WO2024026621A1 - 改性富锂锰基材料、富锂锰基材料的改性方法、二次电池及用电装置 - Google Patents

改性富锂锰基材料、富锂锰基材料的改性方法、二次电池及用电装置 Download PDF

Info

Publication number
WO2024026621A1
WO2024026621A1 PCT/CN2022/109450 CN2022109450W WO2024026621A1 WO 2024026621 A1 WO2024026621 A1 WO 2024026621A1 CN 2022109450 W CN2022109450 W CN 2022109450W WO 2024026621 A1 WO2024026621 A1 WO 2024026621A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
rich manganese
based material
doped
optionally
Prior art date
Application number
PCT/CN2022/109450
Other languages
English (en)
French (fr)
Inventor
赵栋
吴奇
沈重亨
王帮润
陈强
范敬鹏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/109450 priority Critical patent/WO2024026621A1/zh
Priority to EP22949683.1A priority patent/EP4358182A1/en
Publication of WO2024026621A1 publication Critical patent/WO2024026621A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy

Definitions

  • the present application relates to the field of battery technology, and in particular to a modified lithium-rich manganese-based material, a modification method of the lithium-rich manganese-based material, a secondary battery and an electrical device.
  • the cathode material is the most critical component of lithium-ion batteries. It is the source of Li+ in lithium-ion batteries, directly determines its energy density, and is also an important factor affecting battery power density, cycle life and safety performance.
  • the lithium-rich manganese-based layered cathode material first proposed by Dahn and colleagues and Thackeray et al. has the advantages of high discharge specific capacity higher than 250mAh/g and high energy density, and is regarded as the main material of the next generation power battery.
  • lithium-rich manganese-based materials When lithium-rich manganese-based materials are charged at a high voltage above 4.5V in the first cycle, some lithium ions in the transition metal layer will be removed together with oxygen to form Li 2 O. This part of the crystal vacancies will be released during the subsequent charge and discharge process. It is more difficult to accept lithium ions, resulting in lower first charge and discharge efficiency of the material; at the same time, the formation of a large number of oxygen vacancies causes transition metal ions to migrate and rearrange the crystal structure, resulting in instability of the material structure and poor cycle performance. In addition, due to the low electronic and ionic conductivity of the lithium-rich material itself, and the intensified side reactions between the material surface and the electrolyte under high voltage, the rate performance of the material is extremely poor.
  • the present application provides a modified lithium-rich manganese-based material, a modification method of the lithium-rich manganese-based material, a secondary battery and an electrical device to solve the problem of poor rate performance of the lithium-rich manganese-based material.
  • a first aspect of the present invention provides a modified lithium-rich manganese-based material.
  • the modified lithium-rich manganese-based material includes anion and cation co-doped lithium-rich manganese-based material.
  • the doped cationic element M1 is selected One or more from the group consisting of Na, Fe, Nb, Ti, Mg, Al, Cr and Er
  • the doped anionic element M2 is selected from the group consisting of F, Cl, Br, I, S, B, P, N One or more of the group consisting of , Se and Te;
  • the fast ion conductor material is attached to the lithium-rich manganese-based material co-doped with anions and cations, and the fast ion conductor material is selected from LATP (lithium aluminum titanium phosphate), LAGP (lithium aluminum germanium phosphate), LLZO ( One or more of the group consisting of lithium lanthanum zirconate), LLTO (lithium lanthanum titanate), LiBO 2 (lithium borate), LiAlO 2 (lithium aluminate), and LiPO 3 (lithium metaphosphate).
  • LATP lithium aluminum titanium phosphate
  • LAGP lithium aluminum germanium phosphate
  • LLZO One or more of the group consisting of lithium lanthanum zirconate
  • LLTO lithium lanthanum titanate
  • LiBO 2 lithium borate
  • LiAlO 2 lithium aluminate
  • LiPO 3 lithium metaphosphate
  • anion doping mainly replaces the oxygen sites in the lithium-rich manganese-based cathode material, which can inhibit the excessive oxidation of lattice oxygen at high potential and alleviate the loss of lattice oxygen.
  • Cation doping mainly replaces the transition metal sites in lithium-rich manganese-based materials, which can stabilize the crystal structure during the charge and discharge process, increase the formation energy of oxygen vacancies, and inhibit the transformation of the material into a spinel structure, thereby improving cycle stability and Thermal stability.
  • fast ion conductor materials can effectively improve the ionic conductivity of lithium-rich manganese-based materials, increase the transmission rate of lithium ions, and improve the rate performance and capacity of the materials.
  • fast ion conductor materials have stable properties and can effectively reduce high
  • the side reaction between the material and the electrolyte under potential conditions improves the storage of the material and reduces the gas production of the material.
  • the above-mentioned doping amount of M1/doping amount of M2 is 1:(0.3 ⁇ 2), optionally 1:(0.5 ⁇ 1.5); to improve the synergy of anion and cation doping
  • the effect is to improve the material's recycling performance and first effect to the greatest extent possible.
  • the doped anionic element M2 when the doped cationic element M1 is Fe, the doped anionic element M2 is Cl; or when the doped cationic element M1 is Na, the doped anionic element M2 is F.
  • the combination of the above two kinds of anion and cation doping has a particularly outstanding modification effect on lithium-rich manganese-based materials.
  • the doping amount of the doped cationic element M1 is 1000-20000ppm, optionally 2000-10000ppm; the doping amount of the doped anionic element M2 is 300-40000ppm, optionally 1000 ⁇ 20000ppm. To further improve the effect of anion and cation doping modification.
  • the weight content of the fast ion conductor material in the modified lithium-rich manganese-based material is 2,000 to 20,000 ppm, optionally 2,000 to 10,000 ppm.
  • the fast ion conductor material is evenly distributed in the form of islands or dots on the surface of the cathode material, effectively improving the conductivity of the lithium-rich manganese-based material.
  • the modified lithium-rich manganese-based material has a conductivity of 10 to 60 ⁇ S/cm, preferably 30 to 60 ⁇ S/cm. After modification of the fast ion conductor material, the electrical conductivity of the modified lithium-rich manganese-based material is increased relative to the anion and cation co-doped lithium-rich manganese-based material.
  • the specific surface area of the modified lithium-rich manganese-based material is ⁇ 3.2m 2 /g, optionally 0.3 to 2.2m 2 /g.
  • the modified lithium-rich manganese-based material has a lower specific surface area, thus ensuring excellent cycle performance of the lithium-rich manganese-based material.
  • the D V50 of the primary particles of the modified lithium-rich manganese-based material is 100 to 300 nm, and the D V50 of the primary particles modified by the fast ion conductor material is higher than the D V50 of the primary particles co-doped with anions and cations before modification.
  • the material has been reduced, the specific surface area has been increased, and a channel conducive to lithium ion diffusion has been formed on the surface, which significantly improves the first effect and rate performance of lithium-rich manganese-based materials.
  • the volume particle size distribution diameter of the modified lithium-rich manganese-based material satisfies (Dv90-Dv10)/Dv50 ⁇ 1.1; optionally satisfies (Dv90-Dv10)/Dv50 ⁇ 1.2; optionally
  • the powder compaction density of ground-modified lithium-rich manganese-based materials under 5 tons of pressure is ⁇ 3.0g/cc.
  • the modified lithium-rich manganese-based material has a larger diameter and/or a larger density, the modified lithium-rich manganese-based material has a higher volume energy density.
  • the peak area ratio of I003/I104 is 1.0 ⁇ 1.2, optionally 1.05 ⁇ 1.15; I020/(I003+I104 ) peak area ratio is 0.005 ⁇ 0.05, optionally 0.008 ⁇ 0.02.
  • the peak area ratio of I003/I104 is controlled within the above range, indicating that the degree of mixing of lithium and nickel in the material is low and the structural stability is good; the peak area ratio of I020/(I003+I104) is controlled within the above range, indicating that the lithium-rich phase Controlling it at a better ratio makes the material have better first effect and cycle performance.
  • the 003 characteristic peak and 104 characteristic peak of the modified lithium-rich manganese-based material are shifted to the left relative to the 003 characteristic peak and 104 characteristic peak of the lithium-rich manganese-based material, indicating that through anion and cation doping
  • the hybrid expands the lithium layer spacing and unit cell volume, which is more conducive to ion diffusion.
  • the second aspect of this application provides a method for modifying lithium-rich manganese-based materials.
  • the modification method includes:
  • Step S1 Perform the first sintering on the first mixture, which includes a lithium-rich manganese-based precursor, a lithium salt, a material containing a cationic element M1 and a material containing an anionic element M2, to obtain a lithium-rich material co-doped with anions and cations.
  • the cationic element M1 is selected from one or more of the group consisting of Na, Fe, Nb, Ti, Mg, Al, Cr and Er
  • the anionic element M2 is selected from the group consisting of F, Cl, One or more of the group consisting of Br, I, S, B, P, N, Se and Te, and the mass of the cationic element M1 and the anionic element M2 is 1: (0.3 ⁇ 2);
  • S2 Perform a second sintering of a second mixture including a fast ion conductor material and a lithium-rich manganese-based material co-doped with anions and cations to obtain a modified lithium-rich manganese-based material.
  • the modified lithium-rich manganese-based material includes anions and cations co-doped. Miscellaneous lithium-rich manganese-based materials and fast ion conductor materials.
  • the fast ion conductor materials are selected from LATP (lithium aluminum titanium phosphate), LAGP (lithium aluminum germanium phosphate), LLZO (lithium lanthanum zirconate), LLTO (lithium lanthanum titanate) , LiBO 2 (lithium borate), LiAlO 2 (lithium aluminate), LiPO 3 (lithium metaphosphate), one or more of the group consisting of.
  • LATP lithium aluminum titanium phosphate
  • LAGP lithium aluminum germanium phosphate
  • LLZO lithium lanthanum zirconate
  • LLTO lithium lanthanum titanate
  • LiBO 2 lithium borate
  • LiAlO 2 lithium aluminate
  • LiPO 3 lithium metaphosphate
  • the modification method of the present application directly adopts the solid phase method to realize its coating on the anion and cation co-doped lithium-rich manganese-based material.
  • the coating method is simple It is easy to implement, has high efficiency and low cost. There are no strict requirements for the coating temperature and it is easy to achieve mass production.
  • the fast ion conductor material is distributed in an island-like or point-like manner on the surface of the cathode material.
  • the modified lithium-rich manganese-based material synthesized has a regular morphology, high crystallinity, relatively high capacity, excellent rate and cycle performance.
  • the properties of fast ion conductor materials are stable, which can effectively reduce the side reactions between materials and electrolytes under high potential conditions, improve the storage of materials, and reduce the gas production of materials.
  • the chemical formula of the above-mentioned lithium-rich manganese-based precursor is Ni b Co c Mn 1-b- c (OH) 2 , where 0.05 ⁇ c ⁇ 0, 0.4 ⁇ b>0; optional Specifically, the lithium salt is one or more of lithium hydroxide, lithium carbonate or lithium acetate; optionally, the molar ratio of the sum of transition metal elements in the lithium-rich manganese-based precursor to the lithium in the lithium salt is 1:( 1.1 ⁇ 1.8), preferably 1:(1.1 ⁇ 1.5).
  • the above-mentioned lithium-rich manganese-based precursor has a high Mn content and a low Co content, which is beneficial to reducing raw material costs.
  • the material containing the cationic element M1 is an oxide or salt of M1; optionally, the material containing the anionic element M2 is an element, a salt or an organic matter.
  • the above-mentioned substances comes from a wide range of sources and has low cost.
  • the mass ratio of M1 relative to the lithium-rich manganese-based material in the material containing the cationic element M1 is 1000 to 20000 ppm, and further optionally 2000 to 10000 ppm; optionally, the mass ratio of the material containing the anionic element M2
  • the mass ratio of M2 in the substance relative to the lithium-rich manganese-based material is 300 to 40,000 ppm, and can be further optionally set to 1,000 to 20,000 ppm.
  • the mass ratio of the fast ion conductor to the lithium-rich manganese-based material co-doped with anions and cations is 2000 to 20000 ppm, optionally 2000 to 10000 ppm, to achieve effective and appropriate coating of the core .
  • the first sintering includes a first-stage sintering process and a second-stage sintering process, wherein the sintering temperature of the first-stage sintering process is 400-600°C and the holding time is 4-8 hours; the sintering temperature of the second-stage sintering process is The temperature is 800 ⁇ 1000°C, and the holding time is 10 ⁇ 20h.
  • the sintering temperature of the second sintering is 500-700°C and the holding time is 4-8 hours, which further optimizes the uniformity and firmness of the fast ion conductor material coating.
  • a third aspect of the present application provides a secondary battery, including a positive electrode sheet, a separator, and a negative electrode sheet.
  • the positive electrode sheet includes a positive electrode film layer, and the positive electrode film layer includes a positive electrode active material, wherein the positive electrode active material includes any of the above.
  • the secondary battery provided by this application has high first efficiency, good cycle performance and rate performance, and low gas production.
  • a third aspect of the present application provides an electrical device including a secondary battery, wherein the secondary battery is selected from the above-mentioned secondary batteries.
  • the electrical performance of the electrical device equipped with the secondary battery of the present application is better and the operation is more stable.
  • Figure 1 is a scanning electron microscope image of the primary particles of the anion and cation co-doped lithium-rich manganese-based cathode material before and after coating with LATP in Example 1.
  • Figure 2 is an XRD diffraction pattern of the anion and cation co-doped lithium-rich manganese-based cathode material after being coated with LATP in Example 1.
  • Figure 3 is the XRD diffraction pattern of the local 003 and 104 diffraction peaks of the lithium-rich manganese-based cathode material before and after co-doping of anions and cations in Example 1.
  • FIG. 4 is a schematic diagram of a secondary battery according to an embodiment of the present application.
  • FIG. 5 is an exploded view of the secondary battery according to the embodiment of the present application shown in FIG. 4 .
  • Figure 6 is a schematic diagram of a battery module according to an embodiment of the present application.
  • Figure 7 is a schematic diagram of a battery pack according to an embodiment of the present application.
  • FIG. 8 is an exploded view of the battery pack according to an embodiment of the present application shown in FIG. 7 .
  • FIG. 9 is a schematic diagram of a power consumption device using a secondary battery as a power source according to an embodiment of the present application.
  • Ranges disclosed herein are defined in terms of lower and upper limits. A given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive of the endpoints, and may be arbitrarily combined, that is, any lower limit may be combined with any upper limit to form a range. For example, if ranges of 60-120 and 80-110 are listed for a particular parameter, understand that ranges of 60-110 and 80-120 are also expected. Additionally, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, then the following ranges are all expected: 1 to 3, 1 to 4, 1 to 5, 2 to 3, 2 ⁇ 4 and 2 ⁇ 5.
  • the numerical range “a ⁇ b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range “0 ⁇ 5" means that all real numbers between "0 ⁇ 5" have been listed in this article, and "0 ⁇ 5" is just an abbreviation of these numerical combinations.
  • a certain parameter is an integer ⁇ 2
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed sequentially, or may include steps (b) and (a) performed sequentially.
  • steps (c) means that step (c) may be added to the method in any order.
  • the method may include steps (a), (b) and (c). , may also include steps (a), (c) and (b), may also include steps (c), (a) and (b), etc.
  • condition "A or B” is satisfied by any of the following conditions: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; Or both A and B are true (or exist).
  • a first aspect of the present invention provides a modified lithium-rich manganese-based material.
  • the modified lithium-rich manganese-based material includes an anion and cation co-doped lithium-rich manganese-based material and a fast ion conductor material.
  • the fast ion conductor material is attached to On lithium-rich manganese-based materials co-doped with anions and cations;
  • the doped cationic element M1 is selected from one or more of the group consisting of Na, Fe, Nb, Ti, Mg, Al, Cr and Er
  • the doped anionic element M2 is selected from the group consisting of F, Cl, One or more from the group consisting of Br, I, S, B, P, N, Se and Te;
  • the fast ion conductor material is selected from LATP (lithium aluminum titanium phosphate), LAGP (lithium aluminum germanium phosphate), LLZO (lithium lanthanum zirconate), LLTO (lithium lanthanum titanate), LiBO 2 (lithium borate), LiAlO 2 (aluminate One or more of the group consisting of LiPO 3 (lithium metaphosphate) and LiPO 3 (lithium metaphosphate).
  • anion doping mainly replaces the oxygen sites in the lithium-rich manganese-based cathode material, which can inhibit the excessive oxidation of lattice oxygen at high potential and alleviate the loss of lattice oxygen.
  • Cation doping mainly replaces the transition metal sites in lithium-rich manganese-based materials, which can stabilize the crystal structure during the charge and discharge process, increase the formation energy of oxygen vacancies, further alleviate the loss of lattice oxygen, and inhibit the transformation of the material into a spinel structure.
  • fast ion conductor materials can effectively improve the ionic conductivity of lithium-rich manganese-based materials, increase the transmission rate of lithium ions, and improve the rate performance and capacity of the materials.
  • fast ion conductor materials have stable properties and can effectively reduce The side reaction between the material and the electrolyte under high potential conditions improves the storage of the material and reduces the gas production of the material.
  • the doping amounts of the above-mentioned anions and cations have their own effects.
  • the doping amount of M1/the doping amount of M2 is 1:(0.3 ⁇ 2), optionally 1:(0.5 ⁇ 1.5), In order to improve the synergistic effect of anion and cation doping, the cycle performance and first effect of the material can be improved to the greatest extent possible.
  • the above-mentioned doping amount of M1/doping amount of M2 may be 1:0.3, 1:0.5, 1:0.8, 1:1, 1:1.2 or 1:1.5 or 1:2.
  • the above-mentioned doped anionic and cationic elements can all alleviate the loss of lattice oxygen and increase the oxygen vacancy formation energy, but their respective effects vary due to different element compositions and properties.
  • the doped cation element M1 is Fe
  • the doped anion element M2 is Cl
  • the doped anion element M1 is Na
  • the doped anion element M2 is F.
  • Cl and F have stronger binding force on transition metal elements than O, which can reduce the solubility of transition metal elements in the electrolyte, stabilize the structure of lithium-rich manganese-based materials, and reduce the oxygen release of the material.
  • F can further reduce the average valence state of the transition metal, and the reversible capacity of the battery will also be improved; while Na and Fe occupy the transition metal layer and have strong binding energy with O, which further alleviates the loss of lattice oxygen, and Fe During the charge and discharge cycle, Fe 3+ can be transformed to Fe 4+ , further increasing the capacity of the material. Therefore, through a specific combination of Fe and Cl, Na and F, the transition metal layer and oxygen layer of the material are reinforced respectively. , the modification effect is particularly outstanding for lithium-rich manganese-based materials.
  • the cationic element M1 and the anionic element M2 are used as doping elements. On the basis of ensuring that they do not affect the basic lattice structure of the lithium-rich manganese-based material, increasing the doping amount is conducive to improving the mitigation effect on lattice oxygen loss. At the same time, in order to further ensure There are enough oxygen vacancies to meet the need for rapid deintercalation of lithium ions.
  • the doping amount of the above-mentioned doped cationic element M1 is 1000 ⁇ 20000ppm, optionally 2000 ⁇ 10000ppm, such as 1000ppm, 2000ppm, 5000ppm, 8000ppm, 10000ppm, 12000ppm, 15000ppm, 18000ppm or 20000ppm;
  • the doping amount of the doped anionic element M2 is 300 ⁇ 40000ppm, optionally 1000 ⁇ 20000ppm, such as 300ppm, 500ppm, 800ppm, 1000ppm, 15 00ppm, 2000ppm, 5000ppm, 8000ppm, 10000ppm, 20000ppm or 40000ppm to further improve the effect of anion and cation doping modification.
  • the weight content of the fast ion conductor material in the modified lithium-rich manganese-based material is 2000 to 20000 ppm, optionally 2000 to 10000 ppm, such as 2000 ppm, 5000 ppm, 8000 ppm, 10000 ppm, 15000 ppm or 20000 ppm.
  • the fast ion conductor material is evenly distributed in the form of islands or dots on the surface of the cathode material, effectively improving the conductivity of the lithium-rich manganese-based material.
  • the morphology type of the modified lithium-rich manganese-based material is preferably secondary sphere, single crystal or quasi-single crystal.
  • the lithium-rich manganese-based material co-doped with anions and cations is coated with a fast ion conductor material. After properties, the particle size of its primary particles has decreased and the specific surface area has increased.
  • the specific surface area of the material before coating with the fast ion conductor material is ⁇ 3.0m 2 /g , optionally 0.1 ⁇ 2m 2 /g; the particle size is preferably 1 ⁇ 20 ⁇ m, optional 3 ⁇ 15 ⁇ m, and the thickness of the primary particles is 300 ⁇ 500nm.
  • the specific surface area of the modified lithium-rich manganese-based material obtained after being coated with the fast ion conductor material is ⁇ 3.2m 2 /g, and can be selected from 0.3 to 2.2m 2 /g.
  • the modified lithium-rich manganese-based material has a lower specific surface area, thus ensuring excellent cycle performance of the lithium-rich manganese-based material.
  • the thickness of the primary particles of the modified lithium-rich manganese-based material is 100 to 300 nm.
  • the thickness of the primary particles after modification by the fast ion conductor material is relative to the anion and cation co-doped lithium-rich manganese-based material before modification. is reduced, the specific surface area becomes larger, and a channel is formed on the surface that is conducive to the diffusion of lithium ions, which significantly improves the first effect and rate performance of lithium-rich manganese-based materials.
  • Specific surface area has a well-known meaning in the art and can be measured using methods known in the art. For example, you can refer to GB/T 19587-2017, use the nitrogen adsorption specific surface area analysis test method to test, and calculate it using the BET (Brunauer Emmett Teller) method.
  • the nitrogen adsorption specific surface area analysis test can pass the Tri-Star 3020 type of the American Micromeritics company. Specific surface area and pore size analysis tester.
  • the volume particle size distribution diameter of the modified lithium-rich manganese-based material satisfies (Dv90-Dv10)/Dv50 ⁇ 1.1; optionally satisfies (Dv90-Dv10)/Dv50 ⁇ 1.2; optionally modified
  • the powder compaction density of lithium-rich manganese-based materials under 5 tons of pressure is ⁇ 3.0g/cc.
  • Dv50 refers to the particle size corresponding to 50% of the volume distribution, and so on for Dv10 and Dv90.
  • Dv50 can be easily measured using a laser particle size analyzer, such as the Mastersizer 2000E laser particle size analyzer of Malvern Instruments Co., Ltd. in the United Kingdom, referring to the GB/T 19077-2016 particle size distribution laser diffraction method.
  • a laser particle size analyzer such as the Mastersizer 2000E laser particle size analyzer of Malvern Instruments Co., Ltd. in the United Kingdom, referring to the GB/T 19077-2016 particle size distribution laser diffraction method.
  • the modified lithium-rich manganese-based material contains the above-mentioned doping elements, its crystal structure also has certain changes compared to before doping.
  • the peak area ratio of I003/I104 is 1.0 ⁇ 1.2, optionally 1.05 ⁇ 1.15; the peak area ratio of I020/(I003+I104) is 0.005 ⁇ 0.05, optionally 0.008 ⁇ 0.02.
  • the peak area ratio of I003/I104 is controlled within the above range, indicating that the degree of mixing of lithium and nickel in the material is low and the structural stability is good; the peak area ratio of I020/(I003+I104) is controlled within the above range, indicating that the lithium-rich phase Controlling it at a better ratio makes the material have better first effect and cycle performance.
  • the 003 characteristic peak and 104 characteristic peak of the modified lithium-rich manganese-based material are shifted to the left relative to the 003 characteristic peak and 104 characteristic peak of the lithium-rich manganese-based material, indicating that through anion and cation doping
  • the hybrid expands the lithium layer spacing and unit cell volume, which is more conducive to ion diffusion.
  • Another embodiment of the present application provides a method for modifying lithium-rich manganese-based materials.
  • the modification method includes:
  • Step S1 Perform the first sintering on the first mixture, which includes a lithium-rich manganese-based precursor, a lithium salt, a material containing a cationic element M1 and a material containing an anionic element M2, to obtain a lithium-rich material co-doped with anions and cations.
  • the cationic element M1 is selected from one or more of the group consisting of Na, Fe, Nb, Ti, Mg, Al, Cr and Er
  • the anionic element M2 is selected from the group consisting of F, Cl, One or more of the group consisting of Br, I, S, B, P, N, Se and Te, and the mass of the cationic element M1 and the anionic element M2 is 1: (0.3 ⁇ 2);
  • S2 Perform a second sintering of a second mixture including a fast ion conductor material and a lithium-rich manganese-based material co-doped with anions and cations to obtain a modified lithium-rich manganese-based material.
  • the modified lithium-rich manganese-based material includes anions and cations co-doped. Miscellaneous lithium-rich manganese-based materials and fast ion conductor materials.
  • the fast ion conductor materials are selected from LATP (lithium aluminum titanium phosphate), LAGP (lithium aluminum germanium phosphate), LLZO (lithium lanthanum zirconate), LLTO (lithium lanthanum titanate) , LiBO 2 (lithium borate), LiAlO 2 (lithium aluminate), LiPO 3 (lithium metaphosphate), one or more of the group consisting of.
  • LATP lithium aluminum titanium phosphate
  • LAGP lithium aluminum germanium phosphate
  • LLZO lithium lanthanum zirconate
  • LLTO lithium lanthanum titanate
  • LiBO 2 lithium borate
  • LiAlO 2 lithium aluminate
  • LiPO 3 lithium metaphosphate
  • the modification method of the present application directly adopts the solid phase method to realize its coating on the anion and cation co-doped lithium-rich manganese-based material.
  • the coating method is simple It is easy to implement, has high efficiency and low cost. There are no strict requirements for the coating temperature and it is easy to achieve mass production.
  • the fast ion conductor material is distributed in an island-like or point-like manner on the surface of the cathode material.
  • the modified lithium-rich manganese-based material synthesized has a regular morphology, high crystallinity, relatively high capacity, excellent rate and cycle performance.
  • the properties of fast ion conductor materials are stable, which can effectively reduce the side reactions between materials and electrolytes under high potential conditions, improve the storage of materials, and reduce the gas production of materials.
  • the chemical formula of the above-mentioned lithium-rich manganese-based precursor is Ni b Co c Mn 1-bc (OH) 2 , where 0.05 ⁇ b ⁇ 0, 0.4 ⁇ c>0; the above-mentioned lithium-rich manganese-based precursor Mn
  • the content is higher and the Co content is lower, which is beneficial to reducing raw material costs.
  • the lithium salt used in the above modification method can be a lithium salt commonly used in the art for preparing lithium cathode materials.
  • the lithium salt is one or more of lithium hydroxide, lithium carbonate or lithium acetate.
  • the molar ratio of the sum of transition metal elements in the lithium-rich manganese-based precursor and the lithium in the lithium salt is controlled to 1:(1.1 ⁇ 1.8) , preferably 1:(1.1 ⁇ 1.5).
  • the above-mentioned cationic element M1 and anionic element M2 can come from various types of substances with relatively stable properties among known substances.
  • the above-mentioned substance containing the cationic element M1 is an oxide or salt of M1, etc.; optionally containing anions
  • the substances of element M2 are elemental substances, salts or organic substances. Each of the above-mentioned substances comes from a wide range of sources and has low cost.
  • the mass ratio of M1 to the lithium-rich manganese-based material in the material containing the cationic element M1 is 1000 to 20000 ppm, and further optionally 2000 to 10000 ppm; optionally, the mass ratio of M2 in the material containing the anionic element M2 is relatively
  • the mass ratio to lithium-rich manganese-based materials is 300 ⁇ 40000ppm, and further optionally 1000 ⁇ 20000ppm.
  • the mass ratio of the fast ion conductor to the lithium-rich manganese-based material co-doped with anions and cations is 2000 to 20000 ppm, optionally 2000 to 10000 ppm, to achieve effective and appropriate coating of the core.
  • first sintering and second sintering processes may refer to sintering processes commonly used in the preparation of lithium-rich manganese-based materials in the prior art, such as sintering in air or sintering in oxygen-rich gas.
  • the first sintering includes a one-stage sintering process and a two-stage sintering process, in which the first stage of sintering process
  • the sintering temperature is 400 ⁇ 600°C and the holding time is 4 ⁇ 8h; the sintering temperature of the two-stage sintering process is 800 ⁇ 1000°C and the holding time is 10 ⁇ 20h.
  • the sintering temperature of the second sintering is 500-700°C and the holding time is 4-8 hours, which further optimizes the uniformity and firmness of the fast ion conductor material coating.
  • Secondary batteries also known as rechargeable batteries or storage batteries, refer to batteries that can be recharged to activate active materials and continue to be used after the battery is discharged.
  • a secondary battery includes a positive electrode plate, a negative electrode plate, a separator and an electrolyte.
  • active ions such as lithium ions
  • the isolation membrane is set between the positive electrode piece and the negative electrode piece. It mainly prevents the positive and negative electrodes from short-circuiting and allows active ions to pass through.
  • the electrolyte is between the positive electrode piece and the negative electrode piece and mainly plays the role of conducting active ions.
  • the positive electrode sheet usually includes a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode current collector.
  • the positive electrode film layer includes a positive electrode active material.
  • the positive electrode current collector has two surfaces facing each other in its own thickness direction, and the positive electrode film layer is disposed on any one or both of the two opposite surfaces of the positive electrode current collector.
  • the positive electrode current collector may be a metal foil or a composite current collector.
  • the metal foil aluminum foil can be used.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base layer.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the positive active material in the secondary battery of the present application includes any of the above modified lithium-rich manganese-based materials or the modified lithium-rich manganese-based materials obtained by any of the above modification methods. Based on the modified lithium-rich manganese-based material of the present application, the secondary battery has high first efficiency, good cycle performance and rate performance, and low gas production.
  • the cathode active material may also be a cathode active material known in the art for batteries.
  • the cathode active material may include at least one of the following materials: an olivine-structured lithium-containing phosphate, a lithium transition metal oxide, and their respective modified compounds.
  • the present application is not limited to these materials, and other traditional materials that can be used as positive electrode active materials of batteries can also be used. Only one type of these positive electrode active materials may be used alone, or two or more types may be used in combination.
  • lithium transition metal oxides may include, but are not limited to, lithium cobalt oxides (such as LiCoO 2 ), lithium nickel oxides (such as LiNiO 2 ), lithium manganese oxides (such as LiMnO 2 , LiMn 2 O 4 ), lithium Nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide (such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (also referred to as NCM 333 ), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (can also be abbreviated to NCM 523 ), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (can also be abbreviated to NCM 211 ), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (can also be abbreviated to NCM 622 ), LiNi At least one of 0.8 Co 0.1 Mn 0.1 O 2 (also referred to as NCM 811 ), lithium nickel cobalt aluminum oxide (such as Li Li
  • the olivine structure contains Examples of lithium phosphates may include, but are not limited to, lithium iron phosphate (such as LiFePO 4 (also referred to as LFP)), composites of lithium iron phosphate and carbon, lithium manganese phosphate (such as LiMnPO 4 ), lithium manganese phosphate and carbon. At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon.
  • lithium iron phosphate such as LiFePO 4 (also referred to as LFP)
  • composites of lithium iron phosphate and carbon such as LiMnPO 4
  • LiMnPO 4 lithium manganese phosphate and carbon.
  • At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon.
  • the positive electrode film layer optionally further includes a binder.
  • the binder may include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene tripolymer. At least one of a copolymer, a tetrafluoroethylene-hexafluoropropylene copolymer, and a fluorine-containing acrylate resin.
  • the positive electrode film layer optionally further includes a conductive agent.
  • the conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the positive electrode sheet can be prepared by dispersing the above-mentioned components for preparing the positive electrode sheet, such as positive active material, conductive agent, binder and any other components in a solvent (such as N ⁇ methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode piece can be obtained.
  • a solvent such as N ⁇ methylpyrrolidone
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode film layer disposed on at least one surface of the negative electrode current collector, where the negative electrode film layer includes a negative electrode active material.
  • the negative electrode current collector has two opposite surfaces in its own thickness direction, and the negative electrode film layer is disposed on any one or both of the two opposite surfaces of the negative electrode current collector.
  • the negative electrode current collector may be a metal foil or a composite current collector.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base material.
  • the composite current collector can be formed by forming metal materials (copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the negative active material may be a negative active material known in the art for batteries.
  • the negative active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based materials, tin-based materials, lithium titanate, and the like.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon oxide compounds, silicon carbon composites, silicon nitrogen composites and silicon alloys.
  • the tin-based material may be selected from at least one of elemental tin, tin oxide compounds and tin alloys.
  • the present application is not limited to these materials, and other traditional materials that can be used as battery negative electrode active materials can also be used. Only one type of these negative electrode active materials may be used alone, or two or more types may be used in combination.
  • the negative electrode film layer optionally further includes a binder.
  • the binder may be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), At least one of polymethacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • the negative electrode film layer optionally further includes a conductive agent.
  • the conductive agent may be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the negative electrode film layer optionally includes other auxiliaries, such as thickeners (such as sodium carboxymethylcellulose (CMC-Na)) and the like.
  • thickeners such as sodium carboxymethylcellulose (CMC-Na)
  • the negative electrode sheet can be prepared by dispersing the above-mentioned components for preparing the negative electrode sheet, such as negative active materials, conductive agents, binders and any other components in a solvent (such as deionized water) to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode piece can be obtained.
  • a solvent such as deionized water
  • the electrolyte plays a role in conducting ions between the positive and negative electrodes.
  • the type of electrolyte in this application can be selected according to needs.
  • the electrolyte can be liquid, gel, or completely solid.
  • the electrolyte is liquid and includes an electrolyte salt and a solvent.
  • the electrolyte salt may be selected from the group consisting of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium bisfluorosulfonimide, lithium bistrifluoromethanesulfonimide, trifluoromethane At least one of lithium sulfonate, lithium difluorophosphate, lithium difluoroborate, lithium dioxaloborate, lithium difluorodioxalate phosphate and lithium tetrafluoroxalate phosphate.
  • the solvent may be selected from the group consisting of ethylene carbonate, propylene carbonate, methylethyl carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, Butylene carbonate, fluoroethylene carbonate, methyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate At least one of ester, 1,4-butyrolactone, sulfolane, dimethyl sulfone, methyl ethyl sulfone and diethyl sulfone.
  • the electrolyte optionally also includes additives.
  • additives may include negative electrode film-forming additives, positive electrode film-forming additives, and may also include additives that can improve certain properties of the battery, such as additives that improve battery overcharge performance, additives that improve battery high-temperature or low-temperature performance, etc.
  • the secondary battery further includes a separator film.
  • a separator film There is no particular restriction on the type of isolation membrane in this application. Any well-known porous structure isolation membrane with good chemical stability and mechanical stability can be used.
  • the material of the isolation membrane can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the isolation film can be a single-layer film or a multi-layer composite film, with no special restrictions. When the isolation film is a multi-layer composite film, the materials of each layer can be the same or different, and there is no particular limitation.
  • the positive electrode piece, the negative electrode piece and the separator film can be made into an electrode assembly through a winding process or a lamination process.
  • the secondary battery may include an outer packaging.
  • the outer packaging can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the secondary battery may be a hard shell, such as a hard plastic shell, an aluminum shell, a steel shell, etc.
  • the outer packaging of the secondary battery may also be a soft bag, such as a bag-type soft bag.
  • the material of the soft bag may be plastic, and examples of the plastic include polypropylene, polybutylene terephthalate, polybutylene succinate, and the like.
  • FIG. 4 shows a square-structured secondary battery 5 as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and side plates connected to the bottom plate, and the bottom plate and the side plates enclose a receiving cavity.
  • the housing 51 has an opening communicating with the accommodation cavity, and the cover plate 53 can cover the opening to close the accommodation cavity.
  • the positive electrode piece, the negative electrode piece and the isolation film can be formed into the electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the containing cavity.
  • the electrolyte soaks into the electrode assembly 52 .
  • the number of electrode assemblies 52 contained in the secondary battery 5 can be one or more, and those skilled in the art can select according to specific actual needs.
  • secondary batteries can be assembled into battery modules, and the number of secondary batteries contained in the battery module can be one or more. Those skilled in the art can select the specific number according to the application and capacity of the battery module.
  • FIG. 6 is a battery module 4 as an example.
  • a plurality of secondary batteries 5 may be arranged in sequence along the length direction of the battery module 4 .
  • the plurality of secondary batteries 5 can be fixed by fasteners.
  • the battery module 4 may further include a housing having a receiving space in which a plurality of secondary batteries 5 are received.
  • the above-mentioned battery modules can also be assembled into a battery pack.
  • the number of battery modules contained in the battery pack can be one or more. Those skilled in the art can select the specific number according to the application and capacity of the battery pack.
  • the battery pack 1 may include a battery box and a plurality of battery modules 4 disposed in the battery box.
  • the battery box includes an upper box 2 and a lower box 3 .
  • the upper box 2 can be covered with the lower box 3 and form a closed space for accommodating the battery module 4 .
  • Multiple battery modules 4 can be arranged in the battery box in any manner.
  • the present application also provides an electrical device, which includes at least one of the secondary battery, battery module, or battery pack provided by the present application.
  • the secondary battery, battery module, or battery pack may be used as a power source for the electrical device, or may be used as an energy storage unit for the electrical device.
  • the electric device may include mobile devices (such as mobile phones, laptops, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, and electric golf carts). , electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc., but are not limited to these.
  • a secondary battery, a battery module or a battery pack can be selected according to its usage requirements.
  • Figure 9 is an electrical device as an example.
  • the electric device is a pure electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, etc.
  • a battery pack or battery module can be used.
  • the precursor Ni 0.3 Co 0.05 Mn 0.65 (OH) 2 , lithium carbonate, iron oxide and ammonium chloride are put into a plow mixer for mixing, where Li/Me (representing transition metals Ni, Co and Mn)
  • Li/Me transition metals Ni, Co and Mn
  • the molar ratio is 1.38.
  • the mixed materials are put into the kiln Sintering is performed in the furnace, kept at 400°C for 4 hours, and then raised to 900°C for 12 hours.
  • the sintering atmosphere is air, and a lithium-rich manganese-based cathode material co-doped with anions and cations is obtained by sintering.
  • the obtained lithium-rich manganese-based cathode material is mixed and sintered with LATP.
  • the mass ratio of LATP to the lithium-rich manganese-based cathode material co-doped with anions and cations is 7000ppm, the sintering temperature is 650°C, and the sintering time is 5h to obtain the modification.
  • the lithium-rich manganese-based cathode material 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 that is, LATP coated with Fe and Cl co-doped 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 surface.
  • SEM tests were conducted on the lithium-rich manganese-based cathode materials co-doped with anions and cations before and after coating with LATP.
  • XRD tests were conducted on the lithium-rich manganese-based cathode materials before and after co-doping with anions and cations. The test results are shown in Figures 1 to 3. .
  • Example 1 The difference from Example 1 is that the doping elements are changed, in which the anion element is F provided by lithium fluoride, and the cation element is Na provided by sodium carbonate, to obtain a modified lithium-rich manganese-based cathode material 0.35Li 2 MnO 3 ⁇ 0.65 LiNi 0.46 Co 0.08 Mn 0.46 O 2 , LATP is attached to the surface of 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 co-doped with Na and F.
  • the anion element is F provided by lithium fluoride
  • the cation element is Na provided by sodium carbonate
  • Example 1 The difference from Example 1 is that the doping elements are changed, in which the anion element is F provided by lithium fluoride, and the cation element is Fe provided by iron oxide, to obtain a modified lithium-rich manganese-based cathode material 0.35Li 2 MnO 3 ⁇ 0.65 LiNi 0.46 Co 0.08 Mn 0.46 O 2 , LATP is attached to the surface of Fe and F co-doped 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 .
  • Example 1 The difference from Example 1 is that the doping elements are changed, in which the anion element is B provided by boric acid and the cation element is Fe provided by iron oxide, thereby obtaining a modified lithium-rich manganese-based cathode material 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 , LATP is attached to the surface of 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 co-doped with Fe and B.
  • the anion element is B provided by boric acid
  • the cation element is Fe provided by iron oxide
  • Example 1 The difference from Example 1 is that the doping elements are changed, in which the anionic element is P provided by ammonium dihydrogen phosphate and the cationic element is Fe provided by iron oxide, thereby obtaining a modified lithium-rich manganese-based cathode material 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 , LATP is attached to the surface of 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 co-doped with Fe and P.
  • the anionic element is P provided by ammonium dihydrogen phosphate
  • the cationic element is Fe provided by iron oxide
  • Example 1 The difference from Example 1 is that the doping elements are changed, where the anionic element is N provided by urea, and the cationic element is Fe provided by iron oxide, to obtain a modified lithium-rich manganese-based cathode material 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 , LATP is attached to the surface of Fe and N co-doped 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 .
  • Example 1 The difference from Example 1 is that the doping elements are changed, in which the anion element is Cl provided by ammonium chloride, and the cation element is Na provided by sodium carbonate, to obtain a modified lithium-rich manganese-based cathode material 0.35Li 2 MnO 3 ⁇ 0.65 LiNi 0.46 Co 0.08 Mn 0.46 O 2 , LATP is attached to the surface of 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 co-doped with Na and Cl.
  • the anion element is Cl provided by ammonium chloride
  • the cation element is Na provided by sodium carbonate
  • Example 1 The difference from Example 1 is that the doping elements are changed, in which the anionic element is Cl provided by ammonium chloride, and the cationic element is Ti provided by titanium oxide, to obtain a modified lithium-rich manganese-based cathode material 0.35Li 2 MnO 3 ⁇ 0.65 LiNi 0.46 Co 0.08 Mn 0.46 O 2 , LATP is attached to the surface of 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 co-doped with Ti and Cl.
  • the anionic element is Cl provided by ammonium chloride
  • the cationic element is Ti provided by titanium oxide
  • Example 1 The difference from Example 1 is that the doping elements are changed, in which the anion element is Cl provided by ammonium chloride, and the cation element is Mg provided by magnesium oxide, to obtain a modified lithium-rich manganese-based cathode material 0.35Li 2 MnO 3 ⁇ 0.65 LiNi 0.46 Co 0.08 Mn 0.46 O 2 , LATP is attached to the surface of 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 co-doped with Mg and Cl.
  • the anion element is Cl provided by ammonium chloride
  • Mg provided by magnesium oxide
  • Example 1 The difference from Example 1 is that the doping elements are changed, in which the anionic element is Cl provided by ammonium chloride, and the cationic element is Nb provided by niobium oxide, to obtain a modified lithium-rich manganese-based cathode material 0.35Li 2 MnO 3 ⁇ 0.65 LiNi 0.46 Co 0.08 Mn 0.46 O 2 , LATP is attached to the surface of 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 co-doped with Nb and Cl.
  • the anionic element is Cl provided by ammonium chloride
  • Nb provided by niobium oxide
  • Example 1 The difference from Example 1 is that the doping elements are changed, in which the anion element is Cl provided by ammonium chloride, and the cation element is Cr provided by chromium oxide, to obtain a modified lithium-rich manganese-based cathode material 0.35Li 2 MnO 3 ⁇ 0.65 LiNi 0.46 Co 0.08 Mn 0.46 O 2 , LATP is attached to the surface of Cr and Cl co-doped 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 .
  • Example 1 The difference from Example 1 is that the doping elements are changed, in which the anionic element is Cl provided by ammonium chloride, and the cationic element is Er provided by erbium oxide, to obtain a modified lithium-rich manganese-based cathode material 0.35Li 2 MnO 3 ⁇ 0.65 LiNi 0.46 Co 0.08 Mn 0.46 O 2 , LATP is attached to the surface of 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 co-doped with Er and Cl.
  • the anionic element is Cl provided by ammonium chloride
  • Er provided by erbium oxide
  • Example 2 The difference from Example 1 is that the amount and proportion of doping elements are changed.
  • Example 1 The difference from Example 1 is that the amount and proportion of doping elements are changed.
  • Example 2 The difference from Example 1 is that the amount and proportion of doping elements are changed.
  • the mass ratio of iron to the theoretical lithium-rich manganese-based material is 25,000 ppm
  • the mass ratio of chlorine to the theoretical lithium-rich manganese-based material is 50,000 ppm
  • M1 /M2 1:2.
  • Example 1 The difference from Example 1 is that the amount and proportion of doping elements are changed.
  • Example 1 The difference from Example 1 is that LATP is replaced with LAGP of equal weight.
  • Example 1 The difference from Example 1 is that LATP is replaced with LLZO of equal weight.
  • Example 1 The difference from Example 1 is that LATP is replaced with LLTO of equal weight.
  • Example 1 The difference from Example 1 is that the same weight of LiPO3 is used to replace LATP.
  • Example 1 The difference from Example 1 is that the mass ratio of LATP to the lithium-rich manganese-based cathode material co-doped with anions and cations is 2000 ppm.
  • Example 1 The difference from Example 1 is that the mass ratio of LATP to the lithium-rich manganese-based cathode material co-doped with anions and cations is 20,000 ppm.
  • Example 1 The difference from Example 1 is that the mass ratio of LATP to the lithium-rich manganese-based cathode material co-doped with anions and cations is 10,000 ppm.
  • Example 1 The difference from Example 1 is that the mass ratio of LATP to the lithium-rich manganese-based cathode material co-doped with anions and cations is 1500 ppm.
  • Example 1 The difference from Example 1 is that the mass ratio of LATP to the anion and cation co-doped lithium-rich manganese-based cathode material is 25,000 ppm.
  • the sintering atmosphere is air, and a lithium-rich manganese-based cathode material co-doped with anions and cations is obtained by sintering.
  • the obtained lithium-rich manganese-based cathode material is mixed and sintered with LATP.
  • the mass ratio of LATP to the lithium-rich manganese-based cathode material co-doped with anions and cations is 7000ppm.
  • the sintering temperature is 650°C and the sintering time is 5h to obtain the modification.
  • the lithium-rich manganese-based cathode material 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 , that is, LATP coated with Fe and Cl co-doped 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 surface.
  • the sintering atmosphere is air, and a lithium-rich manganese-based cathode material co-doped with anions and cations is obtained by sintering.
  • the obtained lithium-rich manganese-based cathode material is mixed and sintered with LATP.
  • the mass ratio of LATP to the lithium-rich manganese-based cathode material co-doped with anions and cations is 7000ppm.
  • the sintering temperature is 650°C and the sintering time is 5h to obtain the modification.
  • the lithium-rich manganese-based cathode material 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 , that is, LATP coated with Fe and Cl co-doped 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 surface.
  • the sintering atmosphere is air, and a lithium-rich manganese-based cathode material co-doped with anions and cations is obtained by sintering.
  • the obtained lithium-rich manganese-based cathode material is mixed and sintered with LATP.
  • the mass ratio of LATP to the lithium-rich manganese-based cathode material co-doped with anions and cations is 7000ppm.
  • the sintering temperature is 650°C and the sintering time is 5h to obtain the modification.
  • the lithium-rich manganese-based cathode material 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 , that is, LATP coated with Fe and Cl co-doped 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 surface.
  • the sintering atmosphere is air, and a lithium-rich manganese-based cathode material co-doped with anions and cations is obtained by sintering.
  • the obtained lithium-rich manganese-based cathode material is mixed and sintered with LATP.
  • the mass ratio of LATP to the lithium-rich manganese-based cathode material co-doped with anions and cations is 7000ppm, the sintering temperature is 500°C, and the sintering time is 8h to obtain the modification.
  • the lithium-rich manganese-based cathode material 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 , that is, LATP coated with Fe and Cl co-doped 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 surface.
  • the sintering atmosphere is air, and a lithium-rich manganese-based cathode material co-doped with anions and cations is obtained by sintering.
  • the obtained lithium-rich manganese-based cathode material is mixed and sintered with LATP.
  • the mass ratio of LATP to the lithium-rich manganese-based cathode material co-doped with anions and cations is 7000ppm, the sintering temperature is 700°C, and the sintering time is 4h to obtain the modification.
  • the lithium-rich manganese-based cathode material 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 , that is, LATP coated with Fe and Cl co-doped 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 surface.
  • the precursors Ni 0.3 Co 0.05 Mn 0.65 (OH) 2 , lithium carbonate and ammonium chloride are put into a plow mixer and mixed, where the molar ratio of Li/Me (representing transition metals Ni, Co and Mn) is 1.38 Weigh the lithium carbonate and precursor, and the mass ratio of chlorine to the theoretical lithium-rich manganese-based material is 2000ppm.
  • the mixed material is put into the kiln for sintering, kept at 400°C for 4 hours, then heated to 900°C for 12 hours, and then sintered.
  • the atmosphere is air, and a chloride ion-doped lithium-rich manganese-based cathode material is obtained by sintering.
  • the obtained chloride ion-doped lithium-rich manganese-based cathode material is mixed and sintered with LATP.
  • the mass ratio of LATP to the chloride ion-doped lithium-rich manganese-based cathode material is 7000 ppm
  • the sintering temperature is 650°C
  • the sintering time is 5 hours.
  • the modified lithium-rich manganese-based cathode material 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 is obtained, that is, LATP is coated with chloride ion-doped 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O2 surface.
  • the precursor Ni 0.3 Co 0.05 Mn 0.65 (OH) 2 , lithium carbonate and iron oxide are put into a plow mixer for mixing, where the molar ratio of Li/Me (representing transition metals Ni, Co and Mn) is 1.38 Weigh lithium carbonate and precursor, and the mass ratio of iron to the theoretical lithium-rich manganese-based material is 2000ppm.
  • the mixed material is put into the kiln for sintering, kept at 400°C for 4 hours, and then heated to 900°C for 12 hours.
  • the obtained iron ion-doped lithium-rich manganese-based cathode material is mixed and sintered with LATP.
  • the mass ratio of LATP to the iron ion-doped lithium-rich manganese-based cathode material is 7000 ppm
  • the sintering temperature is 650°C
  • the sintering time is 5 hours.
  • the modified lithium-rich manganese-based cathode material 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 is obtained, that is, LATP coated with iron ion doped 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O2 surface.
  • Li/Me transition metals Ni, Co and Mn
  • the mixed materials of lithium and precursor are put into the kiln for sintering, kept at 400°C for 4 hours, and then heated to 900°C for 12 hours.
  • the sintering atmosphere is air, and the lithium-rich manganese-based cathode material is obtained by sintering.
  • the obtained lithium-rich manganese-based cathode material was mixed and sintered with LATP.
  • the mass ratio of LATP to the lithium-rich manganese-based cathode material was 7000 ppm.
  • the sintering temperature was 650°C and the sintering time was 5 hours.
  • a modified lithium-rich manganese-based cathode was obtained.
  • the material is 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 , that is, LATP is coated on the surface of 0.35Li 2 MnO 3 ⁇ 0.65LiNi 0.46 Co 0.08 Mn 0.46 O 2 .
  • Ni 0.3 Co 0.05 Mn 0.65 (OH) 2 and lithium carbonate into a plow mixer and mix them.
  • the carbonic acid is weighed with a molar ratio of Li/Me (representing transition metals Ni, Co and Mn) of 1.38.
  • the mixed materials of lithium and precursor are put into the kiln for sintering, kept at 400°C for 4 hours, and then heated to 900°C for 12 hours.
  • the sintering atmosphere is air, and the lithium-rich manganese-based cathode material is obtained by sintering.
  • a laser particle size analyzer such as the Mastersizer 2000E laser particle size analyzer of Malvern Instruments Co., Ltd. in the United Kingdom.
  • the nitrogen adsorption specific surface area analysis test method is used to test and calculated using the BET (Brunauer Emmett Teller) method.
  • the nitrogen adsorption specific surface area analysis test can pass the Tri-Star 3020 type specific surface area of the American Micromeritics company. Pore size analysis tester.
  • the molecular structure of the core material can be measured using known methods. For example, an inductively coupled plasma optical emission spectrometer (ICP-AES) is used for testing.
  • ICP-AES inductively coupled plasma optical emission spectrometer
  • the thickness of the primary particles on the surface of the cathode material can be measured using known methods.
  • a high-resolution electron microscope can be used to calibrate the thickness of the primary particles, and then measured according to the length of the scale bar.
  • the XRD scanning range 2theta is 10°-80°, the scanning speed is ⁇ 2°/min, and the step size is 0.2-0.02°.
  • the XRD pattern obtained is refined on the JADE software.
  • the modified XRD pattern calculates the peak area values of the characteristic peaks 003, 104 and 002 of the cathode material.
  • the conductivity is measured using the well-known AC impedance method.
  • the positive electrode material is pressed into a 12.5mm disc with a thickness of 2-3mm, and then conductive silver paste is coated on both sides of the disc to serve as an electronic conductor and ion conductor.
  • Insulator, the frequency range of AC impedance is 1MHz ⁇ 0.1Hz, and the disturbance signal is 5mV.
  • Cycle performance test Perform the first charge and discharge in a constant temperature environment of 25°C, and perform constant current and constant voltage charging at a charging current of 0.5C (that is, the current value that completely discharges the theoretical capacity within 2 hours). (Charge to a current of 0.05C) until the upper limit voltage reaches 4.46V. After standing for 5 minutes, perform constant current discharge at a discharge current of 0.5C until the final voltage is 2.3V. Record the discharge capacity of the first cycle; then proceed Continuous charge and discharge cycle.
  • a charging current of 0.5C that is, the current value that completely discharges the theoretical capacity within 2 hours.
  • Capacity retention rate of the nth cycle (discharge capacity of the nth cycle/discharge capacity of the first cycle) ⁇ 100%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请提供一种改性富锂锰基材料、富锂锰基材料的改性方法、二次电池及用电装置。该改性富锂锰基材料包括阴阳离子共掺杂的富锂锰基材料和快离子导体材料,富锂锰基材料的化学式为xLi2MnO3·(1-x)LiNiyCozMnaO2,其中0<x<1,0≤y≤1,0≤z≤1,y+z+a=1;掺杂的阳离子元素M1选自Na、Fe、Nb、Ti、Mg、Al、Cr和Er组成的组中的一种或多种,掺杂的阴离子元素M2选自F、Cl、Br、I、S、B、P、N、Se和Te组成的组中的一种或多种;快离子导体材料附着在所述阴阳离子共掺杂的富锂锰基材料上,快离子导体材料选自LATP、LAGP、LLZO、LLTO、LiBO2、LiAlO2、LiPO3组成的组中的一种或多种。提高了材料首效、循环稳定性、热稳定性、倍率性能和容量。

Description

改性富锂锰基材料、富锂锰基材料的改性方法、二次电池及用电装置 技术领域
本申请涉及电池技术领域,特别是涉及一种改性富锂锰基材料、富锂锰基材料的改性方法、二次电池及用电装置。
背景技术
正极材料是锂离子电池最关键的组成部分,它是锂离子电池中Li+的来源,直接决定了其能量密度,也是影响电池功率密度、循环寿命和安全性能的重要因素。由Dahn及其同事和Thackeray等人首先提出的富锂锰基层状正极材料,其具有高于250mAh/g的高放电比容量、高能量密度等优点,被视为下一代动力电池的主要材料。
富锂锰基材料在首圈4.5V以上的高电压充电状态下,过渡金属层中的部分锂离子会和氧一起脱除,形成Li 2O脱出,这部分晶体空位在后续的充放电过程中较难再接纳锂离子,导致材料的首次充放电效率变低;同时大量氧空位的形成,造成过渡金属离子发生迁移致使晶体结构发生重排,导致材料结构的不稳定,进而造成循环变差。此外由于富锂材料本身电子和离子电导率较低,且高电压下材料表面与电解液的副反应加剧,导致材料的倍率性能极差。
发明内容
本申请提供一种改性富锂锰基材料、富锂锰基材料的改性方法、二次电池及用电装置,以解决富锂锰基材料倍率性能差的问题。
本发明的第一方面提供了一种改性富锂锰基材料,该改性富锂锰基材料包括阴阳离子共掺杂的富锂锰基材料,富锂锰基材料的化学式为xLi 2MnO 3·(1-x)LiNi yCo zMn aO 2,其中0<x<1,0≤y≤1,0≤z≤1,y+z+a=1;掺杂的阳离子元素M1选自Na、Fe、Nb、Ti、Mg、Al、Cr和Er组成的组中的一种或多种,掺杂的阴离子元素M2选自F、Cl、Br、I、S、B、P、N、Se和Te组成的组中的一种或多种;
快离子导体材料,快离子导体材料附着在所述阴阳离子共掺杂的富锂锰基材料上,快离子导体材料选自LATP(磷酸钛铝锂),LAGP(磷酸锗铝锂)、LLZO(锆酸镧锂)、LLTO(钛酸镧锂)、LiBO 2(硼酸锂)、LiAlO 2(铝酸锂)、LiPO 3(偏磷酸锂)组成的组中的一种或多种。
本申请的改性富锂锰基材料中,阴离子掺杂主要取代富锂锰基正极材料中的氧的 位点,在高电位下可以抑制晶格氧过度氧化,缓解晶格氧流失,在首次循环过程中减少了氧气的释放,缓解电解液分解,提高材料首效。阳离子掺杂主要取代的是富锂锰基材料中的过渡金属位,在充放电过程中可以稳定晶体结构,提高氧空位的形成能,抑制材料向尖晶石结构转变,从而提高循环稳定性和热稳定性。快离子导体材料作为本领域所谓的包覆层能有效提高富锂锰基材料的离子电导,提高锂离子的传输速率,提升材料的倍率性能和容量;同时快离子导体材料性质稳定,有效降低高电位条件下材料与电解液的副反应,提升材料的存储,减少材料的产气。
在第一方面的任意实施方式中,上述M1的掺杂量/M2的掺杂量为1:(0.3~2),可选为1:(0.5~1.5);以提高阴阳离子掺杂的协同效果,使材料的循环性能和首效得到尽可能大程度的改善。
在第一方面的任意实施方式中,掺杂的阳离子元素M1为Fe时,掺杂的阴离子元素M2为Cl;或者掺杂的阳离子元素M1为Na时,掺杂的阴离子元素M2为F。上述两种阴阳离子掺杂的组合,对于富锂锰基材料的改性效果尤为突出。
在第一方面的任意实施方式中,掺杂的阳离子元素M1的掺杂量为1000~20000ppm,可选为2000~10000ppm;掺杂的阴离子元素M2的掺杂量为300~40000ppm,可选为1000~20000ppm。以进一步提高阴阳离子掺杂改性的效果。
在第一方面的任意实施方式中,改性富锂锰基材料中快离子导体材料的重量含量为2000~20000ppm,可选为2000~10000ppm。快离子导体材料在正极材料表层呈现岛状或点状式均匀分布,有效提高了富锂锰基材料的电导率。
在第一方面的任意实施方式中,改性富锂锰基材料的电导率为10~60μS/cm,优选为30~60μS/cm。经过快离子导体材料的改性,改性富锂锰基材料相对于阴阳离子共掺杂的富锂锰基材料的电导率增加。
在第一方面的任意实施方式中,改性富锂锰基材料的比表面积为<3.2m 2/g,可选为0.3~2.2m 2/g。改性富锂锰基材料的比表面积较低,因此确保了富锂锰基材料具有优异的循环性能。可选地,改性富锂锰基材料的一次颗粒的D V50为100~300nm,快离子导体材料改性后的一次颗粒的D V50相对改性前的阴阳离子共掺杂的富锂锰基材料有所减小,比表面积有所变大,在表层形成了利于锂离子扩散的通道,使富锂锰基材料的首效和倍率性能提升明显。
在第一方面的任意实施方式中,改性富锂锰基材料的体积粒度分布径距满足(Dv90-Dv10)/Dv50≥1.1;可选地满足(Dv90-Dv10)/Dv50≥1.2;可选地改性富锂锰基材料在5吨压力下的粉末压实密度≥3.0g/cc。改性富锂锰基材料具有较大的径距和/或较大的压密时,该改性富锂锰基材料具有较高的体积能量密度。
在第一方面的任意实施方式中,在改性富锂锰基材料的X射线衍射图谱中,I003/I104的峰面积比为1.0~1.2,可选为1.05~1.15;I020/(I003+I104)的峰面积比为0.005~0.05,可选为0.008~0.02。I003/I104的峰面积比控制在上述范围,表明材料中锂 镍的混排程度较低,结构稳定性较好;I020/(I003+I104)的峰面积比控制在上述范围,说明富锂相控制在较优比例,使得材料首效和循环性能较好。
在第一方面的任意实施方式中,改性富锂锰基材料的003特征峰和104特征峰相对于富锂锰基材料的003特征峰和104特征峰向左偏移,说明通过阴阳离子掺杂扩大了锂层间距和晶胞体积,更有利于离子扩散。
本申请的第二方面提供了一种富锂锰基材料的改性方法,该改性方法包括:
步骤S1:将第一混合物进行第一烧结,第一混合物包括富锂锰基前驱体、锂盐与含阳离子元素M1的物质和含阴离子元素M2元素的物质,得到阴阳离子共掺杂的富锂锰基材料,其中,富锂锰基材料的化学式为xLi 2MnO 3·(1-x)LiNi yCo zMn aO 2,其中0<x<1,0≤y≤1,0≤z≤1,y+z+a=1;阳离子元素M1选自Na、Fe、Nb、Ti、Mg、Al、Cr和Er组成的组中的一种或多种,阴离子元素M2选自F、Cl、Br、I、S、B、P、N、Se和Te组成的组中的一种或多种,且满足阳离子元素M1与阴离子元素M2的质量为1:(0.3~2);
S2:将包括快离子导体材料与阴阳离子共掺杂的富锂锰基材料的第二混合物进行第二烧结,得到改性富锂锰基材料,改性富锂锰基材料包括阴阳离子共掺杂的富锂锰基材料和快离子导体材料,快离子导体材料选自LATP(磷酸钛铝锂),LAGP(磷酸锗铝锂)、LLZO(锆酸镧锂)、LLTO(钛酸镧锂)、LiBO 2(硼酸锂)、LiAlO 2(铝酸锂)、LiPO 3(偏磷酸锂)组成的组中的一种或多种。
本申请的改性方法,尤其是快离子导体材料直接采用固相法实现其在阴阳离子共掺杂的富锂锰基材料上的包覆,与原位包覆方法相比,包覆方法简单易行,效率高、成本较低,对于包覆温度没有严格要求,易于实现大规模生产,快离子导体材料在正极材料表层呈现岛状或点状式分布。改性得到的合成得到的富锂锰基材料形貌规则,结晶度高,具有相对较高的容量,优异的倍率和循环性能。同时快离子导体材料性质稳定,有效降低高电位条件下材料与电解液的副反应,提升材料的存储,减少材料的产气。
在第二方面的任意实施方式中,上述富锂锰基前驱体的化学式为Ni bCo cMn 1-b- c(OH) 2,其中0.05≥c≥0,0.4≥b>0;可选地,锂盐为氢氧化锂、碳酸锂或醋酸锂中的一种或多种;可选地,富锂锰基前驱体中过渡金属元素之和与锂盐中锂的摩尔比为1:(1.1~1.8),优选为1:(1.1~1.5)。上述富锂锰基前驱体Mn含量较高,Co含量较低,有利于降低原料成本。
在第二方面的任意实施方式中,含阳离子元素M1的物质为M1的氧化物或盐;可选地含阴离子元素M2元素的物质为单质、盐或者有机物。上述来源的各物质来源广泛,成本较低。
在第二方面的任意实施方式中,含阳离子元素M1的物质中M1相对于富锂锰基材料的质量比为1000~20000ppm,进一步可选为2000~10000ppm;可选地,含阴离子元 素M2的物质中M2相对于富锂锰基材料的质量比为300~40000ppm,进一步可选为1000~20000ppm。上述通过控制上述质量比例,使阴阳离子的掺杂量在预设范围内起到相互协同的作用。
在第二方面的任意实施方式中,快离子导体相对于阴阳离子共掺杂的富锂锰基材料的质量比为2000~20000ppm,可选为2000~10000ppm,以实现对内核的有效适量包覆。
在第二方面的任意实施方式中,第一烧结包括一段烧结过程和二段烧结过程,其中一段烧结过程的烧结温度为400~600℃、保温时间为4~8h;二段烧结过程的烧结温度为800~1000℃、保温时间为10~20h。利用上述两段烧结,使烧结后得到的阴阳离子掺杂的富锂锰基材料结晶度高,尖晶石杂相含量低。
在第二方面的任意实施方式中,第二烧结的烧结温度为500~700℃、保温时间为4~8h,进一步优化了快离子导体材料包覆的均匀性和牢固性。
本申请的第三方面提供了一种二次电池,包括正极极片、隔膜和负极极片,正极极片包括正极膜层,正极膜层包括正极活性材料,其中,正极活性材料包括上述任一种的改性富锂锰基材料或者上述任一种的改性方法得到的改性富锂锰基材料。本申请提供的二次电池的首效高、循环性能和倍率性能好,而且产气低。
本申请的第三方面提供了一种用电装置,包括二次电池,其中,二次电池选自上述的二次电池。具有本申请的二次电池的用电装置的电性能表现更好、运行更为稳定。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为实施例1中包覆LATP前后的阴阳离子共掺杂的富锂锰基正极材料的一次颗粒的扫描电镜图。
图2为实施例1中包覆LATP后的阴阳离子共掺杂的富锂锰基正极材料的XRD衍射图谱。
图3为实施例1中阴阳离子共掺杂前后的富锂锰基正极材料局部003和104衍射峰的XRD衍射图谱。
图4是本申请一实施方式的二次电池的示意图。
图5是图4所示的本申请一实施方式的二次电池的分解图。
图6是本申请一实施方式的电池模块的示意图。
图7是本申请一实施方式的电池包的示意图。
图8是图7所示的本申请一实施方式的电池包的分解图。
图9是本申请一实施方式的二次电池用作电源的用电装置的示意图。
在附图中,附图并未按照实际的比例绘制。
附图标记说明:
1电池包;2上箱体;3下箱体;4电池模块;5二次电池;51壳体;52电极组件;53顶盖组件。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
以下,适当地参照附图详细说明具体公开了本申请的改性的富锂锰基材料、富锂锰基材料的改性方法、二次电池及用电装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60~120和80~110的范围,理解为60~110和80~120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1~3、1~4、1~5、2~3、2~4和2~5。在本申请中,除非有其他说明,数值范围“a~b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0~5”表示本文中已经全部列出了“0~5”之间的全部实数,“0~5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选 是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
[改性富锂锰基材料]
本发明的第一方面提供了一种改性富锂锰基材料,该改性富锂锰基材料包括阴阳离子共掺杂的富锂锰基材料和快离子导体材料,快离子导体材料附着在阴阳离子共掺杂的富锂锰基材料上;
富锂锰基材料的化学式为xLi 2MnO 3·(1-x)LiNi yCo zMn aO 2,其中0<x<1,0≤y≤1,0≤z≤1,y+z+a=1;掺杂的阳离子元素M1选自Na、Fe、Nb、Ti、Mg、Al、Cr和Er组成的组中的一种或多种,掺杂的阴离子元素M2选自F、Cl、Br、I、S、B、P、N、Se和Te组成的组中的一种或多种;
快离子导体材料选自LATP(磷酸钛铝锂),LAGP(磷酸锗铝锂)、LLZO(锆酸镧锂)、LLTO(钛酸镧锂)、LiBO 2(硼酸锂)、LiAlO 2(铝酸锂)、LiPO 3(偏磷酸锂)组成的组中的一种或多种。
本申请的改性富锂锰基材料中,阴离子掺杂主要取代富锂锰基正极材料中的氧的位点,在高电位下可以抑制晶格氧过度氧化,缓解晶格氧流失,在首次循环过程中减少了氧气的释放,缓解电解液分解,提高材料首效。阳离子掺杂主要取代的是富锂锰基材料中的过渡金属位,在充放电过程中可以稳定晶体结构,提高氧空位的形成能,进一步缓解晶格氧流失,抑制材料向尖晶石结构转变,从而提高循环稳定性和热稳定性。快离子导体材料作为本领域所谓的包覆层能有效提高富锂锰基材料的离子电导率,提高锂离子的传输速率,提升材料的倍率性能和容量;同时快离子导体材料性质稳定,有效降低高电位条件下材料与电解液的副反应,提升材料的存储,减少材料的产气。
上述阴阳离子的掺杂量有各自的作用,在一些实施方式中,上述M1的掺杂量/M2的掺杂量为1:(0.3~2),可选为1:(0.5~1.5),以提高阴阳离子掺杂的协同效果,使材料的循环性能和首效得到尽可能大程度的改善。在一些实施例中,上述M1的掺杂量/M2的掺杂量可以为1:0.3、1:0.5、1:0.8、1:1、1:1.2或1:1.5或1:2。
上述掺杂的阴阳离子元素均可以起到缓解晶格氧流失、提高氧空位形成能的作用,但是各自的作用效果又因元素组成和性能不同而存在差异。比如当掺杂的阳离子元素M1为Fe时,掺杂的阴离子元素M2为Cl;或者掺杂的阳离子元素M1为Na时,掺杂的阴离子元素M2为F。主要是因为Cl和F比O对过渡金属元素的束缚力更强,可以降低过渡金属元素在电解液中的溶解性,稳定富锂锰基材料的结构,降低材料的释氧,此外,Cl和F的掺杂可以进一步降低过渡金属的平均价态,电池的可逆容量也会有提升;而Na和Fe占据过渡金属层,与O的结合能较强,进一步缓解晶格氧的流失,且Fe在充放电循环过程中能进行Fe 3+到Fe 4+的转变,进一步提升材料的容量,因此通过特定的Fe和Cl,Na和F的组合,对材料过渡金属层和氧层分别进行加固作用,对于富锂锰基材料的改性效果尤为突出。
阳离子元素M1和阴离子元素M2作为掺杂元素,在保证不影响富锂锰基材料的基本晶格结构基础上,其掺杂量增加有利于提高对晶格氧流失的缓解作用,同时为了进一步保证有足够的氧空位存在满足锂离子快速脱嵌的需要,在一些实施方式中,上述掺杂的阳离子元素M1的掺杂量为1000~20000ppm,可选为2000~10000ppm,比如为1000ppm、2000ppm、5000ppm、8000ppm、10000ppm、12000ppm、15000ppm、18000ppm或20000ppm;掺杂的阴离子元素M2的掺杂量为300~40000ppm,可选为1000~20000ppm,比如为300ppm、500ppm、800ppm、1000ppm、1500ppm、2000ppm、5000ppm、8000ppm、10000ppm、20000ppm或40000ppm以进一步提高阴阳离子掺杂改性的效果。
在一些实施方式中,改性富锂锰基材料中快离子导体材料的重量含量为2000~20000ppm,可选为2000~10000ppm,比如为2000ppm、5000ppm、8000ppm、10000ppm、15000ppm或20000ppm。快离子导体材料在正极材料表层呈现岛状或点状式均匀分布,有效提高了富锂锰基材料的电导率。
改性富锂锰基材料的形貌类型优选为二次球、单晶或类单晶,在试验中发现,在对阴阳离子共掺杂的富锂锰基材料进行快离子导体材料包覆改性后,其一次颗粒的粒径有所减小,比表面积有所增加,比如快离子导体材料包覆前材料即阴阳离子共掺杂的富锂锰基材料的比表面积<3.0m 2/g,可选0.1~2m 2/g;粒径优选1~20μm,可选3~15μm,一次颗粒的厚度为300~500nm。快离子导体材料包覆后得到的改性富锂锰基材料的比表面积为<3.2m 2/g,可选为0.3~2.2m 2/g。改性富锂锰基材料的比表面积较低,因此确保了富锂锰基材料具有优异的循环性能。可选地,改性富锂锰基材料的一次颗粒的厚度为100~300nm,快离子导体材料改性后的一次颗粒的厚度相对改性前的阴阳离子共掺杂的富锂锰基材料有所减小,比表面积有所变大,在表层形成了利于锂离子扩散的通道,使富锂锰基材料的首效和倍率性能提升明显。
比表面积为本领域公知的含义,可采用本领域已知的方法测试。例如可以参照GB/T 19587-2017,采用氮气吸附比表面积分析测试方法测试,并用BET(Brunauer Emmett Teller)法计算得出,其中氮气吸附比表面积分析测试可以通过美国 Micromeritics公司的Tri-Star 3020型比表面积孔径分析测试仪进行。
在一些实施方式中,上述改性富锂锰基材料的体积粒度分布径距满足(Dv90-Dv10)/Dv50≥1.1;可选地满足(Dv90-Dv10)/Dv50≥1.2;可选地改性富锂锰基材料在5吨压力下的粉末压实密度≥3.0g/cc。改性富锂锰基材料具有较大的径距和/或较大的压密时,该改性富锂锰基材料具有较高的体积能量密度。Dv50指的是在体积分布中50%所对应的粒度尺寸,Dv10和Dv90以此类推。作为示例,Dv50可以参照GB/T 19077-2016粒度分布激光衍射法,采用激光粒度分析仪方便地测定,如英国马尔文仪器有限公司的Mastersizer 2000E型激光粒度分析仪。
当改性富锂锰基材料中具有上述掺杂元素时,其晶体结构相对于掺杂前也存在一定的变化,在一些实施方式中,在改性富锂锰基材料的X射线衍射图谱中,I003/I104的峰面积比为1.0~1.2,可选为1.05~1.15;I020/(I003+I104)的峰面积比为0.005~0.05,可选为0.008~0.02。I003/I104的峰面积比控制在上述范围,表明材料中锂镍的混排程度较低,结构稳定性较好;I020/(I003+I104)的峰面积比控制在上述范围,说明富锂相控制在较优比例,使得材料首效和循环性能较好。
在第一方面的任意实施方式中,改性富锂锰基材料的003特征峰和104特征峰相对于富锂锰基材料的003特征峰和104特征峰向左偏移,说明通过阴阳离子掺杂扩大了锂层间距和晶胞体积,更有利于离子扩散。
本申请的另一个实施方式提供了一种富锂锰基材料的改性方法,该改性方法包括:
步骤S1:将第一混合物进行第一烧结,第一混合物包括富锂锰基前驱体、锂盐与含阳离子元素M1的物质和含阴离子元素M2元素的物质,得到阴阳离子共掺杂的富锂锰基材料,其中,富锂锰基材料的化学式为xLi 2MnO 3·(1-x)LiNi yCo zMn aO 2,其中0<x<1,0≤y≤1,0≤z≤1,y+z+a=1;阳离子元素M1选自Na、Fe、Nb、Ti、Mg、Al、Cr和Er组成的组中的一种或多种,阴离子元素M2选自F、Cl、Br、I、S、B、P、N、Se和Te组成的组中的一种或多种,且满足阳离子元素M1与阴离子元素M2的质量为1:(0.3~2);
S2:将包括快离子导体材料与阴阳离子共掺杂的富锂锰基材料的第二混合物进行第二烧结,得到改性富锂锰基材料,改性富锂锰基材料包括阴阳离子共掺杂的富锂锰基材料和快离子导体材料,快离子导体材料选自LATP(磷酸钛铝锂),LAGP(磷酸锗铝锂)、LLZO(锆酸镧锂)、LLTO(钛酸镧锂)、LiBO 2(硼酸锂)、LiAlO 2(铝酸锂)、LiPO 3(偏磷酸锂)组成的组中的一种或多种。
本申请的改性方法,尤其是快离子导体材料直接采用固相法实现其在阴阳离子共掺杂的富锂锰基材料上的包覆,与原位包覆方法相比,包覆方法简单易行,效率高、成本较低,对于包覆温度没有严格要求,易于实现大规模生产,快离子导体材料在正极材料表层呈现岛状或点状式分布。改性得到的合成得到的富锂锰基材料形貌规则, 结晶度高,具有相对较高的容量,优异的倍率和循环性能。同时快离子导体材料性质稳定,有效降低高电位条件下材料与电解液的副反应,提升材料的存储,减少材料的产气。
在一些实施方式中,上述富锂锰基前驱体的化学式为Ni bCo cMn 1-b-c(OH) 2,其中0.05≥b≥0,0.4≥c>0;上述富锂锰基前驱体Mn含量较高,Co含量较低,有利于降低原料成本。用于上述改性方法的锂盐可以为本领域制备锂正极材料常用的锂盐,为了节约成本,可选地,锂盐为氢氧化锂、碳酸锂或醋酸锂中的一种或多种。为了进一步提高所得到的富锂锰基材料中锂含量,在一些实施方式中,控制富锂锰基前驱体中过渡金属元素之和与锂盐中锂的摩尔比为1:(1.1~1.8),优选为1:(1.1~1.5)。
上述阳离子元素M1和阴离子元素M2可以来自于已知物质中性能比较稳定的各类物质,在一些实施方式中,上述含阳离子元素M1的物质为M1的氧化物或盐等;可选地含阴离子元素M2元素的物质为单质、盐或者有机物等。上述来源的各物质来源广泛,成本较低。
在一些实施方式中,含阳离子元素M1的物质中M1相对于富锂锰基材料的质量比为1000~20000ppm,进一步可选为2000~10000ppm;可选地,含阴离子元素M2的物质中M2相对于富锂锰基材料的质量比为300~40000ppm,进一步可选为1000~20000ppm。上述通过控制上述质量比例,使阴阳离子的掺杂量在预设范围内起到相互协同的作用。
在一些实施方式中,快离子导体相对于阴阳离子共掺杂的富锂锰基材料的质量比为2000~20000ppm,可选为2000~10000ppm,以实现对内核的有效适量包覆。
上述第一烧结和第二烧结的过程可以参考现有技术中富锂锰基材料制备时常用的烧结工艺,比如在空气中进行烧结或者在富氧气体中烧结。
在一些实施方式中,为了使掺杂的阴阳离子尽可能稳定地进入晶格中,且保证富锂锰基层状结构,使第一烧结包括一段烧结过程和二段烧结过程,其中一段烧结过程的烧结温度为400~600℃、保温时间为4~8h;二段烧结过程的烧结温度为800~1000℃、保温时间为10~20h。利用上述两段烧结,使烧结后得到的阴阳离子掺杂的富锂锰基材料结晶度高,尖晶石杂相含量低。
在一些实施方式中,第二烧结的烧结温度为500~700℃、保温时间为4~8h,进一步优化了快离子导体材料包覆的均匀性和牢固性。
[二次电池]
二次电池又称为充电电池或蓄电池,是指在电池放电后可通过充电的方式使活性材料激活而继续使用的电池。
通常情况下,二次电池包括正极极片、负极极片、隔离膜及电解液。在电池充放电过程中,活性离子(例如锂离子)在正极极片和负极极片之间往返嵌入和脱出。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使 活性离子通过。电解液在正极极片和负极极片之间,主要起到传导活性离子的作用。
[正极极片]
正极极片通常包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,正极膜层包括正极活性材料。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
本申请二次电池中的正极活性材料包括上述任一种的改性富锂锰基材料或者上述任一种的改性方法得到的改性富锂锰基材料。基于本申请的改性富锂锰基材料,使得二次电池的首效高、循环性能和倍率性能好,而且产气低。
在一些实施方式中,正极活性材料还可采用本领域公知的用于电池的正极活性材料。作为示例,正极活性材料可包括以下材料中的至少一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电池正极活性材料的传统材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO 2)、锂镍氧化物(如LiNiO 2)、锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM 333)、LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM 523)、LiNi 0.5Co 0.25Mn 0.25O 2(也可以简称为NCM 211)、LiNi 0.6Co 0.2Mn 0.2O 2(也可以简称为NCM 622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM 811)、锂镍钴铝氧化物(如LiNi 0.85Co 0.15Al 0.05O 2)及其改性化合物等中的至少一种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂(如LiFePO 4(也可以简称为LFP))、磷酸铁锂与碳的复合材料、磷酸锰锂(如LiMnPO 4)、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料中的至少一种。
在一些实施方式中,正极膜层还可选地包括粘结剂。作为示例,粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯~四氟乙烯~丙烯三元共聚物、偏氟乙烯~六氟丙烯~四氟乙烯三元共聚物、四氟乙烯~六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极膜层还可选地包括导电剂。作为示例,导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一 种。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N~甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
[负极极片]
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜层,所述负极膜层包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,负极膜层还可选地包括粘结剂。作为示例,粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,负极膜层还可选地包括导电剂。作为示例,导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极膜层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离 子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。
[电解质]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或全固态的。
在一些实施方式中,电解质为液态的,且包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
在一些实施方式中,溶剂可选自碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、1,4-丁内酯、环丁砜、二甲砜、甲乙砜及二乙砜中的至少一种。
在一些实施方式中,电解液还可选地包括添加剂。作为示例,添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温或低温性能的添加剂等。
[隔离膜]
在一些实施方式中,二次电池中还包括隔离膜。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图4是作为一个示例的方形结构的二次电池5。
在一些实施方式中,参照图5,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。二次电池5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
图6是作为一个示例的电池模块4。参照图6,在电池模块4中,多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个二次电池5容纳于该容纳空间。
在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以为一个或多个,具体数量本领域技术人员可根据电池包的应用和容量进行选择。
图7和图8是作为一个示例的电池包1。参照图7和图8,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
另外,本申请还提供一种用电装置,所述用电装置包括本申请提供的二次电池、电池模块、或电池包中的至少一种。所述二次电池、电池模块、或电池包可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以包括移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。
作为所述用电装置,可以根据其使用需求来选择二次电池、电池模块或电池包。
图9是作为一个示例的用电装置。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对二次电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
[实施例]
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1
将前驱体Ni 0.3Co 0.05Mn 0.65(OH) 2、碳酸锂、氧化铁和氯化铵放入犁刀混料机中进行混合,其中以Li/Me(表示过渡金属Ni、Co和Mn)的摩尔比为1.38称取碳酸锂和前驱体,且铁相对于理论的富锂锰基材料的质量比为2000ppm,氯相对于理论的富锂锰基材料的质量比为2000ppm,混合物料放入窑炉中进行烧结,400℃保温4h,再升温至900℃保温12h,烧结气氛为空气,烧结得到阴阳离子共掺杂的富锂锰基正极材料。将得到的富锂锰基正极材料与的LATP混合烧结,LATP相对于阴阳离子共掺杂的富锂锰基正极材料的质量比为7000ppm,烧结温度为650℃,烧结时间为5h,得到改性的富锂锰基正极材料0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2,即LATP包覆在Fe和Cl共掺杂的0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2表面。包覆LATP前后,分别对阴阳离子共掺杂的富锂锰基正极材料进行SEM测试,阴阳离子共掺杂前后,分别对富锂锰基正极材料进行XRD测试,测试结果见图1至图3。
实施例2
与实施例1的区别在于,改变掺杂元素,其中阴离子元素为氟化锂提供的F、阳离子元素为碳酸钠提供的Na,得到改性的富锂锰基正极材料0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2,LATP附着在Na和F共掺杂的0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2表面。
实施例3
与实施例1的区别在于,改变掺杂元素,其中阴离子元素为氟化锂提供的F、阳离子元素为氧化铁提供的Fe,得到改性的富锂锰基正极材料0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2,LATP附着在Fe和F共掺杂的0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2表面。
实施例4
与实施例1的区别在于,改变掺杂元素,其中阴离子元素为硼酸提供的B、阳离子元素为氧化铁提供的Fe,得到改性的富锂锰基正极材料0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2,LATP附着在Fe和B共掺杂的0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2表面。
实施例5
与实施例1的区别在于,改变掺杂元素,其中阴离子元素为磷酸二氢铵提供的P、阳离子元素为氧化铁提供的Fe,得到改性的富锂锰基正极材料0.35Li 2MnO 3· 0.65LiNi 0.46Co 0.08Mn 0.46O 2,LATP附着在Fe和P共掺杂的0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2表面。
实施例6
与实施例1的区别在于,改变掺杂元素,其中阴离子元素为尿素提供的N、阳离子元素为氧化铁提供的Fe,得到改性的富锂锰基正极材料0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2,LATP附着在Fe和N共掺杂的0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2表面。
实施例7
与实施例1的区别在于,改变掺杂元素,其中阴离子元素为氯化铵提供的Cl、阳离子元素为碳酸钠提供的Na,得到改性的富锂锰基正极材料0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2,LATP附着在Na和Cl共掺杂的0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2表面。
实施例8
与实施例1的区别在于,改变掺杂元素,其中阴离子元素为氯化铵提供的Cl、阳离子元素为氧化钛提供的Ti,得到改性的富锂锰基正极材料0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2,LATP附着在Ti和Cl共掺杂的0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2表面。
实施例9
与实施例1的区别在于,改变掺杂元素,其中阴离子元素为氯化铵提供的Cl、阳离子元素为氧化镁提供的Mg,得到改性的富锂锰基正极材料0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2,LATP附着在Mg和Cl共掺杂的0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2表面。
实施例10
与实施例1的区别在于,改变掺杂元素,其中阴离子元素为氯化铵提供的Cl、阳离子元素为氧化铌提供的Nb,得到改性的富锂锰基正极材料0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2,LATP附着在Nb和Cl共掺杂的0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2表面。
实施例11
与实施例1的区别在于,改变掺杂元素,其中阴离子元素为氯化铵提供的Cl、阳离子元素为氧化铬提供的Cr,得到改性的富锂锰基正极材料0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2,LATP附着在Cr和Cl共掺杂的0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2表面。
实施例12
与实施例1的区别在于,改变掺杂元素,其中阴离子元素为氯化铵提供的Cl、阳离子元素为氧化铒提供的Er,得到改性的富锂锰基正极材料0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2,LATP附着在Er和Cl共掺杂的0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2表面。
实施例13
与实施例1的区别在于,改变掺杂元素的比例,铁相对于理论的富锂锰基材料的质量比为2000ppm,氯相对于理论的富锂锰基材料的质量比为600ppm,M1/M2=1:0.3。
实施例14
与实施例1的区别在于,改变掺杂元素的比例,铁相对于理论的富锂锰基材料的质量比为2000ppm,氯相对于理论的富锂锰基材料的质量比为4000ppm,M1/M2=1:2。
实施例15
与实施例1的区别在于,改变掺杂元素的比例,铁相对于理论的富锂锰基材料的质量比为2000ppm,氯相对于理论的富锂锰基材料的质量比为1000ppm,M1/M2=1:0.5。
实施例16
与实施例1的区别在于,改变掺杂元素的比例,铁相对于理论的富锂锰基材料的质量比为2000ppm,氯相对于理论的富锂锰基材料的质量比为3000ppm,M1/M2=1:1.5。
实施例17
与实施例1的区别在于,改变掺杂元素的用量,铁相对于理论的富锂锰基材料的质量比为1000ppm,氯相对于理论的富锂锰基材料的质量比为1000ppm,M1/M2=1:1。
实施例18
与实施例1的区别在于,改变掺杂元素的用量,铁相对于理论的富锂锰基材料的质量比为10000ppm,氯相对于理论的富锂锰基材料的质量比为10000ppm,M1/M2=1:1。
实施例19
与实施例1的区别在于,改变掺杂元素的用量,铁相对于理论的富锂锰基材料的质量比为20000ppm,氯相对于理论的富锂锰基材料的质量比为20000ppm,M1/M2=1:1。
实施例20
与实施例1的区别在于,改变掺杂元素的用量和比例,铁相对于理论的富锂锰基材料的质量比为20000ppm,氯相对于理论的富锂锰基材料的质量比为40000ppm,M1/M2=1:2。
实施例21
与实施例1的区别在于,改变掺杂元素的用量,铁相对于理论的富锂锰基材料的质量比为25000ppm,氯相对于理论的富锂锰基材料的质量比为25000ppm,M1/M2=1:1。
实施例22
与实施例1的区别在于,改变掺杂元素的用量,铁相对于理论的富锂锰基材料的质量比为5000ppm,氯相对于理论的富锂锰基材料的质量比为5000ppm,M1/M2=1:1。
实施例23
与实施例1的区别在于,改变掺杂元素的用量,铁相对于理论的富锂锰基材料的质量比为25000ppm,氯相对于理论的富锂锰基材料的质量比为25000ppm,M1/M2=1:1。
实施例24
与实施例1的区别在于,改变掺杂元素的用量和比例,铁相对于理论的富锂锰基材料的质量比为25000ppm,氯相对于理论的富锂锰基材料的质量比为1000ppm,M1/M2=1:0.04。
实施例25
与实施例1的区别在于,改变掺杂元素的用量和比例,铁相对于理论的富锂锰基材料的质量比为25000ppm,氯相对于理论的富锂锰基材料的质量比为50000ppm,M1/M2=1:2。
实施例26
与实施例1的区别在于,改变掺杂元素的用量和比例,铁相对于理论的富锂锰基材料的质量比为2000ppm,氯相对于理论的富锂锰基材料的质量比为5000ppm,M1/M2=1:2.5。
实施例27
与实施例1的区别在于,采用同等重量的LAGP替换LATP。
实施例28
与实施例1的区别在于,采用同等重量的LLZO替换LATP。
实施例29
与实施例1的区别在于,采用同等重量的LLTO替换LATP。
实施例30
与实施例1的区别在于,采用同等重量的LiPO3替换LATP。
实施例31
与实施例1的区别在于,LATP相对于阴阳离子共掺杂的富锂锰基正极材料的质量比为2000ppm。
实施例32
与实施例1的区别在于,LATP相对于阴阳离子共掺杂的富锂锰基正极材料的质量比为20000ppm。
实施例33
与实施例1的区别在于,LATP相对于阴阳离子共掺杂的富锂锰基正极材料的质量比为10000ppm。
实施例34
与实施例1的区别在于,LATP相对于阴阳离子共掺杂的富锂锰基正极材料的质量比为1500ppm。
实施例35
与实施例1的区别在于,LATP相对于阴阳离子共掺杂的富锂锰基正极材料的质量比为25000ppm。
实施例36
将前驱体Ni 0.3Co 0.05Mn 0.65(OH) 2、碳酸锂、氧化铁和氯化铵放入犁刀混料机中进行混合,其中以Li/Me(表示过渡金属Ni、Co和Mn)的摩尔比为1.38称取碳酸锂和前驱体,且铁相对于理论的富锂锰基材料的质量比为2000ppm,氯相对于理论的富锂锰基材料的质量比为2000ppm,混合物料放入窑炉中进行烧结,600℃保温8h,再升温至900℃保温12h,烧结气氛为空气,烧结得到阴阳离子共掺杂的富锂锰基正极材料。将得到的富锂锰基正极材料与的LATP混合烧结,LATP相对于阴阳离子共掺杂的富锂锰基正极材料的质量比为7000ppm,烧结温度为650℃,烧结时间为5h,得到改性的富锂锰基正极材料0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2,即LATP包覆在Fe和Cl共掺杂的0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2表面。
实施例37
将前驱体Ni 0.3Co 0.05Mn 0.65(OH) 2、碳酸锂、氧化铁和氯化铵放入犁刀混料机中进行混合,其中以Li/Me(表示过渡金属Ni、Co和Mn)的摩尔比为1.38称取碳酸锂和前驱体,且铁相对于理论的富锂锰基材料的质量比为2000ppm,氯相对于理论的富锂锰 基材料的质量比为2000ppm,混合物料放入窑炉中进行烧结,600℃保温8h,再升温至800℃保温20h,烧结气氛为空气,烧结得到阴阳离子共掺杂的富锂锰基正极材料。将得到的富锂锰基正极材料与的LATP混合烧结,LATP相对于阴阳离子共掺杂的富锂锰基正极材料的质量比为7000ppm,烧结温度为650℃,烧结时间为5h,得到改性的富锂锰基正极材料0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2,即LATP包覆在Fe和Cl共掺杂的0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2表面。
实施例38
将前驱体Ni 0.3Co 0.05Mn 0.65(OH) 2、碳酸锂、氧化铁和氯化铵放入犁刀混料机中进行混合,其中以Li/Me(表示过渡金属Ni、Co和Mn)的摩尔比为1.38称取碳酸锂和前驱体,且铁相对于理论的富锂锰基材料的质量比为2000ppm,氯相对于理论的富锂锰基材料的质量比为2000ppm,混合物料放入窑炉中进行烧结,600℃保温8h,再升温至1000℃保温10h,烧结气氛为空气,烧结得到阴阳离子共掺杂的富锂锰基正极材料。将得到的富锂锰基正极材料与的LATP混合烧结,LATP相对于阴阳离子共掺杂的富锂锰基正极材料的质量比为7000ppm,烧结温度为650℃,烧结时间为5h,得到改性的富锂锰基正极材料0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2,即LATP包覆在Fe和Cl共掺杂的0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2表面。
实施例39
将前驱体Ni 0.3Co 0.05Mn 0.65(OH) 2、碳酸锂、氧化铁和氯化铵放入犁刀混料机中进行混合,其中以Li/Me(表示过渡金属Ni、Co和Mn)的摩尔比为1.38称取碳酸锂和前驱体,且铁相对于理论的富锂锰基材料的质量比为2000ppm,氯相对于理论的富锂锰基材料的质量比为2000ppm,混合物料放入窑炉中进行烧结,600℃保温8h,再升温至900℃保温12h,烧结气氛为空气,烧结得到阴阳离子共掺杂的富锂锰基正极材料。将得到的富锂锰基正极材料与的LATP混合烧结,LATP相对于阴阳离子共掺杂的富锂锰基正极材料的质量比为7000ppm,烧结温度为500℃,烧结时间为8h,得到改性的富锂锰基正极材料0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2,即LATP包覆在Fe和Cl共掺杂的0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2表面。
实施例40
将前驱体Ni 0.3Co 0.05Mn 0.65(OH) 2、碳酸锂、氧化铁和氯化铵放入犁刀混料机中进行混合,其中以Li/Me(表示过渡金属Ni、Co和Mn)的摩尔比为1.38称取碳酸锂和前驱体,且铁相对于理论的富锂锰基材料的质量比为2000ppm,氯相对于理论的富锂锰基材料的质量比为2000ppm,混合物料放入窑炉中进行烧结,600℃保温8h,再升温至900℃保温12h,烧结气氛为空气,烧结得到阴阳离子共掺杂的富锂锰基正极材料。将得到的富锂锰基正极材料与的LATP混合烧结,LATP相对于阴阳离子共掺杂的富锂锰基正极材料的质量比为7000ppm,烧结温度为700℃,烧结时间为4h,得到改性的富锂锰基正极材料0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2,即LATP包覆在Fe和Cl共掺杂的0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2表面。
对比例1
将前驱体Ni 0.3Co 0.05Mn 0.65(OH) 2、碳酸锂和氯化铵放入犁刀混料机中进行混合,其中以Li/Me(表示过渡金属Ni、Co和Mn)的摩尔比为1.38称取碳酸锂和前驱体,且氯相对于理论的富锂锰基材料的质量比为2000ppm,混合物料放入窑炉中进行烧结,400℃保温4h,再升温至900℃保温12h,烧结气氛为空气,烧结得到氯离子掺杂的富锂锰基正极材料。将得到的氯离子掺杂的富锂锰基正极材料与的LATP混合烧结,LATP相对于氯离子掺杂的富锂锰基正极材料的质量比为7000ppm,烧结温度为650℃,烧结时间为5h,得到改性的富锂锰基正极材料0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2,即LATP包覆在氯离子掺杂的0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2表面。
对比例2
将前驱体Ni 0.3Co 0.05Mn 0.65(OH) 2、碳酸锂和氧化铁放入犁刀混料机中进行混合,其中以Li/Me(表示过渡金属Ni、Co和Mn)的摩尔比为1.38称取碳酸锂和前驱体,且铁相对于理论的富锂锰基材料的质量比为2000ppm,混合物料放入窑炉中进行烧结,400℃保温4h,再升温至900℃保温12h,烧结气氛为空气,烧结得到铁离子掺杂的富锂锰基正极材料。将得到的铁离子掺杂的富锂锰基正极材料与的LATP混合烧结,LATP相对于铁离子掺杂的富锂锰基正极材料的质量比为7000ppm,烧结温度为650℃,烧结时间为5h,得到改性的富锂锰基正极材料0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2,即LATP包覆在铁离子掺杂的0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2表面。
对比例3
将前驱体Ni 0.3Co 0.05Mn 0.65(OH) 2、碳酸锂、氧化铁和氯化铵放入犁刀混料机中进行混合,其中以Li/Me(表示过渡金属Ni、Co和Mn)的摩尔比为1.38称取碳酸锂和前驱体,且铁相对于理论的富锂锰基材料的质量比为2000ppm,氯相对于理论的富锂锰基材料的质量比为2000ppm,混合物料放入窑炉中进行烧结,400℃保温4h,再升温至900℃保温12h,烧结气氛为空气,烧结得到阴阳离子共掺杂的富锂锰基正极材料。
对比例4
将前驱体Ni 0.3Co 0.05Mn 0.65(OH) 2、碳酸锂放入犁刀混料机中进行混合,其中以Li/Me(表示过渡金属Ni、Co和Mn)的摩尔比为1.38称取碳酸锂和前驱体,混合物料放入窑炉中进行烧结,400℃保温4h,再升温至900℃保温12h,烧结气氛为空气,烧结得到富锂锰基正极材料。将得到的富锂锰基正极材料与的LATP混合烧结,LATP相对于富锂锰基正极材料的质量比为7000ppm,烧结温度为650℃,烧结时间为5h,得到改性的富锂锰基正极材料0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2,即LATP包覆在0.35Li 2MnO 3·0.65LiNi 0.46Co 0.08Mn 0.46O 2表面。
对比例5
将前驱体Ni 0.3Co 0.05Mn 0.65(OH) 2、碳酸锂放入犁刀混料机中进行混合,其中以Li/Me(表示过渡金属Ni、Co和Mn)的摩尔比为1.38称取碳酸锂和前驱体,混合物料放入窑炉中进行烧结,400℃保温4h,再升温至900℃保温12h,烧结气氛为空气,烧结得到富锂锰基正极材料。
测试方法:
1.正极活性材料的性能测试
1)Dv50、Dv10、Dv90粒径测试。
参照GB/T 19077-2016粒度分布激光衍射法,采用激光粒度分析仪方便地测定,如英国马尔文仪器有限公司的Mastersizer 2000E型激光粒度分析仪。
2)比表面积的测定
参照GB/T 19587-2017,采用氮气吸附比表面积分析测试方法测试,并用BET(Brunauer Emmett Teller)法计算得出,其中氮气吸附比表面积分析测试可以通过美国Micromeritics公司的Tri-Star 3020型比表面积孔径分析测试仪进行。
3)内核材料的分子结构内核材料的分子结构可以通过可以使用公知的方法进行测定。例如,采用电感耦合等离子体发射光谱仪(ICP-AES)来进行测试。
4)正极材料表层一次颗粒的厚度测试
正极材料表层一次颗粒的厚度测试可以使用公知的方法进行测定,可以采用高分辨率的电子显微镜进行一次颗粒厚度的标定,然后根据比例尺的长度进行测量。
5)晶体参数的测试方法
对正极材料进行XRD测试分析,XRD扫描范围2theta为10°-80°,扫描速度≤2°/min,步长为0.2-0.02°,在JADE软件上对得到的XRD图谱进行精修,通过精修后的XRD图谱计算正极材料003,104和002特征峰的峰面积值。
6)电导率测试方法
电导率采用公知的交流阻抗法来进行测量,将正极材料压制成直接为12.5mm,厚度为2-3mm的圆片,然后在圆片的两面分别涂上导电银浆料,作为电子导体和离子绝缘体,交流阻抗的频率范围为1MHz~0.1Hz,扰动信号为5mV。
测定结果记录在表1中。
Figure PCTCN2022109450-appb-000001
Figure PCTCN2022109450-appb-000002
Figure PCTCN2022109450-appb-000003
3)循环性能测试:在25℃的恒温环境下,进行第一次充电和放电,在0.5C(即2小时内完全放掉理论容量的电流值)的充电电流下进行恒流和恒压充电(充电至电流为0.05C),直到上限电压达到4.46V,静置5分钟后,在0.5C的放电电流下进行恒流放电,直到最终电压为2.3V,记录首次循环的放电容量;而后进行持续充放电循环。
第n次循环的容量保持率=(第n次循环的放电容量/首次循环的放电容量)×100%。
结果记录在表2中。
表2
Figure PCTCN2022109450-appb-000004
Figure PCTCN2022109450-appb-000005
通过对比发现,Fe和Cl,Na和F对材料的首效和循环性能提升尤为明显,而当掺杂元素的量和比例超出范围后,材料性能降低明显,这主要是因为过低的掺杂量和比例难以达到预期的效果,而过高的掺杂量和比例使得掺杂元素难以掺杂进入材料内部,徒留在表层,形成杂质相,影响性能发挥。合适的快离子导体材料包覆物和包覆量能有效提高材料的离子传导速率,过多或过少的包覆量均会导致材料离子电导的下降,此外不同烧结制度会导致材料结晶度上有所差异,从而影响材料性能,对比无包覆和掺杂的样品本发明的材料具有优异的首效,倍率和循环性能。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (15)

  1. 一种改性富锂锰基材料,所述改性富锂锰基材料包括:
    阴阳离子共掺杂的富锂锰基材料,所述富锂锰基材料的化学式为xLi 2MnO 3·(1-x)LiNi yCo zMn aO 2,其中0<x<1,0≤y≤1,0≤z≤1,y+z+a=1;掺杂的所述阳离子元素M1选自Na、Fe、Nb、Ti、Mg、Al、Cr和Er组成的组中的一种或多种,掺杂的所述阴离子元素M2选自F、Cl、Br、I、S、B、P、N、Se和Te组成的组中的一种或多种;
    快离子导体材料,所述快离子导体材料附着在所述阴阳离子共掺杂的富锂锰基材料上,所述快离子导体材料选自LATP,LAGP、LLZO、LLTO、LiBO 2、LiAlO 2、LiPO 3组成的组中的一种或多种。
  2. 根据权利要求1所述的改性富锂锰基材料,其中,所述M1的掺杂量/M2的掺杂量为1:(0.3~2),可选为1:(0.5~1.5);可选地,所述掺杂的阳离子元素M1为Fe时,所述掺杂的阴离子元素M2为Cl;或者所述掺杂的阳离子元素M1为Na时,所述掺杂的阴离子元素M2为F。
  3. 根据权利要求1或2所述的改性富锂锰基材料,其中,所述掺杂的阳离子元素M1的掺杂量为1000~20000ppm,可选为2000~10000ppm;所述掺杂的阴离子元素M2的掺杂量为300~40000ppm,可选为1000~20000ppm。
  4. 根据权利要求1至3中任一项所述的改性富锂锰基材料,其中,所述改性富锂锰基材料中所述快离子导体材料的重量含量为2000~20000ppm,可选为2000~10000ppm。
  5. 根据权利要求1至4中任一项所述的改性富锂锰基材料,其中,所述改性富锂锰基材料的电导率为10~60μS/cm,优选为30~60μS/cm。
  6. 根据权利要求1至5中任一项所述的改性富锂锰基材料,其中,所述改性富锂锰基材料的比表面积为<3.2m 2/g,可选为0.3~2.2m 2/g;可选地,所述改性富锂锰基材料的一次颗粒的厚度为100~300nm。
  7. 根据权利要求1至6中任一项所述的改性富锂锰基材料,其中,所述改性富锂锰基材料的体积粒度分布径距满足(Dv90-Dv10)/Dv50≥1.1;可选地满足(Dv90-Dv10)/Dv50≥1.2;可选地所述改性富锂锰基材料在5吨压力下的粉末压实密度≥3.0g/cc。
  8. 根据权利要求1至7中任一项所述的改性富锂锰基材料,其中,在所述改性富锂锰基材料的X射线衍射图谱中,I003/I104的峰面积比为1.0~1.2,可选为1.05~1.15;I020/(I003+I104)的峰面积比为0.005~0.05,可选为0.008~0.02;可选地,所述改性富锂锰基材料的003特征峰和104特征峰相对于所述富锂锰基材料的-003特征峰和104特征峰向左偏移。
  9. 一种富锂锰基材料的改性方法,其中,所述改性方法包括:
    步骤S1:将第一混合物进行第一烧结,所述第一混合物包括富锂锰基前驱体、锂 盐与含阳离子元素M1的物质和含阴离子元素M2元素的物质,得到阴阳离子共掺杂的富锂锰基材料,其中,所述富锂锰基材料的化学式为xLi 2MnO 3·(1-x)LiNi yCo zMn aO 2,其中0<x<1,0≤y≤1,0≤z≤1,y+z+a=1;所述阳离子元素M1选自Na、Fe、Nb、Ti、Mg、Al、Cr和Er组成的组中的一种或多种,所述阴离子元素M2选自F、Cl、Br、I、S、B、P、N、Se和Te组成的组中的一种或多种,且满足所述阳离子元素M1与所述阴离子元素M2的质量比为1:(0.3~2);
    S2:将包括快离子导体材料与所述阴阳离子共掺杂的富锂锰基材料的第二混合物进行第二烧结,得到改性富锂锰基材料,所述改性富锂锰基材料包括阴阳离子共掺杂的富锂锰基材料和所述快离子导体材料,所述快离子导体材料选自LATP,LAGP、LLZO、LLTO、LiBO 2、LiAlO 2、LiPO 3组成的组中的一种或多种。
  10. 根据权利要求9所述的改性方法,其中,所述富锂锰基前驱体的化学式为Ni bCo cMn 1-b-c(OH) 2,其中0.05≥c≥0,0.4≥b>0;可选地,所述锂盐为氢氧化锂、碳酸锂或醋酸锂中的一种或多种;可选地,所述富锂锰基前驱体中过渡金属元素之和与所述锂盐中锂的摩尔比为1:(1.1~1.8),优选为1:(1.1~1.5)。
  11. 根据权利要求9或10所述的改性方法,其中,所述含阳离子元素M1的物质为M1的氧化物或盐;可选地所述含阴离子元素M2元素的物质为单质、盐或者有机物;可选地,所述含阳离子元素M1的物质中M1相对于所述富锂锰基材料的质量比为1000~20000ppm,进一步可选为2000~10000ppm;可选地,所述含阴离子元素M2的物质中M2相对于所述富锂锰基材料的质量比为300~40000ppm,进一步可选为1000~20000ppm;可选地,所述快离子导体相对于所述阴阳离子共掺杂的富锂锰基材料的质量比为2000~20000ppm,可选为2000~10000ppm。
  12. 根据权利要求9至11中任一项所述的改性方法,其中,所述第一烧结包括一段烧结过程和二段烧结过程,其中所述一段烧结过程的烧结温度为400~600℃、保温时间为4~8h;所述二段烧结过程的烧结温度为800~1000℃、保温时间为10~20h。
  13. 根据权利要求9至12中任一项所述的改性方法,其中,所述第二烧结的烧结温度为500~700℃、保温时间为4~8h。
  14. 一种二次电池,包括正极极片、隔膜和负极极片,所述正极极片包括正极膜层,所述正极膜层包括正极活性材料,其中,所述正极活性材料包括权利要求1至8中任一项所述的改性富锂锰基材料或者权利要求9至13中任一项所述的改性方法得到的改性富锂锰基材料。
  15. 一种用电装置,包括二次电池,其中,所述二次电池选自权利要求14所述的二次电池。
PCT/CN2022/109450 2022-08-01 2022-08-01 改性富锂锰基材料、富锂锰基材料的改性方法、二次电池及用电装置 WO2024026621A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/109450 WO2024026621A1 (zh) 2022-08-01 2022-08-01 改性富锂锰基材料、富锂锰基材料的改性方法、二次电池及用电装置
EP22949683.1A EP4358182A1 (en) 2022-08-01 2022-08-01 Modified lithium-rich manganese-based material, modification method of lithium-rich manganese-based material, secondary battery, and electrical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/109450 WO2024026621A1 (zh) 2022-08-01 2022-08-01 改性富锂锰基材料、富锂锰基材料的改性方法、二次电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024026621A1 true WO2024026621A1 (zh) 2024-02-08

Family

ID=89848293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109450 WO2024026621A1 (zh) 2022-08-01 2022-08-01 改性富锂锰基材料、富锂锰基材料的改性方法、二次电池及用电装置

Country Status (2)

Country Link
EP (1) EP4358182A1 (zh)
WO (1) WO2024026621A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943842A (zh) * 2013-01-23 2014-07-23 江南大学 一种阴阳离子Cl-、Cr3+共掺改性富锂层状正极材料的合成
CN109406554A (zh) * 2018-10-12 2019-03-01 圣戈莱(北京)科技有限公司 一种三元正极材料电化学性能的定性分析方法
US20200058933A1 (en) * 2018-08-17 2020-02-20 Apple Inc. Coatings for cathode active materials
CN111370686A (zh) * 2020-03-20 2020-07-03 昆明理工大学 一种阴阳离子共掺杂改性的富锂锰复合正极材料及其制备方法
CN113097475A (zh) * 2021-04-02 2021-07-09 上海科技大学 一种富锂层状正极材料、其制备方法及由其形成的电池正极和电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943842A (zh) * 2013-01-23 2014-07-23 江南大学 一种阴阳离子Cl-、Cr3+共掺改性富锂层状正极材料的合成
US20200058933A1 (en) * 2018-08-17 2020-02-20 Apple Inc. Coatings for cathode active materials
CN109406554A (zh) * 2018-10-12 2019-03-01 圣戈莱(北京)科技有限公司 一种三元正极材料电化学性能的定性分析方法
CN111370686A (zh) * 2020-03-20 2020-07-03 昆明理工大学 一种阴阳离子共掺杂改性的富锂锰复合正极材料及其制备方法
CN113097475A (zh) * 2021-04-02 2021-07-09 上海科技大学 一种富锂层状正极材料、其制备方法及由其形成的电池正极和电池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUANG, XINPING ET AL.: "Effects of chromium/fluorine co-doping on the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion batteres", JOURNAL OF MATERIALS SCIENCE, vol. 56, no. 16, 23 February 2021 (2021-02-23), XP037398961, ISSN: 0022-2461, DOI: 10.1007/s10853-021-05922-1 *
SHU WEI, JIAN ZELANG, ZHOU JING, ZHENG YUN, CHEN WEN: "Boosting the Electrochemical Performance of Li 1.2 Ni 0.13 Co 0.13 Mn 0.54 O 2 by Rough Coating with the Superionic Conductor Li 7 La 3 Zr 2 O 12", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 13, no. 46, 24 November 2021 (2021-11-24), US , pages 54916 - 54923, XP093134793, ISSN: 1944-8244, DOI: 10.1021/acsami.1c14229 *
ZHANG HONGZHOU; YANG TONGHUAN; HAN YAN; SONG DAWEI; SHI XIXI; ZHANG LIANQI; BIE LIJIAN: "Enhanced electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2by surface modification with the fast lithium-ion conductor Li-La-Ti-O", JOURNAL OF POWER SOURCES, ELSEVIER, AMSTERDAM, NL, vol. 364, 17 August 2017 (2017-08-17), AMSTERDAM, NL, pages 272 - 279, XP085194579, ISSN: 0378-7753, DOI: 10.1016/j.jpowsour.2017.08.050 *

Also Published As

Publication number Publication date
EP4358182A1 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
WO2020143532A1 (zh) 正极活性材料及其制备方法、钠离子电池及包含钠离子电池的装置
WO2021108945A1 (zh) 一种用于二次电池的正极极片、二次电池、电池模块、电池包和装置
JP2012009457A (ja) 非水電解質二次電池
WO2023240544A1 (zh) 正极材料及其制备方法、具备其的二次电池
WO2024007142A1 (zh) 负极极片、二次电池、电池模块、电池包及用电装置
WO2023015429A1 (zh) 复合金属氧化物材料及其制备方法、正极极片、二次电池、电池模块、电池包和用电装置
WO2024051216A1 (zh) 复合正极活性材料及其制备方法和包含其的用电装置
WO2023174050A1 (zh) 三元正极材料、其制造方法以及使用其的二次电池
WO2023205993A1 (zh) 尖晶石镍锰酸锂材料及其制备方法
WO2023230825A1 (zh) 层状氧化物、其制备方法、正极极片、二次电池、电池模块、电池包和用电装置
WO2023097474A1 (zh) 二次电池、电池模块、电池包及用电装置
CN110544764A (zh) 正极材料
WO2024026621A1 (zh) 改性富锂锰基材料、富锂锰基材料的改性方法、二次电池及用电装置
CN116885156B (zh) 镍锰酸锂材料、制备方法、二次电池及用电装置
WO2024050758A1 (zh) 含锂镍锰复合氧化物、其制备方法以及包含其的正极极片、二次电池及用电装置
WO2024011621A1 (zh) 磷酸锰铁锂正极活性材料及其制备方法、正极极片、二次电池及用电装置
WO2023197240A1 (zh) 正极活性材料、二次电池、电池模块、电池包和用电装置
WO2024113942A1 (zh) 正极活性材料及其制备方法、二次电池和用电装置
WO2023230832A1 (zh) 镍锰酸锂正极活性材料及其制备方法、以及使用其的二次电池
WO2024065157A1 (zh) 正极活性材料及其制备方法、正极极片、二次电池、电池模块、电池包和用电装置
WO2023240598A1 (zh) 改性正极材料、其制备方法、正极极片、二次电池、电池模块、电池包和用电装置
WO2024036472A1 (zh) 正极活性材料及其制备方法、正极极片、二次电池、电池模块、电池包和用电装置
WO2024020795A1 (zh) 一种复合正极材料、其制备方法、二次电池、电池模块、电池包和用电装置
WO2023173413A1 (zh) 二次电池以及包含其的电池模块、电池包及用电装置
WO2024036430A1 (zh) 负极活性材料、负极极片、二次电池、用电装置和制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022949683

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022949683

Country of ref document: EP

Effective date: 20240117