WO2023245622A1 - Zif-8材料及其制备体系、制备方法、单原子催化剂、电池隔离膜和应用 - Google Patents

Zif-8材料及其制备体系、制备方法、单原子催化剂、电池隔离膜和应用 Download PDF

Info

Publication number
WO2023245622A1
WO2023245622A1 PCT/CN2022/101142 CN2022101142W WO2023245622A1 WO 2023245622 A1 WO2023245622 A1 WO 2023245622A1 CN 2022101142 W CN2022101142 W CN 2022101142W WO 2023245622 A1 WO2023245622 A1 WO 2023245622A1
Authority
WO
WIPO (PCT)
Prior art keywords
zif
satisfies
nanoparticles
preparation
zinc
Prior art date
Application number
PCT/CN2022/101142
Other languages
English (en)
French (fr)
Inventor
梁子彬
王宇豪
林文光
张欣欣
何金华
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/101142 priority Critical patent/WO2023245622A1/zh
Publication of WO2023245622A1 publication Critical patent/WO2023245622A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material

Definitions

  • This application relates to the technical fields of metal-organic framework materials and secondary batteries, more specifically to ZIF-8 materials and their preparation systems, preparation methods, single-atom catalysts, battery isolation films and applications, as well as battery cells and electrical devices.
  • ZIF material is a metal organic framework (MOF) material.
  • ZIF material is a porous crystal material with a zeolite topology formed by complexing divalent transition metal ions with imidazole-based ligands.
  • the divalent transition metal ions involved are usually zinc ions or cobalt ions.
  • ZIF-8 materials can be obtained, which have excellent properties such as large specific surface area, high porosity, ultra-high thermal stability and chemical stability, and are widely used in gas storage, gas separation, catalytic reactions, optics, and magnetism. It has wide applications in various fields such as materials and sensing.
  • this application provides a ZIF-8 material and its preparation system, preparation method, single atom catalyst, battery isolation film and applications (including applications as materials or components for battery cells and electrical devices) , the preparation system and preparation method provided in this application adopt an unexpectedly discovered extremely low ligand dosage and extremely low water dosage scheme to prepare nanoscale ZIF-8 particles with high particle dispersion and uniform particle size.
  • the preparation system and preparation method can significantly shorten the process cycle and reduce raw material consumption.
  • this application provides a preparation system for ZIF-8 materials, which contains metal ions, ligand molecules and solvents;
  • the molar ratio of the metal ion, the ligand molecule and the solvent is 1:a:z, where 7 ⁇ a ⁇ 13, 310 ⁇ z ⁇ 600.
  • the ZIF-8 material provided in this application can provide high-quality raw materials for a variety of applications, including But it is not limited to the preparation of single-atom catalysts with high catalytic activity and the preparation of battery isolation membranes with high thermal stability.
  • a satisfies 10 ⁇ a ⁇ 12.
  • the above a is numerically equal to the ratio of the molar amount of ligands to the molar amount of zinc ions in the formulated system.
  • controlling a in an unexpectedly low numerical range allows the particle size of the prepared ZIF-8 nanoparticles to be finely controlled. to a suitable nanoscale size.
  • z satisfies 310 ⁇ z ⁇ 460;
  • z satisfies 320 ⁇ z ⁇ 450;
  • z satisfies 340 ⁇ z ⁇ 450;
  • z satisfies 340 ⁇ z ⁇ 420;
  • z satisfies 400 ⁇ z ⁇ 420.
  • the molar ratio z/a of the ligand molecule and the solvent satisfies 30 ⁇ (z/a) ⁇ 44;
  • z/a satisfies 32 ⁇ (z/a) ⁇ 40;
  • z/a satisfies 34 ⁇ (z/a) ⁇ 36;
  • z/a satisfies 34 ⁇ (z/a) ⁇ 35.
  • the above z/a is numerically equal to the ratio of the total molar amount of water to the molar amount of ligand in the preparation system.
  • controlling z/a within a suitable ratio range can regulate the particle size of ZIF-8 nanoparticles.
  • a smaller z/a value is conducive to obtaining a smaller primary particle size, and is more conducive to the preparation of high-performance single-atom catalysts and high-performance battery isolation membranes.
  • z/a should not be too small to avoid the agglomeration of primary particles and the emergence of secondary particles with larger particle sizes.
  • the zinc ions are from a soluble zinc salt
  • this application provides a method for preparing ZIF-8 material, which includes the following steps:
  • the preparation system is subjected to a coordination reaction to prepare ZIF-8 nanoparticles
  • the molar ratio of zinc ions in the preparation system to water in the zinc source solution is 1:b;
  • the molar ratio of zinc ions in the preparation system to water in the ligand solution is 1:c;
  • the molar ratio of zinc ions, the ligand molecules and water is 1:a:(b+c).
  • the preparation method of ZIF-8 material provided in this application uses the preparation system of ZIF-8 material provided in the first aspect of this application to control the relative amounts of zinc ions, ligand (2-methylimidazole) and solvent (water) in a specific Within the range, ZIF-8 materials with high particle dispersion, controllable particle size, and good particle size distribution uniformity can be produced with extremely low ligand dosage and extremely low water dosage, and can also achieve higher output and yield, suitable for large-scale production.
  • b satisfies 110 ⁇ b ⁇ 140;
  • the above b is numerically equal to the ratio of the molar amount of water to the molar amount of zinc ions in the zinc source solution.
  • b is controlled within an appropriate numerical range, so that the zinc source solution has an appropriate zinc ion concentration, so that when used with the formulation Avoid local concentration unevenness when mixing body solutions, thereby better controlling the particle size and distribution uniformity of primary particles.
  • c satisfies 220 ⁇ c ⁇ 280;
  • the reaction temperature for carrying out the coordination reaction is selected from 5°C to 30°C;
  • the reaction temperature for carrying out the coordination reaction is selected from 20°C to 30°C.
  • mixing the zinc source solution and the ligand solution includes: adding the zinc source solution to the ligand solution under stirring conditions.
  • the ZIF-8 material provided by this application has ZIF-8 nanoparticles with uniform particle size distribution.
  • the average particle size d1 of the primary particles of the ZIF-8 nanoparticles satisfies d1 ⁇ 800nm
  • the average particle size d1 of the primary particles of the ZIF-8 nanoparticles satisfies 10nm ⁇ d1 ⁇ 800nm;
  • the average particle size d1 of the primary particles of the ZIF-8 nanoparticles satisfies 10nm ⁇ d1 ⁇ 500nm;
  • the average particle size d1 of the primary particles of the ZIF-8 nanoparticles satisfies 10nm ⁇ d1 ⁇ 450nm;
  • the average particle size d1 of the primary particles of the ZIF-8 nanoparticles satisfies 10nm ⁇ d1 ⁇ 300nm;
  • the average particle size d1 of the primary particles of the ZIF-8 nanoparticles satisfies 10nm ⁇ d1 ⁇ 250nm;
  • the average particle size d1 of the primary particles of the ZIF-8 nanoparticles satisfies 10nm ⁇ d1 ⁇ 200nm.
  • the primary particle single crystal size of the ZIF-8 nanoparticles in the ZIF-8 material provided by this application is at the nanometer scale, and the particle size is controllable.
  • the D v 90 of the ZIF-8 nanoparticles is ⁇ 10 nm;
  • the Dv of the ZIF-8 nanoparticles is 90 ⁇ 4500nm;
  • the Dv of the ZIF-8 nanoparticles is 90 ⁇ 4500nm;
  • the Dv of the ZIF-8 nanoparticles is 90 ⁇ 2000nm;
  • the Dv of the ZIF-8 nanoparticles is 90 ⁇ 1000nm;
  • the Dv of the ZIF-8 nanoparticles is 90 ⁇ 800nm;
  • the Dv of the ZIF-8 nanoparticles is 90 ⁇ 650nm;
  • the Dv of the ZIF-8 nanoparticles is 90 ⁇ 600nm;
  • the ZIF-8 nanoparticles have D v 90 ⁇ 550 nm;
  • the D v 50 of the ZIF-8 nanoparticles satisfies 50 nm ⁇ D v 50 ⁇ 3000 nm;
  • the D v 50 of the ZIF-8 nanoparticles satisfies 50 nm ⁇ D v 50 ⁇ 2000 nm;
  • the D v 50 of the ZIF-8 nanoparticles satisfies 50 nm ⁇ D v 50 ⁇ 1500 nm;
  • the D v 50 of the ZIF-8 nanoparticles satisfies 50 nm ⁇ D v 50 ⁇ 1000 nm;
  • the D v 50 of the ZIF-8 nanoparticles satisfies 50 nm ⁇ D v 50 ⁇ 800 nm;
  • the D v 50 of the ZIF-8 nanoparticles satisfies 50 nm ⁇ D v 50 ⁇ 650 nm;
  • the D v 50 of the ZIF-8 nanoparticles satisfies 50 nm ⁇ D v 50 ⁇ 600 nm;
  • the ZIF-8 nanoparticles in the ZIF-8 material provided by this application have an ideal average particle size, which is neither too large to adversely affect applications such as the preparation of high-performance single-atom catalysts and high-performance battery isolation membranes, nor Not too small to be prone to reunions.
  • the ZIF-8 nanoparticles have D v 10 ⁇ 10 nm;
  • the D v 10 of the ZIF-8 nanoparticles satisfies 10 nm ⁇ D v 10 ⁇ 700 nm;
  • the D v 10 of the ZIF-8 nanoparticles satisfies 10 nm ⁇ D v 10 ⁇ 500 nm;
  • the ZIF-8 material sacrificial precursor is mixed with the metal salt solution, solid-liquid separation is carried out, the solid phase is collected, and dried to obtain a metal salt-loaded ZIF-8 material; wherein, the ZIF-8 material sacrificial precursor includes the first one of the present application.
  • the metal salt-loaded ZIF-8 material is calcined in an inert gas atmosphere and cooled to prepare a ZIF-8 derived single atom catalyst.
  • the single atom metal site type of the ZIF-8 derived single atom catalyst is selected from MN Any of 4 -C, MN 3 -C, MN 2 -C and MN 1 -C.
  • the ZIF-8 nanoparticles in the ZIF-8 material prepared (second aspect) or provided (third aspect) in the present application are 2-methylimidazole zinc ZIF-8 nanoparticles, and their primary particle size is small, and the particle size It is evenly distributed and can adsorb more metal sites as a sacrificial precursor, so that the resulting carbon-based single-atom catalyst has a higher metal content and a higher catalytic site density, which is more conducive to improving catalytic activity. Furthermore, the primary particles of the obtained carbon-based single atom catalyst can inherit the morphology and particle size of the ZIF-8 precursor, so that the catalytic sites of the prepared carbon-based single atom catalyst can be better exposed to the reactants and solvents, giving its higher catalytic activity.
  • the solvent in the metal salt solution includes one or more of methanol, ethanol, water and N,N-dimethylformamide.
  • the temperature for mixing the ZIF-8 material sacrificial precursor and the metal salt solution is selected from 10°C to 60°C, preferably, the mixing time is selected from 1h to 12h, and preferably, the mixing time is selected from 2h ⁇ 6h;
  • the drying temperature is selected from 95°C to 105°C, and preferably, the drying time is selected from 5h to 10h;
  • the inert gas atmosphere is selected from a nitrogen atmosphere or an argon atmosphere;
  • the heating rate is selected from 4°C/min to 6°C/min;
  • the holding time is selected from 1.5h to 2.5h;
  • the cooling method is furnace cooling
  • the temperature is cooled to 4°C to 40°C.
  • the average particle size d2 of the primary particles of the ZIF-8 derived single atom catalyst satisfies 5 nm ⁇ d2 ⁇ 700 nm.
  • ZIF-8 material prepared (second aspect) or provided (third aspect) in the present application as a sacrificial precursor, and further comprehensively regulating the process parameters such as metal salt type, solvent type, reaction temperature, etc. in the reaction system ZIF can be
  • the average particle size d2 of the primary particles of the -8-derived single-atom catalyst is controlled at an appropriate nanometer scale, so that the ZIF-8-derived single-atom catalyst has higher metal content, higher catalytic site density, and higher catalytic activity .
  • the present application provides a single atom catalyst, which is prepared according to the preparation method described in the fourth aspect of the present application.
  • the single atom catalyst provided is a ZIF-8 derived single atom catalyst. Its primary particles have suitable nanoscale, controllable particle size, and good particle size distribution uniformity. Furthermore, it has high metal content and high catalytic site density. High catalytic activity.
  • the present application provides a battery isolation membrane, which includes a porous substrate and a porous coating disposed on at least one surface of the porous substrate.
  • the porous coating includes the method described in the second aspect of the present application.
  • the ZIF-8 material prepared by the preparation method or the ZIF-8 material described in the third aspect of this application.
  • the component of the inorganic particles includes one or more of the following group: boehmite, molecular sieve, zeolite, alumina, aluminum oxyhydroxide, silicon dioxide, aluminum nitride, silicon carbide, magnesium oxide, oxide Calcium, zinc oxide, zirconium dioxide, titanium dioxide.
  • the thickness of the porous coating is selected from 0.5 ⁇ m to 12 ⁇ m.
  • ZIF-8 nanoparticles with small primary particles and uniform particle size distribution can be evenly coated on the isolation film The surface can effectively suppress the thermal shrinkage of the isolation film at a low coating thickness; the isolation film obtained also has good electrolyte wettability and good electrolyte retention rate; the isolation film is used to prepare lithium ions When used as a battery, the battery has low expansion rate, good rate performance, good cycle performance and high safety.
  • this application provides ZIF-8 materials prepared by the preparation method described in the second aspect of this application or ZIF-8 materials described in the third aspect of this application in the preparation of carbon-based single atom catalysts or lithium ion battery isolation Applications in membranes.
  • the primary particles of ZIF-8 nanoparticles have small particle size, uniform particle size distribution, and good particle dispersion;
  • the ZIF-8 When the material is used to prepare carbon-based single atom catalysts, it has high metal content, high catalytic site density, and high catalytic activity; when the ZIF-8 material is used to prepare lithium-ion battery isolation membranes, it can be evenly distributed with a suitable surface density.
  • the surface of the isolation film can effectively suppress the thermal shrinkage of the isolation film at a low coating thickness.
  • the obtained isolation film also has good electrolyte wettability and good electrolyte retention rate.
  • the present application provides a battery cell, which includes a stacked positive electrode sheet, a battery isolation film as described in the sixth aspect of the present application, and a negative electrode sheet.
  • the battery isolation film is disposed on the negative electrode sheet. and between the positive electrode pieces.
  • the battery cell When the battery isolation film provided in the sixth aspect of the present application is used to prepare a lithium-ion battery, the battery cell has a low battery expansion rate, good rate performance, good cycle performance, and high safety.
  • the present application provides an electrical device, which includes the battery cell described in the eighth aspect of the present application.
  • Utilizing the battery cell power backup device provided in the eighth aspect of this application can have significant advantages such as fast charging, long battery life, long service life, and high safety.
  • Figure 2 is a particle size distribution diagram of nanoparticles in the ZIF-8 material in an embodiment of the present application.
  • the abscissa is the particle size ( ⁇ m), and the ordinate is the volume percentage (%);
  • Figure 3 is the XRD spectrum of the ZIF-8 material prepared in one embodiment of the present application.
  • the abscissa is the 2 ⁇ diffraction angle (unit: °), and the ordinate is the diffraction peak intensity;
  • Figure 4 is an atomic-level resolution HAADF-STEM image of a ZIF-8-derived single-atom catalyst in an embodiment of the present application, in which the circles circle some single-atom sites;
  • Figure 5 is an SEM image of ZIF-8 nanoparticles used to prepare a ZIF-8 derived single atom catalyst in an embodiment of the present application (left), and a morphology image of the ZIF-8 derived single atom catalyst (right);
  • Figure 6 is an oxygen reduction test chart of a ZIF-8 derived single atom catalyst in an embodiment of the present application, in which the abscissa axis is the potential (V relative to RHE), and the ordinate axis is the current density;
  • Figure 9 is a schematic diagram of a battery cell according to an embodiment of the present application.
  • the numerical range “a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range “0-5" means that all real numbers between "0-5" have been listed in this article, and "0-5" is just an abbreviation of these numerical combinations.
  • a certain parameter is an integer ⁇ 2
  • condition "A or B” is satisfied by any of the following conditions: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; Or both A and B are true (or exist).
  • references to “multiple”, “multiple”, “multiple”, etc. in this application refer to the number being greater than 2 or equal to 2 unless otherwise specified. For example, “one or more” means one or more than two.
  • wt%, % (w/w), % (w/v), and % (v/v) all represent percentage concentrations, and have the following meanings respectively. If there is no special explanation, it refers to the volume percentage (v/v) for the gas-gas mixture, the mass percentage (wt%) for the solid-solid phase mixture, and the volume percentage (v/v) for the liquid-liquid mixture. , for solid-liquid mixtures, it refers to mass percentage wt% or % (w/w) or mass volume percentage (w/v).
  • % (w/v) means mass volume percentage, which means the ratio of mass to volume when a given mass of a certain substance is mixed with a given volume of a certain liquid substance, and is described in the form of a percentage. For example, if substance A with mass m 1 (unit g) and liquid substance B with volume v 2 (unit mL) are mixed, the mass volume percentage of substance A relative to substance B is (m 1 /v 2 ) ⁇ 100% , for example, a 5% (w/v) aqueous solution of substance A represents the corresponding percentage concentration when 5 grams of substance A is mixed with a volume of 100 ml of water.
  • % (v/v) means volume percentage, which means the ratio of volume to volume when a given volume of a substance is mixed with a given volume of another substance, described in the form of a percentage, for example, When substance A with a volume of v 1 and liquid substance B with a volume of v 2 are mixed, the volume percentage of substance A relative to substance B is (v 1 /v 2 ) ⁇ 100%. Substance A and substance B here are usually both liquid or both gaseous.
  • the common method for synthesizing nanoscale ZIF-8 particles with relatively uniform particles is the co-precipitation method using methanol or water as the solvent.
  • the principle is to add a ligand (2-methylimidazole) and a molar amount far exceeding that of zinc ions.
  • Solvent methanol or water
  • some special additives such as polyethylene glycol, surfactant, etc.
  • the complex is generated and the generated complex is precipitated from the solution. After solid-liquid separation and other processing steps, the ZIF-8 material can be obtained.
  • this application provides a preparation system for ZIF-8 materials, which includes metal ions, ligand molecules and solvents; wherein, the metal ions are zinc ions, and the ligand molecules
  • the bulk molecule is 2-methylimidazole, and the solvent is water; in this preparation system, the amount of ligand (2-methylimidazole) and solvent (water) used are much lower than those used in traditional design principles, and it can still be prepared ZIF-8 nanoparticles have high particle dispersion, controllable particle size, and good particle size distribution uniformity.
  • This preparation system can significantly reduce raw material consumption and shorten the process cycle.
  • the term "preparation system of ZIF-8 materials” refers to a reaction system composed of raw materials for preparing ZIF-8 materials.
  • the ZIF-8 materials of this application can be prepared by utilizing each substance contained in the reaction system.
  • “raw materials for preparing ZIF-8 materials” include reaction raw materials that directly participate in coordination reactions, and also include substances that provide a reaction environment for ligand reactions.
  • “reaction raw materials that directly participate in coordination reactions” are metal ions and ligands.
  • “substances that provide a reaction environment for ligand reactions” include at least solvents.
  • Each substance provided in the reaction system can be a composition mixed in the same container, but the storage conditions are allowed to be controlled to avoid the coordination reaction; it can also be provided in advance in multiple containers independently or in free combination, and used
  • the substance that provides the metal ion (metal salt), the ligand molecule and the solvent can be pre-placed in different containers.
  • the metal salt and the solvent are also allowed to be pre-combined and placed in one container, and the ligands are also allowed.
  • the molecules and solvent are pre-assembled in a container.
  • the aforementioned related substances should be provided. When related substances are mixed according to a preset amount, a coordination reaction will occur between metal ions and ligand molecules, and the metal ions and ligand molecules will be consumed while generating complexes.
  • the present application provides a preparation system for ZIF-8 materials, which includes metal ions, ligand molecules and solvents;
  • the metal ion is zinc ion
  • the ligand molecule is 2-methylimidazole
  • the solvent is water
  • the molar ratio of the metal ion, the ligand molecule and the solvent is 1:a:z, where 7 ⁇ a ⁇ 13, 310 ⁇ z ⁇ 600.
  • ZIF-8 has certain stability in terms of crystal phase structure, pore diameter, cage diameter, BET specific surface area (specific surface area measured by BET method), pore volume, etc.
  • a typical ZIF-8 has a zeolite topology with a pore diameter of 0.34 nm, a cage diameter of 1.2 nm, a BET specific surface area of >1000 m 2 /g, and a pore volume of 0.66 cm 3 /g.
  • the ZIF-8 material provided by this application has high dispersion of ZIF-8 nanoparticles, controllable particle size, and good particle size distribution uniformity. Therefore, the ZIF-8 material provided by this application can be used in various applications. Providing high-quality raw materials, including but not limited to the preparation of single-atom catalysts with high catalytic activity and the preparation of battery isolation membranes with high thermal stability.
  • Parameter a numerically equal to the ratio of the molar amount of ligand to the molar amount of zinc ions in the prepared system. The smaller the value of a, the smaller the amount of ligand used; conversely, the larger the value of a, the more amount of ligand is used. In traditional aqueous systems, a is usually greater than 20.
  • a satisfies 9 ⁇ a ⁇ 12.
  • a satisfies 10 ⁇ a ⁇ 12.
  • a can also be selected from any one of the following values or an interval composed of any two values: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9, 9.2, 9.4, 9.5 , 9.6, 9.8, 10, 10.2, 10.4, 10.5, 10.6, 10.8, 11, 11.2, 11.4, 11.5, 11.6, 11.8, 11.9, etc.
  • the particle size of the prepared ZIF-8 nanoparticles can be finely controlled so that it has a suitable nanoscale size.
  • the value of a is too small, it will easily lead to larger size of ZIF-8 nanoparticles.
  • Parameter z numerically equal to the ratio of the total molar amount of water to the molar amount of zinc ions in the prepared system. The smaller the z value, the less water is used; conversely, the larger the z value is, the more water is used. In traditional aqueous systems, z is usually greater than 1000.
  • z satisfies 310 ⁇ z ⁇ 460.
  • z satisfies 340 ⁇ z ⁇ 450.
  • z/a satisfies 32 ⁇ (z/a) ⁇ 40.
  • z/a satisfies 34 ⁇ (z/a) ⁇ 35.
  • soluble zinc salt refers to a zinc salt that is soluble in water.
  • the soluble zinc salt is zinc acetate.
  • the soluble zinc salt is zinc nitrate.
  • Soluble zinc salts can be used to provide zinc ions, which can further undergo coordination reactions with the ligand 2-methylimidazole to generate ZIF-8 nanoparticles, namely 2-methylimidazole zinc ZIF-8 nanoparticles.
  • the preparation system is subjected to a coordination reaction to prepare ZIF-8 nanoparticles
  • the molar ratio of zinc ions in the preparation system to water in the zinc source solution is 1:b;
  • the preparation method of ZIF-8 material provided in this application uses the preparation system of ZIF-8 material provided in the first aspect of this application to control the relative amounts of zinc ions, ligand (2-methylimidazole) and solvent (water) in a specific Within the range, ZIF-8 materials with high particle dispersion, controllable particle size, and uniform particle size distribution can be produced with extremely low ligand dosage and extremely low water dosage.
  • the raw material consumption is reduced and the need for processing is reduced.
  • the amount of solvent and excess ligands is reduced by orders of magnitude, thereby greatly shortening the process cycle and significantly reducing production costs. It can also achieve higher output and yield, which is suitable for large-scale production.
  • b satisfies 100 ⁇ b ⁇ 150.
  • b satisfies 110 ⁇ b ⁇ 140.
  • Parameter c numerically equal to the ratio of the molar amount of water in the ligand solution to the molar amount of zinc ions in the zinc source solution.
  • c satisfies 200 ⁇ c ⁇ 300.
  • c satisfies 220 ⁇ c ⁇ 280.
  • c satisfies 250 ⁇ c ⁇ 280.
  • c can also be selected from any one of the following values or an interval composed of any two values: 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 175, 180, 185 ,190,195,200,205,206,208,210,215,220,222,224,225,226,228,230,235,240,245,250,255,260,265,270,274,275 , 280, 285, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, etc.
  • the reaction temperature for performing the coordination reaction on the preparation system is selected from 5°C to 40°C.
  • the reaction temperature for performing the coordination reaction is selected from 5°C to 37°C.
  • the reaction temperature for performing the coordination reaction is selected from 5°C to 30°C.
  • the reaction temperature for performing the coordination reaction is selected from 15°C to 40°C.
  • the reaction temperature for performing the coordination reaction is selected from 15°C to 35°C.
  • the reaction temperature for performing the coordination reaction is selected from 20°C to 30°C.
  • the reaction temperature for performing the coordination reaction can also be selected from any one of the following temperatures or a temperature range consisting of any two temperatures: 5°C, 6°C, 7°C, 8°C, 9°C, 10°C °C, 12°C, 15°C, 16°C, 18°C, 20°C, 21°C, 22°C, 23°C, 24°C, 25°C, 26°C, 27°C, 28°C, 29°C, 30°C, 31°C, 32°C, 33°C, 34°C, 35°C, 36°C, 37°C, 38°C, 39°C, 40°C, etc.
  • the reaction temperature for performing the coordination reaction can also be selected from 5°C to 20°C, 10°C to 20°C, 5°C to 26°C, 10°C to 26°C, 15°C to 26°C, 16°C °C ⁇ 26°C, 15°C ⁇ 25°C, 10°C ⁇ 25°C, 20°C ⁇ 35°C, etc.
  • the reaction time for performing the coordination reaction on the preparation system is selected from 3h to 30h.
  • the reaction time for performing the coordination reaction is selected from 12h to 24h.
  • the reaction time for performing the coordination reaction can also be selected from any one of the following time lengths or an interval consisting of any two time lengths: 3h, 4h, 5h, 6h, 7h, 8h, 9h, 10h, 12h , 14h, 15h, 16h, 18h, 20h, 22h, 24h, 26h, 28h, 30h, etc.
  • the reaction is carried out overnight (eg, 12h to 18h).
  • the reaction time for performing the coordination reaction can also be selected from 4h to 24h, 4h to 18h, 4h to 16h, etc.
  • the reaction temperature of the coordination reaction By adjusting the reaction temperature of the coordination reaction, the primary particle size of ZIF-8 nanoparticles can be affected. When the reaction temperature is higher, the size of the primary particles is generally larger; when the reaction temperature is too high, agglomeration of the primary particles easily occurs; if the reaction temperature is low, the reaction rate will slow down. Furthermore, the reaction time of the coordination reaction can be adjusted in combination with the reaction temperature, which not only ensures the full progress of the coordination reaction, but also avoids the agglomeration of primary particles.
  • mixing the zinc source solution and the ligand solution includes: adding the zinc source solution to the ligand solution under stirring conditions.
  • the stirring conditions include: the stirring speed is selected from 200 rpm to 800 rpm.
  • the stirring speed can be selected from the range of any one of the following stirring speeds or any two stirring speeds: 200rpm, 250rpm, 300rpm, 350rpm, 400rpm, 450rpm, 500rpm, 550rpm, 600rpm, 650rpm, 700rpm, 750rpm, 800rpm.
  • the zinc source solution should be added at a rate that is more conducive to the dispersion of the reactants and will not cause excessive local concentration.
  • mixing the zinc source solution and the ligand solution includes: adding the ligand solution to the zinc source solution under stirring conditions.
  • the stirring conditions include: the stirring speed is selected from 200 rpm to 800 rpm.
  • the stirring speed can be selected from the range of any one of the following stirring speeds or any two stirring speeds: 200rpm, 250rpm, 300rpm, 350rpm, 400rpm, 450rpm, 500rpm, 550rpm, 600rpm, 650rpm, 700rpm, 750rpm, 800rpm.
  • the addition speed of the ligand solution should be more conducive to the dispersion of the reactants and will not cause excessive local concentration.
  • Mixing the zinc source solution and the ligand solution under stirring conditions can make the reactants more uniformly dispersed in the system compared to direct mixing, and avoid local primary particle agglomeration caused by excessive local concentration of reactants.
  • the reactants in the system can be mixed evenly and fully, and the excessive local shear force that may cause the agglomeration of primary particles can be avoided.
  • the present application provides a ZIF-8 material, which can be prepared by the preparation method in the second aspect.
  • the ZIF-8 nanoparticles in the ZIF-8 material have nanometer scale, small particle size, good uniformity of particle size distribution, good particle dispersion, and no or little agglomeration of primary particles.
  • (D v 90 - D v 10) ⁇ 3500 nm.
  • (D v 90 - D v 10) ⁇ 1500 nm.
  • (D v 90 - D v 10) ⁇ 1000 nm.
  • (D v 90 - D v 10) ⁇ 500 nm.
  • (D v 90 - D v 10) ⁇ 350 nm.
  • (D v 90 - D v 10) ⁇ 300 nm.
  • the volume cumulative distribution particle diameters D v 90, D v 50, D v 10, etc. can be used to characterize the particle size of ZIF-8 nanoparticles.
  • Dv90 refers to the particle size corresponding to when the cumulative volume distribution percentage of particles reaches 90%
  • Dv50 refers to the particle size corresponding to the cumulative volume distribution percentage of particles reaches 50%
  • Dv10 refers to the particle diameter corresponding to the cumulative volume distribution percentage of particles reaches 50%.
  • D v 90, D v 50, and D v 10 can be respectively obtained from the volume cumulative distribution curve of the particle size. If there is no other explanation, the volume cumulative distribution curve is accumulated from zero on the small particle size side.
  • D v 90, D v 50, and D v 10 can use instruments and methods known in the art for measurement.
  • the ZIF-8 material provided by this application has ZIF-8 nanoparticles with uniform particle size distribution.
  • the ZIF-8 nanoparticles provided in this application can be formed by agglomeration of multiple primary particles.
  • the average particle size d1 of the primary particles of the ZIF-8 nanoparticles satisfies d1 ⁇ 800 nm.
  • the average particle size d1 of the primary particles of the ZIF-8 nanoparticles satisfies any one of the following conditions: 10nm ⁇ d1 ⁇ 800nm, 10nm ⁇ d1 ⁇ 500nm, 10nm ⁇ d1 ⁇ 480nm, 10nm ⁇ d1 ⁇ 450nm, 10nm ⁇ d1 ⁇ 300nm, 10nm ⁇ d1 ⁇ 250nm, 10nm ⁇ d1 ⁇ 200nm, etc.
  • the average particle diameter d1 of the primary particles of the ZIF-8 nanoparticles is selected from any one of the following values or the interval between any two values: 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 5 50nm, 600nm, 650nm, 700nm, 750nm, 800nm, etc.
  • the average particle size d1 of the primary particles of the ZIF-8 nanoparticles can also meet any of the following conditions: 50nm ⁇ d1 ⁇ 800nm, 50nm ⁇ d1 ⁇ 500nm, 50nm ⁇ d1 ⁇ 480nm, 50nm ⁇ d1 ⁇ 450nm, 50nm ⁇ d1 ⁇ 300nm, 50nm ⁇ d1 ⁇ 250nm, 50nm ⁇ d1 ⁇ 200nm, etc.
  • primary particles and “secondary particles” are terms well known in the art.
  • Primary particles refers to single crystal grains.
  • Secondary particles refers to particles in an agglomerated state formed by the aggregation of two or more primary particles. Primary particles and secondary particles can be easily distinguished by taking SEM images using a scanning electron microscope.
  • the primary particle single crystal size of the ZIF-8 nanoparticles in the ZIF-8 material provided by this application is at the nanometer scale, and the particle size is controllable.
  • the ZIF-8 nanoparticles have a D v 90 ⁇ 10 nm.
  • the ZIF-8 nanoparticles have D v 90 ⁇ 4500 nm.
  • the ZIF-8 nanoparticles have D v 90 ⁇ 4500 nm.
  • the ZIF-8 nanoparticles have D v 90 ⁇ 1500 nm.
  • the ZIF-8 nanoparticles have D v 90 ⁇ 800 nm.
  • the ZIF-8 nanoparticles have D v 90 ⁇ 650 nm.
  • the ZIF-8 nanoparticles have D v 90 ⁇ 600 nm.
  • the ZIF-8 nanoparticles have D v 90 ⁇ 550 nm.
  • the ZIF-8 nanoparticles have D v 90 ⁇ 500 nm.
  • the D v 90 of the ZIF-8 nanoparticles may be less than or equal to any of the following particle size distribution widths: 400 nm, 420 nm, 440 nm, 450 nm, 460 nm, 480 nm, 500 nm, 550 nm, 600 nm, 650 nm, 700nm, 750nm, 800nm, 850nm, 900nm, 950nm, 1000nm, etc. Further, in some embodiments, the D v 90 of the ZIF-8 nanoparticles can be greater than or equal to any of the following particle size distribution widths: 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, etc.
  • the distribution range of ZIF-8 nanoparticles in the ZIF-8 material provided by this application is narrow, and 90% of the volume of nanoparticles are within the controllable nanoscale.
  • the D v 50 of the ZIF-8 nanoparticles can meet any of the following conditions: 50 nm ⁇ D v 50 ⁇ 3000 nm, 50 nm ⁇ D v 50 ⁇ 2000 nm, 50 nm ⁇ D v 50 ⁇ 1500 nm, 50 nm ⁇ Dv 50 ⁇ 1000nm, 50nm ⁇ Dv 50 ⁇ 800nm, 50nm ⁇ Dv 50 ⁇ 650nm , 50nm ⁇ Dv 50 ⁇ 600nm , 50nm ⁇ Dv 50 ⁇ 550nm , 50nm ⁇ Dv 50 ⁇ 500nm, etc.
  • the D v 50 of the ZIF-8 nanoparticles may be less than or equal to any of the following particle size distribution widths: 300 nm, 310 nm, 320 nm, 330 nm, 340 nm, 350 nm, 360 nm, 380 nm, 400 nm, 420 nm , 440nm, 450nm, 460nm, 480nm, 500nm, 550nm, 600nm, 650nm, 700nm, 750nm, 800nm, 850nm, 900nm, 950nm, etc.
  • the D v 50 of the ZIF-8 nanoparticles can be greater than or equal to any of the following particle size distribution widths: 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, etc.
  • the ZIF-8 nanoparticles in the ZIF-8 material provided by this application have an ideal average particle size, which is neither too large to adversely affect applications such as the preparation of high-performance single-atom catalysts and high-performance battery isolation membranes, nor Not too small to be prone to reunions.
  • the D v 10 of the ZIF-8 nanoparticles can meet any of the following conditions: 10 nm ⁇ D v 10 ⁇ 800 nm, 10 nm ⁇ D v 10 ⁇ 700 nm, 10 nm ⁇ D v 10 ⁇ 500 nm, 10 nm ⁇ Dv 10 ⁇ 350nm , 10nm ⁇ Dv 10 ⁇ 300nm , 10nm ⁇ Dv 10 ⁇ 250nm, etc.
  • the D v 10 of the ZIF-8 nanoparticles may be less than or equal to any of the following particle size distribution widths: 200 nm, 210 nm, 220 nm, 240 nm, 250 nm, 260 nm, 280 nm, 300 nm, 320 nm, 340 nm, 350nm, 360nm, 380nm, 400nm, 420nm, 440nm, 450nm, 460nm, 480nm, 500nm, 550nm, 600nm, 650nm, 700nm, etc.
  • this application provides a method for preparing a single atom catalyst, which includes the following steps S410 and S420:
  • S410 Mix the sacrificial precursor of the ZIF-8 material with the metal salt solution, separate the solid and liquid, collect the solid phase, and dry it to prepare the ZIF-8 material carrying the metal salt; wherein the sacrificial precursor of the ZIF-8 material includes the present invention.
  • ZIF-8 material carrying metal salt is calcined in an inert gas atmosphere and cooled to prepare a ZIF-8 derived single atom catalyst.
  • the type of single atom metal site of the ZIF-8 derived single atom catalyst is selected. From any one of MN 4 -C, MN 3 -C, MN 2 -C and MN 1 -C.
  • the ZIF-8 nanoparticles in the ZIF-8 material prepared (second aspect) or provided (third aspect) in the present application are 2-methylimidazole zinc ZIF-8 nanoparticles, and their primary particle size is small, and the particle size It is evenly distributed and can adsorb more metal sites as a sacrificial precursor, so that the resulting carbon-based single-atom catalyst has a higher metal content and a higher catalytic site density, which is more conducive to improving catalytic activity. Furthermore, the primary particles of the obtained carbon-based single atom catalyst can inherit the morphology and particle size of the ZIF-8 precursor, so that the catalytic sites of the prepared carbon-based single atom catalyst can be better exposed to the reactants and solvents, giving its higher catalytic activity.
  • the dosage ratio of the ZIF-8 material sacrificial precursor to the metal salt solution can make appropriate selections based on the type of single-atom metal sites.
  • single-atom metal site types such as MN 4 -C, MN 3 -C, MN 2 -C and MN 1 -C
  • the metal element M comes from the metal salt in the metal salt solution
  • the nitrogen element N comes from the ZIF-8 material ligand.
  • the appropriate raw material dosage ratio can be selected according to the needs of the type of single-atom metal sites.
  • the solvent in the metal salt solution includes one or more of methanol, ethanol, water, N,N-dimethylformamide, and the like.
  • the drying temperature is selected from 95°C to 105°C.
  • the drying temperature can also be selected from the range of any one of the following temperatures or any two temperatures: 95°C, 96°C, 97°C, 98°C, 99°C, 100°C, 101°C, 102°C, 103°C, 104°C, 105°C etc.
  • the drying time is selected from 5h to 10h.
  • Non-limiting examples of drying time include 5h, 6h, 7h, 8h, 9h, 10h, etc.
  • the drying temperature is selected from 95°C to 105°C, and in some embodiments, the drying time is selected from 5h to 10h.
  • the metal salt-loaded ZIF-8 material is calcined in an inert gas atmosphere
  • the step of cooling includes: heating the metal salt-loaded ZIF-8 material to calcination under an inert gas atmosphere. Temperature, insulation, cooling.
  • the inert gas atmosphere is selected from a nitrogen atmosphere or an argon atmosphere.
  • the heating rate is selected from 4°C/min to 6°C/min.
  • Non-limiting examples include 4°C/min, 4.5°C/min, 5°C/min, 5.5°C/min, 6°C/min, etc.
  • the calcination temperature is selected from 880°C to 920°C.
  • Non-limiting examples include 880°C, 890°C, 900°C, 910°C, 920°C, and the like.
  • the holding time is selected from 1.5h to 2.5h.
  • Non-limiting examples include 1.5h, 2h, 2.5h, etc.
  • the cooling method is furnace cooling.
  • cooling is performed to 4°C to 40°C.
  • Non-limiting examples include 4°C, 5°C, 6°C, 8°C, 10°C, 15°C, 20°C, 25°C, 30°C, 35°C, 40°C, and the like.
  • the average particle size d2 of the primary particles of the ZIF-8 derived single atom catalyst satisfies 5 nm ⁇ d2 ⁇ 700 nm.
  • the average particle diameter d2 of the primary particles of the ZIF-8 derived single atom catalyst is selected from the range of any one of the following values or two values: 5nm, 10nm, 20nm, 30nm, 40nm, 50nm, 60nm, 70nm, 80nm, 90nm, 100nm, 150nm, 200nm, 250nm, 300nm, 350nm, 400nm, 450nm, 500nm, 550nm, 600nm, 650nm, 700nm, etc.
  • ZIF-8 material prepared (second aspect) or provided (third aspect) in the present application as a sacrificial precursor, and further comprehensively regulating the process parameters such as metal salt type, solvent type, reaction temperature, etc. in the reaction system ZIF can be
  • the average particle size d2 of the primary particles of the -8-derived single-atom catalyst is controlled at an appropriate nanometer scale, so that the ZIF-8-derived single-atom catalyst has higher metal content, higher catalytic site density, and higher catalytic activity .
  • the single-atom catalyst prepared is a carbon-based single-atom catalyst.
  • the starting potential of the prepared carbon-based single atom catalyst at 1600 rpm is selected from 1V to 1.1V, for example, 1.02V, 1.04V, 1.05V, 1.06V, 1.08V, etc.
  • the limiting current of the prepared carbon-based single atom catalyst at 1600 rpm is selected from -5mA/cm 2 ⁇ -6mA/cm 2 , for example -5.2mA/cm 2 , -5.4mA/cm 2 , - 5.5mA/cm 2 , -5.6mA/cm 2 , -5.8mA/cm 2 etc.
  • the half-wave potential of the prepared carbon-based single atom catalyst at 1600 rpm is selected from 0.85V to 0.95V, for example, 0.89V, 0.9V, and 0.91V.
  • the present application provides a single atom catalyst, which is prepared according to the preparation method described in the fourth aspect of the present application.
  • the single atom catalyst is a carbon-based single atom catalyst.
  • the single atom catalyst provided is a ZIF-8 derived single atom catalyst. Its primary particles have suitable nanoscale, controllable particle size, and uniform particle size distribution. Furthermore, it has high metal content, high catalytic site density, and high catalytic activity. high.
  • the present application provides a battery isolation membrane, which includes a porous substrate and a porous coating (also noted as ZIF-8 coating) disposed on at least one surface of the porous substrate.
  • the porous coating includes the ZIF-8 material prepared by the preparation method described in the second aspect of the application or the ZIF-8 material described in the third aspect of the application.
  • ZIF-8 nanoparticles with small primary particles and uniform particle size distribution can be evenly coated on the isolation film Surface, at this time, the surface of the isolation film is evenly covered with the aforementioned ZIF-8 material.
  • This isolation film can effectively suppress the thermal shrinkage of the isolation film at a low coating thickness; the obtained isolation film also has better Electrolyte wettability and good electrolyte retention rate; when using this isolation film to prepare lithium-ion batteries, the battery expansion rate is low, the rate performance is good, the cycle performance is good, and the safety is high.
  • isolation film and “separator” used in this application refer to battery isolation films.
  • the weight percentage of the ZIF-8 material in the porous coating is selected from 40% to 90%.
  • the weight percentage of the ZIF-8 material in the porous coating can also be selected from the following range of any one percentage or any two percentages: 40%, 45%, 50%, 55%, 60 %, 65%, 70%, 75%, 80%, 85%, 90%, etc.
  • the weight percentage of the ZIF-8 material in the porous coating can also be selected from 80% to 90%, 84% to 86%, etc.
  • the content of ZIF-8 material in the porous coating affects the thermal stability and lithium ion transmission rate of the composite separator. By controlling the content of ZIF-8 material in the porous coating, higher battery rate performance and thermal stability can be obtained. If the ZIF-8 material content increases, the lithium ion transmission rate decreases and the battery rate performance decreases. If the ZIF-8 material content is less, the thermal shrinkage rate of the composite separator will be higher and the thermal stability of the battery will be reduced.
  • the porous coating also includes binders, inorganic particles, stabilizers, wetting agents, rheology modifiers, defoaming agents, thickeners, pH adjusters and preservatives. one or more.
  • the components of the inorganic particles include one or more of the following group: boehmite, molecular sieve, zeolite, alumina, aluminum oxyhydroxide, silica, aluminum nitride, silicon carbide, oxide Magnesium, calcium oxide, zinc oxide, zirconium dioxide, titanium dioxide.
  • any well-known porous structural substrate with good chemical stability and mechanical stability can be used.
  • the material of the porous substrate can be selected from at least one selected from the group consisting of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the porous substrate can be selected from a polymeric film comprising any of the following materials: polyolefin (eg, ethylene-propylene copolymer), fiberglass, aramid, polyvinyl alcohol, cellulose, polyepoxy Ethane, polytetrafluoroethylene, polyallylamine, polyacrylonitrile, polyurethane, polymethyl methacrylate, polyimide, polyethylene terephthalate, polybutylene terephthalate ester, polyacetal, polycarbonate, polyether ether ketone, polysulfone, polyphenylene ether, polystyrene, polynaphthalene vinyl, and physical mixtures or copolymers of any two or more of the above materials, wherein poly Olefins may include polypropylene, polyethylene, and physical mixtures or copolymers thereof.
  • polyolefin eg, ethylene-propylene copolymer
  • fiberglass aramid
  • polyvinyl alcohol cellulose
  • the battery isolation film provided in this application is a multi-layer composite film, which can also be called a composite separator, which is compounded with a ZIF-8 porous coating on a porous base material.
  • the ZIF-8 porous coating can be coated on at least one surface of the porous substrate by a coating liquid containing any suitable ZIF-8 material mentioned above (it can be single-sided coating or double-sided coating). coating) to form a wet coating and then dry it. After drying, the aforementioned porous coating is formed on the surface of the porous substrate.
  • the thickness of the wet coating is selected from 0.5 ⁇ m to 12 ⁇ m.
  • the thickness of the wet coating can also be selected from the following range of any one thickness or any two thicknesses: 0.5 ⁇ m, 0.6 ⁇ m, 0.8 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 4.5 ⁇ m, 5 ⁇ m, 5.5 ⁇ m, 6 ⁇ m, 6.5 ⁇ m, 7 ⁇ m, 7.5 ⁇ m, 8 ⁇ m, 8.5 ⁇ m, 9 ⁇ m, 9.5 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, etc.
  • the thickness of the coating can also be selected from 8 ⁇ m to 12 ⁇ m, 9 ⁇ m to 11 ⁇ m, etc.
  • the drying method is oven drying.
  • Non-limiting examples of drying temperatures include 75°C to 85°C, 75°C, 76°C, 78°C, 80°C, 82°C, 84°C, 85°C, 86°C, and the like.
  • Non-limiting examples of drying time include 55 to 65 minutes, 50 minutes, 55 minutes, 60 minutes, 65 minutes, etc.
  • the thickness of the porous coating is selected from 0.5 ⁇ m to 12 ⁇ m.
  • the thickness of the porous coating can also be selected from the following any one thickness or an interval composed of any two thicknesses: 0.5 ⁇ m, 0.6 ⁇ m, 0.8 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m , 4.5 ⁇ m, 5 ⁇ m, 5.5 ⁇ m, 6 ⁇ m, 6.5 ⁇ m, 7 ⁇ m, 7.5 ⁇ m, 8 ⁇ m, 8.5 ⁇ m, 9 ⁇ m, 9.5 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, etc.
  • the thickness of the porous coating can also be selected from 8 ⁇ m to 12 ⁇ m, 9 ⁇ m to 11 ⁇ m, etc.
  • the thickness of the porous coating affects the lithium ion transport rate and thermal stability of the separator. By adjusting the thickness of the porous coating, the appropriate lithium ion transport rate and thermal stability of the separator can be obtained. If the thickness increases, the lithium ion transmission rate of the separator decreases and the battery rate performance decreases. If it is thin, the thermal shrinkage rate of the composite separator is higher and the thermal stability of the battery is reduced.
  • the areal density of the battery separator film is selected from 0.7g/cm 2 to 0.9g/cm 2 .
  • the surface density of the isolation film can also be selected from the following range of any one density or any two densities: 0.7g/cm 2 , 0.75g/cm 2 , 0.8g/cm 2 , 0.85g/cm 2 , 0.9 g/cm 2 etc.
  • the term "area density” refers to the area density obtained by dividing the total mass of the ZIF-8 coating on both sides of the battery separator film in this application by the coating area, that is, referring to both sides. Calculated total areal density of ZIF-8 coating. If not otherwise specified, the test temperature is 20 to 30°C, further such as 25°C.
  • the areal density of the separator affects the lithium ion transport rate and thermal stability of the separator. By adjusting the surface density of the separator, the appropriate lithium ion transmission rate and thermal stability of the separator can be obtained. If the areal density increases, the lithium ion transmission rate of the separator decreases and the battery rate performance decreases. If the area density is small, the thermal shrinkage rate of the composite separator is high and the thermal stability of the battery is reduced.
  • the following method can be used to test the longitudinal thermal shrinkage rate and transverse thermal shrinkage rate of the battery isolation film: place a rectangular isolation membrane with a certain length and width in a constant temperature and humidity box at a specific temperature, and keep it warm for a certain period of time. Finally, take out the diaphragm sample, and after placing it for a certain period of time, measure the percentage of the change in length and width to the initial value, and calculate the longitudinal thermal shrinkage (MD) and transverse thermal shrinkage (TD).
  • MD longitudinal thermal shrinkage
  • TD transverse thermal shrinkage
  • the following measurement method is used: cut a uniform and flat isolation film into a rectangular piece with a length of 25 cm and a width of 10 cm, put it into a constant temperature and humidity box with a temperature of 150°C, and keep it warm for 1 hour. Finally, take out the diaphragm sample, measure its length and width after leaving it for 30 minutes, and calculate the thermal shrinkage rate based on the percentage of the size change value and the initial size.
  • the change in thermal shrinkage in the length direction corresponds to the longitudinal thermal shrinkage rate.
  • the thermal shrinkage change in the width direction corresponds to the transverse thermal shrinkage rate.
  • the longitudinal thermal shrinkage rate of the battery separator film heated at 150° C. for 1 hour is selected from 0% to 2%, non-limiting examples include 1%, 1.2%, 1.5%, 1.6%, 1.8%, etc. Further, the length ⁇ width dimensions of the test sample may be 25cm ⁇ 10cm.
  • the transverse thermal shrinkage of the battery separator film heated at 150° C. for 1 hour is selected from 0% to 1%, with non-limiting examples such as 0.5%, 0.6%, 0.8%, etc. Further, the test area can be 25cm ⁇ 10cm.
  • thermal shrinkage rate of the battery isolation film of this application please also refer to the test example 3.2.2. section of the specific embodiments section below and related test results.
  • the measurement method of the grid method is as follows: after 5 minutes, take a photo of the upper surface of the separator from directly above, and then use a square grid with an area of 0.1cm2 in the photo to cover all areas showing traces of electrolyte infiltration. In the image Squares completely occupied by traces of electrolyte infiltration are recorded as "completely infiltrated”, squares with an electrolyte infiltration area equal to or more than half are also recorded as “completely infiltrated”, and squares with an electrolyte infiltration area of less than half are recorded as "not fully infiltrated”. Wetting", the final electrolyte wettability of the separator is equal to the number of completely wetted squares ⁇ 0.1, expressed in square centimeters. If not otherwise specified, the test temperature is 20 to 30°C, further such as 25°C.
  • the electrolyte wetting performance of the battery separator measured using the above method is selected from 7cm 2 to 10cm 2 , non-limiting examples include 7cm 2 , 8cm 2 , 8.5cm 2 , 8.8cm 2 , 9cm 2 , and 10cm 2 etc.
  • the electrolyte retention rate of the battery separator measured using the above method is selected from 200% to 400%, non-limiting examples such as 250%, 300%, 350%, etc.
  • this application provides ZIF-8 materials prepared by the preparation method described in the second aspect of this application or ZIF-8 materials described in the third aspect of this application in the preparation of carbon-based single atom catalysts or lithium ion battery isolation Applications in membranes.
  • ZIF-8 materials can be used in many aspects, including but not limited to being used as sacrificial precursors to prepare single-atom catalysts, as coating materials to prepare composite battery separators, etc. It is more advantageous to use nanoscale ZIF-8 particles with relatively uniform particles.
  • the single-atom catalyst produced by using nanoscale ZIF-8 particles with relatively uniform particles as a sacrificial precursor has more active sites and the active sites are more exposed.
  • the reactants when nanoscale ZIF-8 particles with relatively uniform particles are used as coating materials, the thickness of the separator film of the composite battery obtained is smaller, and the battery volume energy density is higher.
  • the primary particles of ZIF-8 nanoparticles have small particle size, uniform particle size distribution, and good particle dispersion;
  • the ZIF-8 When the material is used to prepare carbon-based single atom catalysts, it has high metal content, high catalytic site density, and high catalytic activity; when the ZIF-8 material is used to prepare lithium-ion battery isolation membranes, it can be evenly distributed with a suitable surface density.
  • the surface of the isolation film can effectively suppress the thermal shrinkage of the isolation film at a low coating thickness.
  • the obtained isolation film also has good electrolyte wettability and good electrolyte retention rate.
  • the present application provides a battery cell, which includes stacked and distributed positive electrode sheets, a battery isolation film as described in the sixth aspect of the present application, and a negative electrode sheet.
  • the battery isolation film is disposed on the negative electrode sheet. and between the positive electrode pieces.
  • the battery cell When the battery isolation film provided in the sixth aspect of the present application is used to prepare a lithium-ion battery, the battery cell has a low battery expansion rate, good rate performance, good cycle performance, and high safety.
  • the battery cell is a secondary battery.
  • the battery cell is a lithium-ion secondary battery.
  • the following method can be used to test the battery expansion rate: a secondary battery (such as a lithium-ion secondary battery) including the aforementioned battery isolation film is subjected to a charge and discharge test, and 1000 ppm water is added to the electrolyte to accelerate gas production.
  • a secondary battery such as a lithium-ion secondary battery
  • 1000 ppm water is added to the electrolyte to accelerate gas production.
  • the battery expansion rate P (V2-V1)/V1 ⁇ 100%. If not otherwise specified, the test temperature is 20 to 30°C, further such as 25°C.
  • the battery expansion rate of the secondary battery (such as lithium ion secondary battery) including the aforementioned battery separator is selected from 5% to 15%, non-limiting examples such as 5% and 6% , 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, etc.
  • the battery expansion rate of the battery cell of the present application (which may further be a lithium-ion secondary battery)
  • the following method can be used to test the rate performance of the battery: at a certain temperature (such as 20-30°C, further such as 25°C), the battery core is placed in the test channel of the Arbin electrochemical workstation, with a rate of 0.1C Charge with constant current to the charge cut-off voltage of 4.3V, then charge with constant voltage for 30 minutes, and then discharge with constant current to the discharge cut-off voltage of 2.8V at the rate of 0.1C and 1C respectively.
  • the discharge capacity is recorded as 0.1C capacity and 1C respectively.
  • Capacity, rate performance 1C capacity/0.1C capacity ⁇ 100%. Among them, 1C corresponds to 180mAh/g.
  • the test temperature is 20 to 30°C, further such as 25°C.
  • the rate performance (1C capacity/0.1C capacity ⁇ 100%) of the secondary battery (such as lithium ion secondary battery) including the aforementioned battery separator film at 25°C is selected from 90% to 99%, without limitation Properties include 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, etc.
  • the rate performance of the battery cell of the present application (which may further be a lithium-ion secondary battery), please refer to the test example 3.2.5 and related test results in the specific embodiments section below.
  • the capacity retention rate of a secondary battery (such as a lithium-ion secondary battery) including the aforementioned battery separator film after 100 cycles is selected from 85% to 95%, non-limiting examples include 85% and 86%. , 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, etc.
  • the "capacity retention rate after 100 cycles" of a secondary battery generally refers to the test value under the conditions of 20°C to 30°C, further such as 25 °C.
  • a hot box test is performed on a secondary battery (such as a lithium-ion secondary battery) including the aforementioned battery separator film, and the safety is extremely high.
  • a secondary battery such as a lithium-ion secondary battery
  • the safety is extremely high.
  • a secondary battery typically includes a positive electrode plate, a negative electrode plate, an electrolyte and a separator.
  • active ions are inserted and detached back and forth between the positive and negative electrodes.
  • the electrolyte plays a role in conducting ions between the positive and negative electrodes.
  • the isolation film is placed between the positive electrode piece and the negative electrode piece. It mainly prevents the positive and negative electrodes from short-circuiting and allows ions to pass through.
  • the isolation film can be the battery isolation film provided in the sixth aspect of this application.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode current collector.
  • the positive electrode film layer includes the positive electrode active material of the first aspect of the present application.
  • the positive electrode current collector has two surfaces facing each other in its own thickness direction, and the positive electrode film layer is disposed on any one or both of the two opposite surfaces of the positive electrode current collector.
  • the positive electrode current collector may be a metal foil or a composite current collector.
  • the metal foil aluminum foil can be used.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base layer.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the cathode active material may be a cathode active material known in the art for batteries.
  • the cathode active material may include at least one of the following materials: an olivine-structured lithium-containing phosphate, a lithium transition metal oxide, and their respective modified compounds.
  • the present application is not limited to these materials, and other traditional materials that can be used as positive electrode active materials of batteries can also be used. Only one type of these positive electrode active materials may be used alone, or two or more types may be used in combination.
  • lithium transition metal oxides may include, but are not limited to, lithium cobalt oxides (such as LiCoO 2 ), lithium nickel oxides (such as LiNiO 2 ), lithium manganese oxides (such as LiMnO 2 , LiMn 2 O 4 ), lithium Nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide (such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (also referred to as NCM 333 ), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (can also be abbreviated to NCM 523 ), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (can also be abbreviated to NCM 211 ), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (can also be abbreviated to NCM 622 ), LiNi At least one of 0.8 Co 0.1 Mn 0.1 O 2 (also referred to as NCM 811 ), lithium nickel cobalt aluminum oxide (such as Li Li
  • the olivine structure contains Examples of lithium phosphates may include, but are not limited to, lithium iron phosphate (such as LiFePO 4 (also referred to as LFP)), composites of lithium iron phosphate and carbon, lithium manganese phosphate (such as LiMnPO 4 ), lithium manganese phosphate and carbon. At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon.
  • lithium iron phosphate such as LiFePO 4 (also referred to as LFP)
  • composites of lithium iron phosphate and carbon such as LiMnPO 4
  • LiMnPO 4 lithium manganese phosphate and carbon.
  • At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon.
  • the positive electrode film layer optionally further includes a binder.
  • the binder may include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene At least one of ethylene terpolymer, tetrafluoroethylene-hexafluoropropylene copolymer and fluorine-containing acrylate resin.
  • the positive electrode film layer optionally further includes a conductive agent.
  • the conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the positive electrode sheet can be prepared by dispersing the above-mentioned components for preparing the positive electrode sheet, such as positive active material, conductive agent, binder and any other components in a solvent (such as N -methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode piece can be obtained.
  • a solvent such as N -methylpyrrolidone
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode film layer disposed on at least one surface of the negative electrode current collector, where the negative electrode film layer includes a negative electrode active material.
  • the negative electrode current collector has two opposite surfaces in its own thickness direction, and the negative electrode film layer is disposed on any one or both of the two opposite surfaces of the negative electrode current collector.
  • the negative electrode current collector may be a metal foil or a composite current collector.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base material.
  • the composite current collector can be formed by forming metal materials (copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the negative active material may be a negative active material known in the art for batteries.
  • the negative active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based materials, tin-based materials, lithium titanate, and the like.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon oxide compounds, silicon carbon composites, silicon nitrogen composites and silicon alloys.
  • the tin-based material may be selected from at least one of elemental tin, tin oxide compounds and tin alloys.
  • the present application is not limited to these materials, and other traditional materials that can be used as battery negative electrode active materials can also be used. Only one type of these negative electrode active materials may be used alone, or two or more types may be used in combination.
  • the negative electrode film layer optionally further includes a binder.
  • the binder can be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), polysodium acrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), poly At least one of methacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • the negative electrode film layer optionally further includes a conductive agent.
  • the conductive agent may be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the negative electrode film layer optionally includes other auxiliaries, such as thickeners (such as sodium carboxymethylcellulose (CMC-Na)) and the like.
  • thickeners such as sodium carboxymethylcellulose (CMC-Na)
  • the negative electrode sheet can be prepared by dispersing the above-mentioned components for preparing the negative electrode sheet, such as negative active materials, conductive agents, binders and any other components in a solvent (such as deionized water) to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode piece can be obtained.
  • a solvent such as deionized water
  • the electrolyte plays a role in conducting ions between the positive and negative electrodes.
  • the type of electrolyte in this application can be selected according to needs.
  • the electrolyte can be liquid, gel, or completely solid.
  • the electrolyte is an electrolyte solution.
  • the electrolyte solution includes electrolyte salts and solvents.
  • the electrolyte salt may be selected from the group consisting of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium bisfluorosulfonimide, lithium bistrifluoromethanesulfonimide, trifluoromethane At least one of lithium sulfonate, lithium difluorophosphate, lithium difluoroborate, lithium dioxaloborate, lithium difluorodioxalate phosphate and lithium tetrafluoroxalate phosphate.
  • the solvent may be selected from the group consisting of ethylene carbonate, propylene carbonate, methylethyl carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, Butylene carbonate, fluoroethylene carbonate, methyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate At least one of ester, 1,4-butyrolactone, sulfolane, dimethyl sulfone, methyl ethyl sulfone and diethyl sulfone.
  • the electrolyte optionally further includes additives.
  • additives may include negative electrode film-forming additives, positive electrode film-forming additives, and may also include additives that can improve certain properties of the battery, such as additives that improve battery overcharge performance, additives that improve battery high-temperature or low-temperature performance, etc.
  • the positive electrode piece, the negative electrode piece and the separator film can be made into an electrode assembly through a winding process or a lamination process.
  • the secondary battery may include an outer packaging.
  • the outer packaging can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the secondary battery may be a hard shell, such as a hard plastic shell, an aluminum shell, a steel shell, etc.
  • the outer packaging of the secondary battery may also be a soft bag, such as a bag-type soft bag.
  • the material of the soft bag may be plastic, and examples of the plastic include polypropylene, polybutylene terephthalate, polybutylene succinate, and the like.
  • FIG. 9 shows a square-structured secondary battery 5 as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and side plates connected to the bottom plate, and the bottom plate and the side plates enclose a receiving cavity.
  • the housing 51 has an opening communicating with the accommodation cavity, and the cover plate 53 can cover the opening to close the accommodation cavity.
  • the positive electrode piece, the negative electrode piece and the isolation film can be formed into the electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the containing cavity.
  • the electrolyte soaks into the electrode assembly 52 .
  • the number of electrode assemblies 52 contained in the secondary battery 5 can be one or more, and those skilled in the art can select according to specific actual needs.
  • the present application provides an electrical device, which includes the battery cell described in the eighth aspect of the present application.
  • Utilizing the battery cell power backup device provided in the eighth aspect of this application can have significant advantages such as fast charging, long battery life, long service life, and high safety.
  • the secondary battery may be used as a power source for the electrical device or as an energy storage unit for the electrical device.
  • the electrical devices may include mobile equipment, electric vehicles, electric trains, ships and satellites, energy storage systems, etc., but are not limited thereto.
  • mobile devices can be, for example, mobile phones, laptops, etc.; electric vehicles can be, for example, pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf carts, electric trucks, etc. , but not limited to this.
  • a battery cell can be selected according to its usage requirements.
  • FIG. 11 shows an electrical device 6 as an example.
  • the electric device is a pure electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, etc.
  • a battery pack or battery module can be used.
  • the device may be a mobile phone, a tablet, a laptop, etc.
  • the device is usually required to be thin and light, and a secondary battery can be used as a power source.
  • room temperature refers to 20°C to 30°C.
  • Experimental examples 1-2 to 1-9 adopt basically the same method as experimental example 1-1. The only difference lies in the type and amount of raw materials, reaction temperature, and reaction time. See Table 1 for details.
  • Experimental Examples 1-10 adopt basically the same method as Experimental Examples 1-3, except that the mixing method of the zinc source solution and the ligand solution is different. In Experimental Examples 1-10, the ligand solution is added to the zinc source solution.
  • Comparative Examples 1-1 to 1-6 adopt basically the same method as Experimental Example 1-1, and the differences are shown in Table 1. Parameters not listed in Table 1 are consistent with Experimental Example 1-1.
  • the 2-methylimidazole zinc ZIF-8 of all examples and comparative examples was tested with a scanning electron microscope (SEM), and then tested with reference to standard JY/T010-1996, and the morphology of the samples was observed.
  • SEM scanning electron microscope
  • Sample to be tested the sample in the wet filter cake remaining after suction filtration and washing.
  • Average particle size of primary particles Observed under a scanning electron microscope.
  • the average particle size of the primary particles is the average value obtained after measuring more than 30 particle sizes using an electron microscope.
  • irregular particles use the smallest dimension.
  • rectangular particles use the smaller width rather than height.
  • Equipment model Malvern 2000 (MasterSizer 2000) laser particle size analyzer, refer to the standard process: GB/T19077-2016/ISO 13320:2009, specific test process: take an appropriate amount of the sample to be tested (the sample concentration is guaranteed to be 8% to 12% opacity) Yes), add 20mL of absolute ethanol, and at the same time supercharge for 5 minutes (53KHz/120W) to ensure that the sample is completely dispersed, and then measure the sample in accordance with the GB/T19077-2016/ISO 13320:2009 standard. In order to avoid agglomeration during the drying process from affecting the particle size test, wet samples after washing were taken for dispersion testing.
  • test results of the ZIF-8 materials prepared in each experimental example and each comparative example can be seen in Table 1 and Figures 1, 2, and 3.
  • the ZIF-8 nanoparticles of the ZIF-8 materials prepared in each experimental example are uniform in size and narrow in distribution.
  • Figures 1 and 2 are respectively SEM images and nanoparticle size distribution images of ZIF-8 nanoparticles of the ZIF-8 material prepared in Experimental Example 1-2.
  • Comparative Examples 1-2 and 1-3 it can be seen that if the amount of ligand is reduced alone (Comparative Example 1-2) or the amount of ligand is reduced too much (Comparative Example 1-3), it will result in the inability to obtain pure Phase ZIF-8 material.
  • the molar amount of zinc source is 1 mol. Therefore, the molar amount of water in the zinc source solution is numerically equal to a, and the molar amount of water in the ligand solution is numerically equal to b.
  • ZIF-8 The total amount of water used in the material preparation system is numerically equal to a+b.
  • Experimental Example 2-1 2g of the ZIF-8 material prepared in Experimental Example 1-3 was added to 100mL of 2mmol/L cobalt nitrate methanol solution, stirred for 12 hours, filtered out the moist solid, and then heated at 100°C After drying for 8 hours, the 2-methylimidazole zinc ZIF-8 material loaded with metal salt was obtained.
  • the 2-methylimidazole zinc ZIF-8 material loaded with metal salts is heated to 900°C at 5°C/min in a tube furnace protected by an argon atmosphere and kept for 2 hours, and then naturally cooled to room temperature to obtain ZIF- 8 Derivatized single atom catalysts.
  • Experimental examples 2-2 to 2-3 adopt basically the same method as experimental example 2-1, and the only difference lies in the parameters shown in Table 2.
  • Experimental Example 2-4 adopts basically the same method as Experimental Example 2-1. The only difference is that the inert gas atmosphere calcined in the tube furnace is different. Experimental Example 2-4 adopts nitrogen atmosphere.
  • Comparative Examples 2-1 to 2-7 adopt basically the same method as Experimental Example 2-1, and the only difference lies in the parameters shown in Table 2.
  • Test parameters starting potential, limit current, half-wave potential.
  • the ZIF-8 derived single atom catalyst prepared in each example was ultrasonically dispersed in ethanol to obtain a slurry of 2 mg/mL. 50 ⁇ L of the slurry was added dropwise to a rotating disk electrode with an area of 0.196 cm 2 , and 5 ⁇ L of 0.1 was added dropwise. wt% Nafion binder solution, and after drying, a working electrode loaded with catalyst is obtained. Place the working electrode in a 0.1M KOH solution saturated with O2 , set the rotation speed to 1600rpm, use saturated Ag/AgCl as the reference electrode, use a platinum sheet as the counter electrode, and perform a linear sweep voltammetry test at 10mV/s.
  • test results of the ZIF-8 derived single atom catalysts prepared in each experimental example and each comparative example can be seen in Table 2 and Figures 4, 5, and 6.
  • Figure 4 is an atomic-level resolution HAADF-STEM image of a ZIF-8 derived single-atom catalyst (Experimental Example 2-1) prepared using the ZIF-8 material of Experimental Example 1-3, in which some single atoms are circled. site. It can be seen that the morphology of the derived single-atom catalyst basically maintains the rhombohedral dodecahedron nanoparticle morphology of Experimental Examples 1-3, which allows the single-atom sites in it to be fully exposed to the reactants, thereby having higher catalytic activity. .
  • Figure 5 is the SEM image of ZIF-8 nanoparticles prepared in Experimental Example 1-3 (left), and the ZIF-8 derived single atom catalyst prepared using the ZIF-8 material of Experimental Example 1-3 (Experimental Example 2-1) Topography picture (right).
  • Figure 6 is an oxygen reduction test chart of the ZIF-8 derived single atom catalyst (Experimental Example 2-1) prepared using the ZIF-8 material of Experimental Example 1-3, in which the abscissa axis is the potential (V versus RHE ), the ordinate axis is current density.
  • the single-atom catalyst derived from Comparative Example 2-1 with a larger particle size as a precursor has worse oxygen reduction performance, which is reflected in its lower ultimate platform current density and smaller starting potential.
  • isolation film Use a PP-PE copolymer microporous film with a thickness of 16 ⁇ m (denoted as PP-PE bare separator) produced by Zhuogao Electronic Technology Co., Ltd. as the base material layer, with an average pore diameter of 80 nm.
  • the active material LiNi 0.8 Co 0.1 Mn 0.1 O 2 , the conductive agent acetylene black (Denka, Denka Black), and the binder polyvinylidene fluoride (Arkema, HSV 900) were added to N-methyl in a weight ratio of 94:3:3. Stir thoroughly and mix evenly in the pyrrolidone solvent system to obtain a slurry with a solid content of 30%.
  • the electrolyte is an EC/DMC mixed solution composed of 1M LiPF 6 , where EC /DMC volume ratio is 1:1.
  • Comparative Examples 3-1 to 3-7 adopt basically the same method as Experimental Example 3-1, and the only difference lies in the parameters shown in Table 3.
  • test method for the density of ZIF-8 coating layer is as follows:
  • the areal density is the total areal density of the coatings on both sides. This areal density is adjusted by controlling the thickness of the wet coating.
  • Electrolyte retention rate [(W-W0)/W0] ⁇ 100%.
  • the obtained cells were assembled into soft-pack batteries for charge and discharge tests, and 1000ppm water was added to the electrolyte to accelerate gas production.
  • the battery expansion rate P (V2-V1)/V1 ⁇ 100%.
  • the test temperature is 25°C.
  • test results of the separators and secondary batteries prepared in each experimental example and each comparative example can be seen in Table 3 and Figures 7 and 8.
  • Figure 7 is a SEM image of the ZIF-8 nanoparticles used in the isolation film in Experimental Example 3-1 (left, Experimental Example 1-3), and a morphology diagram of the ZIF-8 nanoparticles on the surface of the isolation film. It can be seen that ZIF-8 nanoparticles are evenly distributed on the surface of the isolation film.
  • Figure 8 is a comparison of the appearance of the isolation membrane prepared using ZIF-8 material (Experimental Example 1-3) in Experimental Example 3-1 before and after being placed at 150°C for 1 hour.
  • the left side corresponds to the original composite membrane before heating, and the right side corresponds to After heating.
  • the composite separator based on ZIF-8 nanoparticles prepared in Experimental Example 1-3 did not shrink significantly after being placed at 150°C for 1 hour. Its longitudinal shrinkage and transverse shrinkage were 1.6% and 0.8% respectively, showing Extremely high thermal stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本申请公开了一种ZIF-8材料及其制备体系、制备方法、单原子催化剂、电池隔离膜和应用。该ZIF-8材料的制备体系包含金属离子、配体分子和溶剂;其中,金属离子为锌离子,配体分子为2-甲基咪唑,溶剂为水;在该制备体系中,金属离子、配体分子和溶剂的摩尔数比为1:a:z,其中7<a<13,310<z<600。

Description

ZIF-8材料及其制备体系、制备方法、单原子催化剂、电池隔离膜和应用 技术领域
本申请涉及金属有机骨架材料及二次电池技术领域,更具体地涉及ZIF-8材料及其制备体系、制备方法、单原子催化剂、电池隔离膜和应用,还涉及电池单体和用电装置。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。
类沸石咪唑酯骨架材料(ZIF材料)是一种金属有机骨架(MOF)材料。ZIF材料是由二价过渡金属离子与咪唑基配体络合形成的一种具有沸石拓扑结构的多孔晶体材料,涉及的二价过渡金属离子通常为锌离子或钴离子。采用锌离子提供二价过渡金属离子时可得到ZIF-8材料,其具有大比表面积、高孔隙率、超高热稳定及化学稳定等优异性能,在气体储存、气体分离、催化反应、光学、磁性材料、传感等多种领域具有广泛应用。
然而,目前ZIF-8材料的制备工艺普遍存在周期长、原料消耗大等问题。
发明内容
鉴于上述问题,本申请提供了一种ZIF-8材料及其制备体系、制备方法、单原子催化剂、电池隔离膜和应用(包括用作电池单体和用电装置的材料或元件方面的应用),本申请所提供的制备体系和制备方法,采用了意外发现的极低配体用量和极低水用量的方案,制备得到了颗粒分散性高、粒径均一的纳米级ZIF-8颗粒,该制备体系和制备方法可显著缩短工艺周期,降低原料消耗。
第一方面,本申请提供了一种ZIF-8材料的制备体系,其包含金属离子、配体分子和溶剂;
其中,所述金属离子为锌离子,所述配体分子为2-甲基咪唑,所述溶剂为水;
在所述的制备体系中,所述金属离子、所述配体分子和所述溶剂的摩尔数比为1:a:z,其中7<a<13,310<z<600。
经过长期大量的实验探索,本申请发明人在研究共沉淀法制备ZIF-8材料时,意外地发现在极低配体用量、极低水用量的情况下,仍可制得ZIF-8纳米颗粒,且颗粒分散性高、粒径可控、粒径分布均一性好。该配制体系打破了传统配制体系设计时高配体用量、高水用量的设计原则,采用了远低于传统设计的配体用量以及远低于传统方案中的用水量,可显著降低残余配体及溶剂处理成本,缩短工艺周期,降低原料消耗。进一步地,基于ZIF-8材料中ZIF-8纳米颗粒分散性高、粒径可控、粒径分布均一的特点,本申请提供的ZIF-8材料可以在多种应用方面提供高质量原材料,包括但不限于制备高催化活性的单原子催化剂以及制备具有高热稳定性的电池隔离膜。
在一些实施例中,a满足8≤a≤12;
优选地,a满足9≤a≤12;
另优选地,a满足10≤a≤12。
上述a在数值上等于配制体系中配体摩尔量与锌离子摩尔量的比值,本申请中控制a在意外低的数值范围内,可以精细调控制备得到的ZIF-8纳米颗粒的粒径尺寸,使其具有合适的纳米尺度大小。
在一些实施例中,z满足310<z<500;
优选地,z满足310<z<460;
另优选地,z满足320≤z≤450;
另优选地,z满足340≤z≤450;
另优选地,z满足340≤z≤420;
另优选地,z满足400≤z≤420。
上述z在数值上等于配制体系中水的总摩尔量与锌离子摩尔量的比值,本申请中控制z在意外低的数值范围内,可以避免ZIF-8纳米颗粒发生团聚,实现ZIF-8纳米颗粒的高分散。颗粒分散性越高,团聚越少,则越易于得到高性能单原子催化剂和高性能电池隔离膜。
在一些实施例中,所述配体分子和所述溶剂的摩尔数比z/a满足30<(z/a)<44;
优选地,z/a满足32≤(z/a)≤40;
另优选地,z/a满足33≤(z/a)≤39;
另优选地,z/a满足34≤(z/a)≤36;
另优选地,z/a满足34≤(z/a)≤35。
上述z/a在数值上等于配制体系中水的总摩尔量与配体摩尔量的比值,本申请中控制z/a在合适的比值范围内,可以调控ZIF-8纳米颗粒的粒径尺寸,较小的z/a值有利于获得较小的一次颗粒粒径,更有利于制备得到高性能单原子催化剂和高性能电池隔离膜。但z/a也不宜过小,避免一次颗粒发生团聚反而导致较大粒径的二次颗粒出现。
在一些实施例中,锌离子来自可溶性锌盐;
优选地,所述可溶性锌盐包括乙酸锌、氯化锌、硝酸锌和硫酸锌中的一种或多种。
可溶性锌盐可用于提供锌离子,进一步与配体2-甲基咪唑进行配位反应而生成ZIF-8纳米颗粒,即2-甲基咪唑锌ZIF-8纳米颗粒。
第二方面,本申请提供了一种ZIF-8材料的制备方法,其包括如下步骤:
将锌源溶液与配体溶液混合,配制得到本申请第一方面所述ZIF-8材料的制备体系;
将所述的制备体系进行配位反应,制得ZIF-8纳米颗粒;
其中,
所述的制备体系中的锌离子与所述锌源溶液中的水的摩尔数比为1:b;
所述的制备体系中的锌离子与所述配体溶液中的水的摩尔数比为1:c;
在所述的制备体系中,锌离子、所述配体分子和水的摩尔数比为1:a:(b+c)。
本申请提供的ZIF-8材料的制备方法,利用本申请第一方面提供的ZIF-8材料的制备体系控制锌离子、配体(2-甲基咪唑)及溶剂(水)的相对用量在特定范围内,从而可以在极低配体用量、极低水用量的情况下,制得颗粒分散性高、粒径可控、粒径 分布均一性好的ZIF-8材料,而且还可以实现较高的产量和产率,适合大规模生产。
在一些实施例中,b满足100<b<200;
优选地,b满足100≤b≤150;
另优选地,b满足110≤b≤140;
另优选地,b满足115≤b≤140。
上述b在数值上等于锌源溶液中的水摩尔量与锌离子摩尔量的比值,本申请中控制b在合适的数值范围内,可以使锌源溶液具有合适的锌离子浓度,从而在与配体溶液混合时避免局部浓度不均,进而更好地控制一次颗粒的粒径大小及分布均一性。
在一些实施例中,c满足160<c<410;
优选地,c满足200≤c≤300;
另优选地,c满足205≤c≤300;
另优选地,c满足220≤c≤280;
另优选地,c满足250≤c≤280。
上述c在数值上等于配体溶液中的水摩尔量与锌源溶液中锌离子摩尔量的比值,本申请通过调节c的数值大小,既可以灵活调节配制体系中的水的总量,还可以调节配体溶液的浓度。在合适的数值范围内对c进行调控,可以更加精细地控制ZIF-8纳米颗粒的一次颗粒粒径大小及分布均一性。对于某一配体摩尔量,c值越小,则配体溶液浓度越高,越容易得到小粒径的一次颗粒。不过,如果c值太小,也可能导致一次颗粒发生团聚形成粒径较大的二次颗粒。
在一些实施例中,将所述的制备体系进行配位反应的反应温度选自5℃~40℃;
优选地,进行所述配位反应的反应温度选自5℃~37℃;
另优选地,进行所述配位反应的反应温度选自5℃~30℃;
另优选地,进行所述配位反应的反应温度选自15℃~40℃;
另优选地,进行所述配位反应的反应温度选自15℃~35℃;
另优选地,进行所述配位反应的反应温度选自20℃~30℃。
在一些实施例中,将所述的制备体系进行配位反应的反应时间选自3h~30h;
优选地,进行所述配位反应的反应时间选自12h~24h。
通过调节配位反应的反应温度,可以影响到ZIF-8纳米颗粒的一次颗粒尺寸。反应温度较高时,一般一次颗粒的尺寸较大;反应温度过高时,容易发生一次颗粒的团聚;如果反应温度较低时,则会导致反应速率变慢。进一步地,配位反应的反应时间可以结合反应温度进行调节,既确保配位反应的充分进行,又可避免一次颗粒的团聚。
在一些实施例中,所述将锌源溶液与配体溶液混合包括:于搅拌条件下,将所述锌源溶液加入到所述配体溶液中。
在一些实施例中,所述搅拌条件包括:搅拌速度选自200rpm~800rpm。
在搅拌条件下将锌源溶液和配体溶液进行混合,相对于直接混合,可以使反应物在体系中分散更均匀,避免反应物局部浓度过高而导致局部的一次颗粒团聚。通过控制合适的搅拌速度,既可以使体系中的反应物均匀而充分的混合,又能避免出现局部剪切力过大而可能引发一次颗粒的团聚。
第三方面,本申请提供了一种ZIF-8材料,其中,所述ZIF-8材料中包括ZIF-8纳米颗粒;所述ZIF-8纳米颗粒的D v90与D v10之差(D v90-D v10)满足:(D v90-D v10)<4000nm;
优选地,(D v90-D v10)≤3500nm;
另优选地,(D v90-D v10)≤1500nm;
另优选地,(D v90-D v10)≤1000nm;
另优选地,(D v90-D v10)≤500nm;
另优选地,(D v90-D v10)≤350nm;
另优选地,(D v90-D v10)≤300nm。
本申请提供的ZIF-8材料具有粒径分布均匀的ZIF-8纳米颗粒。(D v90-D v10)值越小,反映了ZIF-8纳米颗粒的粒径分布越均一。
在一些实施例中,所述ZIF-8纳米颗粒的一次颗粒的平均粒径d1满足d1≤800nm;
优选地,所述ZIF-8纳米颗粒的一次颗粒的平均粒径d1满足10nm≤d1≤800nm;
另优选地,所述ZIF-8纳米颗粒的一次颗粒的平均粒径d1满足10nm≤d1≤500nm;
另优选地,所述ZIF-8纳米颗粒的一次颗粒的平均粒径满足10nm≤d1≤480nm;
另优选地,所述ZIF-8纳米颗粒的一次颗粒的平均粒径d1满足10nm≤d1≤450nm;
另优选地,所述ZIF-8纳米颗粒的一次颗粒的平均粒径d1满足10nm≤d1≤300nm;
另优选地,所述ZIF-8纳米颗粒的一次颗粒的平均粒径d1满足10nm≤d1≤250nm;
另优选地,所述ZIF-8纳米颗粒的一次颗粒的平均粒径d1满足10nm≤d1≤200nm。
本申请提供的ZIF-8材料中ZIF-8纳米颗粒的一次颗粒单晶尺寸在纳米尺度、且粒径可控。
在一些实施例中,所述ZIF-8纳米颗粒的D v90≤100000nm;
优选地,所述ZIF-8纳米颗粒的D v90≥10nm;
另优选地,所述ZIF-8纳米颗粒的D v90≤4500nm;
另优选地,所述ZIF-8纳米颗粒的D v90≤4500nm;
另优选地,所述ZIF-8纳米颗粒的D v90≤2000nm;
另优选地,所述ZIF-8纳米颗粒的D v90≤1500nm;
另优选地,所述ZIF-8纳米颗粒的D v90≤1000nm;
另优选地,所述ZIF-8纳米颗粒的D v90≤800nm;
另优选地,所述ZIF-8纳米颗粒的D v90≤650nm;
另优选地,所述ZIF-8纳米颗粒的D v90≤600nm;
另优选地,所述ZIF-8纳米颗粒的D v90≤550nm;
另优选地,所述ZIF-8纳米颗粒的D v90≤500nm。
本申请提供的ZIF-8材料中ZIF-8纳米颗粒的分布范围较窄,90%体积的纳米颗粒均在可控的纳米尺度以内。
在一些实施例中,所述ZIF-8纳米颗粒的D v50<3000nm;
另优选地,所述ZIF-8纳米颗粒的D v50满足50nm≤D v50≤3000nm;
另优选地,所述ZIF-8纳米颗粒的D v50满足50nm≤D v50≤2000nm;
另优选地,所述ZIF-8纳米颗粒的D v50满足50nm≤D v50≤1500nm;
另优选地,所述ZIF-8纳米颗粒的D v50满足50nm≤D v50≤1000nm;
另优选地,所述ZIF-8纳米颗粒的D v50满足50nm≤D v50≤800nm;
另优选地,所述ZIF-8纳米颗粒的D v50满足50nm≤D v50≤650nm;
另优选地,所述ZIF-8纳米颗粒的D v50满足50nm≤D v50≤600nm;
另优选地,所述ZIF-8纳米颗粒的D v50满足50nm≤D v50≤550nm;
另优选地,所述ZIF-8纳米颗粒的D v50满足50nm≤D v50≤500nm。
本申请提供的ZIF-8材料中的ZIF-8纳米颗粒具有较理想的平均粒径尺寸,既不会太大而对制备高性能单原子催化剂和高性能电池隔离膜等应用产生不利影响,也不会太小而易发生团聚。
在一些实施例中,所述ZIF-8纳米颗粒的D v10≥10nm;
优选地,所述ZIF-8纳米颗粒的D v10满足10nm≤D v10<800nm;
另优选地,所述ZIF-8纳米颗粒的D v10满足10nm≤D v10≤700nm;
另优选地,所述ZIF-8纳米颗粒的D v10满足10nm≤D v10≤500nm;
另优选地,所述ZIF-8纳米颗粒的D v10满足10nm≤D v10≤350nm;
另优选地,所述ZIF-8纳米颗粒的D v10满足10nm≤D v10≤300nm;
另优选地,所述ZIF-8纳米颗粒的D v10满足10nm≤D v10≤250nm。
通过联合控制D v10和D v90,可以确保ZIF-8纳米颗粒具有较窄的粒径分布,粒径分布越窄则粒径尺寸越均一,对于制备高性能单原子催化剂和高性能电池隔离膜等应用越有利。
第四方面,本申请提供了一种单原子催化剂的制备方法,其包括如下步骤:
将ZIF-8材料牺牲前驱体与金属盐溶液混合,固液分离,收集固相,干燥,制得载金属盐的ZIF-8材料;其中,所述ZIF-8材料牺牲前躯体包括本申请第二方面所述的制备方法制备得到的ZIF-8材料或本申请第三方面所述ZIF-8材料,所述金属盐溶液中的金属元素M包括Co、Fe、Mn、Ni、Cu、Pt和Zn中的一种或多种;
将所述载金属盐的ZIF-8材料于惰性气体氛围中进行煅烧,冷却,制备得到ZIF-8衍生单原子催化剂,所述ZIF-8衍生单原子催化剂的单原子金属位点类型选自M-N 4-C、M-N 3-C、M-N 2-C和M-N 1-C中任一种。
本申请前述制备(第二方面)或提供(第三方面)的ZIF-8材料中的ZIF-8纳米颗粒是2-甲基咪唑锌ZIF-8纳米颗粒,其一次颗粒尺寸小,且粒径分布均匀,作为牺牲前躯体可吸附更多金属位点,使所得碳基单原子催化剂中金属含量较高,催化位点密 度更高,进而更有利于提高催化活性。进一步地,所得碳基单原子催化剂一次颗粒能继承ZIF-8前驱体的形貌和粒径,使制备得到的碳基单原子催化剂的催化位点能更好暴露于反应物和溶剂中,赋予其更高的催化活性。
在一些实施例中,所述金属盐溶液中的溶剂包括甲醇、乙醇、水和N,N-二甲基甲酰胺中的一种或多种。
在一些实施例中,所述金属盐溶液中的金属盐选自硝酸钴、硝酸铁、氯化铁、硝酸镍、乙酰丙酮镍、氯铂酸钠、乙酰丙酮铁、硝酸铜和硫酸铜中的一种或多种。
在一些实施例中,所述将ZIF-8材料牺牲前驱体与金属盐溶液混合的温度选自10℃~60℃,优选地,混合时间选自1h~12h,另优选地,混合时间选自2h~6h;
所述干燥的干燥温度选自95℃~105℃,优选地,干燥时间选自5h~10h;
所述将所述载金属盐的ZIF-8材料于惰性气体气氛中进行煅烧,冷却的步骤包括:将所述载金属盐的ZIF-8材料于惰性气体下升温至煅烧温度,保温,冷却,
优选地,所述惰性气体氛围中选自氮气气氛或氩气气氛;
另优选地,升温速率选自4℃/min~6℃/min;
另优选地,所述煅烧温度选自800℃~1000℃;
另优选地,保温时间选自1.5h~2.5h;
另优选地,冷却方式为随炉冷却;
另优选地,冷却至4℃~40℃。
在一些实施例中,所述的ZIF-8衍生单原子催化剂的一次颗粒的平均粒径d2满足5nm≤d2≤700nm。
使用本申请前述制备(第二方面)或提供(第三方面)的ZIF-8材料作为牺牲前躯体,进一步综合调控反应体系中的金属盐种类、溶剂种类、反应温度等工艺参数,可以将ZIF-8衍生单原子催化剂的一次颗粒的平均粒径d2控制在合适的纳米尺度,从而使ZIF-8衍生单原子催化剂具有更高的金属含量,更高的催化位点密度,更高的催化活性。
第五方面,本申请提供了一种单原子催化剂,其根据本申请第四方面所述的制备方法制备得到。所提供的单原子催化剂为ZIF-8衍生单原子催化剂,其一次颗粒具有合适的纳米尺度、粒径可控、且粒径分布均一性好,进一步地,金属含量高,催化位点密度高,催化活性高。
第六方面,本申请提供了一种电池隔离膜,其包括多孔基材以及设置于所述多孔基材至少一个表面上的多孔涂层,所述多孔涂层包括本申请第二方面所述的制备方法制备得到的ZIF-8材料或本申请第三方面所述的ZIF-8材料。
在一些实施例中,所述的ZIF-8材料在所述多孔涂层中的重量百分含量选自40%~90%。
在一些实施例中,所述多孔涂层中还可以包括粘合剂、无机颗粒、稳定剂、润湿剂、流变改性剂、消泡剂、增稠剂、pH调节剂和防腐剂中的一种或多种;
优选地,所述无机颗粒的成分包括下组中的一种或多种:勃姆石、分子筛、沸石、氧化铝、羟基氧化铝、二氧化硅、氮化铝、碳化硅、氧化镁、氧化钙、氧化锌、二氧 化锆、二氧化钛。
在一些实施例中,所述多孔涂层的厚度选自0.5μm~12μm。
使用本申请前述制备(第二方面)或提供(第三方面)的ZIF-8材料制备电池隔离膜时,一次颗粒较小且粒度分布均一的ZIF-8纳米颗粒可以被均匀涂布于隔离膜表面,能够在较低涂覆厚度的情况下有效抑制隔离膜的热收缩;所得到的隔离膜还具有较好的电解液浸润性、较好的电解液保有率;利用该隔离膜制备锂离子电池时,电池膨胀率低、倍率性能好、循环性能好、安全性高。
第七方面,本申请提供了本申请第二方面所述的制备方法制备得到的ZIF-8材料或本申请第三方面所述的ZIF-8材料在制备碳基单原子催化剂或锂离子电池隔离膜、中的应用。
本申请前述制备(第二方面)或提供(第三方面)的ZIF-8材料中,ZIF-8纳米颗粒的一次颗粒粒径小、粒径分布均一、颗粒分散性好;将该ZIF-8材料用于制备碳基单原子催化剂时,金属含量高,催化位点密度高,催化活性高;将该ZIF-8材料用于制备锂离子电池隔离膜时,能够以合适的面密度均匀分布于隔离膜表面,能够在较低涂覆厚度的情况下有效抑制隔离膜的热收缩,所得到的隔离膜还具有较好的电解液浸润性、较好的电解液保有率。
第八方面,本申请提供了一种电池单体,其包括层叠分布的正极极片、本申请第六方面所述电池隔离膜以及负极极片,所述电池隔离膜设置于所述负极极片和所述正极极片之间。
利用本申请第六方面提供的电池隔离膜制备锂离子电池时,电池单体的电池膨胀率低、倍率性能好、循环性能好、安全性高。
第九方面,本申请提供了一种用电装置,其包括本申请第八方面所述电池单体。
利用本申请第八方面提供的电池单体制备用电装置,可具有充电快速、续航能力长、使用寿命长、安全性高等显著优点。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些申请的实施例或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的申请、目前描述的实施例或示例以及目前理解的这些申请的最佳模式中的任何一者的范围的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1是本申请一实施例中ZIF-8纳米颗粒的SEM图;
图2是本申请一实施例中ZIF-8材料中的纳米颗粒粒度分布图,横坐标为颗粒粒径(μm),纵坐标为体积百分含量(%);
图3是本申请一实施例制备得到的ZIF-8材料的XRD谱图,横坐标为2θ衍射角(单位为°),纵坐标为衍射峰强度;
图4是本申请一实施例中ZIF-8衍生单原子催化剂的原子级分辨率的HAADF-STEM图,其中,圆圈圈出部分单原子位点;
图5是本申请一实施例中制备ZIF-8衍生单原子催化剂所使用的ZIF-8纳米颗粒SEM图(左),以及ZIF-8衍生单原子催化剂形貌图(右);
图6是本申请一实施例中ZIF-8衍生单原子催化剂的氧还原性测试图,其中,横坐标轴为电位(V相对于RHE),纵坐标轴为电流密度;
图7是本申请一实施例中制备隔离膜采用的ZIF-8纳米颗粒SEM图(左),以及ZIF-8纳米颗粒在隔离膜表面的形貌图;
图8是本申请一实施例中采用ZIF-8材料制备的隔离膜在150℃放置1h前后的外观对比图,其中左侧对应加热前的原始复合隔膜,右侧对应加热后;
图9是本申请一实施例的电池单体的示意图;
图10是图1所示的本申请一实施例的电池单体的分解图;
图11是本申请一实施例的二次电池用作电源的用电装置的示意图。
附图标记说明:
5,二次电池;51,壳体;52,电极组件;53,盖板;6,用电装置。
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的ZIF-8材料及其制备体系、制备方法、单原子催化剂、电池隔离膜和应用的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步 骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
本申请中涉及“多个”、“多种”、“多次”等,如无特别限定,指在数量上大于2或等于2。例如,“一种或多种”表示一种或大于等于两种。
本文中所使用的“其组合”、“其任意组合”、“其任意组合方式”等中包括所列项目中任两个或任两个以上项目的所有合适的组合方式。
本文中,“合适的组合方式”、“合适的方式”、“任意合适的方式”等中所述“合适”,以能够实施本申请的技术方案为准。
本文中,“优选”、“更好”、“更佳”、“为宜”仅为描述效果更好的实施方式或实施例,应当理解,并不构成对本申请保护范围的限制。如果一个技术方案中出现多处“优选”,如无特别说明,且无矛盾之处或相互制约关系,则每项“优选”各自独立。
本申请中,“进一步”、“更进一步”、“特别”等用于描述目的,表示内容上的差异,但并不应理解为对本申请保护范围的限制。
本申请中,“第一方面”、“第二方面”、“第三方面”、“第四方面”等中,术语“第一”、“第二”、“第三”、“第四”等仅用于描述目的,不能理解为指示或暗示相对重要性或数量,也不能理解为隐含指明所指示的技术特征的重要性或数量。而且“第一”、“第二”、“第三”、“第四”等仅起到非穷举式的列举描述目的,应当理解并不构成对数量的封闭式限定。
在本申请中,w/w表示重量比,以“碳酸乙烯酯(EC):碳酸甲乙酯(EMC)=1:1(w/w)”为例,表示EC和EMC的重量比为1:1。
在本申请中,wt%、%(w/w)、%(w/v)、%(v/v)均表示百分比浓度,分别具有如下含义。如果没有特别的说明,对于气-气混合物指体积百分比%(v/v),对于固相-固相混合物指质量百分比wt%,对于液相-液相混合物指体积百分比%(v/v),对于固液混合物指质量百分比wt%或%(w/w)或者指质量体积百分比%(w/v)。
如果没有特别的说明,wt%表示质量百分含量,表示某混合物中的特定组分在该混合物中的质量占比,以百分数形式描述。
如果没有特别的说明,%(w/w)可以表示质量百分含量,此时与wt%含义相同,%(w/w)还可以表示质量百分比,表示将给定质量的某一物质与给定质量的另一物质进行混合时的相对质量比,以百分数形式描述,比如,将质量为m 1物质A和质量为m 2物质B进行混合,则物质A相对于物质B的质量浓度为m 1/(m 1+m 2)×100%。两 种含义可通过质量基数相区分。
如果没有特别的说明,%(w/v)表示质量体积百分比,表示将给定质量的某一物质与给定体积的某一液态物质进行混合时的质量与体积的比值,以百分数形式描述,比如,将质量为m 1(单位g)物质A与体积为v 2(单位mL)液态物质B进行混合,则物质A相对于物质B的质量体积百分比为(m 1/v 2)×100%,比如5%(w/v)的物质A的水溶液,表示将5克物质A与体积为100毫升的水混合时对应的百分比浓度。
如果没有特别的说明,%(v/v)表示体积百分比,表示将给定体积的某一物质与给定体积的另一物质进行混合时的体积与体积的比值,以百分数形式描述,比如,将体积为v 1物质A与体积为v 2液态物质B进行混合,则物质A相对于物质B的体积百分比为(v 1/v 2)×100%。这里的物质A和物质B通常均为液态或者均为气态。
类沸石咪唑酯骨架材料(ZIF材料)是一种金属有机骨架材料。ZIF材料合成过程中使用的金属离子(Zn 2+或CO 2+)、咪唑类配体(苯并咪唑或2-甲基咪唑)和溶剂类型(水、二甲基甲酰胺、甲醇等)不同,会导致ZIF材料结构的差别。ZIF-8是一种特殊的ZIF材料,其配合物成分是由锌离子和2-甲基咪唑中的N经配位键连接而成(如下式所示),具有类似于沸石特征的高热稳定性和化学稳定性。
Figure PCTCN2022101142-appb-000001
目前,合成颗粒较为均一的纳米级ZIF-8颗粒的常用方法为以甲醇或水为溶剂的共沉淀法,其原理是通过加入远超过锌离子摩尔量的配体(2-甲基咪唑)和溶剂(甲醇或水),通常还加入一些特殊添加剂(如聚乙二醇、表面活性剂等)以发挥调控形貌、控制晶型、防止团聚等作用,使锌离子与配体发生配位反应而生成配合物(2-甲基咪唑锌)并且生成的配合物从溶液中析出,经固液分离等处理步骤后,即可得到ZIF-8材料。此外,在制备过程中,生成的ZIF-8纳米颗粒的一次颗粒容易发生团聚。以甲醇作为溶剂会大大增加生产的成本和风险,而以水作为溶剂需要使用远超过锌离子摩尔量的配体(2-甲基咪唑)和添加剂以减少杂相的形成和团聚的发生。因此,通常认为,以水作为溶剂时,在无添加剂且2-甲基咪唑用量较低的条件下很难获得颗粒分散性好、粒径可控、粒径分布均一性好的ZIF-8材料。
针对上述存在的普遍技术问题,第一方面,本申请提供了一种ZIF-8材料的制备体系,其包含金属离子、配体分子和溶剂;其中,所述金属离子为锌离子,所述配体分子为2-甲基咪唑,所述溶剂为水;在该制备体系中,采用远低于传统设计原则中用量的配体(2-甲基咪唑)及溶剂(水),仍可制得ZIF-8纳米颗粒,且颗粒分散性高、粒径可控、粒径分布均一性好。该制备体系可显著降低原料消耗,缩短工艺周期。
在本申请中,术语“ZIF-8材料的制备体系”是指由制备ZIF-8材料的原料所组成的反应体系,利用该反应体系中包含的各物质可制得本申请的ZIF-8材料。其中,“制备ZIF-8材料的原料”包括直接参与配位反应的反应原料,还包括为配体反应提供反 应环境的物质,其中,“直接参与配位反应的反应原料”为金属离子和配体分子,“为配体反应提供反应环境的物质”至少包括溶剂。提供该反应体系中的各物质可以是混合于同一容器的组合物,但允许控制保存条件避免配位反应的进行;也可以分别独立地或自由组合地预先置于多个容器中配套提供,使用时再进行混合,比如,可以将提供金属离子的物质(金属盐)、配体分子和溶剂分别预先置于不同的容器,也允许金属盐与溶剂预先组合置于一个容器内,还允许配体分子与溶剂预先组合置于一个容器内。制备本申请的ZIF-8材料时,前述相关物质应当配套提供。当将相关物质按照预设量进行混合后,金属离子和配体分子之间将发生配位反应,生成配合物的同时消耗金属离子和配体分子。
在一些实施例中,本申请提供一种ZIF-8材料的制备体系,其包含金属离子、配体分子和溶剂;
其中,所述金属离子为锌离子,所述配体分子为2-甲基咪唑,所述溶剂为水;
在所述的制备体系中,所述金属离子、所述配体分子和所述溶剂的摩尔数比为1:a:z,其中7<a<13,310<z<600。
ZIF-8在晶相结构、孔径、笼径、BET比表面积(BET法测定的比表面积)、孔体积等方面具有一定的稳定性。比如,一种典型的ZIF-8具有沸石拓扑结构,孔径为0.34nm,笼径1.2nm,BET比表面积>1000m 2/g,孔体积为0.66cm 3/g。可以参考“Park KS et al.Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J].PNAS,2006,103(27):10186-10191”等文献中记载的方法针对ZIF-8的基本特性进行表征,进而鉴定是否得到了ZIF-8。
经过长期大量的实验探索,本申请发明人在研究共沉淀法制备ZIF-8材料时,意外地发现在极低配体用量和极低水用量的情况下,仍可制得ZIF-8纳米颗粒,且颗粒分散性高、粒径可控、粒径分布均一性好。该配制体系打破了传统配制体系设计时高配体用量、高水用量的设计原则,采用了远低于传统设计的配体用量以及远低于传统方案中的用水量,可显著降低残余配体及溶剂处理成本,缩短工艺周期,降低原料消耗。进一步地,本申请提供的ZIF-8材料中ZIF-8纳米颗粒分散性高、粒径可控、粒径分布均一性好,因此,本申请提供的ZIF-8材料可以在多方面的应用中提供高质量原材料,包括但不限于制备高催化活性的单原子催化剂以及制备具有高热稳定性的电池隔离膜。
参数a:在数值上等于配制体系中配体摩尔量与锌离子摩尔量的比值。a值越小,说明配体用量越少,反之,a值越大,则说明配体用量越多。在传统水相体系中,a通常大于20。
在一些实施例中,a满足8≤a≤12。
在一些实施例中,a满足9≤a≤12。
在一些实施例中,a满足10≤a≤12。
在一些实施例中,a还可选自如下任一种数值或任意两种数值构成的区间:8.1、8.2、8.3、8.4、8.5、8.6、8.7、8.8、8.9、9、9.2、9.4、9.5、9.6、9.8、10、10.2、10.4、10.5、10.6、10.8、11、11.2、11.4、11.5、11.6、11.8、11.9等。
在本申请中,控制a在意外低的数值范围内,可以精细调控制备得到的ZIF-8纳米颗粒的粒径尺寸,使其具有合适的纳米尺度大小。但如果a值太小,容易导致ZIF-8纳米颗粒的尺寸较大。
参数z:在数值上等于配制体系中水的总摩尔量与锌离子摩尔量的比值。z值越小,说明用水量越少,反之,z值越大,则说明用水量越多。在传统水相体系中,z通常大于1000。
在一些实施例中,z满足310<z<500。
在一些实施例中,z满足310<z<460。
在一些实施例中,z满足320≤z≤450。
在一些实施例中,z满足340≤z≤450。
在一些实施例中,z满足340≤z≤420。
在一些实施例中,z满足400≤z≤420。
在一些实施例中,z还可选自如下任一种数值或任意两种数值构成的区间:311、312、313、314、315、316、317、318、319、320、330、340、342、344、345、346、348、350、360、370、380、390、400、410、411、412、415、420、425、430、440、450、460、470、480、482、484、485、486、488、489、490、491、492、493、494、495、496、497、498、499等。
在本申请中,控制z在意外低的数值范围内,可以避免ZIF-8纳米颗粒发生团聚,实现ZIF-8纳米颗粒的高分散。颗粒分散性越高,团聚越少,则越易于得到高性能单原子催化剂和高性能电池隔离膜。但如果z值太小,容易导致ZIF-8颗粒团聚。
参数z/a:在数值上等于配制体系中水的总摩尔量与配体摩尔量的比值。z/a值越大,说明水的过量程度相比于配体的过量程度越高,反之,z/a越小,则说明水的过量程度相比于配体的过量程度越低。
在一些实施例中,所述配体分子和所述溶剂的摩尔数比z/a满足30<(z/a)<44;
在一些实施例中,z/a满足32≤(z/a)≤40。
在一些实施例中,z/a满足33≤(z/a)≤39。
在一些实施例中,z/a满足34≤(z/a)≤36。
在一些实施例中,z/a满足34≤(z/a)≤35。
在一些实施例中,z/a还可选自如下任一种数值或任意两种数值构成的区间:30.5、30.8、31、31.5、32、32.5、33、33.5、34、34.5、35、35.5、36、36.5、37、37.5、38、38.5、39、39.5、40、40.5、41、41.5、42、42.5、43、43.5等。
在本申请中,控制z/a在合适的比值范围内,可以调控ZIF-8纳米颗粒的粒径尺寸,较小的z/a值有利于获得较小的一次颗粒粒径,更有利于制备得到高性能单原子催化剂和高性能电池隔离膜。但z/a也不宜过小,避免一次颗粒发生团聚反而导致较大粒径的二次颗粒出现。
上述a值和z值可以以任意合适的方式进行组合,以实现对锌离子、配体分子和溶剂水的用量的协同调控,通过精细调节,在极低配体用量及更极低水用量的情况下,制备颗粒分散性好、纳米尺度、粒径可控、粒径分布均一性好的ZIF-8材料,从而更 有利于制备高性能单原子催化剂和高性能电池隔离膜
在一些实施例中,锌离子来自可溶性锌盐。
在本申请中,“可溶性锌盐”指可溶解于水的锌盐。
在一些实施例中,该制备体系由可溶性锌盐、配体分子和水组成。此时,本申请提供的制备体系不包括传统体系中所需的特殊添加剂。而在传统体系中,例如通过添加聚乙二醇提供模板剂诱导ZIF-8生长而调控晶粒形貌,又如通过添加表面活性剂控制晶面生长以获得特定晶型等。本申请提供的ZIF-8材料的制备体系可显著简化工艺配方,降低原料消耗,缩短工艺周期。
在一些实施例中,所述可溶性锌盐包括乙酸锌、氯化锌、硝酸锌、硫酸锌等中的一种或多种。
在一些实施例中,所述可溶性锌盐选自乙酸锌、氯化锌、硝酸锌、硫酸锌等中的一种或多种。
在一些实施例中,所述可溶性锌盐包括乙酸锌和硝酸锌中的一种或两种。
在一些实施例中,所述可溶性锌盐为乙酸锌。
在一些实施例中,所述可溶性锌盐为硝酸锌。
可溶性锌盐可用于提供锌离子,进一步与配体2-甲基咪唑进行配位反应而生成ZIF-8纳米颗粒,即2-甲基咪唑锌ZIF-8纳米颗粒。
第二方面,本申请提供了一种ZIF-8材料的制备方法,可利用本申请第一方面所述ZIF-8材料的制备体系来制备ZIF-8材料。
在一些实施例中,本申请提供了一种ZIF-8材料的制备方法,其包括如下步骤:
将锌源溶液与配体溶液混合,配制得到本申请第一方面所述ZIF-8材料的制备体系;
将所述的制备体系进行配位反应,制得ZIF-8纳米颗粒;
其中,
所述的制备体系中的锌离子与所述锌源溶液中的水的摩尔数比为1:b;
所述的制备体系中的锌离子与所述配体溶液中的水的摩尔数比为1:c;
在所述的制备体系中,锌离子、所述配体分子和水的摩尔数比为1:a:(b+c)。
在本申请中,如无其他限定,“锌源溶液”指含有锌离子的水溶液。
在本申请中,如无其他限定,“配体溶液”指含有配体分子(2-甲基咪唑)的水溶液。
本申请提供的ZIF-8材料的制备方法,利用本申请第一方面提供的ZIF-8材料的制备体系控制锌离子、配体(2-甲基咪唑)及溶剂(水)的相对用量在特定范围内,从而,可以在极低配体用量、极低水用量的情况下,制得颗粒分散性高、粒径可控、粒径分布均一的ZIF-8材料,原料消耗降低,需要处理的溶剂及多余配体的量数量级式下降,从而大大缩短工艺周期,显著降低生产成本,而且还可以实现较高的产量和产率,适合大规模生产。
在一些实施例中,锌源溶液由可溶性锌盐和水混合而成。
在一些实施例中,配体溶液由2-甲基咪唑和水混合而成。
在一些实施例中,锌源溶液由可溶性锌盐和水混合而成,且配体溶液由2-甲基咪唑和水混合而成。此时,制备体系由可溶性锌盐、配体分子(2-甲基咪唑)和水组成。此时,本申请提供的制备体系不包括传统体系中所需的特殊添加剂。可以在极低配体用量、极低水用量以及无需使用特殊添加剂(如聚乙二醇、表面活性剂等)的情况下,制备得到颗粒分散性高、粒径可控、粒径分布均一的ZIF-8材料,配方简单,原料消耗少,而且处理多余配体和溶剂的工艺周期明显缩短,成本降低,而且还可以实现较高的产量和产率,适合大规模生产。
参数b:在数值上等于锌源溶液中的水摩尔量与锌离子摩尔量的比值。b值越小,说明锌盐溶液中锌离子浓度越高,反之,b值越大,则锌源溶液中锌离子浓度越低。
在一些实施例中,b满足100<b<200。
在一些实施例中,b满足100≤b≤150。
在一些实施例中,b满足110≤b≤140。
在一些实施例中,b满足115≤b≤140。
在一些实施例中,b还可选自如下任一种数值或任意两种数值构成的区间:101、102、103、104、105、110、112、114、115、120、125、130、135、136、137、138、140、145、150、155、160、165、170、175、180、185、190、195、198、199等。
在本申请中,控制b在合适的数值范围内,可以使锌源溶液具有合适的锌离子浓度,从而在与配体溶液混合时避免局部浓度不均,使得ZIF-8具有合适的成核生长速率,进而更好地控制一次颗粒的粒径大小及分布均一性。
参数c:在数值上等于配体溶液中的水摩尔量与锌源溶液中锌离子摩尔量的比值。在给定配体用量的情况下,c值越大,则配体溶液中的配体浓度越低,反之,c值越小,则配体溶液中的配体浓度越高。
在一些实施例中,c满足160<c<410。
在一些实施例中,c满足200≤c≤300。
在一些实施例中,c满足205≤c≤300。
在一些实施例中,c满足220≤c≤280。
在一些实施例中,c满足250≤c≤280。
在一些实施例中,c还可选自如下任一种数值或任意两种数值构成的区间:161、162、163、164、165、166、167、168、169、170、175、180、185、190、195、200、205、206、208、210、215、220、222、224、225、226、228、230、235、240、245、250、255、260、265、270、274、275、280、285、290、300、310、320、330、340、350、360、370、380、390、400、401、402、403、404、405、406、407、408、409等。
上述c在数值上等于配体溶液中的水摩尔量与锌源溶液中锌离子摩尔量的比值,本申请通过调节c的数值大小,既可以灵活调节配制体系中的水的总量,还可以调节配体溶液的浓度。在合适的数值范围内对c进行调控,可以更加精细地控制ZIF-8纳米颗粒的一次颗粒粒径大小及分布均一性。对于某一配体摩尔量,c值越小,则配体溶液浓度越高,越容易得到小粒径的一次颗粒。不过,如果c值太小,也可能导致一次颗粒发生团聚形成粒径较大的二次颗粒。
在一些实施例中,将所述的制备体系进行配位反应的反应温度选自5℃~40℃。
在一些实施例中,进行所述配位反应的反应温度选自5℃~37℃。
在一些实施例中,进行所述配位反应的反应温度选自5℃~30℃。
在一些实施例中,进行所述配位反应的反应温度选自15℃~40℃。
在一些实施例中,进行所述配位反应的反应温度选自15℃~35℃。
在一些实施例中,进行所述配位反应的反应温度选自20℃~30℃。
在一些实施例中,进行所述配位反应的反应温度还可以选自如下任一种温度或任两种温度构成的温度区间:5℃、6℃、7℃、8℃、9℃、10℃、12℃、15℃、16℃、18℃、20℃、21℃、22℃、23℃、24℃、25℃、26℃、27℃、28℃、29℃、30℃、31℃、32℃、33℃、34℃、35℃、36℃、37℃、38℃、39℃、40℃等。
在一些实施例中,进行所述配位反应的反应温度还可以选自5℃~20℃、10℃~20℃、5℃~26℃、10℃~26℃、15℃~26℃、16℃~26℃、15℃~25℃、10℃~25℃、20℃~35℃等。
在一些实施例中,将所述的制备体系进行配位反应的反应时间选自3h~30h。
在一些实施例中,进行所述配位反应的反应时间选自12h~24h。
在一些实施例中,进行所述配位反应的反应时间还可以选自如下任一种时长或任两种时长构成的区间:3h、4h、5h、6h、7h、8h、9h、10h、12h、14h、15h、16h、18h、20h、22h、24h、26h、28h、30h等。
在一些实施例中,过夜反应(如12h~18h)。
在一些实施例中,进行所述配位反应的反应时间还可以选自4h~24h、4h~18h、4h~16h等。
通过调节配位反应的反应温度,可以影响到ZIF-8纳米颗粒的一次颗粒尺寸。反应温度较高时,一般一次颗粒的尺寸较大;反应温度过高时,容易发生一次颗粒的团聚;如果反应温度较低时,则会导致反应速率变慢。进一步地,配位反应的反应时间可以结合反应温度进行调节,既确保配位反应的充分进行,又可避免一次颗粒的团聚。
在一些实施例中,所述将锌源溶液与配体溶液混合包括:于搅拌条件下,将所述锌源溶液加入到所述配体溶液中。在其中的一些实施例中,所述搅拌条件包括:搅拌速度选自200rpm~800rpm。搅拌速度可以选自如下任一种搅拌速度或任两种搅拌速度构成的区间:200rpm、250rpm、300rpm、350rpm、400rpm、450rpm、500rpm、550rpm、600rpm、650rpm、700rpm、750rpm、800rpm。锌源溶液的加入速度以更有利于反应物的分散、不会构成局部浓度过高为宜。
在一些实施例中,所述将锌源溶液与配体溶液混合包括:于搅拌条件下,将所述配体溶液加入到所述锌源溶液中。在其中的一些实施例中,所述搅拌条件包括:搅拌速度选自200rpm~800rpm。搅拌速度可以选自如下任一种搅拌速度或任两种搅拌速度构成的区间:200rpm、250rpm、300rpm、350rpm、400rpm、450rpm、500rpm、550rpm、600rpm、650rpm、700rpm、750rpm、800rpm。配体溶液的加入速度以更有利于反应物的分散、不会构成局部浓度过高为宜。
在搅拌条件下将锌源溶液和配体溶液进行混合,相对于直接混合,可以使反应物 在体系中分散更均匀,避免反应物局部浓度过高而导致局部的一次颗粒团聚。通过控制合适的搅拌速度,既可以使体系中的反应物均匀而充分的混合,又能避免出现局部剪切力过大而可能引发一次颗粒的团聚。
第三方面,本申请提供了一种ZIF-8材料,该ZIF-8材料可通过第二方面的制备方法制备得到。该ZIF-8材料中的ZIF-8纳米颗粒具有纳米尺度、粒径尺寸小、粒径分布的均一性好,且颗粒分散性好,一次颗粒无团聚或团聚少。
在一些实施例中,本申请提供了一种ZIF-8材料,其中,所述ZIF-8材料中包括ZIF-8纳米颗粒;所述ZIF-8纳米颗粒的D v90与D v10之差(D v90-D v10)满足(D v90-D v10)<4000nm。
在一些实施例中,(D v90-D v10)≤3500nm。
在一些实施例中,(D v90-D v10)≤1500nm。
在一些实施例中,(D v90-D v10)≤1000nm。
在一些实施例中,(D v90-D v10)≤500nm。
在一些实施例中,(D v90-D v10)≤350nm。
在一些实施例中,(D v90-D v10)≤300nm。
在一些实施例中,(D v90-D v10)可以小于等于如下的任一种粒径分布宽度:300nm、310nm、320nm、330nm、340nm、350nm、360nm、380nm、400nm、420nm、440nm、450nm、460nm、480nm、500nm、550nm、600nm、650nm、700nm、750nm、800nm等。进一步地,在一些实施例中,(D v90-D v10)可以大于等于如下的任一种粒径分布宽度:10nm、20nm、30nm、50nm、50nm等。
在本申请的上下文中,可采用体积累计分布粒径D v90、D v50、D v10等来表征ZIF-8纳米颗粒的粒径尺寸。其中,Dv90是指颗粒的累计体积分布百分数达到90%时所对应的粒径;Dv50是指颗粒的累计体积分布百分数达到50%时所对应的粒径;Dv10是指颗粒的累计体积分布百分数达到10%时所对应的粒径。D v90、D v50、D v10可以分别从颗粒粒径的体积累积分布曲线上获得,如无其他说明,体积累积分布曲线自小粒径侧从零开始累计。本领域技术人员可以理解D v90、D v50、D v10的含义,而且可以采用本领域公知的仪器及方法进行测定。例如可以参照GB/T 19077-2016粒度分布激光衍射法,采用激光粒度分析仪方便地测定,如英国马尔文仪器有限公司的Mastersizer 2000E型激光粒度分析仪。
本申请提供的ZIF-8材料具有粒径分布均匀的ZIF-8纳米颗粒。(D v90-D v10)值越小,反映了ZIF-8纳米颗粒的粒径分布越均一。
本申请提供的ZIF-8纳米颗粒可以是由多个一次颗粒团聚形成的。
在一些实施例中,所述ZIF-8纳米颗粒的一次颗粒的平均粒径d1满足d1≤800nm。
在一些实施例中,所述ZIF-8纳米颗粒的一次颗粒的平均粒径d1满足如下任一种条件:10nm≤d1≤800nm、10nm≤d1≤500nm、10nm≤d1≤480nm、10nm≤d1≤450nm、10nm≤d1≤300nm、10nm≤d1≤250nm、10nm≤d1≤200nm等。
在一些实施例中,所述ZIF-8纳米颗粒的一次颗粒的平均粒径d1选自如下任一种 数值或任两种数值之间的区间:10nm、15nm、20nm、25nm、30nm、35nm、40nm、45nm、50nm、55nm、60nm、65nm、70nm、75nm、80nm、90nm、100nm、120nm、150nm、160nm、180nm、200nm、250nm、300nm、350nm、400nm、450nm、500nm、550nm、600nm、650nm、700nm、750nm、800nm等。
在一些实施例中,所述ZIF-8纳米颗粒的一次颗粒的平均粒径d1还可以满足如下任一种条件:50nm≤d1≤800nm、50nm≤d1≤500nm、50nm≤d1≤480nm、50nm≤d1≤450nm、50nm≤d1≤300nm、50nm≤d1≤250nm、50nm≤d1≤200nm等。
在本申请中,“一次颗粒”和“二次颗粒”为本领域所熟知的术语。“一次颗粒”指单晶晶粒。“二次颗粒”指由两个或两个以上一次颗粒聚集而成的团聚态的颗粒。一次颗粒和二次颗粒可以通过使用扫描电子显微镜拍摄SEM图像容易地区分。
本申请提供的ZIF-8材料中ZIF-8纳米颗粒的一次颗粒单晶尺寸在纳米尺度、且粒径可控。
在一些实施例中,所述ZIF-8纳米颗粒的D v90≤100000nm。
在一些实施例中,所述ZIF-8纳米颗粒的D v90≥10nm。
在一些实施例中,所述ZIF-8纳米颗粒的D v90≤4500nm。
在一些实施例中,所述ZIF-8纳米颗粒的D v90≤4500nm。
在一些实施例中,所述ZIF-8纳米颗粒的D v90≤2000nm。
在一些实施例中,所述ZIF-8纳米颗粒的D v90≤1500nm。
在一些实施例中,所述ZIF-8纳米颗粒的D v90≤1000nm。
在一些实施例中,所述ZIF-8纳米颗粒的D v90≤800nm。
在一些实施例中,所述ZIF-8纳米颗粒的D v90≤650nm。
在一些实施例中,所述ZIF-8纳米颗粒的D v90≤600nm。
在一些实施例中,所述ZIF-8纳米颗粒的D v90≤550nm。
在一些实施例中,所述ZIF-8纳米颗粒的D v90≤500nm。
在一些实施例中,所述ZIF-8纳米颗粒的D v90可以小于等于如下的任一种粒径分布宽度:400nm、420nm、440nm、450nm、460nm、480nm、500nm、550nm、600nm、650nm、700nm、750nm、800nm、850nm、900nm、950nm、1000nm等。进一步地,在一些实施例中,所述ZIF-8纳米颗粒的D v90可以大于等于如下的任一种粒径分布宽度:10nm、20nm、30nm、40nm、50nm等。
本申请提供的ZIF-8材料中ZIF-8纳米颗粒的分布范围较窄,90%体积的纳米颗粒均在可控的纳米尺度以内。
在一些实施例中,所述ZIF-8纳米颗粒的D v50<3000nm。
在一些实施例中,所述ZIF-8纳米颗粒的D v50可以满足如下任一种条件:50nm≤D v50≤3000nm、50nm≤D v50≤2000nm、50nm≤D v50≤1500nm、50nm≤D v50≤1000nm、50nm≤D v50≤800nm、50nm≤D v50≤650nm、50nm≤D v50≤600nm、50nm≤D v50≤550nm、50nm≤D v50≤500nm等。
在一些实施例中,所述ZIF-8纳米颗粒的D v50可以小于等于如下的任一种粒径分布宽度:300nm、310nm、320nm、330nm、340nm、350nm、360nm、380nm、400 nm、420nm、440nm、450nm、460nm、480nm、500nm、550nm、600nm、650nm、700nm、750nm、800nm、850nm、900nm、950nm等。进一步地,在一些实施例中,所述ZIF-8纳米颗粒的D v50可以大于等于如下的任一种粒径分布宽度:50nm、60nm、70nm、80nm、90nm、100nm等。
本申请提供的ZIF-8材料中的ZIF-8纳米颗粒具有较理想的平均粒径尺寸,既不会太大而对制备高性能单原子催化剂和高性能电池隔离膜等应用产生不利影响,也不会太小而易发生团聚。
在一些实施例中,所述ZIF-8纳米颗粒的D v10≥10nm。
在一些实施例中,所述ZIF-8纳米颗粒的D v10可以满足如下任一种条件:10nm≤D v10<800nm、10nm≤D v10≤700nm、10nm≤D v10≤500nm、10nm≤D v10≤350nm、10nm≤D v10≤300nm、10nm≤D v10≤250nm等。
在一些实施例中,所述ZIF-8纳米颗粒的D v10可以小于等于如下的任一种粒径分布宽度:200nm、210nm、220nm、240nm、250nm、260nm、280nm、300nm、320nm、340nm、350nm、360nm、380nm、400nm、420nm、440nm、450nm、460nm、480nm、500nm、550nm、600nm、650nm、700nm等。进一步地,在一些实施例中,所述ZIF-8纳米颗粒的D v10可以大于等于如下的任一种粒径分布宽度:10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm等。
通过联合控制D v10和D v90,可以确保ZIF-8纳米颗粒具有较窄的粒径分布,粒径分布越窄则粒径尺寸越均一,对于制备高性能单原子催化剂和高性能电池隔离膜等应用越有利。
第四方面,本申请提供了一种单原子催化剂的制备方法,其包括如下步骤S410和S420:
S410:将ZIF-8材料牺牲前驱体与金属盐溶液混合,固液分离,收集固相,干燥,制得载金属盐的ZIF-8材料;其中,所述ZIF-8材料牺牲前躯体包括本申请第二方面所述的制备方法制备得到的ZIF-8材料或本申请第三方面所述ZIF-8材料,所述金属盐溶液中的金属元素M包括Co、Fe、Mn、Ni、Cu、Pt和Zn中的一种或多种;
S420:将所述载金属盐的ZIF-8材料于惰性气体氛围中进行煅烧,冷却,制备得到ZIF-8衍生单原子催化剂,所述ZIF-8衍生单原子催化剂的单原子金属位点类型选自M-N 4-C、M-N 3-C、M-N 2-C和M-N 1-C中任一种。
本申请前述制备(第二方面)或提供(第三方面)的ZIF-8材料中的ZIF-8纳米颗粒是2-甲基咪唑锌ZIF-8纳米颗粒,其一次颗粒尺寸小,且粒径分布均匀,作为牺牲前躯体可吸附更多金属位点,使所得碳基单原子催化剂中金属含量较高,催化位点密度更高,进而更有利于提高催化活性。进一步地,所得碳基单原子催化剂一次颗粒能继承ZIF-8前驱体的形貌和粒径,使制备得到的碳基单原子催化剂的催化位点能更好暴露于反应物和溶剂中,赋予其更高的催化活性。
在一些实施例中,关于ZIF-8材料牺牲前驱体与金属盐溶液的用量比,本领域技术人员可以根据单原子金属位点类型进行合适的选择。诸如M-N 4-C、M-N 3-C、M-N 2-C和M-N 1-C的单原子金属位点类型中,金属元素M来自金属盐溶液中的金属盐,氮 元素N来自ZIF-8材料中的配体。可根据单原子金属位点类型的需要选择合适的原料用量比。
在一些实施例中,所述金属盐溶液中的溶剂包括甲醇、乙醇、水、N,N-二甲基甲酰胺等中的一种或多种。
在一些实施例中,所述金属盐溶液中的金属盐选自硝酸钴、硝酸铁、氯化铁、硝酸镍、乙酰丙酮镍、氯铂酸钠、乙酰丙酮铁、硝酸铜、硫酸铜等中的一种或多种。
在一些实施例中,所述将ZIF-8材料牺牲前驱体与金属盐溶液混合的温度选自10℃~60℃。混合温度还可以选自如下任一种温度或任两种温度构成的区间:10℃、15℃、20℃、25℃、30℃、35℃、40℃、45℃、50℃、55℃、60℃等。混合温度还可以选自20℃~30℃等。进一步地,混合时间可以为1h~12h。混合时间的非限制性举例如1h、2h、3h、4h、5h、6h、7h、8h、9h、10h、11h、12h等。
在一些实施例中,所述干燥的干燥温度选自95℃~105℃。干燥温度还可以选自如下任一种温度或任两种温度构成的区间:95℃、96℃、97℃、98℃、99℃、100℃、101℃、102℃、103℃、104℃、105℃等。
在一些实施例中,所述干燥的干燥时间选自5h~10h。干燥时间的非限制性举例如5h、6h、7h、8h、9h、10h等。
在一些实施例中,所述干燥的干燥温度选自95℃~105℃,在其中的一些实施例中,干燥时间选自5h~10h。
在一些实施例中,所述将所述载金属盐的ZIF-8材料于惰性气体气氛中进行煅烧,冷却的步骤包括:将所述载金属盐的ZIF-8材料于惰性气体下升温至煅烧温度,保温,冷却。
在一些实施例中,所述惰性气体氛围中选自氮气气氛或氩气气氛。
在一些实施例中,升温速率选自4℃/min~6℃/min。非限制性举例如4℃/min、4.5℃/min、5℃/min、5.5℃/min、6℃/min等。
在一些实施例中,所述煅烧温度选自880℃~920℃。非限制性举例如880℃、890℃、900℃、910℃、920℃等。
在一些实施例中,保温时间选自1.5h~2.5h。非限制性举例如1.5h、2h、2.5h等。
在一些实施例中,冷却方式为随炉冷却。
在一些实施例中,冷却至4℃~40℃。非限制性举例如4℃、5℃、6℃、8℃、10℃、15℃、20℃、25℃、30℃、35℃、40℃等。
在一些实施例中,所述的ZIF-8衍生单原子催化剂的一次颗粒的平均粒径d2满足5nm≤d2≤700nm。在一些实施例中,所述的ZIF-8衍生单原子催化剂的一次颗粒的平均粒径d2选自如下任一种数值或任两种数值构成的区间:5nm、10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm、150nm、200nm、250nm、300nm、350nm、400nm、450nm、500nm、550nm、600nm、650nm、700nm等。
使用本申请前述制备(第二方面)或提供(第三方面)的ZIF-8材料作为牺牲前 躯体,进一步综合调控反应体系中的金属盐种类、溶剂种类、反应温度等工艺参数,可以将ZIF-8衍生单原子催化剂的一次颗粒的平均粒径d2控制在合适的纳米尺度,从而使ZIF-8衍生单原子催化剂具有更高的金属含量,更高的催化位点密度,更高的催化活性。
在一些实施例中,制备得到的单原子催化剂是碳基单原子催化剂。
在一些实施例中,制得的碳基单原子催化剂1600rpm下的起始电位选自1V~1.1V,举例如1.02V、1.04V、1.05V、1.06V、1.08V等。
在一些实施例中,制得的碳基单原子催化剂1600rpm下的极限电流选自-5mA/cm 2~-6mA/cm 2,举例如-5.2mA/cm 2、-5.4mA/cm 2、-5.5mA/cm 2、-5.6mA/cm 2、-5.8mA/cm 2等。
在一些实施例中,制得的碳基单原子催化剂1600rpm下的半波电位选自0.85V~0.95V,举例如0.89V、0.9V、0.91V。第五方面,本申请提供了一种单原子催化剂,其根据本申请第四方面所述的制备方法制备得到。
在一些实施例中,单原子催化剂是碳基单原子催化剂。
所提供的单原子催化剂为ZIF-8衍生单原子催化剂,其一次颗粒具有合适的纳米尺度、粒径可控、且粒径分布均一,进一步地,金属含量高,催化位点密度高,催化活性高。
第六方面,本申请提供了一种电池隔离膜,其包括多孔基材以及设置于所述多孔基材至少一个表面上的多孔涂层(也记为ZIF-8涂层),所述多孔涂层包括本申请第二方面所述的制备方法制备得到的ZIF-8材料或本申请第三方面所述的ZIF-8材料。
使用本申请前述制备(第二方面)或提供(第三方面)的ZIF-8材料制备电池隔离膜时,一次颗粒较小且粒度分布均一的ZIF-8纳米颗粒可以被均匀涂布于隔离膜表面,此时,隔离膜表面均匀地覆盖有前述的ZIF-8材料,该隔离膜能够在较低涂覆厚度的情况下有效抑制隔离膜的热收缩;所得到的隔离膜还具有较好的电解液浸润性、较好的电解液保有率;利用该隔离膜制备锂离子电池时,电池膨胀率低、倍率性能好、循环性能好、安全性高。
如无其他限定,本申请所用的“隔离膜”、“隔膜”均指电池隔离膜。
在一些实施例中,所述的ZIF-8材料在所述多孔涂层中的重量百分含量选自40%~90%。所述的ZIF-8材料在所述多孔涂层中的重量百分含量还可以选自如下任一种百分数或任两种百分数构成的区间:40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%等。所述的ZIF-8材料在所述多孔涂层中的重量百分含量还可以选自80%~90%、84%~86%等。
ZIF-8材料在多孔涂层中的含量影响到复合隔膜的热稳定性和锂离子传输速率。通过控制ZIF-8材料在该多孔涂层中的含量,可以得到较高的电池倍率性能和热稳定性。如果ZIF-8材料含量增加,锂离子传输速率降低,电池倍率性能降低。如果ZIF-8材料含量较少,则复合隔膜热收缩率较高,电池热稳定性降低。
在一些实施例中,所述多孔涂层中还包括粘合剂、无机颗粒、稳定剂、润湿剂、流变改性剂、消泡剂、增稠剂、pH调节剂和防腐剂中的一种或多种。
在一些实施例中,所述无机颗粒的成分包括下组中的一种或多种:勃姆石、分子筛、沸石、氧化铝、羟基氧化铝、二氧化硅、氮化铝、碳化硅、氧化镁、氧化钙、氧化锌、二氧化锆、二氧化钛。
多孔基材
在一些实施例中,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构基材。
在一些实施例中,多孔基材的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。
在一些实施例中,多孔基材可以选自包含如下任一种材料的聚合物膜:聚烯烃(例如乙烯-丙烯共聚物)、玻璃纤维、芳纶、聚乙烯醇、纤维素、聚环氧乙烷、聚四氟乙烯、聚烯丙基胺、聚丙烯腈、聚氨酯、聚甲基丙烯酸甲酯、聚酰亚胺、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚缩醛、聚碳酸酯、聚醚醚酮、聚砜、聚苯醚、聚苯乙烯、聚萘乙烯、以及上述材料中任意两种或更多种的物理混合物或共聚物,其中聚烯烃可以包括聚丙烯、聚乙烯及其物理混合物或共聚物。
本申请提供的电池隔离膜是一种多层复合膜,也可称为复合隔膜,其在多孔基材的基材上复合ZIF-8多孔涂层。该ZIF-8多孔涂层可以通过将含有前述任意合适的ZIF-8材料的涂覆液涂布于所述多孔基材的至少一个表面上(可以为单面涂覆,也可以为双面涂覆)形成湿涂层,然后进行干燥制得。经干燥后,在多孔基材的表面形成前述多孔涂层。
在一些实施例中,湿涂层的厚度选自0.5μm~12μm。该湿涂层的厚度还可以选自如下任一种厚度或任两种厚度构成的区间:0.5μm、0.6μm、0.8μm、1μm、1.5μm、2μm、2.5μm、3μm、3.5μm、4μm、4.5μm、5μm、5.5μm、6μm、6.5μm、7μm、7.5μm、8μm、8.5μm、9μm、9.5μm、10μm、11μm、12μm等。该涂层的厚度还可以选自8μm~12μm、9μm~11μm等。
在一些实施例中,干燥方式为烘干。干燥温度的非限制性举例如75℃~85℃、75℃、76℃、78℃、80℃、82℃、84℃、85℃、86℃等。干燥时间的非限制性举例如55~65分钟、50分钟、55分钟、60分钟、65分钟等。
在一些实施例中,所述多孔涂层的厚度选自0.5μm~12μm。所述多孔涂层的厚度还可以选自如下任一种厚度或任两种厚度构成的区间:0.5μm、0.6μm、0.8μm、1μm、1.5μm、2μm、2.5μm、3μm、3.5μm、4μm、4.5μm、5μm、5.5μm、6μm、6.5μm、7μm、7.5μm、8μm、8.5μm、9μm、9.5μm、10μm、11μm、12μm等。所述多孔涂层的厚度还可以选自8μm~12μm、9μm~11μm等。
多孔涂层的厚度影响到隔膜的锂离子传输速率和热稳定性。通过调节该多孔涂层的厚度,可以得到合适的隔膜的锂离子传输速率和热稳定性。如果厚度增加,隔膜的锂离子传输速率降低,电池倍率性能降低。如果较薄,复合隔膜热收缩率较高,电池热稳定性降低。
在一些实施例中,所述电池隔离膜的面密度选自0.7g/cm 2~0.9g/cm 2。所述隔离膜的面密度还可以选自如下任一种密度或任两种密度构成的区间:0.7g/cm 2、0.75g/cm 2、 0.8g/cm 2、0.85g/cm 2、0.9g/cm 2等。
在本申请中,如无其他限定,术语“面密度”指本申请电池隔离膜的两侧表面的ZIF-8涂层的总质量除以涂层面积得到的面密度,也即,指双面的ZIF-8涂层计算得到的总的面密度。如无其他说明,测试温度为20~30℃,进一步如25℃。
关于本申请电池隔离膜的面密度还可参见下文的具体实施例部分的测试例3.2.1.部分及相关测试结果。
隔膜的面密度影响到隔膜的锂离子传输速率和热稳定性。通过调控隔膜的面密度,可以得到合适的隔膜的锂离子传输速率和热稳定性。如果面密度增大,隔膜的锂离子传输速率降低,电池倍率性能降低。如果面密度较小,复合隔膜热收缩率较高,电池热稳定性降低。
在本申请中,可采用如下的方法测试电池隔离膜的纵向热收缩率和横向热收缩率:将具有一定长度和宽度的长方形隔离膜片置于特定温度的恒温恒湿箱中,保温一定时间后取出隔膜样片,放置一定时间后测量长度、宽度方向的变化值与初始值的百分比,计算得到纵向热收缩率(MD)、横向热收缩率(TD)。
在一些实施方式中,采用如下的测量方法:将均匀平整的隔离膜剪切为纵向长25cm、横向宽10cm的长方形片,将其放入温度为150℃的恒温恒湿箱中,保温1小时后取出隔膜样片,放置30分钟后测量其长、宽的长度,并根据尺寸变化值与初始尺寸的百分比计算热收缩率。长度方向的热收缩变化对应纵向热收缩率。宽度方向的热收缩变化对应横向热收缩率。
在一些实施例中,电池隔离膜于150℃加热1小时的纵向热收缩率选自0%~2%,非限制性举例如1%、1.2%、1.5%、1.6%、1.8%等。进一步地,测试样品的长×宽尺寸可以为25cm×10cm。
在一些实施例中,电池隔离膜150℃加热1小时的横向热收缩率选自0%~1%,非限制性举例如0.5%、0.6%、0.8%等。进一步地,测试面积可以为25cm×10cm。
关于本申请电池隔离膜的热收缩率还可参见下文的具体实施例部分的测试例3.2.2.部分及相关测试结果。
在本申请中,可以采用如下的方法测量电池隔离膜的电解液浸润性能:将1滴(约0.05mL)带有电解质的质子型亲水电解液(1M六氟磷酸锂(LiPF 6)的碳酸乙烯酯(EC):碳酸甲乙酯(EMC)=1:1(w/w)溶液)滴到水平放置的隔膜上。待5分钟后用格子法统计电解液浸润的近似面积。具体来说,格子法的测量方式如下:5分钟后从正上方对隔膜上表面拍照,然后在其照片中使用面积为0.1cm 2的方格覆盖所有呈现出电解液浸润痕迹的面积,图像中完全被电解液浸润痕迹占据的方格记作“完全浸润”,电解液浸润面积等于或超过一半的方格也记作“完全浸润”,而电解液浸润面积小于一半的方格记作“未浸润”,最终隔膜的电解液浸润性等于完全浸润方格数量×0.1,以平方厘米为单位来表示。如无其他说明,测试温度为20~30℃,进一步如25℃。
在一些实施例中,采用上述方法测量的电池隔离膜的电解液浸润性能选自7cm 2~10cm 2,非限制性举例如7cm 2、8cm 2、8.5cm 2、8.8cm 2、9cm 2、10cm 2等。
关于本申请电池隔离膜的电解液浸润性还可参见下文的具体实施例部分的测试 例3.2.3.部分及相关测试结果。
在本申请中,可以采用如下的方法测量电解液保有率:取一块尺寸为10cm×10cm的隔膜,称量该隔膜的干重W0,然后将该隔膜浸泡在电解液中10小时后在密封容器内静置1小时,使隔膜中的电解液达到饱和,然后称量该隔膜的湿重量W,基于下式计算其电解液保有率。可以看到,该电解液保有率不但表征了隔膜中容纳电解液的容量,还体现了隔膜对电解液的保持能力。电解液保有率=[(W-W0)/W0]×100%。如无其他说明,测试温度为20~30℃,进一步如25℃。
在一些实施例中,采用上述方法测量的电池隔离膜的电解液保有率选自200%~400%,非限制性举例如250%、300%、350%等。
关于本申请电池隔离膜的电解液保有率还可参见下文的具体实施例部分的测试例3.2.4.部分及相关测试结果。
第七方面,本申请提供了本申请第二方面所述的制备方法制备得到的ZIF-8材料或本申请第三方面所述的ZIF-8材料在制备碳基单原子催化剂或锂离子电池隔离膜、中的应用。
ZIF-8材料可应用于很多方面,包括但不限于作为牺牲前躯体制备单原子催化剂、作为涂层材料制备复合电池隔离膜等。使用颗粒较为均一的纳米级ZIF-8颗粒更具优势,比如:以颗粒较为均一的纳米级ZIF-8颗粒作为牺牲前躯体制得的单原子催化剂活性位点更多、活性位点更加暴露在反应物中;颗粒较为均一的纳米级ZIF-8颗粒作为涂层材料时所得的复合电池隔离膜厚度更小,电池体积能量密度更高。
本申请前述制备(第二方面)或提供(第三方面)的ZIF-8材料中,ZIF-8纳米颗粒的一次颗粒粒径小、粒径分布均一、颗粒分散性好;将该ZIF-8材料用于制备碳基单原子催化剂时,金属含量高,催化位点密度高,催化活性高;将该ZIF-8材料用于制备锂离子电池隔离膜时,能够以合适的面密度均匀分布于隔离膜表面,能够在较低涂覆厚度的情况下有效抑制隔离膜的热收缩,所得到的隔离膜还具有较好的电解液浸润性、较好的电解液保有率。
第八方面,本申请提供了一种电池单体,其包括层叠分布的正极极片、本申请第六方面所述电池隔离膜以及负极极片,所述电池隔离膜设置于所述负极极片和所述正极极片之间。
利用本申请第六方面提供的电池隔离膜制备锂离子电池时,电池单体的电池膨胀率低、倍率性能好、循环性能好、安全性高。
在一些实施例中,该电池单体为二次电池。
在一些实施例中,该电池单体为锂离子二次电池。
在本申请中,可以采用如下的方法测试电池膨胀率:包括前述电池隔离膜的二次电池(如锂离子二次电池)进行充放电测试,在电解液中加入1000ppm水以加速产气。使用排水法测试充放电之前的电池体积,记为V1,充放电100次循环后测试电池的体积,记为V2,电池的膨胀率P=(V2-V1)/V1×100%。如无其他说明,测试温度为20~30℃,进一步如25℃。
在一些实施例中,根据上述测试方法,包括前述电池隔离膜的二次电池(如锂离 子二次电池)的电池膨胀率选自5%~15%,非限制性举例如5%、6%、7%、8%、9%、10%、11%、12%、13%、14%等。
关于本申请电池单体(进一步可以为锂离子二次电池)的电池膨胀率还可参见下文的具体实施例部分的测试例3.2.8.部分及相关测试结果。
在本申请中,可以采用如下的方法测试电池的倍率性能:一定温度(如20~30℃,进一步如25℃)下,将电芯置于Arbin电化学工作站测试通道中,以0.1C的倍率恒流充电至充电截止电压4.3V,而后恒压充电30分钟,之后分别于0.1C及1C的倍率下恒流放电至放电截止电压2.8V,分别记录放电容量,分别记录为0.1C容量和1C容量,倍率性能=1C容量/0.1C容量×100%。其中,1C对应180mAh/g。如无其他说明,测试温度为20~30℃,进一步如25℃。
在一些实施例中,包括前述电池隔离膜的二次电池(如锂离子二次电池)25℃下的倍率性能(1C容量/0.1C容量×100%)选自90%~99%,非限制性举例如91%、92%、93%、94%、95%、96%、97%、98%、99%等。
关于本申请电池单体(进一步可以为锂离子二次电池)的倍率性能还可参见下文的具体实施例部分的测试例3.2.5.部分及相关测试结果。
在本申请中,可以采用如下的方法测试电池的循环性能:将电芯置于Arbin电化学工作站测试通道中,以1C的倍率恒流充电至充电截止电压4.3V,静置5min后以1C的倍率下恒流放电至放电截止电压2.8V,记录放电容量,再静置5min。如此循环100次,循环100周后的容量保持率=第100次循环容量/第1次循环容量×100%。
在一些实施例中,包括前述电池隔离膜的二次电池(如锂离子二次电池)的循环100周后的容量保持率选自85%~95%,非限制性就如85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%等。
在本申请中,涉及二次电池(优选锂离子二次电池)的“循环100周后的容量保持率”,如无特别限定,一般指20℃~30℃条件下的测试值,进一步如25℃。
关于本申请电池单体(进一步可以为锂离子二次电池)循环100周后的容量保持率还可参见下文的具体实施例部分的测试例3.2.6.部分及相关测试结果。
在一些实施例中,对包括前述电池隔离膜的二次电池(如锂离子二次电池)进行热箱测试,安全性极高。
通常情况下,二次电池包括正极极片、负极极片、电解质和隔离膜。在电池充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。电解质在正极极片和负极极片之间起到传导离子的作用。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使离子通过。该隔离膜可以采用本申请第六方面提供的电池隔离膜。
正极极片
正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包括本申请第一方面的正极活性材料。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,正极活性材料可采用本领域公知的用于电池的正极活性材料。作为示例,正极活性材料可包括以下材料中的至少一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电池正极活性材料的传统材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO 2)、锂镍氧化物(如LiNiO 2)、锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM 333)、LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM 523)、LiNi 0.5Co 0.25Mn 0.25O 2(也可以简称为NCM 211)、LiNi 0.6Co 0.2Mn 0.2O 2(也可以简称为NCM 622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM 811)、锂镍钴铝氧化物(如LiNi 0.85Co 0.15Al 0.05O 2)及其改性化合物等中的至少一种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂(如LiFePO 4(也可以简称为LFP))、磷酸铁锂与碳的复合材料、磷酸锰锂(如LiMnPO 4)、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料中的至少一种。
在一些实施方式中,正极膜层还可选地包括粘结剂。作为示例,所述粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极膜层还可选地包括导电剂。作为示例,所述导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
负极极片
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜层,所述负极膜层包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基 材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,负极膜层还可选地包括粘结剂。所述粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,负极膜层还可选地包括导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极膜层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。
电解质
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或全固态的。
在一些实施方式中,所述电解质采用电解液。所述电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
在一些实施方式中,溶剂可选自碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、1,4-丁内酯、环丁砜、二甲砜、甲乙砜及二乙砜中的至少一种。
在一些实施方式中,所述电解液还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改 善电池过充性能的添加剂、改善电池高温或低温性能的添加剂等。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图9是作为一个示例的方形结构的二次电池5。
在一些实施方式中,参照图10,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。二次电池5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
第九方面,本申请提供了一种用电装置,其包括本申请第八方面所述电池单体。
利用本申请第八方面提供的电池单体制备用电装置,可具有充电快速、续航能力长、使用寿命长、安全性高等显著优点。
所述二次电池可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以包括移动设备、电动车辆、电气列车、船舶及卫星、储能系统等,但不限于此。其中,移动设备例如可以是手机、笔记本电脑等;电动车辆例如可以是纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等,但不限于此。
作为所述用电装置,可以根据其使用需求来选择电池单体。
图11是作为一个示例的用电装置6。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对二次电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用二次电池作为电源。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
以下,说明本申请的一些实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照上文中的描述进行,或者按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品,或者可通过市购产品按照常规方式合成。
下面的实施例中,室温是指20℃~30℃。
实施例1.2-甲基咪唑锌ZIF-8纳米颗粒的制备
1.1.制备例
实验例1-1.将1mol的醋酸锌溶于137mol的水中,将12mol的2-甲基咪唑溶于274mol的水中,随后把所得的醋酸锌溶液快速加入到2-甲基咪唑溶液中,于1min内加入完毕,于25℃搅拌反应12小时后把所得悬浊液抽滤、采用去离子水洗涤三次、真空烘箱中80℃干燥12h后得到约200g的ZIF-8纳米颗粒(2-甲基咪唑锌ZIF-8)。
实验例1-2至实验例1-9采用与实验例1-1基本相同的方法,区别仅仅在于原料种类及用量,反应温度、反应时间,详见表1。
实验例1-10采用与实验例1-3基本相同的方法,区别仅在于锌源溶液和配体溶液的混合方式不同,实验例1-10中,将配体溶液加入到锌源溶液中。
对比例1-1至对比例1-6采用与实验例1-1基本相同的方法,区别之处参见表1。表1中未列示的参数与实验例1-1一致。
1.2.测试例
1.2.1.形貌测试
将所有实施例和对比例的2-甲基咪唑锌ZIF-8用扫描电子显微镜(SEM)进行测试,然后参照标准JY/T010-1996进行测试,对样品形貌进行观测。
1.2.2.粒径尺寸测试
待测样品:抽滤洗涤后剩下的湿滤饼中的样品。
(1)一次颗粒的平均粒径:在扫描电子显微镜下进行观察,所述一次颗粒地平均粒径尺寸为电镜测量30个以上颗粒尺寸后取其平均值。对于不规则的颗粒,取其最小的维度尺寸,比如长方体的颗粒取其较小的宽度而非高度。
(2)粒径尺寸类型:二次颗粒的D v10、D v50、D v90测试。
设备型号:马尔文2000(MasterSizer 2000)激光粒度仪,参考标准流程:GB/T19077-2016/ISO 13320:2009,具体测试流程:取待测样品适量(样品浓度保证8%~12%遮光度即可),加入20mL无水乙醇,同时外超5min(53KHz/120W),确保样品完全分散,之后按照GB/T19077-2016/ISO 13320:2009标准对样品进行测定。为了避免干燥过程的团聚影响粒度的测试,取洗涤后湿润样品进行分散测试。
(3)纯度:对样品进行X射线衍射测试,把得到的X射线衍射谱图与2-甲基咪唑锌ZIF-8标准谱图比对,若无其余杂相峰则纯度标记为“O”,否则标记为“×”。其中,使用德国Brucker AXS公司的Brucker D8A_A25型X射线粉末衍射仪,以CuKα射线为辐射源,射线波长
Figure PCTCN2022101142-appb-000002
扫描2θ角范围为5°~60°,扫描速率为4°/min进行测试。
1.3.测试结果
各实验例及各对比例制备得到的ZIF-8材料的测试结果可参见表1和图1、图2、图3。
各实验例(实验例1-1至实验例1-10)制备的ZIF-8材料的ZIF-8纳米颗粒尺寸均一,分布窄。如,图1、图2分别为是实验例1-2制备的ZIF-8材料的ZIF-8纳米颗粒的SEM图及纳米颗粒粒度分布图。
根据X射线衍射测试结果,各实验例(实验例1-1至实验例1-10)均得到了ZIF-8的纯相,对比例1-2、对比例1-8中存在较多杂相。其中,图3为实验例1-1制备的ZIF-8材料的XRD谱图及2-甲基咪唑锌ZIF-8的XRD标准谱图对比。
根据对比例1-2和对比例1-3,可知,如仅单独降低配体用量(对比例1-2)或配体用量降低太多(对比例1-3),都将导致无法得到纯相的ZIF-8材料。
根据对比例1-4和对比例1-5,可知,如果反应温度(配位反应的温度)较高,如对比例1-4的55℃或对比例1-5的42℃,都将导致ZIF-8纳米颗粒的粒径(d1、D v10、D v50、D v90)明显变大,且粒径分布均一性明显变差。
根据对比例1-6,可知,如果反应温度(配位反应的温度)偏低,也会导致ZIF-8纳米颗粒的粒径变大。
表1.
Figure PCTCN2022101142-appb-000003
Figure PCTCN2022101142-appb-000004
注1:表1中,锌源摩尔量均为1mol,因此,锌源溶液中水的摩尔量在数值上与a相等,配体溶液中水的摩尔量在数值上与b相等,ZIF-8材料的配制体系中水总用量在数值上与a+b相等。
注2:表1中,由于对比例1-2和对比例的1-3制备的纳米颗粒不是纯相,制备样品中已经含有氧化锌等杂质颗粒,此时的D v50不代表ZIF-8纯相的粒径。
实施例2.ZIF-8衍生单原子催化剂的制备
2.1.制备例
实验例2-1:采用实验例1-3制备的ZIF-8材料取2g加入到100mL的2mmol/L的硝酸钴的甲醇溶液中,搅拌12小时后抽滤出潮湿固体,随后在100℃下干燥8小时得到负载有金属盐的2-甲基咪唑锌ZIF-8材料。把负载有金属盐的2-甲基咪唑锌ZIF-8材料在氩气气氛保护的管式炉中以5℃/min升温到900℃并保温2小时,随后自然降温到室温即可得到ZIF-8衍生单原子催化剂。
实验例2-2至实验例2-3采用与实验例2-1基本相同的方法,区别仅在于表2所示参数。
实验例2-4采用与实验例2-1基本相同的方法,区别仅在于,于管式炉中煅烧的惰性气体气氛不同,实验例2-4采用氮气气氛。
对比例2-1至对比例2-7采用与实验例2-1基本相同的方法,区别仅在于表2所示参数。
2.2.测试例
测试参数:起始电位、极限电流、半波电位。
将各例制备的ZIF-8衍生单原子催化剂超声分散于乙醇中,得到2mg/mL的浆液,取50μL的浆液滴加在面积为0.196cm 2的旋转圆盘电极上,并滴加5μL的0.1wt%的Nafion粘结剂溶液,晾干后得到负载有催化剂的工作电极。把工作电极置于不断通O 2饱和的0.1M的KOH溶液中,设置转速1600rpm,以饱和Ag/AgCl作为参比电极、以铂片作为对电极,以10mV/s进行线性扫描伏安测试。
2.3.测试结果
各实验例及各对比例制备得到的ZIF-8衍生单原子催化剂的测试结果可参见表2和图4、图5、图6。
图4是采用实验例1-3的ZIF-8材料制备得到的ZIF-8衍生单原子催化剂(实验例2-1)的原子级分辨率的HAADF-STEM图,其中,圆圈圈出部分单原子位点。可以看到衍生单原子催化剂形貌基本保持了实验例1-3的菱形十二面体纳米颗粒形貌,这会使得其中的单原子位点能充分暴露在反应物中,进而具有较高催化活性。
图5是实验例1-3制备的ZIF-8纳米颗粒SEM图(左),以及采用实验例1-3的ZIF-8材料制备得到的ZIF-8衍生单原子催化剂(实验例2-1)的形貌图(右)。
图6是采用实验例1-3的ZIF-8材料制备得到的ZIF-8衍生单原子催化剂(实验例2-1)的氧还原性测试图,其中,横坐标轴为电位(V相对于RHE),纵坐标轴为电流密度。根据测试结果,以粒径更大的对比例2-1作为前驱体衍生得到的单原子催化剂的氧还原性能更差,体现在其极限平台电流密度更低、起始电位更小。
由于对比例1-1中有较多配体残余,导致制备的ZIF-8衍生单原子催化剂的起始电位和极限电流性能变差。
表2.
Figure PCTCN2022101142-appb-000005
实施例3.隔离膜及二次电池的制备
3.1.制备例
3.1.1.实验例3-1:
(1)制备隔离膜:使用卓高电子科技公司生产的厚度为16μm的PP-PE共聚物微孔薄膜(记为PP-PE裸隔膜)作为基材层,平均孔径为80nm。将实验例1-3制备的2-甲基咪唑锌ZIF-8材料、粘合剂聚丙烯酸甲酯(湖北诺纳有限公司生产)、粘合剂丙烯酸-丙烯酸酯-丙烯腈共聚物(湖北诺纳有限公司生产)、稳定剂羧甲基纤维素钠(化学纯)、润湿剂聚氧乙烯基醚按照(湖北诺纳有限公司生产)按照重量比为85:6:3:3:3的比例混合均匀,并在混合的同时添加水,形成固体含量为9%的水性涂料,通过刮涂法将该浆料施涂在厚度为16μm的PP-PE共聚物微孔薄膜基材层的两个表面上,在表面上形成湿涂层,转移至烘箱中,在80℃的温度下烘干60分钟,得到两侧表面均带有ZIF-8涂层的隔膜。湿涂层的厚度可调节,得到不同面密度的隔膜,也即目标隔离膜。
(2)制备二次电池
将活性物质LiNi 0.8Co 0.1Mn 0.1O 2、导电剂乙炔黑(Denka,Denka Black)、粘结剂聚偏二氟乙烯(Arkema,HSV 900)按重量比94:3:3在N-甲基吡咯烷酮溶剂体系中充分搅拌混合均匀,得到固体含量为30%的浆料,使用转移涂布法在厚度为12μm的铝(Al)箔的一侧上形成厚度为250μm的湿涂层,然后转移入烘箱中,在150℃的温度下烘干60分钟,使用辊压机以60吨的压力进行冷压,得到正极极片。
将活性物质石墨、导电剂乙炔黑、粘结剂聚偏二氟乙烯按照重量比95:2:3的比例在N-甲基吡咯烷酮溶剂体系中充分搅拌混合均匀,得到固体含量为15%的浆料,使用刮刀将该浆料涂敷在厚度为12μm的铜(Cu)箔一侧上,形成厚度为120μm的湿涂层,然后转移入烘箱中,在150℃的温度下烘干60分钟,使用冷压机以50吨的压力进行冷压,得到负极极片。
将正极极片、隔膜、负极极片按顺序卷好,形成尺寸为16cm×10cm×2.8cm的卷绕层叠结构。将裸电芯置于铝塑膜包装的软包中,向其中注入150克电解液并封装即可得到电芯,所述电解液是组成为1M的LiPF 6的EC/DMC混合溶液,其中EC/DMC体积比为1:1。
3.1.3.对比例
对比例3-1至对比例3-7采用与实验例3-1基本相同的方法,区别仅在于表3所示参数。
3.2.测试例
3.2.1.ZIF-8涂覆层面密度的测试方法如下:
将具有10cm×10cm尺寸的方形涂层隔膜(也即隔离膜)及涂覆前的裸隔膜分别称重,得到两侧ZIF-8涂层的总质量,再除以涂层面积得到面密度。该面密度是两侧涂层的总的面密度。该面密度通过控制湿涂层的厚度调节。
3.2.2.热收缩率
将均匀平整的隔离膜剪切为纵向长25cm、横向宽10cm的长方形片,将其放入温度为150℃的恒温恒湿箱中,保温1小时后取出隔膜样片,放置30分钟后测量其长、宽的长度,并根据尺寸变化值与初始尺寸的百分比计算热收缩率。长度方向的热收缩变化对应纵向热收缩率。宽度方向的热收缩变化对应横向热收缩率。
3.2.3.隔膜的电解液浸润性测量方法如下:
将1滴(约0.05mL)带有电解质的质子型亲水电解液(1M六氟磷酸锂(LiPF 6)的碳酸乙烯酯(EC):碳酸甲乙酯(EMC)=1:1(w/w)溶液)滴到水平放置的隔膜上。待5分钟后用格子法统计电解液浸润的近似面积。具体来说,格子法的测量方式如下:5分钟后从正上方对隔膜上表面拍照,然后在其照片中使用面积为0.1cm 2的方格覆盖所有呈现出电解液浸润痕迹的面积,图像中完全被电解液浸润痕迹占据的方格记作“完全浸润”,电解液浸润面积等于或超过一半的方格也记作“完全浸润”,而电解液浸润面积小于一半的方格记作“未浸润”,最终隔膜的电解液浸润性等于完全浸润方格数量×0.1,以平方厘米为单位来表示。测试温度为25℃。
3.2.4.电解液保有率测试
取一块尺寸为10cm×10cm的隔膜,称量该隔膜的干重W0,然后将该隔膜浸泡在电解液中10小时后在密封容器内静置1小时,使隔膜中的电解液达到饱和,然后称量该隔膜的湿重量W,基于下式计算其电解液保有率。可以看到,该电解液保有率不但表征了隔膜中容纳电解液的容量,还体现了隔膜对电解液的保持能力。测试温度为25℃。电解液保有率=[(W-W0)/W0]×100%。
3.2.5.倍率性能的测量方法如下:
将电芯置于Arbin电化学工作站测试通道中,以0.1C的倍率恒流充电至充电截止电压4.3V,而后恒压充电30分钟,之后分别于0.1C及1C的倍率下恒流放电至放电截止电压2.8V,分别记录放电容量,分别记录为0.1C容量和1C容量,倍率性能=1C容量/0.1C容量×100%。其中,1C对应180mAh/g。测试温度为25℃。
3.2.6.循环性能的测量方法如下:
将电芯置于Arbin电化学工作站测试通道中,以1C的倍率恒流充电至充电截止电压4.3V,静置5min后以1C的倍率下恒流放电至放电截止电压2.8V,记录放电容量,再静置5min。如此循环100次,循环100周后的容量保持率=第100次循环容量/第1次循环容量×100%。测试温度为25℃。
3.2.7.热箱测试的测量方法如下:
将电池在150℃下存放1小时,然后检查是否会引起电池爆炸或爆裂,通过该热箱测试的样品记作“O”,而发生爆炸或爆裂的样品记作“×”。
3.2.8.电池膨胀率测试方法如下:
获得的电芯组装成软包电池进行充放电测试,在电解液中加入1000ppm水以加速产气。使用排水法测试充放电之前的电池体积,记为V1,充放电100次循环后测试电池的体积,记为V2,电池的膨胀率P=(V2-V1)/V1×100%。测试温度为25℃。
3.3.测试结果
各实验例及各对比例制备得到的隔离膜及二次电池的测试结果可参见表3和图7、图8。
图7是实验例3-1中隔离膜采用的ZIF-8纳米颗粒SEM图(左,实验例1-3),以及ZIF-8纳米颗粒在隔离膜表面的形貌图。可见,ZIF-8纳米颗粒在隔离膜表面均匀分布。
图8是实验例3-1中采用ZIF-8材料(实验例1-3)制备的隔离膜在150℃放置1h前后的外观对比图,其中左侧对应加热前的原始复合隔膜,右侧对应加热后。根据测试结果,基于实验例1-3制备的ZIF-8纳米颗粒的复合隔膜在150℃放置1小时后没有明显收缩,其纵向收缩率和横向收缩率分别为1.6%和0.8%,展现出了极高热稳定性。
比较实验例3-1与PP-PE裸隔膜,可以发现,没有涂覆本申请的ZIF-8材料的PP-PE裸隔膜纵向和横向的热收率均比较严重,且隔膜的电解液浸润性能差,对电解液几乎没有保持能力,且倍率性能和循环性能差,热箱测试结果也不佳。
比较实验例3-1与对比例3-1和对比例3-2,可以发现,在0.8mg/cm 2面密度的条件下使用D V50较大且分散性较差的ZIF-8颗粒在隔膜上分布不均匀,容易出现局部团 聚,导致所得复合隔膜的热收缩率较大且隔膜的电解液浸润性能差,对电解液保持能力差,且所得电池的倍率性能和循环性能差,热箱测试结果也不佳。
比较实验例3-1与对比例3-3,可以发现,使用传统配体用量制备所得ZIF-8颗粒中2-甲基咪唑配体残余较多,使得所得电池的倍率性能和循环性能差。
比较实验例3-1与对比例3-4和对比例3-5,可以发现,反应温度过高会导致ZIF-8颗粒D V50较大且分散性较差,在隔膜上分布不均匀,容易出现局部团聚,导致所得复合隔膜的热收缩率较大且隔膜的电解液浸润性能差,对电解液保持能力差,且所得电池的倍率性能和循环性能差。
比较实验例3-1与对比例3-6,可以发现,复合隔膜面密度过低则ZIF-8颗粒含量过低,导致所得复合隔膜的热收缩率较大且隔膜的电解液浸润性能差,对电解液保持能力差,且所得电池的循环性能差,热箱测试结果也不佳。
比较实验例3-1与对比例3-7,可以发现,面密度过高时,ZIF-8颗粒含量过高,影响锂离子传输速率,导致所得电池倍率性能较差。
表3.
Figure PCTCN2022101142-appb-000006
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。以上所述实施例仅表达了本申请的几种实施方式,其 描述较为具体和详细,但并不能因此而理解为对专利范围的限制。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准,说明书及附图可用于解释权利要求的内容。

Claims (30)

  1. 一种ZIF-8材料的制备体系,其包含金属离子、配体分子和溶剂;
    其中,所述金属离子为锌离子,所述配体分子为2-甲基咪唑,所述溶剂为水;
    在所述的制备体系中,所述金属离子、所述配体分子和所述溶剂的摩尔数比为1:a:z,其中7<a<13,310<z<600。
  2. 如权利要求1所述的制备体系,其中,a满足8≤a≤12;
    优选地,a满足9≤a≤12;
    另优选地,a满足10≤a≤12。
  3. 如权利要求1或2所述的制备体系,其中,z满足310<z<500;
    优选地,z满足310<z<460;
    另优选地,z满足320≤z≤450;
    另优选地,z满足340≤z≤450;
    另优选地,z满足340≤z≤420;
    另优选地,z满足400≤z≤420。
  4. 如权利要求1~3中任一项所述的制备体系,其中,所述配体分子和所述溶剂的摩尔数比z/a满足30<(z/a)<44;
    优选地,z/a满足32≤(z/a)≤40;
    另优选地,z/a满足33≤(z/a)≤39;
    另优选地,z/a满足34≤(z/a)≤36;
    另优选地,z/a满足34≤(z/a)≤35。
  5. 如权利要求1~4中任一种所述的制备体系,其中,锌离子来自可溶性锌盐;
    优选地,所述可溶性锌盐包括乙酸锌、氯化锌、硝酸锌和硫酸锌中的一种或多种。
  6. 一种ZIF-8材料的制备方法,其包括如下步骤:
    将锌源溶液与配体溶液混合,配制得到权利要求1~5中任一项所述的制备体系;
    将所述的制备体系进行配位反应,制得ZIF-8纳米颗粒;
    其中,
    所述的制备体系中的锌离子与所述锌源溶液中的水的摩尔数比为1:b;
    所述的制备体系中的锌离子与所述配体溶液中的水的摩尔数比为1:c;
    在所述的制备体系中,锌离子、所述配体分子和水的摩尔数比为1:a:(b+c)。
  7. 如权利要求6所述的制备方法,其中,b满足100<b<200;
    优选地,b满足100≤b≤150;
    另优选地,b满足110≤b≤140;
    另优选地,b满足115≤b≤140。
  8. 如权利要求6或7所述的制备方法,其中,c满足160<c<410;
    优选地,c满足200≤c≤300;
    另优选地,c满足205≤c≤300;
    另优选地,c满足220≤c≤280;
    另优选地,c满足250≤c≤280。
  9. 如权利要求6~8中任一项所述的制备方法,其中,将所述的制备体系进行配位反应的反应温度选自5℃~40℃;
    优选地,进行所述配位反应的反应温度选自5℃~37℃;
    另优选地,进行所述配位反应的反应温度选自5℃~30℃;
    另优选地,进行所述配位反应的反应温度选自15℃~40℃;
    另优选地,进行所述配位反应的反应温度选自15℃~35℃;
    另优选地,进行所述配位反应的反应温度选自20℃~30℃。
  10. 如权利要求6~9中任一项所述的制备方法,其中,将所述的制备体系进行配位反应的反应时间选自3h~30h;
    优选地,进行所述配位反应的反应时间选自12h~24h。
  11. 如权利要求6~10中任一项所述的制备方法,其中,所述将锌源溶液与配体溶液混合包括:于搅拌条件下,将所述锌源溶液加入到所述配体溶液中。
  12. 如权利要求11所述的制备方法,其中,所述搅拌条件包括:搅拌速度选自200rpm~800rpm。
  13. 一种ZIF-8材料,其中,所述ZIF-8材料中包括ZIF-8纳米颗粒;所述ZIF-8纳米颗粒的D v90与D v10之差(D v90-D v10)满足(D v90-D v10)<4000nm;
    优选地,(D v90-D v10)≤3500nm;
    另优选地,(D v90-D v10)≤1500nm;
    另优选地,(D v90-D v10)≤1000nm;
    另优选地,(D v90-D v10)≤500nm;
    另优选地,(D v90-D v10)≤350nm;
    另优选地,(D v90-D v10)≤300nm。
  14. 如权利要求13所述ZIF-8材料,其中,所述ZIF-8纳米颗粒的一次颗粒的平均粒径d1满足d1≤800nm;
    优选地,所述ZIF-8纳米颗粒的一次颗粒的平均粒径d1满足10nm≤d1≤800nm;
    另优选地,所述ZIF-8纳米颗粒的一次颗粒的平均粒径d1满足10nm≤d1≤500nm;
    另优选地,所述ZIF-8纳米颗粒的一次颗粒的平均粒径满足10nm≤d1≤480nm;
    另优选地,所述ZIF-8纳米颗粒的一次颗粒的平均粒径d1满足10nm≤d1≤450nm;
    另优选地,所述ZIF-8纳米颗粒的一次颗粒的平均粒径d1满足10nm≤d1≤300nm;
    另优选地,所述ZIF-8纳米颗粒的一次颗粒的平均粒径d1满足10nm≤d1≤250nm;
    另优选地,所述ZIF-8纳米颗粒的一次颗粒的平均粒径d1满足10nm≤d1≤200nm。
  15. 如权利要求13或14所述ZIF-8材料,其中,
    所述ZIF-8纳米颗粒的D v90≤100000nm;
    优选地,所述ZIF-8纳米颗粒的D v90≥10nm;
    另优选地,所述ZIF-8纳米颗粒的D v90≤4500nm;
    另优选地,所述ZIF-8纳米颗粒的D v90≤4500nm;
    另优选地,所述ZIF-8纳米颗粒的D v90≤2000nm;
    另优选地,所述ZIF-8纳米颗粒的D v90≤1500nm;
    另优选地,所述ZIF-8纳米颗粒的D v90≤1000nm;
    另优选地,所述ZIF-8纳米颗粒的D v90≤800nm;
    另优选地,所述ZIF-8纳米颗粒的D v90≤650nm;
    另优选地,所述ZIF-8纳米颗粒的D v90≤600nm;
    另优选地,所述ZIF-8纳米颗粒的D v90≤550nm;
    另优选地,所述ZIF-8纳米颗粒的D v90≤500nm。
  16. 如权利要求13~15中任一项所述ZIF-8材料,其中,
    所述ZIF-8纳米颗粒的D v50<3000nm;
    另优选地,所述ZIF-8纳米颗粒的D v50满足50nm≤D v50≤3000nm;
    另优选地,所述ZIF-8纳米颗粒的D v50满足50nm≤D v50≤2000nm;
    另优选地,所述ZIF-8纳米颗粒的D v50满足50nm≤D v50≤1500nm;
    另优选地,所述ZIF-8纳米颗粒的D v50满足50nm≤D v50≤1000nm;
    另优选地,所述ZIF-8纳米颗粒的D v50满足50nm≤D v50≤800nm;
    另优选地,所述ZIF-8纳米颗粒的D v50满足50nm≤D v50≤650nm;
    另优选地,所述ZIF-8纳米颗粒的D v50满足50nm≤D v50≤600nm;
    另优选地,所述ZIF-8纳米颗粒的D v50满足50nm≤D v50≤550nm;
    另优选地,所述ZIF-8纳米颗粒的D v50满足50nm≤D v50≤500nm。
  17. 如权利要求13~16中任一项所述ZIF-8材料,其中,
    所述ZIF-8纳米颗粒的D v10≥10nm;
    优选地,所述ZIF-8纳米颗粒的D v10满足10nm≤D v10<800nm;
    另优选地,所述ZIF-8纳米颗粒的D v10满足10nm≤D v10≤700nm;
    另优选地,所述ZIF-8纳米颗粒的D v10满足10nm≤D v10≤500nm;
    另优选地,所述ZIF-8纳米颗粒的D v10满足10nm≤D v10≤350nm;
    另优选地,所述ZIF-8纳米颗粒的D v10满足10nm≤D v10≤300nm;
    另优选地,所述ZIF-8纳米颗粒的D v10满足10nm≤D v10≤250nm。
  18. 一种单原子催化剂的制备方法,其包括如下步骤:
    将ZIF-8材料牺牲前驱体与金属盐溶液混合,固液分离,收集固相,干燥,制得载金属盐的ZIF-8材料;其中,所述ZIF-8材料牺牲前躯体包括权利要求6~12中任一项所述的制备方法制备得到的ZIF-8材料或权利要求13~17中任一项所述ZIF-8材料,所述金属盐溶液中的金属元素M包括Co、Fe、Mn、Ni、Cu、Pt和Zn中的一种或多种;
    将所述载金属盐的ZIF-8材料于惰性气体氛围中进行煅烧,冷却,制备得到ZIF-8衍生单原子催化剂,所述ZIF-8衍生单原子催化剂的单原子金属位点类型选自M-N 4-C、M-N 3-C、M-N 2-C和M-N 1-C中任一种。
  19. 如权利要求18所述的制备方法,其中,所述金属盐溶液中的溶剂包括甲醇、乙醇、水和N,N-二甲基甲酰胺中的一种或多种。
  20. 如权利要求18或19所述的制备方法,其中,所述金属盐溶液中的金属盐选自硝酸钴、硝酸铁、氯化铁、硝酸镍、乙酰丙酮镍、氯铂酸钠、乙酰丙酮铁、硝酸铜和硫酸铜中的一种或多种。
  21. 如权利要求18~20中任一项所述的制备方法,其中,所述将ZIF-8材料牺牲前驱体与金属盐溶液混合的温度选自10℃~60℃,优选地,混合时间选为1h~12h,另优选地,混合时间选自2h~6h;
    所述干燥的干燥温度选自95℃~105℃,优选地,干燥时间选自5h~10h;
    所述将所述载金属盐的ZIF-8材料于惰性气体气氛中进行煅烧,冷却的步骤包括:将所述载金属盐的ZIF-8材料于惰性气体下升温至煅烧温度,保温,冷却,
    优选地,所述惰性气体氛围中选自氮气气氛或氩气气氛;
    另优选地,升温速率选自4℃/min~6℃/min;
    另优选地,所述煅烧温度选自800℃~1000℃;
    另优选地,保温时间选自1.5h~2.5h;
    另优选地,冷却方式为随炉冷却;
    另优选地,冷却至4℃~40℃。
  22. 如权利要求18~21中任一项所述的制备方法,其中,所述的ZIF-8衍生单原子催化剂的一次颗粒的平均粒径d2满足5nm≤d2≤700nm。
  23. 一种单原子催化剂,其根据权利要求18~22中任一项所述的制备方法制备得到。
  24. 一种电池隔离膜,其包括多孔基材以及设置于所述多孔基材至少一个表面上的多孔涂层,所述多孔涂层包括权利要求6~12中任一项所述的制备方法制备得到的ZIF-8材料或权利要求13~17中任一项所述的ZIF-8材料。
  25. 如权利要求24所述电池隔离膜,其中,所述的ZIF-8材料在所述多孔涂层中的重量百分含量选自40%~90%。
  26. 如权利要求24或25所述电池隔离膜,其中,所述多孔涂层的厚度选自0.5μm~12μm。
  27. 如权利要求24~26中任一项所述电池隔离膜,其中,所述多孔涂层中还包括粘合剂、无机颗粒、稳定剂、润湿剂、流变改性剂、消泡剂、增稠剂、pH调节剂和防腐剂中的一种或多种;
    优选地,所述无机颗粒的成分包括下组中的一种或多种:勃姆石、分子筛、沸石、氧化铝、羟基氧化铝、二氧化硅、氮化铝、碳化硅、氧化镁、氧化钙、氧化锌、二氧化锆、二氧化钛。
  28. 权利要求6~12中任一项所述的制备方法制备得到的ZIF-8材料或权利要求13~17中任一项所述的ZIF-8材料在制备碳基单原子催化剂或锂离子电池隔离膜、中的应用。
  29. 一种电池单体,其包括层叠分布的正极极片、权利要求24~27中任一项所述电池隔离膜以及负极极片,所述电池隔离膜设置于所述负极极片和所述正极极片之间。
  30. 一种用电装置,其包括权利要求29所述电池单体。
PCT/CN2022/101142 2022-06-24 2022-06-24 Zif-8材料及其制备体系、制备方法、单原子催化剂、电池隔离膜和应用 WO2023245622A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/101142 WO2023245622A1 (zh) 2022-06-24 2022-06-24 Zif-8材料及其制备体系、制备方法、单原子催化剂、电池隔离膜和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/101142 WO2023245622A1 (zh) 2022-06-24 2022-06-24 Zif-8材料及其制备体系、制备方法、单原子催化剂、电池隔离膜和应用

Publications (1)

Publication Number Publication Date
WO2023245622A1 true WO2023245622A1 (zh) 2023-12-28

Family

ID=89379031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101142 WO2023245622A1 (zh) 2022-06-24 2022-06-24 Zif-8材料及其制备体系、制备方法、单原子催化剂、电池隔离膜和应用

Country Status (1)

Country Link
WO (1) WO2023245622A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108129670A (zh) * 2017-12-05 2018-06-08 西北工业大学 一种梯度多孔金属有机骨架zif-8的制备方法
JP2018118929A (ja) * 2017-01-26 2018-08-02 住友ベークライト株式会社 金属有機構造体の製造方法
JP2019018175A (ja) * 2017-07-20 2019-02-07 住友ベークライト株式会社 複合体、複合体の製造方法、吸着材、および液体の清浄化方法
CN109593209A (zh) * 2018-12-10 2019-04-09 山东大学 一种使用种子生长合成制备沸石咪唑酯骨架材料zif-8纳米八三足体的方法
CN110229349A (zh) * 2019-07-17 2019-09-13 延边大学 一种沸石咪唑类金属有机框架材料及其制备方法和应用
CN110496614A (zh) * 2018-05-16 2019-11-26 中国科学院大连化学物理研究所 金属催化剂、其制备方法及在水相催化糠醛加氢制备糠醇中的应用
CN113690452A (zh) * 2021-07-30 2021-11-23 北京化工大学 通过聚合物-金属配合物辅助碳化mof技术制备催化剂的方法及所得催化剂
CN113964373A (zh) * 2021-09-29 2022-01-21 惠州锂威新能源科技有限公司 一种隔膜及其制备方法以及锂离子电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018118929A (ja) * 2017-01-26 2018-08-02 住友ベークライト株式会社 金属有機構造体の製造方法
JP2019018175A (ja) * 2017-07-20 2019-02-07 住友ベークライト株式会社 複合体、複合体の製造方法、吸着材、および液体の清浄化方法
CN108129670A (zh) * 2017-12-05 2018-06-08 西北工业大学 一种梯度多孔金属有机骨架zif-8的制备方法
CN110496614A (zh) * 2018-05-16 2019-11-26 中国科学院大连化学物理研究所 金属催化剂、其制备方法及在水相催化糠醛加氢制备糠醇中的应用
CN109593209A (zh) * 2018-12-10 2019-04-09 山东大学 一种使用种子生长合成制备沸石咪唑酯骨架材料zif-8纳米八三足体的方法
CN110229349A (zh) * 2019-07-17 2019-09-13 延边大学 一种沸石咪唑类金属有机框架材料及其制备方法和应用
CN113690452A (zh) * 2021-07-30 2021-11-23 北京化工大学 通过聚合物-金属配合物辅助碳化mof技术制备催化剂的方法及所得催化剂
CN113964373A (zh) * 2021-09-29 2022-01-21 惠州锂威新能源科技有限公司 一种隔膜及其制备方法以及锂离子电池

Similar Documents

Publication Publication Date Title
TWI565658B (zh) 陰極活性材料及其製備方法
WO2017061073A1 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池、非水電解質二次電池用負極材の製造方法、及び非水電解質二次電池の製造方法
JP2022528111A (ja) 負極材料、並びにそれを含む電気化学装置及び電子装置
CN111403693A (zh) 负极活性材料和使用其的负极极片、电化学装置和电子装置
Wang et al. Facile solvothermal synthesis and superior lithium storage capability of Co 3 O 4 nanoflowers with multi-scale dimensions
WO2022206175A1 (zh) 一种负极和包含该负极的电化学装置和电子装置
WO2024040501A1 (zh) 碳材料及其制备方法与应用、负极片、二次电池及用电装置
WO2023240544A1 (zh) 正极材料及其制备方法、具备其的二次电池
TWI515949B (zh) 鋰離子電池負極材料的製備方法
CN111146433A (zh) 负极及包含其的电化学装置和电子装置
Zhu et al. Improved electrochemical performance of zinc oxide coated lithium manganese silicate electrode for lithium-ion batteries
WO2024051216A1 (zh) 复合正极活性材料及其制备方法和包含其的用电装置
WO2023174050A1 (zh) 三元正极材料、其制造方法以及使用其的二次电池
WO2023205993A1 (zh) 尖晶石镍锰酸锂材料及其制备方法
WO2023230825A1 (zh) 层状氧化物、其制备方法、正极极片、二次电池、电池模块、电池包和用电装置
WO2023216168A1 (zh) 造孔剂、正极浆料、正极极片基体、电池单体及其制备方法、电池模块、电池包和用电装置
WO2023245622A1 (zh) Zif-8材料及其制备体系、制备方法、单原子催化剂、电池隔离膜和应用
WO2023040357A1 (zh) 改性的高镍三元正极材料及其制备方法,以及用电装置
WO2023123049A1 (zh) 层状氧化物正极活性材料、以及包含其的正极极片、钠离子电池及用电装置
JP7190030B2 (ja) 負極活物質及びそれを用いた電気化学デバイス及び電子設備
Jiang et al. Synthesis of porous Li 2 MnO 3-LiNi 1/3 Co 1/3 Mn 1/3 O 2 nanoplates via colloidal crystal template
WO2021196141A1 (zh) 二次电池及含有该二次电池的装置
CN115832300A (zh) 一种纳米磷酸铁锂材料、正极极片及二次电池
WO2023272551A1 (zh) 有机-无机杂化型复合物及包含其的涂层组合物、隔膜、二次电池、电池模块、电池包和用电装置
WO2024036430A1 (zh) 负极活性材料、负极极片、二次电池、用电装置和制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947391

Country of ref document: EP

Kind code of ref document: A1