WO2023245693A1 - 一种埋极耳结构锂离子电池的极片制造方法 - Google Patents

一种埋极耳结构锂离子电池的极片制造方法 Download PDF

Info

Publication number
WO2023245693A1
WO2023245693A1 PCT/CN2022/101809 CN2022101809W WO2023245693A1 WO 2023245693 A1 WO2023245693 A1 WO 2023245693A1 CN 2022101809 W CN2022101809 W CN 2022101809W WO 2023245693 A1 WO2023245693 A1 WO 2023245693A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
pole
area
active material
laser scanning
Prior art date
Application number
PCT/CN2022/101809
Other languages
English (en)
French (fr)
Inventor
贾学恒
李贺
张宏芳
康冬辉
林英辉
张威
靳桧鑫
满燕燕
Original Assignee
天津聚元新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津聚元新能源科技有限公司 filed Critical 天津聚元新能源科技有限公司
Publication of WO2023245693A1 publication Critical patent/WO2023245693A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/10Cleaning by methods involving the use of tools characterised by the type of cleaning tool
    • B08B1/12Brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/30Cleaning by methods involving the use of tools by movement of cleaning members over a surface
    • B08B1/32Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • B08B7/0042Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like by laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/04Cleaning by methods not provided for in a single other subclass or a single group in this subclass by a combination of operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of lithium batteries, and in particular relates to a method for manufacturing pole pieces of a lithium-ion battery with a buried tab structure.
  • the general process for processing lithium battery pole pieces with buried tab structures is: coating of pole powder active material, powder cleaning (making grooves), rolling, slitting, and notch processing.
  • powder cleaning methods are generally used, such as laser powder cleaning, foaming glue to remove powder, or blade scraping.
  • the powder cleaning procedure is to remove part of the pole powder active material on the upper surface of the pole piece while still retaining the metal current collector.
  • the part where the pole powder is removed is collectively called the "groove”.
  • the "grooves" in the metal current collector are used to weld the tabs.
  • the positive electrode laser powder cleaning is completed before the pole piece is rolled.
  • the thickness of the metal current collector groove during rolling is much lower than the thickness of the surrounding pole powder active material, making the elongation of the groove part lower than that of the surrounding pole piece.
  • the difference in elongation causes stress to form at the interface between the groove and the pole powder active material.
  • the pole pieces are slit, the strips frequently break at the stressed junctions, making production impossible.
  • we choose to cut along the pole powder next to the groove so there will be a certain width of residual powder next to the groove.
  • the tabs are welded, the "residual powder" will overlap with the tabs, causing the local thickness at the overlapping position to be thicker, which directly affects the overall thickness of the battery and reduces the energy density.
  • lithium precipitation is prone to occur in the overlapping areas during battery use, reducing battery life. security.
  • the current method to solve the above problem is to create a gap in the residual powder part of the pole piece, and cut off the residual powder to prevent it from overlapping with the pole lug.
  • part of the metal current collector was also cut off.
  • this part of the metal current collector is located at the tab, and it carries a higher current density than the metal current collector in other parts of the pole piece. This will increase the current density during high-current charging and discharging of the battery, and reduce the high-current charging and discharging of the battery. safety; and the notch will also reduce the weldable area of the tab, resulting in reduced reliability of tab welding.
  • the object of the present invention is to overcome the shortcomings of the above technology and provide a method for manufacturing pole pieces of a buried tab structure lithium-ion battery, which will not cause the tabs and residual powder to overlap, and also avoid the gap created at the groove to oppose the electrode. negative impact on the chip and battery.
  • the present invention adopts the following technical solution: a method for manufacturing pole pieces of a buried tab structure lithium-ion battery, which is characterized by: using a combination of laser cleaning and brush roller powdering to remove the residual active material of the pole powder. Powder removal involves not only laser cleaning the normal groove parts, but also laser scanning the pole powder active material in the expected residual powder area and its adjacent areas. The pole powder active material after laser scanning remains in a fluffy state.
  • the specific steps are as follows:
  • Laser scanning powder cleaning In addition to using laser scanning to remove the pole powder active material in the groove of the metal current collector, laser scanning is also performed on the pole powder active material in the expected residual powder area and its adjacent areas. The laser in this area The scanning power is 30-80% of the laser scanning power at the groove, and 30-80% of the pole powder active material in the area is removed. The amount of removed active material is detected by measuring the thickness of the pole piece in the corresponding area;
  • Roller brushing Use a brush roller to remove the pole powder active material in the expected residual powder area.
  • the brush roller speed is 100 to 200 rpm for 3 to 5 seconds.
  • the pressure of the brush roller on the pole piece is is 0-20N;
  • the length of the expected residual powder area is 0mm-5mm, and the width of the expected residual powder area is equal to the width of the groove.
  • the length of adjacent areas of the expected residual powder area is greater than 0.5 mm and less than 3 mm.
  • the width of the brush roller is 60% to 120% of the width of the groove.
  • the present invention performs laser scanning on the pole powder active material in the expected residual powder area and its adjacent areas.
  • the pole powder active material after laser scanning remains in a fluffy state, and a roller brushing process is added to remove the powder active material.
  • the notch processing process will not cause the tabs and residual powder to overlap, and also avoid the negative impact of the notch created at the groove on the pole pieces and the battery.
  • Figure 1 is a partial schematic diagram of the slit rear pole piece
  • Figure 2 is a partial schematic diagram of the notched pole piece after slitting and processing
  • Figure 3 is a partial schematic diagram of the pole piece after welding the pole lug
  • Figure 4 is a partial schematic diagram of the pole piece after cutting and removing residual powder:
  • Figure 5 is a partial schematic diagram of the pole piece after welding the pole lug
  • Figure 6 is a partial schematic diagram of the pole piece after cleaning. (Abstract with pictures)
  • connection used in the specification and claims of the patent application of the present invention is not limited to physical or mechanical connection, but may include electrical connection. connection, whether direct or indirect. "Up”, “Down”, “Bottom”, “Left”, “Right”, etc. are only used to express relative positional relationships. When the absolute position of the described object changes, the relative positional relationship also changes accordingly.
  • This embodiment provides a method for manufacturing pole pieces of a buried tab structure lithium-ion battery.
  • the combination of laser cleaning and brush roller powder removal is used to remove the residual powder of the active material of the pole powder, which is not only effective for normal
  • the grooves are laser cleaned, and the polar powder active material in the expected residual powder area and its adjacent area is also laser scanned.
  • the polar powder active material after laser scanning remains in a fluffy state.
  • Laser scanning powder cleaning In addition to using laser scanning to remove the pole powder active material in the groove of the metal current collector, laser scanning is also performed on the pole powder active material in the expected residual powder area and its adjacent areas. The laser in this area The scanning power is 30-80% of the laser scanning power at the groove, and 30-80% of the pole powder active material in the area is removed. The amount of removed active material is detected by measuring the thickness of the pole piece in the corresponding area;
  • Roller brushing Use a brush roller to remove the pole powder active material in the expected residual powder area.
  • the brush roller speed is 100 to 200 rpm for 3 to 5 seconds.
  • the pressure of the brush roller on the pole piece is is 0-20N;
  • the preferred solution of this embodiment is that the length of the expected residual powder area is 0mm-5mm, and the width of the expected residual powder area is equal to the width of the groove.
  • a preferred solution of this embodiment is that the length of adjacent areas of the expected residual powder area is greater than 0.5 mm and less than 3 mm.
  • the preferred solution of this embodiment is that the width of the brush roller is 60% to 120% of the groove width.
  • the present invention can be implemented in the following ways:
  • the stress concentration is the area that has not been laser scanned and the boundary that passes through the laser scanned area (including grooves, expected residual powder areas and their adjacent areas).
  • the expected residual powder area and its adjacent areas will still have the pole powder after the pole piece rolling process. It is relatively fluffy and easier to remove when roller brushing is performed later.
  • the rotation speed of the brush roller can be 100 to 200 rpm and the time is 3 to 5 seconds.
  • the pressure of the brush roller on the pole piece can be 0-20N.
  • the width of the brush roller can be equal to the width of the groove.
  • the expected length of the residual powder area can be 1mm, and should be as small as possible under the conditions allowed by the equipment engineering capabilities to reduce the difficulty of removing powder by roller brush.
  • the minimum length should be >0mm. After testing, when the length is >5mm, the difficulty of roller brushing increases, and it is difficult to quickly remove residual powder; its width can be equal to the width of the groove.
  • the length of the adjacent area of the residual powder area can be 1mm to ensure that the cutting position is a certain distance from the stress center area. According to tests, when the length is less than 0.5mm, the strip is easy to break during the slitting process. When the length is > 0.5mm, it can be kept away from the stress concentration area to ensure that the strip is not frequently broken during slitting; its width can be equal to the width of the groove.
  • the width of the brush roller can be 60% to 120% of the groove width, ensuring that the width is greater than the tab width. And it cannot be too large, otherwise brushing away too much active material will reduce the capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种埋极耳结构锂离子电池的极片制造方法,其特征是:利用激光清粉与毛刷辊刷粉相结合将极粉活性物质的残粉去除,既对正常的凹槽部位激光清粉,也对预期残粉区域及其相邻区域的极粉活性物质进行激光扫描,激光扫描后的极粉活性物质保持蓬松状态。有益效果:本发明对预期残粉区域及其相邻区域的极粉活性物质进行激光扫描,激光扫描后的极粉活性物质保持蓬松状态,又增加辊刷工序,去掉加工缺口工序,既不会导致极耳和残粉重叠,也避免了凹槽处制造的缺口对极片和电池造成的负面影响。

Description

一种埋极耳结构锂离子电池的极片制造方法 技术领域
本发明属于锂电池技术领域,尤其涉及一种埋极耳结构锂离子电池的极片制造方法。
背景技术
埋极耳结构的锂电池极片加工的一般流程为:极粉活性物质涂覆、清粉(制造凹槽)、碾压、分切、加工缺口。其中清粉一般采用激光清粉或贴发泡胶除粉或刀片刮粉等几种清粉方式。清粉程序是在去除极片上表面部分极粉活性物质的同时仍要保留金属集流体。去除极粉的部分统称为“凹槽”。金属集流体上的“凹槽”用于焊接极耳。正极激光清粉是在极片的碾压前完成,导致碾压时金属集流体凹槽的厚度远远低于周围的极粉活性物质厚度,使得凹槽部位延展率低于周围的极片,延展率的差异造成凹槽与极粉活性物质的交界处形成应力。极片分切时出现在有应力的交界处频繁断带,而无法生产。为了避免分切断带,则选择沿着凹槽旁边的极粉分切,因此导致凹槽旁边会保留有一定宽度的残粉。极耳焊接时,“残粉”会与极耳重叠,造成重叠位置的局部厚度偏厚,直接影响到电池总体厚度,降低了能量密度;同时电池使用中重叠区域容易发生析锂现象,降低电池的安全性。
目前处理上述问题的方法是,在极片的残粉部位制造一个缺口,将残粉切除防止与极耳重叠。但是去除残粉制造缺口的同时,也将金属集流体切除了一部分。且这部分金属集流体位于极耳部位,其所承载的电流密度比极片其它地方的金属集流体高,则会提高电池大电流充电和放电时的电流密度,降低电池的大电流充电和放电的安全性;且缺口也会造成极耳可焊接面积的降低,导致极耳焊接可靠性降低。
发明内容
本发明的目的在于克服上述技术的不足,而提供一种埋极耳结构锂离子电池的极片制造方法,既不会导致极耳和残粉重叠,也避免了凹槽处制造的缺口对极片和电池造成的负面影响。
本发明为实现上述目的,采用以下技术方案:一种埋极耳结构锂离子电池的极片制造方法,其特征是:利用激光清粉与毛刷辊刷粉相结合将极粉活性物质的残粉去除,既对正常的凹槽部位激光清粉,也对预期残粉区域及其相邻区域的极粉活性物质进行激光扫描,激光扫描后的极粉活性物质保持蓬松状态,具体步骤如下:
1)激光扫描清粉:除利用激光扫描将金属集流体凹槽部位的极粉活性物质清除干净,同时还对预期残粉区域及其相邻区域的极粉活性物质进行激光扫描,该区域激光扫描功率是凹槽部位激光扫描功率的30~80%,并清除掉该区域30~80%的极粉活性物质,通过测量相应区域的极片厚度检测清除活性物质的数量;
2)碾压极片:极片碾压工序后预期残粉区域及其相邻区域的极粉活性物质保持蓬松状态;
3)分切:在预期残粉区域与相邻区域的交界位置进行分切;
4)辊刷:用毛刷辊对预期残粉区域的极粉活性物质进行辊刷去除,毛刷辊转速为100~200转/分,时间3~5秒,毛刷辊对极片的压力为0-20N;
5)卷绕:将极耳焊接在极片上,将胶带贴在极片上,最后将极片切断并与隔膜卷绕成为极组。之后再经过封装等工序后成为成品电池。
进一步的,所述预期残粉区域长度为0mm-5mm,预期残粉区域宽度等于凹槽宽度。
进一步的,所述预期残粉区域的相邻区域长度大于0.5mm,小于3mm。
进一步的,所述毛刷辊的宽度为凹槽宽度的60%~120%。
有益效果:与现有技术相比,本发明对预期残粉区域及其相邻区域的极粉活性物质进行激光扫描,激光扫描后的极粉活性物质保持蓬松状态,又增加辊刷工序,去掉加工缺口工序,既不会导致极耳和残粉重叠,也避免了凹槽处制造的缺口对极片和电池造成的负面影响。
附图说明
图1是分切后极片的局部示意图;
图2是分切后且加工完缺口极片的局部示意图;
图3是焊接极耳后的极片的局部示意图;
图4是分切且清除残粉后的极片的局部示意图:
图5是焊接极耳后的极片的局部示意图;
图6是清粉后的极片局部示意图。(摘要附图)
图中:1、极粉活性物质,2、金属集流体上的凹槽,3、残粉,4、缺口,5、金属极耳,6、金属极耳和金属集流体的焊接区域,7、残粉被清除后露出的金属集流体,8、残粉区域的相邻区域,9、预期的残粉部位,10、预期的残粉部位的相邻区域,11、预期的极片分切位置,12、凹槽的宽度。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施方式及实施方式中的特征可以相互组合。在下面的描述中阐述了很多具体细节以便于充分理解本发明,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。
在本发明的各实施例中,为了便于描述而非限制本发明,本发明专利申请说明书以及权利要求书中使用的术语"连接"并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。"上"、"下"、"下方"、"左"、"右"等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
详见附图,本实施例提供了一种埋极耳结构锂离子电池的极片制造方法,利用激光清粉与毛刷辊刷粉相结合将极粉活性物质的残粉去除,既对正常的凹槽部位激光清粉,也对预期残粉区域及其相邻区域的极粉活性物质进行激光扫描,激光扫描后的极粉活性物质保持蓬松状态,具体步骤如下:
1)激光扫描清粉:除利用激光扫描将金属集流体凹槽部位的极粉活性 物质清除干净,同时还对预期残粉区域及其相邻区域的极粉活性物质进行激光扫描,该区域激光扫描功率是凹槽部位激光扫描功率的30~80%,并清除掉该区域30~80%的极粉活性物质,通过测量相应区域的极片厚度检测清除活性物质的数量;
2)碾压极片:极片碾压工序后预期残粉区域及其相邻区域的极粉活性物质保持蓬松状态;
3)分切:在预期残粉区域与相邻区域的交界位置进行分切;
4)辊刷:用毛刷辊对预期残粉区域的极粉活性物质进行辊刷去除,毛刷辊转速为100~200转/分,时间3~5秒,毛刷辊对极片的压力为0-20N;
5)卷绕:将极耳焊接在极片上,将胶带贴在极片上,最后将极片切断并与隔膜卷绕成为极组。之后再经过封装等工序后成为成品电池。
本实施例的优选方案是,所述预期残粉区域长度为0mm-5mm,预期残粉区域宽度等于凹槽宽度。
本实施例的优选方案是,所述预期残粉区域的相邻区域长度大于0.5mm,小于3mm。
本实施例的优选方案是,所述毛刷辊的宽度为凹槽宽度的60%~120%
本发明可以通过如下方式进行实施:
1.使用激光扫描进行清粉,凹槽部位极粉活性物质清除干净。同时对预期残粉区域及其相邻区的极粉活性物质也进行激光扫描,但功率为凹槽部分的功率的约50%,清除大约50%的部分极粉活性物质。清除活性物质的数量可以通过测量相应区域的极片厚度来测量。
2.极片进行碾压。此时预期残粉区域及其相邻区的极粉活性物质由于被激光扫描过,厚度降低,所以基本不会受到压缩,几乎不会延展。应力集中未经激光扫描的区域和经过激光扫描区域(包括凹槽、预期残粉区域及其相邻区)的边界。
经过试验摸索,对预期残粉区域及其相邻区的激光扫描功率为凹槽部分功率的30~80%时,预期残粉区域及其相邻区在极片碾压工序后,极粉仍较为蓬松,后序进行辊刷时较容易去除。
3.分切时,从预期残粉区域及其相邻区的交界位置进行分切,此处几乎没有应力,所以不会频繁断带,分切可以正常生产。
4.用毛刷辊对残粉区域的极粉活性物质进行辊刷去除,由于该区域在极片碾压工序基本没有受到压缩,所以极粉活性物质较为蓬松,易于去除。 毛刷辊转速可以是100~200转,时间3~5秒,毛刷辊对极片的压力可以是0-20N,毛刷辊的宽度可以等于凹槽的宽度。
预期残粉区域长度可以是1mm,在设备工程能力允许的条件下尽可能的小,以降低辊刷去粉的难度,最小应>0mm。经试验长度>5mm时辊刷难度升高,不易快速清除残粉;其宽度可以等于凹槽宽度。
预期残粉区域相邻区域的长度可以是1mm,以保证分切位置离应力居中区域有一定的距离。经试验低于0.5mm时分切工序容易断带,长度>0.5mm时可以保证远离应力集中区域从而保证不在分条时频繁断带;其宽度可以等于凹槽宽度。
毛刷辊的宽度可以是凹槽宽度的60%~120%,保证宽度大于极耳宽度。且不能太大,否则刷走过多的极粉活性物质会降低容量。
上述参照实施例对一种埋极耳结构锂离子电池的极片制造方法的详细描述,是说明性的而不是限定性的,可按照所限定范围列举出若干个实施例,因此在不脱离本发明总体构思下的变化和修改,应属本发明的保护范围之内。

Claims (4)

  1. 一种埋极耳结构锂离子电池的极片制造方法,其特征是:利用激光清粉与毛刷辊刷粉相结合将极粉活性物质的残粉去除,既对正常的凹槽部位激光清粉,也对预期残粉区域及其相邻区域的极粉活性物质进行激光扫描,激光扫描后的极粉活性物质保持蓬松状态,具体步骤如下:
    1)激光扫描清粉:除利用激光扫描将金属集流体凹槽部位的极粉活性物质清除干净,同时还对预期残粉区域及其相邻区域的极粉活性物质进行激光扫描,该区域激光扫描功率是凹槽部位激光扫描功率的30~80%,并清除掉该区域30~80%的极粉活性物质,通过测量相应区域的极片厚度检测清除活性物质的数量;
    2)碾压极片:极片碾压工序后预期残粉区域及其相邻区域的极粉活性物质保持蓬松状态;
    3)分切:在预期残粉区域与相邻区域的交界位置进行分切;
    4)辊刷:用毛刷辊对预期残粉区域的极粉活性物质进行辊刷去除,毛刷辊转速为100~200转/分,时间3~5秒,毛刷辊对极片的压力为0-20N;
    5)卷绕:将极耳焊接在极片上,将胶带贴在极片上,最后将极片切断并与隔膜卷绕成极组。之后再经过封装等工序后成为成品电池。
  2. 根据权利要求1所述的一种埋极耳结构锂离子电池的极片制造方法,其特征是:所述预期残粉区域长度为0mm-5mm,预期残粉区域宽度等于凹槽宽度。
  3. 根据权利要求1所述的一种埋极耳结构锂离子电池的极片制造方法,其特征是:所述预期残粉区域的相邻区域长度大于0.5mm,小于3mm。4、
  4. 根据权利要求1所述的一种埋极耳结构锂离子电池的极片制造方法,其特征是:所述毛刷辊的宽度为凹槽宽度的60%~120%。
PCT/CN2022/101809 2022-06-23 2022-06-28 一种埋极耳结构锂离子电池的极片制造方法 WO2023245693A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210716743.3A CN115036446B (zh) 2022-06-23 2022-06-23 一种埋极耳结构锂离子电池的极片制造方法
CN202210716743.3 2022-06-23

Publications (1)

Publication Number Publication Date
WO2023245693A1 true WO2023245693A1 (zh) 2023-12-28

Family

ID=83126031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101809 WO2023245693A1 (zh) 2022-06-23 2022-06-28 一种埋极耳结构锂离子电池的极片制造方法

Country Status (3)

Country Link
US (1) US20240213434A1 (zh)
CN (1) CN115036446B (zh)
WO (1) WO2023245693A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150143049A (ko) * 2014-06-13 2015-12-23 주식회사 엘지화학 음극에 리드를 용접하는 방법, 이에 의해 제조된 배터리용 음극 및 이를 포함하는 이차전지
CN112670436A (zh) * 2020-12-17 2021-04-16 惠州市豪鹏科技有限公司 电池极片制备方法
CN113458087A (zh) * 2021-06-30 2021-10-01 惠州锂威新能源科技有限公司 一种激光清洗极片的方法
CN113644230A (zh) * 2021-09-09 2021-11-12 珠海冠宇电池股份有限公司 电池极片、电池及电池极片的制作方法
CN215902246U (zh) * 2021-06-02 2022-02-25 惠州市豪鹏科技有限公司 一种极片刷粉装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107946654A (zh) * 2017-11-17 2018-04-20 上海临仕激光科技有限公司 一种锂离子电池及其激光制造方法和激光清洗装置
CN112038565B (zh) * 2020-07-23 2022-02-08 深圳市比亚迪锂电池有限公司 极片开槽方法及装置
CN215430632U (zh) * 2020-12-29 2022-01-07 比亚迪股份有限公司 极片活性物质的清除设备
CN113972357A (zh) * 2021-09-06 2022-01-25 惠州锂威新能源科技有限公司 一种锂电池极片制备方法、极片及锂电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150143049A (ko) * 2014-06-13 2015-12-23 주식회사 엘지화학 음극에 리드를 용접하는 방법, 이에 의해 제조된 배터리용 음극 및 이를 포함하는 이차전지
CN112670436A (zh) * 2020-12-17 2021-04-16 惠州市豪鹏科技有限公司 电池极片制备方法
CN215902246U (zh) * 2021-06-02 2022-02-25 惠州市豪鹏科技有限公司 一种极片刷粉装置
CN113458087A (zh) * 2021-06-30 2021-10-01 惠州锂威新能源科技有限公司 一种激光清洗极片的方法
CN113644230A (zh) * 2021-09-09 2021-11-12 珠海冠宇电池股份有限公司 电池极片、电池及电池极片的制作方法

Also Published As

Publication number Publication date
CN115036446A (zh) 2022-09-09
US20240213434A1 (en) 2024-06-27
CN115036446B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
JP4359331B2 (ja) 二次電池および二次電池の製造方法
EP1653532B1 (en) Method for producing lithium ion secondary battery
WO2022017315A1 (zh) 极片开槽方法及装置
CN110666446A (zh) 一种锂电池极片激光制片方法
CN102017272A (zh) 非水系电池用电极组及其制造方法、以及圆筒形非水系二次电池及其制造方法
CN112670436A (zh) 电池极片制备方法
WO2022242429A1 (zh) 一种负极片及其应用
JP2007294433A (ja) 非水電解液二次電池
CN110429328A (zh) 一种改善电池内部温升的方法
WO2023245693A1 (zh) 一种埋极耳结构锂离子电池的极片制造方法
JP4179528B2 (ja) 二次電池の検査方法
JP2007018963A (ja) 非水電解液二次電池の製造方法とその製造方法で作製した非水電解液二次電池
JP5900157B2 (ja) 電池の製造方法
JP4724972B2 (ja) リチウム二次電池の検査方法
CN112397684B (zh) 一种多极耳电池极片及其制作方法
JPS636988B2 (zh)
CN113948671A (zh) 一种正极极片的制备方法及正极极片和二次电池
JP2004342591A (ja) アルカリ蓄電池とその製造法
JP7052697B2 (ja) リチウムイオン二次電池の製造方法
JP6954032B2 (ja) 非水電解質二次電池用の電極
JP5232813B2 (ja) リチウムイオン二次電池の充電方法
CN220556604U (zh) 卷芯结构、电池及镍氢电池
JP2006040880A (ja) 二次電池用電極板の製造方法及びこれを用いて製造される二次電池用電極板
CN117525617A (zh) 辊压模切分切一体机
CN102205307A (zh) 缺口式锂离子电池涂布工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947458

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022947458

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022947458

Country of ref document: EP

Effective date: 20240514