WO2023216168A1 - 造孔剂、正极浆料、正极极片基体、电池单体及其制备方法、电池模块、电池包和用电装置 - Google Patents

造孔剂、正极浆料、正极极片基体、电池单体及其制备方法、电池模块、电池包和用电装置 Download PDF

Info

Publication number
WO2023216168A1
WO2023216168A1 PCT/CN2022/092339 CN2022092339W WO2023216168A1 WO 2023216168 A1 WO2023216168 A1 WO 2023216168A1 CN 2022092339 W CN2022092339 W CN 2022092339W WO 2023216168 A1 WO2023216168 A1 WO 2023216168A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
pore
forming agent
battery
lithium
Prior art date
Application number
PCT/CN2022/092339
Other languages
English (en)
French (fr)
Inventor
云亮
孙信
吴李力
董苗苗
宋佩东
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/092339 priority Critical patent/WO2023216168A1/zh
Priority to CN202280047881.5A priority patent/CN117616007A/zh
Publication of WO2023216168A1 publication Critical patent/WO2023216168A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/65Metal complexes of amines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the technical field of secondary batteries, and more specifically to pore-forming agents and their preparation methods, positive electrode slurries, positive electrode sheet substrates and their preparation methods, electrode assemblies, battery cells and their preparation methods, battery modules, and battery packs. and electrical appliances.
  • lithium-ion batteries With the accelerated pace of life and the development of various electronic products such as smartphones, tablets, smart wearables, power tools, and electric vehicles, customers and the market have increasingly higher requirements for the performance of lithium-ion batteries. In particular, in order to achieve long-term battery life of electric vehicles and enable them to compete with fuel vehicles, lithium batteries with large capacity, high energy density and excellent cycle performance are urgently needed to be developed.
  • the present application provides a pore-forming agent, positive electrode slurry, positive electrode sheet substrate, battery assembly, battery cell and preparation method thereof, battery module, battery pack and electrical device, using the pore-forming agent to conduct
  • the holes are not easily closed when the pole piece is rolled, and micron-level pores can be generated without damage, which helps to improve the characteristic thickness and gram capacity of thick electrodes.
  • the application provides a pore-forming agent, including a central ion, an acid ion and a ligand molecule, the central ion is a lithium ion, and the ligand molecule has the structure shown in Formula I:
  • R 1 and R 2 are each independently selected from methyl or ethyl, and R 3 is independently selected from an alkyl group with 1 to 11 carbon atoms.
  • the pore-forming agent prepared can produce ligand molecules under certain conditions, such as when heating and coating. Decompose and generate gas, so that there are several air channels distributed in the final active material layer.
  • the electrolyte can dissolve the remaining lithium salt through these air channels and form micron-level pores in situ, thereby accelerating ion transmission and reducing liquid phase polarization. , and increase the gram capacity of the electrode material. It can also improve the infiltration time of the electrode and facilitate the reflow of the electrolyte. It can achieve normal electrochemical performance with more than twice the thickness of the electrode, reduce the use of metal foil, and increase energy density. ,cut costs.
  • the acid ion is a monovalent anion.
  • the acid ion includes one or more of PF 6 - , BOB - , ODFB - , TFSI - , FSI - , TNFSI - and PO 2 F 2 - .
  • the full names of each acid ion are: hexafluorophosphate ion, bisoxaloborate ion, difluoroxaloborate ion, bis(trifluoromethanesulfonyl)imide ion, and bis(fluorosulfonyl)imide ion. ion, super delocalized sulfonimide ion, difluoroborate ion.
  • the lithium salts of these acid ions have good electrochemical properties and are often used as electrolytes. Therefore, these acid ions are selected as the anions of the pore-forming agent. After being dissolved in the electrolyte, they can not only generate the required pores in situ, but also Providing electrolyte for electrolyte effectively reduces costs.
  • the R 3 is independently selected from an alkyl group with 1 to 6 carbon atoms.
  • R 1 and R 2 are methyl, and R 3 is selected from methyl, ethyl, n-propyl, n-butyl, n-pentyl or n-hexyl.
  • R 1 and R 2 are methyl, and R 3 is n-hexyl.
  • R 1 and R 2 are not only related to the coordination ability of ligand molecules and lithium ions, affecting the particle size and stability of the finished pore-forming agent, but also related to whether the pore-forming agent can be completely decomposed as expected when heated. Air channels are formed to allow the electrolyte to dissolve the remaining lithium salts.
  • the average particle size of the pore-forming agent ranges from 10 ⁇ m to 200 ⁇ m. Controlling the particle size of the pore-forming agent within a certain range can form pores with a more appropriate size, without causing closed pores, without reducing the electrode energy density too much.
  • the material amount ratio of the central ion, acid ion and ligand molecule is 1:1: (1-4).
  • a second aspect of the application provides a cathode slurry, which includes cathode active materials, additives, solvents, and the pore-forming agent described in one or more of the preceding embodiments.
  • the mass percentage of the pore-forming agent in the solid component is 1% to 10%.
  • the mass percentage of the pore-forming agent in the solid component is 1% to 10%.
  • the mass percentage of pore-forming agent in the cathode slurry is related to the porosity of the finished electrode piece.
  • the appropriate amount of pore-forming agent can speed up ion transmission and reduce liquid phase polarization, increase the gram capacity of the electrode material, and improve the electrode infiltration time. , and does not affect the energy density of the electrode too much.
  • the cathode active material includes Li a N One or more of 2 O 2 or Li 1-w CoO 2 ;
  • each occurrence of M 1 is independently selected from Al, Mg, Zn, Zr, Ti or Fe;
  • each occurrence of M 2 is independently selected from Ni, Co or Mn;
  • the pore-forming agent prepared in this application is more suitable for the above positive electrode active materials.
  • the combined use of the two can better utilize the gram capacity of the above mentioned positive electrode active materials.
  • the auxiliary agent includes one or more of magnetic modification materials, thickeners, conductive agents, binders, and dispersants.
  • the viscosity of the cathode slurry at 25 ⁇ 0.5°C is 6000 mPa ⁇ s ⁇ 15000 mPa ⁇ s.
  • the solid content of the cathode slurry is 68% to 76%.
  • Appropriate viscosity and solid content can make the pore-forming agent more evenly distributed in the cathode slurry, thereby forming more uniform pores and avoiding the impact of the aggregation of the pore-forming agent on the physical strength and gram capacity of the electrode.
  • a third aspect of the present application provides a cathode sheet substrate, which includes a cathode current collector and a cathode active material layer disposed on at least one surface of the cathode current collector.
  • the cathode active material layer is composed of one or more of the aforementioned
  • the positive electrode slurry described in the embodiment is solidified.
  • the thickness of the cathode active material layer ranges from 120 ⁇ m to 400 ⁇ m. Limiting the thickness of the positive active material layer to an appropriate range is more consistent with the pore-forming agent of the present application and can produce higher gram capacity and characteristic thickness.
  • the ratio of the average particle size of the pore-forming agent to the thickness of the cathode active material layer ranges from 1:(5-7).
  • the particle size of the pore-forming agent and the thickness of the cathode active material layer are controlled within a certain proportion, which can effectively increase the electrode's gram capacity and improve the electrode's infiltration time, while avoiding adverse effects on the energy density and physical strength of the electrode as much as possible. .
  • the fourth aspect of the present application provides an electrode assembly, which includes a stacked and distributed negative electrode sheet, an isolation film, and the positive electrode sheet base body as described in any of the previous embodiments.
  • the isolation film is disposed on the negative electrode sheet. and between the positive electrode plate base body.
  • a fifth aspect of the present application provides a battery cell, which includes a stacked and distributed negative electrode sheet, a separator film, and a positive electrode sheet.
  • the separator film is disposed between the negative electrode sheet and the positive electrode sheet. ;
  • the positive electrode piece is made by contacting the positive electrode base body and the electrolyte according to any of the previous embodiments of the claims, and the positive electrode piece has a porous structure.
  • the concentration of lithium ions in the electrolyte is 0 mol/L to 1 mol/L
  • the solvent of the electrolyte includes dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and polycarbonate.
  • the lithium ion concentration of the electrolyte used in this application needs to be smaller than the concentration of conventional electrolyte (conventional electrolyte The concentration of lithium ions in the solution is about 1.2mol/L), or even pure solvent without electrolyte can be used for infusion.
  • an electrolyte is formed, thereby maintaining the concentration of lithium ions in the electrolyte within an appropriate range and avoiding lithium Excessive ion concentration adversely affects the cycle performance of the battery.
  • the porosity of the positive electrode sheet is 25% to 40%. Maintaining the porosity of the electrode piece within an appropriate range can significantly improve the wettability of the electrode, the liquid-phase transmission of ions and the gram capacity without affecting the energy density of the electrode. Especially for thicker electrodes, the application of this application Pore-forming agents can provide relatively high porosity, which greatly improves the wettability of thick electrodes compared with traditional technologies, allowing thick electrodes to have greater characteristic thickness.
  • the pore diameter of the positive electrode piece is 60 ⁇ m to 200 ⁇ m.
  • the pore diameter of the positive electrode piece is set within a suitable range, which can take into account the electrical performance, wetting performance and physical strength of the electrode piece.
  • the compacted density of the positive electrode piece is 2.9g/cm 3 to 3.5g/cm 3 .
  • the appropriate compaction density is actually related to the porosity of the pole piece, and therefore also related to the gram capacity and energy density of the pole piece.
  • a sixth aspect of the present application also provides a battery module, which includes the battery cell described in any of the preceding embodiments.
  • a seventh aspect of the present application provides a battery pack, which includes the aforementioned battery module.
  • An eighth aspect of the present application provides an electrical device, which includes one or more of the battery cells described in the foregoing embodiments, the foregoing battery module, and the foregoing battery pack.
  • the ninth aspect of this application provides a method for preparing the pore-forming agent described in any of the previous embodiments, which includes method A or method B:
  • Method A includes the following steps:
  • Method B includes the following steps:
  • method A acid and ligand molecules are premixed, and then anion exchange occurs with lithium carbonate through strong acid to weak acid to prepare lithium salt, which is simultaneously coordinated with ligand molecules to form a pore-forming agent. Due to the occurrence of atomic level chemistry, Change, the pore-forming agent produced has high purity, and the particle size of the pore-forming agent can be precisely controlled; Method B has the advantage of a wide range of applications.
  • the acid includes one or more of hexafluorophosphoric acid and difluorophosphoric acid;
  • the lithium salt includes one of LiPF 6 , LiBOB, LiODFB, LiTFSI, LiFSI, LiTNFSI, and LiPO 2 F 2
  • the solvent includes one or more of dimethyl carbonate, diethyl carbonate, polycarbonate and fluoroethylene carbonate.
  • the ratio of the amount of the acid to the ligand molecular substance is 1: (1-10).
  • An appropriate dosage ratio can ensure that the number of ligand molecules in the mixture is appropriate, coordinate with lithium ions smoothly, and form particles of appropriate particle size.
  • the ratio of the amount of the acid to the lithium carbonate is 2: (0.8-1.2).
  • the ratio of the amounts of the lithium salt and the ligand molecule is 1:(2-5).
  • An appropriate dosage ratio can enable the ligand molecules to coordinate with lithium ions smoothly and form particles of suitable particle size.
  • the lithium ion concentration in the lithium salt solution is 0.5 mol/L to 1 mol/L.
  • Appropriate lithium ion concentration can make the coordination reaction occur better and form a pore-forming agent with suitable particle size.
  • a tenth aspect of the present application also provides a method for preparing the positive electrode sheet substrate according to any of the previous embodiments, which includes the following steps:
  • the positive electrode slurry described in one or more previous embodiments is applied to at least one surface of the positive electrode current collector, dried, and pressed.
  • the coating thickness of the cathode slurry ranges from 250 ⁇ m to 800 ⁇ m.
  • An appropriate coating thickness can form a cathode active material layer of appropriate thickness after pressing.
  • the temperature when coating the cathode slurry is 80°C to 120°C. Controlling the temperature of the positive electrode slurry within an appropriate range during coating can completely decompose the ligand molecules in the pore-forming agent to form air channels without affecting the stability of other components in the slurry.
  • An eleventh aspect of the present application provides a method for preparing the aforementioned battery cell, including the following steps: injecting the electrolyte solution into a battery case equipped with the aforementioned electrode assembly.
  • FIG. 1 is a schematic diagram of a battery cell according to an embodiment of the present application.
  • FIG. 2 is an exploded view of the battery cell shown in FIG. 1 according to one embodiment of the present application.
  • FIG. 3 is a schematic diagram of a battery module according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of a battery pack according to an embodiment of the present application.
  • FIG. 5 is an exploded view of the battery pack according to an embodiment of the present application shown in FIG. 4 .
  • FIG. 6 is a schematic diagram of an electrical device using a battery cell as a power source according to an embodiment of the present application.
  • Ranges disclosed herein are defined in terms of lower and upper limits. A given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive of the endpoints, and may be arbitrarily combined, that is, any lower limit may be combined with any upper limit to form a range. For example, if ranges of 60-120 and 80-110 are listed for a particular parameter, it is understood that ranges of 60-110 and 80-120 are also contemplated. Additionally, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, then the following ranges are all expected: 1 to 3, 1 to 4, 1 to 5, 2 to 3, 2 ⁇ 4 and 2 ⁇ 5.
  • the numerical range “a ⁇ b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range “0 ⁇ 5" means that all real numbers between "0 ⁇ 5" have been listed in this article, and "0 ⁇ 5" is just an abbreviation of these numerical combinations.
  • a certain parameter is an integer ⁇ 2
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed sequentially, or may include steps (b) and (a) performed sequentially.
  • step (c) means that step (c) may be added to the method in any order.
  • the method may include steps (a), (b) and (c). , may also include steps (a), (c) and (b), may also include steps (c), (a) and (b), etc.
  • condition "A or B” is satisfied by any of the following conditions: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; Or both A and B are true (or exist).
  • Electrode pole pieces often have certain pores.
  • the size of the pores has a direct impact on the performance of the pole piece. If the pores are too large, the contact between the particles inside the pole piece material will not be close, and the transmission path of lithium ions and electrons will be long and the resistance will be large. , the energy loss is large; if the pores are too small, it will be difficult to wet the pole pieces, resulting in poor battery cycle life and rate performance.
  • the most common method is to add a pore-forming agent.
  • the current pore-forming agents are mainly ammonium bicarbonate and azo compounds. These two types of compounds can be decomposed by heating when coating slurry, thereby forming pores. However, most of the pore-forming agents formed by the decomposition of these two types of pore-forming agents are at the nanometer level. The pores do not have liquid phase mass transfer capabilities, and the closed pore phenomenon will occur due to the small size during the rolling process. In this way, not only will no effective pores be formed, but the tortuosity of the electrode will be increased, making the characteristic thickness of the electrode Reduced, the gram capacity is low.
  • the present application provides a pore-forming agent, which includes a central ion, an acid ion and a ligand molecule.
  • the central ion is a lithium ion
  • the ligand molecule has the formula I. The structure shown:
  • R 1 and R 2 are each independently selected from methyl or ethyl, and R 3 is independently selected from an alkyl group with 1 to 11 carbon atoms.
  • the number of carbon atoms of R 3 may be, for example, 2, 3, 4, 5, 6, 7, 8, 9, or 10.
  • alkyl refers to a saturated hydrocarbon containing primary (normal) carbon atoms, or secondary carbon atoms, or tertiary carbon atoms, or quaternary carbon atoms, or combinations thereof. Phrases that include this term, for example, "C 1 to C 11 alkyl” refer to alkyl groups containing 1 to 6 carbon atoms, and each occurrence may be independently C 1 alkyl, C 2 alkyl, C 3 alkyl, C 4 alkyl, C 5 alkyl , C 6 alkyl, C 7 alkyl, C 8 alkyl, C 9 alkyl, C 10 alkyl, C 11 alkyl.
  • Suitable examples include, but are not limited to: methyl (Me, -CH 3 ), ethyl (Et, -CH 2 CH 3 ), 1-propyl (n-Pr, n-propyl, n-propyl, -CH 2 CH 2 CH 3 ), 2-propyl (i-Pr, i-propyl, isopropyl, -CH(CH 3 ) 2 ), 1-butyl (n-Bu, n-butyl, -CH 2 CH 2 CH 2 CH 3 ), 2-methyl-1-propyl (i-Bu, i-butyl, -CH 2 CH(CH 3 ) 2 ), 2-butyl (s-Bu, s- Butyl, -CH(CH 3 )CH 2 CH 3 ), 2-methyl-2-propyl (t-Bu, t-butyl, -C(CH 3 ) 3 ), 1-pentyl (n- Pentyl, -CH 2 CH 2 CH 2 CH 3 ), 1-
  • the pore-forming agent prepared can produce ligand molecules under certain conditions, such as when heating and coating. Decompose and generate gas, so that there are several air channels distributed in the final active material layer.
  • the electrolyte can dissolve the remaining lithium salt through these air channels and form micron-level pores in situ, thereby accelerating ion transmission and reducing liquid phase polarization. , and increase the gram capacity of the electrode material. It can also improve the infiltration time of the electrode and facilitate the reflow of the electrolyte. It can achieve normal electrochemical performance with more than twice the thickness of the electrode, reduce the use of metal foil, and increase energy density. ,cut costs.
  • the acid ion is a monovalent anion.
  • the acid ion includes one or more of PF 6 - , BOB - , ODFB - , TFSI - , FSI - , TNFSI - , PO 2 F 2 - .
  • the full names of each acid ion are: hexafluorophosphate ion, bisoxaloborate ion, difluoroxaloborate ion, bis(trifluoromethanesulfonyl)imide ion, and bis(fluorosulfonyl)imide ion. ion, super delocalized sulfonimide ion, difluoroborate ion.
  • the lithium salts of these acid ions have good electrochemical properties and are often used as electrolytes. Therefore, these acid ions are selected as the anions of the pore-forming agent. After being dissolved in the electrolyte, they can not only generate the required pores in situ, but also Providing electrolyte for electrolyte effectively reduces costs.
  • R 3 is independently selected from alkyl groups having 1 to 6 carbon atoms.
  • R 3 is selected from methyl, ethyl, n-propyl, n-butyl, n-pentyl or n-hexyl, and further preferably, R 3 is n-hexyl.
  • R 1 and R 2 are methyl, and R 3 is selected from methyl, ethyl, n-propyl, n-butyl, n-pentyl or n-hexyl.
  • R 1 and R 2 are methyl, and R 3 is n-hexyl.
  • R 1 and R 2 are not only related to the coordination ability of ligand molecules and lithium ions, affecting the particle size and stability of the finished pore-forming agent, but also related to whether the pore-forming agent can be completely decomposed as expected when heated. Air channels are formed to allow the electrolyte to dissolve the remaining lithium salts.
  • R 1 and R 2 have been restricted as above, which can take into account the coordination ability of the ligand molecules and the ability to decompose and produce gas when heated, and has low toxicity.
  • the average particle size of the pore-forming agent ranges from 10 ⁇ m to 200 ⁇ m.
  • the "average particle size range” here refers to the distribution range of the volume average particle size Dv50.
  • the volume average particle diameter Dv50 has a well-known meaning in the art and refers to the average particle diameter corresponding to 50% of the particles in the volume distribution. It can be measured using instruments and methods known in the art. For example, you can refer to the GB/T 19077-2016 particle size distribution laser diffraction method and use a laser particle size analyzer to conveniently measure it, such as the Mastersizer 2000E laser particle size analyzer of Malvern Instruments Co., Ltd. in the United Kingdom. .
  • the average particle size of the pore-forming agent can be, for example, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m, 105 ⁇ m, 110 ⁇ m, 115 ⁇ m, 120 ⁇ m, 125 ⁇ m, 130 ⁇ m, 135 ⁇ m, 140 ⁇ m, 145 ⁇ m, 150 ⁇ m, 155 ⁇ m, 160 ⁇ m, 165 ⁇ m, 170 ⁇ m, 175 ⁇ m, 180 ⁇ m, 185 ⁇ m, 190 ⁇ m or 195 ⁇ m. Controlling the particle size of the pore-forming agent within a certain range can form pores with a more appropriate size, without causing closed pores, without reducing the electrode energy density too much.
  • the material amount ratio of the central ion, acid ion and ligand molecule is 1:1: (1-4).
  • the ratio of the amounts of the three substances can also be, for example, 1:1:2 or 1:1:3.
  • a second aspect of the application provides a positive electrode slurry, which includes a positive electrode active material, an auxiliary agent, a solvent, and the pore-forming agent of one or more of the aforementioned embodiments.
  • the mass percentage of the pore-forming agent in the solid component is 1% to 10%.
  • the mass percentage of the pore-forming agent in the solid component is 1% to 10%.
  • the mass percentage of the pore-forming agent in the solid component of the positive electrode slurry can be, for example, 3%, 4%, 6%, 7%, 8% or 9%.
  • the mass percentage of pore-forming agent in the cathode slurry is related to the porosity of the finished electrode piece.
  • the appropriate amount of pore-forming agent can speed up ion transmission and reduce liquid phase polarization, increase the gram capacity of the electrode material, and improve the electrode infiltration time. , and does not affect the energy density of the electrode too much.
  • the cathode active material includes Li a N 2 or one or more of Li 1-w CoO 2 ;
  • each occurrence of M 1 is independently selected from Al, Mg, Zn, Zr, Ti or Fe;
  • each occurrence of M 2 is independently selected from Ni, Co or Mn;
  • a may also be 1.0 or 1.1, for example.
  • x may also be 0.6, 0.7, 0.8 or 0.9, for example.
  • y may also be 0.1 or 0.2, for example.
  • z may also be, for example, 0.05, 0.1, or 0.15.
  • v may also be 0.2, 0.4, 0.6 or 0.8, for example.
  • w may also be 0.1, 0.2, 0.3 or 0.4, for example.
  • the positive active material is LiNi 0.96 Co 0.02 Mn 0.02 O 2 .
  • the positive active material is 0.5Li[Li 1/3 Mn 2/3 ]O 2 ⁇ 0.5LiNiO 2 .
  • the pore-forming agent prepared in this application is more suitable for the above positive electrode active materials.
  • the combined use of the two can better utilize the gram capacity of the above mentioned positive electrode active materials.
  • the auxiliary agent includes one or more of magnetic modification materials, thickeners, conductive agents, binders, and dispersants.
  • the viscosity of the cathode slurry at 25 ⁇ 0.5°C ranges from 6000 mPa ⁇ s to 15000 mPa ⁇ s.
  • the viscosity of the cathode slurry at 25 ⁇ 0.5°C may also be, for example, 7000mPa ⁇ s, 8000mPa ⁇ s, 9000mPa ⁇ s, 10000mPa ⁇ s, 11000mPa ⁇ s, 12000mPa ⁇ s, 13000mPa ⁇ s or 14000mPa ⁇ s.
  • the solid content of the cathode slurry is 68% to 76%.
  • the solid content of the positive electrode slurry may also be, for example, 70%, 72% or 74%.
  • Appropriate viscosity and solid content can make the pore-forming agent more evenly distributed in the cathode slurry, thereby forming more uniform pores and avoiding the impact of the aggregation of the pore-forming agent on the physical strength and gram capacity of the electrode.
  • a third aspect of the present application provides a cathode sheet substrate, which includes a cathode current collector and a cathode active material layer disposed on at least one surface of the cathode current collector.
  • the cathode active material layer is composed of one or more of the aforementioned embodiments.
  • the positive electrode slurry is solidified.
  • the thickness of the positive active material layer ranges from 120 ⁇ m to 400 ⁇ m.
  • the thickness of the positive active material may also be, for example, 140 ⁇ m, 160 ⁇ m, 180 ⁇ m, 200 ⁇ m, 220 ⁇ m, 240 ⁇ m, 260 ⁇ m, 280 ⁇ m, 300 ⁇ m, 320 ⁇ m, 340 ⁇ m, 360 ⁇ m, or 380 ⁇ m. Limiting the thickness of the positive electrode active material layer to an appropriate range is more consistent with the pore-forming agent of the present application and can produce higher gram capacity and characteristic thickness.
  • the ratio of the average particle size of the pore-forming agent to the thickness of the cathode active material layer ranges from 1:(5-7).
  • the ratio of the average particle size of the pore-forming agent to the thickness of the positive electrode active material layer may also be, for example, 1:5.5, 1:6, or 1:6.5.
  • the particle size of the pore-forming agent and the thickness of the cathode active material layer are controlled within a certain proportion, which can effectively increase the electrode's gram capacity and improve the electrode's infiltration time, while avoiding adverse effects on the energy density and physical strength of the electrode as much as possible. .
  • the fourth aspect of the present application provides an electrode assembly, which includes a stacked and distributed negative electrode sheet, an isolation film, and a positive electrode sheet base body of any of the aforementioned embodiments.
  • the isolation film is disposed between the negative electrode sheet and the positive electrode sheet base body. between.
  • a fifth aspect of the present application provides a battery cell, which includes a stacked and distributed negative electrode plate, an isolation film, and a positive electrode plate, and the isolation film is disposed between the negative electrode plate and the positive electrode plate;
  • the positive electrode sheet is made by contacting the positive electrode sheet substrate and the electrolyte according to any of the previous embodiments of the claims, and the positive electrode sheet has a porous structure.
  • the concentration of lithium ions in the electrolyte is 0 mol/L to 1 mol/L
  • the solvent of the electrolyte includes one of dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and polycarbonate.
  • the concentration of lithium ions in the electrolyte may also be, for example, 0.1 mol/L, 0.2 mol/L, 0.3 mol/L, 0.4 mol/L, 0.5 mol/L, 0.6 mol/L, 0.7 mol/L, or 0.8 mol/L. Or 0.9 mol/L, preferably 0.1 mol/L to 0.5 mol/L.
  • the lithium ion concentration of the electrolyte used in this application needs to be smaller than the concentration of conventional electrolyte (conventional electrolyte The concentration of lithium ions in the solution is about 1.2mol/L), or even pure solvent without electrolyte can be used for infusion. After the lithium salt is dissolved, an electrolyte is formed, thereby maintaining the concentration of lithium ions in the electrolyte within an appropriate range and avoiding lithium Excessive ion concentration adversely affects the cycle performance of the battery.
  • the porosity of the positive electrode sheet is 25% to 40%.
  • the porosity of the positive electrode piece may also be, for example, 26%, 28%, 30%, 32%, 34%, 36% or 38%, preferably 37% to 40%. Maintaining the porosity of the electrode piece within an appropriate range can significantly improve the wettability of the electrode, the liquid-phase transmission of ions and the gram capacity without affecting the energy density of the electrode.
  • Pore-forming agents can provide relatively high porosity (37% to 40%), which greatly improves the wettability of thick electrodes compared with traditional technologies, allowing thick electrodes to have greater characteristic thickness.
  • the pore diameter of the positive electrode piece is 60 ⁇ m to 200 ⁇ m.
  • the pore diameter of the positive electrode piece may also be, for example, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m, 160 ⁇ m, 170 ⁇ m, 180 ⁇ m or 190 ⁇ m.
  • the pore size of the positive electrode piece here refers to the average pore size of the positive electrode piece.
  • test methods please refer to the standards GB/T19587-2017 "Determination of specific surface area of solid materials by gas adsorption BET method" and GB/T21650.2-2008 mercury injection.
  • the American Micromeritics TriStar II 3020 instrument can be used to test the average pore diameter of the positive electrode piece. Setting the average pore diameter in the positive electrode piece within an appropriate range can take into account the electrical performance, wetting performance and physical strength of the electrode piece.
  • the compacted density of the positive electrode piece is 2.9g/cm 3 to 3.5g/cm 3 .
  • the compacted density of the positive electrode piece can also be, for example, 3g/cm 3 , 3.1g/cm 3 , or 3.2g. /cm 3 , 3.3g/cm 3 or 3.4g/cm 3 .
  • the appropriate compaction density is also related to the gram capacity and energy density of the pole piece.
  • a sixth aspect of the present application also provides a battery module, which includes the battery cell of any of the foregoing embodiments.
  • a seventh aspect of the present application provides a battery pack, which includes the aforementioned battery module.
  • An eighth aspect of the present application provides an electrical device, which includes one or more of the battery cells of one or more of the foregoing embodiments, the foregoing battery module, and the foregoing battery pack.
  • the ninth aspect of this application provides a method for preparing the pore-forming agent of any of the aforementioned embodiments, which includes method A or method B:
  • Method A includes the following steps:
  • Method B includes the following steps:
  • Method A acid and ligand molecules are premixed, and then anion exchange occurs with lithium carbonate through strong acid to weak acid to prepare lithium salt, which is simultaneously coordinated with ligand molecules to form a pore-forming agent. Due to the occurrence of atomic level chemistry, Change, the pore-forming agent produced has high purity, and the particle size of the pore-forming agent can be precisely controlled; Method B has the advantage of wide application range.
  • the acid includes one or more of hexafluorophosphoric acid and difluorophosphoric acid;
  • the lithium salt includes one or more of LiPF 6 , LiBOB, LiODFB, LiTFSI, LiFSI, LiTNFSI, and LiPO 2 F 2 ,
  • the solvent includes one or more of dimethyl carbonate, diethyl carbonate, polycarbonate and fluoroethylene carbonate.
  • the ratio of the amount of acid to ligand molecular substance is 1: (1-10).
  • the ratio of the amounts of acid to ligand molecular species can also be, for example, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8 or 1:9.
  • An appropriate dosage ratio can ensure that the number of ligand molecules in the mixture is appropriate, coordinate with lithium ions smoothly, and form particles of appropriate particle size.
  • the ratio of the amount of acid to lithium carbonate is 2: (0.8-1.2).
  • the ratio of the amounts of acid to lithium carbonate may also be, for example, 2:0.9, 2:1 or 2:1.1.
  • the reaction temperature of the mixture and lithium carbonate is 40°C to 50°C, and the reaction time is 0.5h to 3h.
  • the temperature at which the mixture reacts with lithium carbonate can be, for example, 42°C, 44°C, 46°C or 48°C, and the reaction time can be, for example, 1h, 1.5h, 2h or 2.5h. Appropriate reaction temperature and reaction time can make the ion exchange reaction more thorough.
  • the drying temperature is 20°C to 50°C, and the drying time is 80h to 150h.
  • the drying temperature may be, for example, 25°C, 30°C, 35°C, 40°C or 45°C, and the drying time may be, for example, 100h, 120h or 140h. Appropriate drying temperature and drying time can adjust the particle size of the pore former to the required range.
  • the ratio of the amounts of lithium salt and ligand molecules is 1:(2-5).
  • the ratio of the amounts of lithium salt to ligand molecules can also be, for example, 1:2.5, 1:3, 1:3.5, 1:4 or 1:4.5.
  • An appropriate dosage ratio can enable the ligand molecules to coordinate with lithium ions smoothly and form particles of suitable particle size.
  • the lithium ion concentration in the lithium salt solution is 0.5 mol/L to 1 mol/L.
  • the lithium ion concentration in the lithium salt solution may also be, for example, 0.6 mol/L, 0.7 mol/L, 0.8 mol/L or 0.9 mol/L. Appropriate lithium ion concentration can make the coordination reaction occur better and form a pore-forming agent with suitable particle size.
  • the reaction temperature of the lithium salt solution and the ligand molecules is 40°C to 50°C, and the reaction time is 0.5h to 3h.
  • the temperature at which the lithium salt solution reacts with the ligand molecules can be, for example, 42°C, 44°C, 46°C or 48°C, and the reaction time can be, for example, 1h, 1.5h, 2h or 2.5h. Appropriate reaction temperature and reaction time can make the complexation reaction more complete.
  • the drying temperature is 20°C to 50°C, and the drying time is 80h to 150h.
  • the drying temperature may be, for example, 25°C, 30°C, 35°C, 40°C or 45°C, and the drying time may be, for example, 100h, 120h or 140h. Appropriate drying temperature and drying time can adjust the particle size of the pore former to the required range.
  • a tenth aspect of the present application also provides a method for preparing the positive electrode sheet substrate of any of the aforementioned embodiments, which includes the following steps:
  • the positive electrode slurry of one or more previous embodiments is applied to at least one surface of the positive electrode current collector, dried, and pressed.
  • the coating thickness of the cathode slurry ranges from 250 ⁇ m to 800 ⁇ m.
  • the coating thickness of the positive electrode slurry may also be, for example, 300 ⁇ m, 350 ⁇ m, 400 ⁇ m, 450 ⁇ m, 500 ⁇ m, 550 ⁇ m, 600 ⁇ m, 650 ⁇ m, 700 ⁇ m or 750 ⁇ m.
  • An appropriate coating thickness can form a cathode active material layer of appropriate thickness after pressing.
  • the temperature when coating the cathode slurry is 80°C to 120°C.
  • the temperature when applying the positive electrode slurry may also be, for example, 90°C, 100°C, or 110°C. Controlling the temperature of the positive electrode slurry within an appropriate range during coating can completely decompose the ligand molecules in the pore-forming agent to form air channels without affecting the stability of other components in the slurry.
  • An eleventh aspect of the present application provides a method for preparing the aforementioned battery cell, including the following steps: injecting electrolyte into a battery case equipped with the aforementioned electrode assembly.
  • a battery cell is provided.
  • a battery cell typically includes a positive electrode plate, a negative electrode plate, an electrolyte and a separator.
  • active ions are inserted and detached back and forth between the positive and negative electrodes.
  • the electrolyte plays a role in conducting ions between the positive and negative electrodes.
  • the isolation film is placed between the positive electrode piece and the negative electrode piece. It mainly prevents the positive and negative electrodes from short-circuiting and allows ions to pass through.
  • the positive electrode sheet includes a positive current collector and a positive active material layer disposed on at least one surface of the positive current collector.
  • the positive active material layer includes the pore-forming agent of the first aspect of the present application.
  • the positive electrode current collector has two surfaces opposite in its own thickness direction, and the positive electrode active material layer is disposed on any one or both of the two opposite surfaces of the positive electrode current collector.
  • the positive electrode current collector may be a metal foil or a composite current collector.
  • the metal foil aluminum foil can be used.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base layer.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the cathode active material in the cathode active material layer may be a cathode active material known in the art for batteries.
  • the cathode active material may include at least one of the following materials: an olivine-structured lithium-containing phosphate, a lithium transition metal oxide, and their respective modified compounds.
  • the present application is not limited to these materials, and other traditional materials that can be used as positive electrode active materials of batteries can also be used. Only one type of these positive electrode active materials may be used alone, or two or more types may be used in combination.
  • lithium transition metal oxides may include, but are not limited to, lithium cobalt oxides (such as LiCoO 2 ), lithium nickel oxides (such as LiNiO 2 ), lithium manganese oxides (such as LiMnO 2 , LiMn 2 O 4 ), lithium Nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide (such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (also referred to as NCM 333 ), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (can also be abbreviated to NCM 523 ), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (can also be abbreviated to NCM 211 ), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (can also be abbreviated to NCM 622 ), LiNi At least one of 0.8 Co 0.1 Mn 0.1 O 2 (also referred to as NCM 811 ), lithium nickel cobalt aluminum oxide (such as Li Li
  • the olivine structure contains Examples of lithium phosphates may include, but are not limited to, lithium iron phosphate (such as LiFePO 4 (also referred to as LFP)), composites of lithium iron phosphate and carbon, lithium manganese phosphate (such as LiMnPO 4 ), lithium manganese phosphate and carbon. At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon.
  • lithium iron phosphate such as LiFePO 4 (also referred to as LFP)
  • composites of lithium iron phosphate and carbon such as LiMnPO 4
  • LiMnPO 4 lithium manganese phosphate and carbon.
  • At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon.
  • the positive active material layer optionally further includes a binder.
  • the binder may include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene At least one of ethylene terpolymer, tetrafluoroethylene-hexafluoropropylene copolymer and fluorine-containing acrylate resin.
  • the positive active material layer optionally further includes a conductive agent.
  • the conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the positive electrode sheet can be prepared by dispersing the above-mentioned components for preparing the positive electrode sheet, such as positive active material, conductive agent, binder and any other components in a solvent (such as N -methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode piece can be obtained.
  • a solvent such as N -methylpyrrolidone
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer disposed on at least one surface of the negative electrode current collector, where the negative electrode active material layer includes a negative electrode active material.
  • the negative electrode current collector has two surfaces opposite in its own thickness direction, and the negative electrode active material layer is disposed on any one or both of the two opposite surfaces of the negative electrode current collector.
  • the negative electrode current collector may be a metal foil or a composite current collector.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base material.
  • the composite current collector can be formed by forming metal materials (copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the negative active material may be a negative active material known in the art for batteries.
  • the negative active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based materials, tin-based materials, lithium titanate, and the like.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon oxide compounds, silicon carbon composites, silicon nitrogen composites and silicon alloys.
  • the tin-based material may be selected from at least one of elemental tin, tin oxide compounds and tin alloys.
  • the present application is not limited to these materials, and other traditional materials that can be used as battery negative electrode active materials can also be used. Only one type of these negative electrode active materials may be used alone, or two or more types may be used in combination.
  • the negative active material layer optionally further includes a binder.
  • the binder can be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), polysodium acrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), poly At least one of methacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • the negative active material layer optionally further includes a conductive agent.
  • the conductive agent may be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the negative active material layer optionally also includes other auxiliaries, such as thickeners (such as sodium carboxymethyl cellulose (CMC-Na)) and the like.
  • auxiliaries such as thickeners (such as sodium carboxymethyl cellulose (CMC-Na)) and the like.
  • the negative electrode sheet can be prepared by dispersing the above-mentioned components for preparing the negative electrode sheet, such as negative active materials, conductive agents, binders and any other components in a solvent (such as deionized water) to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode piece can be obtained.
  • a solvent such as deionized water
  • the electrolyte plays a role in conducting ions between the positive and negative electrodes.
  • the type of electrolyte in this application can be selected according to needs.
  • the electrolyte can be liquid, gel, or completely solid.
  • the electrolyte is an electrolyte solution.
  • the electrolyte solution includes electrolyte salts and solvents.
  • the electrolyte salt may be selected from the group consisting of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium bisfluorosulfonimide, lithium bistrifluoromethanesulfonimide, trifluoromethane At least one of lithium sulfonate, lithium difluorophosphate, lithium difluoroborate, lithium dioxaloborate, lithium difluorodioxalate phosphate and lithium tetrafluoroxalate phosphate.
  • the solvent may be selected from the group consisting of ethylene carbonate, propylene carbonate, methylethyl carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, Butylene carbonate, fluoroethylene carbonate, methyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate At least one of ester, 1,4-butyrolactone, sulfolane, dimethyl sulfone, methyl ethyl sulfone and diethyl sulfone.
  • the electrolyte optionally further includes additives.
  • additives may include negative electrode film-forming additives, positive electrode film-forming additives, and may also include additives that can improve certain properties of the battery, such as additives that improve battery overcharge performance, additives that improve battery high-temperature or low-temperature performance, etc.
  • the electrode assembly includes a separation film between the positive electrode piece and the negative electrode piece.
  • the battery cell further includes a separator film, and the separator film is located between the positive electrode piece and the negative electrode piece.
  • isolation membrane there is no particular restriction on the type of isolation membrane in this application. Any well-known porous structure isolation membrane with good chemical stability and mechanical stability can be used.
  • the material of the isolation membrane can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the isolation film can be a single-layer film or a multi-layer composite film, with no special restrictions. When the isolation film is a multi-layer composite film, the materials of each layer can be the same or different, and there is no particular limitation.
  • the positive electrode piece, the negative electrode piece and the separator film can be made into an electrode assembly through a winding process or a lamination process.
  • the battery cell may include an outer packaging.
  • the outer packaging can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the battery cell may be a hard shell, such as a hard plastic shell, an aluminum shell, a steel shell, etc.
  • the outer packaging of the battery cells can also be a soft bag, such as a bag-type soft bag.
  • the material of the soft bag may be plastic, and examples of the plastic include polypropylene, polybutylene terephthalate, polybutylene succinate, and the like.
  • FIG. 1 shows a square-structured battery cell 5 as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and side plates connected to the bottom plate, and the bottom plate and the side plates enclose a receiving cavity.
  • the housing 51 has an opening communicating with the accommodation cavity, and the cover plate 53 can cover the opening to close the accommodation cavity.
  • the positive electrode piece, the negative electrode piece and the isolation film can be formed into the electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the containing cavity.
  • the electrolyte soaks into the electrode assembly 52 .
  • the number of electrode assemblies 52 contained in the battery cell 5 can be one or more, and those skilled in the art can select according to specific actual needs.
  • the battery cells can be assembled into a battery module, and the number of battery cells contained in the battery module can be one or more. The specific number can be selected by those skilled in the art according to the application and capacity of the battery module.
  • FIG. 3 is a battery module 4 as an example.
  • a plurality of battery cells 5 may be arranged in sequence along the length direction of the battery module 4 .
  • the plurality of battery cells 5 can be fixed by fasteners.
  • the battery module 4 may also include a housing having a receiving space, in which a plurality of battery cells 5 are received.
  • the above-mentioned battery modules can also be assembled into a battery pack.
  • the number of battery modules contained in the battery pack can be one or more. The specific number can be selected by those skilled in the art according to the application and capacity of the battery pack.
  • the battery pack 1 may include a battery box and a plurality of battery modules 4 disposed in the battery box.
  • the battery box includes an upper box 2 and a lower box 3 .
  • the upper box 2 can be covered with the lower box 3 and form a closed space for accommodating the battery module 4 .
  • Multiple battery modules 4 can be arranged in the battery box in any manner.
  • the present application also provides an electrical device, which includes at least one of the battery cells, battery modules, or battery packs provided by the present application.
  • the battery cell, battery module, or battery pack may be used as a power source for the electrical device, or may be used as an energy storage unit for the electrical device.
  • the electric device may include mobile devices (such as mobile phones, laptops, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, and electric golf carts). , electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc., but are not limited to these.
  • a battery cell, a battery module or a battery pack can be selected according to its usage requirements.
  • FIG. 6 is an electrical device as an example.
  • the electric device is a pure electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, etc.
  • a battery pack or battery module can be used.
  • the device may be a mobile phone, a tablet, a laptop, etc.
  • the device is usually required to be thin and light, and a battery cell can be used as the power source.
  • step (2) Take 5kg of the pore-forming agent prepared in step (1), 1kg of conductive agent (superconducting carbon + single-walled carbon nanotubes, mass ratio 1:1), 1kg of binder (polyvinylidene fluoride) and 93kg Mix the positive electrode active material (LiNi 0.96 Co 0.02 Mn 0.02 O 2 ), 5kg magnetic modification material (ferric oxide) and 200L solvent (N-methylpyrrolidone) to obtain a positive electrode slurry.
  • the mass of the pore-forming agent in the slurry accounts for 5% of the total mass of solid components;
  • step (3) Coat the positive electrode slurry prepared in step (2) on both sides of a 10 ⁇ m thick aluminum foil.
  • the total thickness after coating is 500 ⁇ m.
  • the temperature is maintained at 100°C.
  • the pore-forming agent decomposes to produce gas.
  • After pressing, a 400 ⁇ m thick positive electrode sheet matrix with air channels is obtained;
  • the negative electrode slurry is applied to both sides of the 4.5 ⁇ m thick copper foil, the total thickness after coating is 125 ⁇ m, and press to obtain a negative electrode sheet with a thickness of 110 ⁇ m;
  • step (4) Let the battery in step (4) stand for 12 hours, then charge it with a constant current of 0.02C to 3.5V, then discharge it with a constant current of 0.1C to 4.6V, and then charge it with a constant voltage of 4.6V.
  • the current is 0.02C
  • the rest time is 3 minutes
  • the constant current discharge is 0.1C to 2.5V
  • the pressure is reduced and the air is sealed, and the composition is completed.
  • step (1) the drying temperature is reduced to 25°C, the time is 200 h, and the particle size is 80 ⁇ m.
  • step (1) the drying temperature is increased to 45°C, the time is 200 h, and the particle size is 30 ⁇ m.
  • step (2) It is basically the same as Example 1, except that the amount of pore-forming agent in step (2) is adjusted so that the mass of the pore-forming agent in the positive electrode slurry accounts for 1% of the total mass of the solid components.
  • step (2) It is basically the same as Example 1, except that the amount of pore-forming agent in step (2) is adjusted so that the mass of the pore-forming agent in the positive electrode slurry accounts for 10% of the total mass of the solid components.
  • Example 2 It is basically the same as Example 1, except that the dosage of N,N-dimethylhexylamine in step (1) is 20 mol, and the particle size of the obtained pore-forming agent is 100 ⁇ m.
  • step (3) the total thickness after coating is 800 ⁇ m, and after pressing, a positive electrode sheet substrate with a thickness of 600 ⁇ m is obtained.
  • step (1) is N,N-dimethylpropylamine (R 1 and R 2 are both methyl, and R 3 is n-propyl).
  • step (1) It is basically the same as Example 1, except that the acid used in step (1) is difluorophosphoric acid.
  • Steps (2) to (5) are consistent with Example 1.
  • Step (1) uses method B to prepare the pore-forming agent. The specific steps are as follows:
  • Step (1) it is basically the same as Example 10, except that in step (1), equal amounts of bisfluorosulfonimide lithium salt (LiFSI) are used instead of lithium hexafluorophosphate (LiPF 6 ).
  • LiFSI bisfluorosulfonimide lithium salt
  • LiPF 6 lithium hexafluorophosphate
  • step (1) the same amount of lithium dioxaloborate (LiBOB) is used instead of lithium hexafluorophosphate (LiPF 6 ), and the positive active material used in step (2) is replaced with the same amount of substances.
  • the amount is 0.5Li[Li 1/3 Mn 2/3 ]O 2 ⁇ 0.5LiNiO 2 .
  • step (1) the drying temperature is reduced to 0°C, the time is 400 h, and the particle size is 210 ⁇ m.
  • step (1) the drying temperature is increased to 60°C, the time is 40 hours, and the particle size is 8 ⁇ m.
  • step (2) It is basically the same as Example 1, except that the amount of pore-forming agent in step (2) is adjusted so that the mass of the pore-forming agent in the positive electrode slurry accounts for 0.1% of the total mass of the solid components.
  • step (2) It is basically the same as Example 1, except that the amount of pore-forming agent in step (2) is adjusted so that the mass of the pore-forming agent in the positive electrode slurry accounts for 15% of the total mass of the solid components.
  • Example 2 It is basically the same as Example 1, except that the amount of N,N-dimethylhexylamine used in step (1) is 1 mol, and the particle size of the obtained pore-forming agent is 5 ⁇ m.
  • step (3) the total thickness after coating is 1200 ⁇ m, and after pressing, a positive electrode sheet substrate with a thickness of 1000 ⁇ m is obtained.
  • step (3) the total thickness after coating is 100 ⁇ m, and after pressing, a positive electrode sheet substrate with a thickness of 60 ⁇ m is obtained.
  • step (1) is N,N-dimethylol tert-butylamine (R 1 and R 2 are both hydroxymethyl, and R 3 is tert-butyl).
  • step (3) It is basically the same as Example 1, except that the coating temperature in step (3) is 60°C.
  • step (4) an electrolyte solution with a lithium ion concentration of 1.2 mol/L is used.
  • (1) Energy density test Test the volume of the battery core.
  • Square shell batteries can be calculated by the dimensions of length, width and height.
  • Cylindrical batteries can be calculated by height and diameter.
  • Soft-packed batteries can obtain the volume of the battery core by the drainage method. ; Then charge and discharge through the charging and discharging equipment at 25°C and 0.33C, record the discharge energy, and divide the discharge energy by the volume of the battery core to obtain the volumetric energy density of the battery core.
  • the charging rate is The charging window in this SOC state is recorded as C10%SOC, C20%SOC, C30%SOC, C40%SOC, C50%SOC, C60%SOC, C70%SOC, C80%SOC, according to the formula (60/C20% SOC+60/C30%SOC+60/C40%SOC+60/C50%SOC+60/C60%SOC+60/C70%SOC+60/C80%SOC) ⁇ 10% calculates that the battery is charged from 10% SOC Charging time T to 80% SOC, unit is min. The shorter the time, the better the battery's fast charging performance.
  • the particle size of the pore-forming agent in Comparative Example 1 is too large, resulting in a decrease in energy density, gram capacity, and cycle performance; in Comparative Example 2, the particle size of the pore-forming agent is too small, which will lead to closed pores after rolling. occurs, resulting in a reduction in the characteristic thickness of the electrode, poor gram capacity, and reduced fast charging performance; in Comparative Example 3, too little pore-forming agent was used, resulting in serious deterioration of cycle performance; in Comparative Example 4, too much pore-forming agent was used Too much will lead to a significant decrease in energy density and cycle performance; in Comparative Example 5, the amount of ligand molecules is too small, resulting in part of the lithium salt being uncoordinated and the particle size being small.

Abstract

本申请公开了一种造孔剂,其包括中心离子、酸根离子和配体分子,中心离子为锂离子,配体分子具有式I所示的结构:其中,R1、R 2分别独立地选自甲基或乙基,R3独立地选自碳原子数1~11的烷基。

Description

造孔剂、正极浆料、正极极片基体、电池单体及其制备方法、电池模块、电池包和用电装置 技术领域
本申请涉及二次电池技术领域,更具体地涉及造孔剂及其制备方法、正极浆料、正极极片基体及其制备方法、电极组件、电池单体及其制备方法、电池模块、电池包和用电装置。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。
随着生活节奏的加快,以及智能手机、平板电脑、智能穿戴、电动工具和电动汽车等各类电子产品的发展,客户和市场对于锂离子电池性能的要求越来越高。特别是为了实现电动汽车的长时间续航,使其具备与燃油车竞争的能力,大容量、高能量密度和循环性能优秀的锂电池亟待研发。
为了增加电池的容量和能量密度,研究者们采取了厚涂浆料的形式制备厚电极,并在浆料中掺杂造孔剂,使电极具备合适的孔隙率,从而在具备大容量的同时,能具有较高的能量密度。然而,目前被广泛采用的碳酸氢铵及偶氮类造孔剂制得的孔隙为纳米级别孔隙,在极片辊压过程中容易发生闭孔现象,而且纳米级别的孔隙不具备液相传质能力,如此,一旦发生闭孔,不但未能有效提升能量密度,反而增加了极片的迂曲度,使得极片的特征厚度减小,克容量发挥偏低。
发明内容
鉴于上述问题,本申请提供了一种造孔剂、正极浆料、正极极片基体、电池组件、电池单体及其制备方法、电池模块、电池包和用电装置,采用该造孔剂进行造孔,在极片辊压时不易闭孔,且能无损生成微米级别的孔隙,有助于提高厚电极的特征厚度和克容量。
第一方面,本申请提供了一种造孔剂,包括中心离子、酸根离子和配体分子,所述中心离子为锂离子,所述配体分子具有式I所示的结构:
Figure PCTCN2022092339-appb-000001
其中,R 1、R 2分别独立地选自甲基或乙基,R 3独立地选自碳原子数1~11的烷基。
本申请实施例的技术方案中,通过将式I所示的配体分子与锂离子中心络合,制得的造孔剂能够在一定条件下,如在加热涂布时,配体分子会发生分解,产生气体,使最终的活性材料层中分布有若干气道,电解液可通过这些气道溶解剩余的锂盐,原位形成微米级别的孔隙,从而加快离子传输,减小液相极化,并增加电极材料克容量发挥,同时还可以改善电极的浸润时间,且有利于电解液的回流,可以实现两倍以上电极厚度正常的电化学性能发挥,并减少金属箔的使用,提高能量密度、降低成本。
在一些实施例中,所述酸根离子为一价阴离子。
在一些实施例中,所述酸根离子包括PF 6 -、BOB -、ODFB -、TFSI -、FSI -、TNFSI -、PO 2F 2 -中的一种或多种。各酸根离子的全称依次分别为:六氟磷酸根离子、双草酸硼酸根离子、二氟草酸硼酸根离子、双(三氟甲烷磺酰)亚胺根离子、双(氟磺酰)亚胺根离子、超级离域磺酰亚胺根离子、二氟硼酸根离子。这些酸根离子的锂盐具有良好的电化学性质而常常被用作电解质,因此,造孔剂的阴离子选用这些酸根离子,在溶于电解液后,不仅能原位生成所需的孔隙,而且能为电解液提供电解质,有效降低了成本。
在一些实施例中,所述R 3独立地选自碳原子数1~6的烷基。
在一些实施例中,所述R 1、R 2为甲基,所述R 3选自甲基、乙基、正丙基、正丁基、正戊基或正己基。
在一些实施例中,所述R 1、R 2为甲基,所述R 3为正己基。
R 1和R 2的选择不仅关乎配体分子与锂离子的配位能力,影响造孔剂成品的粒径和稳定性等性质,而且也关乎在加热时造孔剂能否按照预期彻底分解,形成气道,以便电解液将剩余的锂盐溶解。通过大量研究,R 1和R 2为如上的实施方式时,能很好地兼顾配体分子的配位能力,以及加热时的分解产气能力,且毒性低。
在一些实施例中,所述造孔剂的平均粒径范围为10μm~200μm。将造孔剂的粒径控制在一定范围内,能形成尺寸更合适的孔隙,在不会导致闭孔的前提下,不过多降低电极能量密度。
在一些实施例中,所述中心离子、酸根离子以及配体分子的物质的量之比为1:1: (1~4)。
本申请的第二方面,提供了一种正极浆料,其包括正极活性材料、助剂、溶剂和前述一个或多个实施例所述的造孔剂。
在一些实施例中,所述正极浆料中,所述造孔剂在固体组分中的质量百分含量为1%~10%。
在一些实施例中,所述正极浆料中,所述造孔剂在固体组分中的质量百分含量为1%~10%。
造孔剂在正极浆料中的质量百分含量关乎极片成品的孔隙率,适当的造孔剂用量能加快离子传输减小液相极化,增加电极材料克容量发挥,同改善电极浸润时间,且不过多地影响电极的能量密度。
在一些实施例中,所述正极活性材料包括Li aNi xCo yMn zM 1 (1-x-y-z)O 2、vLi[Li 1/3Mn 2/3]O 2·(1–v)LiM 2O 2或Li 1-wCoO 2中的一种或多种;
其中,0.9≤a≤1.2,0.5≤x≤0.98,0≤y≤0.3,0≤z≤0.2,M 1每次出现,独立地选自Al、Mg、Zn、Zr、Ti或Fe;
0≤v≤1,M 2每次出现,独立地选自Ni、Co或Mn;
0≤w≤0.5。
本申请制得的造孔剂更适用于以上正极活性材料,两者搭配使用,能使上述正极活性材料的克容量得到更好地发挥。
在一些实施例中,所述助剂包括磁修饰材料、增稠剂、导电剂、粘结剂以及分散剂中的一种或多种。
在一些实施例中,所述正极浆料在25±0.5℃下的粘度为6000mPa·s~15000mPa·s。
在一些实施例中,所述正极浆料的固含量为68%~76%。
合适的粘度和固含量能使得造孔剂更均匀地分布在正极浆料中,从而形成更均匀的孔隙,避免因为造孔剂的聚集对电极的物理强度和克容量发挥等造成影响。
本申请的第三方面,提供了一种正极极片基体,其包括正极集流体以及设置于所述正极集流体至少一个表面的正极活性材料层,所述正极活性材料层由一个或多个前述实施例中所述的正极浆料固化而成。
在一些实施例中,所述正极活性材料层的厚度为120μm~400μm。将正极活性材料层的厚度限定在合适范围内,与本申请的造孔剂更匹配,能发挥出更高的克容量和 特征厚度。
在一些实施例中,所述造孔剂的平均粒径与所述正极活性材料层的厚度的比值范围为1:(5~7)。造孔剂的粒径与正极活性材料层的厚度控制在一定比例范围内,能在有效提升电极克容量发挥、改善电极浸润时间的同时,尽可能避免对电极的能量密度和物理强度造成不利影响。
本申请的第四方面,提供了一种电极组件,其包括层叠分布的负极极片、隔离膜以及前述任一实施例所述的正极极片基体,所述隔离膜设置于所述负极极片和所述正极极片基体之间。
本申请的第五方面,提供了一种电池单体,其包括层叠分布的负极极片、隔离膜以及正极极片,所述隔离膜设置于所述负极极片和所述正极极片之间;
其中,所述正极极片由权利要求前述任一实施例所述的正极极片基体与电解液接触处理制得,所述正极极片具有多孔结构。
在一些实施例中,所述电解液中,锂离子的浓度为0mol/L~1mol/L,且所述电解液的溶剂包括碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯以及聚碳酸酯中的一种或多种。本申请提供的造孔剂在配体分子分解后,留下的锂盐会溶于电解液原位形成孔隙,因此,本申请采用的电解液锂离子浓度需要小于常规电解液的浓度(常规电解液中锂离子浓度为1.2mol/L左右),甚至可以采用不含电解质的纯溶剂灌注,待锂盐溶解后形成电解液,从而维持电解液中锂离子的浓度在合适的范围内,避免锂离子浓度过高对电池的循环性能造成不利影响。
在一些实施例中,所述正极极片的孔隙率为25%~40%。极片孔隙率维持在合适范围内,不影响电极能量密度的前提下,能明显改善电极的浸润性、离子的液相传输和克容量发挥,特别是对于较厚的电极而言,本申请的造孔剂可以提供相对较高的孔隙率,较传统技术大大提升了厚电极的浸润性,从而使厚电极能具备更大的特征厚度。
在一些实施例中,所述正极极片的孔径为60μm~200μm。正极极片中孔径设置在合适范围内,能兼顾极片的电性能、浸润性能以及物理强度。
在一些实施例中,所述正极极片的压实密度为2.9g/cm 3~3.5g/cm 3。合适的压实密度事实上关乎极片孔隙率,因此同样关乎极片的克容量发挥和能量密度。
本申请的第六方面,还提供了一种电池模块,其包括前述任一实施例所述的电池单体。
本申请的第七方面,提供了一种电池包,其包括前述的电池模块。
本申请的第八方面,提供了一种用电装置,其包括一个或多个前述实施例所述的电池单体、前述的电池模块以及前述的电池包中的一种或多种。
本申请的第九方面,提供了前述任一实施例所述的造孔剂的制备方法,其包括方法A或方法B:
方法A包括以下步骤:
将酸与所述配体分子混合,制得混合物,将所述混合物与碳酸锂反应,反应结束后,固液分离,收集固相,干燥;
方法B包括以下步骤:
将锂盐溶于溶剂,制得锂盐溶液,将所述锂盐溶液与所述配体分子反应,反应结束后,固液分离,收集固相,干燥。
方法A中,将酸和配体分子预混合,然后与碳酸锂通过强酸制弱酸发生阴离子交换,制得锂盐,同时与配体分子配位,形成造孔剂,由于发生了原子级别的化学变化,制得的造孔剂纯度高,且对造孔剂的粒径控制精准,;方法B则具有适用范围广的优势。
在一些实施例中,所述酸包括六氟磷酸以及二氟磷酸中的一种或多种;所述锂盐包括LiPF 6、LiBOB、LiODFB、LiTFSI、LiFSI、LiTNFSI、LiPO 2F 2中的一种或多种,所述溶剂包括碳酸二甲酯、碳酸二乙酯、聚碳酸酯以及氟代碳酸乙烯酯中的一种或多种。
在一些实施例中,方法A中,所述酸与所述配体分子物质的量之比为1:(1~10)。合适的用量比能使混合物中配体分子数量合适,与锂离子顺利配位,且形成粒径合适的颗粒。
在一些实施例中,方法A中,所述酸与所述碳酸锂的物质的量之比为2:(0.8~1.2)。
在一些实施例中,方法B中,所述锂盐与所述配体分子的物质的量之比为1:(2~5)。合适的用量比能使配体分子与锂离子顺利配位,且形成粒径合适的颗粒。
在一些实施例中,方法B中,所述锂盐溶液中的锂离子浓度为0.5mol/L~1mol/L。合适的锂离子浓度能使得配位反应更好地发生,形成粒径合适的造孔剂。
本申请的第十方面,还提供了前述任一实施例所述的正极极片基体的制备方法,其包括以下步骤:
将一个或多个前述实施例所述的正极浆料涂覆于正极集流体的至少一个表面,干燥,压制。
在一些实施例中,所述正极浆料的涂覆厚度为250μm~800μm。合适的涂覆厚度能使得压制后形成合适厚度的正极活性材料层。
在一些实施例中,涂覆所述正极浆料时的温度为80℃~120℃。涂覆时控制正极浆料的温度在合适范围内,能使造孔剂中配体分子彻底分解,形成气道,且不影响浆料中其他组分的稳定性。
本申请的第十一方面,提供了前述电池单体的制备方法,包括以下步骤:向装有前述的电极组件的电池壳体中注入所述电解液。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些申请的实施例或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的申请、目前描述的实施例或示例以及目前理解的这些申请的最佳模式中的任何一者的范围的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1是本申请一实施方式的电池单体的示意图。
图2是图1所示的本申请一实施方式的电池单体的分解图。
图3是本申请一实施方式的电池模块的示意图。
图4是本申请一实施方式的电池包的示意图。
图5是图4所示的本申请一实施方式的电池包的分解图。
图6是本申请一实施方式的电池单体用作电源的用电装置的示意图。
附图标记说明:
1电池包;2上箱体;3下箱体;4电池模块;5电池单体;51壳体;52电极组件;53盖板。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描 述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
以下,适当地参照附图详细说明具体公开了本申请的造孔剂、正极浆料、正极极片基体、电极组件、电池单体及其制备方法、电池模块、电池包和用电装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60~120和80~110的范围,理解为60~110和80~120的范围也是可预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1~3、1~4、1~5、2~3、2~4和2~5。在本申请中,除非有其他说明,数值范围“a~b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0~5”表示本文中已经全部列出了“0~5”之间的全部实数,“0~5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其 他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
电极极片中往往具备一定的孔隙,孔隙的大小对极片的性能有着直接的影响,孔隙过大,会导致极片材料内部颗粒之间接触不紧密,锂离子和电子传输路径远、阻力大,能量损失大;孔隙过小,则会导致极片浸润困难,从而造成电池循环寿命和倍率性能变差。除了调整浆料中各组分的粒径和配比来控制极片成品中的孔隙以外,最常见的还有添加造孔剂的方法。
目前的造孔剂以碳酸氢铵和偶氮类化合物为主,这两类化合物在涂布浆料时加热可以分解,从而形成孔隙,然而,这两类造孔剂分解形成的大多为纳米级别的孔隙,不具备液相传质能力,且在辊压工序中由于尺寸太小会发生闭孔现象,如此,非但未能形成有效的孔隙,反而会增加电极的迂曲度,使得电极的特征厚度减小,克容量发挥偏低。
针对传统技术中造孔剂普遍存在的问题,第一方面,本申请提供了一种造孔剂,包括中心离子、酸根离子和配体分子,中心离子为锂离子,配体分子具有式I所示的结构:
Figure PCTCN2022092339-appb-000002
其中,R 1、R 2分别独立地选自甲基或乙基,R 3独立地选自碳原子数1~11的烷基。
在一些实施例中,R 3的碳原子数例如可以是2、3、4、5、6、7、8、9或10。
本申请中,术语“烷基”是指包含伯(正)碳原子、或仲碳原子、或叔碳原子、或季碳原子、或其组合的饱和烃。包含该术语的短语,例如,“C 1~C 11烷基”是指包含1~6个碳原子的烷基,每次出现时,可以互相独立地为C 1烷基、C 2烷基、C 3烷基、C 4烷基、C 5烷基、C 6烷基、C 7烷基、C 8烷基、C 9烷基、C 10烷基、C 11烷基。合适的实例包括但不限于:甲基(Me、-CH 3)、乙基(Et、-CH 2CH 3)、1-丙基(n-Pr、n-丙基、正丙基、-CH 2CH 2CH 3)、2-丙基(i-Pr、i-丙基、异丙基、-CH(CH 3) 2)、1-丁基(n-Bu、n-丁基、-CH 2CH 2CH 2CH 3)、2-甲基-1-丙基(i-Bu、i-丁基、-CH 2CH(CH 3) 2)、2-丁基(s-Bu、 s-丁基、-CH(CH 3)CH 2CH 3)、2-甲基-2-丙基(t-Bu、t-丁基、-C(CH 3) 3)、1-戊基(n-戊基、-CH 2CH 2CH 2CH 2CH 3)、2-戊基(-CH(CH3)CH2CH2CH3)、3-戊基(-CH(CH 2CH 3) 2)、2-甲基-2-丁基(-C(CH 3) 2CH 2CH 3)、3-甲基-2-丁基(-CH(CH 3)CH(CH 3) 2)、3-甲基-1-丁基(-CH 2CH 2CH(CH 3) 2)、2-甲基-1-丁基(-CH 2CH(CH 3)CH 2CH 3)、1-己基(-CH 2CH 2CH 2CH 2CH 2CH 3)、2-己基(-CH(CH 3)CH 2CH 2CH 2CH 3)、3-己基(-CH(CH 2CH 3)(CH 2CH 2CH 3))、2-甲基-2-戊基(-C(CH 3) 2CH 2CH 2CH 3)、3-甲基-2-戊基(-CH(CH 3)CH(CH 3)CH 2CH 3)、4-甲基-2-戊基(-CH(CH 3)CH 2CH(CH 3) 2)、3-甲基-3-戊基(-C(CH 3)(CH 2CH 3) 2)、2-甲基-3-戊基(-CH(CH 2CH 3)CH(CH 3) 2)、2,3-二甲基-2-丁基(-C(CH 3) 2CH(CH 3) 2)和3,3-二甲基-2-丁基(-CH(CH 3)C(CH 3) 3
本申请实施例的技术方案中,通过将式I所示的配体分子与锂离子中心络合,制得的造孔剂能够在一定条件下,如在加热涂布时,配体分子会发生分解,产生气体,使最终的活性材料层中分布有若干气道,电解液可通过这些气道溶解剩余的锂盐,原位形成微米级别的孔隙,从而加快离子传输,减小液相极化,并增加电极材料克容量发挥,同时还可以改善电极的浸润时间,且有利于电解液的回流,可以实现两倍以上电极厚度正常的电化学性能发挥,并减少金属箔的使用,提高能量密度、降低成本。
在一些实施例中,酸根离子为一价阴离子。
在一些实施例中,酸根离子包括PF 6 -、BOB -、ODFB -、TFSI -、FSI -、TNFSI -、PO 2F 2 -中的一种或多种。各酸根离子的全称依次分别为:六氟磷酸根离子、双草酸硼酸根离子、二氟草酸硼酸根离子、双(三氟甲烷磺酰)亚胺根离子、双(氟磺酰)亚胺根离子、超级离域磺酰亚胺根离子、二氟硼酸根离子。这些酸根离子的锂盐具有良好的电化学性质而常常被用作电解质,因此,造孔剂的阴离子选用这些酸根离子,在溶于电解液后,不仅能原位生成所需的孔隙,而且能为电解液提供电解质,有效降低了成本。
在一些实施例中,R 3独立地选自碳原子数1~6的烷基。优选地,R 3选自甲基、乙基、正丙基、正丁基、正戊基或正己基,进一步优选地,R 3为正己基。
在一些实施例中,R 1、R 2为甲基,R 3选自甲基、乙基、正丙基、正丁基、正戊基或正己基。
在一些实施例中,R 1、R 2为甲基,R 3为正己基。
R 1和R 2的选择不仅关乎配体分子与锂离子的配位能力,影响造孔剂成品的粒径和稳定性等性质,而且也关乎在加热时造孔剂能否按照预期彻底分解,形成气道,以便电解液将剩余的锂盐溶解。通过大量研究,对R 1和R 2进行了如上限制,能很好地兼 顾配体分子的配位能力,以及加热时的分解产气能力,且毒性低。
在一些实施例中,造孔剂的平均粒径范围为10μm~200μm。此处的“平均粒径范围”是指体积平均粒径Dv50的分布范围。体积平均粒径Dv50为本领域公知的含义,是指体积分布中50%的颗粒所对应的平均粒径,可以用本领域公知的仪器及方法进行测定。例如可以参照GB/T 19077-2016粒度分布激光衍射法,采用激光粒度分析仪方便地测定,如英国马尔文仪器有限公司的Mastersizer 2000E型激光粒度分析仪。。
在一些实施例中,造孔剂的平均粒径例如可以是15μm、20μm、25μm、30μm、35μm、40μm、45μm、50μm、55μm、60μm、65μm、70μm、75μm、80μm、85μm、90μm、95μm、100μm、105μm、110μm、115μm、120μm、125μm、130μm、135μm、140μm、145μm、150μm、155μm、160μm、165μm、170μm、175μm、180μm、185μm、190μm或195μm。将造孔剂的粒径控制在一定范围内,能形成尺寸更合适的孔隙,在不会导致闭孔的前提下,不过多降低电极能量密度。
在一些实施例中,造孔剂中,所述中心离子、酸根离子以及配体分子的物质的量之比为1:1:(1~4)。三者的物质的量之比例如还可以是1:1:2或1:1:3。
本申请的第二方面,提供了一种正极浆料,其包括正极活性材料、助剂、溶剂和前述一个或多个实施例的造孔剂。
在一些实施例中,正极浆料中,造孔剂在固体组分中的质量百分含量为1%~10%。
在一些实施例中,正极浆料中,造孔剂在固体组分中的质量百分含量为1%~10%。
在一些实施例中,正极浆料中,造孔剂在固体组分中的质量百分含量例如还可以是3%、4%、6%、7%、8%或9%。
造孔剂在正极浆料中的质量百分含量关乎极片成品的孔隙率,适当的造孔剂用量能加快离子传输减小液相极化,增加电极材料克容量发挥,同改善电极浸润时间,且不过多地影响电极的能量密度。
在一些实施例中,正极活性材料包括Li aNi xCo yMn zM 1 (1-x-y-z)O 2、vLi[Li 1/3Mn 2/3]O 2·(1–v)LiM 2O 2或Li 1-wCoO 2中的一种或多种;
其中,0.9≤a≤1.2,0.5≤x≤0.98,0≤y≤0.3,0≤z≤0.2,M 1每次出现,独立地选自Al、Mg、Zn、Zr、Ti或Fe;
0≤v≤1,M 2每次出现,独立地选自Ni、Co或Mn;
0≤w≤0.5。
在一些实施例中,a例如还可以是1.0或1.1。
在一些实施例中,x例如还可以是0.6、0.7、0.8或0.9。
在一些实施例中,y例如还可以是0.1或0.2。
在一些实施例中,z例如还可以是0.05、0.1或0.15。
在一些实施例中,v例如还可以是0.2、0.4、0.6或0.8。
在一些实施例中,w例如还可以是0.1、0.2、0.3或0.4。
在一些实施例中,正极活性材料为LiNi 0.96Co 0.02Mn 0.02O 2
在一些实施例中,正极活性材料为0.5Li[Li 1/3Mn 2/3]O 2·0.5LiNiO 2
本申请制得的造孔剂更适用于以上正极活性材料,两者搭配使用,能使上述正极活性材料的克容量得到更好地发挥。
在一些实施例中,助剂包括磁修饰材料、增稠剂、导电剂、粘结剂以及分散剂中的一种或多种。
在一些实施例中,正极浆料在25±0.5℃下的粘度为6000mPa·s~15000mPa·s。25±0.5℃下正极浆料的粘度例如还可以是7000mPa·s、8000mPa·s、9000mPa·s、10000mPa·s、11000mPa·s、12000mPa·s、13000mPa·s或14000mPa·s。
在一些实施例中,正极浆料的固含量为68%~76%。正极浆料的固含量例如还可以是70%、72%或74%。
合适的粘度和固含量能使得造孔剂更均匀地分布在正极浆料中,从而形成更均匀的孔隙,避免因为造孔剂的聚集对电极的物理强度和克容量发挥等造成影响。
本申请的第三方面,提供了一种正极极片基体,其包括正极集流体以及设置于正极集流体至少一个表面的正极活性材料层,正极活性材料层由一个或多个前述实施例中的正极浆料固化而成。
在一些实施例中,正极活性材料层的厚度为120μm~400μm。正极活性材料的厚度例如还可以是140μm、160μm、180μm、200μm、220μm、240μm、260μm、280μm、300μm、320μm、340μm、360μm或380μm。将正极活性材料层的厚度限定在合适范围内,与本申请的造孔剂更匹配,能发挥出更高的克容量和特征厚度。
在一些实施例中,造孔剂的平均粒径与正极活性材料层的厚度的比值范围为1:(5~7)。造孔剂的平均粒径与正极活性材料层的厚度的比值例如还可以是1:5.5、1:6或1:6.5。造孔剂的粒径与正极活性材料层的厚度控制在一定比例范围内,能在有效提升电极克容量发挥、改善电极浸润时间的同时,尽可能避免对电极的能量密度和物理强度造成不利影响。
本申请的第四方面,提供了一种电极组件,其包括层叠分布的负极极片、隔离膜以及前述任一实施例的正极极片基体,隔离膜设置于负极极片和正极极片基体之间。
本申请的第五方面,提供了一种电池单体,其包括层叠分布的负极极片、隔离膜以及正极极片,隔离膜设置于负极极片和正极极片之间;
其中,正极极片由权利要求前述任一实施例的正极极片基体与电解液接触处理制得,正极极片具有多孔结构。
在一些实施例中,电解液中,锂离子的浓度为0mol/L~1mol/L,且电解液的溶剂包括碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯以及聚碳酸酯中的一种或多种。电解液中锂离子的浓度例如还可以是0.1mol/L、0.2mol/L、0.3mol/L、0.4mol/L、0.5mol/L、0.6mol/L、0.7mol/L、0.8mol/L或0.9mol/L,优选为0.1mol/L~0.5mol/L。本申请提供的造孔剂在配体分子分解后,留下的锂盐会溶于电解液原位形成孔隙,因此,本申请采用的电解液锂离子浓度需要小于常规电解液的浓度(常规电解液中锂离子浓度为1.2mol/L左右),甚至可以采用不含电解质的纯溶剂灌注,待锂盐溶解后形成电解液,从而维持电解液中锂离子的浓度在合适的范围内,避免锂离子浓度过高对电池的循环性能造成不利影响。
在一些实施例中,正极极片的孔隙率为25%~40%。正极极片的孔隙率例如还可以是26%、28%、30%、32%、34%、36%或38%,优选37%~40%。极片孔隙率维持在合适范围内,不影响电极能量密度的前提下,能明显改善电极的浸润性、离子的液相传输和克容量发挥,特别是对于较厚的电极而言,本申请的造孔剂可以提供相对较高的孔隙率(37%~40%),较传统技术大大提升了厚电极的浸润性,从而使厚电极能具备更大的特征厚度。
在一些实施例中,正极极片的孔径为60μm~200μm。正极极片的孔径例如还可以是60μm、70μm、80μm、90μm、100μm、110μm、120μm、130μm、140μm、150μm、160μm、170μm、180μm或190μm。此处正极极片的孔径是指正极极片的平均孔径,其示例性测试方法可参考标准GB/T19587-2017《气体吸附BET法测定固态物质比表面积》、GB/T21650.2-2008压汞法和气体吸附法测定固体材料孔径分布和孔隙度-第2部分:气体吸附法分析介孔和大孔。例如可采用美国麦克micromeritics TriStar II 3020仪器,测试正极极片的平均孔径。将正极极片中的平均孔径设置在合适范围内,能兼顾极片的电性能、浸润性能以及物理强度。
在一些实施例中,正极极片的压实密度为2.9g/cm 3~3.5g/cm 3,正极极片的压实 密度例如还可以是3g/cm 3、3.1g/cm 3、3.2g/cm 3、3.3g/cm 3或3.4g/cm 3。合适的压实密度同样关乎极片的克容量发挥和能量密度。
本申请的第六方面,还提供了一种电池模块,其包括前述任一实施例的电池单体。
本申请的第七方面,提供了一种电池包,其包括前述的电池模块。
本申请的第八方面,提供了一种用电装置,其包括一个或多个前述实施例的电池单体、前述的电池模块以及前述的电池包中的一种或多种。
本申请的第九方面,提供了前述任一实施例的造孔剂的制备方法,其包括方法A或方法B:
方法A包括以下步骤:
将酸与配体分子混合,制得混合物,将混合物与碳酸锂反应,反应结束后,固液分离,收集固相,干燥;
方法B包括以下步骤:
将锂盐溶于溶剂,制得锂盐溶液,将锂盐溶液与配体分子反应,反应结束后,固液分离,收集固相,干燥。
方法A中,将酸和配体分子预混合,然后与碳酸锂通过强酸制弱酸发生阴离子交换,制得锂盐,同时与配体分子配位,形成造孔剂,由于发生了原子级别的化学变化,制得的造孔剂纯度高,且对造孔剂的粒径控制精准;方法B则具有适用范围广的优势。
在一些实施例中,酸包括六氟磷酸以及二氟磷酸中的一种或多种;锂盐包括LiPF 6、LiBOB、LiODFB、LiTFSI、LiFSI、LiTNFSI、LiPO 2F 2中的一种或多种,溶剂包括碳酸二甲酯、碳酸二乙酯、聚碳酸酯以及氟代碳酸乙烯酯中的一种或多种。
在一些实施例中,方法A中,酸与配体分子物质的量之比为1:(1~10)。酸与配体分子物质的量之比例如还可以是1:2、1:3、1:4、1:5、1:6、1:7、1:8或1:9。合适的用量比能使混合物中配体分子数量合适,与锂离子顺利配位,且形成粒径合适的颗粒。
在一些实施例中,方法A中,酸与碳酸锂的物质的量之比为2:(0.8~1.2)。酸与碳酸锂的物质的量之比例如还可以是2:0.9、2:1或2:1.1。
在一些实施例中,方法A中,混合物与碳酸锂反应的温度为40℃~50℃,反应的时间为0.5h~3h。混合物与碳酸锂反应的温度例如还可以是42℃、44℃、46℃或48℃,反应时间例如还可以是1h、1.5h、2h或2.5h。合适的反应温度和反应时间能使离子交换反应更彻底。
在一些实施例中,方法A中,干燥的温度为20℃~50℃,干燥的时间为80h~150h。干燥的温度例如还可以是25℃、30℃、35℃、40℃或45℃,时间例如可以是100h、120h或140h。合适的干燥温度和干燥时间能调整造孔剂粒径至所需的范围。
在一些实施例中,方法B中,锂盐与配体分子的物质的量之比为1:(2~5)。锂盐与配体分子的物质的量之比例如还可以是1:2.5、1:3、1:3.5、1:4或1:4.5。合适的用量比能使配体分子与锂离子顺利配位,且形成粒径合适的颗粒。
在一些实施例中,方法B中,锂盐溶液中的锂离子浓度为0.5mol/L~1mol/L。锂盐溶液中的锂离子浓度例如还可以是0.6mol/L、0.7mol/L、0.8mol/L或0.9mol/L。合适的锂离子浓度能使得配位反应更好地发生,形成粒径合适的造孔剂。
在一些实施例中,方法B中,锂盐溶液与配体分子反应的温度为40℃~50℃,反应的时间为0.5h~3h。锂盐溶液与配体分子反应的温度例如还可以是42℃、44℃、46℃或48℃,反应时间例如还可以是1h、1.5h、2h或2.5h。合适的反应温度和反应时间能使络合反应更彻底。
在一些实施例中,方法B中,干燥的温度为20℃~50℃,干燥的时间为80h~150h。干燥的温度例如还可以是25℃、30℃、35℃、40℃或45℃,时间例如可以是100h、120h或140h。合适的干燥温度和干燥时间能调整造孔剂粒径至所需的范围。
本申请的第十方面,还提供了前述任一实施例的正极极片基体的制备方法,其包括以下步骤:
将一个或多个前述实施例的正极浆料涂覆于正极集流体的至少一个表面,干燥,压制。
在一些实施例中,正极浆料的涂覆厚度为250μm~800μm。正极浆料的涂覆厚度例如还可以是300μm、350μm、400μm、450μm、500μm、550μm、600μm、650μm、700μm或750μm。合适的涂覆厚度能使得压制后形成合适厚度的正极活性材料层。
在一些实施例中,涂覆正极浆料时的温度为80℃~120℃。涂覆正极浆料时的温度例如还可以是90℃、100℃或110℃。涂覆时控制正极浆料的温度在合适范围内,能使造孔剂中配体分子彻底分解,形成气道,且不影响浆料中其他组分的稳定性。
本申请的第十一方面,提供了前述电池单体的制备方法,包括以下步骤:向装有前述的电极组件的电池壳体中注入电解液。
另外,以下适当参照附图对本申请的造孔剂、正极浆料、正极极片基体、电极组件、电池单体及其制备方法、电池模块、电池包和用电装置进行描述。
本申请的一个实施方式中,提供一种电池单体。
通常情况下,电池单体包括正极极片、负极极片、电解质和隔离膜。在电池充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。电解质在正极极片和负极极片之间起到传导离子的作用。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使离子通过。
[正极极片]
正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极活性材料层,所述正极活性材料层包括本申请第一方面的造孔剂。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极活性材料层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,正极活性材料层中的正极活性材料可采用本领域公知的用于电池的正极活性材料。作为示例,正极活性材料可包括以下材料中的至少一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电池正极活性材料的传统材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO 2)、锂镍氧化物(如LiNiO 2)、锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM 333)、LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM 523)、LiNi 0.5Co 0.25Mn 0.25O 2(也可以简称为NCM 211)、LiNi 0.6Co 0.2Mn 0.2O 2(也可以简称为NCM 622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM 811)、锂镍钴铝氧化物(如LiNi 0.85Co 0.15Al 0.05O 2)及其改性化合物等中的至少一种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂(如LiFePO 4(也可以简称为LFP))、磷酸铁锂与碳的复合材料、磷酸锰锂(如LiMnPO 4)、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料中的至少一种。
在一些实施方式中,正极活性材料层还可选地包括粘结剂。作为示例,所述粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极活性材料层还可选地包括导电剂。作为示例,所述导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
[负极极片]
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极活性材料层,所述负极活性材料层包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极活性材料层设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,负极活性材料层还可选地包括粘结剂。所述粘结剂可选自丁 苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,负极活性材料层还可选地包括导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极活性材料层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。
[电解质]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或全固态的。
在一些实施方式中,所述电解质采用电解液。所述电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
在一些实施方式中,溶剂可选自碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、1,4-丁内酯、环丁砜、二甲砜、甲乙砜及二乙砜中的至少一种。
在一些实施方式中,所述电解液还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温或低温性能的添加剂等。
[隔离膜]
在一些实施方式中,电极组件中包括位于正极极片和负极极片之间的隔离膜。
在一些实施方式中,电池单体中还包括隔离膜,隔离膜位于正极极片和负极极片 之间。
本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,电池单体可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,电池单体的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。电池单体的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对电池单体的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图1是作为一个示例的方形结构的电池单体5。
在一些实施方式中,参照图2,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。电池单体5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,电池单体可以组装成电池模块,电池模块所含电池单体的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
图3是作为一个示例的电池模块4。参照图3,在电池模块4中,多个电池单体5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个电池单体5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个电池单体5容纳于该容纳空间。
在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的 数量可以为一个或多个,具体数量本领域技术人员可根据电池包的应用和容量进行选择。
图4和图5是作为一个示例的电池包1。参照图4和图5,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
另外,本申请还提供一种用电装置,所述用电装置包括本申请提供的电池单体、电池模块、或电池包中的至少一种。所述电池单体、电池模块、或电池包可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以包括移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。
作为所述用电装置,可以根据其使用需求来选择电池单体、电池模块或电池包。
图6是作为一个示例的用电装置。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对电池单体的高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用电池单体作为电源。
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1
(1)将六氟磷酸(HPF 6)与N,N-二甲基己胺(R 1、R 2均为甲基,R 3为正己基)混匀,然后加入碳酸锂(三者物质的量之比依次为2:5:1),在45℃条件下以300rpm的转速搅拌反应120min,反应结束后,将反应体系过滤,收集固相,在35℃条件下干燥120h,得到平均粒径为60μm的造孔剂,造孔剂中,锂离子、六氟磷酸根离子以及N,N-二甲基己胺的物质的量之比为1:1:4;
(2)取5kg步骤(1)制得的造孔剂、1kg导电剂(超导碳+单壁碳纳米管,质量比1:1)、1kg粘结剂(聚偏二氟乙烯)和93kg正极活性材料(LiNi 0.96Co 0.02Mn 0.02O 2)、 5kg磁修饰材料(四氧化三铁)以及200L溶剂(N-甲基吡咯烷酮)混匀,得到正极浆料,浆料中造孔剂质量占固体组分总质量的5%;
(3)将步骤(2)中制得的正极浆料涂覆于10μm厚的铝箔两侧,涂覆后总厚度为500μm,涂覆过程中保持温度为100℃,造孔剂分解产气,压制后得到具有气道的400μm厚的正极极片基体;
(4)将正极极片基体、隔膜和负极极片(将负极浆料涂布于4.5μm厚的铜箔两侧,涂覆后总厚度为125μm,压片,得到厚度110μm的负极片;负极浆料为SiO:SP:SWCNT:PAALi=96.8%:1.04%:0.06%:2.1%,其中,氧化亚硅和石墨混合后克容量为1250mAh/g)组装,并注入电解液(锂离子浓度0.5mol/L,溶剂为碳酸二甲酯),电解液将正极极片基体中剩余的锂盐溶解,形成多孔的正极极片,得到软包电池,在45℃下静置24h;
(5)将步骤(4)中的电池静置12h,然后以0.02C的电流恒流充电至3.5V,然后以0.1C电流恒流放电至4.6V,再以4.6V的电压恒压充电至电流为0.02C,静置时间3min,0.1C恒流放电至2.5V,减压抽气密封,化成分容完毕。
实施例2
与实施例1基本相同,区别在于,步骤(1)中降低干燥温度为25℃,时间为200h,粒径为80μm。
实施例3
与实施例1基本相同,区别在于,步骤(1)中升高干燥温度为45℃,时间为200h,粒径为30μm。
实施例4
与实施例1基本相同,区别在于,调节步骤(2)中的造孔剂用量,使得正极浆料中造孔剂质量占固体组分总质量的1%。
实施例5
与实施例1基本相同,区别在于,调节步骤(2)中的造孔剂用量,使得正极浆料中造孔剂质量占固体组分总质量的10%。
实施例6
与实施例1基本相同,区别在于,步骤(1)中N,N-二甲基己胺的用量为20mol,所得造孔剂的粒径为100μm。
实施例7
与实施例1基本相同,区别在于,步骤(3)中涂覆后总厚度为800μm,压制后得到厚度为600μm的正极极片基体。
实施例8
与实施例1基本相同,区别在于,步骤(1)中采用的配体分子为N,N-二甲基丙胺(R 1、R 2均为甲基,R 3为正丙基)。
实施例9
与实施例1基本一致,区别在于步骤(1)中采用的酸为二氟磷酸。
实施例10
步骤(2)~(5)与实施例1保持一致,步骤(1)采用方法B进行造孔剂的制备,具体步骤如下:
将六氟磷酸锂(LiPF 6)溶于1000mL溶剂(聚碳酸酯),然后加入N,N-二甲基己胺(R 1、R 2均为甲基,R 3为正己基),六氟磷酸锂与N,N-二甲基己胺物质的量之比为5:1,在45℃条件下以300rpm的转速搅拌反应120min,反应结束后,将反应体系过滤,收集固相,在35℃条件下干燥100h,得到平均粒径为70μm的造孔剂。
实施例11
与实施例10基本一致,区别在于,步骤(1)中采用等物质的量的双氟磺酰亚胺锂盐(LiFSI)代替六氟磷酸锂(LiPF 6)。
实施例12
与实施例10基本一致,区别在于,步骤(1)中采用等物质的量的二草酸硼酸锂(LiBOB)代替六氟磷酸锂(LiPF 6),且步骤(2)中采用的正极活性材料替换为等物质 的的量的0.5Li[Li 1/3Mn 2/3]O 2·0.5LiNiO 2
对比例1
与实施例1基本相同,区别在于,步骤(1)中降低干燥温度为0℃,时间为400h,粒径为210μm。
对比例2
与实施例1基本相同,区别在于,步骤(1)中升高干燥温度为60℃,时间为40h,粒径为8μm。
对比例3
与实施例1基本相同,区别在于,调节步骤(2)中的造孔剂用量,使得正极浆料中造孔剂质量占固体组分总质量的0.1%。
对比例4
与实施例1基本相同,区别在于,调节步骤(2)中的造孔剂用量,使得正极浆料中造孔剂质量占固体组分总质量的15%。
对比例5
与实施例1基本相同,区别在于,步骤(1)中N,N-二甲基己胺的用量为1mol,所得造孔剂的粒径为5μm。
对比例6
与实施例1基本相同,区别在于,步骤(3)中涂覆后总厚度为1200μm,压制后得到厚度为1000μm的正极极片基体。
对比例7
与实施例1基本相同,区别在于,步骤(3)中涂覆后总厚度为100μm,压制后得到厚度为60μm的正极极片基体。
对比例8
与实施例1基本相同,区别在于,步骤(1)中采用的配体分子为N,N-二羟甲基叔丁胺(R 1、R 2均为羟甲基,R 3为叔丁基)。
对比例9
与实施例1基本相同,区别在于,步骤(3)中涂布温度为60℃。
对比例10
与实施例1基本相同,区别在于,步骤(4)中采用锂离子浓度为1.2mol/L的电解液。
表征测试:
(1)能量密度测试:测试电芯的体积,方壳电芯可以通过长宽高的尺寸计算,圆柱电芯可以通过高和直径进行计算,软包电芯可以通过排水法得到电芯的体积;然后通过充放电设备,在25℃下,0.33C进行充放电,记录放电能量,放电能量除以电芯的体积,就得到电芯的体积能量密度。
(2)循环性能测试:25℃下,将各实施例和对比例制备得到的二次电池以1C倍率恒流充电至充电截止电压4.25V,之后恒压充电至电流≤0.05C,静置5min,再以1C倍率恒流放电至放电截止电压2.5V,静置5min,此为一个充放电循环。按照此方法对电池进行循环充放电测试,直至电池容量衰减至80%。此时的循环圈数即为电池在25℃下的循环寿命。
(3)克容量测试:25℃下,将各实施例和对比例制备得到的二次电池以0.1C倍率恒流充电至充电截止电压4.25V,之后恒压充电至电流≤0.02C,静置5min,再以0.1C倍率恒流放电至放电截止电压2.5V,静置5min,得到放电容量,再根据活性物质含量计算出克容量。
(4)快速充电能力测试:25℃下,将上述各实施例和对比例的电池以1C(即1h内完全放掉理论容量的电流值)的电流进行第一次充电和放电,具体包括:将电池以1C倍率恒流充电至电压4.25V,之后恒压充电至电流≤0.05C,静置5min,再以0.33C倍率恒流放电至电压2.5V,记录其实际容量为C0。
然后将电池依次以1.0C0、1.3C0、1.5C0、1.8C0、2.0C0、2.3C0、2.5C0、3.0C0、恒流充电至全电池充电截止电压4.25V或者0V负极截止电位(以先达到者为准), 每次充电完成后需以1C0放电至全电池放电截止电压2.8V,记录不同充电倍率下充电至10%、20%、30%、……、80%SOC(State of Charge,荷电状态)时所对应的负极电位,绘制出不同SOC态下的充电倍率-负极电位曲线,线性拟合后得出不同SOC态下负极电位为0V时所对应的充电倍率,该充电倍率即为该SOC态下的充电窗口,分别记为C10%SOC、C20%SOC、C30%SOC、C40%SOC、C50%SOC、C60%SOC、C70%SOC、C80%SOC,根据公式(60/C20%SOC+60/C30%SOC+60/C40%SOC+60/C50%SOC+60/C60%SOC+60/C70%SOC+60/C80%SOC)×10%计算得到该电池从10%SOC充电至80%SOC的充电时间T,单位为min。该时间越短,则电池的快速充电性能越优秀。
表1
Figure PCTCN2022092339-appb-000003
Figure PCTCN2022092339-appb-000004
从表1可知,本申请各实施例制得的造孔剂用于制备较厚的电极时,能有效提升电极孔隙率,提高极片浸润性,能有效加快离子传输,减小液相极化,增加电极材料克容量发挥,从而实现锂电池循环性能、克容量以及快充能力的提升。
对比例1相较于实施例1,造孔剂粒径过大,导致能量密度、克容量和循环性能下降;对比例2中造孔剂粒径过小,辊压后会导致闭孔现象的发生,导致电极特征厚度减小,克容量发挥较差,且快充性能也下降;对比例3中,造孔剂用量过少,导致循环性能严重恶化;对比例4中,造孔剂用量过多,导致能量密度和循环性能明显下降;对比例5中,配体分子用量过少,导致部分锂盐未配位,粒径较小,辊压后会导致闭孔现象的发生,导致电极特征厚度减小,克容量发挥较差,且快充性能也下降;对比例6~7中,造孔剂粒径与电极厚度比例不恰当,同样会导致能量密度和循环性能降低;对比例8中,配体分子位阻过大,部分不能配位,形成的造孔剂粒径偏小,且分布不均匀,严重影响了电池性能;对比例9中,涂布温度过低,配体分子未完全分解,残留在极片中,严重影响了电池的循环性能;对比例10中,电解液锂离子浓度过高,在造孔剂本身含锂的情况下,会造成锂过多在极片析出,使极片pH过高,易吸水,从而影响电池电性能。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (37)

  1. 一种造孔剂,包括中心离子、酸根离子和配体分子,所述中心离子为锂离子,所述配体分子具有式I所示的结构:
    Figure PCTCN2022092339-appb-100001
    其中,R 1、R 2分别独立地选自甲基或乙基,R 3独立地选自碳原子数1~11的烷基。
  2. 根据权利要求1所述的造孔剂,其特征在于,所述酸根离子为一价阴离子。
  3. 根据权利要求1~2任一项所述的造孔剂,其特征在于,所述酸根离子包括PF 6 -、BOB -、ODFB -、TFSI -、FSI -、TNFSI -、PO 2F 2 -中的一种或多种。
  4. 根据权利要求1~3任一项所述的造孔剂,其特征在于,所述R 3独立地选自碳原子数1~6的烷基。
  5. 根据权利要求1~4任一项所述的造孔剂,其特征在于,所述R 1、R 2为甲基,所述R 3选自甲基、乙基、正丙基、正丁基、正戊基或正己基。
  6. 根据权利要求1~5任一项所述的造孔剂,其特征在于,所述R 1、R 2为甲基,所述R 3为正己基。
  7. 根据权利要求1~6任一项所述的造孔剂,其特征在于,所述造孔剂的平均粒径范围为10μm~200μm。
  8. 根据权利要求1~7任一项所述的造孔剂,其特征在于,所述造孔剂中,所述中心离子、酸根离子以及配体分子的物质的量之比为1:1:(1~4)。
  9. 一种正极浆料,其特征在于,包括正极活性材料、助剂、溶剂和权利要求1~8任一项所述的造孔剂。
  10. 根据权利要求9所述的正极浆料,其特征在于,所述正极浆料中,所述造孔剂在固体组分中的质量百分含量为1%~10%。
  11. 根据权利要求9~10任一项所述的正极浆料,其特征在于,所述正极浆料中,所述造孔剂在固体组分中的质量百分含量为2%~5%。
  12. 根据权利要求9~11任一项所述的正极浆料,其特征在于,所述正极活性材料包括Li aNi xCo yMn zM 1 (1-x-y-z)O 2、vLi[Li 1/3Mn 2/3]O 2·(1–v)LiM 2O 2或Li 1-wCoO 2中的一种或多种;
    其中,0.9≤a≤1.2,0.5≤x≤0.98,0≤y≤0.3,0≤z≤0.2,M 1每次出现,独立地 选自Al、Mg、Zn、Zr、Ti或Fe;
    0≤v≤1,M 2每次出现,独立地选自Ni、Co或Mn;
    0≤w≤0.5。
  13. 根据权利要求9~12任一项所述的正极浆料,其特征在于,所述助剂包括磁修饰材料、增稠剂、导电剂、粘结剂以及分散剂中的一种或多种。
  14. 根据权利要求9~13任一项所述的正极浆料,其特征在于,所述正极浆料在25±0.5℃下的粘度为6000mPa·s~15000mPa·s。
  15. 根据权利要求9~14任一项所述的正极浆料,其特征在于,所述正极浆料的固含量为68%~76%。
  16. 一种正极极片基体,其特征在于,包括正极集流体以及设置于所述正极集流体至少一个表面的正极活性材料层,所述正极活性材料层由权利要求9~15任一项所述的正极浆料固化而成。
  17. 根据权利要求16所述的正极极片基体,其特征在于,所述正极活性材料层的厚度为120μm~400μm。
  18. 根据权利要求16~17任一项所述的正极极片基体,其特征在于,所述造孔剂的平均粒径与所述正极活性材料层的厚度的比值范围为1:(5~7)。
  19. 一种电极组件,其特征在于,包括层叠分布的负极极片、隔离膜以及权利要求16~18任一项所述的正极极片基体,所述隔离膜设置于所述负极极片和所述正极极片基体之间。
  20. 一种电池单体,其特征在于,包括层叠分布的负极极片、隔离膜以及正极极片,所述隔离膜设置于所述负极极片和所述正极极片之间;
    其中,所述正极极片由权利要求16~18任一项所述的正极极片基体与电解液接触处理制得,所述正极极片具有多孔结构。
  21. 根据权利要求20所述的电池单体,其特征在于,所述电解液中,锂离子的浓度为0mol/L~1mol/L,且所述电解液的溶剂包括碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯以及聚碳酸酯中的一种或多种。
  22. 根据权利要求20~21任一项所述的电池单体,其特征在于,所述正极极片的孔隙率为25%~40%。
  23. 根据权利要求20~22任一项所述的电池单体,其特征在于,所述正极极片的孔径为60μm~200μm。
  24. 根据权利要求20~23任一项所述的电池单体,其特征在于,所述正极极片的压实密度为2.9g/cm 3~3.5g/cm 3
  25. 一种电池模块,其特征在于,包括权利要求20~24任一项所述的电池单体。
  26. 一种电池包,其特征在于,包括权利要求25所述的电池模块。
  27. 一种用电装置,其特征在于,包括权利要求20~24任一项所述的电池单体、权利要求25所述的电池模块以及权利要求26所述的电池包中的一种或多种。
  28. 根据1~8任一项所述的造孔剂的制备方法,其特征在于,包括方法A或方法B:
    方法A包括以下步骤:
    将酸与所述配体分子混合,制得混合物,将所述混合物与碳酸锂反应,反应结束后,固液分离,收集固相,干燥;
    方法B包括以下步骤:
    将锂盐溶于溶剂,制得锂盐溶液,将所述锂盐溶液与所述配体分子反应,反应结束后,固液分离,收集固相,干燥。
  29. 根据权利要求28所述的造孔剂的制备方法,其特征在于,所述酸包括六氟磷酸以及二氟磷酸中的一种或多种;所述锂盐包括LiPF 6、LiBOB、LiODFB、LiTFSI、LiFSI、LiTNFSI、LiPO 2F 2中的一种或多种,所述溶剂包括碳酸二甲酯、碳酸二乙酯、聚碳酸酯以及氟代碳酸乙烯酯中的一种或多种。
  30. 根据权利要求28~29任一项所述的造孔剂的制备方法,其特征在于,方法A中,所述酸与所述配体分子物质的量之比为1:(1~10)。
  31. 根据权利要求28~30任一项所述的造孔剂的制备方法,其特征在于,方法A中,所述酸与所述碳酸锂的物质的量之比为2:(0.8~1.2)。
  32. 根据权利要求28~29任一项所述的造孔剂的制备方法,其特征在于,方法B中,所述锂盐与所述配体分子的物质的量之比为1:(2~5)。
  33. 根据权利要求28~29、32任一项所述的造孔剂的制备方法,其特征在于,方法B中,所述锂盐溶液中的锂离子浓度为0.5mol/L~1mol/L。
  34. 根据权利要求16~18任一项所述的正极极片基体的制备方法,其特征在于,包括以下步骤:
    将权利要求9~15任一项所述的正极浆料涂覆于正极集流体的至少一个表面,干燥,压制。
  35. 根据权利要求34所述的制备方法,其特征在于,所述正极浆料的涂覆厚度为 250μm~800μm。
  36. 根据权利要求34~35任一项所述的制备方法,其特征在于,涂覆所述正极浆料时的温度为80℃~120℃。
  37. 根据权利要求20~24任一项所述的电池单体的制备方法,其特征在于,包括以下步骤:向装有权利要求16所述的电极组件的电池壳体中注入所述电解液。
PCT/CN2022/092339 2022-05-12 2022-05-12 造孔剂、正极浆料、正极极片基体、电池单体及其制备方法、电池模块、电池包和用电装置 WO2023216168A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/092339 WO2023216168A1 (zh) 2022-05-12 2022-05-12 造孔剂、正极浆料、正极极片基体、电池单体及其制备方法、电池模块、电池包和用电装置
CN202280047881.5A CN117616007A (zh) 2022-05-12 2022-05-12 造孔剂、正极浆料、正极极片基体、电池单体及其制备方法、电池模块、电池包和用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092339 WO2023216168A1 (zh) 2022-05-12 2022-05-12 造孔剂、正极浆料、正极极片基体、电池单体及其制备方法、电池模块、电池包和用电装置

Publications (1)

Publication Number Publication Date
WO2023216168A1 true WO2023216168A1 (zh) 2023-11-16

Family

ID=88729358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092339 WO2023216168A1 (zh) 2022-05-12 2022-05-12 造孔剂、正极浆料、正极极片基体、电池单体及其制备方法、电池模块、电池包和用电装置

Country Status (2)

Country Link
CN (1) CN117616007A (zh)
WO (1) WO2023216168A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117727939A (zh) * 2024-02-09 2024-03-19 深圳好电科技有限公司 一种负极厚涂浆料、负极及锂离子电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028018A (ja) * 2010-07-20 2012-02-09 Nec Corp 電極及びその製造方法、並びに電極を備えた蓄電デバイス及びその製造方法
CN102931378A (zh) * 2012-10-09 2013-02-13 东莞市创明电池技术有限公司 锂离子电池电极及其制备方法、锂离子电池
CN114335420A (zh) * 2021-12-28 2022-04-12 广东国光电子有限公司 一种补锂安全涂层、正极极片与锂离子电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028018A (ja) * 2010-07-20 2012-02-09 Nec Corp 電極及びその製造方法、並びに電極を備えた蓄電デバイス及びその製造方法
CN102931378A (zh) * 2012-10-09 2013-02-13 东莞市创明电池技术有限公司 锂离子电池电极及其制备方法、锂离子电池
CN114335420A (zh) * 2021-12-28 2022-04-12 广东国光电子有限公司 一种补锂安全涂层、正极极片与锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUO XIAN, YANG ZHENZHEN, FU YUQING, DO‐THANH CHI‐LINH, MALTSEV DMITRY, LUO HUIMIN, MAHURIN SHANNON M., JIANG DE‐EN, XING HUABIN, D: "New‐Generation Carbon‐Capture Ionic Liquids Regulated by Metal‐Ion Coordination", CHEMSUSCHEM, WILEY-VCH, DE, vol. 15, no. 2, 21 January 2022 (2022-01-21), DE , XP093108636, ISSN: 1864-5631, DOI: 10.1002/cssc.202102136 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117727939A (zh) * 2024-02-09 2024-03-19 深圳好电科技有限公司 一种负极厚涂浆料、负极及锂离子电池
CN117727939B (zh) * 2024-02-09 2024-04-26 深圳好电科技有限公司 一种负极厚涂浆料、负极及锂离子电池

Also Published As

Publication number Publication date
CN117616007A (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
WO2022032624A1 (zh) 二次电池及其制备方法与包含二次电池的电池模块、电池包及装置
WO2021057428A1 (zh) 二次电池及含有该二次电池的电池模块、电池包、装置
WO2021217587A1 (zh) 二次电池、其制备方法及含有该二次电池的装置
CN116231091B (zh) 锂二次电池用电解液、二次电池和用电装置
WO2023240544A1 (zh) 正极材料及其制备方法、具备其的二次电池
WO2023070268A1 (zh) 一种电化学装置及包含该电化学装置的用电装置
WO2021189424A1 (zh) 二次电池和含有该二次电池的装置
WO2023216029A1 (zh) 二次电池、电池模组、电池包及用电装置
WO2023070992A1 (zh) 电化学装置及包括其的电子装置
WO2023216168A1 (zh) 造孔剂、正极浆料、正极极片基体、电池单体及其制备方法、电池模块、电池包和用电装置
WO2022120833A1 (zh) 一种电化学装置和电子装置
WO2021189423A1 (zh) 二次电池和含有该二次电池的装置
WO2024016891A1 (zh) 预锂化极片及其制备方法、二次电池和用电装置
WO2023197807A1 (zh) 正极材料及其制备方法、复合正极材料、正极极片及二次电池
WO2024040501A1 (zh) 碳材料及其制备方法与应用、负极片、二次电池及用电装置
WO2021196141A1 (zh) 二次电池及含有该二次电池的装置
WO2024011621A1 (zh) 磷酸锰铁锂正极活性材料及其制备方法、正极极片、二次电池及用电装置
WO2024020795A1 (zh) 一种复合正极材料、其制备方法、二次电池、电池模块、电池包和用电装置
WO2024040585A1 (zh) 补锂浆料、正极浆料、二次电池、二次电池的制备方法和用电装置
WO2023184494A1 (zh) 正极活性材料、其制备方法以及包含其的正极极片、二次电池及用电装置
WO2024082123A1 (zh) 电解液、二次电池、电池模块、电池包和用电装置
WO2024016250A1 (zh) 负极活性材料及其制备方法、二次电池、电池模块、电池包和用电装置
WO2024065181A1 (zh) 负极组合物及制备方法、负极浆料及制备方法、负极极片及制备方法、二次电池、用电装置以及噻蒽类化合物的应用
WO2023000214A1 (zh) 电解液、二次电池、电池模块、电池包和用电装置
WO2023216130A1 (zh) 一种电解液、二次电池、电池模块、电池包和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941126

Country of ref document: EP

Kind code of ref document: A1