMLDOC01-appb-C000244
Figure JPOXMLDOC01-appb-C000245
Figure JPOXMLDOC01-appb-C000246
Figure JPOXMLDOC01-appb-C000247
Figure JPOXMLDOC01-appb-C000248
Figure JPOXMLDOC01-appb-C000249
Figure JPOXMLDOC01-appb-C000250
Figure JPOXMLDOC01-appb-C000251
Figure JPOXMLDOC01-appb-C000252
Figure JPOXMLDOC01-appb-C000253
Figure JPOXMLDOC01-appb-C000254
Figure JPOXMLDOC01-appb-C000255
Figure JPOXMLDOC01-appb-C000256
Figure JPOXMLDOC01-appb-C000257
Figure JPOXMLDOC01-appb-C000258
Figure JPOXMLDOC01-appb-C000259
Figure JPOXMLDOC01-appb-C000260
Figure JPOXMLDOC01-appb-C000261
Figure JPOXMLDOC01-appb-C000262
Figure JPOXMLDOC01-appb-C000263
Figure JPOXMLDOC01-appb-C000264
Figure JPOXMLDOC01-appb-C000265
Figure JPOXMLDOC01-appb-C000266
Figure JPOXMLDOC01-appb-C000267
Figure JPOXMLDOC01-appb-C000268
Figure JPOXMLDOC01-appb-C000269
Figure JPOXMLDOC01-appb-C000270
Figure JPOXMLDOC01-appb-C000271
Figure JPOXMLDOC01-appb-C000272
Figure JPOXMLDOC01-appb-C000273
Figure JPOXMLDOC01-appb-C000274
Figure JPOXMLDOC01-appb-C000275
Figure JPOXMLDOC01-appb-C000276
Figure JPOXMLDOC01-appb-C000277
Figure JPOXMLDOC01-appb-C000278
Figure JPOXMLDOC01-appb-C000279
Figure JPOXMLDOC01-appb-C000280
Figure JPOXMLDOC01-appb-C000281
Figure JPOXMLDOC01-appb-C000282
Figure JPOXMLDOC01-appb-C000283
Figure JPOXMLDOC01-appb-C000284
Figure JPOXMLDOC01-appb-C000285
Figure JPOXMLDOC01-appb-C000286
Figure JPOXMLDOC01-appb-C000287
Figure JPOXMLDOC01-appb-C000288
Figure JPOXMLDOC01-appb-C000289
 本実施形態の一態様において、第一の増感材は、遅延蛍光性材料である。
 遅延蛍光性について説明する。
・遅延蛍光性
 遅延蛍光については、「有機半導体のデバイス物性」(安達千波矢編、講談社発行)の261~268ページで解説されている。その文献の中で、蛍光発光材料の励起一重項状態と励起三重項状態のエネルギー差ΔE13を小さくすることができれば、通常は遷移確率が低い励起三重項状態から励起一重項状態への逆エネルギー移動が高効率で生じ、熱活性化遅延蛍光(Thermally Activated delayed Fluorescence, TADF)が発現すると説明されている。さらに、当該文献中の図10.38で、遅延蛍光の発生メカニズムが説明されている。
 本実施形態に係る第一の増感材は、このようなメカニズムで発生する熱活性化遅延蛍光を示す化合物であることが好ましい。本実施形態において、熱活性化遅延蛍光を示す化合物は増感材として機能する。
 一般に、遅延蛍光の発光は過渡PL(Photoluminescence)測定により確認できる。
 過渡PL測定から得た減衰曲線に基づいて遅延蛍光の挙動を解析することもできる。過渡PL測定とは、試料にパルスレーザーを照射して励起させ、照射を止めた後のPL発光の減衰挙動(過渡特性)を測定する手法である。TADF材料におけるPL発光は、最初のPL励起で生成する一重項励起子からの発光成分と、三重項励起子を経由して生成する一重項励起子からの発光成分に分類される。最初のPL励起で生成する一重項励起子の寿命は、ナノ秒オーダーであり、非常に短い。そのため、当該一重項励起子からの発光は、パルスレーザーを照射後、速やかに減衰する。
 一方、遅延蛍光は、寿命の長い三重項励起子を経由して生成する一重項励起子からの発光のため、ゆるやかに減衰する。このように最初のPL励起で生成する一重項励起子からの発光と、三重項励起子を経由して生成する一重項励起子からの発光とでは、時間的に大きな差がある。そのため、遅延蛍光由来の発光強度を求めることができる。
 図5には、過渡PLを測定するための例示的装置の概略図が示されている。図5を用いた過渡PLの測定方法、および遅延蛍光の挙動解析の一例を説明する。
 図5の過渡PL測定装置1000は、所定波長の光を照射可能なパルスレーザー部1010と、測定試料を収容する試料室1020と、測定試料から放射された光を分光する分光器1030と、2次元像を結像するためのストリークカメラ1040と、2次元像を取り込んで解析するパーソナルコンピュータ1050とを備える。なお、過渡PLの測定は、図5に記載の装置に限定されない。
 試料室1020に収容される試料は、マトリックス材料に対し、ドーピング材料が12質量%の濃度でドープされた薄膜を石英基板に成膜することで得られる。
 試料室1020に収容された薄膜試料に対し、パルスレーザー部1010からパルスレーザーを照射してドーピング材料を励起させる。励起光の照射方向に対して90度の方向へ発光を取り出し、取り出した光を分光器1030で分光し、ストリークカメラ1040内で2次元像を結像する。その結果、縦軸が時間に対応し、横軸が波長に対応し、輝点が発光強度に対応する2次元画像を得ることができる。この2次元画像を所定の時間軸で切り出すと、縦軸が発光強度であり、横軸が波長である発光スペクトルを得ることができる。また、当該2次元画像を波長軸で切り出すと、縦軸が発光強度の対数であり、横軸が時間である減衰曲線(過渡PL)を得ることができる。
 例えば、マトリックス材料として、下記参考化合物H1を用い、ドーピング材料として下記参考化合物D1を用いて上述のようにして薄膜試料Aを作製し、過渡PL測定を行った。
 ここでは、前述の薄膜試料A、および薄膜試料Bを用いて減衰曲線を解析した。薄膜試料Bは、マトリックス材料として下記参考化合物H2を用い、ドーピング材料として前記参考化合物D1を用いて、上述のようにして薄膜試料を作製した。
 図6には、薄膜試料Aおよび薄膜試料Bについて測定した過渡PLから得た減衰曲線が示されている。
 上記したように過渡PL測定によって、縦軸を発光強度とし、横軸を時間とする発光減衰曲線を得ることができる。この発光減衰曲線に基づいて、光励起により生成した一重項励起状態から発光する蛍光と、三重項励起状態を経由し、逆エネルギー移動により生成する一重項励起状態から発光する遅延蛍光との、蛍光強度比を見積もることができる。遅延蛍光性の材料では、素早く減衰する蛍光の強度に対し、緩やかに減衰する遅延蛍光の強度の割合が、ある程度大きい。
 具体的には、遅延蛍光性の材料からの発光としては、Prompt発光(即時発光)と、Delay発光(遅延発光)とが存在する。Prompt発光(即時発光)とは、当該遅延蛍光性の材料が吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察される発光である。Delay発光(遅延発光)とは、当該パルス光による励起後、即座には観察されず、その後観察される発光である。
 Prompt発光とDelay発光の量とその比は、“Nature 492, 234-238, 2012”(参考文献1)に記載された方法と同様の方法により求めることができる。なお、Prompt発光とDelay発光の量の算出に使用される装置は、前記参考文献1に記載の装置、または図5に記載の装置に限定されない。
 本明細書において、第一の増感材が遅延蛍光性材料である場合、遅延蛍光性の測定には、次に示す方法により作製した試料を用いる。例えば、測定対象化合物(第一の増感材)をトルエンに溶解し、自己吸収の寄与を取り除くため励起波長において吸光度が0.05以下の希薄溶液を調製する。また酸素による消光を防ぐため、試料溶液を凍結脱気した後にアルゴン雰囲気下で蓋付きのセルに封入することで、アルゴンで飽和された酸素フリーの試料溶液とする。
 上記試料溶液の蛍光スペクトルを分光蛍光光度計FP-8600(日本分光社製)で測定し、また同条件で9,10-ジフェニルアントラセンのエタノール溶液の蛍光スペクトルを測定する。両スペクトルの蛍光面積強度を用いて、Morris et al. J.Phys.Chem.80(1976)969中の(1)式により全蛍光量子収率を算出する。
 本実施形態においては、測定対象化合物(第一の増感材)のPrompt発光(即時発光)の量をXとし、Delay発光(遅延発光)の量をXとしたときに、X/Xの値が0.05以上であることが好ましい。
 本明細書における第一の増感材以外の化合物のPrompt発光とDelay発光の量とその比の測定も、第一の増感材のPrompt発光とDelay発光の量とその比の測定と同様である。
・ΔST
 本実施形態では、最低励起一重項エネルギーSと、77[K]におけるエネルギーギャップT77Kとの差(S-T77K)をΔSTとして定義する。
・三重項エネルギーと77[K]におけるエネルギーギャップとの関係
 ここで、三重項エネルギーと77[K]におけるエネルギーギャップとの関係について説明する。本実施形態では、77[K]におけるエネルギーギャップは、通常定義される三重項エネルギーとは異なる点がある。
 三重項エネルギーの測定は、次のようにして行われる。まず、測定対象となる化合物を適切な溶媒中に溶解した溶液を石英ガラス管内に封入した試料を作製する。この試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値に基づいて、所定の換算式から三重項エネルギーを算出する。
 ここで、本実施形態に係る化合物の内、熱活性化遅延蛍光性の化合物は、ΔSTが小さい化合物であることが好ましい。ΔSTが小さいと、低温(77[K])状態でも、項間交差、及び逆項間交差が起こりやすく、励起一重項状態と励起三重項状態とが混在する。その結果、上記と同様にして測定されるスペクトルは、励起一重項状態、及び励起三重項状態の両者からの発光を含んでおり、いずれの状態から発光したのかについて峻別することは困難であるが、基本的には三重項エネルギーの値が支配的と考えられる。
 そのため、本実施形態では、通常の三重項エネルギーTと測定手法は同じであるが、その厳密な意味において異なることを区別するため、次のようにして測定される値をエネルギーギャップT77Kと称する。測定対象となる化合物をEPA(ジエチルエーテル:イソペンタン:エタノール=5:5:2(容積比))中に、濃度が10μmol/Lとなるように溶解し、この溶液を石英セル中に入れて測定試料とする。この測定試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]に基づいて、次の換算式(F1)から算出されるエネルギー量を77[K]におけるエネルギーギャップT77Kとする。
  換算式(F1):T77K[eV]=1239.85/λedge
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引く。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線(すなわち変曲点における接線)が、当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 なお、スペクトルの最大ピーク強度の15%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 燐光の測定には、(株)日立ハイテクノロジー製のF-4500形分光蛍光光度計本体を用いることができる。なお、測定装置はこの限りではなく、冷却装置、及び低温用容器と、励起光源と、受光装置とを組み合わせることにより、測定してもよい。
・最低励起一重項エネルギーS
 溶液を用いた最低励起一重項エネルギーSの測定方法(溶液法と称する場合がある。)としては、下記の方法が挙げられる。
 測定対象となる化合物の10μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の吸収スペクトル(縦軸:吸収強度、横軸:波長とする。)を測定する。この吸収スペクトルの長波長側の立ち下がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を次に示す換算式(F2)に代入して最低励起一重項エネルギーを算出する。
  換算式(F2):S[eV]=1239.85/λedge
 吸収スペクトル測定装置としては、例えば、日立社製の分光光度計(装置名:U3310)が挙げられるが、これに限定されない。
 吸収スペクトルの長波長側の立ち下がりに対する接線は以下のように引く。吸収スペクトルの極大値のうち、最も長波長側の極大値から長波長方向にスペクトル曲線上を移動する際に、曲線上の各点における接線を考える。この接線は、曲線が立ち下がるにつれ(つまり縦軸の値が減少するにつれ)、傾きが減少しその後増加することを繰り返す。傾きの値が最も長波長側(ただし、吸光度が0.1以下となる場合は除く)で極小値をとる点において引いた接線を当該吸収スペクトルの長波長側の立ち下がりに対する接線とする。
 なお、吸光度の値が0.2以下の極大点は、上記最も長波長側の極大値には含めない。
 本実施形態の一態様において、前記発光領域を発光させたときに、遅延蛍光比率が37.5%より大きい。
 遅延蛍光比率が37.5%より大きいと、TTF機構のみで遅延蛍光が起こっていると仮定した場合の遅延蛍光の比率(TTF比率)の理論値上限を上回るため、より高い内部量子効率の有機EL素子を実現することができる。
 遅延蛍光比率とは、全発光強度に対する遅延蛍光に由来する発光強度の割合に相当する。遅延蛍光比率は、以下の算出方法により導かれる。
・遅延蛍光比率の算出方法
 遅延蛍光比率は、過渡EL法により測定することができる。過渡EL法とは、素子に印加しているパルス電圧を除去した後のEL発光の減衰挙動(過渡特性)を測定する手法である。EL発光強度は、最初の再結合で生成する一重項励起子からの発光成分と、三重項励起子を経由して生成する一重項励起子からの発光成分に分類される。最初の再結合で生成する一重項励起子の寿命はナノ秒オーダーであり非常に短いためパルス電圧除去後、速やかに減衰する。
 一方、遅延蛍光は寿命の長い三重項励起子を経由して生成する一重項励起子からの発光のため、ゆるやかに減衰する。このように最初の再結合で生成する一重項励起子からの発光と三重項励起子を経由して生成する一重項励起子からの発光は時間的に大きな差があるため、遅延蛍光由来の発光強度を求めることができる。具体的には以下の方法により決定することができる。
 過渡EL波形は以下のようにして測定する(図7参照)。電圧パルスジェネレータ(PG)11から出力されるパルス電圧波形を有機EL素子(EL)12に印加する。印加電圧波形をオシロスコープ(OSC)13Pに取り込む。パルス電圧を有機EL素子12Pに印加すると、有機EL素子12Pはパルス発光を生じる。この発光を、光電子増倍管(PMT)14Pを経由してオシロスコープ(OSC)13Pに取り込む。電圧波形とパルス発光を同期させてパーソナルコンピュータ(PC)15Pに取り込む。
 過渡EL波形の解析により、遅延蛍光由来の発光強度比(本明細書における遅延蛍光比率)を以下のようにして定義する。なお、遅延蛍光由来の発光強度比を算出するのに、国際公開第2010/134352号に記載されるTTF比率の算出式を用いることができる。
 遅延蛍光比率は、数式(4)を用いて求める。
Figure JPOXMLDOC01-appb-M000292
 数式(4)中、Iは、遅延蛍光由来の発光強度であり、Aは、定数である。そこで、測定した過渡EL波形データを数式(4)でフィッティングし、定数Aを求める。このときパルス電圧を除去した時刻t=0における発光強度1/Aが遅延蛍光由来の発光強度比と定義する。
 図8Aのグラフは、後述する実施例1、2及び比較例1の有機EL素子に所定のパルス電圧を印加し、その後電圧を除去した時の過渡EL波形の測定例であり、有機EL素子の発光強度の時間変化をあらわしたものである。
 図8Aのグラフにて、パルス電圧除去時点を原点とした。なお、図8Aのグラフは電圧を除去した時の輝度を1として表したものである。電圧除去後、約4.0E-05秒まで緩やかな減衰成分が現れる。
 図8Bのグラフは、実施例1、2及び比較例1の有機EL素子について、パルス電圧除去時点を原点にとり、電圧除去後、4.0.E-05秒までの光強度の平方根の逆数をプロットしたグラフである。フィッティングは以下のように行う。
 例えば、実施例1の有機EL素子の場合、直線部分を時間原点へ延長したときの縦軸との交点Aの値は0.9996である。すると、この過渡EL波形から得られる遅延蛍光由来の発光強度比は、1/(0.9996)=0.99超えとなる。つまり、99%超えが遅延蛍光由来であることになる。すなわち、TTF比率の理論限界と考えられる37.5%を超えるものである。実施例2及び比較例1の有機EL素子についても、実施例1と同様の方法で遅延蛍光由来の発光強度比を算出できる。
 直線へのフィッティングは、最小二乗法により行うことが好ましい。この場合、1.0.E-06秒から1.0E-05秒までの値を用いてフィッティングすることが好ましい。
(第一の発光層)
 第一の発光層は、第二のホスト材料と、第一の発光性化合物とを含有する。
 第二のホスト材料は、第一のホスト材料とは、互いに異なる化合物である。第一の発光性化合物は、第一の増感材とは、互いに異なる化合物である。
 第二のホスト材料としては、例えば、後述する第一の化合物及び第二の化合物からなる群から選択される化合物が挙げられる。
 第一の発光性化合物としては、例えば、後述する蛍光発光性材料、一般式(5)、一般式(6)、及び一般式(3A)からなる群から選択される少なくともいずれかの化合物が挙げられる。
 本実施形態の一態様において、第一の発光性化合物は、最大ピーク波長が430nm以上480nm以下の発光を示す化合物である。
 本実施形態の一態様において、第一の発光性化合物は、最大ピーク波長が500nm以下の蛍光発光を示す蛍光発光性化合物である。
 本実施形態の一態様において、第一の発光性化合物は、最大ピーク波長が430nm以上480nm以下の蛍光発光を示す蛍光発光性化合物である。
 本実施形態の一態様において、第一の発光性化合物の77[K]におけるエネルギーギャップT77K(D1)と、第二のホスト材料の77[K]におけるエネルギーギャップT77K(H2)とが下記数式(数21B)の関係を満たす。
 T77K(D1)>T77K(H2) …(数21B)
 第一の発光性化合物と、第二のホスト材料とが、前記数式(数21B)の関係を満たすことにより、第一の増感層で生成した三重項励起子は、第一の発光層に移動する際、より高い三重項エネルギーを有する第一の発光性化合物ではなく、第二のホスト材料の分子にエネルギー移動する。
 また、第二のホスト材料上で正孔及び電子が再結合して発生した三重項励起子は、より高い三重項エネルギーを持つ第一の発光性化合物には移動しない。第一の発光性化合物の分子上で再結合し発生した三重項励起子は、速やかに第二のホスト材料の分子にエネルギー移動する。
 第二のホスト材料の三重項励起子が第一の発光性化合物に移動することなく、TTF現象によって第二のホスト材料上で三重項励起子同士が効率的に衝突することで、一重項励起子が生成される。
 本実施形態の一態様において、第二のホスト材料の最低励起一重項エネルギーS(H2)と第一の発光性化合物の最低励起一重項エネルギーS(D1)とが、下記数式(数22B)の関係を満たす。
 S(H2)>S(D1) …(数22B)
 第一の発光性化合物と、第二のホスト材料とが、前記数式(数22B)の関係を満たすことにより、第一の発光性化合物の最低励起一重項エネルギーSは、第二のホスト材料の最低励起一重項エネルギーSより小さいため、TTF現象によって生成された一重項励起子は、第二のホスト材料から第一の発光性化合物へエネルギー移動し、第一の発光性化合物の蛍光性発光に寄与する。
 本実施形態の一態様において、第一の発光性化合物は、分子中にアジン環構造を含まない化合物である。
 本実施形態の一態様において、第一の発光性化合物は、錯体ではない。
 本実施形態の一態様において、第一の発光層は、金属錯体を含有しない。
 本実施形態の一態様において、第一の発光層は、燐光発光性材料(ドーパント材料)を含まない。
 本実施形態の一態様において、第一の発光層は、重金属錯体及び燐光発光性の希土類金属錯体を含まない。ここで、重金属錯体としては、例えば、イリジウム錯体、オスミウム錯体、及び白金錯体等が挙げられる。
 本実施形態の一態様において、第一の発光層は、第一の発光性化合物を、第一の発光層の全質量の0.5質量%以上含有するか、又は1質量%以上含有する。
 本実施形態の一態様において、第一の発光層は、第一の発光性化合物を、第一の発光層の全質量の10質量%以下含有するか、7質量%以下含有するか、又は5質量%以下含有する。
 本実施形態の一態様において、第一の発光層は、第二のホスト材料を、第一の発光層の全質量の60質量%以上含有するか、70質量%以上含有するか、80質量%以上含有するか、90質量%以上含有するか、又は95質量%以上含有する。
 本実施形態の一態様において、第一の発光層は、第二のホスト材料を、第一の発光層の全質量の99質量%以下、含有する。
 本実施形態の一態様において、第一の発光層中の第二のホスト材料及び第一の発光性化合物の合計含有率の上限は、100質量%である。
 本実施形態の一態様において、第一の発光層の膜厚は、5nm以上であるか、又は10nm以上である。第一の発光層の膜厚が5nm以上であれば、第一の増感層から第一の発光層へ移動してきた三重項励起子が、再び第一の増感層に戻ることを抑制し易い。また、第一の発光層の膜厚が5nm以上であれば、第一の増感層における再結合部分から三重項励起子を充分離すことができる。
 本実施形態の一態様において、第一の発光層の膜厚は、20nm以下である。第一の発光層の膜厚が20nm以下であれば、第一の発光層中の三重項励起子の密度を向上させて、TTF現象をさらに起こり易くすることができる。
(第一のホスト材料及び第二のホスト材料)
 本実施形態の一態様において、第一のホスト材料及び第二のホスト材料は、例えば、下記一般式(1)で表される第一の化合物、下記一般式(1X)、一般式(12X)、一般式(13X)、一般式(14X)、一般式(15X)又は一般式(16X)で表される第一の化合物、及び下記一般式(2)で表される第二の化合物等が挙げられる。また、第一の化合物を第一のホスト材料及び第二のホスト材料として用いることもでき、この場合、第二のホスト材料として用いた前記一般式(1)、又は下記一般式(1X)、一般式(12X)、一般式(13X)、一般式(14X)、一般式(15X)又は一般式(16X)で表される化合物を、便宜的に第二の化合物と称する場合がある。
 本実施形態の一態様において、第一のホスト材料は、下記一般式(1)、下記一般式(1X)、一般式(12X)、一般式(13X)、一般式(14X)、一般式(15X)及び一般式(16X)のいずれかで表される第一の化合物から選択される。
 本実施形態の一態様において、第二のホスト材料は、下記一般式(2)で表される第二の化合物から選択される。
(第一の化合物)
 本実施形態の一態様において、第一の化合物は、例えば、下記一般式(1)、一般式(1X)、一般式(12X)、一般式(13X)、一般式(14X)、一般式(15X)又は一般式(16X)で表される化合物である。
・一般式(1)で表される化合物
 本実施形態の一態様において、第一の化合物は、下記一般式(1)で表される化合物であることも好ましい。下記一般式(1)で表される第一の化合物は、下記一般式(11)で表される基を少なくとも1つ有する。
 前記一般式(1)において、
 R101~R110は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(11)で表される基であり、
 ただし、R101~R110の少なくとも1つは、前記一般式(11)で表される基であり、
 前記一般式(11)で表される基が複数存在する場合、複数の前記一般式(11)で表される基は、互いに同一であるか又は異なり、
 L101は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar101は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mxは、0、1、2、3、4又は5であり、
 L101が2以上存在する場合、2以上のL101は、互いに同一であるか、又は異なり、
 Ar101が2以上存在する場合、2以上のAr101は、互いに同一であるか、又は異なり、
 前記一般式(11)中の*は、前記一般式(1)中のピレン環との結合位置を示す。
 前記一般式(1)で表される第一の化合物中、R901、R902、R903、R904、R905、R906、R907、R801及びR802は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
 R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
 R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
 R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なり、
 R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、
 R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、
 R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なり、
 R801が複数存在する場合、複数のR801は、互いに同一であるか又は異なり、
 R802が複数存在する場合、複数のR802は、互いに同一であるか又は異なる。
 一実施形態において、Ar101は、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 一実施形態において、Ar101は、
  置換もしくは無置換のフェニル基、
  置換もしくは無置換のナフチル基、
  置換もしくは無置換のビフェニル基、
  置換もしくは無置換のターフェニル基、
  置換もしくは無置換のピレニル基、
  置換もしくは無置換のフェナントリル基、又は
  置換もしくは無置換のフルオレニル基であることが好ましい。
 一実施形態において、前記第一の化合物は、下記一般式(101)で表されることが好ましい。
(前記一般式(101)において、
 R101~R120は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 ただし、R101~R110のうち1つがL101との結合位置を示し、R111~R120のうち1つがL101との結合位置を示し、
 L101は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 mxは、0、1、2、3、4又は5であり、
 L101が2以上存在する場合、2以上のL101は、互いに同一であるか、又は異なる。)
 一実施形態において、L101は、単結合、又は置換もしくは無置換の環形成炭素数6~50のアリーレン基であることが好ましい。
 一実施形態において、R101~R110のうち2つ以上が、前記一般式(11)で表される基であることが好ましい。
 一実施形態において、R101~R110のうち2つ以上が、前記一般式(11)で表される基であり、かつ、Ar101は、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 一実施形態において、
 Ar101は、置換もしくは無置換のピレニル基ではなく、
 L101は、置換もしくは無置換のピレニレン基ではなく、
 前記一般式(11)で表される基ではないR101~R110としての置換もしくは無置換の環形成炭素数6~50のアリール基は、置換もしくは無置換のピレニル基ではないことが好ましい。
 一実施形態において、前記一般式(11)で表される基ではないR101~R110は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 一実施形態において、前記一般式(11)で表される基ではないR101~R110は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、又は
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基であることが好ましい。
 一実施形態において、前記一般式(11)で表される基ではないR101~R110は、水素原子であることが好ましい。
・一般式(1X)で表される化合物
 本実施形態の一態様において、第一の化合物は、下記一般式(1X)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000295
(前記一般式(1X)において、
 R101~R112は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(11X)で表される基であり、
 ただし、R101~R112の少なくとも1つは、前記一般式(11X)で表される基であり、
 前記一般式(11X)で表される基が複数存在する場合、複数の前記一般式(11X)で表される基は、互いに同一であるか又は異なり、
 L101は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar101は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mxは、1、2、3、4又は5であり、
 L101が2以上存在する場合、2以上のL101は、互いに同一であるか、又は異なり、
 Ar101が2以上存在する場合、2以上のAr101は、互いに同一であるか、又は異なり、
 前記一般式(11X)中の*は、前記一般式(1X)中のベンズ[a]アントラセン環との結合位置を示す。)
 本実施形態の一態様において、前記一般式(11X)で表される基は、下記一般式(111X)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000296
(前記一般式(111X)において、
 Xは、CR143144、酸素原子、硫黄原子、又はNR145であり、
 L111及びL112は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 maは、1、2、3又は4であり、
 mbは、1、2、3又は4であり、
 ma+mbは、2、3又は4であり、
 Ar101は、前記一般式(11)におけるAr101と同義であり、
 R141、R142、R143、R144及びR145は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mcは、3であり、
 3つのR141は、互いに同一であるか、又は異なり、
 mdは、3であり、
 3つのR142は、互いに同一であるか、又は異なる。)
 前記一般式(111X)で表される基における下記一般式(111aX)で表される環構造中の炭素原子*1~*8の位置のうち、*1~*4のいずれか1つの位置にL111が結合し、*1~*4の残りの3つの位置にR141が結合し、*5~*8のいずれか1つの位置にL112が結合し、*5~*8の残りの3つの位置にR142が結合する。
Figure JPOXMLDOC01-appb-C000297
 例えば、前記一般式(111X)で表される基において、L111が前記一般式(111aX)で表される環構造中の*2の炭素原子の位置に結合し、L112が前記一般式(111aX)で表される環構造中の*7の炭素原子の位置に結合する場合、前記一般式(111X)で表される基は、下記一般式(111bX)で表される。
Figure JPOXMLDOC01-appb-C000298
(前記一般式(111bX)において、
 X、L111、L112、ma、mb、Ar101、R141、R142、R143、R144及びR145は、それぞれ独立に、前記一般式(111X)におけるX、L111、L112、ma、mb、Ar101、R141、R142、R143、R144及びR145と同義であり、
 複数のR141は、互いに同一であるか、又は異なり、
 複数のR142は、互いに同一であるか、又は異なる。)
 本実施形態の一態様において、前記一般式(111X)で表される基は、前記一般式(111bX)で表される基であることが好ましい。
 前記一般式(1X)で表される化合物において、maは、1又は2であり、mbは、1又は2であることが好ましい。
 前記一般式(1X)で表される化合物において、maは、1であり、mbは、1であることが好ましい。
 前記一般式(1X)で表される化合物において、Ar101は、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 前記一般式(1X)で表される化合物において、Ar101は、
  置換もしくは無置換のフェニル基、
  置換もしくは無置換のナフチル基、
  置換もしくは無置換のビフェニル基、
  置換もしくは無置換のターフェニル基、
  置換もしくは無置換のベンズ[a]アントリル基、
  置換もしくは無置換のピレニル基、
  置換もしくは無置換のフェナントリル基、又は
  置換もしくは無置換のフルオレニル基であることが好ましい。
 前記一般式(1X)で表される化合物は、下記一般式(101X)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000299
(前記一般式(101X)において、
 R111及びR112のうち1つがL101との結合位置を示し、R133及びR134のうち1つがL101との結合位置を示し、
 R101~R110、R121~R130、L101との結合位置ではないR111又はR112、並びにL101との結合位置ではないR133又はR134は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 L101は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 mxは、1、2、3、4又は5であり、
 L101が2以上存在する場合、2以上のL101は、互いに同一であるか、又は異なる。)
 前記一般式(1X)で表される化合物において、L101は、
  単結合、又は
  置換もしくは無置換の環形成炭素数6~50のアリーレン基であることが好ましい。
 前記一般式(1X)で表される化合物は、下記一般式(102X)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000300
(前記一般式(102X)において、
 R111及びR112のうち1つがL111との結合位置を示し、R133及びR134のうち1つがL112との結合位置を示し、
 R101~R110、R121~R130、L111との結合位置ではないR111又はR112並びにL112との結合位置ではないR133又はR134は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 Xは、CR143144、酸素原子、硫黄原子、又はNR145であり、
 L111及びL112は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 maは、1、2、3又は4であり、
 mbは、1、2、3又は4であり、
 ma+mbは、2、3、4又は5であり、
 R141、R142、R143、R144及びR145は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mcは、3であり、
 3つのR141は、互いに同一であるか、又は異なり、
 mdは、3であり、
 3つのR142は、互いに同一であるか、又は異なる。)
 前記一般式(1X)で表される化合物において、前記一般式(102X)中のmaは、1又は2であり、mbは、1又は2であることが好ましい。
 前記一般式(1X)で表される化合物において、前記一般式(102X)中のmaは、1であり、mbは、1であることが好ましい。
 前記一般式(1X)で表される化合物において、前記一般式(11X)で表される基は、下記一般式(11AX)で表される基、又は下記一般式(11BX)で表される基であることも好ましい。
Figure JPOXMLDOC01-appb-C000301
(前記一般式(11AX)及び前記一般式(11BX)において、
 R121~R131は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 前記一般式(11AX)で表される基が複数存在する場合、複数の前記一般式(11AX)で表される基は、互いに同一であるか又は異なり、
 前記一般式(11BX)で表される基が複数存在する場合、複数の前記一般式(11BX)で表される基は、互いに同一であるか又は異なり、
 L131及びL132は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 前記一般式(11AX)及び前記一般式(11BX)中の*は、それぞれ、前記一般式(1X)中のベンズ[a]アントラセン環との結合位置を示す。)
 前記一般式(1X)で表される化合物は、下記一般式(103X)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000302
(前記一般式(103X)において、
 R101~R110並びにR112は、それぞれ、前記一般式(1X)におけるR101~R110並びにR112と同義であり、
 R121~R131、L131及びL132は、それぞれ、前記一般式(11BX)におけるR121~R131、L131及びL132と同義である。)
 前記一般式(1X)で表される化合物において、L131は、置換もしくは無置換の環形成炭素数6~50のアリーレン基であることも好ましい。
 前記一般式(1X)で表される化合物において、L132は、置換もしくは無置換の環形成炭素数6~50のアリーレン基であることも好ましい。
 前記一般式(1X)で表される化合物において、R101~R112のうち2つ以上が、前記一般式(11)で表される基であることも好ましい。
 本前記一般式(1X)で表される化合物において、R101~R112のうち2つ以上が、前記一般式(11X)で表される基であり、一般式(11X)中のAr101は、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 前記一般式(1X)で表される化合物において、
 Ar101は、置換もしくは無置換のベンズ[a]アントリル基ではなく、
 L101は、置換もしくは無置換のベンズ[a]アントリレン基ではなく、
 前記一般式(11X)で表される基ではないR101~R110としての置換もしくは無置換の環形成炭素数6~50のアリール基は、置換もしくは無置換のベンズ[a]アントリル基ではないことも好ましい。
 前記一般式(1X)で表される化合物において、前記一般式(11X)で表される基ではないR101~R112は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 前記一般式(1X)で表される化合物において、前記一般式(11X)で表される基ではないR101~R112は、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、又は
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基であることが好ましい。
 前記一般式(1X)で表される化合物において、前記一般式(11X)で表される基ではないR101~R112は、水素原子であることが好ましい。
・一般式(12X)で表される化合物
 本実施形態の一態様において、第一の化合物は、下記一般式(12X)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000303
(前記一般式(12X)において、
 R1201~R1210のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 前記置換もしくは無置換の単環を形成せず、かつ及び前記置換もしくは無置換の縮合環を形成しないR1201~R1210は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(121)で表される基であり、
 ただし、前記置換もしくは無置換の単環が置換基を有する場合の当該置換基、前記置換もしくは無置換の縮合環が置換基を有する場合の当該置換基、並びにR1201~R1210の少なくとも1つが、前記一般式(121)で表される基であり、
 前記一般式(121)で表される基が複数存在する場合、複数の前記一般式(121)で表される基は、互いに同一であるか又は異なり、
 L1201は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar1201は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mx2は、0、1、2、3、4又は5であり、
 L1201が2以上存在する場合、2以上のL1201は、互いに同一であるか、又は異なり、
 Ar1201が2以上存在する場合、2以上のAr1201は、互いに同一であるか、又は異なり、
 前記一般式(121)中の*は、前記一般式(12X)で表される環との結合位置を示す。)
 前記一般式(12X)において、R1201~R1210のうちの隣接する2つからなる組とは、R1201とR1202との組、R1202とR1203との組、R1203とR1204との組、R1204とR1205との組、R1205とR1206との組、R1207とR1208との組、R1208とR1209との組、並びにR1209とR1210との組である。
・一般式(13X)で表される化合物
 本実施形態の一態様において、第一の化合物は、下記一般式(13X)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000304
(前記一般式(13X)において、
 R1301~R1310は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(131)で表される基であり、
 ただし、R1301~R1310の少なくとも1つは、前記一般式(131)で表される基であり、
 前記一般式(131)で表される基が複数存在する場合、複数の前記一般式(131)で表される基は、互いに同一であるか又は異なり、
 L1301は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar1301は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mx3は、0、1、2、3、4又は5であり、
 L1301が2以上存在する場合、2以上のL1301は、互いに同一であるか、又は異なり、
 Ar1301が2以上存在する場合、2以上のAr1301は、互いに同一であるか、又は異なり、
 前記一般式(131)中の*は、前記一般式(13X)中のフルオランテン環との結合位置を示す。)
 本実施形態の一態様において、前記一般式(131)で表される基ではないR1301~R1310のうち隣接する2つ以上からなる組は、いずれも、互いに結合しない。前記一般式(13X)において隣接する2つからなる組とは、R1301とR1302との組、R1302とR1303との組、R1303とR1304との組、R1304とR1305との組、R1305とR1306との組、R1307とR1308との組、R1308とR1309との組、並びにR1309とR1310との組である。
・一般式(14X)で表される化合物
 本実施形態の一態様において、第一の化合物は、下記一般式(14X)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000305
(前記一般式(14X)において、
 R1401~R1410は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(141)で表される基であり、
 ただし、R1401~R1410の少なくとも1つは、前記一般式(141)で表される基であり、
 前記一般式(141)で表される基が複数存在する場合、複数の前記一般式(141)で表される基は、互いに同一であるか又は異なり、
 L1401は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar1401は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mx4は、0、1、2、3、4又は5であり、
 L1401が2以上存在する場合、2以上のL1401は、互いに同一であるか、又は異なり、
 Ar1401が2以上存在する場合、2以上のAr1401は、互いに同一であるか、又は異なり、
 前記一般式(141)中の*は、前記一般式(14X)で表される環との結合位置を示す。)
・一般式(15X)で表される化合物
 本実施形態の一態様において、第一の化合物は、下記一般式(15X)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000306
(前記一般式(15X)において、
 R1501~R1514は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(151)で表される基であり、
 ただし、R1501~R1514の少なくとも1つは、前記一般式(151)で表される基であり、
 前記一般式(151)で表される基が複数存在する場合、複数の前記一般式(151)で表される基は、互いに同一であるか又は異なり、
 L1501は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar1501は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mx5は、0、1、2、3、4又は5であり、
 L1501が2以上存在する場合、2以上のL1501は、互いに同一であるか、又は異なり、
 Ar1501が2以上存在する場合、2以上のAr1501は、互いに同一であるか、又は異なり、
 前記一般式(151)中の*は、前記一般式(15X)で表される環との結合位置を示す。)
・一般式(16X)で表される化合物
 本実施形態の一態様において、第一の化合物は、下記一般式(16X)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000307
(前記一般式(16X)において、
 R1601~R1614は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(161)で表される基であり、
 ただし、R1601~R1614の少なくとも1つは、前記一般式(161)で表される基であり、
 前記一般式(161)で表される基が複数存在する場合、複数の前記一般式(161)で表される基は、互いに同一であるか又は異なり、
 L1601は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar1601は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mx6は、0、1、2、3、4又は5であり、
 L1601が2以上存在する場合、2以上のL1601は、互いに同一であるか、又は異なり、
 Ar1601が2以上存在する場合、2以上のAr1601は、互いに同一であるか、又は異なり、
 前記一般式(161)中の*は、前記一般式(16X)で表される環との結合位置を示す。)
 本実施形態の一態様において、第一のホスト材料は、分子中に、単結合で連結されたベンゼン環とナフタレン環とを含む連結構造を有し、当該連結構造中のベンゼン環及びナフタレン環には、それぞれ独立に、さらに単環又は縮合環が縮合しているか又は縮合しておらず、当該連結構造中のベンゼン環とナフタレン環とが、当該単結合以外の少なくとも1つの部分において架橋によりさらに連結していることも好ましい。
 第一のホスト材料が、このような架橋を含んだ連結構造を有していることにより、有機EL素子の色度悪化の抑制が期待できる。
 この場合の第一のホスト材料は、分子中に、下記式(X1)又は式(X2)で表されるような、単結合で連結されたベンゼン環とナフタレン環とを含む連結構造(ベンゼン-ナフタレン連結構造と称する場合がある。)を最小単位として有していればよく、当該ベンゼン環にさらに単環又は縮合環が縮合していてもよいし、当該ナフタレン環にさらに単環又は縮合環が縮合していてもよい。例えば、第一のホスト材料が、分子中に、下記式(X3)、式(X4)、又は式(X5)で表されるような、単結合で連結されたナフタレン環とナフタレン環とを含む連結構造(ナフタレン-ナフタレン連結構造と称する場合がある。)においても、一方のナフタレン環は、ベンゼン環を含んでいるため、ベンゼン-ナフタレン連結構造を含んでいることになる。
Figure JPOXMLDOC01-appb-C000308
 本実施形態の一態様において、前記架橋が二重結合を含むことも好ましい。すなわち、
前記ベンゼン環と前記ナフタレン環とが、単結合以外の部分において二重結合を含む架橋構造によりさらに連結した構造を有することも好ましい。
 ベンゼン-ナフタレン連結構造中のベンゼン環とナフタレン環とが、単結合以外の少なくとも1つの部分において架橋によりさらに連結すると、例えば、前記式(X1)の場合、下記式(X11)で表される連結構造(縮合環)になり、前記式(X3)の場合、下記式(X31)で表される連結構造(縮合環)になる。
 ベンゼン-ナフタレン連結構造中のベンゼン環とナフタレン環とが、単結合以外の部分において二重結合を含む架橋によりさらに連結すると、例えば、前記式(X1)の場合、下記式(X12)で表される連結構造(縮合環)になり、前記式(X2)の場合、下記式(X21)又は式(X22)で表される連結構造(縮合環)になり、前記式(X4)の場合、下記式(X41)で表される連結構造(縮合環)になり、前記式(X5)の場合、下記式(X51)で表される連結構造(縮合環)になる。
 ベンゼン-ナフタレン連結構造中のベンゼン環とナフタレン環とが、単結合以外の少なくとも1つの部分においてヘテロ原子(例えば、酸素原子)を含む架橋によりさらに連結すると、例えば、前記式(X1)の場合、下記式(X13)で表される連結構造(縮合環)になる。
Figure JPOXMLDOC01-appb-C000309
 本実施形態の一態様において、第一のホスト材料は、分子中に、第一のベンゼン環と第二のベンゼン環とが単結合で連結されたビフェニル構造を有し、当該ビフェニル構造中の第一のベンゼン環と第二のベンゼン環とが、当該単結合以外の少なくとも1つの部分において架橋によりさらに連結していることも好ましい。
 本実施形態の一態様において、前記ビフェニル構造中の第一のベンゼン環と第二のベンゼン環とが、前記単結合以外の1つの部分において前記架橋によりさらに連結していることも好ましい。第一のホスト材料が、このような架橋を含んだビフェニル構造を有していることにより、有機EL素子の色度悪化の抑制が期待できる。
 本実施形態の一態様において、前記架橋が二重結合を含むことも好ましい。
 本実施形態の一態様において、前記架橋が二重結合を含まないことも好ましい。
 前記ビフェニル構造中の第一のベンゼン環と第二のベンゼン環とが、前記単結合以外の2つの部分において前記架橋によりさらに連結していることも好ましい。
 本実施形態の一態様において、前記ビフェニル構造中の第一のベンゼン環と第二のベンゼン環とが、前記単結合以外の2つの部分において前記架橋によりさらに連結し、前記架橋が二重結合を含まないことも好ましい。第一のホスト材料が、このような架橋を含んだビフェニル構造を有していることにより、有機EL素子の色度悪化の抑制が期待できる。
 例えば、下記式(BP1)で表される前記ビフェニル構造中の第一のベンゼン環と第二のベンゼン環とが、単結合以外の少なくとも1つの部分において架橋によりさらに連結すると、当該ビフェニル構造は、下記式(BP11)~(BP15)等の連結構造(縮合環)になる。
Figure JPOXMLDOC01-appb-C000310
 前記式(BP11)は、前記単結合以外の1つの部分において二重結合を含まない架橋によって連結した構造である。
 前記式(BP12)は、前記単結合以外の1つの部分において二重結合を含む架橋によって連結した構造である。
 前記式(BP13)は、前記単結合以外の2つの部分において二重結合を含まない架橋によって連結した構造である。
 前記式(BP14)は、前記単結合以外の2つの部分の一方において二重結合を含まない架橋によって連結し、前記単結合以外の2つの部分の他方において二重結合を含む架橋によって連結した構造である。
 前記式(BP15)は、前記単結合以外の2つの部分において二重結合を含む架橋によって連結した構造である。
 前記第一の化合物において、「置換もしくは無置換」と記載された基は、いずれも「無置換」の基であることが好ましい。
(第一の化合物の製造方法)
 第一の化合物は、公知の方法により製造できる。また、第一の化合物は、公知の方法に倣い、目的物に合わせた既知の代替反応及び原料を用いることによっても、製造できる。
(第一の化合物の具体例)
 第一の化合物の具体例としては、例えば、以下の化合物が挙げられる。ただし、本発明は、これら第一の化合物の具体例に限定されない。
 本明細書において、化合物の具体例中、Dは、重水素原子を示し、Meは、メチル基を示し、tBuは、tert-ブチル基を示す。
Figure JPOXMLDOC01-appb-C000311
Figure JPOXMLDOC01-appb-C000312
Figure JPOXMLDOC01-appb-C000313
Figure JPOXMLDOC01-appb-C000314
Figure JPOXMLDOC01-appb-C000315
Figure JPOXMLDOC01-appb-C000316
Figure JPOXMLDOC01-appb-C000317
Figure JPOXMLDOC01-appb-C000318
Figure JPOXMLDOC01-appb-C000319
Figure JPOXMLDOC01-appb-C000320
Figure JPOXMLDOC01-appb-C000321
Figure JPOXMLDOC01-appb-C000322
Figure JPOXMLDOC01-appb-C000323
Figure JPOXMLDOC01-appb-C000324
Figure JPOXMLDOC01-appb-C000325
Figure JPOXMLDOC01-appb-C000326
Figure JPOXMLDOC01-appb-C000327
(第二の化合物)
 本実施形態の一態様において、一般式(2)で表される第二の化合物について説明する。
(前記一般式(2)において、
 R201~R208は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 L201及びL202は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar201及びAr202は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
(本実施形態に係る第二の化合物中、R901、R902、R903、R904、R905、R906、R907、R801及びR802は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
 R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
 R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
 R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なり、
 R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、
 R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、
 R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なり、
 R801が複数存在する場合、複数のR801は、互いに同一であるか又は異なり、
 R802が複数存在する場合、複数のR802は、互いに同一であるか又は異なる。)
 一実施形態において、
 L201及びL202は、それぞれ独立に、
  単結合、又は
  置換もしくは無置換の環形成炭素数6~50のアリーレン基であり、
 Ar201及びAr202は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 一実施形態において、Ar201及びAr202は、それぞれ独立に、
  フェニル基、
  ナフチル基、
  フェナントリル基、
  ビフェニル基、
  ターフェニル基、
  ジフェニルフルオレニル基、
  ジメチルフルオレニル基、
  ベンゾジフェニルフルオレニル基、
  ベンゾジメチルフルオレニル基、
  ジベンゾフラニル基、
  ジベンゾチエニル基、
  ナフトベンゾフラニル基、又は
  ナフトベンゾチエニル基であることが好ましい。
 一実施形態において、前記一般式(2)で表される第二の化合物中、R201~R208は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、又は
  -Si(R901)(R902)(R903)で表される基であることが好ましい。
 一実施形態において、L201は、
  単結合、又は
  無置換の環形成炭素数6~22のアリーレン基であり、
 Ar201は、置換もしくは無置換の環形成炭素数6~22のアリール基であることが好ましい。
 一実施形態において、前記一般式(2)で表される第二の化合物中、R201~R208は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、又は
  -Si(R901)(R902)(R903)で表される基であることが好ましい。
 一実施形態において、前記一般式(2)で表される第二の化合物中、R201~R208は、水素原子であることが好ましい。
 一実施形態において、第二の化合物は、前記一般式(2)中のL202が単結合であり、Ar202が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2)中のL202が単結合であり、Ar202が無置換の2-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2)中のL202が単結合であり、Ar202が無置換の1-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2)中のL202が無置換のp-フェニレン基であり、Ar202が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2)中のL202が無置換のm-フェニレン基であり、Ar202が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2)中のL202が無置換のo-フェニレン基であり、Ar202が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2)中のL202が無置換のp-フェニレン基であり、Ar202が無置換の1-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2)中のL202が無置換のp-フェニレン基であり、Ar202が無置換の2-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2)中のL202が無置換の1,4-ナフタレンジイル基であり、Ar202が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2)中のL202が無置換のm-フェニレン基であり、Ar202が無置換の2-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、下記一般式(2X)で表される化合物であることも好ましい。
(前記一般式(2X)において、
 R201並びにR203~R208は、それぞれ独立に、前記一般式(2)におけるR201並びにR203~R208と同義であり、
 L201、L202、Ar201及びAr202は、それぞれ、前記一般式(2)におけるL201、L202、Ar201及びAr202と同義であり、
 L203は、前記一般式(2)におけるL201と同義であり、
 L201、L202及びL203は、互いに同一であるか、又は異なり、
 Ar203は、前記一般式(2)におけるAr201と同義であり、
 Ar201、Ar202及びAr203は、互いに同一であるか、又は異なる。)
 一実施形態において、第二の化合物は、前記一般式(2X)中のL202が単結合であり、Ar202が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL202が単結合であり、Ar202が無置換の2-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL202が単結合であり、Ar202が無置換の1-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL202が無置換のp-フェニレン基であり、Ar202が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL202が無置換のm-フェニレン基であり、Ar202が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL202が無置換のo-フェニレン基であり、Ar202が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL202が無置換のp-フェニレン基であり、Ar202が無置換の1-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL202が無置換のp-フェニレン基であり、Ar202が無置換の2-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL202が無置換の1,4-ナフタレンジイル基であり、Ar202が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL202が無置換のm-フェニレン基であり、Ar202が無置換の2-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL201が単結合であり、Ar201が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL201が単結合であり、Ar201が無置換の2-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL201が単結合であり、Ar201が無置換の1-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL201が無置換のp-フェニレン基であり、Ar201が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL201が無置換のm-フェニレン基であり、Ar201が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL201が無置換のo-フェニレン基であり、Ar201が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL201が無置換のp-フェニレン基であり、Ar201が無置換の1-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL201が無置換のp-フェニレン基であり、Ar201が無置換の2-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL201が無置換の1,4-ナフタレンジイル基であり、Ar201が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL201が無置換のm-フェニレン基であり、Ar201が無置換の2-ナフチル基である化合物であることも好ましい。
 第二の化合物において、「置換もしくは無置換」と記載された基は、いずれも「無置換」の基であることが好ましい。
 一実施形態において、第二の発光層は、前記一般式(2)で表される第二の化合物を第二のホスト材料として含有することが好ましい。したがって、例えば、第二の発光層は、前記一般式(2)で表される第二の化合物を、第二の発光層の全質量の50質量%以上、含有する。
 本実施形態の一態様において、前記一般式(2)で表される第二の化合物中、アントラセン骨格の置換基であるR201~R208は、分子間の相互作用が抑制されることを防ぎ、電子移動度の低下を抑制する点から、水素原子であることが好ましいが、R201~R208は、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基でもよい。
 R201~R208がアルキル基及びシクロアルキル基等のかさ高い置換基となった場合、分子間の相互作用が抑制され、第一のホスト材料に対し電子移動度が低下し、第一のホスト材料の電子移動度をμe(H1)、第二のホスト材料の電子移動度をμe(H2)としたときに、μe(H2)>μe(H1)の関係を満たさなくなるおそれがある。第二の化合物を第一の発光層に用いた場合には、μe(H2)>μe(H1)の関係を満たす事で第一の増感層でのホールと電子との再結合能の低下を抑制することが期待できる。なお、置換基としては、ハロアルキル基、アルケニル基、アルキニル基、-Si(R901)(R902)(R903)で表される基、-O-(R904)で表される基、-S-(R905)で表される基、-N(R906)(R907)で表される基、アラルキル基、-C(=O)R801で表される基、-COOR802で表される基、ハロゲン原子、シアノ基、及びニトロ基がかさ高くなるおそれがあり、アルキル基、及びシクロアルキル基がさらにかさ高くなるおそれがある。
 前記一般式(2)で表される第二の化合物中、アントラセン骨格の置換基であるR201~R208は、かさ高い置換基ではないことが好ましく、アルキル基及びシクロアルキル基ではないことが好ましく、アルキル基、シクロアルキル基、ハロアルキル基、アルケニル基、アルキニル基、-Si(R901)(R902)(R903)で表される基、-O-(R904)で表される基、-S-(R905)で表される基、-N(R906)(R907)で表される基、アラルキル基、-C(=O)R801で表される基、-COOR802で表される基、ハロゲン原子、シアノ基、及びニトロ基ではないことがより好ましい。
 前記第二の化合物中、R201~R208における「置換もしくは無置換の」という場合における置換基は、前述のかさ高くなるおそれのある置換基、特に置換もしくは無置換のアルキル基、及び置換もしくは無置換のシクロアルキル基を含まないことも好ましい。R201~R208における「置換もしくは無置換の」という場合における置換基が、置換もしくは無置換のアルキル基、及び置換もしくは無置換のシクロアルキル基を含まないことにより、アルキル基及びシクロアルキル基等のかさ高い置換基が存在する事による分子間の相互作用が抑制されるのを防ぎ、電子移動度の低下を防ぐことができ、また、このような第二の化合物を第一の発光層に用いた場合には、第一の増感層でのホールと電子との再結合能の低下を抑制できる。
 アントラセン骨格の置換基であるR201~R208がかさ高い置換基ではなく、置換基としてのR201~R208は、無置換であることがさらに好ましい。また、アントラセン骨格の置換基であるR201~R208がかさ高い置換基ではない場合において、かさ高くない置換基としてのR201~R208に置換基が結合する場合、当該置換基もかさ高い置換基ではないことが好ましく、置換基としてのR201~R208に結合する当該置換基は、アルキル基及びシクロアルキル基ではないことが好ましく、アルキル基、シクロアルキル基、ハロアルキル基、アルケニル基、アルキニル基、-Si(R901)(R902)(R903)で表される基、-O-(R904)で表される基、-S-(R905)で表される基、-N(R906)(R907)で表される基、アラルキル基、-C(=O)R801で表される基、-COOR802で表される基、ハロゲン原子、シアノ基、及びニトロ基ではないことがより好ましい。
(第二の化合物の製造方法)
 第二の化合物は、公知の方法により製造できる。また、第二の化合物は、公知の方法に倣い、目的物に合わせた既知の代替反応及び原料を用いることによっても、製造できる。
(第二の化合物の具体例)
 第二の化合物の具体例としては、例えば、以下の化合物が挙げられる。ただし、本発明は、これら第二の化合物の具体例に限定されない。
Figure JPOXMLDOC01-appb-C000330
(第一の発光性化合物)
 本実施形態の一態様において、第一の発光性化合物は、蛍光発光性材料である。蛍光発光性材料としては、例えば、ビスアリールアミノナフタレン誘導体、アリール置換ナフタレン誘導体、ビスアリールアミノアントラセン誘導体、アリール置換アントラセン誘導体、ビスアリールアミノピレン誘導体、アリール置換ピレン誘導体、ビスアリールアミノクリセン誘導体、アリール置換クリセン誘導体、ビスアリールアミノフルオランテン誘導体、アリール置換フルオランテン誘導体、インデノペリレン誘導体、アセナフトフルオランテン誘導体、ホウ素原子を含む化合物、ピロメテンホウ素錯体化合物、ピロメテン骨格を有する化合物、ピロメテン骨格を有する化合物の金属錯体、ジケトピロロピロール誘導体、ペリレン誘導体、及びナフタセン誘導体などが挙げられる。
 本実施形態の一態様において、第一の発光性化合物は、例えば、下記一般式(5)、一般式(6)、又は一般式(3A)で表される化合物が挙げられる。
(一般式(5)で表される化合物)
 本実施形態に係る有機EL素子の一態様において、第一の発光性化合物は、下記一般式(5)で表される化合物である。
(前記一般式(5)において、
 R501~R507及びR511~R517のうち隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR501~R507及びR511~R517は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。
 R521及びR522は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 第一の発光性化合物中、R901、R902、R903、R904、R905、R906及びR907は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
  好ましくは、置換もしくは無置換の炭素数1~50のアルキル基、又は
  置換もしくは無置換の環形成炭素数6~50のアリール基であり、
 R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
 R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
 R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
 R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なり、
 R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、
 R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、
 R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なる。
 「R501~R507及びR511~R517のうち隣接する2つ以上からなる組の1組」は、例えば、R501とR502からなる組、R502とR503からなる組、R503とR504からなる組、R505とR506からなる組、R506とR507からなる組、R501とR502とR503からなる組等の組合せである。
 一実施形態においては、前記一般式(5)で表される化合物は、下記一般式(52)で表される化合物である。
(前記一般式(52)において、
 R531~R534及びR541~R544のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR531~R534、R541~R544、並びにR551及びR552は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R561~R564は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
(一般式(6)で表される化合物)
 本実施形態に係る有機EL素子の一態様において、第一の発光性化合物は、下記一般式(6)で表される化合物である。
(前記一般式(6)において、
 a環、b環及びc環は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は
  置換もしくは無置換の環形成原子数5~50の複素環であり、
 R601及びR602は、それぞれ独立に、前記a環、b環又はc環と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成せず、
 前記置換もしくは無置換の複素環を形成しないR601及びR602は、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 本実施形態に係る有機EL素子の一態様において、a環、b環及びc環は、ホウ素原子及び2つの窒素原子から構成される前記一般式(6)中央の縮合2環構造に縮合する環(置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は置換もしくは無置換の環形成原子数5~50の複素環)である。
 a環、b環及びc環の「芳香族炭化水素環」は、「アリール基」に水素原子を導入した化合物と同じ構造である。
 a環の「芳香族炭化水素環」は、前記一般式(6)中央の縮合2環構造上の炭素原子3つを環形成原子として含む。
 b環及びc環の「芳香族炭化水素環」は、前記一般式(6)中央の縮合2環構造上の炭素原子2つを環形成原子として含む。
 「置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環」の具体例としては、具体例群G1に記載の「アリール基」に水素原子を導入した化合物等が挙げられる。
 a環、b環及びc環の「複素環」は、上述した「複素環基」に水素原子を導入した化合物と同じ構造である。
 a環の「複素環」は、前記一般式(6)中央の縮合2環構造上の炭素原子3つを環形成原子として含む。b環及びc環の「複素環」は、前記一般式(6)中央の縮合2環構造上の炭素原子2つを環形成原子として含む。「置換もしくは無置換の環形成原子数5~50の複素環」の具体例としては、具体例群G2に記載の「複素環基」に水素原子を導入した化合物等が挙げられる。
 R601及びR602は、それぞれ独立に、a環、b環又はc環と結合して、置換もしくは無置換の複素環を形成してもよい。この場合における複素環は、前記一般式(6)中央の縮合2環構造上の窒素原子を含む。この場合における複素環は、窒素原子以外のヘテロ原子を含んでいてもよい。R601及びR602がa環、b環又はc環と結合するとは、具体的には、a環、b環又はc環を構成する原子とR601及びR602を構成する原子が結合することを意味する。例えば、R601がa環と結合して、R601を含む環とa環が縮合した2環縮合(又は3環縮合以上)の含窒素複素環を形成してもよい。当該含窒素複素環の具体例としては、具体例群G2のうち、窒素を含む2環縮合以上の複素環基に対応する化合物等が挙げられる。
 R601がb環と結合する場合、R602がa環と結合する場合、及びR602がc環と結合する場合も上記と同じである。
 R601及びR602は、それぞれ独立に、a環、b環又はc環と結合しなくてもよい。
 一実施形態において、前記一般式(6)におけるa環、b環及びc環は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環である。
 一実施形態において、前記一般式(6)におけるa環、b環及びc環は、それぞれ独立に、置換もしくは無置換のベンゼン環又はナフタレン環である。
 一実施形態において、前記一般式(6)におけるR601及びR602は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 好ましくは置換もしくは無置換の環形成炭素数6~50のアリール基である。
 一実施形態において、前記一般式(6)で表される化合物は下記一般式(62)で表される化合物である。
(前記一般式(62)において、
 R601Aは、R611及びR621からなる群から選択される1以上と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成せず、
 R602Aは、R613及びR614からなる群から選択される1以上と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成せず、
 前記置換もしくは無置換の複素環を形成しないR601A及びR602Aは、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R611~R621のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の複素環を形成せず、前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR611~R621は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
(前記一般式(62)中、R901、R902、R903、R904、R905、R906及びR907は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
 R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
 R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
 R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なり、
 R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、
 R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、
 R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なる。)
 前記一般式(62)のR601A及びR602Aは、それぞれ、前記一般式(6)のR601及びR602に対応する基である。
 例えば、R601AとR611が結合して、これらを含む環とa環に対応するベンゼン環が縮合した2環縮合(又は3環縮合以上)の含窒素複素環を形成してもよい。当該含窒素複素環の具体例としては、具体例群G2のうち、窒素を含む2環縮合以上の複素環基に対応する化合物等が挙げられる。R601AとR621が結合する場合、R602AとR613が結合する場合、及びR602AとR614が結合する場合も上記と同じである。
 R611~R621のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成してもよい。
 例えば、R611とR612が結合して、これらが結合する6員環に対して、ベンゼン環、インドール環、ピロール環、ベンゾフラン環又はベンゾチオフェン環等が縮合した構造を形成してもよく、形成された縮合環は、ナフタレン環、カルバゾール環、インドール環、ジベンゾフラン環又はジベンゾチオフェン環となる。
 一実施形態において、前記一般式(6)で表される化合物は、下記一般式(42-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000336
(前記一般式(42-2)において、R611~R617、R601A及びR602Aは、それぞれ独立に、前記一般式(62)におけるR611~R617、R601A及びR602Aと同義であり、
 Xは、酸素原子又は硫黄原子であり、
 R701~R704のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR701~R704は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 前記一般式(42-2)中、R901、R902、R903、R904、R905、R906及びR907は、それぞれ独立に、前記一般式(62)におけるR901、R902、R903、R904、R905、R906及びR907と同義である。)
(一般式(3A)で表される化合物)
 本実施形態に係る有機EL素子の一態様において、第一の発光性化合物は、下記一般式(3A)で表される化合物である。
(前記一般式(3A)において、
 Ra301、Ra302、Ra303、Ra304、Ra305、Ra306、Ra307、Ra308、Ra309及びRa310のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 Ra301~Ra310の少なくとも1つは下記一般式(31A)で表される1価の基であり、
 前記単環を形成せず、前記縮合環を形成せず、かつ下記一般式(31A)で表される1価の基ではないRa301~Ra310は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
(前記一般式(31A)において、
 Ara301及びAra302は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 La301、La302及びLa303は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~30の2価の複素環基であり、
 *は、前記一般式(3A)中のピレン環における結合位置を示す。)
(第一の発光性化合物の具体例)
 以下に、第一の発光性化合物の具体例を記載するが、これらは例示に過ぎず、第一の発光性化合物は、下記具体例に限定されない。
Figure JPOXMLDOC01-appb-C000347
Figure JPOXMLDOC01-appb-C000348
Figure JPOXMLDOC01-appb-C000349
Figure JPOXMLDOC01-appb-C000367
Figure JPOXMLDOC01-appb-C000368
(有機EL素子のその他の層)
 本実施形態に係る有機EL素子は、第一の増感層及び第一の発光層以外に、1以上の有機層を有していてもよい。有機層としては、例えば、正孔注入層、正孔輸送層、電子障壁層、正孔障壁層、電子注入層及び電子輸送層からなる群から選択される少なくともいずれかの層が挙げられる。
 本実施形態に係る有機EL素子は、第一の増感層及び第一の発光層だけで構成されていてもよいが、例えば、正孔注入層、正孔輸送層、電子障壁層、正孔障壁層、電子注入層及び電子輸送層からなる群から選択される少なくともいずれかの層をさらに有していてもよい。
 本実施形態に係る有機EL素子は、第一の増感層及び第一の発光層の間に介在層が配置されていてもよい。
(介在層)
 本実施形態の一態様において、介在層は、ノンドープ層である。本実施形態の一態様において、介在層は、金属原子を含まない。介在層は、介在層材料を含む。本実施形態の一態様において、介在層材料は、発光性化合物ではない。
 介在層材料としては、特に限定されないが、発光性化合物以外の材料であることが好ましい。
 介在層材料としては、例えば、1)オキサジアゾール誘導体、ベンゾイミダゾール誘導体、若しくはフェナントロリン誘導体等の複素環化合物、2)カルバゾール誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、若しくはクリセン誘導体等の縮合芳香族化合物、3)トリアリールアミン誘導体、若しくは縮合多環芳香族アミン誘導体等の芳香族アミン化合物が挙げられる。
 本実施形態の一態様において、介在層材料は、第一の増感層が含有する第一のホスト材料及び第一の発光層が含有する第二のホスト材料の一方、又は両方のホスト材料であってもよい。
 本実施形態の一態様において、介在層が複数の介在層材料を含有する場合、それぞれの介在層材料の含有率は、いずれも、介在層の全質量の10質量%以上である。
 介在層は、前記介在層材料を、介在層の全質量の60質量%以上、含有することが好ましく、介在層の全質量の70質量%以上、含有することがより好ましく、介在層の全質量の80質量%以上、含有することがさらに好ましく、介在層の全質量の90質量%以上、含有することがよりさらに好ましく、介在層の全質量の95質量%以上、含有することがさらになお好ましい。
 介在層は、介在層材料を1種のみ含んでもよいし、2種以上含んでもよい。
 介在層が介在層材料を2種以上含有する場合、2種以上の介在層材料の合計含有率の上限は、100質量%である。
 なお、本実施形態は、介在層に、介在層材料以外の材料が含まれることを除外しない。
 介在層は単層で構成されていてもよいし、二層以上積層されて構成されていてもよい。
 介在層の膜厚は、特に制限は無いが、1層あたり、3nm以上15nm以下であることが好ましく、5nm以上10nm以下であることがより好ましい。
〔第二実施形態〕
(タンデム型有機エレクトロルミネッセンス素子)
 第二実施形態のタンデム型有機EL素子は、第一実施形態の有機EL素子の一態様である。
 本明細書において、陽極及び陰極の間に配置された2つ以上の発光ユニットを有する有機エレクトロルミネッセンス素子をタンデム型有機エレクトロルミネッセンス素子(タンデム型有機EL素子)と称する。
 タンデム型有機EL素子の各発光ユニットの間には、電荷発生層(第二実施形態又は第三実施形態の場合は第一の電荷発生層に相当)が配置される。
 電荷発生層は、一般的に、中間層、中間電極、中間導電層、電子引抜層、接続層、コネクター層、又は中間絶縁層とも呼ばれる。
 電荷発生層は、当該電荷発生層よりも陽極側に配置された層に電子を供給し、当該電荷発生層よりも陰極側に配置された層に正孔を供給する層である。電荷発生層は、公知の材料により形成できる。電荷発生層は、1層であっても、2以上の層で構成されていてもよい。2以上の電荷発生層で構成される単位を、電荷発生ユニットと称する場合がある。電荷発生ユニットが含む複数の電荷発生層の組成は、互いに同一であるか又は異なる。
 電荷発生層又は電荷発生ユニットと、陽極又は陰極と、の間に配置された、発光層を含む複数の層を発光ユニットと称する場合がある。
 電荷発生層が2層で構成される場合、当該電荷発生層よりも陽極側に配置された層をN層と称し、当該電荷発生層よりも陰極側に配置された層をP層と称する場合がある。
 第二実施形態のタンデム型有機EL素子としては、例えば、以下の態様1から態様4が挙げられる。
(態様1)
 態様1のタンデム型有機EL素子は、第一実施形態の発光領域を第一の発光領域として含む第一の発光ユニットと、前記第一の発光ユニットと前記陰極との間に配置された第一の電荷発生層と、前記第一の電荷発生層と前記陰極との間に配置された第二の発光領域を含む第二の発光ユニットと、を有し、前記第一の発光領域は、前記第一の増感層と、前記第一の発光層とを含み、前記第二の発光領域は、少なくとも、第二の発光層を含み、前記陽極、前記第一の発光領域、前記第一の電荷発生層、前記第二の発光領域及び前記陰極が、この順に配置されており、前記第二の発光層は、第三のホスト材料と、第二の発光性化合物とを含有する。
(態様2)
 態様2のタンデム型有機EL素子は、態様1に対し、第一の発光領域及び第二の発光領域の配置を入れ替えた点以外、態様1と同様の構成である。
 態様2のタンデム型有機EL素子は、第一実施形態の発光領域を第一の発光領域として含む第一の発光ユニットと、前記第一の発光ユニットと前記陽極との間に配置された第一の電荷発生層と、前記第一の電荷発生層と前記陽極との間に配置された第二の発光領域を含む第二の発光ユニットと、を有し、前記第一の発光領域は、前記第一の増感層と、前記第一の発光層とを含み、前記第二の発光領域は、少なくとも、第二の発光層を含み、前記陽極、前記第二の発光領域、前記第一の電荷発生層、前記第一の発光領域及び前記陰極が、この順に配置されており、前記第二の発光層は、第三のホスト材料と、第二の発光性化合物とを含有する。
(態様3)
 態様3のタンデム型有機EL素子は、態様1又は態様2に対し、第二の発光領域がさらに第二の増感層を含み、第二の増感層及び第二の発光層の配置が、陽極側から第二の増感層及び第二の発光層の順番に特定された点、並びに第一の増感層及び第一の発光層の配置が、陽極側から第一の増感層及び第一の発光層の順番に特定された点以外、態様1又は態様2と同様である。
 態様3のタンデム型有機EL素子において、態様1又は態様2の第二の発光領域は、第二の増感層と、前記第二の発光層とを含み、前記第一の発光領域は、前記陽極の側から、前記第一の増感層と、前記第一の発光層とが、この順に配置されており、前記第二の発光領域は、前記陽極の側から、前記第二の増感層と、前記第二の発光層とが、この順に配置されており、前記第二の増感層は、第四のホスト材料と、第二の増感材とを含有し、前記第三のホスト材料と前記第四のホスト材料とは、互いに異なり、前記第二の増感材と前記第二の発光性化合物とは、互いに異なり、前記第二の増感材の最低励起一重項エネルギーS(G2)と、前記第二の増感材の77[K]におけるエネルギーギャップT77K(G2)との差ΔST(G2)は、下記数式(数1A)を満たす。
  ΔST(G2)=S(G2)-T77K(G2)<0.5eV …(数1A)
(態様4)
 態様4のタンデム型有機EL素子は、態様1又は態様2に対し、第二の発光領域がさらに第二の増感層を含み、第二の発光層及び第二の増感層の配置が、陽極側から第二の発光層及び第二の増感層の順番に特定された点、並びに第一の発光層及び第一の増感層の配置が、陽極側から第一の発光層及び第一の増感層の順番に特定された点以外、態様1又は態様2と同様である。
 態様4のタンデム型有機EL素子において、態様1又は態様2の第二の発光領域は、第二の増感層と、前記第二の発光層とを含み、前記第一の発光領域は、前記陽極の側から、前記第一の増感層と、前記第一の発光層とが、この順に配置されており、前記第二の発光領域は、前記陽極の側から、前記第二の増感層と、前記第二の発光層とが、この順に配置されており、前記第二の増感層は、第四のホスト材料と、第二の増感材とを含有し、前記第三のホスト材料と前記第四のホスト材料とは、互いに異なり、前記第二の増感材と前記第二の発光性化合物とは、互いに異なり、前記第二の増感材の最低励起一重項エネルギーS(G2)と、前記第二の増感材の77[K]におけるエネルギーギャップT77K(G2)との差ΔST(G2)は、下記数式(数1A)を満たす。
  ΔST(G2)=S(G2)-T77K(G2)<0.5eV …(数1A)
 第二実施形態のタンデム型有機EL素子は、第一の発光領域として第一実施形態の発光領域(第一の増感材及び第一の発光層を含む発光領域)を備えている。第一の増感材は、原理的にΔSTが小さく、かつ光の吸収強度が燐光錯体よりも高いので、増感材として好適な性能を有する。
 よって、第二実施形態のタンデム型有機EL素子によれば、第一実施形態と同様の理由により、発光開始電圧が低く、かつ高効率で発光する。
 第二実施形態の第一の増感材及び第一の発光層は、第一実施形態の第一の増感材及び第一の発光層と同義である。
 第二実施形態において、第三のホスト材料と、第一のホスト材料とは、互いに同一であるか、又は異なる。第三のホスト材料と、第二のホスト材料とは、互いに同一であるか、又は異なる。
 第二実施形態において、第四のホスト材料と、第一のホスト材料とは、互いに同一であるか、又は異なる。第四のホスト材料と、第二のホスト材料とは、互いに同一であるか、又は異なる。
 第二実施形態において、第二の発光性化合物と、第一の発光性化合物とは、互いに同一であるか、又は異なる。第二の発光性化合物と、第一の増感材とは、互いに異なる。
 第二実施形態において、第二の増感材と、第一の増感材とは、互いに同一であるか、又は異なる。第二の増感材と、第一の発光性化合物とは、互いに異なる。
 第三のホスト材料としては、例えば、第一実施形態で説明した第一のホスト材料及び第二のホスト材料と同様の材料又は化合物が挙げられる。
 第四のホスト材料としては、例えば、第一実施形態で説明した第一のホスト材料及び第二のホスト材料と同様の材料又は化合物が挙げられる。
 第二の増感材としては、例えば、第一実施形態で説明した第一の増感材と同様の材料又は化合物が挙げられる。
 第二の発光性化合物としては、例えば、第一実施形態で説明した第一の発光性化合物と同様の材料又は化合物が挙げられる。また、態様1又は態様2の場合、第二の発光層は燐光発光層であってもよい。この場合、第二の発光層は、第二の発光性化合物として燐光発光性化合物を含有する。
 第二実施形態のタンデム型有機EL素子が、態様3又は態様4のタンデム型有機EL素子である場合、第二の発光領域は、第一の発光領域と同様の特性を有し、図1に示す発光機構で発光することが好ましい。具体的には、第二の発光領域は、第一実施形態で説明した第一の増感層を第二の増感層として含み、かつ第一実施形態で説明した第一の発光層を第二の発光層として含むことが好ましい。
 第二実施形態の一態様において、第二の増感材の最低励起一重項エネルギーS(G2)と、第二の増感材の77[K]におけるエネルギーギャップT77K(G2)との差ΔST(G2)は、下記数式(数12A)~(数12D)のいずれかの関係を満たす。
  ΔST(G2)=S(G2)-T77K(G2)<0.4eV …(数12A)
  ΔST(G2)=S(G2)-T77K(G2)<0.3eV …(数12B)
  ΔST(G2)=S(G2)-T77K(G2)<0.2eV …(数12C)
  ΔST(G2)=S(G2)-T77K(G2)<0.1eV …(数12D)
 第二実施形態の一態様において、第二の増感材の77[K]におけるエネルギーギャップT77K(G2)と、第四のホスト材料の77[K]におけるエネルギーギャップT77K(H4)と、第三のホスト材料の77[K]におけるエネルギーギャップT77K(H3)とが下記数式(数2X)の関係を満たす。
  T77K(G2)>T77K(H4)>T77K(H3) …(数2X)
 第二実施形態の一態様において、第二の増感材の77[K]におけるエネルギーギャップT77K(G2)と、第四のホスト材料の77[K]におけるエネルギーギャップT77K(H4)とが下記数式(数21X)の関係を満たす。
  T77K(G2)-T77K(H4)<0.5eV …(数21X)
 第二実施形態の一態様において、第二の増感材の77[K]におけるエネルギーギャップT77K(G2)と、第四のホスト材料の77[K]におけるエネルギーギャップT77K(H4)とが下記数式(数21Y)の関係を満たす。
  T77K(G2)-T77K(H4)<0.4eV …(数21Y)
 第二実施形態の一態様において、前記第四のホスト材料の77[K]におけるエネルギーギャップT77K(H4)と、前記第三のホスト材料の77[K]におけるエネルギーギャップT77K(H3)とが下記数式(数22X)の関係を満たす。
  T77K(H4)-T77K(H3)<0.3eV …(数22X)
 第二実施形態の一態様において、前記第四のホスト材料の77[K]におけるエネルギーギャップT77K(H4)と、前記第三のホスト材料の77[K]におけるエネルギーギャップT77K(H3)とが下記数式(数22Y)の関係を満たす。
  T77K(H4)-T77K(H3)<0.3eV …(数22Y)
 第二実施形態の一態様において、前記第二の増感材の最低励起一重項エネルギーS(G2)と、前記第二の発光性化合物の最低励起一重項エネルギーS(BD2)とが下記数式(数3X)の関係を満たす。
  S(BD2)>S(G2) …(数3X)
 第二実施形態の一態様において、前記第二の増感層と前記第二の発光層とが、直接、接している。
 第二実施形態の一態様において、前記第二の増感層は、前記陽極と前記陰極との間に配置され、前記第二の発光層は、前記第二の増感層と前記陰極との間に配置されている。この態様の場合、第二の発光領域は、陽極側から順に、第二の増感層及び第二の発光層をこの順で含む。
 第二実施形態の一態様において、第二の発光領域が、陽極側から順に、第二の増感層及び第二の発光層をこの順で含む場合、
 前記第二の増感材の最低空軌道のエネルギー準位LUMO(G2)の絶対値と、前記第四のホスト材料の最低空軌道のエネルギー準位LUMO(H4)の絶対値とが、下記数式(数4X)の関係を満たす。
  |LUMO(G2)|>|LUMO(H4)| …(数4X)
 第二の増感材及び第四のホスト材料が前記数式(数4X)の関係を満たすことにより、第二の増感層において第二の増感材に電子がトラップされ易くなり、その結果、第二の増感層における正孔と電子との再結合が促進される。
 第二実施形態の一態様において、第二の発光領域が、陽極側から順に、第二の増感層及び第二の発光層をこの順で含む場合、第二の増感材及び第四のホスト材料が前記数式(数4X)の関係を満たすことに加えて、前記第三のホスト材料の最低空軌道のエネルギー準位LUMO(H3)の絶対値と、前記第二の発光性化合物の最低空軌道のエネルギー準位LUMO(BD2)の絶対値とが、下記数式(数41X)の関係を満たす。
  |LUMO(H3)|>|LUMO(BD2)| …(数41X)
 第三のホスト材料及び第二の発光性化合物が前記数式(数41X)の関係を満たすことにより、第二の発光層において第二の発光性化合物に電子がトラップされにくくなり、その結果、第二の増感層における正孔と電子との再結合が促進される。
 第二実施形態の一態様において、前記第二の増感層は、前記陽極と前記陰極との間に配置され、前記第二の発光層は、前記第二の増感層と前記陽極との間に配置されている。この態様の場合、第二の発光領域は、陽極側から順に、第二の発光層及び第二の増感層をこの順で含む。
 第二実施形態の一態様において、第二の発光領域が、陽極側から順に、第二の発光層及び第二の増感層をこの順で含む場合、
 前記第二の増感材の最高被占軌道のエネルギー準位HOMO(G2)の絶対値と、前記第四のホスト材料の最高被占軌道のエネルギー準位HOMO(H4)の絶対値とが、下記数式(数5X)の関係を満たす。
  |HOMO(G2)|<|HOMO(H4)| …(数5X)
 第二の増感材及び第四のホスト材料が前記数式(数5X)の関係を満たすことにより、第二の増感層において第二の増感材に正孔がトラップされ易くなり、その結果、第二の増感層における正孔と電子との再結合が促進される。
 第二実施形態の一態様において、第二の発光領域が、陽極側から順に、第二の発光層及び第二の増感層をこの順で含む場合、第二の増感材及び第四のホスト材料が前記数式(数5X)の関係を満たすことに加えて、
 前記第三のホスト材料の最高被占軌道のエネルギー準位HOMO(H3)の絶対値と、前記第二の発光性化合物の最高被占軌道のエネルギー準位HOMO(BD2)の絶対値とが、下記数式(数51X)の関係を満たす。
  |HOMO(H3)|<|HOMO(BD2)| …(数51X)
 第三のホスト材料及び第二の発光性化合物が前記数式(数51X)の関係を満たすことにより、第二の発光層において第二の発光性化合物に正孔がトラップされにくくなり、その結果、第二の増感層における正孔と電子との再結合が促進される。
 第二実施形態の一態様において、前記第一の発光領域と同じ構成からなる発光領域を、前記陽極及び前記陰極で挟んだ第一の評価用素子において、前記第一の評価用素子を発光させたときに、発光スペクトルのピークのエネルギーEPE1(eV)と、0.01cd/mの輝度が得られる際に前記第一の評価用素子に与えているエネルギーETH1(eV)との差が、下記数式(数61)の関係を満たす。
 ETH1-EPE1≦0.05eV …(数61)
 第二実施形態の一態様において、前記第二の発光領域と同じ構成からなる発光領域を、前記陽極及び前記陰極で挟んだ第二の評価用素子において、前記第二の評価用素子を発光させたときに、発光スペクトルのピークのエネルギーEPE2(eV)と、0.01cd/mの輝度が得られる際に前記第二の評価用素子に与えているエネルギーETH2(eV)との差が、下記数式(数62)の関係を満たす。
 ETH2-EPE2≦0.05eV …(数62)
 前記数式(数61)中のETH1の測定方法は、第一の評価用素子を用いて測定すること以外、第一実施形態における前記数式(数6)中のETHの測定方法と同様である。
 前記数式(数62)中のETH2の測定方法は、第二の評価用素子を用いて測定すること以外、第一実施形態における前記数式(数6)中のETHの測定方法と同様である。
 前記数式(数61)中のEPE1及び前記数式(数62)中のEPE2は、測定対象の発光層中に含まれる発光性化合物の最低励起一重項エネルギーSの測定値を用いる。最低励起一重項エネルギーSの測定方法は、実施例に記載の通りである。
 前記数式(数61)中のETH1及び前記数式(数62)中のETH2の測定方法について具体例を挙げて説明する。
(第一の評価用素子の作製)
 例えば、第一発光ユニットに含まれる第一の発光領域が、後述する実施例13と同じ素子構成である場合、具体的には、当該第一の発光領域が、化合物BH-a(第一のホスト材料)及び化合物TADF-a(第一の増感材)からなる第一の増感層と、化合物BH-b(第二のホスト材料)及び化合物BD-a(第一の発光性化合物)からなる第一の発光層と、からなる場合、第一の評価用素子は、下記の手順で作製される。
 ITO透明電極(陽極)付きガラス基板上に、透明電極を覆うようにして化合物BH-a(第一のホスト材料)及び化合物TADF-a(第一の増感材)を共蒸着して第一の増感層を形成する。この第一の増感層中の化合物BH-aの割合を75質量%とし、化合物TADF-aの割合を25質量%とする。
 この第一の増感層の上に、化合物BH-b(第二のホスト材料)及び化合物BD-a(第一の発光性化合物)を共蒸着して第一の発光層を形成する。この第一の発光層中の化合物BH-bの割合を99質量%とし、化合物BD-aの割合を1質量%とする。
この第一の発光層の上に、金属アルミニウム(Al)を蒸着して金属陰極を形成する。
 第一の評価用素子の構成を略式的に示すと、次のとおりである。
ITO(130)/BH-a:TADF-a(5,75%:25%)/BH-b:BD-a(20,99%:1%)/Al(50)
 なお、括弧内の数字は、膜厚(nm)を示す。
(第二の評価用素子の作製)
 例えば、第二発光ユニットに含まれる第二の発光領域が、後述する実施例13と同じ素子構成である場合、第二の評価用素子は、前記第一の評価用素子と同様の手順で作製される。後述する実施例13は、第一の発光領域及び第二の発光領域が同じ構成であるため、第二の評価用素子の構成も、第一の評価用素子の構成と同じである。
 第二実施形態の一態様において、前記第一の発光領域と同じ構成からなる発光領域を、前記陽極及び前記陰極で挟んだ第一の評価用素子において、前記第一の評価用素子を発光させたときに、遅延蛍光比率が37.5%より大きい。
 第二実施形態の一態様において、前記第二の発光領域と同じ構成からなる発光領域を、前記陽極及び前記陰極で挟んだ第二の評価用素子において、前記第二の評価用素子を発光させたときに、遅延蛍光比率が37.5%より大きい。
 遅延蛍光比率は、前述の手順で作製した第一の評価用素子又は第二の評価用素子を用いて、第一実施形態で説明した「遅延蛍光比率の算出方法」により算出される。
 第二実施形態の一態様において、前記第一の増感材は、遅延蛍光性材料である。
 第二実施形態の一態様において、前記第二の増感材は、遅延蛍光性材料である。
 図9には、第二実施形態に係るタンデム型有機EL素子の一例(前記態様1)として、有機EL素子10の概略構成が示されている。有機EL素子10は、タンデム型有機EL素子であり、2つの発光ユニットとして第一の発光ユニット11及び第二の発光ユニット12を含んでいる。有機EL素子10は、基板2と、陰極4と、陽極3と、陰極4および陽極3の間に含まれる第一の電荷発生層(電荷発生ユニット)20と、第一の電荷発生層20と陽極3との間に含まれる第一の発光ユニット11と、第一の電荷発生層20と陰極4との間に含まれる第二の発光ユニット12と、を備える。
 有機EL素子10において、第一の発光ユニット11と第二の発光ユニット12とは第一の電荷発生層20を介して直列に連結されている。第一の電荷発生層20は、陽極3側に配置された層に電子を供給する第一N層21、及び陰極4側に配置された層に正孔を供給する第一P層22を含んでいる。第一の発光領域5は、陽極3側に第一の増感層51を含み、陰極4側に第一の発光層52を含む。第二の発光領域5Bは、第二の発光層521を含む。
 図9の場合、第一の発光領域5が第一実施形態の発光領域に相当する。
 図10には、第二実施形態に係る有機EL素子の別の一例(前記態様3)として、有機EL素子10Aの概略構成が示されている。
 有機EL素子10Aは、第二の発光ユニット12Aの第二の発光領域5Cが陽極3側にさらに第二の増感層511を含む点で、有機EL素子10と異なり、その他の点では、有機EL素子10と同様である。
 有機EL素子10Aにおいては、陽極3側から順に、正孔注入層6、正孔輸送層7、第一の増感層51、第一の発光層52、第一N層21、第一P層22、正孔輸送層71、第二の増感層511、第二の発光層521、電子輸送層81、及び電子注入層91が、この順番で積層されている。第二の発光領域5Cは、陽極3側に第二の増感層511を含み、陰極4側に第二の発光層521を含む。第二の発光領域5Cは、第一の発光領域5と同じ構成であってもよいし、異なる構成であってもよい。
 図10の場合、第一の発光領域5及び第二の発光領域5Cの少なくとも一方が第一実施形態の発光領域である。
 図11には、第二実施形態に係る有機EL素子の別の一例(前記態様4)として、有機EL素子10Bの概略構成が示されている。
 有機EL素子10Bは、第一の発光領域5Aにおける第一の増感層51が陰極4側に配置され、第一の発光層52が陽極3側に配置された点、及び第二の発光領域5Dにおける第二の増感層511が陰極4側に配置され、第二の発光層521が陽極3側に配置された点で、有機EL素子10Aと異なり、その他の点では、有機EL素子10Aと同様である。
 有機EL素子10Bにおいては、陽極3側から順に、正孔注入層6、正孔輸送層7、第一の発光層52、第一の増感層51、第一N層21、第一P層22、正孔輸送層71、第二の発光層521、第二の増感層511、電子輸送層81、及び電子注入層91が、この順番で積層されている。第二の発光領域5Dは、陰極4側に第二の増感層511を含み、陽極3側に第二の発光層521を含む。第二の発光領域5Dは、第一の発光領域5Aと同じ構成であってもよいし、異なる構成であってもよい。
 図11の場合、第一の発光領域5A及び第二の発光領域5D少なくとも一方が第一実施形態の発光領域である。
 本発明は、図9から図11に示す有機EL素子の構成に限定されない。別の構成の有機EL素子としては、例えば、図9から図11のそれぞれについて、第一の発光領域と第二の発光領域を入れ替えた態様、及び第三の発光ユニットを備える態様が挙げられる。
 例えば、図9から図11に示す有機EL素子が、さらに第三の発光ユニットを備える場合、各発光ユニットの少なくともいずれかに含まれる発光領域が第一実施形態の発光領域であればよい。
 前述のいずれかの実施形態に係る有機EL素子は、ボトムエミッション型の有機EL素子でもよい。
 前述のいずれかの実施形態に係る有機EL素子は、トップエミッション型の有機EL素子でもよい。
 第二実施形態において、第一の発光ユニットの有機層は、第一の増感層及び第一の発光層だけで構成されていてもよいが、例えば、正孔注入層、正孔輸送層、電子注入層、電子輸送層、正孔障壁層、及び電子障壁層等からなる群から選択される少なくともいずれかの層をさらに有していてもよい。
 第二実施形態において、第二の発光ユニットの有機層は、第二の発光層だけで構成されていてもよいし、第二の増感層及び第二の発光層だけで構成されていてもよいが、例えば、正孔注入層、正孔輸送層、電子注入層、電子輸送層、正孔障壁層、及び電子障壁層等からなる群から選択される少なくともいずれかの層をさらに有していてもよい。
 第二実施形態において、2つ以上の発光ユニットは、第一の発光領域(第一実施形態の発光領域)を備える第一の発光ユニットと、当該第一の発光ユニットとは異なる少なくとも1つの燐光発光ユニットとを含むことも好ましい。燐光発光ユニットは、燐光発光を示す燐光発光性化合物を含有することが好ましい。燐光発光性化合物は、金属錯体であることが好ましい。燐光発光性化合物としての金属錯体は、イリジウム錯体、銅錯体、白金錯体、オスミウム錯体又は金錯体であることが好ましい。
 燐光発光ユニットは、燐光発光性化合物を含有する燐光発光層を少なくとも1つ有することが好ましい。燐光発光ユニットは、燐光発光層を2つ以上有していてもよい。燐光発光ユニットが燐光発光層を2つ以上有している場合、燐光発光層同士は、直接、接していてもよいし、接していなくてもよい。
 また、燐光発光ユニットは、緑色発光性の燐光発光性化合物を含有する緑色燐光発光層と、赤色発光性の燐光発光性化合物を含有する赤色燐光発光層と、を有することが好ましい。本明細書において、緑色の発光とは、発光スペクトルの最大ピーク波長が500nm以上、550nm以下の範囲内である発光をいう。本明細書において、赤色の発光とは、発光スペクトルの最大ピーク波長が600nm以上、640nm以下の範囲内である発光をいう。
 第二実施形態に係るタンデム型有機EL素子は、第一の発光領域を有する第一の発光ユニットと、1つの燐光発光ユニットとを有することも好ましい。
 第二実施形態に係るタンデム型有機EL素子は、燐光発光ユニットを含まないことも好ましい。
〔各実施形態の共通構成〕
 本明細書に記載の各実施形態に共通して適用できる構成について説明する。
(基板)
 基板は、有機EL素子の支持体として用いられる。基板としては、例えば、ガラス、石英、及びプラスチック等を用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、プラスチック基板等が挙げられる。プラスチック基板を形成する材料としては、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニル、ポリイミド、及びポリエチレンナフタレート等が挙げられる。また、無機蒸着フィルムを用いることもできる。
(陽極)
 基板上に形成される陽極には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素もしくは酸化珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン、および酸化亜鉛を含有した酸化インジウム、グラフェン等が挙げられる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)、または金属材料の窒化物(例えば、窒化チタン)等が挙げられる。
 これらの材料は、通常、スパッタリング法により成膜される。例えば、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1質量%以上10質量%以下の酸化亜鉛を加えたターゲットを用いることにより、スパッタリング法で形成することができる。また、例えば、酸化タングステン、および酸化亜鉛を含有した酸化インジウムは、酸化インジウムに対し酸化タングステンを0.5質量%以上5質量%以下、酸化亜鉛を0.1質量%以上1質量%以下含有したターゲットを用いることにより、スパッタリング法で形成することができる。その他、真空蒸着法、塗布法、インクジェット法、スピンコート法などにより作製してもよい。
 陽極上に形成されるEL層のうち、陽極に接して形成される正孔注入層は、陽極の仕事関数に関係なく正孔(ホール)注入が容易である複合材料を用いて形成されるため、電極材料として可能な材料(例えば、金属、合金、電気伝導性化合物、およびこれらの混合物、その他、元素周期表の第1族または第2族に属する元素も含む)を用いることができる。
 仕事関数の小さい材料である、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等を用いることもできる。なお、アルカリ金属、アルカリ土類金属、およびこれらを含む合金を用いて陽極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。さらに、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
 有機EL素子がボトムエミッション型である場合、陽極は、発光層からの光を透過する光透過性もしくは半透過性を有する金属材料で形成されることが好ましい。本明細書において、光透過性もしくは半透過性とは、発光層から発光される光を50%以上(好ましくは80%以上)透過する性質を意味する。光透過性もしくは半透過性を有する金属材料は、前記陽極の項で列挙した材料から適宜選択して使用することができる。
 有機EL素子がトップエミッション型である場合、陽極は反射層を有する反射性電極である。反射層は、光反射性を有する金属材料で形成されることが好ましい。本明細書において、光反射性とは、発光層から発光される光を50%以上(好ましくは80%以上)反射する性質を意味する。光反射性を有する金属材料は、前記陽極の項で列挙した材料から適宜選択して使用することができる。
 陽極は反射層のみで構成されていてもよいが、反射層と、導電層(好ましくは透明導電層)とを有する多層構造であってもよい。陽極が反射層及び導電層を有する場合、反射層と正孔輸送帯域との間に当該導電層が配置されることが好ましい。導電層は、前記陽極の項で列挙した材料から適宜選択して使用することができる。
(陰極)
 陰極には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等が挙げられる。
 なお、アルカリ金属、アルカリ土類金属、これらを含む合金を用いて陰極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
 なお、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、グラフェン、珪素もしくは酸化珪素を含有した酸化インジウム-酸化スズ等様々な導電性材料を用いて陰極を形成することができる。これらの導電性材料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することができる。
 有機EL素子がボトムエミッション型である場合、陰極は、反射性電極である。反射性電極は、光反射性を有する金属材料で形成されることが好ましい。光反射性を有する金属材料は、前記陰極の項で列挙した材料から適宜選択して使用することができる。
 有機EL素子がトップエミッション型である場合、陰極は、発光層からの光を透過する光透過性もしくは半透過性を有する金属材料で形成されることが好ましい。光透過性もしくは半透過性を有する金属材料は、前記陰極の項で列挙した材料から適宜選択して使用することができる。
(キャッピング層)
 有機EL素子がトップエミッション型である場合、有機EL素子は、通常、陰極の上部にキャッピング層を備える。
 キャッピング層は、例えば、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物、窒化ケイ素、及びシリコン化合物(酸化ケイ素等)からなる群から選択される少なくともいずれかの化合物を含有していてもよい。
 また、キャッピング層は、例えば、芳香族アミン誘導体、アントラセン誘導体、ピレン誘導体、フルオレン誘導体、又はジベンゾフラン誘導体からなる群から選択される少なくともいずれかの化合物を含有していてもよい。
 また、これらの物質を含む層を積層させた積層体も、キャッピング層として用いることができる。
(正孔注入層)
 正孔注入層は、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物等を用いることができる。
 また、正孔注入性の高い物質としては、低分子の有機化合物である4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、4,4’-ビス(N-{4-[N’-(3-メチルフェニル)-N’-フェニルアミノ]フェニル}-N-フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物等やジピラジノ[2,3-f:20,30-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)も挙げられる。
 また、正孔注入性の高い物質としては、高分子化合物(オリゴマー、デンドリマー、ポリマー等)を用いることもできる。例えば、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)ベンジジン](略称:Poly-TPD)などの高分子化合物が挙げられる。また、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子化合物を用いることもできる。
(正孔輸送層)
 正孔輸送層は、正孔輸送性の高い物質を含む層である。正孔輸送層には、芳香族アミン化合物、カルバゾール誘導体、アントラセン誘導体等を使用する事ができる。具体的には、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)やN,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BAFLP)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン化合物等を用いることができる。ここに述べた物質は、主に10-6cm/(V・s)以上の正孔移動度を有する物質である。
 正孔輸送層には、CBP、9-[4-(N-カルバゾリル)]フェニル-10-フェニルアントラセン(CzPA)、9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(PCzPA)のようなカルバゾール誘導体や、t-BuDNA、DNA、DPAnthのようなアントラセン誘導体を用いても良い。ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。
 但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。なお、正孔輸送性の高い物質を含む層は、単層のものだけでなく、上記物質からなる層が二層以上積層したものとしてもよい。
(電子輸送層)
 電子輸送層は、電子輸送性の高い物質を含む層である。電子輸送層には、1)アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体、2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、フェナントロリン誘導体等の複素芳香族化合物、3)高分子化合物を使用することができる。具体的には低分子の有機化合物として、Alq、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq)、BAlq、Znq、ZnPBO、ZnBTZなどの金属錯体等を用いることができる。また、金属錯体以外にも、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(ptert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)などの複素芳香族化合物も用いることができる。本実施態様においては、ベンゾイミダゾール化合物を好適に用いることができる。ここに述べた物質は、主に10-6cm/(V・s)以上の電子移動度を有する物質である。なお、正孔輸送性よりも電子輸送性の高い物質であれば、上記以外の物質を電子輸送層として用いてもよい。また、電子輸送層は、単層で構成されていてもよいし、上記物質からなる層が二層以上積層されて構成されていてもよい。
(電子注入層)
 電子注入層は、電子注入性の高い物質を含む層である。電子注入層には、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、リチウム酸化物(LiOx)等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。その他、電子輸送性を有する物質にアルカリ金属、アルカリ土類金属、またはそれらの化合物を含有させたもの、具体的にはAlq中にマグネシウム(Mg)を含有させたもの等を用いてもよい。なお、この場合には、陰極からの電子注入をより効率良く行うことができる。
 あるいは、電子注入層に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
(層形成方法)
 本実施形態の有機EL素子の各層の形成方法としては、上記で特に言及した以外には制限されないが、真空蒸着法、スパッタリング法、プラズマ法、イオンプレーティング法などの乾式成膜法や、スピンコーティング法、ディッピング法、フローコーティング法、インクジェット法などの湿式成膜法などの公知の方法を採用することができる。
(膜厚)
 本実施形態の有機EL素子の各有機層の膜厚は、上記で特に言及した場合を除いて限定されない。一般に、膜厚が薄すぎるとピンホール等の欠陥が生じやすく、膜厚が厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常、有機EL素子の各有機層の膜厚は、数nmから1μmの範囲が好ましい。
〔第三実施形態〕
(有機エレクトロルミネッセンス装置)
 第三実施形態に係る有機EL装置は、前記実施形態のいずれかに係る有機EL素子と、電源とを備え、前記電源は、外部刺激によって電位差又は電流を発生する発電素子を備える。
 外部刺激としては、例えば、光、電波、熱、圧力、及び音波などが挙げられる。
 発電素子は、有機EL素子からの発光のエネルギーに満たない電位差または電流を生じるものが好ましい。
 第三実施形態に係る有機EL装置は、上記外部刺激を発光として変換する装置として機能する。
 第三実施形態に係る有機EL装置は、低い発光開始電圧(低電圧)を加えるだけで発光する有機EL素子を備えるので、当該有機EL素子と発電素子とを組み合わせることにより、これまで利用できなかったエネルギーの外部刺激を利用して、有機EL素子を低電圧で発光させることができる。
 第三実施形態に係る有機EL装置において、電源は、電気を貯められる蓄電素子をさらに備えてもよい。
 蓄電素子としては、例えば、コンデンサや各種蓄電池など、繰り返し充放電が可能な素子が挙げられる。
 第三実施形態の一態様において、有機EL素子と、発電素子と、さらに蓄電素子とを組み合わせることにより、有機EL装置の信頼性を向上させることができる。
 第三実施形態に係る有機EL装置において、電源は、発電素子を2以上備えてもよく、蓄電素子を2以上備えてもよい。
 図12に、第三実施形態に係る有機EL装置の一例の概略構成を示す。
 有機EL装置1Bは、有機EL素子と、電源40とを備えている。図12に示す有機EL装置1Bは、有機EL素子として図3に示す有機EL素子1を備えている。
 電源40は、発電素子41と蓄電素子42とを備えている。発電素子41は、蓄電素子42に接続されている。
 発電素子41は、外部刺激により電位差又は電流を発生する。有機EL装置1Bは、この発電素子41で発生した電位差又は電流が有機EL素子1に印加されるように構成されている。
 図12の場合、発電素子41で発生した電位差又は電流は、蓄電素子42にて充電されてもよく、有機EL素子1を駆動する際の電力として利用できる。発電素子41及び蓄電素子42の双方から同時に電力を供給することも可能である。
 本発明は、図12に示す有機EL装置の構成に限定されない。別の構成の有機EL装置としては、例えば、図12中の有機EL素子1(図3に示す有機EL素子1)を、図4に示す有機EL素子1A、図9に示す有機EL素子10、図10に示す有機EL素子10A及び図11に示す有機EL素子10Bのいずれかの有機EL素子に置き換えた有機EL装置が挙げられる。
 有機EL装置1Bにおいて、電源40は、少なくとも発電素子41を備えていればよい。有機EL装置1Bは、電源40と、さらに当該電源40とは異なる公知の電源とを備えてよい。有機EL装置1Bは、電源40に代えて、公知の電源を備えてもよい。
〔第四実施形態〕
(電子機器)
 第四実施形態に係る電子機器は、前記実施形態のいずれかに係る有機EL素子を搭載している。電子機器としては、例えば、表示装置及び発光装置等が挙げられる。表示装置としては、例えば、表示部品(例えば、有機ELパネルモジュール等)、テレビ、携帯電話、タブレット、及びパーソナルコンピュータ等が挙げられる。発光装置としては、例えば、照明及び車両用灯具等が挙げられる。発光装置は、表示装置に用いることもでき、例えば、表示装置のバックライトとして用いることもできる。
〔第五実施形態〕
(発光体)
 第五実施形態に係る発光体は、第一の増感部及び第一の発光部を含む発光体であって、前記第一の増感部は、第一のホスト材料と、第一の増感材とを含有し、前記第一の発光部は、第二のホスト材料と、第一の発光性化合物とを含有し、前記第一のホスト材料と前記第二のホスト材料とは、互いに異なり、前記第一の増感材と前記第一の発光性化合物とは、互いに異なり、前記第一の増感材の最低励起一重項エネルギーS(G1)と、前記第一の増感材の77[K]におけるエネルギーギャップT77K(G1)との差ΔST(G1)は、下記数式(数1)を満たし、
 前記第一の増感材の77[K]におけるエネルギーギャップT77K(G1)と、前記第一のホスト材料の77[K]におけるエネルギーギャップT77K(H1)と、前記第二のホスト材料の77[K]におけるエネルギーギャップT77K(H2)とが下記数式(数2)の関係を満たし、
 前記第一の増感材の最低励起一重項エネルギーS(G1)と、前記第一の発光性化合物の最低励起一重項エネルギーS(BD1)とが下記数式(数3)の関係を満たす。
  ΔST(G1)=S(G1)-T77K(G1)<0.5eV …(数1)
  T77K(G1)>T77K(H1)>T77K(H2) …(数2)
  S(BD1)>S(G1) …(数3)
 第五実施形態の発光体における第一の増感部は、第一実施形態の第一の増感層に対し、形態が「層」又は「膜」に限定されない以外、第一実施形態の第一の増感層と同様の構成である。
 同様に、第五実施形態の発光体における第一の発光部は、第一実施形態の第一の発光層に対し、形態が「層」又は「膜」に限定されない以外、第一実施形態の第一の発光層と同様の構成である。
 よって、第五実施形態の「第一の増感部」に含まれる第一のホスト材料及び第一の増感材は、第一実施形態の「第一の増感層」に含まれる第一のホスト材料及び第一の増感材と同義である。第五実施形態の「第一の発光部」に含まれる第二のホスト材料及び第一の発光性化合物は、第一実施形態の「第一の発光層」に含まれる第二のホスト材料及び第一の発光性化合物と同義である。
 第五実施形態の発光体において、第一の増感部に含まれる第一の増感材は、原理的にΔSTが小さく、かつ光の吸収強度が燐光錯体よりも高いので、増感材として好適な性能を有する。よって、第五実施形態の発光体によれば、第一実施形態と同様の理由により、発光開始電圧が低く、かつ高効率で発光する。
 第五実施形態の発光体の一態様において、第一の増感材の最低励起一重項エネルギーS(G1)と、第一の増感材の77[K]におけるエネルギーギャップT77K(G1)との差ΔST(G1)は、前記数式(数11A)~(数11D)のいずれかの関係を満たす。
 第五実施形態の発光体の一態様において、第一の増感材の77[K]におけるエネルギーギャップT77K(G1)と、第一のホスト材料の77[K]におけるエネルギーギャップT77K(H1)とが前記数式(数21)の関係を満たす。
 第五実施形態の発光体の一態様において、第一の増感材の77[K]におけるエネルギーギャップT77K(G1)と、第一のホスト材料の77[K]におけるエネルギーギャップT77K(H1)とが前記数式(数21A)の関係を満たす。
 第五実施形態の発光体の一態様において、前記第一のホスト材料の77[K]におけるエネルギーギャップT77K(H1)と、前記第二のホスト材料の77[K]におけるエネルギーギャップT77K(H2)とが前記数式(数22)の関係を満たす。
 第五実施形態の発光体の一態様において、前記第一のホスト材料の77[K]におけるエネルギーギャップT77K(H1)と、前記第二のホスト材料の77[K]におけるエネルギーギャップT77K(H2)とが前記数式(数22A)の関係を満たす。
 第五実施形態の発光体の一態様において、前記第一の増感層と前記第一の発光層とが、直接、接している。
 第五実施形態の発光体の一態様において、前記第一の増感部は、第一の増感層からなり、前記第一の発光部は、第一の発光層からなる。
 第五実施形態の発光体の一態様において、前記第一の増感部と、前記第一の発光部との間に、介在領域を含む。
 この態様における介在領域は、第一実施形態で説明した介在層と同様の構成であるので、第五実施形態における「介在領域」を、第一実施形態の「介在層」に置き換えて援用できる。
 第五実施形態の発光体の一態様において、前記第一の増感層及び前記第一の発光層を1つの繰り返し単位とし、2以上の繰り返し単位が積層された積層構造を有する。
(発光体の形態)
 第五実施形態の発光体の形態は特に限定されず、例えば、膜及び粉体等が挙げられる。
 発光体の形態としての「膜」は、第一実施形態における第一の増感層及び第一の発光層を含む「膜」であれば特に限定されない。発光体の形態としての「粉体」は、発光体の形態としての「膜」を粉砕して得られる。
 図13Aは、第五実施形態に係る発光体の一例の概略構成を示す図である。
 図13Aの発光体の形態は、粉体である。発光体としての粉体30は、第一の増感部31及び第一の発光部32を含む。第一の増感部31と第一の発光部32とは、直接、接していることが好ましい。第一の増感部31と第一の発光部32とで1つの繰り返し単位を構成している。
 図13Bは、第五実施形態に係る発光体の別の一例の概略構成を示す図である。
 図13Bの発光体の形態は、粉体である。発光体としての粉体300は、1つ目の繰り返し単位としての第一の増感部31及び第一の発光部32と、2つ目の繰り返し単位としての第一の増感部31A及び第一の発光部32Aとが積層された構造を有する。第一の増感部31、第一の発光部32、第一の増感部31A及び第一の発光部32Aのそれぞれの対向面は、直接、接していることが好ましい。
 本発明は、図13A及び図13Bに示す発光体の形態及び構造に限定されない。別の構造の発光体としては、例えば、3つ以上の繰り返し単位が積層された構造、図13Aの場合は、第一の増感部31及び第一の発光部32の間に介在領域を有する構造、図13Bの場合は、第一の増感部31及び第一の発光部32の間、並びに第一の増感部31A及び第一の発光部32Aの間のそれぞれに介在領域を有する構造等が挙げられる。
(発光体の用途)
 第五実施形態に係る発光体の用途としては、例えば、太陽電池の増感材料、光センサーの増感材料、有機EL素子の発光領域(増感層と発光層との積層)、及び光触媒の増感材料等に使用できる。また、特定の波長で発光する特殊インク用顔料としても使用できる。
 例えば、発光体の形態としての「粉体」を太陽電池の表面に被覆することで、太陽電池が利用できない波長を有効な波長に変換し、太陽電池の変換効率を向上させることができる。
 発光体の形態としての「粉体」を光センサーの受光部に塗布することで、センシング波長を拡大し感度を向上させたり、あるいは特定波長への選択性を付加することができる。
 発光体の形態としての「粉体」を用いて、有機EL素子の発光領域を成膜することもできる。第五実施形態の発光体を用いて有機EL素子の発光領域を成膜することで、発光開始電圧が低く、かつ高効率で発光する有機EL素子を提供することができる。
 発光体の形態としての「粉体」を用いて、光触媒の表面に被覆することで、例えば可視光から赤外線領域までの波長の光照射下においても触媒作用を起こすことができる。
〔第五実施形態〕
(太陽電池)
 第五実施形態に係る太陽電池は、第五実施形態に係る発光体を搭載している。
 太陽電池としては特に限定されないが、例えば、単結晶シリコン太陽電池、多結晶シリコン太陽電池、薄膜シリコン太陽電池(例えば、アモルファスシリコン及び微結晶シリコン)、多接合太陽電池(例えば、ヘテロ接合太陽電池及びHIT(登録商標)太陽電池)、多元素化合物半導体を用いた太陽電池(例えば、CIS太陽電池及びCIGS太陽電池)、III-V族多接合太陽電池(例えば、GaAs族太陽電池等)、色素増感太陽電池、有機半導体太陽電池、及び量子ドット太陽電池等が挙げられる。
〔第六実施形態〕
(光センサー)
 第六実施形態に係る光センサーは、第五実施形態に係る発光体を搭載している。
 光センサーとしては特に限定されないが、例えば、CCDイメージセンサー、CMOSイメージセンサー、フォトダイオード、フォトトランジスター、及びフォトレジスタ等が挙げられる。
〔実施形態の変形〕
 前述のいずれかの実施形態において、例えば、発光領域又は発光体領域に含まれる発光層の数は、1層に限られず、2層以上の発光層が積層されていてもよい。
 例えば、第一実施形態の発光領域が2層以上の複数の発光層を有する場合、第一の発光層以外の発光層が、蛍光発光型の発光層であっても、三重項励起状態から直接基底状態への電子遷移による発光を利用した燐光発光型の発光層であってもよい。
 また、発光領域に含まれる発光層が複数の発光層を有する場合、これらの発光層が互いに隣接して設けられていてもよい。
 なお、本発明は、上述の実施形態に限定されず、本発明の目的を達成できる範囲での変更、改良等は、本発明に含まれる。
 その他、本発明の実施における具体的な構造、及び形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
 以下、実施例を挙げて本発明をさらに詳細に説明する。本発明はこれら実施例に何ら限定されない。
<化合物>
 実施例に係る有機EL素子の製造に用いた第一の増感材及び第二の増感材の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000374
Figure JPOXMLDOC01-appb-C000375
 比較例に係る有機EL素子の製造に用いた増感材の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000376
 実施例及び比較例に係る有機EL素子の製造に用いた第一の発光性化合物及び第二の発光性化合物の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000377
 実施例及び比較例に係る有機EL素子の製造に用いた第一のホスト材料及び第二のホスト材料の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000378
 実施例及び比較例に係る有機EL素子の製造に用いた、他の化合物の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000379
Figure JPOXMLDOC01-appb-C000380
Figure JPOXMLDOC01-appb-C000381
Figure JPOXMLDOC01-appb-C000382
<有機EL素子の作製1>
〔実施例1〕
 25mm×75mm×1.1mm厚のITO(Indium Tin Oxide)透明電極(陽極)付きガラス基板(ジオマテック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITO透明電極の膜厚は、130nmとした。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして、化合物HT-a及び化合物HA-aを共蒸着し、膜厚10nmの正孔注入層を成膜した。この正孔注入層中の化合物HT-aの割合を97質量%とし、化合物HA-aの割合を3質量%とした。
 正孔注入層の上に化合物HT-aを蒸着し、膜厚80nmの第一の正孔輸送層を成膜した。
 第一の正孔輸送層の上に化合物HT-bを蒸着し、膜厚10nmの第二の正孔輸送層(電子障壁層(EBL)と称する場合もある。)を成膜した。
 第二の正孔輸送層の上に、化合物BH-a(第一のホスト材料)及び化合物TADF-a(第一の増感材)を共蒸着し、膜厚5nmの第一の増感層を成膜した。この第一の増感層中の化合物BH-aの割合を75質量%とし、化合物TADF-aの割合を25質量%とした。
 第一の増感層の上に、化合物BH-b(第二のホスト材料)及び化合物BD-a(第一の発光性化合物)を共蒸着し、膜厚20nmの第一の発光層を成膜した。この第一の発光層中の化合物BH-bの割合を99質量%とし、化合物BD-aの割合を1質量%とした。
 第一の発光層の上に化合物ET-aを蒸着し、膜厚10nmの第一の電子輸送層(正孔障壁層(HBL)と称する場合もある。)を成膜した。
 第一の電子輸送層の上に化合物ET-bを蒸着し、膜厚15nmの第二の電子輸送層(ET)を成膜した。
 第二の電子輸送層の上に化合物LiFを蒸着して膜厚1nmの電子注入層を成膜した。
 電子注入層の上に金属Alを蒸着して膜厚50nmの陰極を成膜した。
 実施例1の素子構成を略式的に示すと、次のとおりである。
ITO(130)/HT-a:HA-a(10,97%:3%)/HT-a(80)/HT-b(10)/BH-a:TADF-a(5,75%:25%)/BH-b:BD-a(20,99%:1%)/ET-a(10)/ET-b(15)/LiF(1)/Al(50)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。
 同じく括弧内において、パーセント表示された数字(97%:3%)は、正孔注入層における化合物HT-a及び化合物HA-aの割合(質量%)を示し、パーセント表示された数字(75%:25%)は、第一の増感層における第一のホスト材料(化合物BH-a)及び第一の増感材(TADF-a)の割合(質量%)を示し、パーセント表示された数字(99%:1%)は、第一の発光層における第二のホスト材料(化合物BH-b)及び第一の発光性化合物(BD-a)の割合(質量%)を示す。以下、同様の表記とする。
〔実施例2〕
 実施例2の有機EL素子は、第一の増感材を表1の通りに変更した以外、実施例1の有機EL素子と同様に作製した。
〔実施例3~4〕
 実施例3~4の有機EL素子は、第一の増感層の膜厚、及び第一の発光層の膜厚を表1の通りに変更した以外、実施例1の有機EL素子と同様に作製した。
〔実施例5~6〕
 実施例5~6の有機EL素子は、第一の増感層中における第一のホスト材料の含有量及び第一の増感材の含有量を表1の通りに変更した以外、実施例1の有機EL素子と同様に作製した。
〔実施例7〕
 実施例7の有機EL素子は、第一の増感層の膜厚、及び第一の発光層の膜厚を表1の通りに変更した以外、実施例6の有機EL素子と同様に作製した。
〔実施例8〕
 実施例8の有機EL素子は、第一の発光性化合物を表1の通りに変更した以外、実施例1の有機EL素子と同様に作製した。
〔実施例9〕
 実施例9の有機EL素子は、第一のホスト材料及び第二のホスト材料を表1の通りに変更した以外、実施例1の有機EL素子と同様に作製した。
〔実施例10~12〕
 実施例10~12の有機EL素子は、電子障壁層の構成、第一の増感層の膜厚、及び第一の発光層の膜厚を表1の通りに変更した以外、実施例1の有機EL素子と同様に作製した。
〔実施例14〕
 実施例14の有機EL素子は、第一の増感材を表1の通りに変更した以外、実施例1の有機EL素子と同様に作製した。
〔比較例1〕
 比較例1の有機EL素子は、電子障壁層の上に、化合物BH-b(第二のホスト材料)及び化合物BD-a(第一の発光性化合物)を共蒸着し、膜厚25nmの第一の発光層を成膜した以外、実施例1の有機EL素子と同様に作製した。
〔比較例2〕
 比較例2の有機EL素子は、第一の増感材を表1の通りに変更した以外、実施例1の有機EL素子と同様に作製した。
<有機EL素子の評価>
 作製した有機EL素子について、以下の評価を行った。評価結果を表1に示す。表1中、名称の欄の括弧内の値は、材料の含有量(単位:質量%)を示す。表2も同様である。
・発光開始電圧VTH
 有機EL素子に印加する電圧を徐々に上げていき、分光放射輝度計CS-2000(コニカミノルタ株式会社製)による測定値で0.01cd/mを超えた際の電流密度と発光開始電圧VTH(単位:V)を計測した。
 実施例1、実施例2及び比較例1の有機EL素子については、測定電圧2.40V及び2.45Vとなるように素子を通電した際の分光放射輝度スペクトルを計測した。得られた分光放射輝度スペクトルを図14A及び図14Bに示す。
・外部量子効率EQE
 電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測した。得られた分光放射輝度スペクトルから、ランバシアン放射を行ったと仮定し外部量子効率EQE(単位:%)を算出した。
・最大ピーク波長λp
 電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測した。得られた分光放射輝度スペクトルから、最大ピーク波長λp(単位:nm)を求めた。
・ETH-EPE
 既述の数式(数Y1)を用いて、発光開始電圧VTHからETH(0.01cd/mの輝度が得られる際に素子に与えているエネルギー)を求めた。
 発光スペクトルのピークのエネルギーEPEは、測定対象の発光層中に含まれる発光性化合物の最低励起一重項エネルギーSの測定値を用いた。
 得られたETH及びEPEの値から「ETH-EPE(単位:eV)」を算出した。
・遅延蛍光比率
 実施例1、2及び比較例1の有機EL素子について、以下の方法で遅延蛍光比率を算出した。
 パルスジェネレータ(アジレント社製8114A)から出力した電圧パルス波形(パルス幅:500マイクロ秒、周波数:20Hz、電圧:2.90Vを印加し、EL発光を光電子増倍管(浜松ホトニクス社製R928)に入力し、パルス電圧波形とEL発光とを同期させてオシロスコープ(テクトロニクス社製2440)に取り込んで過渡EL波形を得た。これを最小二乗法により4.0E-05秒までの値を用いて直線へフィッティングし、遅延蛍光比率を決定した。
 実施例1、2及び比較例1の有機EL素子に対して、室温下、2.90Vの電圧で通電した時の過渡EL波形を前述の図8Aに示した。
 パルス電圧除去時点を原点にとり、電圧除去後、4.0E-05秒までの光強度の平方根の逆数をプロットしたグラフが、前述の図8Bのグラフである。このグラフから、既述の方法で実施例1、2及び比較例1の有機EL素子における遅延蛍光比率をそれぞれ求めた。実施例1の遅延蛍光比率の値は99%超えとなり、実施例2の遅延蛍光比率の値は98.8%となり、どちらもTTF比率の理論値限界37.5%を超えるものであった。比較例1の遅延蛍光比率の値は1.3%であった。
 他の例も同様の方法で遅延蛍光比率を算出した。結果を表1に示す。表1中、素子評価の欄の「-」は測定しなかったことを示す。
Figure JPOXMLDOC01-appb-T000383
 実施例1~12及び実施例14の有機EL素子は、ETH-EPEの値より、アップコンバージョンが発現されたことが確認された。一方、比較例1、2の有機EL素子は、ETH-EPEが前記数式(数6)を満たさなかった。
 また、実施例1~12及び実施例14の有機EL素子は、遅延蛍光比率が高い値を示した。一方、比較例1の有機EL素子は、遅延蛍光比率が低い値にとどまった。比較例1の発光領域は、増感層を含まないため、発光開始電圧VTH付近でのトリプレット濃度が十分でなく、また、比較例1の発光領域は、再結合と発光とを一つの層で生じさせるため、電荷の相互作用によるクエンチが生じたためと考えられる。
 比較例2の有機EL素子は、発光開始電圧VTHが2.90Vとなり、化合物BD-aの最低励起一重項エネルギーSを上回る値となった。これは一部、第一の発光層中の化合物BD-a上において、電荷が再結合を起こしていることを示唆しており、また第一の増感層から第一の発光層への効率的なトリプレットエネルギー移動が起こらず、効率的なアップコンバージョンが生じなかったためと考えられる。
 よって、実施例1~12及び実施例14の有機EL素子によれば、発光開始電圧VTHが低く、かつ高効率で発光した。
 また、実施例1~2と実施例14とを対比すると、第一の増感材としてT77K(G1)の小さい化合物TADF-cを用いた実施例14は、第一の増感材として化合物TADF-a及びTADF-bをそれぞれ用いた実施例1~2に比べて、発光開始電圧VTHがより低くなった。
<有機EL素子の作製2>
〔実施例13〕
 25mm×75mm×1.1mm厚のITO(Indium Tin Oxide)透明電極(陽極)付きガラス基板(ジオマテック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITO透明電極の膜厚は、130nmとした。
・第一発光ユニットの形成
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして、化合物HT-a及び化合物HA-aを共蒸着し、膜厚10nmの正孔注入層を成膜した。この正孔注入層中の化合物HT-aの割合を97質量%とし、化合物HA-aの割合を3質量%とした。
 正孔注入層の上に化合物HT-aを蒸着し、膜厚80nmの第一の正孔輸送層を成膜した。
 第一の正孔輸送層の上に化合物HT-bを蒸着し、膜厚10nmの第二の正孔輸送層(電子障壁層(EBL)と称する場合もある。)を成膜した。
 第二の正孔輸送層の上に、化合物BH-a(第一のホスト材料)及び化合物TADF-a(第一の増感材)を共蒸着し、膜厚1nmの第一の増感層を成膜した。この第一の増感層中の化合物BH-aの割合を90質量%とし、化合物TADF-aの割合を10質量%とした。
 第一の増感層の上に、化合物BH-b(第二のホスト材料)及び化合物BD-a(第一の発光性化合物)を共蒸着し、膜厚24nmの第一の発光層を成膜した。この第一の発光層中の化合物BH-bの割合を99質量%とし、化合物BD-aの割合を1質量%とした。
 第一の発光層の上に化合物ET-aを蒸着し、膜厚10nmの第一の電子輸送層(正孔障壁層(HBL)と称する場合もある。)を成膜した。
 第一の電子輸送層の上に化合物ET-bを蒸着し、膜厚20nmの第二の電子輸送層(ET)を成膜した。
・中間ユニット(第一電荷発生層)の形成
 次に、この第一発光ユニットにおける第二の電子輸送層上に、リチウム(Li)を蒸着し、膜厚1nmの第一N層を形成した。
 次に、この第一N層上に、化合物HT-a及び化合物HA-aを共蒸着し、膜厚10nmの第一P層を成膜した。この第一P層中の化合物HT-aの割合を97質量%とし、化合物HA-aの割合を3質量%とした。
・第二発光ユニットの形成
 次に、この第一P層上に化合物HT-aを蒸着し、膜厚80nmの第一の正孔輸送層を成膜した。
 第一の正孔輸送層の上に化合物HT-bを蒸着し、膜厚10nmの第二の正孔輸送層(電子障壁層(EBL)と称する場合もある。)を成膜した。
 第二の正孔輸送層の上に、化合物BH-a(第四のホスト材料)及び化合物TADF-a(第二の増感材)を共蒸着し、膜厚1nmの第二の増感層を成膜した。この第二の増感層中の化合物BH-aの割合を90質量%とし、化合物TADF-aの割合を10質量%とした。
 第二の増感層の上に、化合物BH-b(第三のホスト材料)及び化合物BD-a(第二の発光性化合物)を共蒸着し、膜厚24nmの第二の発光層を成膜した。この第二の発光層中の化合物BH-bの割合を99質量%とし、化合物BD-aの割合を1質量%とした。
 第二の発光層の上に化合物ET-aを蒸着し、膜厚10nmの第一の電子輸送層(正孔障壁層(HBL)と称する場合もある。)を成膜した。
 第一の電子輸送層の上に化合物ET-bを蒸着し、膜厚20nmの第二の電子輸送層(ET)を成膜した。
 次に、この第二発光ユニットにおける第二の電子輸送層上に化合物LiFを蒸着して膜厚1nmの電子注入層を成膜した。
 電子注入層の上に金属Alを蒸着して膜厚50nmの陰極を成膜した。
 実施例13の有機EL素子の素子構成を略式的に示すと、次のとおりである。
ITO(130)/HT-a:HA-a(10,97%:3%)/HT-a(80)/HT-b(10)/BH-a:TADF-a(1,90%:10%)/BH-b:BD-a(24,99%:1%)/ET-a(10)/ET-b(20)/Li(1)/HT-a:HA-a(10,97%:3%)/HT-a(80)/HT-b(10)/BH-a:TADF-a(1,90%:10%)/BH-b:BD-a(24,99%:1%)/ET-a(10)/ET-b(20)/LiF(1)/Al(50)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。
 同じく括弧内において、パーセント表示された数字(90%:10%)は、第二の増感層における第四のホスト材料(化合物BH-a)及び第二の増感材(TADF-a)の割合(質量%)を示し、パーセント表示された数字(99%:1%)は、第二の発光層における第三のホスト材料(化合物BH-b)及び第二の発光性化合物(BD-a)の割合(質量%)を示す。
<有機EL素子の評価>
 作製した有機EL素子について、実施例1と同様の方法で、発光開始電圧VTH、及び外部量子効率EQEを測定した。
 遅延蛍光比率、「ETH1-EPE1」及び「ETH2-EPE2」について、既述の方法で作製した第一の評価用素子及び第二の評価用素子を用いて、実施例1と同様の方法で算出した。なお、発光スペクトルのピークのエネルギーEPE1及びEPE2は、測定対象の発光層中に含まれる発光性化合物の最低励起一重項エネルギーSの測定値を用いた。結果を表2に示す。なお、表2中、「ETH-EPE」の列の第一の発光ユニットの欄は、「ETH1-EPE1」の値を示し、「ETH-EPE」の列の第二の発光ユニットの欄は、「ETH2-EPE2」を示す。
Figure JPOXMLDOC01-appb-T000384
 実施例13の有機EL素子は、第一の発光ユニットのETH1-EPE1の値、及び第二の発光ユニットのETH2-EPE2の値より、アップコンバージョンが発現されたことが確認された。実施例13の発光開始電圧VTHを1つの発光ユニット当たりに換算すると、2.55Vであった。また、実施例13の有機EL素子は、遅延蛍光比率が100%であった。
 よって、実施例13の有機EL素子によれば、発光開始電圧VTHが低く、かつ高効率で発光した。
<化合物の評価>
 表1、2中に記載した化合物の物性値は、以下の方法で測定した。
(熱活性遅延蛍光性)
・化合物TADF-aの遅延蛍光性
 熱活性遅延蛍光性は図5に示す装置を利用して過渡PLを測定することにより確認した。前記化合物TADF-aをトルエンに溶解し、自己吸収の寄与を取り除くため励起波長において吸光度が0.05以下の希薄溶液を調製した。また酸素による消光を防ぐため、試料溶液を凍結脱気した後にアルゴン雰囲気下で蓋付きのセルに封入することで、アルゴンで飽和された酸素フリーの試料溶液とした。
 上記試料溶液の蛍光スペクトルを分光蛍光光度計FP-8600(日本分光社製)で測定し、また同条件で9,10-ジフェニルアントラセンのエタノール溶液の蛍光スペクトルを測定した。両スペクトルの蛍光面積強度を用いて、Morris et al. J.Phys.Chem.80(1976)969中の(1)式により全蛍光量子収率を算出した。
 前記化合物TADF-aが吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察されるPrompt発光(即時発光)と、当該励起後、即座には観察されず、その後観察されるDelay発光(遅延発光)とが存在する。本実施例における遅延蛍光発光とは、Delay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上を意味する。具体的には、Prompt発光(即時発光)の量をXとし、Delay発光(遅延発光)の量をXとしたときに、X/Xの値が0.05以上であることを意味する。
 Prompt発光とDelay発光の量とその比は、“Nature 492,234-238,2012” (参考文献1)に記載された方法と同様の方法により求めることができる。なお、Prompt発光とDelay発光の量の算出に使用される装置は、前記参考文献1に記載の装置、または図5に記載の装置に限定されない。
 化合物TADF-aについて、Delay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上あることが確認された。
 具体的には、化合物TADF-aについて、X/Xの値が0.05以上であった。
・化合物TADF-b及びTADF-cの遅延蛍光性
 化合物TADF-aに代えて、化合物TADF-b及びTADF-cをそれぞれ用いたこと以外、上記と同様にして化合物TADF-b及びTADF-cの遅延蛍光性をそれぞれ確認した。
 化合物TADF-bについて、X/Xの値は、0.05以上であった。
 化合物TADF-cについて、X/Xの値は、0.05以上であった。
・最低励起一重項エネルギーS
 化合物TADF-a、TADF-b、TADF-c、BD-a及びBD-bの最低励起一重項エネルギーSを、前述の溶液法により測定した。
・77[K]におけるエネルギーギャップ
 化合物BH-a、BH-b、BH-c、TADF-a、TADF-b、TADF-c、BD-a及びBD-bの77[K]におけるエネルギーギャップT77Kを前述の「三重項エネルギーと77[K]におけるエネルギーギャップとの関係」で記載したエネルギーギャップT77Kの測定方法により測定した。
・ΔST
 測定した最低励起一重項エネルギーSと77[K]におけるエネルギーギャップT77Kとに基づいて、ΔSTを算出した。
 化合物TADF-aのΔSTは、-0.13eVであった。
 化合物TADF-bのΔSTは、-0.12eVであった。
 化合物TADF-cのΔSTは、-0.07eVであった。
・化合物の最大ピーク波長λ
 化合物の最大ピーク波長λは、以下の方法により測定した。
 測定対象となる化合物の5μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の発光スペクトル(縦軸:発光強度、横軸:波長とする。)を測定した。本実施例では、発光スペクトルを日立社製の分光光度計(装置名:F-7000)で測定した。なお、発光スペクトル測定装置は、ここで用いた装置に限定されない。発光スペクトルにおいて、発光強度が最大となる発光スペクトルのピーク波長を最大ピーク波長λとした。
 化合物BD-aの最大ピーク波長λは、453nmであった。
 化合物BD-bの最大ピーク波長λは、455nmであった。
・最高被占軌道のエネルギー準位HOMO
 既述の方法で最高被占軌道のエネルギー準位HOMOを測定した。
 化合物BH-aの|HOMO|は、5.92eVであった。
 化合物BH-bの|HOMO|は、6.03eVであった。
 化合物BH-cの|HOMO|は、5.93eVであった。
 化合物TADF-aの|HOMO|は、6.05eVであった。
 化合物TADF-bの|HOMO|は、6.30eVであった。
 化合物TADF-cの|HOMO|は、5.89eVであった。
 化合物BD-aの|HOMO|は、5.35eVであった。
 化合物BD-bの|HOMO|は、5.49eVであった。
・最低空軌道のエネルギー準位LUMO
 既述の方法で最低空軌道のエネルギー準位LUMOを測定した。
 1,1A,10,10A,10B…有機EL素子、1B…有機EL装置、2…基板、3…陽極、4…陰極、5,5A…第一の発光領域、5B,5C,5D…第二の発光領域、6…正孔注入層、7,71…正孔輸送層、8,81…電子輸送層、9,91…電子注入層、11,11A…第一の発光ユニット、12,12A,12B…第二の発光ユニット、20…電荷発生層、21…第一N層、22…第一P層、30,300…発光体、31,31A…第一の増感部、32,32A…第一の発光部、40…電源、41…発電素子、42…蓄電素子、51…第一の増感層、52…第一の発光層、511…第二の増感層、521…第二の発光層。

Claims (32)

  1.  陽極と、
     陰極と、
     前記陽極及び前記陰極の間に配置された発光領域を有し、
     前記発光領域は、第一の増感層及び第一の発光層を含み、
     前記第一の増感層は、第一のホスト材料と、第一の増感材とを含有し、
     前記第一の発光層は、第二のホスト材料と、第一の発光性化合物とを含有し、
     前記第一のホスト材料と前記第二のホスト材料とは、互いに異なり、
     前記第一の増感材と前記第一の発光性化合物とは、互いに異なり、
     前記第一の増感材の最低励起一重項エネルギーS(G1)と、前記第一の増感材の77[K]におけるエネルギーギャップT77K(G1)との差ΔST(G1)は、下記数式(数1)を満たす、
     有機エレクトロルミネッセンス素子。
      ΔST(G1)=S(G1)-T77K(G1)<0.5eV …(数1)
  2.  前記第一の増感材は、重金属元素を含まない、
     請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  前記第一の増感材の77[K]におけるエネルギーギャップT77K(G1)と、前記第一のホスト材料の77[K]におけるエネルギーギャップT77K(H1)と、前記第二のホスト材料の77[K]におけるエネルギーギャップT77K(H2)とが下記数式(数2)の関係を満たす、
     請求項1または請求項2に記載の有機エレクトロルミネッセンス素子。
      T77K(G1)>T77K(H1)>T77K(H2) …(数2)
  4.  前記第一の増感材の77[K]におけるエネルギーギャップT77K(G1)と、前記第一のホスト材料の77[K]におけるエネルギーギャップT77K(H1)とが下記数式(数21)の関係を満たす、
     請求項3に記載の有機エレクトロルミネッセンス素子。
      T77K(G1)-T77K(H1)<0.5eV …(数21)
  5.  前記第一のホスト材料の77[K]におけるエネルギーギャップT77K(H1)と、前記第二のホスト材料の77[K]におけるエネルギーギャップT77K(H2)とが下記数式(数22)の関係を満たす、
     請求項3または請求項4に記載の有機エレクトロルミネッセンス素子。
      T77K(H1)-T77K(H2)<0.3eV …(数22)
  6.  前記第一の増感材の最低励起一重項エネルギーS(G1)と、前記第一の発光性化合物の最低励起一重項エネルギーS(BD1)とが下記数式(数3)の関係を満たす、
     請求項1から請求項5のいずれか一項に記載の有機エレクトロルミネッセンス素子。
      S(BD1)>S(G1) …(数3)
  7.  前記第一の増感層と前記第一の発光層とが、直接、接している、
     請求項1から請求項6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  8.  前記第一の増感層は、前記陽極と前記陰極との間に配置され、
     前記第一の発光層は、前記第一の増感層と前記陰極との間に配置されている、
     請求項1から請求項7のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  9.  前記第一の増感材の最低空軌道のエネルギー準位LUMO(G1)の絶対値と、前記第一のホスト材料の最低空軌道のエネルギー準位LUMO(H1)の絶対値とが、下記数式(数4)の関係を満たす、
     請求項8に記載の有機エレクトロルミネッセンス素子。
      |LUMO(G1)|>|LUMO(H1)| …(数4)
  10.  前記第二のホスト材料の最低空軌道のエネルギー準位LUMO(H2)の絶対値と、前記第一の発光性化合物の最低空軌道のエネルギー準位LUMO(BD1)の絶対値とが、下記数式(数41)の関係を満たす、
     請求項8または請求項9に記載の有機エレクトロルミネッセンス素子。
      |LUMO(H2)|>|LUMO(BD1)| …(数41)
  11.  前記第一の増感層は、前記陽極と前記陰極との間に配置され、
     前記第一の発光層は、前記第一の増感層と前記陽極との間に配置されている、
     請求項1から請求項7のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  12.  前記第一の増感材の最高被占軌道のエネルギー準位HOMO(G1)の絶対値と、前記第一のホスト材料の最高被占軌道のエネルギー準位HOMO(H1)の絶対値とが、下記数式(数5)の関係を満たす、
     請求項11に記載の有機エレクトロルミネッセンス素子。
      |HOMO(G1)|<|HOMO(H1)| …(数5)
  13.  前記第二のホスト材料の最高被占軌道のエネルギー準位HOMO(H2)の絶対値と、前記第一の発光性化合物の最高被占軌道のエネルギー準位HOMO(BD1)の絶対値とが、下記数式(数51)の関係を満たす、
     請求項11または請求項12に記載の有機エレクトロルミネッセンス素子。
      |HOMO(H2)|<|HOMO(BD1)| …(数51)
  14.  前記有機エレクトロルミネッセンス素子において、発光スペクトルのピークのエネルギーEPE(eV)と、0.01cd/mの輝度が得られる際に素子に与えているエネルギーETH(eV)との差が、下記数式(数6)の関係を満たす、
     請求項1から請求項13のいずれか一項に記載の有機エレクトロルミネッセンス素子。
     ETH-EPE≦0.05eV …(数6)
  15.  前記発光領域を発光させたときに、遅延蛍光比率が37.5%より大きい、
     請求項1から請求項14のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  16.  前記発光領域を第一の発光領域として含む第一の発光ユニットと、
     前記第一の発光ユニットと前記陰極との間に配置された第一の電荷発生層と、
     前記第一の電荷発生層と前記陰極との間に配置された第二の発光領域を含む第二の発光ユニットと、を有し、
     前記第一の発光領域は、前記第一の増感層と、前記第一の発光層とを含み、
     前記第二の発光領域は、少なくとも、第二の発光層を含み、
     前記陽極、前記第一の発光領域、前記第一の電荷発生層、前記第二の発光領域及び前記陰極が、この順に配置されており、
     前記第二の発光層は、第三のホスト材料と、第二の発光性化合物とを含有する、
     請求項1から請求項7のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  17.  前記発光領域を第一の発光領域として含む第一の発光ユニットと、
     前記第一の発光ユニットと前記陽極との間に配置された第一の電荷発生層と、
     前記第一の電荷発生層と前記陽極との間に配置された第二の発光領域を含む第二の発光ユニットと、を有し、
     前記第一の発光領域は、前記第一の増感層と、前記第一の発光層とを含み、
     前記第二の発光領域は、少なくとも、第二の発光層を含み、
     前記陽極、前記第二の発光領域、前記第一の電荷発生層、前記第一の発光領域及び前記陰極が、この順に配置されており、
     前記第二の発光層は、第三のホスト材料と、第二の発光性化合物とを含有する、
     請求項1から請求項7のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  18.  前記第二の発光領域は、第二の増感層と、前記第二の発光層とを含み、
     前記第一の発光領域は、前記陽極の側から、前記第一の増感層と、前記第一の発光層とが、この順に配置されており、
     前記第二の発光領域は、前記陽極の側から、前記第二の増感層と、前記第二の発光層とが、この順に配置されており、
     前記第二の増感層は、第四のホスト材料と、第二の増感材とを含有し、
     前記第三のホスト材料と前記第四のホスト材料とは、互いに異なり、
     前記第二の増感材と前記第二の発光性化合物とは、互いに異なり、
     前記第二の増感材の最低励起一重項エネルギーS(G2)と、前記第二の増感材の77[K]におけるエネルギーギャップT77K(G2)との差ΔST(G2)は、下記数式(数1A)を満たす、
     請求項16または請求項17に記載の有機エレクトロルミネッセンス素子。
      ΔST(G2)=S(G2)-T77K(G2)<0.5eV …(数1A)
  19.  前記第二の発光領域は、第二の増感層と、前記第二の発光層とを含み、
     前記第一の発光領域は、前記陽極の側から、前記第一の発光層と、前記第一の増感層とが、この順に配置されており、
     前記第二の発光領域は、前記陽極の側から、前記第二の発光層と、前記第二の増感層とが、この順に配置されており、
     前記第二の増感層は、第四のホスト材料と、第二の増感材とを含有し、
     前記第三のホスト材料と前記第四のホスト材料とは、互いに異なり、
     前記第二の増感材と前記第二の発光性化合物とは、互いに異なり、
     前記第二の増感材の最低励起一重項エネルギーS(G2)と、前記第二の増感材の77[K]におけるエネルギーギャップT77K(G2)との差ΔST(G2)は、下記数式(数1A)を満たす、
     請求項16または請求項17に記載の有機エレクトロルミネッセンス素子。
      ΔST(G2)=S(G2)-T77K(G2)<0.5eV …(数1A)
  20.  前記第二の発光領域と同じ構成からなる発光領域を、前記陽極及び前記陰極で挟んだ第二の評価用素子において、前記第二の評価用素子を発光させたときに、発光スペクトルのピークのエネルギーEPE2(eV)と、0.01cd/mの輝度が得られる際に前記第二の評価用素子に与えているエネルギーETH2(eV)との差が、下記数式(数62)の関係を満たす、
     請求項18または請求項19に記載の有機エレクトロルミネッセンス素子。
     ETH2-EPE2≦0.05eV …(数62)
     
  21.  前記第二の発光領域と同じ構成からなる発光領域を、前記陽極及び前記陰極で挟んだ第二の評価用素子において、前記第二の評価用素子を発光させたときに、遅延蛍光比率が37.5%より大きい、
     請求項18から請求項20のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  22.  前記第一の発光領域と同じ構成からなる発光領域を、前記陽極及び前記陰極で挟んだ第一の評価用素子において、前記第一の評価用素子を発光させたときに、発光スペクトルのピークのエネルギーEPE1(eV)と、0.01cd/mの輝度が得られる際に前記第一の評価用素子に与えているエネルギーETH1(eV)との差が、下記数式(数61)の関係を満たす、
     請求項18から請求項21のいずれか一項に記載の有機エレクトロルミネッセンス素子。
     ETH1-EPE1≦0.05eV …(数61)
  23.  前記第一の発光領域と同じ構成からなる発光領域を、前記陽極及び前記陰極で挟んだ第一の評価用素子において、前記第一の評価用素子を発光させたときに、遅延蛍光比率が37.5%より大きい、
     請求項18から請求項22のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  24.  前記第二の増感材は、遅延蛍光性材料である、
     請求項18から請求項23のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  25.  前記第一の増感材は、遅延蛍光性材料である、
     請求項1から請求項24のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  26.  請求項1から請求項25のいずれか一項に記載の有機エレクトロルミネッセンス素子と、電源とを備え、
     前記電源は、外部刺激によって電位差又は電流を発生する発電素子を備える、
     有機エレクトロルミネッセンス装置。
  27.  請求項1から請求項25のいずれか一項に記載の有機エレクトロルミネッセンス素子または請求項26に記載の有機エレクトロルミネッセンス装置を搭載した電子機器。
  28.  第一の増感部及び第一の発光部を含む発光体であって、
     前記第一の増感部は、第一のホスト材料と、第一の増感材とを含有し、
     前記第一の発光部は、第二のホスト材料と、第一の発光性化合物とを含有し、
     前記第一のホスト材料と前記第二のホスト材料とは、互いに異なり、
     前記第一の増感材と前記第一の発光性化合物とは、互いに異なり、
     前記第一の増感材の最低励起一重項エネルギーS(G1)と、前記第一の増感材の77[K]におけるエネルギーギャップT77K(G1)との差ΔST(G1)は、下記数式(数1)を満たし、
     前記第一の増感材の77[K]におけるエネルギーギャップT77K(G1)と、前記第一のホスト材料の77[K]におけるエネルギーギャップT77K(H1)と、前記第二のホスト材料の77[K]におけるエネルギーギャップT77K(H2)とが下記数式(数2)の関係を満たし、
     前記第一の増感材の最低励起一重項エネルギーS(G1)と、前記第一の発光性化合物の最低励起一重項エネルギーS(BD1)とが下記数式(数3)の関係を満たす、
     発光体。
      ΔST(G1)=S(G1)-T77K(G1)<0.5eV …(数1)
      T77K(G1)>T77K(H1)>T77K(H2) …(数2)
      S(BD1)>S(G1) …(数3)
  29.  前記第一の増感部は、第一の増感層からなり、前記第一の発光部は、第一の発光層からなる、
     請求項28に記載の発光体。
  30.  前記第一の増感層及び前記第一の発光層を1つの繰り返し単位とし、2以上の繰り返し単位が積層された積層構造を有する、
     請求項29に記載の発光体。
  31.  請求項28から請求項30のいずれか一項に記載の発光体を搭載した太陽電池。
  32.  請求項28から請求項30のいずれか一項に記載の発光体を搭載した光センサー。
     
PCT/JP2023/023198 2022-06-23 2023-06-22 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス装置、電子機器、発光体、太陽電池及び光センサー WO2023249092A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022100872 2022-06-23
JP2022-100872 2022-06-23

Publications (1)

Publication Number Publication Date
WO2023249092A1 true WO2023249092A1 (ja) 2023-12-28

Family

ID=89380089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023198 WO2023249092A1 (ja) 2022-06-23 2023-06-22 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス装置、電子機器、発光体、太陽電池及び光センサー

Country Status (1)

Country Link
WO (1) WO2023249092A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037703A (ja) * 2010-08-06 2012-02-23 Idemitsu Kosan Co Ltd ディスプレイ装置
JP2013015794A (ja) * 2011-07-06 2013-01-24 Mitsubishi Chemicals Corp 有機elを組み合わせた横断幕
JP2014075249A (ja) * 2012-10-03 2014-04-24 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2020090485A (ja) * 2018-12-05 2020-06-11 エルジー ディスプレイ カンパニー リミテッド 有機化合物と、それを含む有機発光ダイオードおよび有機発光装置
JP2020094050A (ja) * 2018-12-14 2020-06-18 エルジー ディスプレイ カンパニー リミテッド 有機化合物と、それを含む有機発光ダイオードおよび有機発光表示装置
US20210184135A1 (en) * 2019-12-12 2021-06-17 Samsung Display Co., Ltd. Organic light-emitting device and apparatus including the same
KR20220034512A (ko) * 2020-09-11 2022-03-18 엘지디스플레이 주식회사 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치
JP2022077011A (ja) * 2020-11-10 2022-05-20 エルジー ディスプレイ カンパニー リミテッド 有機発光ダイオードおよび有機発光装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037703A (ja) * 2010-08-06 2012-02-23 Idemitsu Kosan Co Ltd ディスプレイ装置
JP2013015794A (ja) * 2011-07-06 2013-01-24 Mitsubishi Chemicals Corp 有機elを組み合わせた横断幕
JP2014075249A (ja) * 2012-10-03 2014-04-24 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2020090485A (ja) * 2018-12-05 2020-06-11 エルジー ディスプレイ カンパニー リミテッド 有機化合物と、それを含む有機発光ダイオードおよび有機発光装置
JP2020094050A (ja) * 2018-12-14 2020-06-18 エルジー ディスプレイ カンパニー リミテッド 有機化合物と、それを含む有機発光ダイオードおよび有機発光表示装置
US20210184135A1 (en) * 2019-12-12 2021-06-17 Samsung Display Co., Ltd. Organic light-emitting device and apparatus including the same
KR20220034512A (ko) * 2020-09-11 2022-03-18 엘지디스플레이 주식회사 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치
JP2022077011A (ja) * 2020-11-10 2022-05-20 エルジー ディスプレイ カンパニー リミテッド 有機発光ダイオードおよび有機発光装置

Similar Documents

Publication Publication Date Title
CN106848074B (zh) 有机电致发光元件及电子设备
KR20220061138A (ko) 유기 일렉트로루미네센스 소자 및 전자 기기
WO2022196749A1 (ja) 有機エレクトロルミネッセンス素子、化合物、及び電子機器
JP7393345B2 (ja) 有機エレクトロルミネッセンス素子、化合物、有機エレクトロルミネッセンス素子用材料、及び電子機器
WO2021162057A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP7374187B2 (ja) 有機エレクトロルミネッセンス素子、化合物及び電子機器
JP2021172603A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022196634A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021215446A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
KR20240021855A (ko) 유기 일렉트로루미네센스 소자, 유기 일렉트로루미네센스 표시 장치 및 전자 기기
KR20230111222A (ko) 유기 일렉트로루미네센스 소자, 유기 일렉트로루미네센스 발광 장치 및 전자 기기
WO2023249092A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス装置、電子機器、発光体、太陽電池及び光センサー
WO2023238769A1 (ja) 有機エレクトロルミネッセンス素子、化合物、及び電子機器
WO2023199999A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2023238896A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2023171688A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022158578A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2023243563A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2024053709A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2023199998A1 (ja) 化合物、有機エレクトロルミネッセンス素子及び電子機器
WO2022075270A1 (ja) 有機エレクトロルミネッセンス素子、化合物、有機エレクトロルミネッセンス素子用材料、及び電子機器
WO2022230842A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
JP2023137921A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JP2023177548A (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP2023128955A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827274

Country of ref document: EP

Kind code of ref document: A1