WO2023248669A1 - 酸性ガス吸収剤の製造方法及び酸性ガス回収方法 - Google Patents

酸性ガス吸収剤の製造方法及び酸性ガス回収方法 Download PDF

Info

Publication number
WO2023248669A1
WO2023248669A1 PCT/JP2023/018910 JP2023018910W WO2023248669A1 WO 2023248669 A1 WO2023248669 A1 WO 2023248669A1 JP 2023018910 W JP2023018910 W JP 2023018910W WO 2023248669 A1 WO2023248669 A1 WO 2023248669A1
Authority
WO
WIPO (PCT)
Prior art keywords
acidic gas
general formula
compound represented
protic solvent
acidic
Prior art date
Application number
PCT/JP2023/018910
Other languages
English (en)
French (fr)
Inventor
拓馬 竹田
章泰 満保
大輔 児玉
正和 佐々木
Original Assignee
三洋化成工業株式会社
学校法人日本大学
東洋エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社, 学校法人日本大学, 東洋エンジニアリング株式会社 filed Critical 三洋化成工業株式会社
Publication of WO2023248669A1 publication Critical patent/WO2023248669A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide

Definitions

  • the present invention relates to a method for producing an acidic gas absorbent and a method for recovering acidic gas.
  • Carbon dioxide is said to be the greenhouse gas that has the greatest effect on global warming, and research is actively being conducted on technologies to capture carbon dioxide.
  • Patent Document 1 discloses that carbon dioxide is separated by heating a carbon dioxide recovery composition that has absorbed carbon dioxide, and reused as a new carbon dioxide recovery composition.
  • the absorbed carbon dioxide is separated by heating to a temperature exceeding 100°C, and the residue after carbon dioxide is removed is again dioxidized. It has been used as a composition for carbon recovery.
  • heating at a temperature exceeding 100° C. may reduce the carbon dioxide absorption ability of the ionic liquid.
  • the energy required for heating increases, it is desired to lower the heating temperature as much as possible.
  • the heating temperature is lowered, carbon dioxide that cannot be completely separated remains in the carbon dioxide recovery composition, resulting in a problem that the carbon dioxide absorption capacity of the carbon dioxide recovery composition decreases.
  • the present invention has been made in view of the above-mentioned problems, and is directed to the production of an acidic gas absorbent, which can produce an acidic gas absorbent by regenerating the acidic gas absorbent without requiring high-temperature heating.
  • the purpose is to provide a method.
  • the present invention is a method for producing an acidic gas absorbent containing a compound represented by general formula (1), which comprises a mixed composition of an acidic gas and a compound represented by general formula (1), and water. , and at least one protic solvent selected from the group consisting of alcohols having 1 to 3 carbon atoms which may have a substituent.
  • An acidic gas recovery method including an acidic gas recovery step of mixing, separating the acidic gas from the mixed composition, and recovering the separated acidic gas, and the acidic gas containing a compound represented by general formula (1).
  • an acidic gas absorption step of obtaining a mixed composition of an acidic gas and a compound represented by general formula (1) by absorption into a gas absorbent; the mixed composition obtained in the acidic gas absorption step; water; and at least one protic solvent selected from the group consisting of alcohols having 1 to 3 carbon atoms which may have a substituent, and separating the acidic gas from the mixed composition.
  • an acidic gas recovery step for recovering gas; and a protic solvent for heating the residual solution remaining after separating the acidic gas in the acidic gas recovery step to distill off and recover the protic solvent in the residual solution.
  • the present invention relates to an acid gas recovery method including a recovery step and a gas absorbent regeneration step of distilling off the protic solvent recovered in the protic solvent recovery step and recovering the remaining residue as a regeneration gas absorbent.
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • X ⁇ is a saturated aliphatic monocarboxylic acid having 2 to 6 carbon atoms. Represents an anion.
  • FIG. 1 is an apparatus diagram schematically showing an example of an apparatus used in a method for producing an acidic gas absorbent and a method for recovering an acidic gas.
  • the method for producing an acidic gas absorbent of the present invention is a method for producing an acidic gas absorbent containing a compound represented by general formula (1), in which an acidic gas and a compound represented by general formula (1) are combined.
  • the method includes a step of mixing the mixed composition with at least one protic solvent selected from the group consisting of water and an alcohol having 1 to 3 carbon atoms which may have a substituent.
  • the compound represented by the general formula (1) is a salt molten at room temperature and consists of an imidazolium cation and an anion of a saturated aliphatic monocarboxylic acid having 2 to 6 carbon atoms.
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • X ⁇ is a saturated aliphatic monocarboxylic acid having 2 to 6 carbon atoms. Represents an anion.
  • the above imidazolium cations include 1-methylimidazolium cation, 1-ethylimidazolium cation, 1-propylimidazolium cation, 1-butylimidazolium cation, 1,3-dimethyl-imidazolium cation, 1-ethyl-3 - At least one member selected from the group consisting of methylimidazolium cation, 1-propyl-3-methylimidazolium cation, 1-butyl-3-methylimidazolium cation, and 1-hexyl-3-methylimidazolium cation cations, etc.
  • at least one selected from the group consisting of 1-ethyl-3-methylimidazolium cation and 1-butyl-3-methylimidazolium cation is preferable.
  • saturated aliphatic monocarboxylic acid having 2 to 6 carbon atoms serving as an anion source examples include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, pivalic acid, hydroangelic acid, isovaleric acid, and the like.
  • the number of carbon atoms includes the number of carbon atoms constituting a carboxyl group.
  • carboxylic acids acetic acid and propionic acid are preferred, and acetic acid is more preferred, from the viewpoint of acid gas absorption amount.
  • anion acetate and propionate are preferred, and acetate is more preferred.
  • the compound represented by the general formula (1) is a salt of a 1-ethyl-3-methylimidazolium cation and an anion of a saturated aliphatic monocarboxylic acid having 2 to 6 carbon atoms, and It is preferably a salt of a 1-butyl-3-methylimidazolium cation and an anion of a saturated aliphatic monocarboxylic acid having 2 to 6 carbon atoms. Further, it is more preferable that the compound represented by the general formula (1) is 1-ethyl-3-methylimidazolium acetate.
  • the compound represented by general formula (1) can be produced by a known method, and optimal conditions may be adopted depending on the raw material. For example, a method in which a saturated aliphatic monocarboxylic acid having 2 to 6 carbon atoms serving as an anion source is allowed to act on a cationic methyl carbonate salt produced by a known method described in JP-A No. 2001-316372, etc. can be mentioned.
  • a mixed composition of an acidic gas and a compound represented by general formula (1) can be obtained by mixing an acidic gas and a compound represented by general formula (1).
  • an acidic gas and a compound represented by the general formula (1) are mixed, the imidazolium cation that constitutes the compound represented by the general formula (1) and the acidic gas chemically bond, resulting in a mixture that stably contains the acidic gas.
  • a composition is obtained.
  • a mixed composition of an acidic gas and a compound represented by the general formula (1) is a mixture of an acidic gas and a compound represented by the general formula (1) obtained by absorbing an acidic gas contained in a mixed gas such as the atmosphere. It may be a mixed composition with a compound represented by general formula (1).
  • a mixed composition of the acidic gas obtained by absorbing acidic gas into the compound represented by the general formula (1) and the compound represented by the general formula (1) is contained in exhaust gas from factories, power plants, etc. It is possible to use an acidic gas absorbent that has already absorbed acidic gas and contains the compound represented by the general formula (1), which was used for the separation and recovery of acidic gas that is produced in the atmosphere, and for the separation and recovery of carbon dioxide, which is an acidic gas, from the atmosphere. can.
  • the weight percentage of the compound represented by general formula (1) in the mixed composition of acidic gas and the compound represented by general formula (1) is the sum of the acidic gas and the compound represented by general formula (1). Preferably, it is 80% by weight or more. When the weight proportion of the compound represented by general formula (1) is 80% by weight or more, the produced acidic gas absorbent will have sufficient acidic gas absorption ability.
  • the protic solvent is at least one compound selected from the group consisting of water and alcohols having 1 to 3 carbon atoms which may have a substituent.
  • the unsubstituted alcohol having 1 to 3 carbon atoms include methanol, ethanol, n-propanol, and isopropanol.
  • substituents that alcohol may have include halogen (fluorine, chlorine, bromine, iodine), carboxyl group, and the like.
  • Examples of the alcohol having 1 to 3 carbon atoms and having a substituent include trifluoroethanol, difluoroethanol, and monofluoroethanol.
  • the protic solvent preferably has a low boiling point, and preferably has a boiling point of 100°C or less.
  • the boiling point of the protic solvent is 100° C. or less, the protic solvent can be distilled off by heating at a low temperature, and energy consumption can be reduced. Furthermore, since heating at high temperatures is not required, decomposition and deterioration of the compound represented by general formula (1) can be prevented.
  • the boiling point of the protic solvent is preferably 80°C or lower, and preferably 70°C or lower.
  • the protic solvent is preferably methanol. Since methanol has a low boiling point, it can be easily distilled off by heating.
  • the method for producing an acidic gas absorbent of the present invention includes a step of mixing a mixed composition of an acidic gas and a compound represented by general formula (1) with a protic solvent.
  • a mixed composition of an acidic gas and a compound represented by general formula (1) is mixed with a protic solvent, the acidic gas contained in the mixed composition is released.
  • a mixed solution hereinafter also referred to as mixed solution
  • a compound represented by general formula (1) a compound represented by general formula (1), and residual acidic gas is reduced.
  • the obtained mixed solution containing the protic solvent, the compound represented by the general formula (1), and the remaining acidic gas can be used as a new acidic gas absorbent. That is, a new acidic gas absorbent can be obtained by a step of mixing a mixed composition of an acidic gas and a compound represented by the general formula (1) with a protic solvent.
  • the step of mixing the mixed composition of the acidic gas and the compound represented by the general formula (1) with the protic solvent is carried out using a known mixing device (a reaction tank with a stirrer, an in-line mixer, a countercurrent contact device, etc.). ) can be used.
  • the temperature in the step of mixing the mixed composition and the protic solvent is preferably 40 to 60° C. from the viewpoint of increasing the separability of acidic gas and reducing the residual amount.
  • the time for mixing the mixed composition and protic solvent can be adjusted depending on the volumes of the mixed composition and protic solvent and the mixing device, but from the viewpoint of separability of acidic gas, it is 5 to 20 minutes. It is preferable that there be.
  • the protic solvent and a compound represented by general formula (1) contained in the mixed composition are mixed.
  • the weight ratio with the compound is preferably 5:100 to 300:100. When the weight ratio is within this range, the effect of releasing acidic gas by mixing the protic solvent is suitably exhibited. If the proportion of the protic solvent is too high, the proportion of the protic solvent in the obtained mixed solution will be too large, and when the obtained mixed solution is used as an acidic gas absorbent, the acidic gas absorption capacity will not be sufficient. Sometimes things don't work out.
  • the new acidic gas absorbent which is a mixed solution obtained by mixing a mixed composition of an acidic gas and a compound represented by general formula (1), and a protic solvent, has a compound represented by general formula (1).
  • the represented compound and a protic solvent are included. Further, a part of the acidic gas may not be released and may remain in the new acidic gas absorbent.
  • other components may be added at the time of mixing the mixed composition of the acidic gas and the compound represented by the general formula (1) and the protic solvent.
  • examples of other components include aprotic organic solvents (esters such as ⁇ -butyrolactone, nitriles such as acetonitrile, and ethers such as diglyme and triglyme).
  • the method for producing an acidic gas absorbent of the present invention is to use a protic solvent from a mixed solution obtained in a step of mixing a mixed composition of an acidic gas and a compound represented by general formula (1) with a protic solvent. It is preferable to include a heating step for distilling off at least a portion of. The heating step can be performed using known distillation equipment (distillation column, reboiler, etc.).
  • the heating in the heating step is preferably performed at a temperature equal to or higher than the boiling point of the protic solvent.
  • the heating temperature is preferably as low as possible, preferably 100°C or less. If the heating temperature is low, energy consumption can be reduced. Furthermore, by not heating at high temperatures, decomposition and deterioration of the compound represented by general formula (1) can be prevented.
  • the pressure in the distillation equipment containing the mixed solution obtained in the step of mixing the mixed composition and the protic solvent may be reduced as necessary.
  • the time required for the heating step can be adjusted depending on the volume of the mixed solution to be heated and the type of distillation equipment used, but from the viewpoint of separability of acidic gas, it is preferably 5 to 20 minutes.
  • the proportion of the compound represented by general formula (1) in the resulting acidic gas absorbent increases, and the acidic gas absorption capacity increases. It is possible to obtain an acidic gas absorbent with a high Moreover, in the heating step, the acidic gas remaining in the mixed solution can be further released. Also from this point of view, the gas absorption capacity of the acidic gas absorbent newly obtained by the heating process can be increased.
  • a part of the protic solvent may remain in the newly obtained acidic gas absorbent.
  • the remaining protic solvent has the effect of improving the heat resistance of the compound represented by general formula (1).
  • the content of acidic gas is 3.0% based on the compound represented by general formula (1). It is preferably at most 0.5% by weight, more preferably at most 0.5% by weight.
  • the content of the protic solvent is determined by the number of moles of the protic solvent relative to the number of moles of the compound represented by general formula (1).
  • the amount is preferably such that the ratio [number of moles of protic compound/number of moles of compound represented by general formula (1)] is 0.2 to 1.0.
  • the proportion of the compound represented by general formula (1) contained in the acidic gas absorbent obtained by the production method of the present invention is preferably 85 to 95% by weight based on the weight of the acidic gas absorbent.
  • the acidic gas recovery method of the present invention comprises a mixed composition of an acidic gas and a compound represented by general formula (1), water, and an alcohol having 1 to 3 carbon atoms which may have a substituent.
  • the method includes an acid gas recovery step of mixing at least one protic solvent selected from the group, separating acid gas from the mixed composition, and recovering the separated acid gas.
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • X ⁇ is a saturated aliphatic monocarboxylic acid having 2 to 6 carbon atoms. Represents an anion.
  • the acidic gas, the compound represented by general formula (1), and the protic solvent in the acidic gas recovery method of the present invention are the same as those in the acidic gas absorbent manufacturing method described above.
  • a heating step is performed to heat the mixed solution obtained in the step of mixing the mixed composition of the acidic gas and the compound represented by the general formula (1) with the protic solvent, and the acidic gas is further released. You can.
  • the heating step in the acid gas recovery method of the present invention can also be performed in the same manner as the heating step in the acid gas absorbent manufacturing method described above.
  • Another aspect of the acid gas recovery method of the present invention includes an acid gas absorption step of obtaining a mixed composition by absorbing acid gas into a gas absorbent containing a compound represented by general formula (1); Mixing the mixed composition obtained in the gas absorption step with at least one protic solvent selected from the group consisting of water and an alcohol having 1 to 3 carbon atoms that may have a substituent, An acidic gas recovery step of separating acidic gas from the mixed composition and recovering the separated acidic gas, and heating the residual solution remaining after separating the acidic gas in the acidic gas recovery step to recover the residual solution.
  • a protic solvent recovery step in which the protic solvent is distilled off and recovered; and a gas in which the protic solvent recovered in the protic solvent recovery step is distilled off and the remaining residue is recovered as a regeneration gas absorbent. and an absorbent regeneration step.
  • at least a part of the gas absorbent used in the acidic gas absorption step is the recycled gas absorbent recovered in the gas absorbent regeneration step, and in the acidic gas recovery step It is preferable that at least a part of the protic solvent used is the protic solvent recovered in the protic solvent recovery step.
  • FIG. 1 is an apparatus diagram schematically showing an example of an apparatus used in a method for producing an acidic gas absorbent and a method for recovering an acidic gas.
  • an absorption tower 1, an acid gas recovery tower 2, and a regeneration tower 3 are connected via piping. This device can absorb acid gas contained in exhaust gas discharged from factories and the like.
  • the absorption tower 1 is filled with a composition containing a compound represented by the general formula (1) as an acidic gas absorbent. Before the exhaust gas is first introduced into the absorption tower 1, the composition containing the compound represented by the general formula (1) does not contain acidic gas.
  • Exhaust gas containing acidic gas is introduced into the absorption tower 1 .
  • the composition containing the compound represented by general formula (1) is mixed with exhaust gas, the acidic gas in the exhaust gas is absorbed, and a mixed composition (mixed mixture) of the acidic gas and the compound represented by general formula (1) is mixed. Composition 10) is obtained. Further, the exhaust gas from which the acidic gas has been removed is discharged from the absorption tower 1 as a treated exhaust gas.
  • the mixed composition 10 is sent to the acid gas recovery tower 2 after absorbing a predetermined amount of acid gas.
  • a protic solvent 40 is added in the acid gas recovery tower 2, a protic solvent 40 is added.
  • the protic solvent 40 may be an unused protic solvent, or may be a protic solvent recovered in a regeneration tower, which will be described later.
  • the acidic gas contained in the mixed composition 10 is released, and the acidic gas absorbent 20 is regenerated from the mixed composition 10. Since the acidic gas released is the acidic gas originally contained in the exhaust gas, by recovering this acidic gas, the acidic gas contained in the exhaust gas can be recovered. Note that the acidic gas absorbent 20 obtained through this step has a lower acidic gas content than the mixed composition 10, and therefore can also be used as the acidic gas absorbent 20 in the absorption tower 1.
  • the acidic gas absorbent 20 is sent to the regeneration tower 3. In the regeneration tower 3, heating is performed above the boiling point of the protic solvent 40, and the protic solvent 40 is distilled off. The recovered protic solvent 40 is sent to the acid gas recovery tower 2 and reused. Further, since acidic gas is further released by heating, this released acidic gas is also collected. The protic solvent 40 is distilled off from the acidic gas absorbent 20 by heating, and the acidic gas absorbent 30, which is an acidic gas absorbent with a further reduced content of acidic gas, is obtained.
  • the acidic gas absorbent 30 is sent to the absorption tower 1.
  • the acidic gas absorbent 30 contains a compound represented by the general formula (1), and may further contain a small amount of a protic solvent and an acidic gas.
  • a mixed composition mixed composition 10
  • the acidic gas in the exhaust gas is absorbed, resulting in a mixed composition (mixed composition 10) of the acidic gas and the compound represented by the general formula (1).
  • the acidic gas in the exhaust gas can be recovered by repeatedly using the compound represented by the general formula (1) and the protic solvent. Further, since a large amount of acidic gas can be released by mixing the mixed composition 10 and the protic solvent 40, the energy required for heating the entire process does not increase so much.
  • the present disclosure (1) is a method for producing an acidic gas absorbent containing a compound represented by general formula (1), which comprises: a mixed composition of an acidic gas and a compound represented by general formula (1); , and at least one protic solvent selected from the group consisting of alcohols having 1 to 3 carbon atoms which may have a substituent.
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • X ⁇ is a saturated aliphatic monocarboxylic acid having 2 to 6 carbon atoms. Represents an anion.
  • the present disclosure (2) provides that the compound represented by the general formula (1) is a salt of a 1-ethyl-3-methylimidazolium cation and an anion of a saturated aliphatic monocarboxylic acid having 2 to 6 carbon atoms, and/or Or, the method for producing an acidic gas absorbent according to the present disclosure (1), which is a salt of a 1-butyl-3-methylimidazolium cation and an anion of a saturated aliphatic monocarboxylic acid having 2 to 6 carbon atoms.
  • the present disclosure (3) is a method for producing an acidic gas absorbent according to the present disclosure (1) or (2), wherein the protic solvent is methanol.
  • the present disclosure (4) is a method for producing an acidic gas absorbent according to any one of the present disclosure (1) to (3), wherein the acidic gas is carbon dioxide.
  • the present disclosure (5) provides that the weight ratio of the compound represented by the general formula (1) in the mixed composition of the acidic gas and the compound represented by the general formula (1) is higher than that of the acid gas and the compound represented by the general formula (1).
  • the present disclosure (6) is the present disclosure (1), wherein the weight ratio of the protic solvent to the compound represented by the general formula (1) contained in the mixed composition is 5:100 to 300:100.
  • the present disclosure (7) provides at least one of the protic solvents from the mixed solution obtained in the step of mixing the acidic gas and the compound represented by the general formula (1) with the protic solvent.
  • the present disclosure (8) is the method for producing an acidic gas absorbent according to the present disclosure (7), wherein the heating temperature in the heating step is 100° C. or less.
  • the present disclosure (9) is selected from the group consisting of a mixed composition of an acidic gas and a compound represented by general formula (1), water, and an alcohol having 1 to 3 carbon atoms that may have a substituent.
  • the acid gas recovery method includes an acid gas recovery step of mixing the mixed composition with at least one protic solvent, separating the acid gas from the mixed composition, and recovering the separated acid gas.
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • X ⁇ is a saturated aliphatic monocarboxylic acid having 2 to 6 carbon atoms. Represents an anion.
  • the present disclosure (10) provides an acid gas to obtain a mixed composition of the acid gas and the compound represented by the general formula (1) by absorbing the acid gas into a gas absorbent containing the compound represented by the general formula (1).
  • an absorption step the mixed composition obtained in the acidic gas absorption step, water, and at least one protic alcohol selected from the group consisting of an alcohol having 1 to 3 carbon atoms which may have a substituent.
  • an acidic gas recovery step of mixing the mixed composition with a solvent, separating the acidic gas from the mixed composition, and recovering the separated acidic gas; and heating the residual solution remaining after separating the acidic gas in the acidic gas recovery step.
  • This acid gas recovery method includes a gas absorbent regeneration step in which the acid gas is recovered as an absorbent.
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • X ⁇ is a saturated aliphatic monocarboxylic acid having 2 to 6 carbon atoms. Represents an anion.
  • the present disclosure (11) provides that at least a part of the gas absorbent used in the acidic gas absorption step is the regenerated gas absorbent recovered in the gas absorbent regeneration step, and the protons used in the acidic gas recovery step are The acidic gas recovery method according to the present disclosure (10), wherein at least a part of the acidic solvent is the protic solvent recovered in the protic solvent recovery step.
  • Example 1 ⁇ Mixing step with protic solvent (methanol)> (1) At atmospheric pressure and at 40°C, put the mixed composition obtained in Production Example 1 (109.0 parts by weight) into a two-necked flask, and connect a tube with one end connected to an air collection bottle. The two-necked flask was sealed with a stopper, and the total weight of the two-necked flask before methanol was added was measured. (2) Pour methanol (88.0 parts by weight) into a two-necked flask containing the mixed composition, and seal it with a stopper connected to a tube connected to an air collection bottle at one end, so that the weight change is 10 mg or less. The total weight was measured every 3 minutes.
  • Comparative Example 1 corresponds to an example in which the ⁇ mixing step with a protic solvent (methanol)> in Example 1 was not performed, and only the ⁇ heating step> was performed in the same manner as in Example 1.
  • (1) Connect the two-necked flask containing the mixed composition (109.0 parts by weight) obtained in Production Example 1 to a distillation apparatus equipped with a cooling tube, and heat it to 100°C for 9 minutes to release carbon dioxide. A comparative acidic gas absorbent was obtained.
  • the mixed composition obtained in Production Example 1 contained 9.0 parts by weight of carbon dioxide, but in Example 1, most of it (6.1 parts by weight) was removed by mixing the protic solvent (methanol). was released. In addition, by performing the heating process, we were able to distill off methanol and release most of the remaining carbon dioxide (2.5 parts by weight), so that the remaining carbon dioxide remained in the acidic gas absorbent 2 obtained after the heating process. Carbon dioxide was 0.4 parts by weight. In other words, a total of 8.6 parts by weight of carbon dioxide was recovered. On the other hand, in Comparative Example 1, the amount of carbon dioxide remaining in the comparative acidic gas absorbent after the heating step was 2.1 parts by weight. That is, the amount of carbon dioxide that could be recovered was 6.9 parts by weight, which was smaller than that in Example 1. Since the heating step time was the same in Example 1 and Comparative Example 1, it can be said that more carbon dioxide could be recovered in Example 1 for the same heating time.
  • the acidic gas absorbent 2 obtained by the production method of the present invention which includes a mixing step with a protic solvent (methanol) and a heating step, according to Example 1 newly absorbs 8.6 parts by weight of carbon dioxide. I was able to do that.
  • the amount of carbon dioxide that was newly absorbed by the comparative acidic gas absorbent according to Comparative Example 1 was 6.9 parts by weight, which was smaller than that in Example 1. In this way, it becomes possible to newly absorb more carbon dioxide, so by repeating the steps in Example 1 (mixing step with protic solvent and heating step), the acidic gas absorbent can be used repeatedly. can absorb more carbon dioxide.
  • heating for releasing acid gas can be performed at a low temperature (below 100°C), and more carbon dioxide can be produced in the same heating time. can be recovered, so the energy consumption required for recovering acid gas can be reduced.
  • the acidic gas absorbent and the protic solvent can be used repeatedly. This process includes, for example, separation of acidic gases such as carbon dioxide contained in exhaust gas from chemical factories and steel plants, DAC (Direct Air Capture) that absorbs and separates carbon dioxide from the air, and energy resources (by removing carbon dioxide).
  • the present invention can be used for the production of natural gas, biogas, synthetic gas), carbon dioxide removal from distributed emission sources such as automobiles, etc., but is not limited to these exemplified fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

一般式(1)で表される化合物を含む酸性ガス吸収剤の製造方法であって、酸性ガスと一般式(1)で表される化合物との混合組成物と、水、及び置換基を有していてもよい炭素数1~3のアルコールからなる群より選ばれる少なくとも1種のプロトン性溶媒とを混合する工程を有する酸性ガス吸収剤の製造方法。 [一般式(1)中、R1~R4は、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を表し、X-は、炭素数2~6の飽和脂肪族モノカルボン酸のアニオンを表す。]

Description

酸性ガス吸収剤の製造方法及び酸性ガス回収方法
本発明は、酸性ガス吸収剤の製造方法及び酸性ガス回収方法に関する。
近年、地球温暖化に伴う気候変動が問題となっている。
地球温暖化に最も大きな影響を及ぼす温室効果ガスは二酸化炭素であると言われており、二酸化炭素を回収する技術について研究が盛んに行われている。
二酸化炭素を回収する技術として、二酸化炭素吸収量に優れることからイオン液体が注目を集めている。特許文献1には、二酸化炭素を吸収した二酸化炭素回収用組成物を加熱することによって二酸化炭素を分離し、新たな二酸化炭素回収用組成物として再使用することが開示されている。
特開2018-89569号公報
特許文献1に記載されたイオン液体を含有する二酸化炭素回収用組成物については、100℃を超える温度に加熱して吸収した二酸化炭素を分離し、二酸化炭素を除去した後の残留物を再び二酸化炭素回収用組成物として使用することが行われている。しかし、100℃を超える温度での加熱を行うと加熱によりイオン液体の二酸化炭素吸収能が低下することがある。また、加熱に要するエネルギーが大きくなることからできるだけ加熱の温度を低くすることが望まれている。
一方、加熱温度を低くすると、分離しきれない二酸化炭素が二酸化炭素回収用組成物中に残留するため、二酸化炭素回収用組成物としての二酸化炭素吸収能力が低下するという問題がある。
本発明は、上記課題を鑑みてなされたものであり、高温での加熱を必要とすることなく酸性ガス吸収剤を再生して酸性ガス吸収剤を製造することができる、酸性ガス吸収剤の製造方法を提供することを目的とする。
本発明者らは、上記課題を解決するために鋭意検討し、酸性ガスと一般式(1)で表される化合物との混合組成物にプロトン性溶媒を混合することにより、混合組成物中に含まれる酸性ガスが放出されることを見出した結果、以下の本発明に到達した。
すなわち、本発明は、一般式(1)で表される化合物を含む酸性ガス吸収剤の製造方法であって、酸性ガスと一般式(1)で表される化合物との混合組成物と、水、及び置換基を有していてもよい炭素数1~3のアルコールからなる群より選ばれる少なくとも1種のプロトン性溶媒とを混合する工程を有する酸性ガス吸収剤の製造方法、酸性ガスと一般式(1)で表される化合物との混合組成物と、水、及び置換基を有していてもよい炭素数1~3のアルコールからなる群より選ばれる少なくとも1種のプロトン性溶媒とを混合し、前記混合組成物から前記酸性ガスを分離し、分離した前記酸性ガスを回収する酸性ガス回収工程を含む酸性ガス回収方法、及び酸性ガスを一般式(1)で表される化合物を含むガス吸収剤に吸収させて酸性ガスと一般式(1)で表される化合物との混合組成物を得る酸性ガス吸収工程と、前記酸性ガス吸収工程で得られた前記混合組成物と、水、及び置換基を有していてもよい炭素数1~3のアルコールからなる群より選ばれる少なくとも1種のプロトン性溶媒とを混合し、前記混合組成物から酸性ガスを分離し、分離した前記酸性ガスを回収する酸性ガス回収工程と、前記酸性ガス回収工程で前記酸性ガスを分離した後に残った残留溶液を加熱して、前記残留溶液中の前記プロトン性溶媒を留去し回収するプロトン性溶媒回収工程と、前記プロトン性溶媒回収工程で回収した前記プロトン性溶媒を留去して残留した残留物を再生ガス吸収剤として回収するガス吸収剤再生工程とを含む酸性ガス回収方法に関する。
Figure JPOXMLDOC01-appb-C000004
[一般式(1)中、R~Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を表し、Xは、炭素数2~6の飽和脂肪族モノカルボン酸のアニオンを表す。]
本発明によれば、高温での加熱を必要とすることなく酸性ガス吸収剤を再生して酸性ガス吸収剤を製造することができる、酸性ガス吸収剤の製造方法を提供することができる。
図1は、酸性ガス吸収剤の製造方法及び酸性ガス回収方法に使用する装置の一例を模式的に示す装置図である。
本発明の酸性ガス吸収剤の製造方法は、一般式(1)で表される化合物を含む酸性ガス吸収剤の製造方法であって、酸性ガスと一般式(1)で表される化合物との混合組成物と、水、及び置換基を有していてもよい炭素数1~3のアルコールからなる群より選ばれる少なくとも1種のプロトン性溶媒とを混合する工程を有する。
[酸性ガスと一般式(1)で表される化合物との混合組成物]
<酸性ガス>
酸性ガス吸収剤が吸収する対象となる酸性ガスとしては、COx、SOx、NOx、HS、ハロゲン化水素等が挙げられる。本発明の酸性ガス吸収剤の製造方法で製造する酸性ガス吸収剤は、とくに、酸性ガスとしての二酸化炭素(CO)の吸収に適している。
<一般式(1)で表される化合物>
一般式(1)で表される化合物は、常温溶融塩であり、イミダゾリウムカチオンと炭素数2~6の飽和脂肪族モノカルボン酸のアニオンからなる。
Figure JPOXMLDOC01-appb-C000005
[一般式(1)中、R~Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を表し、Xは、炭素数2~6の飽和脂肪族モノカルボン酸のアニオンを表す。]
上記イミダゾリウムカチオンとしては、1-メチルイミダゾリウムカチオン、1-エチルイミダゾリウムカチオン、1-プロピルイミダゾリウムカチオン、1-ブチルイミダゾリウムカチオン、1,3-ジメチル-イミダゾリウムカチオン、1-エチル-3-メチルイミダゾリウムカチオン、1-プロピル-3-メチルイミダゾリウムカチオン、1-ブチル-3-メチルイミダゾリウムカチオン、及び、1-ヘキシル-3-メチルイミダゾリウムカチオンからなる群から選択された少なくとも1種のカチオン等が挙げられる。
なかでも、酸性ガス吸収量の観点から、1-エチル-3-メチルイミダゾリウムカチオン、及び、1-ブチル-3-メチルイミダゾリウムカチオンからなる群から選択された少なくとも1種であることが好ましい。
アニオン源となる炭素数2~6の飽和脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、ピバル酸、ヒドロアンゲリカ酸、イソ吉草酸等が挙げられる。
また、炭素数にはカルボキシル基を構成する炭素数も含まれる。
これらのカルボン酸としては、酸性ガス吸収量の観点から、酢酸、プロピオン酸が好ましく、酢酸がより好ましい。
アニオンとしては、アセテート、プロピオネートが好ましく、アセテートがより好ましい。
上記の好ましい構成を踏まえて、一般式(1)で表される化合物が、1-エチル-3-メチルイミダゾリウムカチオンと炭素数2~6の飽和脂肪族モノカルボン酸のアニオンとの塩、及び/又は1-ブチル-3-メチルイミダゾリウムカチオンと炭素数2~6の飽和脂肪族モノカルボン酸のアニオンとの塩であることが好ましい。
また、一般式(1)で表される化合物が、1-エチル-3-メチルイミダゾリウムアセテートであることがより好ましい。
一般式(1)で表される化合物としては、公知の方法により製造することができ、原料に応じて最適な条件を採用すればよい。例えば、特開2001-316372号公報等に記載の公知の方法により製造したカチオンメチルカーボネート塩に対して、上述のアニオン源となる炭素数2~6の飽和脂肪族モノカルボン酸を作用させる方法等が挙げられる。
酸性ガスと一般式(1)で表される化合物との混合組成物は、酸性ガスと一般式(1)で表される化合物とを混合することで得られる。酸性ガスと一般式(1)で表される化合物とを混合すると、一般式(1)で表される化合物を構成するイミダゾリウムカチオンと酸性ガスとが化学結合し、酸性ガスを安定に含む混合組成物が得られる。
酸性ガスと一般式(1)で表される化合物との混合組成物は、一般式(1)で表される化合物に大気などの混合気体に含まれる酸性ガスを吸収させて得られる酸性ガスと一般式(1)で表される化合物との混合組成物であってもよい。
一般式(1)で表される化合物に酸性ガスを吸収させて得られる酸性ガスと一般式(1)で表される化合物との混合組成物としては、工場及び発電所等からの排ガスに含まれる酸性ガスの分離回収、及び酸性ガスである二酸化炭素の大気中からの分離回収に使用した、一般式(1)で表される化合物を含む酸性ガス吸収済の酸性ガス吸収剤を用いることができる。
酸性ガスと一般式(1)で表される化合物との混合組成物における一般式(1)で表される化合物の重量割合が、酸性ガスと一般式(1)で表される化合物との合計重量に基づいて80重量%以上であることが好ましい。
一般式(1)で表される化合物の重量割合が80重量%以上であると、製造した酸性ガス吸収剤の酸性ガス吸収能が充分なものとなる。
[プロトン性溶媒]
プロトン性溶媒は、水、及び置換基を有していてもよい炭素数1~3のアルコールからなる群より選ばれる少なくとも1種の化合物である。
置換基を有していない炭素数1~3のアルコールとしては、メタノール、エタノール、n-プロパノール、イソプロパノールが挙げられる。
アルコールが有していてもよい置換基としては、ハロゲン(フッ素、塩素、臭素、ヨウ素)、カルボキシル基等が挙げられる。
置換基を有している炭素数1~3のアルコールとしては、トリフルオロエタノール、ジフルオロエタノール、モノフルオロエタノール等が挙げられる。
プロトン性溶媒はその沸点が低いことが好ましく、沸点が100℃以下であることが好ましい。プロトン性溶媒の沸点が100℃以下であると、加熱によるプロトン性溶媒の留去を低温で行うことができ、エネルギー消費量を少なくすることができる。また、高温での加熱を要しないので一般式(1)で表される化合物の分解劣化を防止することができる。
また、プロトン性溶媒の沸点が80℃以下であることが好ましく、70℃以下であることも好ましい。
プロトン性溶媒としては、メタノールであることが好ましい。メタノールは沸点が低いので加熱による留去が容易である。
[混合組成物とプロトン性溶媒とを混合する工程]
本発明の酸性ガス吸収剤の製造方法は、酸性ガスと一般式(1)で表される化合物との混合組成物と、プロトン性溶媒とを混合する工程を有する。
酸性ガスと一般式(1)で表される化合物との混合組成物とプロトン性溶媒を混合すると、混合組成物に含まれる酸性ガスが放出される。その結果、混合組成物に含まれていた酸性ガスの含有量が減少し、プロトン性溶媒と一般式(1)で表される化合物と残留した酸性ガスとを含む混合溶液(以下、混合溶液とも記載する)が得られる。
得られたプロトン性溶媒と一般式(1)で表される化合物と残留した酸性ガスとを含む混合溶液は、新たな酸性ガス吸収剤として用いることができる。
すなわち、酸性ガスと一般式(1)で表される化合物との混合組成物とプロトン性溶媒とを混合する工程によって新たな酸性ガス吸収剤を得ることができる。
酸性ガスと一般式(1)で表される化合物との混合組成物とプロトン性溶媒とを混合する工程は、公知の混合装置(撹拌機付きの反応槽、及びインラインミキサー、向流接触装置等)を用いて行うことができる。
混合組成物とプロトン性溶媒とを混合する工程における温度は、酸性ガスの分離性を上げて残留量を減らすことができるという観点から、40~60℃が好ましい。
混合組成物とプロトン性溶媒とを混合する時間は、混合組成物とプロトン性溶媒の体積および混合装置に応じて調整することができるが、酸性ガスの分離性の観点から、5~20分間であることが好ましい。
酸性ガスと一般式(1)で表される化合物との混合組成物とプロトン性溶媒とを混合する工程においては、プロトン性溶媒と、混合組成物に含まれる一般式(1)で表される化合物との重量比が5:100~300:100であることが好ましい。
重量比がこの範囲内であるとプロトン性溶媒の混合により酸性ガスが放出される効果が好適に発揮される。プロトン性溶媒の割合が多すぎると、得られた混合溶液に占めるプロトン性溶媒の割合が多くなりすぎて、得られた混合溶液を酸性ガス吸収剤として用いた場合に酸性ガス吸収能が充分なものとならないことがある。
酸性ガスと一般式(1)で表される化合物との混合組成物とプロトン性溶媒とを混合する工程によって得られた混合溶液である新たな酸性ガス吸収剤には、一般式(1)で表される化合物と、プロトン性溶媒とが含まれる。また、酸性ガスの一部が放出されずに残留して新たな酸性ガス吸収剤中に残っていてもよい。
また、酸性ガスと一般式(1)で表される化合物との混合組成物とプロトン性溶媒の混合の際にその他の成分を加えてもよい。その他の成分としては、例えば、非プロトン性有機溶媒(γ-ブチロラクトン等のエステル、アセトニトリル等のニトリル、及び、ジグライムやトリグライム等のエーテル等)等が挙げられる。
[加熱工程]
本発明の酸性ガス吸収剤の製造方法は、酸性ガスと一般式(1)で表される化合物との混合組成物と、プロトン性溶媒とを混合する工程で得られた混合溶液からプロトン性溶媒の少なくとも一部を留去する加熱工程を有することが好ましい。
加熱工程は、公知の蒸留設備(蒸留塔、およびリボイラー等)を用いて行うことができる。
加熱工程における加熱は、プロトン性溶媒の沸点以上の温度とすることが好ましい。ただし、加熱温度はできるだけ低くすることが好ましく、100℃以下とすることが好ましい。
加熱温度が低ければ、エネルギー消費量を少なくすることができる。また、高温での加熱を行わないことにより、一般式(1)で表される化合物の分解劣化を防止することができる。
加熱工程においては、混合組成物とプロトン性溶媒とを混合する工程で得られた混合溶液が入った蒸留設備内の圧力を必要に応じて減圧してもよい。
加熱工程に要する時間は、加熱する混合溶液の体積および用いる蒸留設備の種類に応じて調整することができるが、酸性ガスの分離性の観点から、5~20分間であることが好ましい。
加熱工程によって混合溶液に含まれるプロトン性溶媒の少なくとも一部を留去することにより、得られる酸性ガス吸収剤に占める一般式(1)で表される化合物の割合が高くなり、酸性ガス吸収能力が高い酸性ガス吸収剤を得ることができる。
また、加熱工程において、混合溶液に残留していた酸性ガスをさらに放出させることができる。この観点からも、加熱工程により新たに得られる酸性ガス吸収剤のガス吸収能を高くすることができる。
なお、加熱工程において、プロトン性溶媒の一部が新たに得られる酸性ガス吸収剤に残留していてもよい。残留したプロトン性溶媒は、一般式(1)で表される化合物の耐熱性を向上させる効果を有する。
また、本発明の製造方法で得られる酸性ガス吸収剤には、酸性ガスが残留していても良いが、酸性ガスの含有量は一般式(1)で表される化合物に基づいて3.0重量%以下であることが好ましく、0.5重量%以下であることがより好ましい。
本発明の製造方法で得られる酸性ガス吸収剤においてプロトン性溶媒が残留する場合、プロトン性溶媒の含有量は、一般式(1)で表される化合物のモル数に対するプロトン性溶媒のモル数の比率[プロトン性化合物のモル数/一般式(1)で表される化合物のモル数]が、0.2~1.0となる量であることが好ましい。この範囲でプロトン性溶媒が残留すると、一般式(1)で表される化合物の耐熱性が良好となり好ましい。
本発明の製造方法で得られる酸性ガス吸収剤に含まれる一般式(1)で表される化合物の割合は、酸性ガス吸収剤の重量に基づいて85~95重量%であることが好ましい。
[酸性ガス回収方法]
本発明の酸性ガス回収方法は、酸性ガスと一般式(1)で表される化合物との混合組成物と、水、及び置換基を有していてもよい炭素数1~3のアルコールからなる群より選ばれる少なくとも1種のプロトン性溶媒とを混合し、前記混合組成物から酸性ガスを分離し、分離した前記酸性ガスを回収する酸性ガス回収工程を含む。
Figure JPOXMLDOC01-appb-C000006
[一般式(1)中、R~Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を表し、Xは、炭素数2~6の飽和脂肪族モノカルボン酸のアニオンを表す。]
本発明の酸性ガス回収方法における酸性ガス、一般式(1)で表される化合物、プロトン性溶媒は、上記に説明した酸性ガス吸収剤の製造方法におけるものと同じである。
酸性ガスと一般式(1)で表される化合物との混合組成物と、水、及び置換基を有していてもよい炭素数1~3のアルコールからなる群より選ばれる少なくとも1種のプロトン性溶媒とを混合する工程を行うことにより、混合組成物に含まれる酸性ガスが放出される。
混合組成物から放出された酸性ガスを任意の手法で回収することにより酸性ガスを回収することができる。
また、酸性ガスと一般式(1)で表される化合物との混合組成物と、プロトン性溶媒とを混合する工程で得られた混合溶液を加熱する加熱工程を行い、さらに酸性ガスを放出させてもよい。本発明の酸性ガス回収方法における加熱工程も上記に説明した酸性ガス吸収剤の製造方法における加熱工程と同様に行うことができる。
また、本発明の酸性ガス回収方法の別の態様は、酸性ガスを一般式(1)で表される化合物を含むガス吸収剤に吸収させて混合組成物を得る酸性ガス吸収工程と、前記酸性ガス吸収工程で得られた前記混合組成物と、水、及び置換基を有していてもよい炭素数1~3のアルコールからなる群より選ばれる少なくとも1種のプロトン性溶媒とを混合し、前記混合組成物から酸性ガスを分離し、分離した前記酸性ガスを回収する酸性ガス回収工程と、前記酸性ガス回収工程で前記酸性ガスを分離した後に残った残留溶液を加熱して、前記残留溶液中の前記プロトン性溶媒を留去し回収するプロトン性溶媒回収工程と、前記プロトン性溶媒回収工程で回収した前記プロトン性溶媒を留去して残留した残留物を再生ガス吸収剤として回収するガス吸収剤再生工程とを含む。
また、この酸性ガス回収方法において、前記酸性ガス吸収工程で用いる前記ガス吸収剤の少なくとも一部が、前記ガス吸収剤再生工程で回収された前記再生ガス吸収剤であり、前記酸性ガス回収工程で用いる前記プロトン性溶媒の少なくとも一部が前記プロトン性溶媒回収工程で回収された前記プロトン性溶媒であることが好ましい。
本発明の酸性ガス吸収剤の製造方法及び本発明の酸性ガス回収方法の実施形態について図面を用いて説明する。
図1は、酸性ガス吸収剤の製造方法及び酸性ガス回収方法に使用する装置の一例を模式的に示す装置図である。
この工程に使用する装置においては、吸収塔1、酸性ガス回収塔2、再生塔3が配管を介して連結されている。この装置では、工場等から排出された排ガス中に含まれる酸性ガスを吸収することができる。
[酸性ガス吸収工程]
吸収塔1には一般式(1)で表される化合物を含む組成物が酸性ガス吸収剤として充填されている。排ガスが最初に吸収塔1に導入される前には、一般式(1)で表される化合物を含む組成物には酸性ガスが含まれていない。
吸収塔1には酸性ガスを含む排ガスが導入される。一般式(1)で表される化合物を含む組成物と排ガスが混合されて、排ガス中の酸性ガスが吸収され、酸性ガスと一般式(1)で表される化合物との混合組成物(混合組成物10)となる。
また、酸性ガスが除去された排ガスは処理後排ガスとして吸収塔1から排出される。
[酸性ガス回収工程]
混合組成物10は、所定量の酸性ガスを吸収させたのちに酸性ガス回収塔2に送られる。酸性ガス回収塔2では、プロトン性溶媒40が加えられる。プロトン性溶媒40は、未使用のプロトン性溶媒であってもよく、後に説明する再生塔において回収されたプロトン性溶媒であってもよい。
混合組成物10とプロトン性溶媒40が混合されることにより混合組成物10に含まれる酸性ガスが放出され、混合組成物10から酸性ガス吸収剤20が再生される。放出される酸性ガスはもともと排ガスに含まれていた酸性ガスであるので、この酸性ガスを回収することにより、排ガスに含まれていた酸性ガスを回収できることになる。
なお、この工程により得られた酸性ガス吸収剤20は、混合組成物10よりも酸性ガスの含有量が減少しているため、吸収塔1における酸性ガス吸収剤20として用いることもできる。
[プロトン性溶媒回収工程とガス吸収剤再生工程]
酸性ガス吸収剤20は、再生塔3に送られる。再生塔3ではプロトン性溶媒40の沸点以上での加熱が行われ、プロトン性溶媒40が留去される。回収されたプロトン性溶媒40は酸性ガス回収塔2に送られて再使用される。
また、加熱によりさらに酸性ガスが放出されるので、放出されたこの酸性ガスも回収する。
加熱により酸性ガス吸収剤20からプロトン性溶媒40が留去され、酸性ガスの含有量がさらに減少した酸性ガス吸収剤である酸性ガス吸収剤30が得られる。
酸性ガス吸収剤30は、吸収塔1に送られる。酸性ガス吸収剤30は一般式(1)で表される化合物を含み、さらに少量のプロトン性溶媒と酸性ガスを含んでいてもよい。酸性ガス吸収剤30に再度排ガスが混合されることで排ガス中の酸性ガスが吸収され、酸性ガスと一般式(1)で表される化合物との混合組成物(混合組成物10)となる。
この工程を繰り返すことにより、一般式(1)で表される化合物及びプロトン性溶媒を繰り返し使用して排ガス中の酸性ガスを回収することができる。また、混合組成物10とプロトン性溶媒40が混合されることにより多くの酸性ガスを放出させることができるので、工程全体として加熱に要するエネルギーもそれほど大きくならない。
本明細書には以下の事項が開示されている。
本開示(1)は一般式(1)で表される化合物を含む酸性ガス吸収剤の製造方法であって、酸性ガスと一般式(1)で表される化合物との混合組成物と、水、及び置換基を有していてもよい炭素数1~3のアルコールからなる群より選ばれる少なくとも1種のプロトン性溶媒とを混合する工程を有する酸性ガス吸収剤の製造方法である。
Figure JPOXMLDOC01-appb-C000007
[一般式(1)中、R~Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を表し、Xは、炭素数2~6の飽和脂肪族モノカルボン酸のアニオンを表す。]
本開示(2)は前記一般式(1)で表される化合物が、1-エチル-3-メチルイミダゾリウムカチオンと炭素数2~6の飽和脂肪族モノカルボン酸のアニオンとの塩、及び/又は1-ブチル-3-メチルイミダゾリウムカチオンと炭素数2~6の飽和脂肪族モノカルボン酸のアニオンとの塩である本開示(1)に記載の酸性ガス吸収剤の製造方法である。
本開示(3)は前記プロトン性溶媒がメタノールである本開示(1)又は(2)に記載の酸性ガス吸収剤の製造方法である。
本開示(4)は前記酸性ガスが二酸化炭素である本開示(1)~(3)のいずれか1項に記載の酸性ガス吸収剤の製造方法である。
本開示(5)は前記酸性ガスと前記一般式(1)で表される化合物との混合組成物における前記一般式(1)で表される化合物の重量割合が、前記酸性ガスと前記一般式(1)で表される化合物との合計重量に基づいて80重量%以上である本開示(1)~(4)のいずれか1項に記載の酸性ガス吸収剤の製造方法である。
本開示(6)は前記プロトン性溶媒と、前記混合組成物に含まれる前記一般式(1)で表される化合物との重量比が、5:100~300:100である本開示(1)~(5)のいずれか1項に記載の酸性ガス吸収剤の製造方法である。
本開示(7)は前記酸性ガスと前記一般式(1)で表される化合物との混合組成物と、前記プロトン性溶媒とを混合する工程で得られた混合溶液から前記プロトン性溶媒の少なくとも一部を留去する加熱工程を有する本開示(1)~(6)のいずれか1項に記載の酸性ガス吸収剤の製造方法である。
本開示(8)は前記加熱工程での加熱温度が100℃以下である本開示(7)に記載の酸性ガス吸収剤の製造方法である。
本開示(9)は酸性ガスと一般式(1)で表される化合物との混合組成物と、水、及び置換基を有していてもよい炭素数1~3のアルコールからなる群より選ばれる少なくとも1種のプロトン性溶媒とを混合し、前記混合組成物から前記酸性ガスを分離し、分離した前記酸性ガスを回収する酸性ガス回収工程を含む酸性ガス回収方法である。
Figure JPOXMLDOC01-appb-C000008
[一般式(1)中、R~Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を表し、Xは、炭素数2~6の飽和脂肪族モノカルボン酸のアニオンを表す。]
本開示(10)は酸性ガスを一般式(1)で表される化合物を含むガス吸収剤に吸収させて酸性ガスと一般式(1)で表される化合物との混合組成物を得る酸性ガス吸収工程と、前記酸性ガス吸収工程で得られた前記混合組成物と、水、及び置換基を有していてもよい炭素数1~3のアルコールからなる群より選ばれる少なくとも1種のプロトン性溶媒とを混合し、前記混合組成物から酸性ガスを分離し、分離した前記酸性ガスを回収する酸性ガス回収工程と、前記酸性ガス回収工程で前記酸性ガスを分離した後に残った残留溶液を加熱して、前記残留溶液中の前記プロトン性溶媒を留去し回収するプロトン性溶媒回収工程と、前記プロトン性溶媒回収工程で回収した前記プロトン性溶媒を留去して残留した残留物を再生ガス吸収剤として回収するガス吸収剤再生工程とを含む酸性ガス回収方法である。
Figure JPOXMLDOC01-appb-C000009
[一般式(1)中、R~Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を表し、Xは、炭素数2~6の飽和脂肪族モノカルボン酸のアニオンを表す。]
本開示(11)は前記酸性ガス吸収工程で用いる前記ガス吸収剤の少なくとも一部が、前記ガス吸収剤再生工程で回収された前記再生ガス吸収剤であり、前記酸性ガス回収工程で用いる前記プロトン性溶媒の少なくとも一部が前記プロトン性溶媒回収工程で回収された前記プロトン性溶媒である、本開示(10)に記載の酸性ガス回収方法である。
次に本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り部は重量部、%は重量%を意味する。
(製造例1)
<酸性ガスと一般式(1)で表される化合物との混合組成物の準備>
(1)空気中で2口ナスフラスコをゴム栓で密栓し、ゴム栓込みの総重量を測定した(この重量を「空フラスコ(空気)」とした)。
(2)2口ナスフラスコ内を二酸化炭素で置換した後に密栓し、ゴム栓込みの総重量を測定した(この重量を「空フラスコ(二酸化炭素)」とした)。
(3)2口ナスフラスコ内を空気で置換した後、一般式(1)で表される化合物(1-エチル-3-メチルイミダゾリウムアセテート:東京化成工業(株)製試薬)100.0重量部を入れて密栓し、総重量を測定した(この重量を[t=0(空気)]とした)。
(4)[t=0(空気)]+[空フラスコ(二酸化炭素)-空フラスコ(空気)]を算出し、これを二酸化炭素雰囲気下で一般式(1)で表される化合物100重量部を入れて密栓した場合の2口ナスフラスコのゴム栓込みの総重量とした(この重量を「t=0(二酸化炭素)」とした)。
(5)一般式(1)で表される化合物の入った2口フラスコを大気圧下で40℃に調温した。
(6)二酸化炭素を充填したガス捕集バルーンから二酸化炭素を2口ナスフラスコ内に入れた一般式(1)で表される化合物中にバブリングして二酸化炭素置換を行った。
(7)二酸化炭素置換の開始から3分間、フラスコを揺動させた後に密栓して、2口ナスフラスコの総重量を測定した。
(8)(7)の操作を重量変化が10mg以下となるまで3分間毎に繰り返した。
(9)重量変化が10mg以下となった時点で二酸化炭素置換を止めた。
(10)二酸化炭素置換の最後の総重量と、「t=0(二酸化炭素)」との差を一般式(1)で表される化合物が吸収した二酸化炭素吸収重量とした。
上記操作により、酸性ガスと一般式(1)で表される化合物との混合組成物を得た。
なお、二酸化炭素は、岩谷産業(株)製の炭酸ガスボンベから充填して使用した。
この操作の結果をまとめて表1に示した。
Figure JPOXMLDOC01-appb-T000010
(実施例1)
<プロトン性溶媒(メタノール)との混合工程>
(1)大気圧、40℃の環境下で、2口フラスコに製造例1で得られた混合組成物(109.0重量部)を入れ、一方の先を集気ビンに繋いだ管を接続した栓で2口フラスコを密閉し、メタノールを添加する前の2口フラスコの総重量を測定した。
(2)混合組成物の入った2口フラスコにメタノール(88.0重量部)を入れ、一方の先を集気ビンに繋いだ管を接続した栓で密閉し、重量変化が10mg以下となるまで3分ごとに総重量を測定した。総重量の測定を3回行ったところで重量変化が10mg以下になったので、プロトン性溶媒を混合する工程を終了した。プロトン性溶媒を混合する工程に要した時間は9分間であった。なお、本工程で用いたメタノールと、混合組成物に含まれる一般式(1)で表される化合物との重量比は、88:100である。
(3)重量変化が10mg以下となるまで測定した重量のうち、メタノールの添加後の最後の重量と、メタノールを添加する前の重量との差を放出した二酸化炭素重量とした。(3)の工程を経てフラスコ内に酸性ガス吸収剤1である混合溶液が得られた。
放出した二酸化炭素の重量と混合溶液に残留した二酸化炭素の重量をまとめて表2に示した。
Figure JPOXMLDOC01-appb-T000011
<加熱工程>
(4)上記工程(3)で得られた混合溶液(酸性ガス吸収剤1)の入った2口フラスコを冷却管が付いた蒸留装置につなぎ、100℃に加熱してメタノールを留去し、残留していた二酸化炭素を放出させた。
(5)冷却管で冷却されたメタノールは捕集して重量を3分ごとに測定し、重量変化が10mg以下となった時点をメタノールの留去の終点として酸性ガス吸収剤2を得た。3回目の測定で終点に到達し、加熱終了までに要した時間は9分であった。
(6)メタノールの留去を行う前の2口フラスコの総重量と、メタノールの留去を行った後の2口フラスコの総重量と、留去したメタノールの重量とから、加熱工程で回収したメタノールの重量、加熱工程で回収した二酸化炭素の重量、加熱工程後に得られた酸性ガス吸収剤2に含まれる一般式(1)で表される化合物、メタノール及び二酸化炭素の重量を計算した。結果をまとめて表3に示した。
Figure JPOXMLDOC01-appb-T000012
<酸性ガス吸収剤2を用いた二酸化炭素吸収>
(7)製造例1の(3)における一般式(1)で表される化合物(1-エチル-3-メチルイミダゾリウムアセテート)100.0重量部に代えて、加熱工程で得られた酸性ガス吸収剤2(110.4重量部)を用いること以外は、製造例1と同様の操作を行い、酸性ガス吸収剤2が吸収した二酸化炭素吸収重量を測定した。結果をまとめて表4に示した。
Figure JPOXMLDOC01-appb-T000013
(比較例1)
比較例1は、実施例1において<プロトン性溶媒(メタノール)との混合工程>を行わず、<加熱工程>のみを実施例1と同様に行った例に相当する。
(1)製造例1で得られた混合組成物(109.0重量部)の入った2口フラスコを冷却管が付属した蒸留装置につなぎ、100℃に9分間加熱して二酸化炭素を放出させて、比較用酸性ガス吸収剤を得た。
(2)二酸化炭素を放出させる前の2口フラスコの総重量と、終点での2口フラスコの総重量とから、加熱工程で回収した二酸化炭素の重量、比較用酸性ガス吸収剤に含まれる一般式(1)で表される化合物、及び二酸化炭素の重量を計算した。結果をまとめて表5に示した。
Figure JPOXMLDOC01-appb-T000014
<比較用酸性ガス吸収剤を用いた二酸化炭素吸収>
(3)製造例1の(3)における一般式(1)で表される化合物(1-エチル-3-メチルイミダゾリウムアセテート)100.0重量部に代えて、比較例1の加熱工程で得られた比較用酸性ガス吸収剤(102.1重量部)を用いること以外は、製造例1と同様の操作を行い、比較用酸性ガス吸収剤が吸収した二酸化炭素吸収重量を測定した。結果をまとめて表6に示した。
Figure JPOXMLDOC01-appb-T000015
製造例1で得た混合組成物には9.0重量部の二酸化炭素が含まれていたが、実施例1では、プロトン性溶媒(メタノール)の混合によりその大部分(6.1重量部)が放出された。また、加熱工程を行うことによりメタノールを留去するとともに残留した二酸化炭素の多く(2.5重量部)を放出させることができたので、加熱工程後に得られた酸性ガス吸収剤2に残留した二酸化炭素は0.4重量部であった。すなわち、合計で8.6重量部の二酸化炭素を回収できたことになる。
一方、比較例1では加熱工程後の比較用酸性ガス吸収剤に残留した二酸化炭素は2.1重量部であった。すなわち、回収できた二酸化炭素は6.9重量部であり実施例1に対して少なかった。加熱工程の時間は実施例1と比較例1で同じであることから、同じ加熱時間において実施例1ではより多くの二酸化炭素を回収できたといえる。
実施例1にかかる、プロトン性溶媒(メタノール)との混合工程および加熱工程を含む本発明の製造方法によって得られた酸性ガス吸収剤2は、8.6重量部の二酸化炭素を新たに吸収することができた。一方、比較例1にかかる比較用酸性ガス吸収剤が新たに吸収できた二酸化炭素は6.9重量部であり実施例1に対して少なかった。
このように、新たにより多くの二酸化炭素を吸収することが可能になることから、実施例1における工程(プロトン性溶媒との混合工程および加熱工程)を繰り返すことで、酸性ガス吸収剤を繰り返し使用することができ、より多くの二酸化炭素を吸収できる。
本発明の酸性ガス吸収剤の製造方法及び本発明の酸性ガス回収方法では、酸性ガスを放出させるための加熱を低温(100℃以下)とすることができ、同じ加熱時間でより多くの二酸化炭素を回収できるので、酸性ガスの回収に要するエネルギー消費を少なくすることができる。また、酸性ガス吸収剤及びプロトン性溶媒は繰り返し使用することができる。
この工程は、例えば、化学工場や製鉄所等の排ガス中に含まれる二酸化炭素等の酸性ガスの分離、空気中の二酸化炭素を吸収分離するDAC(Direct Air Capture)、脱二酸化炭素によるエネルギー資源(天然ガス、バイオガス、合成ガス)の製造、自動車等の分散型排出源における脱二酸化炭素等に利用することができるが、これら例示された分野に限定されない。
1:吸収塔
2:酸性ガス回収塔
3:再生塔
10:混合組成物
20:酸性ガス吸収剤
30:酸性ガス吸収剤
40:プロトン性溶媒

 

Claims (11)

  1. 一般式(1)で表される化合物を含む酸性ガス吸収剤の製造方法であって、
    酸性ガスと一般式(1)で表される化合物との混合組成物と、水、及び置換基を有していてもよい炭素数1~3のアルコールからなる群より選ばれる少なくとも1種のプロトン性溶媒とを混合する工程を有する酸性ガス吸収剤の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)中、R~Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を表し、Xは、炭素数2~6の飽和脂肪族モノカルボン酸のアニオンを表す。]
  2. 前記一般式(1)で表される化合物が、1-エチル-3-メチルイミダゾリウムカチオンと炭素数2~6の飽和脂肪族モノカルボン酸のアニオンとの塩、及び/又は1-ブチル-3-メチルイミダゾリウムカチオンと炭素数2~6の飽和脂肪族モノカルボン酸のアニオンとの塩である請求項1に記載の酸性ガス吸収剤の製造方法。
  3. 前記プロトン性溶媒がメタノールである請求項1又は2に記載の酸性ガス吸収剤の製造方法。
  4. 前記酸性ガスが二酸化炭素である請求項1又は2に記載の酸性ガス吸収剤の製造方法。
  5. 前記酸性ガスと前記一般式(1)で表される化合物との混合組成物における、前記一般式(1)で表される化合物の重量割合が、前記酸性ガスと前記一般式(1)で表される化合物との合計重量に基づいて80重量%以上である請求項1又は2に記載の酸性ガス吸収剤の製造方法。
  6. 前記プロトン性溶媒と、前記混合組成物に含まれる前記一般式(1)で表される化合物との重量比が、5:100~300:100である請求項1又は2に記載の酸性ガス吸収剤の製造方法。
  7. 前記酸性ガスと前記一般式(1)で表される化合物との混合組成物と、前記プロトン性溶媒とを混合する工程で得られた混合溶液から前記プロトン性溶媒の少なくとも一部を留去する加熱工程を有する請求項1又は2に記載の酸性ガス吸収剤の製造方法。
  8. 前記加熱工程での加熱温度が100℃以下である請求項7に記載の酸性ガス吸収剤の製造方法。
  9. 酸性ガスと一般式(1)で表される化合物との混合組成物と、水、及び置換基を有していてもよい炭素数1~3のアルコールからなる群より選ばれる少なくとも1種のプロトン性溶媒とを混合し、前記混合組成物から前記酸性ガスを分離し、分離した前記酸性ガスを回収する酸性ガス回収工程を含む酸性ガス回収方法。
    Figure JPOXMLDOC01-appb-C000002
    [一般式(1)中、R~Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を表し、Xは、炭素数2~6の飽和脂肪族モノカルボン酸のアニオンを表す。]
  10. 酸性ガスを一般式(1)で表される化合物を含むガス吸収剤に吸収させて酸性ガスと一般式(1)で表される化合物との混合組成物を得る酸性ガス吸収工程と、
    前記酸性ガス吸収工程で得られた前記混合組成物と、水、及び置換基を有していてもよい炭素数1~3のアルコールからなる群より選ばれる少なくとも1種のプロトン性溶媒とを混合し、前記混合組成物から酸性ガスを分離し、分離した前記酸性ガスを回収する酸性ガス回収工程と、
    前記酸性ガス回収工程で前記酸性ガスを分離した後に残った残留溶液を加熱して、前記残留溶液中の前記プロトン性溶媒を留去し回収するプロトン性溶媒回収工程と、
    前記プロトン性溶媒回収工程で回収した前記プロトン性溶媒を留去して残留した残留物を再生ガス吸収剤として回収するガス吸収剤再生工程とを含む酸性ガス回収方法。
    Figure JPOXMLDOC01-appb-C000003
    [一般式(1)中、R~Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を表し、Xは、炭素数2~6の飽和脂肪族モノカルボン酸のアニオンを表す。]
  11. 前記酸性ガス吸収工程で用いる前記ガス吸収剤の少なくとも一部が、前記ガス吸収剤再生工程で回収された前記再生ガス吸収剤であり、前記酸性ガス回収工程で用いる前記プロトン性溶媒の少なくとも一部が前記プロトン性溶媒回収工程で回収された前記プロトン性溶媒である、請求項10に記載の酸性ガス回収方法。

     
PCT/JP2023/018910 2022-06-24 2023-05-22 酸性ガス吸収剤の製造方法及び酸性ガス回収方法 WO2023248669A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-101677 2022-06-24
JP2022101677 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023248669A1 true WO2023248669A1 (ja) 2023-12-28

Family

ID=89379724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018910 WO2023248669A1 (ja) 2022-06-24 2023-05-22 酸性ガス吸収剤の製造方法及び酸性ガス回収方法

Country Status (1)

Country Link
WO (1) WO2023248669A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012171831A1 (en) * 2011-06-14 2012-12-20 Vtu Holding Gmbh Process for separating co2 from a gaseous stream
JP2016077935A (ja) * 2014-10-10 2016-05-16 国立研究開発法人産業技術総合研究所 酸性ガス吸収液及び酸性ガス分離回収方法
JP2016523691A (ja) * 2013-04-30 2016-08-12 ユーオーピー エルエルシー 気体分離のための物理吸収溶媒及びイオン液体の混合物
JP2019171255A (ja) * 2018-03-27 2019-10-10 国立大学法人東北大学 酸性ガス分離装置及び酸性ガス分離方法
WO2023085001A1 (ja) * 2021-11-12 2023-05-19 三洋化成工業株式会社 二酸化炭素吸収用組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012171831A1 (en) * 2011-06-14 2012-12-20 Vtu Holding Gmbh Process for separating co2 from a gaseous stream
JP2016523691A (ja) * 2013-04-30 2016-08-12 ユーオーピー エルエルシー 気体分離のための物理吸収溶媒及びイオン液体の混合物
JP2016077935A (ja) * 2014-10-10 2016-05-16 国立研究開発法人産業技術総合研究所 酸性ガス吸収液及び酸性ガス分離回収方法
JP2019171255A (ja) * 2018-03-27 2019-10-10 国立大学法人東北大学 酸性ガス分離装置及び酸性ガス分離方法
WO2023085001A1 (ja) * 2021-11-12 2023-05-19 三洋化成工業株式会社 二酸化炭素吸収用組成物

Similar Documents

Publication Publication Date Title
JP6491667B2 (ja) 酸性ガス回収および放出システム
JP5311543B2 (ja) ガス分離精製ならびに回収方法及びその装置
JP4933103B2 (ja) 精製排ガスに含まれる溶媒の抜出しを含む燃焼排ガスの脱炭酸方法
EP2618914B1 (en) Solvent composition for carbon dioxide recovery
US9878285B2 (en) Method and absorption medium for absorbing CO2 from a gas mixture
KR100831093B1 (ko) 이온성 액체를 이용한 is 싸이클 공정의 혼합가스로부터순수 이산화황의 분리 회수 방법
KR101107203B1 (ko) 이온성 액체계 이산화황 흡수제
JP2002519171A (ja) ガスからの酸性ガス成分の除去法
JP2014520661A (ja) アミン吸収剤およびco2捕獲方法
US8613865B2 (en) Amidium-based ionic liquids for carbon dioxide absorption
EP2480311B1 (en) Carbon dioxide absorbent
KR20150044856A (ko) 황화수소의 선택적 흡수를 위한 흡수성 조성물 및 상기 조성물의 사용 프로세스
JP2006036950A (ja) ガスを精製する方法及びその精製に用いられる吸収液
KR101588244B1 (ko) 함산소디아민을 포함하는 이산화탄소 흡수제
CN109529555B (zh) 基于非质子有机物的低共熔溶剂及利用其高效吸收二氧化硫的方法
WO2023248669A1 (ja) 酸性ガス吸収剤の製造方法及び酸性ガス回収方法
JP5900869B2 (ja) 酸性ガス分離用吸収液ならびにガス分離精製方法およびその装置
Saini et al. Deep eutectic solvents in CO2 capture
CN114768479A (zh) 高效吸收二氧化碳气体低共熔溶剂及其制备方法与应用
CN112452107B (zh) 一种离子液体/氯化亚铜/醇体系反应吸收一氧化碳的方法
CN108911946B (zh) 一种离子液体用于脱除氟代化合物中hf的方法
JP2007000702A (ja) 吸収液、co2又はh2s又はその双方の除去装置及び除去方法
KR100993011B1 (ko) 불소 함유 이온성 액체를 이용한 기체 흡수제
KR102035926B1 (ko) 산성가스 분리용 흡수제
KR101292084B1 (ko) 생체 아민을 포함하는 이산화탄소 흡수제 및 이를 이용한 배가스 중의 이산화탄소 제거방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826857

Country of ref document: EP

Kind code of ref document: A1