WO2023240544A1 - 正极材料及其制备方法、具备其的二次电池 - Google Patents

正极材料及其制备方法、具备其的二次电池 Download PDF

Info

Publication number
WO2023240544A1
WO2023240544A1 PCT/CN2022/099191 CN2022099191W WO2023240544A1 WO 2023240544 A1 WO2023240544 A1 WO 2023240544A1 CN 2022099191 W CN2022099191 W CN 2022099191W WO 2023240544 A1 WO2023240544 A1 WO 2023240544A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode material
transition metal
lithium
oxonate
positive electrode
Prior art date
Application number
PCT/CN2022/099191
Other languages
English (en)
French (fr)
Inventor
赵栋
吴奇
范敬鹏
陈强
王婧
柳娜
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/099191 priority Critical patent/WO2023240544A1/zh
Priority to EP22930149.4A priority patent/EP4322259A1/en
Priority to US18/472,030 priority patent/US20240014386A1/en
Publication of WO2023240544A1 publication Critical patent/WO2023240544A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of electrochemistry, and in particular to a cathode material and a preparation method thereof, a secondary battery equipped with the same, as well as a battery module, a battery pack and an electrical device.
  • Lithium-rich manganese-based materials have a higher discharge voltage platform and higher theoretical discharge specific capacity, so they have higher theoretical specific energy density.
  • some lithium ions in the transition metal layer will be removed together with oxygen to form Li 2 O. This part of the crystal vacancies will be released during subsequent charge and discharge. It is more difficult to accept lithium ions during the process, resulting in a lower initial charge and discharge efficiency of the material.
  • a large number of oxygen vacancies are formed, causing the migration of transition metal ions and rearrangement of the crystal structure, resulting in instability of the material structure, thereby causing cycle changes.
  • the rate performance of the material is extremely poor.
  • This application was made in view of the above problems, and its purpose is to provide a cathode material and a preparation method thereof, a secondary battery equipped with the same, a battery module, a battery pack and an electrical device.
  • the secondary battery prepared by the cathode material The battery has high energy density, first charge and discharge efficiency, cycle characteristics, and rate characteristics.
  • the first aspect of the present application is to provide a cathode material, which includes: a core including a lithium-rich manganese-based cathode material; and a coating layer covering the outer surface of the core, including a transition metal oxyacid A composite material of salt and carbon, wherein the transition metal in the transition metal oxonate is selected from at least one of Ti, Mo, W, V, Ta, Nb or Nd; the composite material has a network structure.
  • the transition metal in the transition metal oxonate is selected from at least one of Ti, Mo, W, or V.
  • the composite material of the transition metal oxonate and carbon can be easily coated on the surface of the lithium-rich manganese-based material.
  • the transition metal oxonate is at least one of Li, Na, K, Mg, and Al salts.
  • the transition metal oxonate is Li, Na, or K salt. At least one.
  • the composite material of the transition metal oxonate and carbon can be easily coated on the surface of the lithium-rich manganese-based material.
  • the molecular formula of the lithium-rich manganese-based cathode material is xLi 2 MnO 3 ⁇ (1-x)LiNi y Co z Mn a M 1-yza Or A 2-r , where 0 ⁇ x ⁇ 1 , 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ a ⁇ 1, 0 ⁇ r ⁇ 2, 0 ⁇ y+z+a ⁇ 1; M is Mg, B, Al, V, Ti, Zr, Sn and at least one of Mo, and A is at least one of F, S, N and Cl.
  • the composite material of transition metal oxonate and carbon can be coated on the surface of various lithium-rich manganese-based materials.
  • the transition metal oxonate contains oxygen vacancies.
  • the transition metal oxonate satisfies the condition: peak intensity ratio of IO 2 2- /IO 2- is 0.5 ⁇ 1.2, optionally 0.6 ⁇ 0.8, where IO 2 2- is the peak intensity value of 531eV oxygen vacancy in the X-ray photoelectron spectroscopy test (XPS), IO 2- is the peak intensity value corresponding to the X-ray photoelectron spectroscopy test ( The peak intensity value of lattice oxygen at 529eV in XPS).
  • the oxygen vacancies on the surface of lithium-rich manganese-based cathode materials can be evidenced by the peak intensity ratio of IO 2 2- /IO 2- in the coating.
  • the powder resistivity of the cathode material at 12 MPa is less than or equal to 3000 ⁇ cm, preferably less than or equal to 2000 ⁇ cm.
  • the oxygen vacancies on the surface of the lithium-rich manganese-based cathode material can promote the transmission of electrons and lithium ions in the material.
  • the surface carbon coating can further improve the electronic conductivity of the material, further improving the first charge and discharge efficiency and rate performance of the cathode material.
  • the particle type of the cathode material is secondary particles, single crystals or quasi-single crystals, and the particle size D v 50 of the particles is 1 to 20 ⁇ m, optionally 3 to 15 ⁇ m.
  • the lithium-rich manganese-based cathode material has a regular morphology, uniform particle size distribution, and stable structure, thus ensuring that the lithium-rich manganese-based battery has a high energy density and excellent cycle performance.
  • the specific surface area of the cathode material is less than 2.0 m 2 /g, optionally 0.1 to 1 m 2 /g.
  • the lithium-rich manganese-based cathode material has a lower specific surface area and a higher compacted density, thus ensuring that the lithium-rich manganese-based battery has a higher energy density and excellent cycle performance.
  • the second aspect of this application is to provide a method for preparing a cathode material according to the first aspect of this application, which includes the following steps: solution preparation step: dispersing transition metal oxides in deionized water, then adding organic acid salts, and adjusting the solution After the pH value is in the neutral to alkaline range, stir thoroughly to prepare a solution; hydrothermal reaction process: slowly add lithium-rich manganese-based cathode material to the solution and react at a constant temperature of 50 to 100°C for 2 to 10 hours; drying process: The product of the hydrothermal reaction process is filtered, and the solid obtained by filtration is dried; the sintering process: the dried solid is sintered in an inert atmosphere at 300-600°C for 4-15 hours to obtain a surface-modified lithium-rich manganese base Cathode material, wherein the transition metal oxide includes at least one of Ti, Mo, W, V, Ta, Nb or Nd oxides, and the acid ion of the organic acid salt is acetate i
  • the transition metal oxide and organic acid salt are uniformly coated on the surface of the lithium-rich manganese-based material through hydrothermal method, and the organic acid salt is pyrolyzed by heat treatment in an inert atmosphere.
  • the carbon and organic acid salt produced during the pyrolysis process are
  • the transition metal oxonate produced by the reaction between the transition metal oxide and the organic acid salt is generated simultaneously, and the presence of carbon promotes the generation of oxygen vacancies in the transition metal oxonate, and finally a transition metal oxonate containing oxygen vacancies and carbon are obtained.
  • the composite material is coated on the surface of lithium-rich manganese-based material.
  • the counterion of the organic acid ion in the organic acid salt is an ion of at least one metal selected from the group consisting of Li, Na, K, Mg, and Al, preferably an ion selected from the group consisting of Li, Na, and K.
  • An ion of at least one metal is an ion of at least one metal.
  • the pH value of the solution is controlled between 7 and 15, preferably between 8 and 10.
  • the composite material of the transition metal oxonate and carbon can be easily coated on the surface of the lithium-rich manganese-based material.
  • the mass ratio of the transition metal oxide and the organic acid salt is (0.05-10):1, preferably (0.5-2):1.
  • the ratio of the added mass of the lithium-rich manganese-based material to the sum of the mass of the transition metal oxide and the organic acid salt is 100: (0.1-30), preferably 100: (1 -10). Therefore, by keeping the ratio of the mass of the lithium-rich manganese-based material to the sum of the mass of the transition metal oxide and the organic acid salt within the above range, it is beneficial to regulate the thickness of the coating layer, and by increasing the coating amount, More transition metal oxonate oxygen vacancies can be formed in the cladding layer.
  • the drying temperature is 60-120°C, preferably 80-100°C, and/or the drying time is 1-10h, preferably 5-8h, and/or the drying time is 1-10h, preferably 5-8h.
  • the atmosphere is a vacuum atmosphere, and the vacuum degree is maintained at -0.5 ⁇ -1bar. Therefore, through vacuum drying, excess moisture on the surface of the material is removed, oxidation of the material surface is avoided, and the destruction of oxygen vacancies formed in the surface layer is prevented, thereby appropriately adjusting the content of oxygen vacancies in the transition metal oxonate.
  • the inert atmosphere is nitrogen or argon atmosphere. This can further promote the formation of oxygen vacancies in the transition metal oxonate, while achieving a uniform and dense coating effect of the coating on the surface layer.
  • a third aspect of the present application is to provide a secondary battery.
  • the secondary battery includes a positive electrode material prepared according to the first aspect of the present application or a positive electrode material prepared according to the preparation method described in the second aspect of the present application.
  • a fourth aspect of the present application is to provide a battery module, which includes the secondary battery according to the third aspect of the present application.
  • a fifth aspect of the present application is to provide a battery pack, which includes the battery module according to the fourth aspect of the present application.
  • the sixth aspect of the present application is to provide an electrical device, which includes the secondary battery according to the third aspect of the present application, the battery module according to the fourth aspect of the present application, and the secondary battery according to the fifth aspect of the present application. at least one of the battery packs described above.
  • the secondary battery can have higher energy density, first charge and discharge efficiency, cycle characteristics, and rate characteristics.
  • Figure 1 is a scanning electron microscope image of a cathode material according to an embodiment of the present application.
  • Figure 2 is a scanning electron microscope image of the cathode material shown in Figure 1 at different magnifications.
  • Figure 3 is an XPS pattern of a cathode material according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a secondary battery according to an embodiment of the present application.
  • FIG. 5 is an exploded view of the secondary battery according to the embodiment of the present application shown in FIG. 4 .
  • Figure 6 is a schematic diagram of a battery module according to an embodiment of the present application.
  • Figure 7 is a schematic diagram of a battery pack according to an embodiment of the present application.
  • FIG. 8 is an exploded view of the battery pack according to an embodiment of the present application shown in FIG. 7 .
  • FIG. 9 is a schematic diagram of a power consumption device using a secondary battery as a power source according to an embodiment of the present application.
  • Ranges disclosed herein are defined in terms of lower and upper limits. A given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive of the endpoints, and may be arbitrarily combined, that is, any lower limit may be combined with any upper limit to form a range. For example, if ranges of 60 to 120 and 80 to 110 are listed for a particular parameter, it is understood that ranges of 60 to 110 and 80 to 120 are also contemplated. Furthermore, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, then the following ranges are all expected: 1 to 3, 1 to 4, 1 to 5, 2 to 3, 2 to 4 and 2 to 5.
  • the numerical range "a to b" represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range "0 to 5" means that all real numbers between “0 to 5" have been listed in this article, and "0 to 5" is just an abbreviation of these numerical combinations.
  • a certain parameter is an integer ⁇ 2
  • condition "A or B” is satisfied by any of the following conditions: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; Or both A and B are true (or exist).
  • a cathode material including: a core, including a lithium-rich manganese-based cathode material; and a coating layer, covering the outer surface of the core, including a transition metal oxonate and carbon.
  • Composite material wherein the transition metal in the transition metal oxonate is selected from at least one of Ti, Mo, W, V, Ta, Nb or Nd; the composite material has a network structure.
  • the inventor of the present application unexpectedly discovered that by coating the outer surface of the lithium-rich manganese-based cathode material with a transition metal oxonate and a composite material with a network structure, the secondary battery can have higher performance. energy density, first charge and discharge efficiency, cycle characteristics, and rate characteristics.
  • the inventor of the present application speculates that by coating the surface of a lithium-rich manganese-based material with a transition metal oxonate rich in oxygen vacancies and having a network structure, it is different from the general method of directly forming oxygen vacancies on the surface of the material.
  • the structure of the surface layer will not be reconstructed or destroyed, which is conducive to the stability of the structure of the material itself.
  • the network structure contains carbon
  • the synergistic effect of carbon coating not only promotes the formation and protection of oxygen vacancies, but also improves the problem of low electronic conductivity of the material itself, making the material more durable during high voltage cycles. , reducing the release of lattice oxygen, improving the reversibility of the redox reaction of oxygen anions, and at the same time, the rate performance of the material can also be effectively improved.
  • Figure 1 is a scanning electron microscope image of the cathode material obtained in Example 1 described later in this application.
  • Figure 2 is a scanning electron microscope image of the cathode material shown in Figure 1 at different magnifications.
  • the outer surface of the lithium-rich manganese-based material is covered with a composite material of transition metal oxonate and carbon.
  • the composite material has a mesh structure.
  • the composite material containing a network structure in the coating layer can not only maintain the stability of the coating structure, but also increase the conductivity of the lithium-rich manganese-based material.
  • the transition metal in the transition metal oxonate is selected from at least one of Ti, Mo, W, or V.
  • the composite material of the transition metal oxonate and carbon can be easily coated on the surface of the lithium-rich manganese-based material.
  • the transition metal oxonate is at least one of Li, Na, K, Mg, and Al salts.
  • the transition metal oxonate is Li, Na, or K salt. At least one.
  • the composite material of the transition metal oxonate and carbon can be easily coated on the surface of the lithium-rich manganese-based material.
  • the molecular formula of the lithium-rich manganese-based cathode material is xLi 2 MnO 3 ⁇ (1-x)LiNi y Co z Mn a M 1-yza Or A 2-r , where 0 ⁇ x ⁇ 1 , 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ a ⁇ 1, 0 ⁇ r ⁇ 2, 0 ⁇ y+z+a ⁇ 1; M is Mg, B, Al, V, Ti, Zr, Sn and at least one of Mo, and A is at least one of F, S, N and Cl.
  • the composite material of transition metal oxonate and carbon can be coated on the surface of various lithium-rich manganese-based materials.
  • Figure 3 is an XPS spectrum of the cathode material of Example 1 described later in this application.
  • the transition metal oxonate contains oxygen vacancies, and optionally, the transition metal oxonate satisfies the following conditions: IO 2 2- /IO 2
  • the peak intensity ratio of - is 0.5 ⁇ 1.2, optionally 0.6 ⁇ 0.8, where IO 2 2- is the peak intensity value of 531eV oxygen vacancy in X-ray photoelectron spectroscopy test (XPS), IO 2- is the peak intensity value corresponding to X-ray
  • XPS photoelectron spectroscopy test
  • the oxygen vacancies on the surface of the lithium-rich manganese-based cathode material are evidenced by the peak intensity ratio of IO 2 2- /IO 2- in the coating.
  • the powder resistivity of the cathode material at 12 MPa is less than or equal to 3000 ⁇ cm, preferably less than or equal to 2000 ⁇ cm.
  • the oxygen vacancies on the surface of the lithium-rich manganese-based cathode material can promote the transmission of electrons and lithium in the material.
  • the surface carbon coating can further improve the electronic conductivity of the material, further improving the first charge and discharge efficiency and rate performance of the cathode material.
  • the particle type of the cathode material is secondary particles, single crystals or quasi-single crystals, and the particle size D v 50 of the particles is 1 to 20 ⁇ m, optionally 3 to 15 ⁇ m.
  • the lithium-rich manganese-based cathode material has a regular morphology, uniform particle size distribution, and stable structure, thus ensuring that the lithium-rich manganese-based battery has a high energy density and excellent cycle performance.
  • the specific surface area of the cathode material is less than 2.0 m 2 /g, optionally 0.1 to 1 m 2 /g.
  • the lithium-rich manganese-based cathode material has a lower specific surface area and a higher compacted density, thus ensuring that the lithium-rich manganese-based battery has a higher energy density and excellent cycle performance.
  • the present application proposes a preparation method of a cathode material, which includes the following steps: solution preparation step: dispersing transition metal oxides in deionized water, and then adding organic acid salts to adjust the concentration of the solution.
  • hydrothermal reaction process slowly add lithium-rich manganese-based cathode material to the solution and react at a constant temperature of 50 to 100°C for 2 to 10 hours; drying process: The product of the hydrothermal reaction process is filtered, and the solid obtained by filtration is dried; the sintering process: the dried solid is sintered in an inert atmosphere at 300-600°C for 4-15 hours to obtain a surface-modified lithium-rich manganese base Cathode material, wherein the transition metal oxide includes at least one of Ti, Mo, W, V, Ta, Nb or Nd oxides, and the acid ion of the organic acid salt is acetate ion, oxalate ion or at least one of citrate ions.
  • the transition metal oxide and organic acid salt are uniformly coated on the surface of the lithium-rich manganese-based material through hydrothermal method, and the organic acid salt is pyrolyzed by heat treatment in an inert atmosphere.
  • the carbon and organic acid salt produced during the pyrolysis process are
  • the transition metal oxonate produced by the reaction between the transition metal oxide and the organic acid salt is generated simultaneously, and the presence of carbon promotes the generation of oxygen vacancies in the transition metal oxonate, and finally a transition metal oxonate containing oxygen vacancies and carbon are obtained.
  • the composite material is coated on the surface of lithium-rich manganese-based material.
  • the counterion of the organic acid ion in the organic acid salt is an ion of at least one metal selected from the group consisting of Li, Na, K, Mg, and Al, preferably an ion selected from the group consisting of Li, Na, and K.
  • An ion of at least one metal is an ion of at least one metal.
  • the pH value of the solution is controlled at 7-15, preferably 8-10.
  • the composite material of the transition metal oxonate and carbon can be easily coated on the surface of the lithium-rich manganese-based material.
  • the mass ratio of the transition metal oxide and the organic acid salt is (0.05-10):1, preferably (0.5-2):1.
  • the ratio of the added mass of the lithium-rich manganese-based material to the sum of the mass of the transition metal oxide and the organic acid salt is 100: (0.1-30), preferably 100: (1 -10). Therefore, by keeping the ratio of the mass of the lithium-rich manganese-based material to the sum of the mass of the transition metal oxide and the organic acid salt within the above range, it is beneficial to regulate the thickness of the coating layer, and by increasing the coating amount, More transition metal oxonate oxygen vacancies can be formed in the cladding layer.
  • the drying temperature is 60-120°C, preferably 80-100°C, and/or the drying time is 1-10h, preferably 5-8h, and/or the drying time is 1-10h, preferably 5-8h.
  • the atmosphere is a vacuum atmosphere, and the vacuum degree is maintained at -0.5 ⁇ -1bar. Therefore, through vacuum drying, excess moisture on the surface of the material is removed, oxidation of the material surface is avoided, and the destruction of oxygen vacancies formed in the surface layer is prevented, thereby appropriately adjusting the content of oxygen vacancies in the transition metal oxonate.
  • the inert atmosphere is nitrogen or argon atmosphere. This can further promote the formation of oxygen vacancies in the transition metal oxonate, while achieving a uniform and dense coating effect of the coating on the surface layer.
  • a secondary battery is provided.
  • a secondary battery typically includes a negative electrode plate, a positive electrode plate, an electrolyte and a separator.
  • active ions are inserted and detached back and forth between the positive and negative electrodes.
  • the electrolyte plays a role in conducting ions between the positive and negative electrodes.
  • the isolation film is placed between the positive electrode piece and the negative electrode piece. It mainly prevents the positive and negative electrodes from short-circuiting and allows ions to pass through.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode current collector.
  • the positive electrode film layer includes the positive electrode active material of the first aspect of the present application.
  • the positive electrode current collector has two surfaces facing each other in its own thickness direction, and the positive electrode film layer is disposed on any one or both of the two opposite surfaces of the positive electrode current collector.
  • the positive electrode current collector may be a metal foil or a composite current collector.
  • the metal foil aluminum foil can be used.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base layer.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • cathode active materials may adopt cathode active materials known in the art for use in batteries.
  • the cathode active material may include at least one of the following materials: an olivine-structured lithium-containing phosphate, a lithium transition metal oxide, and their respective modified compounds.
  • the present application is not limited to these materials, and other traditional materials that can be used as positive electrode active materials of batteries can also be used. Only one type of these positive electrode active materials may be used alone, or two or more types may be used in combination.
  • lithium transition metal oxides may include, but are not limited to, lithium cobalt oxides (such as LiCoO 2 ), lithium nickel oxides (such as LiNiO 2 ), lithium manganese oxides (such as LiMnO 2 , LiMn 2 O 4 ), lithium Nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide (such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (also referred to as NCM 333 ), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (can also be abbreviated to NCM 523 ), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (can also be abbreviated to NCM 211 ), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (can also be abbreviated to NCM 622 ), LiNi At least one of 0.8 Co 0.1 Mn 0.1 O 2 (also referred to as NCM 811 ), lithium nickel cobalt aluminum oxide (such as Li Li
  • the olivine structure contains Examples of lithium phosphates may include, but are not limited to, lithium iron phosphate (such as LiFePO 4 (also referred to as LFP)), composites of lithium iron phosphate and carbon, lithium manganese phosphate (such as LiMnPO 4 ), lithium manganese phosphate and carbon. At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon.
  • lithium iron phosphate such as LiFePO 4 (also referred to as LFP)
  • composites of lithium iron phosphate and carbon such as LiMnPO 4
  • LiMnPO 4 lithium manganese phosphate and carbon.
  • At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon.
  • the positive electrode film layer optionally further includes a binder.
  • the binder may include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene At least one of ethylene terpolymer, tetrafluoroethylene-hexafluoropropylene copolymer and fluorine-containing acrylate resin.
  • the positive electrode film layer optionally further includes a conductive agent.
  • the conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the positive electrode sheet can be prepared by dispersing the above-mentioned components for preparing the positive electrode sheet, such as positive active material, conductive agent, binder and any other components in a solvent (such as N -methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode piece can be obtained.
  • a solvent such as N -methylpyrrolidone
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode film layer disposed on at least one surface of the negative electrode current collector, where the negative electrode film layer includes a negative electrode active material.
  • the negative electrode current collector has two opposite surfaces in its own thickness direction, and the negative electrode film layer is disposed on any one or both of the two opposite surfaces of the negative electrode current collector.
  • the negative electrode current collector may be a metal foil or a composite current collector.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base material.
  • the composite current collector can be formed by forming metal materials (copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the negative active material may be a negative active material known in the art for batteries.
  • the negative active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based materials, tin-based materials, lithium titanate, and the like.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon oxide compounds, silicon carbon composites, silicon nitrogen composites and silicon alloys.
  • the tin-based material may be selected from at least one of elemental tin, tin oxide compounds and tin alloys.
  • the present application is not limited to these materials, and other traditional materials that can be used as battery negative electrode active materials can also be used. Only one type of these negative electrode active materials may be used alone, or two or more types may be used in combination.
  • the negative electrode film layer optionally further includes a binder.
  • the binder can be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), polysodium acrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), poly At least one of methacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • the negative electrode film layer optionally further includes a conductive agent.
  • the conductive agent may be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the negative electrode film layer optionally includes other auxiliaries, such as thickeners (such as sodium carboxymethylcellulose (CMC-Na)) and the like.
  • thickeners such as sodium carboxymethylcellulose (CMC-Na)
  • the negative electrode sheet can be prepared by dispersing the above-mentioned components for preparing the negative electrode sheet, such as negative active materials, conductive agents, binders and any other components in a solvent (such as deionized water) to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode piece can be obtained.
  • a solvent such as deionized water
  • the electrolyte plays a role in conducting ions between the positive and negative electrodes.
  • the type of electrolyte in this application can be selected according to needs.
  • the electrolyte can be liquid, gel, or completely solid.
  • the electrolyte is an electrolyte solution.
  • the electrolyte solution includes electrolyte salts and solvents.
  • the electrolyte salt may be selected from the group consisting of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium bisfluorosulfonimide, lithium bistrifluoromethanesulfonimide, trifluoromethane At least one of lithium sulfonate, lithium difluorophosphate, lithium difluoroborate, lithium dioxaloborate, lithium difluorodioxalate phosphate and lithium tetrafluoroxalate phosphate.
  • the solvent may be selected from the group consisting of ethylene carbonate, propylene carbonate, methylethyl carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, Butylene carbonate, fluoroethylene carbonate, methyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate At least one of ester, 1,4-butyrolactone, sulfolane, dimethyl sulfone, methyl ethyl sulfone and diethyl sulfone.
  • the electrolyte optionally further includes additives.
  • additives may include negative electrode film-forming additives, positive electrode film-forming additives, and may also include additives that can improve certain properties of the battery, such as additives that improve battery overcharge performance, additives that improve battery high-temperature or low-temperature performance, etc.
  • the secondary battery further includes a separator film.
  • a separator film There is no particular restriction on the type of isolation membrane in this application. Any well-known porous structure isolation membrane with good chemical stability and mechanical stability can be used.
  • the material of the isolation membrane can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the isolation film can be a single-layer film or a multi-layer composite film, with no special restrictions. When the isolation film is a multi-layer composite film, the materials of each layer can be the same or different, and there is no particular limitation.
  • the positive electrode piece, the negative electrode piece and the separator film can be made into an electrode assembly through a winding process or a lamination process.
  • the secondary battery may include an outer packaging.
  • the outer packaging can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the secondary battery may be a hard shell, such as a hard plastic shell, an aluminum shell, a steel shell, etc.
  • the outer packaging of the secondary battery may also be a soft bag, such as a bag-type soft bag.
  • the material of the soft bag may be plastic, and examples of the plastic include polypropylene, polybutylene terephthalate, polybutylene succinate, and the like.
  • FIG. 4 shows a square-structured secondary battery 5 as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and side plates connected to the bottom plate, and the bottom plate and the side plates enclose a receiving cavity.
  • the housing 51 has an opening communicating with the accommodation cavity, and the cover plate 53 can cover the opening to close the accommodation cavity.
  • the positive electrode piece, the negative electrode piece and the isolation film can be formed into the electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the containing cavity.
  • the electrolyte soaks into the electrode assembly 52 .
  • the number of electrode assemblies 52 contained in the secondary battery 5 can be one or more, and those skilled in the art can select according to specific actual needs.
  • secondary batteries can be assembled into battery modules, and the number of secondary batteries contained in the battery module can be one or more. Those skilled in the art can select the specific number according to the application and capacity of the battery module.
  • FIG. 6 is a battery module 4 as an example.
  • a plurality of secondary batteries 5 may be arranged in sequence along the length direction of the battery module 4 .
  • the plurality of secondary batteries 5 can be fixed by fasteners.
  • the battery module 4 may further include a housing having a receiving space in which a plurality of secondary batteries 5 are received.
  • the above-mentioned battery modules can also be assembled into a battery pack.
  • the number of battery modules contained in the battery pack can be one or more. Those skilled in the art can select the specific number according to the application and capacity of the battery pack.
  • the battery pack 1 may include a battery box and a plurality of battery modules 4 disposed in the battery box.
  • the battery box includes an upper box 2 and a lower box 3 .
  • the upper box 2 can be covered with the lower box 3 and form a closed space for accommodating the battery module 4 .
  • Multiple battery modules 4 can be arranged in the battery box in any manner.
  • the present application also provides an electrical device, which includes at least one of the secondary battery, battery module, or battery pack provided by the present application.
  • the secondary battery, battery module, or battery pack may be used as a power source for the electrical device, or may be used as an energy storage unit for the electrical device.
  • the electric device may include mobile devices (such as mobile phones, laptops, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, and electric golf carts). , electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc., but are not limited to these.
  • a secondary battery, a battery module or a battery pack can be selected according to its usage requirements.
  • Figure 9 is an electrical device as an example.
  • the electric device is a pure electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, etc.
  • a battery pack or battery module can be used.
  • the device may be a mobile phone, a tablet, a laptop, etc.
  • This device is usually required to be thin and light, and secondary batteries can be used as power sources.
  • Example 1 the preparation method of the cathode material includes the following steps:
  • the dried sample is sintered at 500°C in an argon atmosphere for 10 hours to obtain a lithium-rich manganese-based cathode material coated with a composite material of potassium vanadate and carbon with oxygen vacancies on the surface.
  • SP carbon black
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the cathode material prepared by the above method, the mass ratio of SP and PVDF is 90:7:3, and the cathode slurry is prepared; the cathode slurry is coated on the surface of the cathode current collector aluminum foil, and after drying and cold pressing, the cathode slurry is obtained Positive pole piece.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • PE polyethylene
  • Electrode sheet Stack the positive electrode sheet, isolation film, and negative electrode sheet in order, and obtain the electrode assembly after winding. Put the electrode assembly into the outer package, add the above-mentioned electrolyte, and go through the processes of packaging, standing, forming, aging, etc. , get the secondary battery.
  • the morphology of the positive electrode active material can be confirmed and measured using known methods, for example, using a scanning electron microscope or a transmission electron microscope.
  • the peak intensity ratio between oxygen vacancies and lattice oxygen in the coating layer of the positive electrode active material can be confirmed and measured by using well-known methods, such as X-ray photoelectron spectroscopy (XPS) analysis.
  • XPS X-ray photoelectron spectroscopy
  • the resistivity of the positive electrode active material is confirmed and measured by using well-known methods. For example, it can be measured using a powder resistivity testing instrument (such as lattice ST-2722) with reference to standard GBT30853-2014.
  • the Dv 50 of the positive active material is a meaning known in the art and can be measured using methods known in the art. For example, it can be measured using a laser particle size analyzer (such as Malvern Master Size 3000) with reference to the standard GB/T 19077.1-2016.
  • the physical definition of Dv 50 is: the particle size corresponding to when the cumulative volume distribution percentage of the positive active material reaches 50%.
  • the specific surface area of the positive active material has a meaning known in the art and can be measured using methods known in the art. For example, you can refer to GB/T 19587-2017, use the nitrogen adsorption specific surface area analysis test method to test, and calculate it using the BET (Brunauer Emmett Teller) method.
  • the nitrogen adsorption specific surface area analysis test can pass the Tri-Star 3020 type of the American Micromeritics company. Specific surface area and pore size analysis tester.
  • the thickness of the coating layer of the positive electrode active material has a meaning known in the art and can be measured using methods known in the art. As an example, measurements can be made using a high-resolution transmission electron microscope. More precisely, the thickness values of the cladding layer at multiple (more than 3, such as 8, 10, 12, etc.) different positions can be tested, and the average value is recorded as the thickness of the cladding layer.
  • first time efficiency D1/(Z1+Z2)
  • Cycle test In a constant temperature environment of 25°C or 45°C, charge the full battery at a constant current of 0.5C until the voltage is 4.46V, then charge at a constant voltage of 4.46V until the current is 0.05C, let it stand for 5 minutes, and then charge at a constant current of 0.5C Constant current discharge until the voltage is 2.3V. This is a charge and discharge cycle process. The discharge capacity this time is the discharge capacity of the first cycle. After the full battery is tested for 500 cycles of charge and discharge according to the above method, the remaining reversible discharge capacity is recorded.
  • Example 1 Except that the following steps are used to prepare the positive electrode material, the same preparation method as in Example 1 is used to obtain a positive electrode piece.
  • the dried sample is sintered at 500°C in an argon atmosphere for 10 hours to obtain a lithium-rich manganese-based cathode material coated with a composite material of sodium titanate and carbon with oxygen vacancies on the surface.
  • Example 1 Except that the following steps are used to prepare the positive electrode material, the same preparation method as in Example 1 is used to obtain a positive electrode piece.
  • the dried sample is sintered at 500°C in an argon atmosphere for 10 hours to obtain a lithium-rich manganese-based cathode material coated with a composite material of potassium molybdate and carbon with oxygen vacancies on the surface.
  • Example 4 except for changing the core composition of the positive electrode material as shown in Table 1, the same preparation method as in Example 1 was used, thereby obtaining a positive electrode material.
  • Example 6 except for changing the conditions in each preparation step as shown in Table 2, the same raw material composition and similar preparation method as in Example 1 were used, thereby obtaining a positive electrode material.
  • the cathode material of Comparative Example 1 was prepared using the following steps.
  • Potassium vanadate and lithium-rich manganese-based material 0.5Li 2 MnO 3 ⁇ 0.5LiNi 0.33 Co 0.33 Mn 0.33 O 2 are ball milled and mixed for 2 hours according to the mass ratio of 5:100, and then sintered in an inert atmosphere at 500°C for 10 hours to obtain surface-coated vanadium. Potassium acid lithium-rich manganese-based cathode material.
  • the cathode material of Comparative Example 2 was prepared using the following steps.
  • the cathode material of Comparative Example 3 was prepared using the following steps.
  • Example 17 to 22 except for changing the raw material ratio in the hydrothermal reaction step as shown in Table 2, the same preparation method as in Example 1 was used, thereby obtaining a positive electrode material.

Abstract

正极材料及其制造方法、具备该正极材料的二次电池。正极材料包括:内核,包含富锂锰基正极材料;以及包覆层,包覆在内核外表面,包覆层包括过渡金属氧酸盐和碳的复合材料,过渡金属氧酸盐中的过渡金属选自Ti、Mo、W、V、Ta、Nb或Nd中的至少一种;复合材料为网状结构。采用该正极材料制备的二次电池,具有较高的能量密度、首次充放电效率、循环特性以及倍率性能。

Description

正极材料及其制备方法、具备其的二次电池 技术领域
本申请涉及电化学领域,尤其涉及一种正极材料及其制备方法、具备其的二次电池、以及电池模块、电池包和用电装置。
背景技术
富锂锰基材料的放电电压平台较高,理论放电比容量较高,因此具有较高的理论比能量密度。但是,富锂锰基材料在首圈4.5V以上的高电压充电状态下,过渡金属层中的部分锂离子会和氧一起脱除,形成Li 2O脱出,这部分晶体空位在后续的充放电过程中较难再接纳锂离子,导致材料的首次充放电效率变低,同时大量氧空位的形成,造成过渡金属离子发生迁移致使晶体结构发生重排,导致材料结构的不稳定,进而造成循环变差,此外由于富锂材料本身电子和离子电导率较低,且高电压下材料表面与电解液的副反应加剧,导致材料的倍率性能极差。
发明内容
本申请是鉴于上述课题而进行的,其目的在于,提供一种正极材料及其制备方法、具备其的二次电池、以及电池模块、电池包和用电装置,该正极材料所制备的二次电池具有较高的能量密度、首次充放电效率、循环特性、以及倍率特性。
为了实现上述目的,本申请第一方面在于提供一种正极材料,其中,包括:内核,包含富锂锰基正极材料;以及包覆层,包覆在所述内核外表面,包括过渡金属氧酸盐和碳的复合材料,其中,所述过渡金属氧酸盐中的过渡金属选自Ti、Mo、W、V、Ta、Nb或Nd中的至少一种;所述复合材料为网状结构。
通过在富锂锰基材料表面包覆富含氧空位的材料,与一般的直接在材料表层形成氧空位的方式有所不同,材料表层的结构不会发生重 构或破坏,有利于材料本身结构的稳定。尤其当具有网状结构的复合材料中含有碳时,通过碳包覆的协同作用,既促进了氧空位的形成和保护,又改善了材料本身电子电导率低的问题,使得材料在高电压的循环过程中,减少了晶格氧的释放,提高氧阴离子发生氧化还原反应的可逆性,同时材料的倍率性能也能得到有效提升。因此,由上述正极材料制备的二次电池具有较高的能量密度、首次充放电效率、循环特性、以及倍率特性。
在一些实施方式中,所述过渡金属氧酸盐中的过渡金属选自Ti、Mo、W、或V中的至少一种。由此,能够容易地在富锂锰基材料表面包覆过渡金属氧酸盐和碳的复合材料。
在一些实施方式中,所述过渡金属氧酸盐为Li、Na、K、Mg、Al盐中的至少一种,可选地,所述过渡金属氧酸盐为Li、Na、K盐中的至少一种。由此,能够容易地在富锂锰基材料表面包覆过渡金属氧酸盐和碳的复合材料。
在一些实施方式中,所述富锂锰基正极材料的分子式为xLi 2MnO 3·(1-x)LiNi yCo zMn aM 1-y-z-aO rA 2-r,其中0<x<1,0≤y≤1,0≤z≤1,0≤a≤1,0<r≤2,0<y+z+a≤1;M为Mg、B、Al、V、Ti、Zr、Sn和Mo中的至少一种,A为F、S、N和Cl中的至少一种。由此,能够在各种富锂锰基材料表面包覆过渡金属氧酸盐和碳的复合材料。
在一些实施方式中,所述包覆层中,所述过渡金属氧酸盐包含氧空位,可选地,所述过渡金属氧酸盐满足条件:IO 2 2-/IO 2-的峰强比为0.5~1.2,可选地为0.6~0.8,其中IO 2 2-为X射线光电子能谱测试(XPS)中531eV氧空位的峰强值,IO 2-为对应于X射线光电子能谱测试(XPS)中529eV的晶格氧的峰强值。由此,富锂锰基正极材料表层氧空位可以通过包覆物中IO 2 2-/IO 2-的峰强比来进行佐证,氧空位越多,峰强比越高。能够使形成于富锂锰基材料表面的氧空位处于合适的范围内,一方面可以抑制材料充放电过程中氧气的释放,另一方面可以保证材料的容量发挥。
在一些实施方式中,所述正极材料在12MPa下的粉末电阻率小于等于3000Ω·cm,优选为小于等于2000Ω·cm。通过富锂锰基正极材料表层具有的氧空位,可以促进材料电子和锂子的传输,表层碳包覆可 进一步提升材料的电子电导率,进一步提升正极材料的首次充放电效率和倍率性能。
在一些实施方式中,所述正极材料的颗粒类型为二次颗粒、单晶或类单晶,所述颗粒的粒径D v50为1~20μm,可选为3~15μm。由此,富锂锰基正极材料形貌规则,粒度分布均匀,结构稳定,从而确保了富锂锰基电池具有较高的能量密度,优异的循环性能。
在一些实施方式中,所述正极材料的比表面积为小于2.0m 2/g,可选为0.1~1m 2/g。由此,富锂锰基正极材料具有较低的比表面积,较高的压实密度,从而确保了富锂锰基电池具有较高的能量密度,优异的循环性能。
本申请第二方面在于提供根据本申请第一方面所述的正极材料的制备方法,包括以下工序:溶液制备工序:将过渡金属氧化物分散在去离子水中,然后加入有机酸盐,调节溶液的pH值为中性至碱性范围后充分搅拌,制得溶液;水热反应工序:缓慢加入富锂锰基正极材料于所述溶液中在50~100℃恒温反应2~10h;干燥工序:对所述水热反应工序的产物进行过滤,对过滤获得的固体进行干燥;烧结工序:将干燥后的固体在300~600℃于惰性气氛中烧结4~15h,获得表面改性的富锂锰基正极材料,其中,所述过渡金属氧化物包含Ti、Mo、W、V、Ta、Nb或Nd的氧化物中的至少一种,所述有机酸盐的酸根离子为乙酸根离子、草酸根离子或柠檬酸根离子中的至少一种。
通过上述方法,通过水热法将过渡金属氧化物与有机酸盐均匀包覆在富锂锰基材料表层,通过在惰性气氛中热处理,使有机酸盐发生热解,热解过程产生的碳和过渡金属氧化物与有机酸盐反应所产生的过渡金属氧酸盐同步生成,且碳的存在促进了过渡金属氧酸盐氧空位的生成,最终得到了含氧空位的过渡金属氧酸盐和碳的复合材料包覆在富锂锰基材料表面。
在一些实施方式中,所述有机酸盐中有机酸根离子的反离子为选自Li、Na、K、Mg、Al中的至少一种金属的离子,优选为选自Li、Na、K中的至少一种金属的离子。由此,能够容易地在富锂锰基材料表面包覆过渡金属氧酸盐和碳的复合材料。
在一些实施方式中,在所述溶液制备工序中,所述溶液的pH值控 制在7~15,优选为8~10。由此,能够容易地在富锂锰基材料表面包覆过渡金属氧酸盐和碳的复合材料。
在一些实施方式中,所述过渡金属氧化物和所述有机酸盐的质量比为(0.05-10):1,优选为(0.5-2):1。由此,能够稳定地形成在富锂锰基材料表面包覆过渡金属氧酸盐和碳的复合材料,并且能够适宜地调整过渡金属氧酸盐中氧空位的含量。
在一些实施方式中,所加入的所述富锂锰基材料的质量与所述过渡金属氧化物和所述有机酸盐质量和的比为100:(0.1-30),优选为100:(1-10)。由此,通过富锂锰基材料的质量与所述过渡金属氧化物和所述有机酸盐质量和的比在上述范围内,有利于调控包覆层的厚度,通过使包覆量的增加,能够在包覆层中形成更多的过渡金属氧酸盐氧空位。
在一些实施方式中,在所述干燥工序中,干燥温度为60~120℃,优选为80~100℃,和/或,干燥时间为1~10h,优选为5~8h,和/或,干燥气氛为真空气氛,真空度保持在-0.5~-1bar。由此,通过真空干燥,去除材料表面多余的水分,避免材料表面的氧化,防止表层形成的氧空位的破环,从而适宜地调整过渡金属氧酸盐中氧空位的含量。
在一些实施方式中,在所述烧结工序中,所述惰性气氛为氮气或氩气气氛。由此,能够可以进一步促进过渡金属氧酸盐氧空位的形成,同时实现包覆物在表层均匀且紧密的包覆效果。
本申请第三方面在于提供一种二次电池,该二次电池包括根据本申请第一方面所述的正极材料或根据本申请第二方面所述的制备方法制得的正极材料。
本申请第四方面在于提供一种电池模块,该电池模块包括根据本申请第三方面所述的二次电池。
本申请第五方面在于提供一种电池包,该电池包包括根据本申请第四方面所述的电池模块。
本申请第六方面在于提供一种用电装置,该用电装置包括根据本申请第三方面所述的二次电池、根据本申请第四方面所述的电池模块和根据本申请第五方面所述的电池包中的至少一种。
根据本申请,能够使二次电池具有较高的能量密度、首次充放电 效率、循环特性、以及倍率特性。
附图说明
图1为本申请一实施方式的正极材料的扫描电镜图。
图2为图1所示的正极材料的不同放大倍数下的扫描电镜图。
图3为本申请一实施方式的正极材料的XPS图谱。
图4是本申请一实施方式的二次电池的示意图。
图5是图4所示的本申请一实施方式的二次电池的分解图。
图6是本申请一实施方式的电池模块的示意图。
图7是本申请一实施方式的电池包的示意图。
图8是图7所示的本申请一实施方式的电池包的分解图。
图9是本申请一实施方式的二次电池用作电源的用电装置的示意图。
附图标记说明:
1电池包;2上箱体;3下箱体;4电池模块;5二次电池;51壳体;52电极组件;53顶盖组件
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的正极材料及其制造方法、二次电池、电池模块、电池包和电学装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60至120和80至110的范围,理解为60至110和80至120的范围也是预料到的。此外, 如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1至3、1至4、1至5、2至3、2至4和2至5。在本申请中,除非有其他说明,数值范围“a至b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0至5”表示本文中已经全部列出了“0至5”之间的全部实数,“0至5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
本申请的一个实施方式中,提出了一种正极材料,包括:内核,包含富锂锰基正极材料;以及包覆层,包覆在所述内核外表面,包括过渡金属氧酸盐和碳的复合材料,其中,所述过渡金属氧酸盐中的过渡金属选自Ti、Mo、W、V、Ta、Nb或Nd中的至少一种;所述复合材料为网状结构。
虽然机理尚不明确,但本申请发明人意外地发现:通过将过渡金属氧酸盐和具有网状结构的复合材料包覆在富锂锰基正极材料外表面,能够使二次电池具有较高的能量密度、首次充放电效率、循环特性、以及倍率特性。
本申请发明人推测:通过在富锂锰基材料表面包覆富含氧空位的 过渡金属氧酸盐和具有网状结构的,与一般的直接在材料表层形成氧空位的方式有所不同,材料表层的结构不会发生重构或破坏,有利于材料本身结构的稳定。尤其当具有网状结构中含有碳时,通过碳包覆的协同作用,既促进了氧空位的形成和保护,又改善了材料本身电子电导率低的问题,使得材料在高电压的循环过程中,减少了晶格氧的释放,提高氧阴离子发生氧化还原反应的可逆性,同时材料的倍率性能也能得到有效提升。
图1为本申请后述的实施例1得到的正极材料的扫描电镜图。图2为图1所示的正极材料的不同放大倍数下的扫描电镜图。从图1、2可以看出,富锂锰基材料的外表面包覆了过渡金属氧酸盐和碳的复合材料。其中,复合材料为网状结构。通过包覆层含有网状结构的复合材料,一方面能够保持包覆结构的稳定性,一方面还能够增加富锂锰基材料的电导率。
在一些实施方式中,所述过渡金属氧酸盐中的过渡金属选自Ti、Mo、W、或V中的至少一种。由此,能够容易地在富锂锰基材料表面包覆过渡金属氧酸盐和碳的复合材料。
在一些实施方式中,所述过渡金属氧酸盐为Li、Na、K、Mg、Al盐中的至少一种,可选地,所述过渡金属氧酸盐为Li、Na、K盐中的至少一种。由此,能够容易地在富锂锰基材料表面包覆过渡金属氧酸盐和碳的复合材料。
在一些实施方式中,所述富锂锰基正极材料的分子式为xLi 2MnO 3·(1-x)LiNi yCo zMn aM 1-y-z-aO rA 2-r,其中0<x<1,0≤y≤1,0≤z≤1,0≤a≤1,0<r≤2,0<y+z+a≤1;M为Mg、B、Al、V、Ti、Zr、Sn和Mo中的至少一种,A为F、S、N和Cl中的至少一种。由此,能够在各种富锂锰基材料表面包覆过渡金属氧酸盐和碳的复合材料。
图3为本申请的后述的实施例1的正极材料的XPS谱图。
在一些实施方式中,可选地,所述包覆层中,所述过渡金属氧酸盐包含氧空位,可选地,所述过渡金属氧酸盐满足以下条件:IO 2 2-/IO 2-的峰强比为0.5~1.2,可选地为0.6~0.8,其中IO 2 2-为X射线光电子能谱测试(XPS)中531eV氧空位的峰强值,IO 2-为对应于X射线光电子能谱测试(XPS)中529eV的晶格氧的峰强值(参考图3)。由此,富 锂锰基正极材料表层氧空位通过包覆物中IO 2 2-/IO 2-的峰强比来进行佐证,氧空位越多,峰强比越高。能够使形成于富锂锰基材料表面的氧空位处于合适的范围内,一方面可以抑制材料充放电过程中氧气的释放,另一方面可以保证材料的容量发挥。
在一些实施方式中,所述正极材料在12MPa下的粉末电阻率小于等于3000Ω·cm,优选为小于等于2000Ω·cm。通过富锂锰基正极材料表层具有的氧空位,可以促进材料电子和锂子的传输,表层碳包覆可进一步提升材料的电子电导率,进一步提升正极材料的首次充放电效率和倍率性能。
在一些实施方式中,所述正极材料的颗粒类型为二次颗粒、单晶或类单晶,所述颗粒的粒径D v50为1~20μm,可选为3~15μm。由此,富锂锰基正极材料形貌规则,粒度分布均匀,结构稳定,从而确保了富锂锰基电池具有较高的能量密度,优异的循环性能。
在一些实施方式中,所述正极材料的比表面积为小于2.0m 2/g,可选为0.1~1m 2/g。由此,富锂锰基正极材料具有较低的比表面积,较高的压实密度,从而确保了富锂锰基电池具有较高的能量密度,优异的循环性能。
进一步,在本申请的另一个实施方式中,本申请提出了正极材料的制备方法,包括以下工序:溶液制备工序:将过渡金属氧化物分散在去离子水中,然后加入有机酸盐,调节溶液的pH值为中性至碱性范围后充分搅拌,制得溶液;水热反应工序:缓慢加入富锂锰基正极材料于所述溶液中在50~100℃恒温反应2~10h;干燥工序:对所述水热反应工序的产物进行过滤,对过滤获得的固体进行干燥;烧结工序:将干燥后的固体在300~600℃于惰性气氛中烧结4~15h,获得表面改性的富锂锰基正极材料,其中,所述过渡金属氧化物包含Ti、Mo、W、V、Ta、Nb或Nd的氧化物中的至少一种,所述有机酸盐的酸根离子为乙酸根离子、草酸根离子或柠檬酸根离子中的至少一种。
通过上述方法,通过水热法将过渡金属氧化物与有机酸盐均匀包覆在富锂锰基材料表层,通过在惰性气氛中热处理,使有机酸盐发生热解,热解过程产生的碳和过渡金属氧化物与有机酸盐反应所产生的过渡金属氧酸盐同步生成,且碳的存在促进了过渡金属氧酸盐氧空位 的生成,最终得到了含氧空位的过渡金属氧酸盐和碳的复合材料包覆在富锂锰基材料表面。
在一些实施方式中,所述有机酸盐中有机酸根离子的反离子为选自Li、Na、K、Mg、Al中的至少一种金属的离子,优选为选自Li、Na、K中的至少一种金属的离子。由此,能够容易地在富锂锰基材料表面包覆过渡金属氧酸盐和碳的复合材料。
在一些实施方式中,在所述溶液制备工序中,所述溶液的pH值控制在7~15,优选为8~10。由此,能够容易地在富锂锰基材料表面包覆过渡金属氧酸盐和碳的复合材料。
在一些实施方式中,所述过渡金属氧化物和所述有机酸盐的质量比为(0.05-10):1,优选为(0.5-2):1。由此,能够稳定地形成在富锂锰基材料表面包覆过渡金属氧酸盐和碳的复合材料,并且能够适宜地调整过渡金属氧酸盐中氧空位的含量。
在一些实施方式中,所加入的所述富锂锰基材料的质量与所述过渡金属氧化物和所述有机酸盐质量和的比为100:(0.1-30),优选为100:(1-10)。由此,通过富锂锰基材料的质量与所述过渡金属氧化物和所述有机酸盐质量和的比在上述范围内,有利于调控包覆层的厚度,通过使包覆量的增加,能够在包覆层中形成更多的过渡金属氧酸盐氧空位。
在一些实施方式中,在所述干燥工序中,干燥温度为60~120℃,优选为80~100℃,和/或,干燥时间为1~10h,优选为5~8h,和/或,干燥气氛为真空气氛,真空度保持在-0.5~-1bar。由此,通过真空干燥,去除材料表面多余的水分,避免材料表面的氧化,防止表层形成的氧空位的破环,从而适宜地调整过渡金属氧酸盐中氧空位的含量。
在一些实施方式中,在所述烧结工序中,所述惰性气氛为氮气或氩气气氛。由此,能够可以进一步促进过渡金属氧酸盐氧空位的形成,同时实现包覆物在表层均匀且紧密的包覆效果。
另外,以下适当参照附图对本申请的二次电池、电池模块、电池包和用电装置进行说明。
[二次电池]
本申请的一个实施方式中,提供一种二次电池。
通常情况下,二次电池包括负极极片、正极极片、电解质和隔离膜。在电池充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。电解质在正极极片和负极极片之间起到传导离子的作用。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使离子通过。
[正极极片]
正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包括本申请第一方面的正极活性材料。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,除了包含本申请第一方面的正极材料之外,还可以包括其它正极活性材料。这些正极活性材料可采用本领域公知的用于电池的正极活性材料。作为示例,正极活性材料可包括以下材料中的至少一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其它可被用作电池正极活性材料的传统材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO 2)、锂镍氧化物(如LiNiO 2)、锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM 333)、LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM 523)、LiNi 0.5Co 0.25Mn 0.25O 2(也可以简称为NCM 211)、LiNi 0.6Co 0.2Mn 0.2O 2(也 可以简称为NCM 622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM 811)、锂镍钴铝氧化物(如LiNi 0.85Co 0.15Al 0.05O 2)及其改性化合物等中的至少一种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂(如LiFePO 4(也可以简称为LFP))、磷酸铁锂与碳的复合材料、磷酸锰锂(如LiMnPO 4)、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料中的至少一种。
在一些实施方式中,正极膜层还可选地包括粘结剂。作为示例,所述粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极膜层还可选地包括导电剂。作为示例,所述导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
[负极极片]
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜层,所述负极膜层包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池 的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,负极膜层还可选地包括粘结剂。所述粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,负极膜层还可选地包括导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极膜层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。
[电解质]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或全固态的。
在一些实施方式中,所述电解质采用电解液。所述电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
在一些实施方式中,溶剂可选自碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、1,4-丁内酯、环丁砜、二甲砜、甲乙砜及二乙砜中的至少一种。
在一些实施方式中,所述电解液还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温或低温性能的添加剂等。
[隔离膜]
在一些实施方式中,二次电池中还包括隔离膜。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图4是作为一个示例的方形结构的二次电池5。
在一些实施方式中,参照图5,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所 述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。二次电池5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
电池模块
在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
图6是作为一个示例的电池模块4。参照图6,在电池模块4中,多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个二次电池5容纳于该容纳空间。
电池包
在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以为一个或多个,具体数量本领域技术人员可根据电池包的应用和容量进行选择。
图7和图8是作为一个示例的电池包1。参照图7和图8,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
用电装置
另外,本申请还提供一种用电装置,所述用电装置包括本申请提供的二次电池、电池模块、或电池包中的至少一种。所述二次电池、电池模块、或电池包可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以包括移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。
作为所述用电装置,可以根据其使用需求来选择二次电池、电池模块或电池包。
图9是作为一个示例的用电装置。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对二次电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用二次电池作为电源。
实施例
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
<实施例1>
①制备方法
正极材料的制备
在实施例1中,正极材料的制备方法包括以下工序:
(1)将五氧化二钒和柠檬酸钾按照质量比为2:1分散到去离子水中,并调节溶液pH至8并充分搅拌;
(2)缓慢加入富锂锰基材料0.5Li 2MnO 3·0.5LiNi 0.33Co 0.33Mn 0.33O 2于步骤1中的溶液,加入量与五氧化二钒和柠檬酸钾质量和的比为100:5,于80℃恒温反应10h;
(3)对恒温反应的产物进行过滤干燥,干燥温度为100℃,干燥时间为8h,干燥气氛为真空气氛,真空度保持在-1bar;
(4)将干燥后的样品在500℃于氩气气氛中烧结10h,即获得表面包覆具有氧空位的钒酸钾和碳的复合材料的富锂锰基正极材料。
负极极片的制备
将负极活性材料人造石墨、导电剂碳黑、粘结剂SBR按照质量比96:2.5:1.5进行混合的质量比混合,并在适量的去离子水中充分搅拌,使其形成均匀的负极浆料;将负极浆料涂覆于负极集流体铜箔的表面 上,经干燥、冷压后,得到负极极片。
正极极片的制备
以SP(炭黑)作为导电剂,聚偏二氟乙烯(PVDF)作为粘结剂,N-甲基吡咯烷酮(NMP)作为溶剂,其中PVDF和NMP以质量比2:8进行制胶,并按照通过上述方法制备的正极材料、SP和PVDF的质量比为90:7:3的比例配置正极浆料;将正极浆料涂覆于正极集流体铝箔的表面上,经干燥、冷压后,得到正极极片。
电解液的制备
将碳酸亚乙酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)体积比1:1:1混合,然后将LiPF 6均匀溶解在上述溶液中得到电解液,其中LiPF 6的浓度为1mol/L。
隔离膜
采用聚乙烯(PE)薄膜。
二次电池的制备
将正极极片、隔离膜、负极极片按顺序叠好,经卷绕后得到电极组件,将电极组件装入外包装中,加入上述电解液,经封装、静置、化成、老化等工序后,得到二次电池。
性能评价
对于上述①中制得的正极材料、正极极片、二次电池,通过下述方法进行性能测试。结果示于表1中。
(i)正极活性材料的形貌
正极活性材料的形貌可以使用公知的方法进行确认和测定,例如可以使用扫描电子显微镜或透射电子显微镜来确认。
(ii)正极活性材料的包覆层中氧空位与晶格氧的峰强比
正极活性材料的包覆层中氧空位与晶格氧的峰强比可以通过使用公知的方法进行确认和测定,例如X射线光电子能谱分析(XPS)来分析,含有氧空位的包覆层中氧空位与晶格氧的峰强比会提高。
(iii)粉末电阻率的测定
正极活性材料电阻率通过使用公知的方法进行确认和测定,例如可以参照标准GBT30853-2014,使用粉末电阻率测试仪器(如晶格 ST-2722)测定。
(iv)Dv 50的测定
正极活性材料的Dv 50为本领域公知的含义,可以采用本领域已知的方法测试。例如可以参照标准GB/T 19077.1-2016,使用激光粒度分析仪(如Malvern Master Size 3000)测定。其中,Dv 50的物理定义为:所述正极活性材料累计体积分布百分数达到50%时所对应的粒径。
(v)比表面积的测定
正极活性材料的比表面积为本领域公知的含义,可采用本领域已知的方法测试。例如可以参照GB/T 19587-2017,采用氮气吸附比表面积分析测试方法测试,并用BET(Brunauer Emmett Teller)法计算得出,其中氮气吸附比表面积分析测试可以通过美国Micromeritics公司的Tri-Star 3020型比表面积孔径分析测试仪进行。
(vi)包覆层厚度的设定
正极活性材料的包覆层厚度为本领域公知的含义,可采用本领域已知的方法测试。作为示例,可以使用高分辨率的透射电子显微镜进行测量。更精确地,可以测试多个(3个以上,如8个、10个、12个等)不同位置处包覆层的厚度值,取平均值记为包覆层的厚度。
(vii)首次效率测试
将注液后的软包电池在45℃条件下以0.02C的恒流充电至3.4V,静置5min,再以0.1C恒流充电至3.75V,记录容量为Z1,然后进行排气和二封,将二封后的电池置于25℃条件中,0.33C恒流充电至4.5V,恒压充电至0.02C,静置5分钟,记录容量为Z2;然后0.33C放电至2.0V,记录容量为D1。
首次效率的计算公式如下:首次效率=D1/(Z1+Z2)
(viii)放电容量测试
在25℃的恒温环境下,在2.0V~4.5V下,按照0.33C充电至4.5V,然后在4.5V下恒压充电至电流为0.05C,静置5min,然后按照0.33C放电至2.0V,记录0.33C放电倍率时该锂离子电池的容量具体结果,静置5min,按照0.33C充电至4.5V,然后在4.5V下恒压充电至电流为0.05C,静置5min,然后按照0.5C放电至2.0V,记录0.5C放电倍率时该锂离子电池的容量具体结果。
(ix)全电池的循环测试
循环测试:在25℃或者45℃的恒温环境下,将全电池以0.5C恒流充电至电压为4.46V,然后以4.46V恒压充电至电流为0.05C,静置5min之后,以0.5C恒流放电至电压为2.3V,此为一个充放电循环过程,此次的放电容量为首次循环的放电容量。将全电池按上述方法进行500次循环充放电测试后,记录剩余可逆放电容量。
<实施例2>
除了采用以下步骤制备正极材料,采用与实施例1相同的制备方法,由此得到正极极片。
(1)将二氧化钛和草酸钠按照质量比为1.5:1分散到去离子水中,并调节溶液pH至8并充分搅拌;
(2)缓慢加入富锂锰基材料0.5Li 2MnO 3·0.5LiNi 0.33Co 0.33Mn 0.33O 2于步骤1中的溶液,加入量与二氧化钛和草酸钠质量和的比为100:10,于80℃恒温反应10h;
(3)对恒温反应的产物进行过滤干燥,干燥温度为100℃,干燥时间为8h,干燥气氛为真空气氛,真空度保持在-1bar;
(4)将干燥后的样品在500℃于氩气气氛中烧结10h,即获得表面包覆具有氧空位的钛酸钠和碳的复合材料的富锂锰基正极材料。
<实施例3>
除了采用以下步骤制备正极材料,采用与实施例1相同的制备方法,由此得到正极极片。
(1)将三氧化钼和乙酸钾按照质量比为1:1分散到去离子水中,并调节溶液pH至8并充分搅拌;
(2)缓慢加入富锂锰基材料0.5Li 2MnO 3·0.5LiNi 0.33Co 0.33Mn 0.33O 2于步骤1中的溶液,加入量与三氧化钼和乙酸钾质量和的比为100:8,于80℃恒温反应10h;
(3)对恒温反应的产物进行过滤干燥,干燥温度为100℃,干燥时间为8h,干燥气氛为真空气氛,真空度保持在-1bar;
(4)将干燥后的样品在500℃于氩气气氛中烧结10h,即获得表 面包覆具有氧空位的钼酸钾和碳的复合材料的富锂锰基正极材料。
<实施例4>至<实施例5>
在实施例4至5中,除了如表1所示变更正极材料内核组成以外,采用与实施例1相同的制备方法,由此得到正极材料。
<实施例6>至<实施例10>
在实施例6至10中,除了如表2所示变更各制备工序中的条件以外,采用与实施例1相同的原料组成、相似的制备方法,由此得到正极材料。
<对比例1>
采用以下步骤制备对比例1的正极材料。
将钒酸钾和富锂锰基材料0.5Li 2MnO 3·0.5LiNi 0.33Co 0.33Mn 0.33O 2按照质量比5:100球磨混合2h,于500℃惰性气氛中烧结10h,即获得表面包覆钒酸钾的富锂锰基正极材料。
<对比例2>
采用以下步骤制备对比例2的正极材料。
将葡萄糖和富锂锰基材料0.5Li 2MnO 3·0.5LiNi 0.33Co 0.33Mn 0.33O 2按照质量比2:100球磨混合2h,于500℃惰性气氛中烧结10h,即获得表面包覆碳的富锂锰基正极材料。
<对比例3>
采用以下步骤制备对比例3的正极材料。
将钒酸钾和葡萄糖按照质量比2:1进行混合,然后加入富锂锰基材料0.5Li 2MnO 3·0.5LiNi 0.33Co 0.33Mn 0.33O 2,加入量与钒酸钾和葡萄糖的质量和比为100:5,并将混合物进行球磨混合2h,于500℃惰性气氛中烧结10h,即获得表面包覆钒酸钾和碳的富锂锰基正极材料。
对各实施例1至10、对比例1至3中获得的正极材料和二次电池的测试结果列于表1中。
<实施例11>至<实施例16>
在实施例11至16中,除了如表2所示变更溶液制备工序中的原料配比以外,采用与实施例1相同的制备方法,由此得到正极材料。
<实施例17>至<实施例22>
在实施例17至22中,除了如表2所示变更水热反应工序中的原料配比以外,采用与实施例1相同的制备方法,由此得到正极材料。
对各实施例1至3、6至22、对比例1至3中获得的正极材料的包覆层中氧空位与晶格氧的峰强比、以及包覆层厚度列于表2中。
Figure PCTCN2022099191-appb-000001
Figure PCTCN2022099191-appb-000002
从表1的结果可知,由包含氧空位的过渡金属氧酸盐和碳的复合材料包覆富锂锰基正极材料的实施例1~10中,其首次效率、0.33C和0.5C放电容量(倍率特性)、25℃和45℃的循环特性均优异。而对比例1~3中,虽然由包覆层包覆富锂锰基正极材料,但其单纯将过渡金属氧酸盐、碳或简单将两者进行混合后包覆,包覆层中并未形成氧空位,其首次效率、0.33C和0.5C放电容量、25℃和45℃的循环特性均较差。
另外,从实施例6、10与实施例7~9的对比可知,通过将包覆层中的氧空位设置在合适的范围内,能够更进一步提高首次效率、0.33C和0.5C放电容量、以及25℃和45℃的循环特性。
从表2的结果可知,从实施例6至10可知,通过改变水热反应工序、干燥工序、以及烧结工序中的温度和时间,能够改变包覆层中的氧空位含量,从而改变IO 2 2-/IO 2-的峰强比。从实施例11至16可知,通过改变溶液制备工序中过渡金属氧化物和有机酸盐的质量比,也能够改变包覆层中的氧空位含量,从而改变IO 2 2-/IO 2-的峰强比。从实施例17至22可知,通过改变水热反应工序中的富锂锰基材料与过渡金属氧化物和有机酸盐质量和的比值,对包覆层的包覆厚度会产生极大影响,包覆层越厚,则包覆层中的氧空位越多。过薄或过厚的包覆层,会影响包覆效果,进而影响材料电性能的发挥。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (19)

  1. 一种正极材料,其中,
    包括:
    内核,包含富锂锰基正极材料;以及
    包覆层,包覆在所述内核外表面,包括过渡金属氧酸盐和碳的复合材料,其中,
    所述过渡金属氧酸盐中的过渡金属选自Ti、Mo、W、V、Ta、Nb或Nd中的至少一种;
    所述复合材料为网状结构。
  2. 根据权利要求1所述的正极材料,其中,
    所述过渡金属氧酸盐中的过渡金属选自Ti、Mo、W、或V中的至少一种。
  3. 根据权利要求1或2所述的正极材料,其中,
    所述过渡金属氧酸盐为Li、Na、K、Mg、Al盐中的至少一种,可选地,所述过渡金属氧酸盐为Li、Na、K盐中的至少一种。
  4. 根据权利要求1至3中任一项所述的正极材料,其中,
    所述富锂锰基正极材料的分子式为xLi 2MnO 3·(1-x)LiNi yCo zMn aM 1-y-z-aO rA 2-r,其中0<x<1,0≤y≤1,0≤z≤1,0≤a≤1,0<r≤2,0<y+z+a≤1;M为Mg、B、Al、V、Ti、Zr、Sn和Mo中的至少一种,A为F、S、N和Cl中的至少一种。
  5. 根据权利要求1至4中任一项所述的正极材料,其中,
    所述包覆层中,所述过渡金属氧酸盐包含氧空位,可选地,所述过渡金属氧酸盐满足以下条件:
    IO 2 2-/IO 2-的峰强比为0.5~1.2,可选地为0.6~0.8,
    其中IO 2 2-为X射线光电子能谱测试(XPS)中531eV氧空位的峰强值,IO 2-为对应于X射线光电子能谱测试(XPS)中529eV的晶格氧 的峰强值。
  6. 根据权利要求1至5中任一项所述的正极材料,其中,
    所述正极材料在12MPa下的粉末电阻率小于等于3000Ω·cm,优选为小于等于2000Ω·cm。
  7. 根据权利要求1至6中任一项所述的正极材料,其中,
    所述正极材料的颗粒类型为二次颗粒、单晶或类单晶,所述颗粒的粒径D v50为1~20μm,可选为3~15μm。
  8. 根据权利要求1至7中任一项所述的正极材料,其中,
    所述正极材料的比表面积为小于2.0m 2/g,可选为0.1~1m 2/g。
  9. 一种正极材料的制备方法,其中,
    包括以下工序:
    溶液制备工序:将过渡金属氧化物分散在去离子水中,然后加入有机酸盐,调节溶液的pH值为中性至碱性范围后充分搅拌,制得溶液;
    水热反应工序:缓慢加入富锂锰基正极材料于所述溶液中在50~100℃恒温反应2~10h,
    干燥工序:对所述水热反应工序的产物进行过滤,对过滤获得的固体进行干燥;
    烧结工序:将干燥后的固体在300~600℃于惰性气氛中烧结4~15h,获得表面改性的富锂锰基正极材料,其中,
    所述过渡金属氧化物包含Ti,Mo,W,V,Ta,Nb或Nd的氧化物中的至少一种,
    所述有机酸盐的酸根离子为乙酸根离子、草酸根离子或柠檬酸根离子中的至少一种。
  10. 根据权利要求9所述的正极材料的制备方法,其中,
    所述有机酸盐中有机酸根离子的反离子为选自Li、Na、K、Mg、Al中的至少一种金属的离子,优选为选自Li、Na、K中的至少一种金 属的离子。
  11. 根据权利要求9或10所述的正极材料的制备方法,其中,
    在所述溶液制备工序中,所述溶液的pH值控制在7~15,优选为8~10。
  12. 根据权利要求9至11中任一项所述的正极材料的制备方法,其中,
    所述过渡金属氧化物和所述有机酸盐的质量比为(0.05-10):1,优选为(0.5-2):1。
  13. 根据权利要求9至12中任一项所述的正极材料的制备方法,其中,
    所加入的所述富锂锰基材料的质量与所述过渡金属氧化物和所述有机酸盐质量和的比为100:(0.1-30),优选为100:(1-10)。
  14. 根据权利要求9至13中任一项所述的正极材料的制备方法,其中,
    在所述干燥工序中,
    干燥温度为60~120℃,优选为80~100℃,和/或,
    干燥时间为1~10h,优选为5~8h,和/或,
    干燥气氛为真空气氛,真空度保持在-0.5~-1bar。
  15. 根据权利要求9至14中任一项所述的正极材料的制备方法,其中,
    在所述烧结工序中,所述惰性气氛为氮气或氩气气氛。
  16. 一种二次电池,其中,
    所述二次电池包括权利要求1至8中任一项所述的正极材料或由权利要求9至15中任一项所述的制备方法制得的正极材料。
  17. 一种电池模块,其中,
    所述电池模块包括权利要求16所述的二次电池。
  18. 一种电池包,其中,
    所述电池包包括权利要求17所述的电池模块。
  19. 一种用电装置,其中,
    所述用电装置包括选自权利要求16所述的二次电池、权利要求17所述的电池模块和权利要求18所述的电池包中的至少一种。
PCT/CN2022/099191 2022-06-16 2022-06-16 正极材料及其制备方法、具备其的二次电池 WO2023240544A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2022/099191 WO2023240544A1 (zh) 2022-06-16 2022-06-16 正极材料及其制备方法、具备其的二次电池
EP22930149.4A EP4322259A1 (en) 2022-06-16 2022-06-16 Positive electrode material, manufacturing method therefor, and secondary battery having same
US18/472,030 US20240014386A1 (en) 2022-06-16 2023-09-21 Positive electrode material and preparation method thereof, and secondary battery including same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/099191 WO2023240544A1 (zh) 2022-06-16 2022-06-16 正极材料及其制备方法、具备其的二次电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/472,030 Continuation US20240014386A1 (en) 2022-06-16 2023-09-21 Positive electrode material and preparation method thereof, and secondary battery including same

Publications (1)

Publication Number Publication Date
WO2023240544A1 true WO2023240544A1 (zh) 2023-12-21

Family

ID=89192843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099191 WO2023240544A1 (zh) 2022-06-16 2022-06-16 正极材料及其制备方法、具备其的二次电池

Country Status (3)

Country Link
US (1) US20240014386A1 (zh)
EP (1) EP4322259A1 (zh)
WO (1) WO2023240544A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117800399A (zh) * 2024-02-29 2024-04-02 河南师范大学 一种聚合物碳点耦合锰氧化物正极材料的制备方法及其在水系锌离子电池中的应用
CN117878244A (zh) * 2024-03-08 2024-04-12 宁德时代新能源科技股份有限公司 电池单体、电池和用电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055778A (ja) * 2008-08-26 2010-03-11 Sony Corp 正極活物質の製造方法および正極活物質
CN111916710A (zh) * 2020-08-17 2020-11-10 中国科学院宁波材料技术与工程研究所 一种复合型富锂锰基正极材料及其制备方法和应用
CN112635767A (zh) * 2020-12-18 2021-04-09 浙江帕瓦新能源股份有限公司 一种三维多孔结构的纳米碳/钛酸锂复合包覆正极材料的制备方法
CN114256457A (zh) * 2021-12-31 2022-03-29 国联汽车动力电池研究院有限责任公司 具有均质复合包覆层的富锂锰基正极材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055778A (ja) * 2008-08-26 2010-03-11 Sony Corp 正極活物質の製造方法および正極活物質
CN111916710A (zh) * 2020-08-17 2020-11-10 中国科学院宁波材料技术与工程研究所 一种复合型富锂锰基正极材料及其制备方法和应用
CN112635767A (zh) * 2020-12-18 2021-04-09 浙江帕瓦新能源股份有限公司 一种三维多孔结构的纳米碳/钛酸锂复合包覆正极材料的制备方法
CN114256457A (zh) * 2021-12-31 2022-03-29 国联汽车动力电池研究院有限责任公司 具有均质复合包覆层的富锂锰基正极材料及其制备方法

Also Published As

Publication number Publication date
US20240014386A1 (en) 2024-01-11
EP4322259A1 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
WO2023240544A1 (zh) 正极材料及其制备方法、具备其的二次电池
WO2024011512A1 (zh) 负极极片、制备负极极片的方法、二次电池、电池模块、电池包和用电装置
WO2024007142A1 (zh) 负极极片、二次电池、电池模块、电池包及用电装置
US20220416244A1 (en) Negative-electrode active material and preparation method thereof, secondary battery, and battery module, battery pack, and apparatus containing such secondary battery
JP2023503688A (ja) 二次電池及び当該二次電池を含む装置
WO2023015429A1 (zh) 复合金属氧化物材料及其制备方法、正极极片、二次电池、电池模块、电池包和用电装置
CN114902450B (zh) 二次电池、含有该二次电池的电池模块、电池包及装置
WO2023197807A1 (zh) 正极材料及其制备方法、复合正极材料、正极极片及二次电池
WO2024040501A1 (zh) 碳材料及其制备方法与应用、负极片、二次电池及用电装置
US20230146274A1 (en) Silicon carbon negative electrode material, negative electrode sheet, secondary battery, battery module, battery pack and power consumption apparatus
US20220102788A1 (en) Secondary battery and apparatus containing the same
WO2023122890A1 (zh) 二次电池以及包含其的用电装置
WO2023060462A1 (zh) 正极极片、包括其的二次电池、电池模块、电池包和用电装置
WO2024020795A1 (zh) 一种复合正极材料、其制备方法、二次电池、电池模块、电池包和用电装置
US20230231134A1 (en) Secondary battery and electric apparatus
WO2024077522A1 (zh) 负极活性材料的制备方法、负极活性材料、二次电池和用电装置
WO2023193231A1 (zh) 一种二次电池、相应正极活性材料的制备方法、电池模块、电池包和用电装置
WO2023206140A1 (zh) 二次电池、电池模块、电池包和用电装置
WO2024011602A1 (zh) 锰酸锂复合材料及其制备方法、二次电池和用电装置
WO2024007159A1 (zh) 电极组件、二次电池、电池模块、电池包及用电装置
WO2023184494A1 (zh) 正极活性材料、其制备方法以及包含其的正极极片、二次电池及用电装置
WO2024016250A1 (zh) 负极活性材料及其制备方法、二次电池、电池模块、电池包和用电装置
WO2024026621A1 (zh) 改性富锂锰基材料、富锂锰基材料的改性方法、二次电池及用电装置
WO2023240598A1 (zh) 改性正极材料、其制备方法、正极极片、二次电池、电池模块、电池包和用电装置
US20230170472A1 (en) Positive electrode plate, secondary battery, battery module, battery pack and power consuming device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022930149

Country of ref document: EP

Effective date: 20230914

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930149

Country of ref document: EP

Kind code of ref document: A1