WO2023243449A1 - 水電解装置用積層体、水電解装置用膜電極接合体及び水電解装置 - Google Patents

水電解装置用積層体、水電解装置用膜電極接合体及び水電解装置 Download PDF

Info

Publication number
WO2023243449A1
WO2023243449A1 PCT/JP2023/020691 JP2023020691W WO2023243449A1 WO 2023243449 A1 WO2023243449 A1 WO 2023243449A1 JP 2023020691 W JP2023020691 W JP 2023020691W WO 2023243449 A1 WO2023243449 A1 WO 2023243449A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
electrode catalyst
water electrolysis
electrolysis device
polymer electrolyte
Prior art date
Application number
PCT/JP2023/020691
Other languages
English (en)
French (fr)
Inventor
ゆり 稲川
弘幸 盛岡
博之 茅根
雅弘 上野
Original Assignee
Toppanホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppanホールディングス株式会社 filed Critical Toppanホールディングス株式会社
Publication of WO2023243449A1 publication Critical patent/WO2023243449A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/056Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of textile or non-woven fabric
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/065Carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded

Definitions

  • the present disclosure relates to a laminate for a water electrolysis device, a membrane electrode assembly for a water electrolysis device, and a water electrolysis device.
  • a PEM type water electrolysis device generally includes a pair of main electrodes and a membrane electrode assembly provided between the pair of main electrodes. It has a laminate having a first electrode catalyst layer provided thereon, and a second electrode catalyst layer provided so as to sandwich a solid polymer electrolyte membrane together with the first electrode catalyst layer.
  • the above-mentioned laminate can be obtained by forming an electrode catalyst layer on one surface of a solid polymer electrolyte membrane using, for example, a coating method (see, for example, Patent Document 1 below).
  • the present disclosure has been made in view of the above problems, and provides a laminate for a water electrolysis device, a membrane electrode assembly for a water electrolysis device, and a water electrolysis device that can suppress the occurrence of cracks in an electrode catalyst layer.
  • the purpose is to
  • the present inventors conducted studies to solve the above problems. First, in the coating method, when a composition for forming an electrode catalyst layer is applied to the surface of a solid polymer electrolyte membrane, the solid polymer electrolyte membrane swells due to penetration of moisture in the composition for forming an electrode catalyst layer. Subsequently, the inventors thought that excessive stress may be applied to the electrode catalyst layer due to water discharge during drying of the solid polymer electrolyte membrane, and as a result, cracks may occur in the electrode catalyst layer. Therefore, as a result of further intensive research, the present inventors discovered that the above problem could be solved by including a fibrous substance in the electrode catalyst layer in addition to the catalyst and polymer electrolyte, which led to the present disclosure. .
  • a first aspect of the present disclosure is a laminate for a water electrolysis device comprising a polymer electrolyte membrane and an electrode catalyst layer provided on one surface of the polymer electrolyte membrane, wherein the electrode catalyst layer is
  • the present invention provides a laminate for a water electrolysis device, which includes a catalyst, a polymer electrolyte, and a fibrous material.
  • the laminate of the present disclosure suppresses disturbance of the potential distribution in the electrode catalyst layer when a voltage is applied to the membrane electrode assembly in a water electrolysis device equipped with a membrane electrode assembly having the laminate. , it is possible to suppress the water electrolysis performance of the water electrolysis device from deteriorating, and it is possible to improve the durability of the water electrolysis device.
  • the reason why the laminate for a water electrolysis device suppresses the occurrence of cracks in the electrode catalyst layer is considered to be as follows. That is, when an electrode catalyst layer is formed on one surface of a polymer electrolyte membrane, the polymer electrolyte membrane swells due to the infiltration of moisture, and then when the polymer electrolyte membrane dries, the polymer electrolyte membrane contracts due to the expulsion of moisture. Even if the electrode catalyst layer shrinks and excessive stress is applied to the electrode catalyst layer, the electrode catalyst layer contains a fibrous material in addition to the catalyst and polymer electrolyte, and the fibrous material is appropriately intertwined, so that The stress is dispersed by the fibrous material.
  • a second aspect of the present disclosure provides the laminate for a water electrolysis device according to the first aspect, wherein the fibrous material has an average fiber diameter of 100 nm or more and 1 ⁇ m or less. provide.
  • the generation of cracks in the electrode catalyst layer is further suppressed.
  • the reason why the adhesiveness between the polymer electrolyte membrane and the electrode catalyst layer can be improved by the above-mentioned laminate for a water electrolyzer is considered to be as follows. That is, it is thought that this is because the stress applied to the electrode catalyst layer is effectively dispersed by the fibrous material, making it possible to reduce the shearing force at the interface between the electrode catalyst layer and the polymer electrolyte membrane.
  • a third aspect of the present disclosure is the laminate for a water electrolysis device according to the first or second aspect, wherein the fibrous material is a substance having a property of adsorbing the polymer electrolyte.
  • a laminate for a device is provided.
  • the generation of cracks in the electrode catalyst layer is further suppressed.
  • a fourth aspect of the present disclosure is the laminate for a water electrolysis device according to any one of the first to third aspects, wherein the fibrous material is at least one of carbon fibers and polymer fibers.
  • a laminate for a water electrolysis device comprising: According to the laminate for a water electrolysis device, the fibrous material makes it difficult for cracks to occur in the electrode catalyst layer, and the durability of the electrode catalyst layer increases.
  • a fifth aspect of the present disclosure provides the laminate for a water electrolysis device according to the fourth aspect, wherein the polymer fiber has a cation exchange group.
  • a sixth aspect of the present disclosure provides the laminate for a water electrolysis device according to the fifth aspect, wherein the polymer electrolyte included in the electrode catalyst layer is an ionomer. . According to the above laminate for a water electrolysis device, proton conductivity is increased due to the linear proton conductive network formed on the polymer fibers.
  • the polymer fiber has a cation exchange group
  • this cation exchange group can ionically bond with the polymer electrolyte and strongly adsorb the polymer electrolyte, thereby improving the adhesion between the polymer fiber and the polymer electrolyte. can be increased.
  • the polymer electrolyte adsorbed on the polymer fiber is an ionomer, a proton conduction path is formed by the ionomer, and high water electrolysis performance can be obtained in the water electrolysis device.
  • a seventh aspect of the present disclosure provides the laminate for a water electrolysis device according to the fourth aspect, wherein the polymer fiber has proton conductivity.
  • the laminate for a water electrolysis device proton conduction paths are formed in the polymer fibers, the proton conductivity in the electrode catalyst layer is improved, and high electrolysis performance can be imparted to the water electrolysis device.
  • An eighth aspect of the present disclosure is the laminate for a water electrolysis device according to the fourth aspect, wherein the electrode catalyst layer includes an aggregate of the polymer fibers, and the average fiber length of the polymer fibers is 20 ⁇ m.
  • the present invention provides a laminate for a water electrolysis device in which the size of the void surrounding the aggregate is 20 ⁇ m or less. In this case, since the voids in the electrode catalyst layer are small, the occurrence of cracks in the electrode catalyst layer can be more fully suppressed, and deterioration in water electrolysis performance can be suppressed.
  • a ninth aspect of the present disclosure is the laminate for a water electrolysis device according to the fourth aspect, wherein the electrode catalyst layer includes an aggregate of the polymer fibers, and the average fiber length of the polymer fibers is 20 ⁇ m.
  • the size of voids surrounding the aggregates is equal to or less than the average fiber length of the polymer fibers.
  • a tenth aspect of the present disclosure is the laminate for a water electrolysis device according to the first aspect, wherein the electrode catalyst layer is a cathode side electrode catalyst layer, and the catalyst is supported on a conductive carrier.
  • the fibrous substance is carbon fiber, and the amount of the fibrous substance is in the range of 5 parts by mass or more and 50 parts by mass or less based on 100 parts by mass of the carrier. do.
  • the amount of carbon fiber blended is preferably in the range of 5 parts by mass or more and 20 parts by mass or less based on 100 parts by mass of the carrier.
  • An eleventh aspect of the present disclosure is the laminate for a water electrolysis device according to the first aspect, wherein the electrode catalyst layer is a cathode side electrode catalyst layer, and the catalyst is supported on a conductive carrier.
  • the fibrous material is a polymer fiber, and the amount of the fibrous material is in the range of 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the carrier. provide.
  • the blending amount of the polymer fiber is preferably in the range of 5 parts by mass or more and 20 parts by mass or less based on 100 parts by mass of the carrier.
  • the blending amount of the polymer fiber By setting the blending amount of the polymer fiber within this range, a structure in which the polymer fibers are entangled is suitably formed, and the strength of the electrode catalyst layer is further increased. As a result, cracks are less likely to occur, and the polymer fibers play a role of favorably assisting the electron conductivity within the electrode catalyst layer, resulting in good electrolytic performance.
  • a twelfth aspect of the present disclosure provides the laminate for a water electrolysis device according to the tenth or eleventh aspect, wherein the carrier is carbon particles.
  • a thirteenth aspect of the present disclosure includes a membrane electrode assembly and a pair of main electrodes provided to sandwich the membrane electrode assembly, and the membrane electrode assembly is arranged in the first to twelfth aspects.
  • a water electrolysis device is provided.
  • the water electrolysis device of the present disclosure includes the above-described laminate for a water electrolysis device, the water electrolysis device of the present disclosure suppresses the occurrence of cracks in the electrode catalyst layer in the laminate. Therefore, when a voltage is applied between the pair of main electrodes, the potential distribution in the electrode catalyst layer of the laminate included in the membrane electrode assembly is suppressed from being disturbed, and water electrolysis performance is prevented from deteriorating. can be suppressed, improving durability.
  • a fourteenth aspect of the present disclosure includes the laminate for a water electrolysis device according to the first aspect, and a second electrode catalyst layer, the electrode catalyst layer, the polymer electrolyte membrane, and the second electrode catalyst layer.
  • a membrane electrode assembly for a water electrolysis device provided in this order, wherein the second electrode catalyst layer is a cathode electrode catalyst layer, the electrode catalyst layer is the anode electrode catalyst layer, and contains the catalyst.
  • a membrane electrode assembly for a water electrolysis device is provided, which includes a catalyst-containing material, the polymer electrolyte, and the fibrous material. According to the above membrane electrode assembly for a water electrolysis device, it is possible to suppress the occurrence of cracks in the anode side electrode catalyst layer.
  • the membrane electrode assembly of the present disclosure when a voltage is applied in a water electrolysis device, the potential distribution in the anode side electrode catalyst layer is suppressed from being disturbed, and the water electrolysis performance of the water electrolysis device is reduced.
  • the durability of the water electrolysis device can be improved.
  • the reason why the membrane electrode assembly for a water electrolysis device suppresses the occurrence of cracks in the anode side electrode catalyst layer is considered to be as follows. That is, when the anode-side electrode catalyst layer is formed on one surface of the polymer electrolyte membrane, the polymer electrolyte membrane swells due to the infiltration of water, and then when the polymer electrolyte membrane dries, the water is discharged and the polymer electrolyte membrane swells. Even if the anode-side electrode catalyst layer contracts as the membrane contracts and excessive stress is applied to the anode-side electrode catalyst layer, the fibrous material in addition to the catalyst-containing substance and polymer electrolyte remains in the anode-side electrode catalyst layer.
  • the stress is dispersed by the fibrous material when the fibers are properly intertwined. Therefore, it is thought that the occurrence of cracks in the anode side electrode catalyst layer is suppressed.
  • oxygen gas generated in the anode-side electrode catalyst layer may cause localized excessive stress. Even in that case, such excessive stress is dispersed by the fibrous material contained in the anode side electrode catalyst layer. Therefore, it is thought that the occurrence of cracks in the anode side electrode catalyst layer is suppressed.
  • a fifteenth aspect of the present disclosure is the membrane electrode assembly for a water electrolysis device according to the fourteenth aspect, wherein the cathode side electrode catalyst layer contains a catalyst-containing substance, a polymer electrolyte, and a fibrous substance.
  • a membrane electrode assembly for an electrolyzer is provided. According to the above membrane electrode assembly for a water electrolysis device, it is also possible to suppress the occurrence of cracks in the cathode side electrode catalyst layer. Therefore, in the membrane electrode assembly of the present disclosure, when a voltage is applied in a water electrolysis device, the potential distribution in the cathode side electrode catalyst layer is suppressed from being disturbed, and the water electrolysis performance of the water electrolysis device is reduced. This makes it possible to further suppress the occurrence of water electrolysis, thereby further improving the durability of the water electrolysis device.
  • a sixteenth aspect of the present disclosure is the membrane electrode assembly for a water electrolysis device according to the fifteenth aspect, wherein the fibrous material of the cathode side electrode catalyst layer is at least one of carbon fibers and polymer fibers.
  • the fibrous material of the anode-side electrode catalyst layer includes polymer fibers.
  • a seventeenth aspect of the present disclosure provides the membrane electrode assembly for a water electrolysis device according to the sixteenth aspect, wherein the polymer fiber has proton conductivity.
  • a linear proton conductive network is formed in the cathode side electrode catalyst layer and the anode side electrode catalyst layer in which the polymer fibers have proton conductivity. This increases the proton conductivity, making it possible to improve the proton conductivity. As a result, voltage loss during water electrolysis in the water electrolysis device can be suppressed.
  • An eighteenth aspect of the present disclosure provides the membrane electrode assembly for a water electrolysis device according to the sixteenth aspect, wherein the polymer fiber has a cation exchange group.
  • a nineteenth aspect of the present disclosure provides the laminate for a water electrolysis device according to the fifth aspect, wherein the polymer electrolyte included in the electrode catalyst layer is an ionomer.
  • the proton conductivity is increased due to the linear proton conductive network formed on the polymer fiber.
  • the polymer fiber has a cation exchange group
  • this cation exchange group can ionically bond with the polymer electrolyte and strongly adsorb the polymer electrolyte, thereby improving the adhesion between the polymer fiber and the polymer electrolyte. can be increased.
  • the polymer electrolyte adsorbed on the polymer fiber is an ionomer, a proton conduction path is formed by the ionomer, and high water electrolysis performance can be obtained in the water electrolysis device.
  • a 20th aspect of the present disclosure is the membrane electrode assembly for a water electrolysis device according to any one of the 15th to 19th aspects, wherein the fibrous material in the cathode side electrode catalyst layer is A membrane for a water electrolysis device, which is carbon fiber, wherein the average fiber diameter of the fibrous substance is in the range of 50 nm or more and 300 nm or less, and the average fiber length of the fibrous substance is in the range of 1.0 ⁇ m or more and 20 ⁇ m or less.
  • An electrode assembly is provided.
  • a structure in which fibrous substances are entangled is suitably formed in the cathode electrode catalyst layer, so that the strength of the cathode electrode catalyst layer is further increased and cracks are prevented from occurring. It can be controlled more.
  • a twenty-first aspect of the present disclosure is the membrane electrode assembly for a water electrolysis device according to any one of the fifteenth to twentieth aspects, wherein the fibrous material in the cathode-side electrode catalyst layer is A membrane for a water electrolysis device that is a polymeric fiber, wherein the average fiber diameter of the fibrous substance is within the range of 100 nm or more and 500 nm or less, and the average fiber length of the fibrous substance is within the range of 1.0 ⁇ m or more and 40 ⁇ m or less.
  • An electrode assembly is provided.
  • a structure in which fibrous substances are entangled is suitably formed in the cathode electrode catalyst layer, so that the strength of the cathode electrode catalyst layer is further increased and cracks are prevented from occurring. It can be controlled more.
  • a twenty-second aspect of the present disclosure is the membrane electrode assembly for a water electrolysis device according to any one of the fourteenth to twenty-first aspects, wherein the fibrous material in the anode side electrode catalyst layer is Provided is a membrane electrode assembly for a water electrolysis device, wherein the average fiber diameter is within the range of 100 nm or more and 500 nm or less, and the average fiber length of the fibrous material is within the range of 1.0 ⁇ m or more and 40 ⁇ m or less.
  • the strength of the anode side electrode catalyst layer is further increased, and the occurrence of cracks is prevented. It can be controlled more.
  • a twenty-third aspect of the present disclosure is the membrane electrode assembly for a water electrolysis device according to any one of the fifteenth to twenty-first aspects, wherein the catalyst-containing substance in the cathode side electrode catalyst layer is , catalyst-supporting particles having a catalyst and a carrier supporting the catalyst, wherein the fibrous material in the cathode side electrode catalyst layer is carbon fiber, and the blending amount of the fibrous material is based on the mass of the carrier.
  • the ratio is within the range of 0.3 times or more and 1.5 times or less.
  • a structure in which carbon fibers are entangled is suitably formed in the cathode side electrode catalyst layer, so that the strength of the cathode side electrode catalyst layer is further increased and the occurrence of cracks is further suppressed. can.
  • a twenty-fourth aspect of the present disclosure is the membrane electrode assembly for a water electrolysis device according to any one of the fifteenth to twenty-first and twenty-third aspects, wherein the catalyst in the cathode side electrode catalyst layer is The contained substance is catalyst-supporting particles having a catalyst and a carrier supporting the catalyst, the fibrous material in the cathode side electrode catalyst layer is a polymer fiber, and the amount of the fibrous material is:
  • the mass of the carrier is 0.05 times or more and 0.3 times or less.
  • a structure in which carbon fibers are entangled is suitably formed in the cathode side electrode catalyst layer, so that the strength of the cathode side electrode catalyst layer is further increased and the occurrence of cracks is further suppressed. can.
  • a twenty-fifth aspect of the present disclosure is the membrane electrode assembly for a water electrolysis device according to any one of the fourteenth to twenty-fourth aspects, wherein the fibrous material in the anode side electrode catalyst layer is Provided is a membrane electrode assembly for a water electrolysis device in which the content is in the range of 0.5% by mass or more and 20% by mass or less.
  • the amount of fibrous material is suitable for inclusion in the anode side electrode catalyst layer, and a structure in which the fibrous materials are entangled is suitably formed, so that the anode side electrode The strength of the catalyst layer is further increased, and the occurrence of cracks is further suppressed.
  • a twenty-sixth aspect of the present disclosure is the membrane electrode assembly for a water electrolysis device according to any one of the fifteenth to twenty-fourth aspects, wherein the anode-side electrode catalyst layer contains the fibrous material.
  • a membrane electrode assembly for a water electrolysis device in which the ratio R (DF1/DF2) of the content rate (DF1) of the fibrous substance in the cathode side electrode catalyst layer to the content rate (DF2) is greater than 1.
  • the strength of the anode side electrode catalyst layer is further increased, and when forming the anode side electrode catalyst layer after forming the cathode side electrode catalyst layer, the strength of the polymer electrolyte membrane is increased. Deformation and cracking can be further suppressed.
  • a twenty-seventh aspect of the present disclosure is the membrane electrode assembly for a water electrolysis device according to the twenty-sixth aspect, wherein the fibrous material in the cathode side electrode catalyst layer is carbon fiber, and the ratio R is 5.
  • a membrane electrode assembly for a water electrolysis device having a particle size of 30 or less. According to the membrane electrode assembly for a water electrolysis device, when the ratio R is within the above range, the strength of the anode side electrode catalyst layer is further increased, and after the cathode side electrode catalyst layer is formed, the anode side electrode When forming the catalyst layer, deformation and cracking of the polymer electrolyte membrane can be further suppressed.
  • a twenty-eighth aspect of the present disclosure is the membrane electrode assembly for a water electrolysis device according to the twenty-sixth aspect, wherein the fibrous material in the cathode electrode catalyst layer is a polymer fiber, and the ratio R is Provided is a membrane electrode assembly for a water electrolysis device having a particle diameter of 1.1 or more and 15 or less. According to the membrane electrode assembly for a water electrolysis device, when the ratio R is within the above range, the strength of the anode side electrode catalyst layer is further increased, and after the cathode side electrode catalyst layer is formed, the anode side electrode When forming the catalyst layer, deformation and cracking of the polymer electrolyte membrane can be further suppressed.
  • a twenty-ninth aspect of the present disclosure is the membrane electrode assembly for a water electrolysis device according to any one of the fourteenth to twenty-eighth aspects, wherein the cathode-side electrode catalyst layer and the anode-side electrode catalyst layer
  • the present invention provides a membrane electrode assembly for a water electrolysis device, in which the polymer electrolyte is an ionomer, and the fibrous material is an ionomer-adsorbing fiber having a property of adsorbing the ionomer.
  • the polymer electrolyte is an ionomer
  • the strength of the electrode catalyst layer which is an ionomer-adsorbing fiber in which the fibrous substance has the property of adsorbing the ionomer, is increased, and the membrane-electrode bonding High water electrolysis performance can be obtained in a water electrolysis device equipped with a body.
  • a 30th aspect of the present disclosure includes a cathode, a membrane electrode assembly, and an anode in this order, and the membrane electrode assembly is a membrane electrode for a water electrolysis device on any one of the 14th to 29th aspects.
  • a water electrolysis device that is a bonded body. Since the water electrolysis device of the present disclosure includes the above-described membrane electrode assembly for a water electrolysis device, the water electrolysis device of the present disclosure suppresses the occurrence of cracks in the anode side electrode catalyst layer in the membrane electrode assembly. Ru. Therefore, when a voltage is applied between the cathode and the anode, the potential distribution in the electrode catalyst layer included in the membrane electrode assembly is suppressed from being disturbed, and water electrolysis performance is prevented from deteriorating. and improves durability.
  • a laminate for a water electrolysis device a membrane electrode assembly for a water electrolysis device, and a water electrolysis device that can suppress the occurrence of cracks in an electrode catalyst layer.
  • FIG. 1 is a cross-sectional view showing an embodiment of a laminate for a water electrolysis device according to the present disclosure.
  • 2 is a diagram schematically and partially showing the main part of the electrode catalyst layer in FIG. 1.
  • FIG. 3 is a cross-sectional view showing an example of the catalyst-containing material shown in FIG. 2.
  • FIG. FIG. 1 is a cross-sectional view showing an embodiment of a membrane electrode assembly for a water electrolysis device according to the present disclosure.
  • 5 is a diagram schematically and partially showing the main part of the second electrode catalyst layer in FIG. 4.
  • FIG. FIG. 1 is a cross-sectional view showing an embodiment of the water electrolysis device of the present disclosure.
  • 2 is a cross-sectional view schematically showing another example of the electrode catalyst layer of FIG. 1.
  • FIG. 1 is a cross-sectional view showing an embodiment of the laminate for water electrolysis device of the present disclosure
  • FIG. 2 is a view schematically and partially showing an example of the electrode catalyst layer of FIG. 1
  • FIG. 2 is a cross-sectional view showing an example of a catalyst-containing material.
  • a laminate for a water electrolysis device (hereinafter simply referred to as a "laminate") 100 includes a polymer electrolyte membrane 10 and an electrode catalyst layer provided on one surface of the polymer electrolyte membrane 10. 20.
  • the electrode catalyst layer 20 includes a catalyst-containing material 21, a polymer electrolyte 22, and a fibrous material 23 (see FIG. 2).
  • the electrode catalyst layer 20 will be described as an electrode catalyst layer (cathode side electrode catalyst layer) disposed on the cathode (reducing electrode) side.
  • the electrode catalyst layer 20 includes the catalyst-containing substance 21, the polymer electrolyte 22, and the fibrous substance 23, so that the occurrence of cracks in the electrode catalyst layer 20 can be suppressed. Therefore, the laminate 100 suppresses disturbance of the potential distribution in the electrode catalyst layer 20 when a voltage is applied to the membrane electrode assembly in a water electrolysis device equipped with a membrane electrode assembly having the laminate 100. , it is possible to suppress the water electrolysis performance of the water electrolysis device from deteriorating, and it is possible to improve the durability of the water electrolysis device.
  • the polymer electrolyte membrane 10 is made of a polymer material having proton conductivity.
  • a fluorine-based polymer electrolyte membrane or a hydrocarbon-based polymer electrolyte membrane can be used.
  • fluoropolymer electrolyte membranes include Nafion (registered trademark) manufactured by DuPont, Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd., Aciplex (registered trademark) manufactured by Asahi Kasei Corporation, and Gore Select (registered trademark) manufactured by Gore. etc. can be used.
  • hydrocarbon polymer electrolyte membrane for example, polymer electrolyte membranes such as sulfonated polyether ketone, sulfonated polyether sulfone, sulfonated polyether ether sulfone, sulfonated polysulfide, and sulfonated polyphenylene can be used.
  • polymer electrolyte membranes such as sulfonated polyether ketone, sulfonated polyether sulfone, sulfonated polyether ether sulfone, sulfonated polysulfide, and sulfonated polyphenylene can be used.
  • the thickness of the polymer electrolyte membrane 10 is not particularly limited, but is usually 20 to 250 ⁇ m, preferably 20 to 80 ⁇ m.
  • the thickness of the polymer electrolyte membrane 10 is within the above range, the mechanical durability of the polymer electrolyte membrane 10 can be maintained, proton resistance can be reduced, and electrolytic performance can be improved. That is, by having the thickness of the polymer electrolyte membrane 10 within the above range, the mechanical durability of the polymer electrolyte membrane 10 and high proton conductivity are compatible, and the water electrolysis performance in the water electrolysis device is improved. Can be done.
  • the electrode catalyst layer 20 is an electrode catalyst layer placed on the cathode side.
  • the electrode catalyst layer 20 includes a catalyst-containing substance 21 , a polymer electrolyte 22 , and a fibrous substance 23 .
  • the catalyst-containing substance 21 contains a catalyst (hereinafter also referred to as "cathode catalyst") that performs a reduction reaction using protons.
  • a catalyst hereinafter also referred to as "cathode catalyst”
  • metals included in the platinum group metals other than the platinum group, alloys of these metals, oxides, double oxides, etc. can be used.
  • Metals included in the platinum group include platinum, palladium, ruthenium, iridium, rhodium, and osmium.
  • metals other than platinum group include iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, and aluminum.
  • the double oxide herein refers to an oxide containing two types of metals.
  • the cathode catalyst is composed of a metal included in the platinum group. If it is one or more metals selected from platinum, gold, palladium, rhodium, ruthenium, and iridium, it exhibits high activity and therefore has excellent electrode reactivity, and the electrode reaction can be carried out efficiently and stably. Can be done.
  • the catalyst is usually particulate.
  • the average particle diameter of the particulate catalyst is preferably 20 nm or less, more preferably 5 nm or less. In this case, the activity of the catalyst is further improved. Furthermore, from the viewpoint of stability of catalyst activity, the average particle diameter of the particulate catalyst is preferably 0.5 nm or more, more preferably 1 nm or more.
  • the catalyst-containing material 21 may further include, in addition to the catalyst 21a, a conductive carrier 21b that supports the catalyst 21a. That is, the catalyst-containing substance 21 may be catalyst-supported particles.
  • the carrier 21b may be any material as long as it has conductivity and can support the catalyst 21a without being corroded by the catalyst 21a. As such a carrier 21b, carbon particles can preferably be used because they exhibit high electronic conductivity.
  • the carbon particles are not limited as long as they are fine particles, have conductivity, and are not eroded by the catalyst 21a.
  • carbon black for example, carbon black, graphite, graphite, activated carbon, carbon fiber, carbon nanotube, or fullerene can be used.
  • Carbon black is at least one type selected from the group consisting of acetylene black, furnace black, and Ketjen black.
  • the average particle size of the carbon particles is preferably 10 nm or more. In this case, electron conduction paths are more likely to be formed in the electrode catalyst layer 20. Further, from the viewpoint of reducing the resistance value of the electrode catalyst layer 20 and increasing the amount of catalyst supported, the average particle size of the carbon particles is preferably within a range of 1000 nm or less, and preferably within a range of 100 nm or less. More preferably, it is included.
  • the average particle size is the arithmetic mean value of the particle sizes of at least 20 carbon particles observed with a scanning electron microscope (SEM), and the particle size refers to the carbon particle as a circle. It refers to the diameter when approximated, and is obtained by calculating the diameter when the cross-sectional area of the carbon particle is taken as the area of a circle.
  • the carrier 21b may be covered with a hydrophobic film.
  • the hydrophobic film imparts hydrophobicity to the carrier 21b and has gas permeability that allows hydrogen gas to pass therethrough.
  • the thickness of the hydrophobic coating is preferably 40 nm or less.
  • the thickness of the hydrophobic coating is preferably 2 nm or more.
  • An example of the constituent material of the hydrophobic coating is a fluorine-based compound having at least one polar group.
  • the polar group is composed of at least one selected from the group consisting of, for example, a hydroxyl group, an alkoxy group, a carboxyl group, an ester group, an ether group, a carbonate group, and an amide group.
  • a hydrophobic film having a polar group is easily fixed to the outermost surface of the carrier 21b.
  • An example of a moiety other than a polar group in a fluorine-based compound is a fluoroalkyl skeleton.
  • polymer electrolyte As the polymer electrolyte 22, a polymer electrolyte having proton conductivity can be used. As a specific example of the polymer electrolyte 22, for example, a fluorine-based polymer electrolyte or a hydrocarbon-based polymer electrolyte can be used. As the fluorine-based polymer electrolyte, for example, Nafion (registered trademark) material manufactured by DuPont, etc. can be used.
  • hydrocarbon polymer electrolyte for example, electrolytes such as sulfonated polyether ketone, sulfonated polyether sulfone, sulfonated polyether ether sulfone, sulfonated polysulfide, and sulfonated polyphenylene can be used.
  • the polymer electrolyte 22 may be made of the same polymer electrolyte as the polymer electrolyte membrane 10, or may be made of a different polymer electrolyte from the polymer electrolyte membrane 10.
  • the polymer electrolyte membrane 10 when considering the interfacial resistance at the interface between the polymer electrolyte membrane 10 and the electrode catalyst layer 20 and the rate of dimensional change in the polymer electrolyte membrane 10 and the electrode catalyst layer 20 when the humidity changes, the polymer electrolyte membrane 10
  • the polymer electrolyte contained in the electrode catalyst layer 20 and the polymer electrolyte 22 contained in the electrode catalyst layer 20 are preferably the same electrolytes or polymer electrolytes with thermal expansion coefficients close to each other.
  • the constituent material of the polymer electrolyte 22 is a fluorine-containing polymer electrolyte
  • the constituent material of the polymer electrolyte membrane 10 is also a fluorine-containing polymer.
  • it is an electrolyte.
  • the constituent material of the polymer electrolyte 22 is a hydrocarbon-based polymer electrolyte
  • it is preferable that the constituent material of the polymer electrolyte membrane 10 is also a hydrocarbon-based polymer electrolyte.
  • the fibrous material 23 may be any material as long as it is not eroded by the catalyst 21a and the polymer electrolyte 22, and is preferably carbon fiber, polymer fiber, or a mixture thereof.
  • the fibrous substance 23 makes it difficult for cracks to occur in the electrode catalyst layer 20 and increases the durability of the electrode catalyst layer 20.
  • the fibrous material 23 may include a Lewis acidic or Lewis basic functional group in the molecular structure of the material. This makes it easier for the polymer electrolyte 22 to exist around the fibrous substance 23.
  • the fibrous material 23 having Lewis acidic functional groups include carbon fibers and polymer fibers having hydroxyl groups, carbonyl groups, sulfonic acid groups, and phosphorous acid groups.
  • the fibrous substance 23 having a Lewis basic functional group include polymer fibers having an imide structure or an azole structure. Proton conductive sites such as sulfonyl groups contained in the polymer electrolyte 22 form hydrogen bonds with the Lewis acidic functional groups in the fibrous material 23, so that the polymer electrolyte 22 is formed around the fibrous material 23.
  • the fibrous material 23 when there is a basic functional group in the fibrous material 23, acidic proton conductive sites such as sulfonyl groups contained in the polymer electrolyte 22 are bonded with acid bases, resulting in a high concentration around the fibrous material 23. Molecular electrolyte 22 is more likely to exist. Since acid-base bonds have a stronger bonding force than hydrogen bonds, the fibrous material 23 preferably contains a Lewis basic functional group. Among these, it is preferable that the fibrous substance 23 has an azole structure.
  • the azole structure refers to a five-membered heterocyclic structure containing one or more nitrogen atoms, such as an imidazole structure and an oxazole structure.
  • the substance containing a nitrogen atom preferably has a benzazole structure such as a benzimidazole structure or a benzoxazole structure.
  • a benzazole structure such as a benzimidazole structure or a benzoxazole structure.
  • Specific examples of substances containing nitrogen atoms include polymers such as polybenzimidazole and polybenzoxazole.
  • the shape of the fibrous material 23 is not particularly limited, and may have a hollow structure or a solid structure, for example. Note that the fibrous substance 23 contained in the electrode catalyst layer 20 may be only one type of the above example, or may be a combination of two or more types.
  • the average fiber diameter of the fibrous material 23 is not particularly limited, but is preferably 100 nm or more and 1 ⁇ m or less, more preferably 5 ⁇ m or more and 50 ⁇ m or less.
  • generation of cracks in the electrode catalyst layer 20 is further suppressed.
  • the adhesion between the polymer electrolyte membrane 10 and the electrode catalyst layer 20 can also be improved. Therefore, the generation of voids due to separation between the polymer electrolyte membrane 10 and the electrode catalyst layer 20 can be suppressed, and an increase in the resistance of the membrane electrode assembly due to the voids can be further suppressed. From the above, according to the membrane electrode assembly, deterioration in water electrolysis performance can be further suppressed.
  • the average fiber diameter of the fibrous material 23 is the diameter measured for the exposed cross section of the fibrous material 23 when the cross section of the electrode catalyst layer 20 is observed using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the diameter is defined as the diameter of a perfect circle fitted along the short axis of the ellipse. say.
  • the surface of the fibrous material 23 rather than the cross section of the fibrous material 23 may be exposed. In that case, diameter refers to the width of the fiber perpendicular to the long axis of the exposed fibrous material 23.
  • the average fiber diameter of the fibrous material 23 refers to the arithmetic mean value of fiber diameters obtained by measuring in the same manner at at least 20 observation points.
  • the average fiber diameter of the fibrous material 23 may be 10 nm or more and 1 ⁇ m or less, or 100 nm or more and 200 nm or less.
  • the average fiber diameter of the fibrous material 23 is within the above range, cracking in the electrode catalyst layer 20 is further suppressed.
  • the adhesion between the polymer electrolyte membrane 10 and the electrode catalyst layer 20 can also be improved. Therefore, the generation of voids due to separation between the polymer electrolyte membrane 10 and the electrode catalyst layer 20 can be suppressed, and an increase in the resistance of the membrane electrode assembly due to the voids can be further suppressed. From the above, the laminate 100 and the membrane electrode assembly including the laminate 100 can further suppress deterioration in water electrolysis performance.
  • a method for exposing the cross section of the electrode catalyst layer 20 known methods such as ion milling and ultramicrotome can be used, for example.
  • the average fiber length of the fibrous substance 23 is not particularly limited, but is preferably 500 nm or more, more preferably 1 ⁇ m or more. In this case, the fibrous substances 23 are entangled to form pores of an appropriate size within the electrode catalyst layer 20, and the mechanical properties of the electrode catalyst layer 20 can be improved. However, the average fiber length of the fibrous substance 23 is preferably 100 ⁇ m or less, more preferably 40 ⁇ m or less. The average fiber length of the fibrous material 23 is the arithmetic mean value of the fiber lengths obtained by measuring the lengths of at least ten fibrous materials 23. The average fiber length of the fibrous material 23 in the electrode catalyst layer 20 can be determined by measuring particle size distribution using a solution in which the electrode catalyst layer 20 is dissolved in a solvent.
  • the correlation between the average fiber length determined by an electron microscope and the peak position in particle size distribution measurement is known in advance, and based on this correlation and the peak position determined by particle size distribution measurement, The average fiber length of the fibrous material 23 in the electrode catalyst layer 20 is determined.
  • the fibrous substance 23 may be a substance that has the property of adsorbing the polymer electrolyte 22 or a substance that does not have the property of adsorbing the polymer electrolyte 22, but it must be a substance that has the property of adsorbing the polymer electrolyte 22. is preferred. In this case, since the fibrous substance 23 is a substance that is adsorbed to the polymer electrolyte 22, cracks in the electrode catalyst layer 20 are further suppressed. Note that "a substance having the property of adsorbing a polymer electrolyte" refers to a substance capable of adsorbing 10 mg or more of a polymer electrolyte per gram of fibrous material.
  • the fibrous substance 23 is carbon fiber
  • examples of the carbon fiber include carbon fiber, carbon nanotube, and carbon nanohorn.
  • carbon nanofibers or carbon nanotubes are suitable in terms of conductivity and dispersibility.
  • the average fiber diameter of the carbon fibers is preferably 300 nm or less, more preferably 200 nm or less. When the average fiber diameter of the carbon fibers is 300 nm or less, appropriate fineness is ensured as a fiber material to be included in the electrode catalyst layer 20.
  • the average fiber diameter of the carbon fibers is preferably 50 nm or more, more preferably 100 nm or more. In this case, the appropriate thickness of the carbon fibers is ensured, the strength of the electrode catalyst layer 20 is further increased, and the occurrence of cracks is further suppressed.
  • the average fiber length of the carbon fibers is preferably within the range of 1.0 ⁇ m or more and 20 ⁇ m or less.
  • pores of an appropriate size can be formed in the electrode catalyst layer 20 due to the entanglement of the fibrous substances 23, and the capillary force of the pores allows the reaction to occur. It is possible to balance the supply of substances and the dissipation of produced substances, and it is possible to improve the water electrolysis performance of the water electrolysis device. Further, when the average fiber length of the carbon fibers is within the above numerical range, the strength of the electrode catalyst layer 20 can be improved.
  • the average fiber diameter of the carbon fibers is within the range of 100 nm or more and 300 nm or less, it is preferable that the average fiber length of the carbon fibers is within the range of 1.0 ⁇ m or more and 20 ⁇ m or less.
  • the strength of the electrode catalyst layer 20 is further increased, and the occurrence of cracks can be further suppressed.
  • the amount of carbon fiber blended is preferably 10 parts by mass or more and 200 parts by mass or less, more preferably 20 parts by mass or more and 100 parts by mass or less, based on 100 parts by mass of the catalyst. In this case, since a structure in which carbon fibers are entangled is suitably formed, the strength of the electrode catalyst layer 20 is further increased, and the occurrence of cracks can be further suppressed.
  • the catalyst-containing substance 21 contains the carrier 21b
  • the amount of carbon fiber blended is 30 parts by mass or more and 150 parts by mass or less, based on the carrier 21b in the catalyst-containing substance 21 (100 parts by mass). It may be within the range.
  • the blending amount of carbon fiber is preferably in the range of 5 parts by mass or more and 50 parts by mass or less based on 100 parts by mass of the conductive carrier 21b.
  • the conductive carrier 1b is preferably carbon particles because they have good electronic conductivity and can be obtained at low cost.
  • the fibrous substance 23 is a polymer fiber, an ionomer adsorption fiber, a conductive polymer nanofiber, a proton conductive polymer fiber, or the like is used as the polymer fiber.
  • a polymer fiber having a cation exchange group can be used as the ionomer adsorption fiber.
  • cation exchange groups include hydroxyl groups, carbonyl groups, sulfonic acid groups, phosphorous acid groups, and amino groups.
  • Proton conductive polymer fibers can be used as the polymer fibers.
  • a proton conduction path is formed in the polymer fibers, the proton conductivity in the electrode catalyst layer 20 is improved, and high electrolysis performance can be imparted to the water electrolysis device. That is, in the electrode catalyst layer 20, the proton conductivity is increased due to the formation of a linear proton conductive network, and voltage loss during water electrolysis in the water electrolysis device can be suppressed.
  • the proton-conducting polymer fiber may be any polymer fiber obtained by processing a proton-conducting polymer into a fibrous form.
  • a fluorine-based polymer electrolyte, a hydrocarbon-based polymer electrolyte, or the like can be used as a material for forming the proton-conducting polymer fiber.
  • the polymer fiber is an ionomer-adsorbing fiber and the polymer electrolyte is an ionomer.
  • the ionomer-adsorbing fiber is a fibrous substance that has the property of adsorbing an ionomer as a polymer electrolyte.
  • the strength of the electrode catalyst layer 20 is increased, and high water electrolysis performance is obtained in a water electrolysis device equipped with a membrane electrode assembly having the laminate 100 described above. The reason for this is thought to be as follows. That is, the strength of the electrode catalyst layer 20 is increased by the entanglement of the ionomer-adsorbed fibers.
  • the ionomer can be strongly adsorbed on the surface of the ionomer-adsorbing fiber, the strength of the electrode catalyst layer 20 can be further increased. Furthermore, since a proton conduction path is formed by the ionomer, high water electrolysis performance can be obtained. In particular, when the ionomer-adsorbing fiber is a polymer fiber having a cation exchange group, the proton conductivity becomes high due to the linear proton conductive network formed on the polymer fiber.
  • the polymer fiber has a cation exchange group
  • this cation exchange group can ionically bond with the polymer electrolyte and strongly adsorb the polymer electrolyte, thereby improving the adhesion between the polymer fiber and the polymer electrolyte. can be increased.
  • the amount of ionomer adsorbed on the ionomer-adsorbing fiber is 10 mg or more per 1 g of ionomer-adsorbing fiber, but per 1 g of ionomer-adsorbing fiber, It is preferably 200 mg or more, more preferably 500 mg or more.
  • the amount of ionomer adsorbed on the ionomer-adsorbing fiber is preferably 4000 mg or less, more preferably 2000 mg or less per 1 g of ionomer-adsorbing fiber.
  • the amount of ionomer adsorbed on the ionomer-adsorbing fibers can be determined by bringing the ionomer-adsorbing fibers into contact with a dispersion liquid containing an ionomer at a predetermined concentration C1, and filtering the ionomer-adsorbing fibers with a predetermined filter (for example, diameter 0.3 to 0.5 ⁇ m). Then, the concentration C2 of the ionomer contained in the filtrate can be measured and calculated based on the value of C2-C1.
  • the average fiber diameter of the polymer fibers is preferably 500 nm or less, more preferably 400 nm or less.
  • an appropriate fineness is ensured as a fiber material to be included in the electrode catalyst layer 20.
  • the average fiber diameter of the polymer fiber is 100 nm or more. In this case, the appropriate thickness of the polymer fibers is ensured, the strength of the electrode catalyst layer 20 is increased, and the occurrence of cracks is further suppressed.
  • the average fiber length of the polymer fiber is preferably within the range of 1.0 ⁇ m or more and 40 ⁇ m or less. If the average fiber length of the polymer fibers is within the above numerical range, pores of a suitable size can be formed in the cathode electrode catalyst layer. In particular, when the average fiber diameter of the polymer fiber is within the range of 100 nm or more and 500 nm or less, it is preferable that the average fiber length of the polymer fiber is within the range of 1.0 ⁇ m or more and 40 ⁇ m or less. In this case, since a structure in which the fibrous substances 23 are intertwined is suitably formed in the electrode catalyst layer 20, the strength of the electrode catalyst layer 20 is further increased, and the occurrence of cracks can be further suppressed.
  • the blending amount of the polymer fiber is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 2 parts by mass or more and 10 parts by mass or less, based on 100 parts by mass of the catalyst.
  • the strength of the electrode catalyst layer 20 is further increased, and the occurrence of cracks can be further suppressed.
  • the catalyst-containing substance 21 contains the carrier 21b
  • the blending amount of the polymer fiber is 5 parts by mass or more and 30 parts by mass or less, based on the carrier 21b in the catalyst-containing substance 21 (100 parts by mass).
  • the amount of polymer fiber blended is in the range of 5 parts by mass or more and 30 parts by mass or less based on 100 parts by mass of the conductive carrier 21b. It may be within.
  • the blending amount of the polymer fiber is preferably in the range of 5 parts by mass or more and 20 parts by mass or less based on 100 parts by mass of the conductive carrier 21b.
  • the conductive carrier 1b is preferably carbon particles because they have good electronic conductivity and can be obtained at low cost.
  • a polymer fiber having a cation exchange group can be used as the ionomer adsorption fiber.
  • proton conductivity is high due to the linear proton conductive network formed on the polymer fiber.
  • this cation exchange group can ionically bond with the polymer electrolyte and strongly adsorb the polymer electrolyte, thereby improving the adhesion between the polymer fiber and the polymer electrolyte. can be increased.
  • cation exchange groups include hydroxyl groups, carbonyl groups, sulfonic acid groups, phosphorous acid groups, and amino groups.
  • the electrode catalyst layer 20 may include a polymer fiber aggregate 26 obtained by entangling polymer fibers as the fibrous material 23. Further, the electrode catalyst layer 20 may further include voids 25 surrounding the aggregates 26.
  • the reference numeral 24 represents the catalyst-containing substance 21 and the polymer electrolyte 22 .
  • the size of the voids 25 surrounding the aggregates 26 is preferably 20 ⁇ m or less. In this case, since the voids 25 in the electrode catalyst layer 20 are small, the occurrence of cracks in the electrode catalyst layer 20 can be more fully suppressed, and a decrease in water electrolysis performance can be suppressed.
  • the reason why the deterioration of water electrolysis performance is suppressed is considered to be as follows. That is, when the size of the voids 25 is 20 ⁇ m or less, the voids 25 are difficult to form along the interface between the electrode catalyst layer 20 and the polymer electrolyte membrane 10 due to the aggregates 26, and conduction of electrons or protons is inhibited. It is thought that this is because it becomes difficult for the water to split, and since there is almost no catalyst present near the aggregates 26, it becomes difficult for portions that cannot contribute to the water splitting reaction to occur.
  • the size of the void 25 surrounding the aggregate 26 is more preferably 10 ⁇ m or less, particularly preferably 5 ⁇ m or less.
  • the size of the voids 25 is preferably 0 ⁇ m, but may be larger than the average fiber diameter of the polymer fibers constituting the aggregate. Furthermore, when the average fiber length of the polymer fibers is 20 ⁇ m or less, it is preferable that the size of the voids 25 surrounding the aggregates 26 be equal to or less than the average fiber length of the polymer fibers. In this case, since the voids 25 in the electrode catalyst layer 20 are small, the generation of cracks in the electrode catalyst layer 20 can be more fully suppressed, and as a result, the deterioration of water splitting performance is suppressed.
  • the size of the voids 25 surrounding the aggregates 26 is more preferably 0.5 times or less the average fiber length of the polymer fibers, particularly preferably 0.25 times or less the average fiber length of the polymer fibers. .
  • the size of the voids 25 is preferably 0 times the average fiber length of the polymer fibers.
  • the size of the voids 25 refers to the average value of the maximum size of the voids 25 observed in each of the three cross sections in the thickness direction of the electrode catalyst layer 20.
  • the size of the gap 25 refers to the straight distance between one end of the gap 25 and the other end that is farthest from the one end.
  • the method for manufacturing the laminate 100 includes a catalyst ink preparation step of preparing a catalyst ink, and an electrode catalyst layer forming step of applying the catalyst ink to one surface of the polymer electrolyte membrane 10 to form the electrode catalyst layer 20. .
  • the catalyst ink preparation step the catalyst ink is prepared by mixing each component constituting the electrode catalyst layer 20, that is, the catalyst-containing substance 21, the polymer electrolyte 22, and the fibrous substance 23 using a dispersion medium.
  • the dispersion medium of the catalyst ink is not particularly limited as long as it does not corrode each component constituting the electrode catalyst layer 20 and can dissolve the polymer electrolyte 22 in a highly fluid state or disperse it as a fine gel. do not have. However, it is desirable that the dispersion medium contains at least a volatile organic solvent.
  • the dispersion medium for the catalyst ink may be water, alcohols, ketones, polar solvents other than these, ether solvents, and the like. Specifically, alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, and the like.
  • ketones include acetone, methyl ethyl ketone, methyl butyl ketone, methyl isobutyl ketone, methyl amyl ketone, pentanone, heptanone, cyclohexanone, methyl cyclohexanone, acetonylacetone, diethyl ketone, dipropyl ketone, diisobutyl ketone, and the like.
  • polar solvents other than water, alcohols and ketones include dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, diethylene glycol, diacetone alcohol, and 1-methoxy-2-propanol.
  • the ether solvent examples include tetrahydrofuran, dioxane, diethylene glycol dimethyl ether, anisole, methoxytoluene, dibutyl ether, and the like.
  • the dispersion medium may be a mixed solvent in which two or more of the above-mentioned solvents are mixed.
  • the dispersion medium when using a lower alcohol as a dispersion medium, it is preferable to use a mixed solvent of a lower alcohol and water from the viewpoint of further suppressing ignition of the dispersion medium. Furthermore, when the polymer electrolyte 22 is an ionomer, it is preferable that the dispersion medium contains water that is compatible with the ionomer, that is, water that has a high affinity for the ionomer. The content of water in the dispersion medium is not particularly limited as long as the ionomer does not separate and cause cloudiness or gelation.
  • a dispersant may be included in the catalyst ink in order to disperse the catalyst-containing substance 21 in the catalyst ink.
  • dispersants are anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants.
  • the content of solids in the catalyst ink is preferably 50% by mass or less. In this case, the occurrence of cracks on the surface of the electrode catalyst layer 20 is further suppressed. From the viewpoint of improving the film formation rate of the electrode catalyst layer 20, the solid content in the catalyst ink is more preferably 1% by mass or more.
  • a dispersion treatment may be performed as necessary. Further, in the process of preparing a catalyst ink containing polymer fibers, the polymer fibers may be dispersed in a dispersion medium in advance, and then mixed with other materials and subjected to a dispersion treatment if necessary.
  • the dispersion treatment is not particularly limited as long as it can disperse each component contained in the electrode catalyst layer 20. Examples of such treatment include treatment with a planetary ball mill and roll mill, treatment with a shear mill, treatment with a wet mill, ultrasonic dispersion treatment, and treatment with a homogenizer.
  • Electrode catalyst layer formation process for example, the catalyst ink obtained in the catalyst ink preparation step is applied to one surface of the polymer electrolyte membrane 10, and then the electrode catalyst layer 20 is formed by performing a drying process to volatilize the dispersion medium. A laminate 100 is obtained.
  • the electrode catalyst layer 20 is formed directly on the surface of the polymer electrolyte membrane 10. Therefore, the adhesion between the polymer electrolyte membrane 10 and the electrode catalyst layer 20 increases. Moreover, since pressurization for joining the electrode catalyst layer 20 is not necessary, crushing of the electrode catalyst layer 20 can be suppressed.
  • the polymer electrolyte membrane 10 generally has a characteristic of large degrees of swelling and contraction, so when the catalyst ink is applied onto the polymer electrolyte membrane 10, the catalyst ink is applied onto the base material and the electrode catalyst is formed. After forming the layer 20, the volume change of the polymer electrolyte membrane 10 is large compared to the case where the electrode catalyst layer 20 is transferred to the polymer electrolyte membrane 10. Therefore, if the catalyst ink does not contain the fibrous material 23, cracks are likely to occur in the electrode catalyst layer 20.
  • the catalyst ink contains the fibrous substance 23, even if the volume of the polymer electrolyte membrane 10 changes greatly by directly coating the catalyst ink on the polymer electrolyte membrane 10, the catalyst ink Since the electrode catalyst layer 20 contains the fibrous material 23, the occurrence of cracks in the electrode catalyst layer 20 is suppressed.
  • the method for applying the catalyst ink is not particularly limited, and various methods can be used. From the viewpoint of coating the catalyst ink with a uniform film thickness on the surface of the electrode catalyst layer 20, the coating method includes, for example, a doctor blade method, a die coating method, a curtain coating method, a dipping method, a spray coating method, a screen printing method, A roll coating method or the like can be preferably used.
  • the drying method used in the drying process is not particularly limited as long as it can volatilize the dispersion medium, and methods using an oven, hot plate, warm air drying, far infrared rays, etc. can be used. Further, the drying temperature and drying time in the drying process can be appropriately selected depending on the material constituting the catalyst ink.
  • the drying temperature of the catalyst ink may be, for example, within the range of 40°C or higher and 200°C or lower, preferably within the range of 40°C or higher and 120°C or lower.
  • the drying time of the catalyst ink may be, for example, from 0.5 minutes to 1 hour, preferably from 1 minute to 30 minutes.
  • the catalyst ink is applied to the surface of the polymer electrolyte membrane 10.
  • the electrode catalyst layer 20 is formed by performing a drying process to volatilize the dispersion medium, and then, after joining the electrode catalyst layer 20 to the polymer electrolyte membrane 10, the base material is peeled off. A transfer process may also be performed.
  • the base material may be any material as long as it has good transferability, and for example, a fluororesin can be used.
  • fluororesins include ethylenetetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroperfluoroalkyl vinyl ether copolymer (PFA), and polytetrafluoroethylene (PTFE). ) etc.
  • base materials include polyimide, polyethylene terephthalate, polyamide (nylon (registered trademark)), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, polyethylene naphthalate, etc.
  • Organic polymer compounds other than fluororesins can also be used.
  • the base material may be in the form of a sheet or a film.
  • a transfer method using thermocompression bonding can be used as the transfer process.
  • FIG. 4 is a cross-sectional view showing an embodiment of the membrane electrode assembly for a water electrolysis device of the present disclosure
  • FIG. 5 is a view schematically and partially showing an example of an electrode catalyst layer provided in the laminate shown in FIG. It is.
  • a membrane electrode assembly for a water electrolysis device (hereinafter simply referred to as “membrane electrode assembly”) 200 includes a laminate 100 and a second electrode catalyst layer 30.
  • the second electrode catalyst layer 30 and the electrode catalyst layer 20 of the stacked body 100 are provided so as to sandwich the polymer electrolyte membrane 10 therebetween. That is, the membrane electrode assembly 200 includes an electrode catalyst layer 20, a polymer electrolyte membrane 10, and a second electrode catalyst layer 30 in this order.
  • the electrode catalyst layer 20 includes a catalyst-containing substance 21, a polymer electrolyte 22, and a fibrous substance 23 (see FIG. 2)
  • the second electrode catalyst layer 30 includes a catalyst-containing substance 31, a polymer electrolyte 32, and a fibrous substance 33.
  • the second electrode catalyst layer 30 will be described as an electrode catalyst layer (anode-side electrode catalyst layer) disposed on the anode (oxidation electrode) side.
  • the electrode catalyst layer 20 includes the catalyst-containing substance 21, the polymer electrolyte 22, and the fibrous substance 23, and the second electrode catalyst layer 30 includes the catalyst-containing substance 31, the polymer electrolyte 32, and the like. and fibrous material 33, it is possible to suppress the occurrence of cracks in the electrode catalyst layer 20 and the second electrode catalyst layer 30. Therefore, when a voltage is applied to the membrane electrode assembly 200 in a water electrolysis device equipped with the membrane electrode assembly 200, the potential distribution in the electrode catalyst layer 20 and the second electrode catalyst layer 30 is disturbed. is suppressed, the water electrolysis performance of the water electrolysis device can be suppressed from deteriorating, and the durability of the water electrolysis device can be improved.
  • the second electrode catalyst layer 30 is an electrode catalyst layer disposed on the anode side, and includes a catalyst-containing material 31, a polymer electrolyte 32, and a fibrous material 33.
  • the catalyst-containing substance 31 is a catalyst-containing substance that performs an oxidation reaction.
  • the catalyst-containing substance 31 contains a catalyst (hereinafter also referred to as "anode catalyst") for performing an oxidation reaction in the anode fluid.
  • a catalyst hereinafter also referred to as "anode catalyst" for performing an oxidation reaction in the anode fluid.
  • Water such as ultrapure water, is used as the anode fluid.
  • the anode catalyst for example, a metal included in the platinum group, a metal other than the platinum group, or an alloy, oxide, double oxide, or carbide of these metals can be used. These can be used alone or in combination of two or more.
  • the anode catalyst is composed of a metal included in the platinum group. If it is one or more metals selected from platinum, gold, palladium, rhodium, ruthenium, and iridium, it exhibits high activity and therefore has excellent electrode reactivity, and the electrode reaction can be carried out efficiently and stably. Can be done.
  • the catalyst-containing material 31 may further include a conductive carrier supporting the catalyst. That is, the catalyst-containing material 31 may be catalyst-supported particles.
  • the carrier may be any material that has electrical conductivity and is not eroded in an oxidizing atmosphere (that is, has resistance to oxidative loss). Examples of such a carrier include titanium, tin, zirconium, or two or more of these. Examples include oxides containing
  • the average particle size of the carrier is preferably 10 nm or more. In this case, electron conduction paths are more likely to be formed.
  • the average particle size of the carrier is preferably 1000 nm or less, more preferably 100 nm or less.
  • the average particle size is the average particle size determined from the SEM image, and is determined in the same manner as the average particle size of the carbon particles as the carrier 21b.
  • polymer electrolyte 32 is the same as the polymer electrolyte 22 of the electrode catalyst layer 20 described above, and the fibrous material 33 is the same as the fibrous material 23 of the electrode catalyst layer 20 described above. The same is true.
  • the fibrous material 33 includes polymer fibers. In this case, cracks are particularly difficult to occur in the anode side electrode catalyst layer 30, and durability tends to be high.
  • the average fiber diameter of the fibrous material 33 is preferably 500 nm or less, more preferably 400 nm or less.
  • an appropriate fineness is ensured as a fibrous material to be included in the anode side electrode catalyst layer 30.
  • the average fiber diameter of the fibrous substance 33 is 100 nm or more. In this case, an appropriate thickness is ensured in the fibrous material 33, the strength of the anode side electrode catalyst layer 30 is increased, and the occurrence of cracks is further suppressed.
  • the average fiber length of the fibrous material 33 is preferably within the range of 1.0 ⁇ m or more and 40 ⁇ m or less. If the average fiber length of the fibrous material 33 is within the above numerical range, pores of a suitable size can be formed in the anode side electrode catalyst layer 30. In particular, when the average fiber diameter of the fibrous material 33 is within the range of 100 nm or more and 500 nm or less, it is preferable that the average fiber length of the fibrous material 33 is within the range of 1.0 ⁇ m or more and 40 ⁇ m or less. In this case, since a structure in which the fibrous substances 33 are entangled is suitably formed in the anode side electrode catalyst layer 30, the strength of the anode side electrode catalyst layer 30 is further increased, and the occurrence of cracks can be further suppressed.
  • the content of the fibrous substance 33 in the second electrode catalyst layer 30 is preferably in the range of 0.5% by mass or more and 20% by mass or less, and preferably in the range of 5% by mass or more and 15% by mass or less. is more preferable.
  • the amount of fibrous material 33 is suitable for inclusion in the second electrode catalyst layer 30, and a structure in which the fibrous material 33 intertwines is suitably formed, so that the strength of the second electrode catalyst layer 30 is increased. and the occurrence of cracks is further suppressed.
  • the ratio R (DF2/DF1) of the content rate (DF2) of the fibrous substance 33 in the second electrode catalyst layer 30 to the content rate (DF1) of the fibrous substance 23 in the electrode catalyst layer 20 is greater than 1, although it may be less than 1, it is preferably greater than 1. In this case, the strength of the second electrode catalyst layer 30 is further increased, and deformation and cracking of the polymer electrolyte membrane 10 are further suppressed when forming the second electrode catalyst layer 30 after forming the electrode catalyst layer 20. can.
  • the ratio R is more preferably 5 or more and 30 or less, and even more preferably 10 or more and 20 or less.
  • the ratio R is within the above range, the strength of the second electrode catalyst layer 30 is further increased, and when forming the second electrode catalyst layer 30 after forming the electrode catalyst layer 20, the polymer electrolyte membrane 10 deformation and cracking can be further suppressed.
  • the ratio R is more preferably 1.1 or more and 15 or less, and more preferably 1.5 or more and 7 or less.
  • the strength of the second electrode catalyst layer 30 is further increased, and when forming the second electrode catalyst layer 30 after forming the electrode catalyst layer 20, the polymer electrolyte membrane 10 deformation and cracking can be further suppressed.
  • the shape of the second electrode catalyst layer 30 may be the same shape as the shape of the electrode catalyst layer 20 or a different shape. good. Furthermore, when the second electrode catalyst layer 30 is viewed in plan from the direction facing one surface of the polymer electrolyte membrane 10, the area of the second electrode catalyst layer 30 is smaller than the area of the polymer electrolyte membrane 10, but the area is higher than that of the polymer electrolyte membrane 10. Although the area may be greater than or equal to the area of the molecular electrolyte membrane 10, it is usually smaller than the area of the polymer electrolyte membrane 10.
  • the method for manufacturing the membrane electrode assembly 200 includes a catalyst ink preparation step of preparing a catalyst ink, and a catalyst ink is applied to both surfaces of the polymer electrolyte membrane 10 to form a cathode electrode catalyst layer 20 and an anode electrode catalyst layer 30. and forming an electrode catalyst layer. That is, the method for manufacturing the membrane electrode assembly 200 differs from the method for manufacturing the laminate 100 described above in the catalyst ink preparation step and the electrode catalyst layer formation step.
  • the anode side electrode catalyst layer is formed by mixing each component constituting the anode side electrode catalyst layer 30, that is, the catalyst-containing substance 31, the polymer electrolyte 32, and the fibrous substance 33 using a dispersion medium. This differs from the catalyst ink preparation step of the method for manufacturing the laminate 100 described above in that a catalyst ink for use is further prepared.
  • the dispersion medium of the catalyst ink is particularly limited as long as it does not corrode each component constituting the anode side electrode catalyst layer 30 and can dissolve the polymer electrolyte 32 in a highly fluid state or disperse it as a fine gel. It's not a thing. However, it is desirable that the dispersion medium contains at least a volatile organic solvent.
  • the dispersion medium for the catalyst ink may be water, alcohols, ketones, polar solvents other than these, ether solvents, and the like. Specifically, alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, and the like.
  • ketones include acetone, methyl ethyl ketone, methyl butyl ketone, methyl isobutyl ketone, methyl amyl ketone, pentanone, heptanone, cyclohexanone, methyl cyclohexanone, acetonylacetone, diethyl ketone, dipropyl ketone, diisobutyl ketone, and the like.
  • polar solvents other than water, alcohols and ketones include dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, diethylene glycol, diacetone alcohol, and 1-methoxy-2-propanol.
  • the ether solvent examples include tetrahydrofuran, dioxane, diethylene glycol dimethyl ether, anisole, methoxytoluene, dibutyl ether, and the like.
  • the dispersion medium may be a mixed solvent in which two or more of the above-mentioned solvents are mixed.
  • the dispersion medium when using a lower alcohol as the dispersion medium, it is preferable to use a mixed solvent of the lower alcohol and water from the viewpoint of further suppressing ignition of the dispersion medium. Furthermore, when the polymer electrolyte 32 is an ionomer, it is preferable that the dispersion medium contains water that is compatible with the ionomer, that is, water that has a high affinity for the ionomer. The content of water in the dispersion medium is not particularly limited as long as the ionomer does not separate and cause cloudiness or gelation.
  • a dispersant may be included in the catalyst ink for forming the anode side electrode catalyst layer in order to disperse the catalyst-containing substance 31 in the catalyst ink.
  • dispersants are anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants.
  • the content of solids in the catalyst ink is preferably 50% by mass or less. In this case, the occurrence of cracks on the surface of the anode side electrode catalyst layer 30 is further suppressed. From the viewpoint of improving the film formation rate of the anode-side electrode catalyst layer 30, the solid content in the catalyst ink is more preferably 1% by mass or more.
  • a dispersion treatment may be performed as necessary.
  • the dispersion treatment is not particularly limited as long as it can disperse each component contained in the anode side electrode catalyst layer 30. Examples of such treatment include treatment with a planetary ball mill and roll mill, treatment with a shear mill, treatment with a wet mill, ultrasonic dispersion treatment, and treatment with a homogenizer.
  • the electrode catalyst layer forming step is the same as described above in that the catalyst ink for forming an anode side electrode catalyst layer is applied to the surface of the polymer electrolyte membrane 10 opposite to the electrode catalyst layer 20 to form the anode side electrode catalyst layer 30. This is different from the electrode catalyst layer forming step in the method for manufacturing the laminate 100.
  • the catalyst ink for forming the anode side electrode catalyst layer obtained in the catalyst ink preparation step is applied to the other surface of the polymer electrolyte membrane 10, and then a drying process is performed to volatilize the dispersion medium. By this, the anode side electrode catalyst layer 30 is formed, and the membrane electrode assembly 200 is obtained.
  • the anode side electrode catalyst layer 30 is formed directly on the surface of the polymer electrolyte membrane 10. Therefore, the adhesion between the polymer electrolyte membrane 10 and the anode side electrode catalyst layer 30 increases. Moreover, since pressurization for joining the anode-side electrode catalyst layer 30 is not required, crushing of the anode-side electrode catalyst layer 30 can also be suppressed.
  • the polymer electrolyte membrane 10 generally has a characteristic of large degrees of swelling and contraction, when the catalyst ink is applied onto the polymer electrolyte membrane 10, the catalyst ink is applied onto the base material and the anode side After forming the electrode catalyst layer 30, the volume change of the polymer electrolyte membrane 10 is large compared to the case where the anode side electrode catalyst layer 30 is transferred to the polymer electrolyte membrane 10. Therefore, if the catalyst ink does not contain the fibrous material 23, cracks are likely to occur in the anode side electrode catalyst layer 30.
  • the catalyst ink contains the fibrous substance 33, even if the volume of the polymer electrolyte membrane 10 changes greatly by directly coating the catalyst ink on the polymer electrolyte membrane 10, the catalyst ink contains the fibrous material 33, thereby suppressing the occurrence of cracks in the anode side electrode catalyst layer 30.
  • the method for applying the catalyst ink is not particularly limited, and various methods can be used. From the viewpoint of applying the catalyst ink to the surface of the cathode side electrode catalyst layer 20 or the anode side electrode catalyst layer 30 with a uniform film thickness, examples of the coating method include a doctor blade method, a die coating method, a curtain coating method, and a dipping method. , a spray coating method, a screen printing method, a roll coating method, etc. can be preferably used.
  • the drying method used in the drying process is not particularly limited as long as it can volatilize the dispersion medium, and methods using an oven, hot plate, warm air drying, far infrared rays, etc. can be used. Further, the drying temperature and drying time in the drying process can be appropriately selected depending on the material constituting the catalyst ink.
  • the drying temperature of the catalyst ink may be, for example, within the range of 40°C or higher and 200°C or lower, preferably within the range of 40°C or higher and 120°C or lower.
  • the drying time of the catalyst ink may be, for example, from 0.5 minutes to 1 hour, preferably from 1 minute to 30 minutes.
  • the catalyst ink is applied to the surface of the polymer electrolyte membrane 10.
  • the anode side electrode catalyst layer 30 is formed by performing a drying process to volatilize the dispersion medium, and then the anode side electrode catalyst layer 30 is joined to the polymer electrolyte membrane 10. After that, a transfer process may be performed to peel off the base material.
  • the base material may be any material as long as it has good transferability, and for example, a fluororesin can be used.
  • fluororesins include ethylenetetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroperfluoroalkyl vinyl ether copolymer (PFA), and polytetrafluoroethylene (PTFE). ) etc.
  • base materials include polyimide, polyethylene terephthalate, polyamide (nylon (registered trademark)), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, polyethylene naphthalate, etc.
  • Organic polymer compounds other than fluororesins can also be used.
  • the base material may be in the form of a sheet or a film.
  • a transfer method using thermocompression bonding can be used as the transfer process.
  • FIG. 6 is a cross-sectional view showing an embodiment of the water electrolysis device of the present disclosure.
  • the water electrolysis device 300 of this embodiment includes a membrane electrode assembly 200, a pair of main electrodes 310, 320 provided so as to sandwich the membrane electrode assembly 200, and and a DC power source (not shown) that is electrically connected to.
  • the main electrode 310 is a cathode and is joined to the electrode catalyst layer 20 of the membrane electrode assembly 200.
  • the main electrode 320 is an anode and is joined to the second electrode catalyst layer 30 of the membrane electrode assembly 200.
  • the water electrolysis device 300 of this embodiment includes a cathode 310, a membrane electrode assembly 200, and an anode 320 in this order.
  • the membrane electrode assembly 200 includes a laminate 100 and a second electrode catalyst layer 30.
  • the second electrode catalyst layer 30 and the electrode catalyst layer 20 of the stacked body 100 are provided so as to sandwich the polymer electrolyte membrane 10 therebetween.
  • the membrane electrode assembly 200 includes a cathode electrode catalyst layer 20, a polymer electrolyte membrane 10, and an anode electrode catalyst layer 30 in this order, and the cathode electrode catalyst layer 20 is disposed opposite to the cathode 310.
  • the anode-side electrode catalyst layer 30 is arranged to face the anode 320.
  • the water electrolysis device 300 includes the membrane electrode assembly 200 described above, the water electrolysis device 300 suppresses the occurrence of cracks in the electrode catalyst layer 20 and the second electrode catalyst layer 30 in the membrane electrode assembly 200. Ru. Therefore, when a voltage is applied between the pair of main electrodes 310 and 320 by a power source with water being supplied to the main electrode 320, which is an anode, the electrode catalyst layer 20 and the second Disturbance of the potential distribution in the electrode catalyst layer 30 is suppressed, it is possible to suppress the water electrolysis performance of the water electrolysis device 300 from deteriorating, and the durability of the water electrolysis device 300 is improved.
  • the water electrolysis device 300 includes the membrane electrode assembly 200 described above, and in the membrane electrode assembly 200, the anode side electrode catalyst layer 30 includes a catalyst-containing substance 31, a polymer electrolyte 32, and a fibrous substance 33.
  • the water electrolysis device 300 generation of cracks in the anode-side electrode catalyst layer 30 can be suppressed. Therefore, when a voltage is applied to the membrane electrode assembly 200 in the water electrolysis device 300, the potential distribution in the anode side electrode catalyst layer 30 is suppressed from being disturbed, and the water electrolysis performance of the water electrolysis device 300 is reduced. It is possible to suppress this and improve the durability of the water electrolysis device 300.
  • the cathode side electrode catalyst layer 20 also contains a catalyst-containing substance 21, a polymer electrolyte 22, and a fibrous substance 23, so that generation of cracks in the cathode side electrode catalyst layer 20 is also suppressed. be able to. Therefore, when a voltage is applied to the membrane electrode assembly 200 in the water electrolysis device 300, the potential distribution in the cathode side electrode catalyst layer 20 is suppressed from being disturbed, and the water electrolysis performance of the water electrolysis device 300 is reduced. It is also possible to suppress this, and the durability of the water electrolysis device 300 can be further improved.
  • the laminate for a water electrolysis device of the present disclosure is not limited to the laminate 100 of the above embodiment.
  • the electrode catalyst layer 20 is provided on the polymer electrolyte membrane 10, but the second electrode catalyst layer 30 may be provided instead of the electrode catalyst layer 20.
  • the membrane electrode assembly for a water electrolysis device of the present disclosure is not limited to the membrane electrode assembly 200 of the above embodiment.
  • the cathode side electrode catalyst layer 20 and the anode side electrode catalyst layer 30 both contain a fibrous material, but the cathode side electrode catalyst layer 20 does not necessarily contain a fibrous material. Good too.
  • Example 1A First, a catalyst-supported powder consisting of a carbon carrier supporting PtRu as a catalyst (product number "TEC61E54", manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., PtRu supported amount: 54% by mass), and a dispersion containing Nafion (registered trademark) as a polymer electrolyte. (trade name "Nafion (registered trademark) DE2020", manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), and carbon fiber (trade name "VGCF-H”, manufactured by Showa Denko K.K.) as a fibrous substance are mixed in a solvent, Dispersion treatment was performed for 30 minutes using a planetary ball mill to prepare a catalyst ink.
  • a carbon carrier supporting PtRu as a catalyst
  • PtRu supported amount 54% by mass
  • a dispersion containing Nafion (registered trademark) as a polymer electrolyte trade name "Nafion (registered trademark) DE2020",
  • a mixed solvent of ultrapure water and 1-propanol was used as the solvent for the catalyst ink.
  • the volume ratio of ultrapure water and 1-propanol was 1:1.
  • the catalyst ink was prepared so that the solid content in the catalyst ink was 10% by mass.
  • the amount of the fibrous material blended was 50 parts by mass based on 100 parts by mass of the carrier. It was confirmed that the average fiber diameter of the fibrous material was 150 nm, and the average fiber length was 6 ⁇ m.
  • a Nafion (registered trademark) membrane (trade name "N117", manufactured by DuPont) was prepared as a polymer electrolyte membrane.
  • Example 2A First, a dispersion containing iridium oxide as a catalyst, Nafion (registered trademark) as a polymer electrolyte (product name "Nafion (registered trademark) DE2020", manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), nitrogen atoms as a fibrous substance, Polymer fibers containing the following were mixed in a solvent and subjected to a dispersion treatment for 30 minutes in a planetary ball mill to prepare a catalyst ink. A mixed solvent of ultrapure water and 1-propanol was used as the solvent for the catalyst ink. The volume ratio of ultrapure water and 1-propanol was 1:1.
  • the catalyst ink was prepared so that the solid content in the catalyst ink was 10% by mass. Further, the amount of the fibrous substance blended was 2 parts by mass based on 100 parts by mass of the carrier. It was confirmed that the average fiber diameter of the fibrous material was 400 nm and the average fiber length was 25 ⁇ m.
  • a laminate of an electrode catalyst layer and an electrolyte membrane was obtained in the same manner as in Example 1A. When the thus obtained laminate was visually observed, no cracks were observed in the electrode catalyst layer of Example 2A. Furthermore, in the laminate, no peeling of the electrode catalyst layer from the polymer electrolyte membrane was observed. Further, when the cross section of the laminate in the thickness direction was observed using SEM to confirm the state of aggregates of the fibrous material in the electrode catalyst layer, no voids due to aggregates were observed.
  • Example 3A First, a catalyst-supported powder consisting of a carbon carrier supporting PtRu as a catalyst (product number "TEC61E54", manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., PtRu supported amount: 54% by mass), and a dispersion containing Nafion (registered trademark) as a polymer electrolyte.
  • a catalyst-supported powder consisting of a carbon carrier supporting PtRu as a catalyst (product number "TEC61E54", manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., PtRu supported amount: 54% by mass), and a dispersion containing Nafion (registered trademark) as a polymer electrolyte.
  • a dispersion containing Nafion (registered trademark) DE2020 manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • polymer fibers containing nitrogen atoms as a fibrous substance are mixed in a solvent, and dispersed for 30 minutes using a high-pressure dis
  • the polymer fibers were previously dispersed in a dispersion medium using a high-pressure disperser.
  • a mixed solvent of ultrapure water and 1-propanol was used as the solvent for the catalyst ink.
  • the volume ratio of ultrapure water and 1-propanol was 1:1.
  • the catalyst ink was prepared so that the solid content in the catalyst ink was 10% by mass.
  • the amount of the fibrous material blended was 5 parts by mass based on 100 parts by mass of the carrier. It was confirmed that the average fiber diameter of the fibrous material was 200 nm and the average fiber length was 20 ⁇ m.
  • a Nafion (registered trademark) membrane (trade name "N117", manufactured by DuPont) was prepared as a polymer electrolyte membrane.
  • a slit die coater Apply the catalyst ink to one main surface of the polymer electrolyte membrane so that the total amount of Pt and Ru supported is 0.5 mg/cm 2 per area of the main surface. It was applied using the die coating method. Then, a drying process was performed in an oven at 80° C. to remove the solvent component in the catalyst ink, thereby obtaining a laminate of an electrode catalyst layer and a polymer electrolyte membrane. When the thus obtained laminate was observed, no cracks were observed in the electrode catalyst layer of Example 3A.
  • Example 4A When preparing the catalyst ink, a laminate of an electrode catalyst layer and an electrolyte membrane was obtained in the same manner as in Example 3A, except that a high-speed stirrer was used instead of a high-pressure disperser as the device used for dispersion treatment. Ta. When the thus obtained laminate was visually observed, no cracks were observed in the electrode catalyst layer of Example 4A. Furthermore, in the laminate, no peeling of the electrode catalyst layer from the polymer electrolyte membrane was observed. On the other hand, when we observed the cross section of the laminate in the thickness direction using SEM and confirmed the state of aggregates of the fibrous material in the electrode catalyst layer, we found that there were many aggregates, with a diameter of about 40 ⁇ m surrounding the aggregates. It was confirmed that a gap of the same size had occurred.
  • Example 5A A laminate of an electrode catalyst layer and an electrolyte membrane was obtained in the same manner as in Example 3A, except that the dispersion treatment was performed using an ultrasonic disperser when preparing the catalyst ink.
  • the thus obtained laminate was visually observed, no cracks were observed in the electrode catalyst layer of Example 5A.
  • the laminate no peeling of the electrode catalyst layer from the polymer electrolyte membrane was observed.
  • the cross section of the laminate in the thickness direction using SEM and confirmed the state of aggregates of fibrous substances in the electrode catalyst layer we found that aggregates were present and had a size of 5 ⁇ m surrounding the aggregates. It was confirmed that a void was created.
  • Example 6A Before mixing the catalyst-supported powder, the dispersion liquid, and the fibrous substance, the fibrous substance alone is not previously dispersed in a dispersion medium, but the catalyst-supported powder, the dispersion liquid, and the fibrous substance are simultaneously mixed in a solvent, A laminate of an electrode catalyst layer and an electrolyte membrane was obtained in the same manner as in Example 3A, except that a catalyst ink was prepared by performing a dispersion treatment for 30 minutes using a high-pressure disperser. When the thus obtained laminate was visually observed, no cracks were observed in the electrode catalyst layer of Example 6A. Furthermore, in the laminate, no peeling of the electrode catalyst layer from the polymer electrolyte membrane was observed.
  • Example 7A A laminate of an electrode catalyst layer and an electrolyte membrane was obtained in the same manner as in Example 3A, except that a bead mill was used instead of a high-pressure disperser as a device for dispersion treatment when preparing a catalyst ink.
  • a bead mill was used instead of a high-pressure disperser as a device for dispersion treatment when preparing a catalyst ink.
  • the laminate was visually observed, no cracks were observed in the electrode catalyst layer of Example 7A. Furthermore, in the laminate, no peeling of the electrode catalyst layer from the polymer electrolyte membrane was observed.
  • the cross section of the laminate in the thickness direction was observed using SEM to confirm the state of aggregates of fibrous substances in the electrode catalyst layer, it was found that aggregates were present and deformation of the fibrous substances was observed. It was also confirmed that voids of approximately 5 ⁇ m in size were formed surrounding the aggregates.
  • Example 1A A laminate of an electrode catalyst layer and an electrolyte membrane was obtained in the same manner as in Example 1A except that the fibrous material was not included. When the thus obtained laminate was visually observed, cracks were found in the electrode catalyst layer of Comparative Example 1. Furthermore, in the laminate, partial peeling of the electrode catalyst layer from the polymer electrolyte membrane was observed.
  • Example 8A A laminate of an electrode catalyst layer and an electrolyte membrane was obtained in the same manner as in Example 1A, except that the amount of the fibrous material was 5 parts by mass based on 100 parts by mass of the carrier. When the thus obtained laminate was visually observed, no cracks were observed in the electrode catalyst layer of Example 8A.
  • Example 9A A laminate of an electrode catalyst layer and an electrolyte membrane was obtained in the same manner as in Example 1A, except that the amount of the fibrous material was 25 parts by mass relative to 100 parts by mass of the carrier. When the thus obtained laminate was visually observed, no cracks were observed in the electrode catalyst layer of Example 9A.
  • Example 10A A laminate of an electrode catalyst layer and an electrolyte membrane was obtained in the same manner as in Example 1A, except that the amount of the fibrous material was 75 parts by mass relative to 100 parts by mass of the carrier. When the thus obtained laminate was visually observed, no cracks were observed in the electrode catalyst layer of Example 10A.
  • the volume ratio of ultrapure water and 1-propanol was 1:1.
  • the catalyst ink was prepared so that the solid content in the catalyst ink was 10% by mass.
  • the amount of the fibrous substance blended was 2 parts by mass based on 100 parts by mass of the carrier. It was confirmed that the average fiber diameter of the fibrous material was 400 nm and the average fiber length was 25 ⁇ m. Furthermore, regarding the above fibrous material, it was confirmed that the adsorption amount of the polymer electrolyte was 10 mg or more per 1 g of the fibrous material.
  • the catalyst ink for forming an anode side electrode catalyst layer was applied to the cathode side electrode of the polymer electrolyte membrane of the laminate produced in Examples 1A, 8A to 10A, and Comparative Example 1A.
  • the other main surface on which no catalyst layer was formed was coated with iridium oxide using a die coating method so that the supported amount of iridium oxide was 1.0 mg/cm 2 per area of the main surface.
  • the dispersion medium in the catalyst ink was then removed by drying in an oven at 80°C. In this way, an anode side electrode catalyst layer was formed on the polymer electrolyte membrane of the laminate to obtain a membrane electrode assembly for a water electrolysis device.
  • the membrane electrode assembly thus obtained was placed between the cathode and the anode to obtain a structure, and then this structure was immersed in water to produce a water electrolysis device.
  • the electrolysis performance of this water electrolysis device was evaluated. Specifically, the electrolytic performance was evaluated based on the voltage value (electrolytic voltage value) measured when a voltage was applied to the membrane electrode assembly and a current of 1 A/cm 2 flowed. The results are shown in Table 1. Note that the closer the voltage is to the theoretical electrolytic voltage of water, the higher the performance, and usually exhibits a value higher than the theoretical electrolytic voltage due to various resistance components.
  • Example 10A the electrolytic voltage was as high as 1.98 V in Example 10A in which the amount of the fibrous material was 75 parts by mass relative to 100 parts by mass of the carrier.
  • Examples 1A, 8A, 9A and Comparative Example 1A a small electrolytic voltage of 1.95 V or less was obtained, and good electrolytic performance was obtained.
  • Table 1 when the amount of the fibrous material added to 100 parts by mass of the support was 5 parts by mass or more and 50 parts by mass or less, a proton conduction path was formed by the ionomer, or voids were formed in the electrode catalyst layer. It is thought that the water electrolysis performance was improved because it was less likely to be formed and resistance was less likely to occur.
  • Example 1A and Examples 8A to 10A since no cracks were observed in the electrode catalyst layer as described above, it is possible to suppress the deterioration of electrolysis performance and improve the durability of the water electrolysis device. Conceivable.
  • Comparative Example 1A As described above, there were cracks in the electrode catalyst layer, so the electrode catalyst layer deteriorated severely, making it impossible to suppress the decline in electrolysis performance and making it impossible to improve the durability of the water electrolysis device. considered to be a thing.
  • Example 1B (Formation of cathode side electrode catalyst layer) First, the following catalyst-containing substance, a dispersion liquid containing a polymer electrolyte, and a fibrous substance were mixed in a dispersion medium, and a dispersion treatment was performed for 30 minutes in a planetary ball mill. In this way, a catalyst ink for forming a cathode side electrode catalyst layer was prepared. At this time, the catalyst ink was prepared so that the solid content in the catalyst ink was 10% by mass. In addition, the amount of the fibrous substance blended is 1.0 times the mass of the carrier in the catalyst-containing material, and the blended amount of the polymer electrolyte is 0.8 times the mass of the carrier in the catalyst-containing material. Quantity.
  • the average fiber diameter of the fibrous material was 150 nm, and the average fiber length was 15 ⁇ m. Furthermore, regarding the above fibrous material, it was confirmed that the adsorption amount of the polymer electrolyte was 10 mg or more per 1 g of the fibrous material.
  • ⁇ Catalyst-containing substance Catalyst-supported particles consisting of a carbon carrier supporting PtRu (product number "TEC61E54", manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., PtRu supported amount: 54% by mass)
  • - Fibrous substance carbon fiber (product name "VGCF-H", manufactured by Showa Denko K.K.)
  • the catalyst ink for forming the cathode side electrode catalyst layer was applied to one main surface of a Nafion (registered trademark) membrane (trade name "N117", manufactured by DuPont) as a polymer electrolyte membrane. Then, Pt and Ru were applied using a die coating method so that the total supported amount of Pt and Ru was 0.5 mg/cm 2 per area of the main surface. Then, the solvent component in the catalyst ink was removed by drying in an oven at 80° C. to obtain a laminate of an electrode catalyst layer and a polymer electrolyte membrane.
  • a Nafion (registered trademark) membrane trade name "N117", manufactured by DuPont
  • anode side electrode catalyst layer (Formation of anode side electrode catalyst layer)
  • a dispersion liquid containing a polymer electrolyte, and a fibrous substance were mixed in a dispersion medium, and a dispersion treatment was performed for 30 minutes in a planetary ball mill.
  • a catalyst ink for forming an anode side electrode catalyst layer was prepared.
  • the catalyst ink was prepared so that the solid content in the catalyst ink was 10% by mass.
  • the amount of the fibrous material blended was set to be 0.01 times the mass of the anode-side electrode catalyst layer, and the blended amount of the polymer electrolyte was set to be 0.2 times the mass of the catalyst.
  • the average fiber diameter of the fibrous material was 200 nm and the average fiber length was 25 ⁇ m. Furthermore, regarding the above fibrous material, it was confirmed that the adsorption amount of the polymer electrolyte was 10 mg or more per 1 g of the fibrous material.
  • ⁇ Catalyst Iridium oxide powder
  • ⁇ Fibrous material ionomer adsorption fiber
  • Polymer fiber cation exchange group: sulfonic acid group
  • the catalyst ink for forming the anode side electrode catalyst layer is applied to the other main surface of the polymer electrolyte membrane of the laminate on which the cathode side electrode catalyst layer is not formed. Coating was performed using a die coating method so that the amount of iridium supported was 1.0 mg/cm 2 per area of the main surface. The dispersion medium in the catalyst ink was then removed by drying in an oven at 80°C. In this way, an anode side electrode catalyst layer was formed on the polymer electrolyte membrane of the laminate to obtain a membrane electrode assembly for a water electrolysis device.
  • Example 2B When preparing the catalyst ink for forming the cathode side electrode catalyst layer, the same procedure as in Example 1B was used except that polymer fibers (cation exchange group: sulfonic acid group) were used instead of carbon fibers as the fibrous material. A membrane electrode assembly for a water electrolysis device was obtained. Note that the amount of the fibrous material blended was 0.05 times the mass of the cathode side electrode catalyst layer. It was confirmed that the average fiber diameter of the fibrous material was 200 nm and the average fiber length was 25 ⁇ m. Further, regarding the above fibrous material, it was confirmed that the adsorption amount of the polymer electrolyte was 10 mg or more per 1 g of the fibrous material.
  • polymer fibers cation exchange group: sulfonic acid group
  • Example 3B When preparing the catalyst ink for forming the cathode side electrode catalyst layer, the amount of the fibrous substance blended is 0.5 times the mass of the carrier in the catalyst-containing material of the cathode side electrode catalyst layer, and A water electrolysis device was prepared in the same manner as in Example 2B, except that when preparing the catalyst ink for forming the catalyst layer, the amount of the fibrous material was 0.1 times the mass of the anode side electrode catalyst layer. A membrane electrode assembly was obtained.
  • Example 4B (Preparation of catalyst ink for forming cathode side electrode catalyst layer) First, the following catalyst-containing substance, a dispersion liquid containing a polymer electrolyte, and a fibrous substance were mixed in a dispersion medium, and a dispersion treatment was performed for 30 minutes in a planetary ball mill. In this way, a catalyst ink for forming a cathode side electrode catalyst layer was prepared. At this time, the catalyst ink was prepared so that the solid content in the catalyst ink was 10% by mass.
  • the amount of the fibrous material blended is 0.5 times the mass of the carrier in the catalyst-containing material, and the blended amount of the polymer electrolyte is 0.8 times the mass of the carrier in the catalyst-containing material.
  • the amount was set as follows. Furthermore, it was confirmed that the average fiber diameter of the fibrous material was 150 nm, and the average fiber length was 15 ⁇ m. Regarding the above fibrous material, it was confirmed that the adsorption amount of the polymer electrolyte was 10 mg or more per 1 g of the fibrous material.
  • ⁇ Catalyst-containing carrier Catalyst-supported particles consisting of a carbon carrier supporting PtRu (product number "TEC61E54", manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., PtRu supported amount: 54% by mass)
  • ⁇ Dispersion containing polymer electrolyte (ionomer) Fluorine-based Dispersion containing Nafion (registered trademark), a polymer electrolyte (product name: "Nafion (registered trademark) DE2020", manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) - Fibrous substance: carbon fiber (product name "VGCF-H", manufactured by Showa Denko K.K.)
  • catalyst ink for forming anode side electrode catalyst layer (Preparation of catalyst ink for forming anode side electrode catalyst layer) The following catalyst-containing substance, a dispersion liquid containing a polymer electrolyte, and a fibrous substance were mixed in a dispersion medium and subjected to a dispersion treatment for 30 minutes in a planetary ball mill. In this way, a catalyst ink for forming an anode side electrode catalyst layer was prepared. At this time, the catalyst ink was prepared so that the solid content in the catalyst ink was 10% by mass. In addition, the amount of the fibrous material blended is 0.2 times the mass of the carrier in the catalyst-containing material, and the blended amount of the polymer electrolyte is 0.4 times the mass of the carrier in the catalyst-containing material. The amount was determined to be the amount.
  • the average fiber diameter of the fibrous material was 200 nm and the average fiber length was 25 ⁇ m.
  • the adsorption amount of the polymer electrolyte was 10 mg or more per 1 g of the fibrous material.
  • ⁇ Catalyst-containing substance Catalyst-supported particles formed by supporting iridium oxide on a titanium oxide carrier
  • PTFE polytetrafluoroethylene
  • a catalyst ink for forming an anode side electrode catalyst layer is applied to one surface of the first base material using a doctor blade method, and the coated film is dried in an air atmosphere at 80°C, thereby forming an anode side electrode catalyst layer.
  • the amount of the catalyst ink for forming the anode side electrode catalyst layer was adjusted so that the amount of catalyst supported on the anode side electrode catalyst layer was 0.3 mg/cm 2 , and thereby the anode side electrode catalyst layer was manufactured. .
  • a catalyst ink for forming a cathode electrode catalyst layer is applied to one surface of the second base material using a doctor blade method, and the coated film is dried in an air atmosphere at 80°C. A layer was produced. At this time, the amount of the catalyst ink for forming the cathode side electrode catalyst layer was adjusted so that the amount of catalyst supported on the cathode side electrode catalyst layer was 0.3 mg/cm 2 , and thereby the cathode side electrode catalyst layer was manufactured. .
  • a part of the anode side electrode catalyst layer formed on the first base material was punched out together with the first base material.
  • the size of the anode side electrode catalyst layer punched together with the first base material was 5 cm x 5 cm.
  • the punched anode side electrode catalyst layer was placed on one main surface of a fluorine-based polymer electrolyte (Nafion (registered trademark) 117) as a polymer electrolyte membrane having a thickness of 183 ⁇ m.
  • a part of the cathode side electrode catalyst layer formed on the second base material was punched out together with the second base material.
  • the size of the cathode side electrode catalyst layer punched together with the second base material was 5 cm x 5 cm. Then, the punched cathode side electrode catalyst layer was placed on the other main surface of the polymer electrolyte membrane. Then, the anode-side electrode catalyst layer and the cathode-side electrode catalyst layer are transferred to the polymer electrolyte membrane by hot pressing at a transfer temperature of 130° C. and a transfer pressure of 5.0 ⁇ 10 6 Pa, A membrane electrode assembly was obtained.
  • Example 5B The same procedure as in Example 4B was used except that polymer fibers having nitrogen atoms (average fiber diameter: 15 nm, cation exchange group: sulfonic acid group) were used as the fibrous material in the catalyst ink for forming the anode side electrode catalyst layer. A membrane electrode assembly was obtained. In addition, regarding the above-mentioned fibrous material (ionomer-adsorbed fiber), it was confirmed that the adsorption amount of the polymer electrolyte (ionomer) was 10 mg or more per 1 g of the fibrous material.
  • Example 6B The same procedure as in Example 4B was used except that polymer fibers having nitrogen atoms (average fiber diameter: 800 nm, cation exchange group: sulfonic acid group) were used as the fibrous material in the catalyst ink for forming the anode side electrode catalyst layer. A membrane electrode assembly was obtained. In addition, regarding the above-mentioned fibrous material (ionomer-adsorbed fiber), it was confirmed that the adsorption amount of the polymer electrolyte (ionomer) was 10 mg or more per 1 g of the fibrous material.
  • Example 7B The same procedure as in Example 4B was used except that polymer fibers having nitrogen atoms (average fiber diameter: 300 nm, cation exchange group: amino group) were used as the fibrous material in the catalyst ink for forming the anode side electrode catalyst layer. A membrane electrode assembly was obtained. In addition, regarding the above-mentioned fibrous material (ionomer-adsorbed fiber), it was confirmed that the adsorption amount of the polymer electrolyte (ionomer) was 10 mg or more per 1 g of the fibrous material.
  • Example 8B The same procedure as in Example 1B was used except that polymer fibers having nitrogen atoms (average fiber diameter: 200 nm, cation exchange group: sulfonic acid group) were used as the fibrous material in the catalyst ink for forming the cathode side electrode catalyst layer. A membrane electrode assembly was obtained. In addition, regarding the above-mentioned fibrous material (ionomer-adsorbed fiber), it was confirmed that the adsorption amount of the polymer electrolyte (ionomer) was 10 mg or more per 1 g of the fibrous material.
  • ⁇ Comparative example 1B> A membrane electrode assembly was obtained in the same manner as in Example 4B, except that no fibrous material was added when preparing the catalyst ink for forming the anode side electrode catalyst layer.
  • SYMBOLS 10 Polymer electrolyte membrane, 20...Electrode catalyst layer, 21, 31...Catalyst-containing material, 21a...Catalyst, 21b...Carrier, 22, 32...Polymer electrolyte, 23, 33...Fibrous material, 25...Void, 26 ... aggregate, 30 ... second electrode catalyst layer (anode side electrode catalyst layer), 100 ... laminate, 200 ... membrane electrode assembly, 300 ... water electrolysis device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

水電解装置用積層体は、高分子電解質膜と、高分子電解質膜の一面上に設けられる電極触媒層と、を備える。電極触媒層は、触媒、高分子電解質及び繊維状物質を含む。水電解装置用膜電極接合体は、上記水電解装置用積層体と、第2電極触媒層とを備え、電極触媒層、高分子電解質膜及び第2電極触媒層をこの順に備える。

Description

水電解装置用積層体、水電解装置用膜電極接合体及び水電解装置
 本開示は、水電解装置用積層体、水電解装置用膜電極接合体及び水電解装置に関する。
 近年、カーボンニュートラルの達成に向けて様々な資源から生成できるCOフリーなエネルギーとしての水素を主要なエネルギーとして利用する動きが加速している。このような水素を製造する方法として、再生可能エネルギーを用いて水の電解を行う手法が有望視されている。水の電解を行う手法としては一般に、アルカリ水電解及び固体高分子膜(PEM:Polymer Electrolyte Membrane)型水電解が知られているが、特にPEM型水電解は、高効率運転による水電解装置の小型化が可能な手法として注目を集めている。
 PEM型水電解装置は一般に、一対の主電極と、一対の主電極の間に設けられる膜電極接合体とを備えており、膜電極接合体は、プロトン伝導性の固体高分子電解質膜の一面上に第1電極触媒層を設けてなる積層体と、第1電極触媒層とともに固体高分子電解質膜を挟むように設けられる第2電極触媒層とを有する。
 上記積層体は、固体高分子電解質膜の一面に、例えば塗布法を用いて電極触媒層を形成することにより得られる(例えば下記特許文献1参照)。
特開2019-83085号公報
 しかし、上記特許文献1に記載の積層体は、電極触媒層にクラックが発生する場合があり、クラックの発生抑制の点で改善の余地を有していた。
 本開示は、上記課題に鑑みてなされたものであり、電極触媒層におけるクラックの発生を抑制することができる水電解装置用積層体、水電解装置用膜電極接合体及び水電解装置を提供することを目的とする。
 本発明者らは上記課題を解決するため検討した。まず、塗布法では固体高分子電解質膜の表面に電極触媒層形成用組成物を塗布すると、電極触媒層形成用組成物中の水分の浸入により固体高分子電解質膜が膨潤する。その後、固体高分子電解質膜の乾燥時に水分の排出により電極触媒層に過大な応力が加えられ、その結果、電極触媒層にクラックが発生し得るのではないかと考えた。そこで、本発明者らはさらに鋭意研究を重ねた結果、電極触媒層に触媒及び高分子電解質に加えて、繊維状物質を含めることにより上記課題を解決し得ることを見出し、本開示に至った。
 すなわち、本開示の第1の側面は、高分子電解質膜と、上記高分子電解質膜の一面上に設けられる電極触媒層と、を備える水電解装置用積層体であって、上記電極触媒層が、触媒、高分子電解質及び繊維状物質を含む、水電解装置用積層体を提供する。
 上記水電解装置用積層体によれば、電極触媒層におけるクラックの発生を抑制することができる。このため、本開示の積層体は、これを有する膜電極接合体を備える水電解装置において膜電極接合体に電圧が印加される際に、電極触媒層における電位分布が乱されることが抑制され、水電解装置の水電解性能が低下することを抑制することができ、水電解装置の耐久性を向上させることができる。
 なお、上記水電解装置用積層体により電極触媒層におけるクラックの発生が抑制される理由については、以下のとおりではないかと考えられる。
 すなわち、高分子電解質膜の一面上に電極触媒層が形成される際に、高分子電解質膜が水分の浸入により膨潤した後、高分子電解質膜の乾燥時に水分の排出により高分子電解質膜が収縮することに伴って電極触媒層が収縮して電極触媒層に過大な応力が加わっても、電極触媒層に触媒及び高分子電解質に加えて繊維状物質が含まれ、適切に絡み合うことで、その繊維状物質によってその応力が分散される。このため、電極触媒層においてクラックの発生が抑制されるのではないかと考えられる。
 また、水の電解のために本開示の積層体を含む膜電極接合体に電圧が印加されると、電極触媒層に発生する酸素ガス又は水素ガスにより局所的に応力が過大となる部分が生じることがある。その場合でも、電極触媒層中に含まれる繊維状物質により、そのような過大な応力が分散される。このため、電極触媒層においてクラックの発生が抑制されるのではないかと考えられる。
 本開示の第2の側面は、上記第1の側面の水電解装置用積層体であって、上記繊維状物質の平均繊維径が100nm以上1μm以下の範囲内である水電解装置用積層体を提供する。
 上記水電解装置用積層体によれば、電極触媒層にクラックが生じることがより抑制される。また、上記水電解装置用積層体によれば、高分子電解質膜と電極触媒層との密着性を向上させることもできる。このため、高分子電解質膜と電極触媒層との剥離による空隙の発生を抑制でき、この空隙に起因する積層体の抵抗の増大をより抑制できる。以上のことから、上記水電解装置用積層体によれば、水の電解性能の低下をより抑制することができる。
 なお、上記水電解装置用積層体により高分子電解質膜と電極触媒層との密着性を向上させることができる理由については、以下のとおりではないかと考えられる。
 すなわち、電極触媒層に加えられる応力が繊維状物質によって効果的に分散され、電極触媒層と高分子電解質膜との界面における剪断力を低下させることが可能となるためではないかと考えられる。
 本開示の第3の側面は、上記第1又は第2の側面の水電解装置用積層体であって、上記繊維状物質が、上記高分子電解質を吸着する性質を有する物質である、水電解装置用積層体を提供する。
 上記水電解装置用積層体によれば、電極触媒層にクラックが生じることがより一層抑制される。
 なお、上記効果が得られる理由については、以下のとおりではないかと考えられる。
 すなわち、繊維状物質が高分子電解質に吸着することにより、電極触媒層の強度がより一層高められるためではないかと考えられる。
 本開示の第4の側面は、上記第1~第3の側面のうちいずれかの側面の水電解装置用積層体であって、上記繊維状物質が、カーボン繊維及び高分子繊維のうち少なくとも一方を含む水電解装置用積層体を提供する。
 上記水電解装置用積層体によれば、繊維状物質により、電極触媒層にクラックが生じ難くなり、電極触媒層の耐久性が高くなる。
 本開示の第5の側面は、上記第4の側面の水電解装置用積層体であって、上記高分子繊維が、カチオン交換基を有する水電解装置用積層体を提供する。
 本開示の第6の側面は、上記第5の側面の水電解装置用積層体であって、上記電極触媒層に含まれる上記高分子電解質がイオノマーである、水電解装置用積層体を提供する。
 上記水電解装置用積層体によれば、高分子繊維上に形成された直線状のプロトン伝導性ネットワークのためにプロトン伝導性が高くなる。また高分子繊維がカチオン交換基を有することによって、このカチオン交換基が高分子電解質とイオン結合して高分子電解質を強く吸着することができ、高分子繊維と高分子電解質との密着性をより高めることができる。また、高分子繊維に吸着される高分子電解質がイオノマーであるため、イオノマーによるプロトン伝導パスが形成され、水電解装置において高い水電解性能が得られる。
 本開示の第7の側面は、上記第4の側面の水電解装置用積層体であって、上記高分子繊維が、プロトン伝導性を有する水電解装置用積層体を提供する。
 上記水電解装置用積層体によれば、高分子繊維にプロトン伝導パスが形成され、電極触媒層におけるプロトン伝導性が向上し、水電解装置に対して高い電解性能を付与することができる。
 本開示の第8の側面は、上記第4の側面の水電解装置用積層体であって、前記電極触媒層は前記高分子繊維の凝集体を含み、前記高分子繊維の平均繊維長が20μmより大きく、前記凝集体を包囲する空隙の大きさが20μm以下である水電解装置用積層体を提供する。
 この場合、電極触媒層内の空隙が小さいため、電極触媒層におけるクラックの発生をより十分に抑制することができ、水電解性能の低下が抑制される。
 本開示の第9の側面は、上記第4の側面の水電解装置用積層体であって、前記電極触媒層は前記高分子繊維の凝集体を含み、前記高分子繊維の平均繊維長が20μm以下であり、前記凝集体を包囲する空隙の大きさが前記高分子繊維の平均繊維長以下である、水電解装置用積層体を提供する。
 この場合、電極触媒層内の空隙が小さいため、電極触媒層におけるクラックの発生をより十分に抑制することができ、その結果、水分解性能の低下が抑制される。
 本開示の第10の側面は、上記第1の側面の水電解装置用積層体であって、前記電極触媒層がカソード側電極触媒層であり、前記触媒は導電性の担体に担持されており、前記繊維状物質はカーボン繊維であり、前記繊維状物質の配合量が、前記担体100質量部に対して5質量部以上50質量部以下の範囲内である、水電解装置用積層体を提供する。
 この場合、カーボン繊維の配合量は、担体100質量部に対して5質量部以上20質量部以下の範囲内であることが好ましい。カーボン繊維の配合量をこの範囲内とすることで、カーボン繊維の絡み合う構造が好適に形成され、電極触媒層の強度がより高められる。このことにより、クラックがより生じにくくなり、且つカーボン繊維が電極触媒層内の電子伝導性を良好に補助する役割を果たし、良好な電解性能が得られる。
 本開示の第11の側面は、上記第1の側面の水電解装置用積層体であって、前記電極触媒層がカソード側電極触媒層であり、前記触媒は導電性の担体に担持されており、前記繊維状物質は高分子繊維であり、前記繊維状物質の配合量が、前記担体100質量部に対して5質量部以上20質量部以下の範囲内である、水電解装置用積層体を提供する。
 この場合、高分子繊維の配合量は、担体100質量部に対して5質量部以上20質量部以下の範囲内であることが好ましい。高分子繊維の配合量をこの範囲内とすることで、高分子繊維の絡み合う構造が好適に形成され、電極触媒層の強度がより高められる。このことにより、クラックがより生じにくくなり、且つ高分子繊維が電極触媒層内の電子伝導性を良好に補助する役割を果たし、良好な電解性能が得られる。
 本開示の第12の側面は、上記第10又は第11の側面の水電解装置用積層体であって、前記担体がカーボン粒子である、水電解装置用積層体を提供する。
 本開示の第13の側面は、膜電極接合体と、上記膜電極接合体を挟むように設けられる一対の主電極と、を備え、上記膜電極接合体が、上記第1~第12の側面のうちいずれかの側面の水電解装置用積層体と、上記水電解装置用積層体の上記高分子電解質膜のうち上記電極触媒層と反対側の面上に設けられる第2電極触媒層とを有する、水電解装置を提供する。
 本開示の水電解装置は、上述した水電解装置用積層体を備えるので、本開示の水電解装置によれば、積層体において、電極触媒層におけるクラックの発生が抑制される。このため、一対の主電極間に電圧が印加される際に、膜電極接合体に含まれる積層体の電極触媒層における電位分布が乱されることが抑制され、水電解性能が低下することを抑制することができ、耐久性が向上する。
 なお、水の電解のために一対の主電極の間に電圧が印加されることにより膜電極接合体に含まれる積層体に電圧が印加され、電極触媒層に発生する酸素ガス又は水素ガスにより局所的に応力が過大となる部分が生じても、電極触媒層中に含まれる繊維状物質により、そのような過大な応力が分散されると考えられる。このため、電極触媒層においてクラックの発生が抑制されるのではないかと考えられる。したがって、このことによっても、水電解装置の耐久性は向上するものと考えられる。
 本開示の第14の側面は、上記第1の側面の水電解装置用積層体と、第2電極触媒層とを備え、前記電極触媒層、前記高分子電解質膜及び前記第2電極触媒層をこの順に備える水電解装置用膜電極接合体であって、前記第2電極触媒層がカソード側電極触媒層であり、前記電極触媒層が、前記アノード側電極触媒層であり、前記触媒を含有する触媒含有物質、前記高分子電解質及び前記繊維状物質を含む、水電解装置用膜電極接合体を提供する。
 上記水電解装置用膜電極接合体によれば、アノード側電極触媒層におけるクラックの発生を抑制することができる。このため、本開示の膜電極接合体は、水電解装置において電圧が印加される際に、アノード側電極触媒層における電位分布が乱されることが抑制され、水電解装置の水電解性能が低下することを抑制することができ、水電解装置の耐久性を向上させることができる。
 なお、上記水電解装置用膜電極接合体により、アノード側電極触媒層におけるクラックの発生が抑制される理由については、以下のとおりではないかと考えられる。
 すなわち、高分子電解質膜の一面上に、アノード側電極触媒層が形成される際に、高分子電解質膜が水分の浸入により膨潤した後、高分子電解質膜の乾燥時に水分の排出により高分子電解質膜が収縮することに伴ってアノード側電極触媒層が収縮してアノード側電極触媒層に過大な応力が加わっても、アノード側電極触媒層に触媒含有物質及び高分子電解質に加えて繊維状物質が含まれ、適切に絡み合うことで、その繊維状物質によってその応力が分散される。このため、アノード側電極触媒層においてクラックの発生が抑制されるのではないかと考えられる。
 また、水の電解のために本開示の膜電極接合体に電圧が印加されると、アノード側電極触媒層に発生する酸素ガスにより局所的に応力が過大となる部分が生じることがある。その場合でも、アノード側電極触媒層中に含まれる繊維状物質により、そのような過大な応力が分散される。このため、アノード側電極触媒層においてクラックの発生が抑制されるのではないかと考えられる。
 本開示の第15の側面は、上記第14の側面の水電解装置用膜電極接合体であって、上記カソード側電極触媒層が、触媒含有物質、高分子電解質及び繊維状物質を含む、水電解装置用膜電極接合体を提供する。
 上記水電解装置用膜電極接合体によれば、カソード側電極触媒層におけるクラックの発生をも抑制することができる。このため、本開示の膜電極接合体は、水電解装置において電圧が印加される際に、カソード側電極触媒層における電位分布が乱されることも抑制され、水電解装置の水電解性能が低下することをより抑制することができ、水電解装置の耐久性をより向上させることができる。
 本開示の第16の側面は、上記第15の側面の水電解装置用膜電極接合体であって、上記カソード側電極触媒層の上記繊維状物質が、カーボン繊維及び高分子繊維のうち少なくとも一方を含み、上記アノード側電極触媒層の上記繊維状物質が高分子繊維を含む、水電解装置用膜電極接合体を提供する。
 上記水電解装置用膜電極接合体によれば、カソード側電極触媒層及びアノード側電極触媒層においてクラックが特に生じ難くなり、耐久性が高くなりやすい。
 本開示の第17の側面は、上記第16の側面の水電解装置用膜電極接合体であって、上記高分子繊維が、プロトン伝導性を有する水電解装置用膜電極接合体を提供する。
 上記水電解装置用膜電極接合体によれば、カソード側電極触媒層及びアノード側電極触媒層のうち、高分子繊維がプロトン伝導性を有する電極触媒層において、直線状のプロトン伝導性ネットワークの形成によりプロトン伝導性が高くなり、プロトン伝導性を向上することができる。その結果、水電解装置における水電解時の電圧損失を抑制することができる。
 本開示の第18の側面は、上記第16の側面の水電解装置用膜電極接合体であって、上記高分子繊維が、カチオン交換基を有する、水電解装置用膜電極接合体を提供する。
 本開示の第19の側面は、上記第5の側面の水電解装置用積層体であって、上記電極触媒層に含まれる上記高分子電解質がイオノマーである、水電解装置用積層体を提供する。
 上記水電解装置用膜電極接合体によれば、高分子繊維上に形成された直線状のプロトン伝導性ネットワークのためにプロトン伝導性が高くなる。また高分子繊維がカチオン交換基を有することによって、このカチオン交換基が高分子電解質とイオン結合して高分子電解質を強く吸着することができ、高分子繊維と高分子電解質との密着性をより高めることができる。また、高分子繊維に吸着される高分子電解質がイオノマーであるため、イオノマーによるプロトン伝導パスが形成され、水電解装置において高い水電解性能が得られる。
 本開示の第20の側面は、上記第15~第19の側面のうちのいずれかの側面の水電解装置用膜電極接合体であって、上記カソード側電極触媒層中の上記繊維状物質がカーボン繊維であり、上記繊維状物質の平均繊維径が50nm以上300nm以下の範囲内であり、上記繊維状物質の平均繊維長が1.0μm以上20μm以下の範囲内である、水電解装置用膜電極接合体を提供する。
 上記水電解装置用膜電極接合体によれば、カソード側電極触媒層中において繊維状物質の絡み合う構造が好適に形成されるためにカソード側電極触媒層の強度がより高められ、クラックの発生をより抑制できる。
 本開示の第21の側面は、上記第15~第20の側面のうちのいずれかの側面の水電解装置用膜電極接合体であって、上記カソード側電極触媒層中の上記繊維状物質が高分子繊維であり、上記繊維状物質の平均繊維径が100nm以上500nm以下の範囲内であり、上記繊維状物質の平均繊維長が1.0μm以上40μm以下の範囲内である水電解装置用膜電極接合体を提供する。
 上記水電解装置用膜電極接合体によれば、カソード側電極触媒層中において繊維状物質の絡み合う構造が好適に形成されるためにカソード側電極触媒層の強度がより高められ、クラックの発生をより抑制できる。
 本開示の第22の側面は、上記第14~第21の側面のうちのいずれかの側面の水電解装置用膜電極接合体であって、上記アノード側電極触媒層中の上記繊維状物質の平均繊維径が100nm以上500nm以下の範囲内であり、上記繊維状物質の平均繊維長が1.0μm以上40μm以下の範囲内である水電解装置用膜電極接合体を提供する。
 上記水電解装置用膜電極接合体によれば、アノード側電極触媒層中において繊維状物質の絡み合う構造が好適に形成されるためにアノード側電極触媒層の強度がより高められ、クラックの発生をより抑制できる。
 本開示の第23の側面は、上記第15~第21の側面のうちのいずれかの側面の水電解装置用膜電極接合体であって、上記カソード側電極触媒層中の上記触媒含有物質が、触媒と、上記触媒を担持する担体とを有する触媒担持粒子であり、上記カソード側電極触媒層中の上記繊維状物質がカーボン繊維であり、前記繊維状物質の配合量が、前記担体の質量の0.3倍以上1.5倍以下の範囲内である、水電解装置用膜電極接合体を提供する。
 上記水電解装置用膜電極接合体によれば、カソード側電極触媒層においてカーボン繊維の絡み合う構造が好適に形成されるため、カソード側電極触媒層の強度がより高められ、クラックの発生をより抑制できる。
 本開示の第24の側面は、上記第15~第21及び第23の側面のうちのいずれかの側面の水電解装置用膜電極接合体であって、上記カソード側電極触媒層中の上記触媒含有物質が、触媒と、上記触媒を担持する担体とを有する触媒担持粒子であり、上記カソード側電極触媒層中の上記繊維状物質が高分子繊維であり、前記繊維状物質の配合量が、前記担体の質量の0.05倍以上0.3倍以下の範囲内である、水電解装置用膜電極接合体を提供する。
 上記水電解装置用膜電極接合体によれば、カソード側電極触媒層においてカーボン繊維の絡み合う構造が好適に形成されるため、カソード側電極触媒層の強度がより高められ、クラックの発生をより抑制できる。
 本開示の第25の側面は、上記第14~第24の側面のうちのいずれかの側面の水電解装置用膜電極接合体であって、上記アノード側電極触媒層中の上記繊維状物質の含有率が、0.5質量%以上20質量%以下の範囲内である、水電解装置用膜電極接合体を提供する。
 上記水電解装置用膜電極接合体によれば、繊維状物質が、アノード側電極触媒層に含有させるのに適した量となり、繊維状物質の絡み合う構造が好適に形成されるため、アノード側電極触媒層の強度がより高められ、クラックの発生がより抑制される。
 本開示の第26の側面は、上記第15~第24の側面のうちのいずれかの側面の水電解装置用膜電極接合体であって、上記アノード側電極触媒層における上記繊維状物質の含有率(DF2)に対する上記カソード側電極触媒層中の上記繊維状物質の含有率(DF1)の比R(DF1/DF2)が1よりも大きい、水電解装置用膜電極接合体を提供する。
 上記水電解装置用膜電極接合体によれば、アノード側電極触媒層の強度がより高められ、カソード側電極触媒層を形成した後にアノード側電極触媒層を形成する際に、高分子電解質膜の変形やクラックの発生をより抑制できる。
 本開示の第27の側面は、上記第26の側面の水電解装置用膜電極接合体であって、上記カソード側電極触媒層中の上記繊維状物質がカーボン繊維であり、上記比Rが5以上30以下である水電解装置用膜電極接合体を提供する。
 上記水電解装置用膜電極接合体によれば、上記比Rが上記範囲内にあることで、アノード側電極触媒層の強度がより一層高められ、カソード側電極触媒層を形成した後にアノード側電極触媒層を形成する際に、高分子電解質膜の変形やクラックの発生をより一層抑制できる。
 本開示の第28の側面は、上記第26の側面の水電解装置用膜電極接合体であって、上記カソード側電極触媒層中の上記繊維状物質が高分子繊維であり、上記比Rが1.1以上15以下である水電解装置用膜電極接合体を提供する。
 上記水電解装置用膜電極接合体によれば、上記比Rが上記範囲内にあることで、アノード側電極触媒層の強度がより一層高められ、カソード側電極触媒層を形成した後にアノード側電極触媒層を形成する際に、高分子電解質膜の変形やクラックの発生をより一層抑制できる。
 本開示の第29の側面は、上記第14~第28の側面のうちのいずれかの側面の水電解装置用膜電極接合体であって、上記カソード側電極触媒層及び上記アノード側電極触媒層のうち少なくとも一方において、上記高分子電解質がイオノマーであり、上記繊維状物質が、上記イオノマーを吸着する性質を有するイオノマー吸着繊維である、水電解装置用膜電極接合体を提供する。
 上記水電解装置用膜電極接合体によれば、高分子電解質がイオノマーであり、繊維状物質がイオノマーを吸着する性質を有するイオノマー吸着繊維である電極触媒層の強度が高められるとともに、膜電極接合体を備えた水電解装置において高い水電解性能が得られる。
 本開示の第30の側面は、カソード、膜電極接合体及びアノードをこの順に備え、上記膜電極接合体が、上記第14~第29の側面のうちいずれかの側面の水電解装置用膜電極接合体である、水電解装置を提供する。
 本開示の水電解装置は、上述した水電解装置用膜電極接合体を備えるので、本開示の水電解装置によれば、膜電極接合体において、アノード側電極触媒層におけるクラックの発生が抑制される。このため、カソード及びアノード間に電圧が印加される際に、膜電極接合体に含まれる電極触媒層における電位分布が乱されることが抑制され、水電解性能が低下することを抑制することができ、耐久性が向上する。
 なお、水の電解のためにカソード及びアノードの間に電圧が印加されることにより膜電極接合体に電圧が印加され、電極触媒層に発生する酸素ガスにより局所的に応力が過大となる部分が生じても、電極触媒層中に含まれる繊維状物質により、そのような過大な応力が分散されると考えられる。このため、電極触媒層においてクラックの発生が抑制されるのではないかと考えられる。したがって、このことによっても、水電解装置の耐久性は向上するものと考えられる。
 本開示によれば、電極触媒層におけるクラックの発生を抑制することができる水電解装置用積層体、水電解装置用膜電極接合体及び水電解装置が提供される。
本開示の水電解装置用積層体の一実施形態を示す断面図である。 図1の電極触媒層の主要部を模式的かつ部分的に示す図である。 図2の触媒含有物質の一例を示す断面図である。 本開示の水電解装置用膜電極接合体の一実施形態を示す断面図である。 図4の第2電極触媒層の主要部を模式的かつ部分的に示す図である。 本開示の水電解装置の一実施形態を示す断面図である。 図1の電極触媒層の他の例を模式的に示す断面図である。
 以下、本開示の実施形態について詳細に説明する。
<水電解装置用積層体>
 まず、本開示の水電解装置用積層体の一実施形態について図1~2を参照しながら説明する。図1は、本開示の水電解装置用積層体の一実施形態を示す断面図、図2は、図1の電極触媒層の一例を模式的かつ部分的に示す図、図3は、図2の触媒含有物質の一例を示す断面図である。
 図1に示されるように、水電解装置用積層体(以下、単に「積層体」という)100は、高分子電解質膜10と、高分子電解質膜10の一方の面上に設けられる電極触媒層20とを備える。電極触媒層20は、触媒含有物質21、高分子電解質22及び繊維状物質23を含む(図2参照)。本実施形態では、電極触媒層20については、カソード(還元極)側に配置される電極触媒層(カソード側電極触媒層)として説明する。
 上記積層体100によれば、電極触媒層20は、触媒含有物質21、高分子電解質22及び繊維状物質23を含むため、電極触媒層20におけるクラックの発生を抑制することができる。このため、積層体100は、これを有する膜電極接合体を備えた水電解装置において膜電極接合体に電圧が印加される際に、電極触媒層20における電位分布が乱されることが抑制され、水電解装置の水電解性能が低下することを抑制することができ、水電解装置の耐久性を向上させることができる。
 以下、高分子電解質膜10及び電極触媒層20についてより詳細に説明する。
(高分子電解質膜)
 高分子電解質膜10は、プロトン伝導性を有する高分子材料により構成される。このような高分子電解質膜10の具体例としては、フッ素系高分子電解質膜又は炭化水素系高分子電解質膜を用いることができる。フッ素系高分子電解質膜として、例えば、デュポン社製Nafion(登録商標)、旭硝子(株)製Flemion(登録商標)、旭化成(株)製Aciplex(登録商標)、ゴア社製Gore Select(登録商標)等を用いることができる。炭化水素系高分子電解質膜としては、例えば、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン等の高分子電解質膜を用いることができる。
 高分子電解質膜10の厚さは、特に制限されるものではないが、通常は20~250μmであり、好ましくは20~80μmである。高分子電解質膜10の厚さが上記範囲内にあることで、高分子電解質膜10の機械的耐久性を保ち、プロトン抵抗を低減して電解性能を高めることができる。すなわち、高分子電解質膜10の厚さが上記範囲内にあることで、高分子電解質膜10の機械的耐久性と、高いプロトン伝導性とを両立させ、水電解装置における水電解性能を高めることができる。
(電極触媒層)
 電極触媒層20は、カソード側に配置される電極触媒層である。電極触媒層20は、触媒含有物質21と、高分子電解質22と、繊維状物質23とを含む。
(1)触媒含有物質
 触媒含有物質21は、プロトンによる還元反応を行う触媒(以下、「カソード触媒」ともいう)を含有する。このようなカソード触媒としては、白金族に含まれる金属、白金族以外の金属、これらの金属の合金、酸化物、複酸化物等を用いることができる。白金族に含まれる金属としては、白金、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウムが挙げられる。白金族以外の金属としては、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム及びアルミニウム等が例示できる。なお、ここでいう複酸化物とは、2種類の金属を含む酸化物のことをいう。
 カソード触媒は、白金族に含まれる金属で構成されることが好ましい。白金、金、パラジウム、ロジウム、ルテニウム、及び、イリジウムから選ばれた1種又は2種以上の金属である場合、高い活性を示すため電極反応性に優れ、電極反応を効率良く安定して行うことができる。
 触媒は通常、粒子状である。粒子状の触媒の平均粒径は、20nm以下であることが好ましく、5nm以下であることがより好ましい。この場合、触媒の活性がより向上する。また、触媒の活性の安定性の観点からは、粒子状の触媒の平均粒径は、0.5nm以上であることが好ましく、1nm以上であることがより好ましい。
 触媒含有物質21は、図3に示すように、触媒21aに加えて、触媒21aを担持する導電性の担体21bをさらに備えてもよい。すなわち、触媒含有物質21は、触媒担持粒子であってもよい。担体21bは、導電性を有し、触媒21aに浸食されることなく触媒21aを担持することが可能な物質であればよい。このような担体21bとしては、高い電子伝導性を示すことから、好ましくはカーボン粒子を用いることができる。
 カーボン粒子は、微粒子状で導電性を有し、触媒21aに浸食されないものであれば限定されるものではない。カーボン粒子としては、例えば、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンファイバー、カーボンナノチューブ又はフラーレンを用いることができる。カーボンブラックは、アセチレンブラック、ファーネスブラック、および、ケッチェンブラックからなる群から選択される少なくとも一種である。
 カーボン粒子の平均粒径は、10nm以上であることが好ましい。この場合、電極触媒層20において電子伝導パスが形成されやすくなる。また、電極触媒層20の抵抗値を低下させるとともに触媒の担持量を増大させる観点からは、カーボン粒子の平均粒径は、1000nm以下の範囲内に含まれることが好ましく、100nm以下の範囲内に含まれることがより好ましい。ここで、平均粒径とは、走査型電子顕微鏡(SEM:Scanning Electron Microscope)で観察される少なくとも20個のカーボン粒子の粒径の算術平均値であり、粒径とは、カーボン粒子を円として近似した際の直径を言い、カーボン粒子の断面積を円の面積とした際の直径を算出することによって求められる。
 なお、担体21bは、疎水性被膜に覆われてもよい。疎水性被膜は、担体21bに疎水性を付与すると共に、水素ガスを透過するガス透過性を有する。ガス透過性を向上させる観点からは、疎水性被膜の厚さは、40nm以下であることが好ましい。余剰水の排出性を向上させる観点からは、疎水性被膜の厚さは、2nm以上であることが好ましい。
 疎水性被膜の構成材料の一例は、少なくとも一つの極性基を有するフッ素系化合物である。極性基は、例えばヒドロキシル基、アルコキシ基、カルボキシル基、エステル基、エーテル基、カーボネート基、およびアミド基からなる群から選択される少なくとも一種で構成される。極性基を有した疎水性被膜は、担体21bの最表面に固定されやすい。フッ素系化合物における極性基以外の部分の一例は、フルオロアルキル骨格である。
(2)高分子電解質
 高分子電解質22としては、プロトン伝導性を有する高分子電解質を用いることができる。高分子電解質22の具体例としては、例えば、フッ素系高分子電解質又は炭化水素系高分子電解質を用いることができる。フッ素系高分子電解質として、例えば、デュポン社製Nafion(登録商標)系材料等を用いることができる。炭化水素系高分子電解質としては、例えば、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン等の電解質を用いることができる。高分子電解質22は、高分子電解質膜10と同一の高分子電解質で構成されてもよく、高分子電解質膜10と異なる高分子電解質で構成されてもよい。ただし、高分子電解質膜10と電極触媒層20との界面における界面抵抗や、湿度が変化した場合において、高分子電解質膜10と電極触媒層20における寸法変化率を考慮すると、高分子電解質膜10に含まれる高分子電解質と、電極触媒層20に含まれる高分子電解質22とは、互いに同じ電解質であるか、熱膨張係数が互いに近い高分子電解質であることが好ましい。
 例えば電極触媒層20と高分子電解質膜10との密着性を高める場合、高分子電解質22の構成材料がフッ素系高分子電解質であれば、高分子電解質膜10の構成材料もまたフッ素系高分子電解質であることが好ましい。また、高分子電解質22の構成材料が炭化水素系高分子電解質であれば、高分子電解質膜10の構成材料もまた炭化水素系高分子電解質であることが好ましい。
(3)繊維状物質
 繊維状物質23は、触媒21a及び高分子電解質22に浸食されない物質であればよく、カーボン繊維、高分子繊維又はこれらの混合物であることが好ましい。繊維状物質23により、電極触媒層20にクラックが生じ難くなり、電極触媒層20の耐久性が高くなる。
 繊維状物質23は、その材料の分子構造中にルイス酸性又はルイス塩基性の官能基を含んでよい。これにより、高分子電解質22が繊維状物質23の周辺に存在し易くなる。ルイス酸性の官能基を有する繊維状物質23としては、カーボン繊維並びにヒドロキシル基、カルボニル基、スルホン酸基及び亜リン酸基を有する高分子繊維が挙げられる。ルイス塩基性の官能基を有する繊維状物質23としてはイミド構造又はアゾール構造などを有する高分子繊維などが挙げられる。繊維状物質23中のルイス酸性の官能基に対しては、高分子電解質22中に含まれるスルホニル基などのプロトン伝導部位が水素結合することで、繊維状物質23の周辺に高分子電解質22が存在し易くなる。一方、繊維状物質23中に塩基性官能基がある場合、高分子電解質22中に含まれるスルホニル基などの酸性のプロトン伝導部位が、酸塩基で結合することで繊維状物質23の周辺に高分子電解質22が存在し易くなる。水素結合に比べ、酸塩基の結合の方が結合力は強いため、繊維状物質23はルイス塩基性の官能基を含んでいることが好ましい。これらの中でも、繊維状物質23は、アゾール構造を有することが好適である。アゾール構造とは、窒素を1つ以上含む複素5員環構造のことであり、例えば、イミダゾール構造、オキサゾール構造である。窒素原子を含む物質は、ベンゾイミダゾール構造、ベンゾオキサゾール構造などのベンゾアゾール構造を有することが好適である。窒素原子を含む物質の具体例としては、ポリベンゾイミダゾール、ポリベンゾオキサゾールなどの高分子が挙げられる。
 繊維状物質23の形状は特に限定されるものではなく、例えば、中空構造であってもよいし、中実構造であってもよい。なお、電極触媒層20に含まれる繊維状物質23は、上記例の一種類のみであってもよいし、二種類以上の組み合わせであってもよい。
 繊維状物質23の平均繊維径は、特に制限されるものではないが、好ましくは100nm以上1μm以下であり、より好ましくは5μm以上50μm以下である。この場合、電極触媒層20にクラックが生じることがより抑制される。また、高分子電解質膜10と電極触媒層20との密着性を向上させることもできる。このため、高分子電解質膜10と電極触媒層20との剥離による空隙の発生を抑制でき、この空隙に起因する膜電極接合体の抵抗の増大をより抑制できる。以上のことから、膜電極接合体によれば、水の電解性能の低下をより抑制することができる。
 繊維状物質23の平均繊維径とは、電極触媒層20の断面を、走査型電子顕微鏡(SEM)を用いて観察した際に、露出している繊維状物質23の断面について測長される直径の平均値をいう。繊維状物質23がその長軸に対して斜めに切断された場合には楕円形の断面が得られるが、その場合は、直径とは、楕円の短軸に沿ってフィッティングした真円の直径をいう。また、電極触媒層20の断面を、SEMを用いて観察する場合、繊維状物質23の断面ではなく繊維状物質23の表面が露出することがある。その場合には、直径とは、露出した繊維状物質23の長軸と直交する繊維の幅をいう。繊維状物質23の平均繊維径は、少なくとも20カ所の観察点において同様に計測して得られる繊維径の算術平均値をいう。
 繊維状物質23の平均繊維径は、10nm以上1μm以下であってもよく、100nm以上200nm以下であってもよい。繊維状物質23の平均繊維径が上記範囲内にあることで、電極触媒層20にクラックが生じることがより抑制される。また、高分子電解質膜10と電極触媒層20との密着性を向上させることもできる。このため、高分子電解質膜10と電極触媒層20との剥離による空隙の発生を抑制でき、この空隙に起因する膜電極接合体の抵抗の増大をより抑制できる。以上のことから、積層体100、及び、積層体100を有する膜電極接合体は、水の電解性能の低下をより抑制することができる。
 電極触媒層20の断面を露出させる方法としては、例えば、イオンミリング、ウルトラミクロトーム等の公知の方法を用いることができる。
 繊維状物質23の平均繊維長は、特に制限されるものではないが、好ましくは500nm以上であり、より好ましくは1μm以上である。この場合、繊維状物質23が絡み合い、電極触媒層20内で適切な大きさの空孔を形成するとともに、電極触媒層20の機械的特性を向上させることができる。但し、繊維状物質23の平均繊維長は、好ましくは100μm以下であり、より好ましくは40μm以下である。
 繊維状物質23の平均繊維長は、少なくとも10本の繊維状物質23を測長して得られる繊維長の算術平均値をいうものとする。電極触媒層20内の繊維状物質23の平均繊維長は、電極触媒層20を溶媒に溶かした溶液を用いて粒度分布測定を行うことで求めることができる。具体的には、電子顕微鏡で求めた平均繊維長と、粒度分布測定におけるピーク位置との間の相関関係を予め把握しておき、この相関関係と、粒度分布測定により求めたピーク位置とに基づいて電極触媒層20内の繊維状物質23の平均繊維長が求められる。
 繊維状物質23は、高分子電解質22を吸着する性質を有する物質でも、高分子電解質22を吸着する性質を有さない物質でもよいが、高分子電解質22を吸着する性質を有する物質であることが好ましい。この場合、繊維状物質23が高分子電解質22に吸着する物質であることで、電極触媒層20にクラックが生じることがより一層抑制される。
 なお、「高分子電解質を吸着する性質を有する物質」とは、繊維状物質1gあたり10mg以上の高分子電解質を吸着することが可能である物質をいう。
 繊維状物質23がカーボン繊維である場合、カーボン繊維としては、カーボンファイバー、カーボンナノチューブ、カーボンナノホーン等が例示できる。特に、導電性や分散性の点でカーボンナノファイバー又はカーボンナノチューブが好適である。
 カーボン繊維の平均繊維径は300nm以下であることが好ましく、200nm以下であることがより好ましい。カーボン繊維の平均繊維径が300nm以下であると、電極触媒層20に含有させる繊維材料として適当な細さが確保される。
 カーボン繊維の平均繊維径は50nm以上であることが好ましく、100nm以上であることがより好ましい。この場合、カーボン繊維において適当な太さが確保されて電極触媒層20の強度がより高められ、クラックの発生がより抑制される。
 カーボン繊維の平均繊維長は1.0μm以上20μm以下の範囲内であることが好ましい。カーボン繊維の平均繊維長が上記数値範囲内であると、繊維状物質23の絡み合いによって電極触媒層20内で適切な大きさの空孔を形成することができ、空孔の毛管力によって、反応物質の供給と生成物質の散逸とを両立させることができ、水電解装置における水電解性能を高めることができる。また、カーボン繊維の平均繊維長が上記数値範囲内であると、電極触媒層20の強度を向上させることができる。特に、カーボン繊維の平均繊維径が100nm以上300nm以下の範囲内である場合にカーボン繊維の平均繊維長が1.0μm以上20μm以下の範囲内であることが好ましい。この場合、電極触媒層20中において繊維状物質23の絡み合う構造が好適に形成されるために電極触媒層20の強度がより高められ、クラックの発生をより抑制できる。
 カーボン繊維の配合量は、触媒100質量部に対して、好ましくは10質量部以上200質量部以下であり、より好ましくは20質量部以上100質量部以下である。この場合、カーボン繊維の絡み合う構造が好適に形成されるため、電極触媒層20の強度がより高められ、クラックの発生をより抑制できる。
 触媒含有物質21が担体21bを含有する場合には、カーボン繊維の配合量は、触媒含有物質21中の担体21bを基準(100質量部)としたときに、30質量部以上150質量部以下の範囲内であってもよい。この場合、電極触媒層20においてカーボン繊維の絡み合う構造が好適に形成されるため、電極触媒層20の強度がより高められ、クラックの発生をより抑制できる。
 特に、カーボン繊維の配合量は、導電性の担体21b 100質量部に対してカーボン繊維が5質量部以上50質量部以下の範囲内であることが好ましい。カーボン繊維の配合量をこの範囲内とすることで、カーボン繊維の絡み合う構造が好適に形成され、電極触媒層20の強度がより高められる。このことにより、クラックがより生じにくくなり、且つカーボン繊維が電極触媒層20内の電子伝導性を良好に補助する役割を果たし、良好な電解性能が得られる。導電性の担体1bは、良好な電子伝導性を持ち、安価に入手できることから、カーボン粒子であることが好ましい。
 繊維状物質23が高分子繊維である場合、高分子繊維としては、イオノマー吸着繊維、導電性高分子ナノファイバー、又はプロトン伝導性高分子繊維などが用いられる。
 高分子繊維としては、イオノマー吸着繊維として、カチオン交換基を有する高分子繊維を用いることができる。カチオン交換基としては、例えばヒドロキシル基、カルボニル基、スルホン酸基、亜リン酸基及びアミノ基などが挙げられる。
 高分子繊維としては、プロトン伝導性高分子繊維を用いることができる。この場合、高分子繊維にプロトン伝導パスが形成され、電極触媒層20におけるプロトン伝導性が向上し、水電解装置に対して高い電解性能を付与することができる。すなわち、電極触媒層20において、直線状のプロトン伝導性ネットワークの形成によりプロトン伝導性が高くなり、水電解装置における水電解時の電圧損失を抑制することができる。
 プロトン伝導性高分子繊維は、プロトン伝導性を有する高分子を繊維状に加工した高分子繊維であればよい。プロトン伝導性高分子繊維を形成するための材料には、フッ素系高分子電解質又は炭化水素系高分子電解質などを用いることができる。
 高分子繊維がイオノマー吸着繊維であり、高分子電解質がイオノマーであることが好ましい。ここで、イオノマー吸着繊維は、高分子電解質としてのイオノマーを吸着する性質を有する繊維状物質である。この場合、電極触媒層20の強度が高められるとともに、上記積層体100を有する膜電極接合体を備えた水電解装置において高い水電解性能が得られる。この理由については以下のとおりではないかと考えられる。
 すなわち、イオノマー吸着繊維の絡み合いによって電極触媒層20の強度が高められる。特にイオノマー吸着繊維の表面にイオノマーを強く吸着させることができるため、電極触媒層20の強度が一層高められる。また、イオノマーによりプロトン伝導パスが形成されるため、高い水電解性能が得られる。
 特に、イオノマー吸着繊維が、カチオン交換基を有する高分子繊維である場合、高分子繊維上に形成された直線状のプロトン伝導性ネットワークのためにプロトン伝導性が高くなる。また高分子繊維がカチオン交換基を有することによって、このカチオン交換基が高分子電解質とイオン結合して高分子電解質を強く吸着することができ、高分子繊維と高分子電解質との密着性をより高めることができる。
 高分子繊維がイオノマー吸着繊維であり、高分子電解質がイオノマーである場合、イオノマー吸着繊維に吸着しているイオノマーの量は、イオノマー吸着繊維1gあたり、10mg以上であるが、イオノマー吸着繊維1gあたり、200mg以上であることが好ましく、500mg以上であることがより好ましい。但し、イオノマー吸着繊維に吸着しているイオノマーの量は、イオノマー吸着繊維1gあたり、4000mg以下であることが好ましく、2000mg以下であることがより好ましい。
 なお、イオノマー吸着繊維に吸着しているイオノマーの量は、所定濃度C1のイオノマーを分散させた分散液にイオノマー吸着繊維を接触させ、所定のフィルター(例えば口径0.3~0.5μm)でろ過し、ろ液に含まれるイオノマーの濃度C2を測定し、C2-C1の値に基づいて算出することができる。
 高分子繊維の平均繊維径は500nm以下であることが好ましく、400nm以下であることがより好ましい。高分子繊維の平均繊維径が500nm以下であると、電極触媒層20に含有させる繊維材料として適当な細さが確保される。
 また、高分子繊維の平均繊維径は100nm以上であることが好ましい。この場合、高分子繊維において適当な太さが確保されて電極触媒層20の強度が高められ、クラックの発生がより抑制される。
 また、繊維状物質7が高分子繊維の場合、高分子繊維の平均繊維長は1.0μm以上40μm以下の範囲内であることが好ましい。高分子繊維の平均繊維長が上記数値範囲内であれば、カソード電極触媒層中に好適な大きさの空孔を形成することができる。特に、高分子繊維の平均繊維径が100nm以上500nm以下の範囲内である場合に高分子繊維の平均繊維長が1.0μm以上40μm以下の範囲内であることが好ましい。この場合、電極触媒層20中において繊維状物質23の絡み合う構造が好適に形成されるために電極触媒層20の強度がより高められ、クラックの発生をより抑制できる。
 高分子繊維の配合量は、触媒100質量部に対して、好ましくは1質量部以上20質量部以下であり、より好ましくは2質量部以上10質量部以下である。この場合、高分子繊維の絡み合う構造が好適に形成されるため、電極触媒層20の強度がより高められ、クラックの発生をより抑制できる。
 触媒含有物質21が担体21bを含有する場合には、高分子繊維の配合量は、触媒含有物質21中の担体21bを基準(100質量部)としたときに、5質量部以上30質量部以下の範囲内であってもよい。すなわち、触媒含有物質21が触媒21a及び導電性の担体21bを含有する場合には、高分子繊維の配合量は、導電性の担体21b 100質量部に対し5質量部以上30質量部以下の範囲内であってもよい。この場合、電極触媒層20においてカーボン繊維の絡み合う構造が好適に形成されるため、電極触媒層20の強度がより高められ、クラックの発生をより抑制できる。
 特に、高分子繊維の配合量は、導電性の担体21b 100質量部に対して5質量部以上20質量部以下の範囲内であることが好ましい。高分子繊維の配合量をこの範囲内とすることで、高分子繊維の絡み合う構造が好適に形成され、電極触媒層20の強度がより高められる。このことにより、クラックがより生じにくくなり、且つ高分子繊維が電極触媒層20内の電子伝導性を良好に補助する役割を果たし、良好な電解性能が得られる。導電性の担体1bは、良好な電子伝導性を持ち、安価に入手できることから、カーボン粒子であることが好ましい。
 高分子繊維としては、イオノマー吸着繊維として、カチオン交換基を有する高分子繊維を用いることができる。この場合、高分子繊維上に形成された直線状のプロトン伝導性ネットワークのためにプロトン伝導性が高くなる。また高分子繊維がカチオン交換基を有することによって、このカチオン交換基が高分子電解質とイオン結合して高分子電解質を強く吸着することができ、高分子繊維と高分子電解質との密着性をより高めることができる。
 カチオン交換基としては、例えばヒドロキシル基、カルボニル基、スルホン酸基、亜リン酸基及びアミノ基などが挙げられる。
 電極触媒層20は、図7に示すように、繊維状物質23としての高分子繊維同士が絡まって得られる高分子繊維の凝集体26を含んでもよい。また、電極触媒層20は、凝集体26を包囲する空隙25をさらに含んでもよい。図7において、符号24は、触媒含有物質21及び高分子電解質22を表す。
 但し、この場合、高分子繊維の平均繊維長が20μmより大きい場合には、凝集体26を包囲する空隙25の大きさが20μm以下であることが好ましい。
 この場合、電極触媒層20内の空隙25が小さいため、電極触媒層20におけるクラックの発生をより十分に抑制することができ、水電解性能の低下が抑制される。なお、水電解性能の低下が抑制される理由については、以下のとおりではないかと考えられる。すなわち、空隙25の大きさが20μm以下であると、空隙25が、凝集体26により電極触媒層20と高分子電解質膜10との界面に沿って形成されにくくなり、電子又はプロトンの伝導が阻害されにくくなるとともに、凝集体26の近傍に触媒がほとんど存在しないことがなくなるために水分解反応に寄与できない部分が生じにくくなるためではないかと考えられる。
 凝集体26を包囲する空隙25の大きさはより好ましくは10μm以下であり、特に好ましくは5μm以下である。空隙25の大きさは0μmであることが好ましいが、凝集体を構成する高分子繊維の平均繊維径よりも大きくてもよい。
 また、高分子繊維の平均繊維長が20μm以下である場合には、凝集体26を包囲する空隙25の大きさを高分子繊維の平均繊維長以下とすることが好ましい。この場合、電極触媒層20内の空隙25が小さいため、電極触媒層20におけるクラックの発生をより十分に抑制することができ、その結果、水分解性能の低下が抑制される。
 凝集体26を包囲する空隙25の大きさは、より好ましくは高分子繊維の平均繊維長の0.5倍以下であり、特に好ましくは高分子繊維の平均繊維長の0.25倍以下である。空隙25の大きさは、高分子繊維の平均繊維長の0倍であることが好ましい。
 ここで、空隙25の大きさは、電極触媒層20の厚さ方向の3つの断面のそれぞれにおいて観測される空隙25のサイズの最大値の平均値をいう。空隙25のサイズとは、空隙25の一端と、その一端から最も離れた他端とを結ぶ直線距離をいう。
<水電解装置用積層体の製造方法>
 積層体100の製造方法は、触媒インクを調製する触媒インク調製工程と、触媒インクを高分子電解質膜10の一方の面に塗布して電極触媒層20を形成する電極触媒層形成工程とを含む。
<触媒インク調製工程(電極触媒層形成用組成物調製工程)>
 触媒インク調製工程では、電極触媒層20を構成する各成分、すなわち触媒含有物質21、高分子電解質22及び繊維状物質23を、分散媒を用いて混合することにより触媒インクを調製する。
 触媒インクの分散媒は、電極触媒層20を構成する各成分を浸食することがなく、高分子電解質22を流動性の高い状態で溶解又は微細ゲルとして分散できるものあれば特に限定されるものではない。但し、分散媒には、揮発性の有機溶媒が少なくとも含まれていることが望ましい。触媒インクの分散媒としては、水、アルコール類、ケトン類、これら以外の極性溶剤、エーテル系溶剤等であってよい。具体的には、アルコール類としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール等が挙げられる。ケトン類としては、アセトン、メチルエチルケトン、メチルブチルケトン、メチルイソブチルケトン、メチルアミルケトン、ペンタノン、ヘプタノン、シクロヘキサノン、メチルシクロヘキサノン、アセトニルアセトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン等が挙げられる。水、アルコール類及びケトン類以外の極性溶剤としては、ジメチルホルムアミド、ジメチルアセトアミド、N‐メチルピロリドン、エチレングリコール、ジエチレングリコール、ジアセトンアルコール、1‐メトキシ‐2‐プロパノール等が挙げられる。エーテル系溶剤としては、テトラヒドロフラン、ジオキサン、ジエチレングリコールジメチルエーテル、アニソール、メトキシトルエン、ジブチルエーテル等が挙げられる。また分散媒は、上述した溶媒のうち2種類以上を混合させた混合溶媒であってもよい。
 また、分散媒として、低級アルコールを用いる場合は、分散媒の発火をより抑制する観点から、低級アルコールと水との混合溶媒を用いることが好ましい。更に、高分子電解質22がイオノマーである場合には、分散媒には、イオノマーとなじみが良い水、すなわちイオノマーに対する親和性が高い水が含まれていることが好ましい。分散媒における水の含有量は、イオノマーが分離して白濁を生じたり、ゲル化したりしない程度であれば特に制限されるものではない。
 触媒含有物質21が、触媒21aを担持する担体21bを有する場合には、触媒含有物質21を触媒インク中で分散させるために、触媒インクに分散剤が含まれていてもよい。分散剤の一例は、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、非イオン界面活性剤である。
 触媒インク中の固形分の含有量は、50質量%以下であることが好ましい。この場合、電極触媒層20の表面におけるクラックの発生がより抑制される。電極触媒層20の成膜レートの向上の観点からは、触媒インク中の固形分含有量は、1質量%以上であることがより好ましい。
 触媒インク調製工程においては、電極触媒層20を構成する各成分を、分散媒を用いて混合した後、必要に応じて分散処理が行われてもよい。また、高分子繊維を含む触媒インク調製工程においては、高分子繊維を予め分散媒に分散させたのち、他の材料と共に混合、必要に応じて分散処理を行ってもよい。分散処理は、電極触媒層20に含まれる各成分を分散できる処理であれば特に限定されるものではない。このような処理としては、例えば、遊星式ボールミルおよびロールミルによる処理、せん断ミルによる処理、湿式ミルによる処理、超音波分散処理、ホモジナイザーによる処理が挙げられる。
<電極触媒層形成工程>
 電極触媒層形成工程では、例えば触媒インク調製工程で得られた触媒インクを、高分子電解質膜10の一方の面に塗布した後、分散媒を揮発させる乾燥処理を行うことによって電極触媒層20を形成し、積層体100を得る。
 このとき、電極触媒層20は高分子電解質膜10の面上に直接に形成される。そのため、高分子電解質膜10と電極触媒層20との密着性が高まる。また、電極触媒層20の接合のための加圧が不要であるため、電極触媒層20が潰れることも抑えられる。
 なお、高分子電解質膜10は、一般に膨潤および収縮の各度合が大きいという特性を有するため、高分子電解質膜10の上に触媒インクを塗布すると、触媒インクを基材上に塗布して電極触媒層20を形成した後、電極触媒層20を高分子電解質膜10に転写する場合と比較して、高分子電解質膜10の体積変化が大きい。それゆえ、触媒インクが繊維状物質23を含まない場合には電極触媒層20にクラックが生じやすい。これに対し、触媒インクが繊維状物質23を含む場合、触媒インクを高分子電解質膜10の上に直接塗布することにより高分子電解質膜10の体積が大きく変化した場合であっても、触媒インクが繊維状物質23を含むことにより電極触媒層20においてクラックの発生が抑えられる。
 触媒インクの塗布方法は特に限定されるものではなく、種々の塗布方法を用いることができる。塗布法としては、触媒インクを電極触媒層20の表面上に均一な膜厚で塗布する観点から、例えば、ドクターブレード法、ダイコート法、カーテンコート法、ディッピング法、スプレーコート法、スクリーン印刷法、ロールコーティング法等を好ましく用いることができる。
 乾燥処理に用いる乾燥方法は、分散媒を揮発させることができる方法であれば特に限定されるものではなく、オーブン、ホットプレート、温風乾燥、遠赤外線を用いた方法等を用いることができる。また乾燥処理における乾燥温度および乾燥時間は、触媒インクを構成する材料によって適宜選択することができる。触媒インクの乾燥温度は、例えば40℃以上200℃以下の範囲内であればよく、好ましくは40℃以上120℃以下の範囲内である。触媒インクの乾燥時間は、例えば0.5分以上1時間以内であればよく、好ましくは1分以上30分以内である。
 なお、触媒インクを、高分子電解質膜10の表面に塗布した後、分散媒を揮発させる乾燥処理を行うことによって電極触媒層20を形成する代わりに、触媒インクを、高分子電解質膜10とは別の基材の表面に塗布した後、分散媒を揮発させる乾燥処理を行うことによって電極触媒層20を形成し、次いで、電極触媒層20を高分子電解質膜10に接合した後に基材を剥離する転写処理を行ってもよい。
 上記基材としては、転写性が良い材質であれば良く、例えば、フッ素系樹脂を用いることができる。フッ素系樹脂としては、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等が挙げられる。また、基材としては、ポリイミド、ポリエチレンテレフタラート、ポリアミド(ナイロン(登録商標))、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート等のフッ素系樹脂以外の有機高分子化合物を用いることもできる。基材は、シート又はフィルムのいずれの形態であってもよい。
 上記転写処理としては、例えば熱圧着による転写方法を用いることができる。
<水電解装置用膜電極接合体>
 次に、本開示の水電解装置用膜電極接合体について図4及び図5を参照しながら説明する。図4は、本開示の水電解装置用膜電極接合体の一実施形態を示す断面図、図5は、図4の積層体に設けられる電極触媒層の一例を模式的かつ部分的に示す図である。
 図4に示されるように、水電解装置用膜電極接合体(以下、単に「膜電極接合体」という)200は、積層体100と、第2電極触媒層30とを備える。第2電極触媒層30は、積層体100の電極触媒層20とともに高分子電解質膜10を挟むように設けられている。すなわち、膜電極接合体200は、電極触媒層20、高分子電解質膜10及び、第2電極触媒層30をこの順に備える。電極触媒層20は、触媒含有物質21、高分子電解質22及び繊維状物質23を含み(図2参照)、第2電極触媒層30は、触媒含有物質31、高分子電解質32及び繊維状物質33を含む(図5参照)。本実施形態では、第2電極触媒層30については、アノード(酸化極)側に配置される電極触媒層(アノード側電極触媒層)として説明する。
 上記膜電極接合体200によれば、電極触媒層20が、触媒含有物質21、高分子電解質22及び繊維状物質23を含み、第2電極触媒層30が、触媒含有物質31、高分子電解質32及び繊維状物質33を含むため、電極触媒層20及び第2電極触媒層30におけるクラックの発生を抑制することができる。このため、膜電極接合体200は、これを備える水電解装置において膜電極接合体200に電圧が印加される際に、電極触媒層20及び第2電極触媒層30における電位分布が乱されることが抑制され、水電解装置の水電解性能が低下することを抑制することができ、水電解装置の耐久性を向上させることができる。
(第2電極触媒層)
 第2電極触媒層30は、アノード側に配置される電極触媒層であり、触媒含有物質31と、高分子電解質32と、繊維状物質33とを含む。
(1)触媒含有物質
 触媒含有物質31は、酸化反応を行う触媒含有物質である。
 触媒含有物質31は、アノード液中で酸化反応を行うための触媒(以下、「アノード触媒」ともいう)を含有する。アノード液としては、超純水などの水が用いられる。アノード触媒としては、例えば白金族に含まれる金属、白金族以外の金属、またはこれらの金属の合金、酸化物、複酸化物、炭化物を用いることができる。これらはそれぞれ単独で又は2種以上を組み合わせて用いることができる。上記のアノード触媒の中でも、触媒活性が高いことから、ルテニウム、ロジウム、パラジウム、イリジウム、白金、およびこれらの少なくとも1つを含む合金が好適である。なお、複酸化物とは、2種類の金属を含む酸化物のことをいう。
 アノード触媒は、白金族に含まれる金属で構成されることが好ましい。白金、金、パラジウム、ロジウム、ルテニウム、及び、イリジウムから選ばれた1種又は2種以上の金属である場合、高い活性を示すため電極反応性に優れ、電極反応を効率良く安定して行うことができる。
 触媒含有物質31は、触媒に加えて、触媒を担持する導電性の担体をさらに備えてもよい。すなわち、触媒含有物質31は、触媒担持粒子であってもよい。担体は、導電性を有し、酸化雰囲気下で浸食されない(すなわち、酸化消失に対する耐性を有する)物質であればよく、このような担体としては例えばチタン、スズ、ジルコニウム又はこれらの2種以上を含む酸化物が挙げられる。
 担体の平均粒径は、10nm以上であることが好ましい。この場合、電子伝導パスが形成されやすくなる。但し、第2電極触媒層30の抵抗値を低下させるとともに触媒の担持量を増大させる観点からは、担体の平均粒径は、1000nm以下であることが好ましく、100nm以下であることがより好ましい。ここで、平均粒径とは、SEM像から求めた平均粒径であり、担体21bとしてのカーボン粒子の平均粒径と同様にして求められる。
 (2)高分子電解質及び繊維状物質
 高分子電解質32は、上述した電極触媒層20の高分子電解質22と同様であり、繊維状物質33は、上述した電極触媒層20の繊維状物質23と同様である。
 但し、繊維状物質33は、高分子繊維を含むことが好ましい。この場合、アノード側電極触媒層30においてクラックが特に生じ難くなり、耐久性が高くなりやすい。
 繊維状物質33の平均繊維径は500nm以下であることが好ましく、400nm以下であることがより好ましい。繊維状物質33の平均繊維径が500nm以下であると、アノード側電極触媒層30に含有させる繊維材料として適当な細さが確保される。
 また、繊維状物質33の平均繊維径は100nm以上であることが好ましい。この場合、繊維状物質33において適当な太さが確保されてアノード側電極触媒層30の強度が高められ、クラックの発生がより抑制される。
 また、繊維状物質33の平均繊維長は1.0μm以上40μm以下の範囲内であることが好ましい。繊維状物質33の平均繊維長が上記数値範囲内であれば、アノード側電極触媒層30中に好適な大きさの空孔を形成することができる。特に、繊維状物質33の平均繊維径が100nm以上500nm以下の範囲内である場合に繊維状物質33の平均繊維長が1.0μm以上40μm以下の範囲内であることが好ましい。この場合、アノード側電極触媒層30中において繊維状物質33の絡み合う構造が好適に形成されるためにアノード側電極触媒層30の強度がより高められ、クラックの発生をより抑制できる。
 第2電極触媒層30中の繊維状物質33の含有率は、0.5質量%以上20質量%以下の範囲内であることが好ましく、5質量%以上15質量%以下の範囲内であることがより好ましい。この場合、繊維状物質33が、第2電極触媒層30に含有させるのに適した量となり、繊維状物質33の絡み合う構造が好適に形成されるため、第2電極触媒層30の強度がより高められ、クラックの発生がより抑制される。
 電極触媒層20における繊維状物質23の含有率(DF1)に対する第2電極触媒層30における繊維状物質33の含有率(DF2)の比R(DF2/DF1)は、1より大きくても、1未満であってもよいが、1より大きいことが好ましい。この場合、第2電極触媒層30の強度がより高められ、電極触媒層20を形成した後に第2電極触媒層30を形成する際に、高分子電解質膜10の変形やクラックの発生をより抑制できる。
 電極触媒層20中の繊維状物質23がカーボン繊維である場合には、上記比Rは、5以上30以下であることがより好ましく、10以上20以下であることがより一層好ましい。上記比Rが上記範囲内にあることで、第2電極触媒層30の強度がより一層高められ、電極触媒層20を形成した後に第2電極触媒層30を形成する際に、高分子電解質膜10の変形やクラックの発生をより一層抑制できる。
 電極触媒層20中の繊維状物質23が高分子繊維である場合には、上記比Rは、1.1以上15以下であることがより好ましく、1.5以上7以下であることが好ましい。上記比Rが上記範囲内にあることで、第2電極触媒層30の強度がより一層高められ、電極触媒層20を形成した後に第2電極触媒層30を形成する際に、高分子電解質膜10の変形やクラックの発生をより一層抑制できる。
 高分子電解質膜10の一方の面と対向する方向から第2電極触媒層30を平面視した場合、第2電極触媒層30の形状は、電極触媒層20の形状と同一の形状でも異なる形状でもよい。また、高分子電解質膜10の一方の面と対向する方向から第2電極触媒層30を平面視した場合、第2電極触媒層30の面積は、高分子電解質膜10の面積より小さくても高分子電解質膜10の面積以上であってもよいが、通常は高分子電解質膜10の面積より小さい。
<水電解装置用膜電極接合体の製造方法>
 膜電極接合体200の製造方法は、触媒インクを調製する触媒インク調製工程と、触媒インクを高分子電解質膜10の両面にそれぞれ塗布してカソード側電極触媒層20及びアノード側電極触媒層30を形成する電極触媒層形成工程とを含む。すなわち、膜電極接合体200の製造方法は、触媒インク調製工程及び電極触媒層形成工程の点で上記積層体100の製造方法と相違する。
<触媒インク調製工程>
 触媒インク調製工程は、アノード側電極触媒層30を構成する各成分、すなわち触媒含有物質31、高分子電解質32及び繊維状物質33を、分散媒を用いて混合することによりアノード側電極触媒層形成用の触媒インクをさらに調製する点で上記積層体100の製造方法の触媒インク調製工程と相違する。
 触媒インクの分散媒は、アノード側電極触媒層30を構成する各成分を浸食することがなく、高分子電解質32を流動性の高い状態で溶解又は微細ゲルとして分散できるものあれば特に限定されるものではない。但し、分散媒には、揮発性の有機溶媒が少なくとも含まれていることが望ましい。触媒インクの分散媒としては、水、アルコール類、ケトン類、これら以外の極性溶剤、エーテル系溶剤等であってよい。具体的には、アルコール類としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール等が挙げられる。ケトン類としては、アセトン、メチルエチルケトン、メチルブチルケトン、メチルイソブチルケトン、メチルアミルケトン、ペンタノン、ヘプタノン、シクロヘキサノン、メチルシクロヘキサノン、アセトニルアセトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン等が挙げられる。水、アルコール類及びケトン類以外の極性溶剤としては、ジメチルホルムアミド、ジメチルアセトアミド、N‐メチルピロリドン、エチレングリコール、ジエチレングリコール、ジアセトンアルコール、1‐メトキシ‐2‐プロパノール等が挙げられる。エーテル系溶剤としては、テトラヒドロフラン、ジオキサン、ジエチレングリコールジメチルエーテル、アニソール、メトキシトルエン、ジブチルエーテル等が挙げられる。また分散媒は、上述した溶媒のうち2種類以上を混合させた混合溶媒であってもよい。
 また、分散媒として、低級アルコールを用いる場合は、分散媒の発火をより抑制する観点から、低級アルコールと水との混合溶媒を用いることが好ましい。更に、高分子電解質32がイオノマーである場合には、分散媒には、イオノマーとなじみが良い水、すなわちイオノマーに対する親和性が高い水が含まれていることが好ましい。分散媒における水の含有量は、イオノマーが分離して白濁を生じたり、ゲル化したりしない程度であれば特に制限されるものではない。
 触媒含有物質31が、触媒を担持する担体を有する場合には、触媒含有物質31を触媒インク中で分散させるために、アノード側電極触媒層形成用の触媒インクに分散剤が含まれていてもよい。分散剤の一例は、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、非イオン界面活性剤である。
 触媒インク中の固形分の含有量は、50質量%以下であることが好ましい。この場合、アノード側電極触媒層30の表面におけるクラックの発生がより抑制される。アノード側電極触媒層30の成膜レートの向上の観点からは、触媒インク中の固形分含有量は、1質量%以上であることがより好ましい。
 触媒インク調製工程においては、アノード側電極触媒層30を構成する各成分を、分散媒を用いて混合した後、必要に応じて分散処理が行われてもよい。分散処理は、アノード側電極触媒層30に含まれる各成分を分散できる処理であれば特に限定されるものではない。このような処理としては、例えば、遊星式ボールミルおよびロールミルによる処理、せん断ミルによる処理、湿式ミルによる処理、超音波分散処理、ホモジナイザーによる処理が挙げられる。
<電極触媒層形成工程>
 電極触媒層形成工程は、アノード側電極触媒層形成用触媒インクを、高分子電解質膜10のうち電極触媒層20と反対側の面に塗布してアノード側電極触媒層30を形成する点で上記積層体100の製造方法の電極触媒層形成工程と相違する。
 電極触媒層形成工程では、触媒インク調製工程で得られたアノード側電極触媒層形成用の触媒インクを、高分子電解質膜10の他方の面に塗布した後、分散媒を揮発させる乾燥処理を行うことによってアノード側電極触媒層30を形成し、膜電極接合体200を得る。
 このとき、アノード側電極触媒層30は高分子電解質膜10の面上に直接に形成される。そのため、高分子電解質膜10とアノード側電極触媒層30との密着性が高まる。また、アノード側電極触媒層30の接合のための加圧が不要であるため、アノード側電極触媒層30が潰れることも抑えられる。
 なお、高分子電解質膜10は、一般に膨潤および収縮の各度合が大きいという特性を有するため、高分子電解質膜10の上に触媒インクを塗布すると、触媒インクを基材上に塗布してアノード側電極触媒層30を形成した後、アノード側電極触媒層30を高分子電解質膜10に転写する場合と比較して、高分子電解質膜10の体積変化が大きい。それゆえ、触媒インクが繊維状物質23を含まない場合にはアノード側電極触媒層30にクラックが生じやすい。これに対し、触媒インクが繊維状物質33を含む場合、触媒インクを高分子電解質膜10の上に直接塗布することにより高分子電解質膜10の体積が大きく変化した場合であっても、触媒インクが繊維状物質33を含むことによりアノード側電極触媒層30においてクラックの発生が抑えられる。
 触媒インクの塗布方法は特に限定されるものではなく、種々の塗布方法を用いることができる。塗布法としては、触媒インクをカソード側電極触媒層20又はアノード側電極触媒層30の表面上に均一な膜厚で塗布する観点から、例えば、ドクターブレード法、ダイコート法、カーテンコート法、ディッピング法、スプレーコート法、スクリーン印刷法、ロールコーティング法等を好ましく用いることができる。
 乾燥処理に用いる乾燥方法は、分散媒を揮発させることができる方法であれば特に限定されるものではなく、オーブン、ホットプレート、温風乾燥、遠赤外線を用いた方法等を用いることができる。また乾燥処理における乾燥温度および乾燥時間は、触媒インクを構成する材料によって適宜選択することができる。触媒インクの乾燥温度は、例えば40℃以上200℃以下の範囲内であればよく、好ましくは40℃以上120℃以下の範囲内である。触媒インクの乾燥時間は、例えば0.5分以上1時間以内であればよく、好ましくは1分以上30分以内である。
 なお、触媒インクを、高分子電解質膜10の表面に塗布した後、分散媒を揮発させる乾燥処理を行うことによってアノード側電極触媒層30を形成する代わりに、触媒インクを、高分子電解質膜10とは別の基材の表面に塗布した後、分散媒を揮発させる乾燥処理を行うことによってアノード側電極触媒層30を形成し、次いで、アノード側電極触媒層30を高分子電解質膜10に接合した後に基材を剥離する転写処理を行ってもよい。
 上記基材としては、転写性が良い材質であれば良く、例えば、フッ素系樹脂を用いることができる。フッ素系樹脂としては、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等が挙げられる。また、基材としては、ポリイミド、ポリエチレンテレフタラート、ポリアミド(ナイロン(登録商標))、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート等のフッ素系樹脂以外の有機高分子化合物を用いることもできる。基材は、シート又はフィルムのいずれの形態であってもよい。
 上記転写処理としては、例えば熱圧着による転写方法を用いることができる。
<水電解装置>
 本開示の水電解装置の一実施形態について図6を参照しながら説明する。図6は、本開示の水電解装置の一実施形態を示す断面図である。
 図6に示されるように、本実施形態の水電解装置300は、膜電極接合体200と、膜電極接合体200を挟むように設けられる一対の主電極310,320と、主電極310,320に電気的に接続される直流電源(図示せず)とを備える。主電極310はカソードであり、膜電極接合体200の電極触媒層20に接合されている。主電極320はアノードであり、膜電極接合体200の第2電極触媒層30に接合されている。すなわち、本実施形態の水電解装置300は、カソード310、膜電極接合体200及びアノード320をこの順に備える。
 膜電極接合体200は、積層体100と、第2電極触媒層30とを備える。第2電極触媒層30は、積層体100の電極触媒層20とともに高分子電解質膜10を挟むように設けられている。すなわち、膜電極接合体200は、カソード側電極触媒層20、高分子電解質膜10及びアノード側電極触媒層30をこの順に備えており、カソード側電極触媒層20はカソード310に対向して配置され、アノード側電極触媒層30は、アノード320に対向して配置されている。
 水電解装置300は、上述した膜電極接合体200を備えるので、水電解装置300によれば、膜電極接合体200において、電極触媒層20及び第2電極触媒層30におけるクラックの発生が抑制される。このため、アノードである主電極320に水が供給された状態で、電源により一対の主電極310,320間に電圧が印加される際に、膜電極接合体200の電極触媒層20及び第2電極触媒層30における電位分布が乱されることが抑制され、水電解装置300の水電解性能が低下することを抑制することができ、水電解装置300の耐久性が向上する。
 詳細に述べると、水電解装置300は、上述した膜電極接合体200を備え、膜電極接合体200において、アノード側電極触媒層30が、触媒含有物質31、高分子電解質32及び繊維状物質33を含むため、水電解装置300によれば、アノード側電極触媒層30におけるクラックの発生を抑制することができる。このため、水電解装置300において膜電極接合体200に電圧が印加される際に、アノード側電極触媒層30における電位分布が乱されることが抑制され、水電解装置300の水電解性能が低下することを抑制することができ、水電解装置300の耐久性を向上させることができる。また、膜電極接合体200においては、カソード側電極触媒層20も、触媒含有物質21、高分子電解質22及び繊維状物質23を含むため、カソード側電極触媒層20におけるクラックの発生をも抑制することができる。このため、水電解装置300において膜電極接合体200に電圧が印加される際に、カソード側電極触媒層20における電位分布が乱されることも抑制され、水電解装置300の水電解性能が低下することを抑制することもでき、水電解装置300の耐久性をより向上させることができる。
 本開示の水電解装置用積層体は、上記実施形態の積層体100に限定されるものではない。例えば積層体100では、高分子電解質膜10に電極触媒層20が設けられているが、電極触媒層20の代わりに第2電極触媒層30が設けられてもよい。
 また、本開示の水電解装置用膜電極接合体は、上記実施形態の膜電極接合体200に限定されるものではない。例えば膜電極接合体200では、カソード側電極触媒層20及びアノード側電極触媒層30がいずれも繊維状物質を含んでいるが、カソード側電極触媒層20は必ずしも繊維状物質を含んでいなくてもよい。
 以下、本開示の内容を、実施例を用いてより具体的に説明するが、本開示は以下の実施例に限定されるものではない。
(実施例1A)
 まず、触媒としてのPtRuを担持したカーボン担体(品番「TEC61E54」、田中貴金属工業社製、PtRu担持量:54質量%)からなる触媒担持粉末、高分子電解質としてナフィオン(登録商標)を含む分散液(商品名「ナフィオン(登録商標)DE2020」、富士フイルム和光純薬株式会社製)、繊維状物質としてカーボン繊維(商品名「VGCF-H」、昭和電工株式会社製)を溶媒中で混合し、遊星型ボールミルで30分間の分散処理を行い、触媒インクを作製した。触媒インクの溶媒は、超純水と1-プロパノールとの混合溶媒を用いた。超純水と1-プロパノールとの体積比は、1:1とした。このとき、触媒インクにおける固形分含有量が10質量%になるように触媒インクを調製した。また繊維状物質の配合量は、担体100質量部に対して50質量部となる量とした。繊維状物質の平均繊維径は150nm、平均繊維長は6μmであることを確認した。
 一方、高分子電解質膜として、ナフィオン(登録商標)膜(商品名「N117」、デュポン社製)を用意した。
 次に、スリットダイコーターを用いて、上記触媒インクを、高分子電解質膜の一方の主表面に、Pt及びRuの合計担持量が、その主表面の面積あたり0.5mg/cmとなるようにダイコーティング法で塗布した。そして、80℃のオーブンによる乾燥処理を施して触媒インク中の溶媒成分を除去し、電極触媒層と高分子電解質膜との積層体を得た。
 このようにして得られた積層体を目視にて観察したところ、実施例1Aの電極触媒層にはクラックは見られなかった。また、積層体においては、高分子電解質膜からの電極触媒層の剥離も見られなかった。
 また、積層体の厚さ方向の断面をSEMで観察し、電極触媒層の繊維状物質の凝集体の状態を確認したところ、凝集体による空隙は見られなかった。
(実施例2A)
 まず、触媒としての酸化イリジウム、高分子電解質としてナフィオン(登録商標)を含む分散液(商品名「ナフィオン(登録商標)DE2020」、富士フイルム和光純薬株式会社製)、繊維状物質として、窒素原子を含む高分子繊維を溶媒中で混合し、遊星型ボールミルで30分間の分散処理を行い、触媒インクを作製した。触媒インクの溶媒は、超純水と1-プロパノールとの混合溶媒を用いた。超純水と1-プロパノールとの体積比は、1:1とした。このとき、触媒インクにおける固形分含有量が10質量%になるように触媒インクを調製した。また、繊維状物質の配合量は、担体100質量部に対して2質量部となる量とした。繊維状物質の平均繊維径は400nm、平均繊維長は25μmであることを確認した。
 これ以降は実施例1Aと同様にして電極触媒層と電解質膜との積層体を得た。
 このようにして得られた積層体を目視にて観察したところ、実施例2Aの電極触媒層にはクラックは見られなかった。また、積層体においては、高分子電解質膜からの電極触媒層の剥離も見られなかった。
 また、積層体の厚さ方向の断面をSEMで観察し、電極触媒層の繊維状物質の凝集体の状態を確認したところ、凝集体による空隙は見られなかった。
(実施例3A)
 まず、触媒としてのPtRuを担持したカーボン担体(品番「TEC61E54」、田中貴金属工業社製、PtRu担持量:54質量%)からなる触媒担持粉末、高分子電解質としてナフィオン(登録商標)を含む分散液(商品名「ナフィオン(登録商標)DE2020」、富士フイルム和光純薬株式会社製)、繊維状物質として窒素原子を含む高分子繊維を溶媒中で混合し、高圧分散機で30分間の分散処理を行い、触媒インクを作製した。この際、高分子繊維は高圧分散機を用いて事前に分散媒に分散させた。触媒インクの溶媒は、超純水と1-プロパノールとの混合溶媒を用いた。超純水と1-プロパノールとの体積比は、1:1とした。このとき、触媒インクにおける固形分含有量が10質量%となるように触媒インクを調製した。また繊維状物質の配合量は、担体100質量部に対して5質量部となる量とした。繊維状物質の平均繊維径は200nm、平均繊維長は20μmであることを確認した。
 一方、高分子電解質膜として、ナフィオン(登録商標)膜(商品名「N117」、デュポン社製)を用意した。
 次に、スリットダイコーターを用いて、上記触媒インクを、高分子電解質膜の一方の主表面に、Pt及びRuの合計担持量が、その主表面の面積あたり0.5mg/cmとなるようにダイコーティング法で塗布した。そして、80℃のオーブンによる乾燥処理を施して触媒インク中の溶媒成分を除去し、電極触媒層と高分子電解質膜との積層体を得た。
 このようにして得られた積層体を観察したところ、実施例3Aの電極触媒層にはクラックは見られなかった。また、積層体においては、高分子電解質膜からの電極触媒層の剥離も見られなかった。
 また、積層体の厚さ方向の断面をSEMで観察し、電極触媒層の繊維状物質の凝集体の状態を確認したところ、凝集体による空隙は見られなかった。
(実施例4A)
 触媒インキを調製する際に、分散処理に用いる装置として、高圧分散機に代えて高速撹拌機を用いたこと以外は実施例3Aと同様にして、電極触媒層と電解質膜との積層体を得た。
 このようにして得られた積層体を目視にて観察したところ、実施例4Aの電極触媒層にはクラックは見られなかった。また、積層体においては、高分子電解質膜からの電極触媒層の剥離も見られなかった。
 一方、積層体の厚さ方向の断面をSEMで観察し、電極触媒層の繊維状物質の凝集体の状態を確認したところ、凝集体が多数存在し、凝集体を包囲するように約40μmの大きさの空隙が生じていることを確認した。
(実施例5A)
 触媒インキを調製する際に、分散処理を、超音波分散機を用いて行ったこと以外は実施例3Aと同様にして、電極触媒層と電解質膜との積層体を得た。
 このようにして得られた積層体を目視にて観察したところ、実施例5Aの電極触媒層にはクラックは見られなかった。また、積層体においては、高分子電解質膜からの電極触媒層の剥離も見られなかった。
 一方、積層体の厚さ方向の断面をSEMで観察し、電極触媒層の繊維状物質の凝集体の状態を確認したところ、凝集体が存在し、凝集体を包囲するように5μmの大きさの空隙が生じていることを確認した。
(実施例6A)
 触媒担持粉末、分散液、及び繊維状物質を混合する前に繊維状物質のみを事前に分散媒に分散させず、触媒担持粉末、分散液、及び、繊維状物質を溶媒中で同時に混合し、高圧分散機で30分間の分散処理を行うことによって触媒インクを作製したこと以外は実施例3Aと同様にして、電極触媒層と電解質膜との積層体を得た。
 このようにして得られた積層体を目視にて観察したところ、実施例6Aの電極触媒層にはクラックは見られなかった。また、積層体においては、高分子電解質膜からの電極触媒層の剥離も見られなかった。
 一方、積層体の厚さ方向の断面をSEMで観察し、電極触媒層の繊維状物質の凝集体の状態を確認したところ、凝集体が存在し、凝集体を包囲するように約40μmの大きさの空隙が生じていることを確認した。
(実施例7A)
 触媒インキを調製する際に、分散処理に用いる装置として、高圧分散機に代えてビーズミルを用いたこと以外は実施例3Aと同様にして、電極触媒層と電解質膜との積層体を得た。
 このようにして得られた積層体を目視にて観察したところ、実施例7Aの電極触媒層にはクラックは見られなかった。また、積層体においては、高分子電解質膜からの電極触媒層の剥離も見られなかった。
 一方、積層体の厚さ方向の断面をSEMで観察し、電極触媒層の繊維状物質の凝集体の状態を確認したところ、凝集体が存在したとともに、繊維状物質の変形が見られた。また、凝集体を包囲するように約5μmの大きさの空隙が生じていることを確認した。
(比較例1A)
 繊維状物質を含まないこと以外は実施例1Aと同様にして、電極触媒層と電解質膜との積層体を得た。
 このようにして得られた積層体を目視にて観察したところ、比較例1の電極触媒層にはクラックが生じていた。また、積層体においては、高分子電解質膜からの電極触媒層の部分的な剥離が認められた。
(実施例8A)
 繊維状物質の配合量を担体100質量部に対して5質量部としたこと以外は、実施例1Aと同様にして、電極触媒層と電解質膜との積層体を得た。
 このようにした得られた積層体を目視にて観察したところ、実施例8Aの電極触媒層にはクラックは見られなかった。
(実施例9A)
 繊維状物質の配合量を担体100質量部に対して25質量部としたこと以外は、実施例1Aと同様にして、電極触媒層と電解質膜との積層体を得た。
 このようにした得られた積層体を目視にて観察したところ、実施例9Aの電極触媒層にはクラックは見られなかった。
(実施例10A)
 繊維状物質の配合量を担体100質量部に対して75質量部としたこと以外は、実施例1Aと同様にして、電極触媒層と電解質膜との積層体を得た。
 このようにした得られた積層体を目視にて観察したところ、実施例10Aの電極触媒層にはクラックは見られなかった。
<電解性能の評価>
(膜電極接合体の作製)
 まず、触媒としての酸化イリジウム、高分子電解質としてナフィオン(登録商標)を含む分散液(商品名「ナフィオン(登録商標)DE2020」、富士フイルム和光純薬株式会社製)、繊維状物質として、窒素原子を含む高分子繊維を溶媒中で混合し、遊星型ボールミルで30分間の分散処理を行い、アノード側電極触媒層形成用の触媒インクを作製した。触媒インクの溶媒は、超純水と1-プロパノールとの混合溶媒を用いた。超純水と1-プロパノールとの体積比は、1:1とした。このとき、触媒インクにおける固形分含有量が10質量%になるように触媒インクを調製した。また、繊維状物質の配合量は、担体100質量部に対して2質量部となる量とした。繊維状物質の平均繊維径は400nm、平均繊維長は25μmであることを確認した。さらに上記繊維状物質については、高分子電解質の吸着量が繊維状物質1gあたり10mg以上であることを確認した。
 次に、スリットダイコーターを用いて、上記アノード側電極触媒層形成用触媒インクを、実施例1A、8A~10A、および比較例1Aで作製した積層体の高分子電解質膜のうち、カソード側電極触媒層を形成していない他方の主表面に、酸化イリジウムの担持量がその主表面の面積あたり1.0mg/cmとなるように、ダイコーティング法で塗工した。そして、80℃のオーブン内で乾燥することによって触媒インク中の分散媒を除去した。こうして、上記積層体の高分子電解質膜上にアノード側電極触媒層を形成し、水電解装置用膜電極接合体を得た。
 こうして得られた膜電極接合体をカソード及びアノードの間に配置して構造体を得た後、この構造体を水に浸漬して水電解装置を作製した。
 この水電解装置について電解性能を評価した。具体的には、電解性能は、膜電極接合体に電圧を印加し、1A/cmの電流が流れた時に測定される電圧値(電解電圧値)に基づいて評価した。結果を表1に示す。なお、電圧が水の理論電解電圧に近ければ近いほど性能が高く、通常は種々の抵抗成分により理論電解電圧より高い値を示す。
 表1に示す結果より、担体100質量部に対する繊維状物質の配合量が75質量部である実施例10Aでは電解電圧は1.98Vと高い値を示した。これに対し、実施例1A、8A、9Aおよび比較例1Aでは1.95V以下の小さい電解電圧が得られ、良好な電解性能が得られた。
 表1に示す結果より、担体100質量部に対する繊維状物質の配合量が5質量部以上50質量部以下であることにより、イオノマーによるプロトン伝導パスが形成された、あるいは電極触媒層内に空隙が形成されにくくなり、抵抗が生じにくかったために、水電解性能が向上したのではないかと考えられる。このように、水電解層用積層体について、繊維状物質を担体100質量部に対する繊維状物質の配合量を5質量部以上50質量部以下の範囲とすると、電極触媒層のクラックを抑制しながら、良好な電解性能も得られることが分かる。
 なお、実施例1A、実施例8A~10Aは、上述したとおり電極触媒層にクラックが見られなかったことから、電解性能の低下を抑制でき、水電解装置の耐久性を向上させることができると考えられる。一方、比較例1Aでは、上述したとおり電極触媒層にクラックが生じていたことから、電極触媒層の劣化が激しく電解性能の低下を抑制できず、水電解装置の耐久性を向上させることはできないものと考えられる。
Figure JPOXMLDOC01-appb-T000001
<実施例1B>
(カソード側電極触媒層の形成)
 まず、下記の触媒含有物質、高分子電解質を含む分散液、および繊維状物質を分散媒中で混合し、遊星型ボールミルで30分間の分散処理を行った。こうして、カソード側電極触媒層形成用触媒インクを調製した。このとき、触媒インク中の固形分の含有率が10質量%になるように触媒インクを調製した。また繊維状物質の配合量は、触媒含有物質中の担体の質量の1.0倍となる量とし、高分子電解質の配合量は、触媒含有物質中の担体の質量の0.8倍となる量とした。また、繊維状物質の平均繊維径は150nm、平均繊維長は15μmであることを確認した。さらに上記繊維状物質については、高分子電解質の吸着量が繊維状物質1gあたり10mg以上であることを確認した。
 
・触媒含有物質:PtRuを担持したカーボン担体(品番「TEC61E54」、田中貴金属工業社製、PtRu担持量:54質量%)からなる触媒担持粒子
・高分子電解質(イオノマー)を含む分散液:フッ素系高分子電解質であるNafion(登録商標)を含む分散液(商品名「ナフィオン(登録商標)DE2020」、富士フイルム和光純薬株式会社製)
・繊維状物質:カーボン繊維(商品名「VGCF-H」、昭和電工株式会社製)
・分散媒:超純水と1-プロパノールとの混合溶媒(水:1-プロパノール=1:1(体積比))
 
 次に、スリットダイコーターを用いて、上記カソード側電極触媒層形成用触媒インクを、高分子電解質膜としてのNafion(登録商標)膜(商品名「N117」、デュポン社製)の一方の主表面に、Pt及びRuの合計担持量が、その主表面の面積あたり0.5mg/cmとなるようにダイコーティング法で塗布した。そして、80℃のオーブン内で乾燥することによって触媒インク中の溶媒成分を除去し、電極触媒層と高分子電解質膜との積層体を得た。
(アノード側電極触媒層の形成)
 一方、下記の触媒、高分子電解質を含む分散液、および繊維状物質を分散媒中で混合し、遊星型ボールミルで30分間の分散処理を行った。こうして、アノード側電極触媒層形成用触媒インクを調製した。このとき、触媒インク中の固形分の含有率が10質量%になるように触媒インクを調製した。また繊維状物質の配合量は、アノード側電極触媒層の質量の0.01倍となる量とし、高分子電解質の配合量は、触媒の質量の0.2倍となる量とした。また、繊維状物質の平均繊維径は200nm、平均繊維長は25μmであることを確認した。さらに上記繊維状物質については、高分子電解質の吸着量が繊維状物質1gあたり10mg以上であることを確認した。
・触媒:酸化イリジウム粉末
・高分子電解質(イオノマー)を含む分散液:フッ素系高分子電解質であるNafion(登録商標)を含む分散液(商品名「ナフィオン(登録商標)DE2020」、富士フイルム和光純薬株式会社製)
・繊維状物質(イオノマー吸着繊維):高分子繊維(カチオン交換基:スルホン酸基)
・分散媒:超純水と1-プロパノールとの混合溶媒(水:1-プロパノール=1:1(体積比))
 
 次に、スリットダイコーターを用いて、上記アノード側電極触媒層形成用触媒インクを、上記積層体の高分子電解質膜のうち、カソード側電極触媒層を形成していない他方の主表面に、酸化イリジウムの担持量がその主表面の面積あたり1.0mg/cmとなるように、ダイコーティング法で塗工した。そして、80℃のオーブン内で乾燥することによって触媒インク中の分散媒を除去した。こうして、上記積層体の高分子電解質膜上にアノード側電極触媒層を形成し、水電解装置用膜電極接合体を得た。
<実施例2B>
 カソード側電極触媒層形成用触媒インクを調製する際に、繊維状物質として、カーボン繊維に代えて、高分子繊維(カチオン交換基:スルホン酸基)を用いたこと以外は実施例1Bと同様にして水電解装置用膜電極接合体を得た。なお、繊維状物質の配合量は、カソード側電極触媒層の質量の0.05倍となる量とした。繊維状物質の平均繊維径は200nm、平均繊維長は25μmであることを確認した。また上記繊維状物質については、高分子電解質の吸着量が繊維状物質1gあたり10mg以上であることを確認した。
<実施例3B>
 カソード側電極触媒層形成用触媒インクを調製する際に、繊維状物質の配合量を、カソード側電極触媒層の触媒含有物質中の担体の質量の0.5倍となる量とし、アノード側電極触媒層形成用触媒インクを調製する際に、繊維状物質の配合量を、アノード側電極触媒層の質量の0.1倍となる量としたこと以外は実施例2Bと同様にして水電解装置用膜電極接合体を得た。
<実施例4B>
(カソード側電極触媒層形成用触媒インクの調製)
 まず、下記の触媒含有物質、高分子電解質を含む分散液、および繊維状物質を分散媒中で混合し、遊星型ボールミルで30分間の分散処理を行った。こうして、カソード側電極触媒層形成用触媒インクを調製した。このとき、触媒インク中の固形分の含有率が10質量%になるように触媒インクを調製した。また、繊維状物質の配合量は、触媒含有物質中の担体の質量の0.5倍となる量とし、高分子電解質の配合量は、触媒含有物質中の担体の質量の0.8倍となる量とした。また、繊維状物質の平均繊維径は150nm、平均繊維長は15μmであることを確認した。上記繊維状物質については、高分子電解質の吸着量が繊維状物質1gあたり10mg以上であることを確認した。
 
・触媒含有担体:PtRuを担持したカーボン担体(品番「TEC61E54」、田中貴金属工業社製、PtRu担持量:54質量%)からなる触媒担持粒子
・高分子電解質(イオノマー)を含む分散液:フッ素系高分子電解質であるNafion(登録商標)を含む分散液(商品名「ナフィオン(登録商標)DE2020」、富士フイルム和光純薬株式会社製)
・繊維状物質:カーボン繊維(商品名「VGCF-H」、昭和電工株式会社製)
・分散媒:超純水と1-プロパノールとの混合溶媒(水:1-プロパノール=1:1(体積比))
 
(アノード側電極触媒層形成用触媒インクの調製)
 下記の触媒含有物質、高分子電解質を含む分散液、および繊維状物質を分散媒中で混合し、遊星型ボールミルで30分間の分散処理を行った。こうして、アノード側電極触媒層形成用触媒インクを調製した。このとき、触媒インク中の固形分の含有率が10質量%になるように触媒インクを調製した。また繊維状物質の配合量は、触媒含有物質中の担体の質量の0.2倍となる量とし、高分子電解質の配合量は、触媒含有物質中の担体の質量の0.4倍となる量となる量とした。また、繊維状物質の平均繊維径は200nm、平均繊維長は25μmであることを確認した。上記繊維状物質については、高分子電解質の吸着量が繊維状物質1gあたり10mg以上であることを確認した。
 
・触媒含有物質:酸化イリジウムをチタン酸化物担体に担持してなる触媒担持粒子
・高分子電解質(イオノマー)を含む分散液:フッ素系高分子電解質であるNafion(登録商標)を含む分散液(商品名「ナフィオン(登録商標)DE2020」、富士フイルム和光純薬株式会社製)
・繊維状物質(イオノマー吸着繊維):高分子繊維としてのイオン交換樹脂(カチオン交換基:スルホン酸基)
・分散媒:超純水と1-プロパノールとの混合溶媒(水:1-プロパノール=1:1(体積比))
 
(電極触媒層の製造)
 基材としてポリテトラフルオロエチレン(PTFE)シートを2枚用意し、これらを第1基材及び第2基材とした。
 そして、第1基材の一面に、ドクターブレード法を用いてアノード側電極触媒層形成用触媒インクを塗布し、80℃の大気雰囲気のなかで塗布膜を乾燥させ、これによってアノード側電極触媒層を製造した。このとき、アノード側電極触媒層における触媒の担持量が0.3mg/cmになるようにアノード側電極触媒層形成用触媒インクの塗布量を調整し、これによってアノード側電極触媒層を製造した。
 次に、第2基材の一面に、ドクターブレード法を用いてカソード側電極触媒層形成用触媒インクを塗布し、80℃の大気雰囲気のなかで塗布膜を乾燥させ、これによってカソード側電極触媒層を製造した。このとき、カソード側電極触媒層における触媒の担持量が0.3mg/cmになるようにカソード側電極触媒層形成用触媒インクの塗布量を調整し、これによってカソード側電極触媒層を製造した。
(膜電極接合体の作製)
 第1基材の上に形成されたアノード側電極触媒層の一部を第1基材と共に打ち抜いた。このとき、第1基材と共に打ち抜かれるアノード側電極触媒層の大きさは5cm×5cmとした。そして、打ち抜かれたアノード側電極触媒層を、厚さ183μmの高分子電解質膜としてのフッ素系高分子電解質(Nafion(登録商標)117)の一方の主表面に配置した。
 また、第2基材の上に形成されたカソード側電極触媒層の一部を第2基材と共に打ち抜いた。このとき、第2基材と共に打ち抜かれるカソード側電極触媒層の大きさは5cm×5cmとした。そして、打ち抜かれたカソード側電極触媒層を、上記高分子電解質膜の他方の主表面に配置した。
 そして、アノード側電極触媒層およびカソード側電極触媒層を、130℃の転写温度、および5.0×10Paの転写圧力を加えてホットプレスを行うことにより上記高分子電解質膜に転写し、膜電極接合体を得た。
<実施例5B>
 アノード側電極触媒層形成用触媒インクにおける繊維状物質として、窒素原子を有する高分子繊維(平均繊維径:15nm、カチオン交換基:スルホン酸基)を用いたこと以外は、実施例4Bと同様にして膜電極接合体を得た。なお、上記繊維状物質(イオノマー吸着繊維)については、高分子電解質(イオノマー)の吸着量が繊維状物質1gあたり10mg以上であることを確認した。
<実施例6B>
 アノード側電極触媒層形成用触媒インクにおける繊維状物質として、窒素原子を有する高分子繊維(平均繊維径:800nm、カチオン交換基:スルホン酸基)を用いたこと以外は、実施例4Bと同様にして膜電極接合体を得た。なお、上記繊維状物質(イオノマー吸着繊維)については、高分子電解質(イオノマー)の吸着量が繊維状物質1gあたり10mg以上であることを確認した。
<実施例7B>
 アノード側電極触媒層形成用触媒インクにおける繊維状物質として、窒素原子を有する高分子繊維(平均繊維径:300nm、カチオン交換基:アミノ基)を用いたこと以外は、実施例4Bと同様にして膜電極接合体を得た。なお、上記繊維状物質(イオノマー吸着繊維)については、高分子電解質(イオノマー)の吸着量が繊維状物質1gあたり10mg以上であることを確認した。
<実施例8B>
 カソード側電極触媒層形成用触媒インクにおける繊維状物質として、窒素原子を有する高分子繊維(平均繊維径:200nm、カチオン交換基:スルホン酸基)を用いたこと以外は、実施例1Bと同様にして膜電極接合体を得た。なお、上記繊維状物質(イオノマー吸着繊維)については、高分子電解質(イオノマー)の吸着量が繊維状物質1gあたり10mg以上であることを確認した。
<比較例1B>
 アノード側電極触媒層形成用触媒インクを調製する際に、繊維状物質を配合しなかったこと以外は実施例4Bと同様にして膜電極接合体を得た。
<クラック発生評価>
 実施例1B~8B及び比較例1Bの膜電極接合体について、アノード側電極触媒層の表面を顕微鏡(倍率:200倍)で観察することでクラックの発生状態を確認した。本評価では、10μm以上の長さのクラックが生じていた場合を「×」とし、10μm以上の長さのクラックが生じていない場合を「○」とした。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 10…高分子電解質膜、20…電極触媒層、21、31…触媒含有物質、21a…触媒、21b…担体、22、32…高分子電解質、23、33…繊維状物質、25…空隙、26…凝集体、30…第2電極触媒層(アノード側電極触媒層)、100…積層体、200…膜電極接合体、300…水電解装置。

Claims (30)

  1.  高分子電解質膜と、前記高分子電解質膜の一面上に設けられる電極触媒層と、を備える水電解装置用積層体であって、
     前記電極触媒層が、触媒、高分子電解質及び繊維状物質を含む、水電解装置用積層体。
  2.  前記繊維状物質の平均繊維径が100nm以上1μm以下の範囲内である、請求項1に記載の水電解装置用積層体。
  3.  前記繊維状物質が、前記高分子電解質を吸着する性質を有する物質である、請求項1又は2に記載の水電解装置用積層体。
  4.  前記繊維状物質が、カーボン繊維及び高分子繊維のうち少なくとも一方を含む、請求項1又は2に記載の水電解装置用積層体。
  5.  前記高分子繊維が、カチオン交換基を有する、請求項4に記載の水電解装置用積層体。
  6.  前記電極触媒層に含まれる前記高分子電解質がイオノマーである、請求項5に記載の水電解装置用積層体。
  7.  前記高分子繊維が、プロトン伝導性を有する、請求項4に記載の水電解装置用積層体。
  8.  前記電極触媒層は前記高分子繊維の凝集体を含み、
     前記高分子繊維の平均繊維長が20μmより大きく、前記凝集体を包囲する空隙の大きさが20μm以下である、請求項4に記載の水電解装置用積層体。
  9.  前記電極触媒層は前記高分子繊維の凝集体を含み、
     前記高分子繊維の平均繊維長が20μm以下であり、前記凝集体を包囲する空隙の大きさが前記高分子繊維の平均繊維長以下である、請求項4に記載の水電解装置用積層体。
  10.  前記電極触媒層がカソード側電極触媒層であり、
     前記触媒は導電性の担体に担持されており、前記繊維状物質はカーボン繊維であり、
     前記繊維状物質の配合量が、前記担体100質量部に対して5質量部以上50質量部以下の範囲内である、請求項1に記載の水電解装置用積層体。
  11.  前記電極触媒層がカソード側電極触媒層であり、
     前記触媒は導電性の担体に担持されており、前記繊維状物質は高分子繊維であり、
     前記繊維状物質の配合量が、前記担体100質量部に対して5質量部以上20質量部以下の範囲内である、請求項1に記載の水電解装置用積層体。
  12.  前記担体がカーボン粒子である、請求項10又は請求項11に記載の水電解装置用積層体。
  13.  膜電極接合体と、
     前記膜電極接合体を挟むように設けられる一対の主電極と、を備え、
     前記膜電極接合体が、
     請求項1~12のいずれか一項に記載の水電解装置用積層体と、
     前記水電解装置用積層体の前記高分子電解質膜のうち前記電極触媒層と反対側の面上に設けられる第2電極触媒層とを有する、水電解装置。
  14.  請求項1に記載の水電解装置用積層体と、第2電極触媒層とを備え、前記電極触媒層、前記高分子電解質膜及び、前記第2電極触媒層をこの順に備える水電解装置用膜電極接合体であって、
     前記第2電極触媒層がカソード側電極触媒層であり、
     前記電極触媒層が、アノード側電極触媒層であり、前記触媒を含有する触媒含有物質、前記高分子電解質及び前記繊維状物質を含む、水電解装置用膜電極接合体。
  15.  前記カソード側電極触媒層が、触媒含有物質、高分子電解質及び繊維状物質を含む、請求項14に記載の水電解装置用膜電極接合体。
  16.  前記カソード側電極触媒層の前記繊維状物質が、カーボン繊維及び高分子繊維のうち少なくとも一方を含み、
     前記アノード側電極触媒層の前記繊維状物質が高分子繊維を含む、請求項15に記載の水電解装置用膜電極接合体。
  17.  前記高分子繊維が、プロトン伝導性を有する、請求項16に記載の水電解装置用膜電極接合体。
  18.  前記高分子繊維が、カチオン交換基を有する、請求項16に記載の水電解装置用膜電極接合体。
  19.  前記アノード側電極触媒層及び前記カソード側電極触媒層に含まれる前記高分子電解質がイオノマーである、請求項18に記載の水電解装置用膜電極接合体。
  20.  前記カソード側電極触媒層中の前記繊維状物質がカーボン繊維であり、
     前記繊維状物質の平均繊維径が50nm以上300nm以下の範囲内であり、
     前記繊維状物質の平均繊維長が1.0μm以上20μm以下の範囲内である、請求項15又は16に記載の水電解装置用膜電極接合体。
  21.  前記カソード側電極触媒層中の前記繊維状物質が高分子繊維であり、
     前記繊維状物質の平均繊維径が100nm以上500nm以下の範囲内であり、
     前記繊維状物質の平均繊維長が1.0μm以上40μm以下の範囲内である、請求項15~19のいずれか一項に記載の水電解装置用膜電極接合体。
  22.  前記アノード側電極触媒層中の前記繊維状物質の平均繊維径が100nm以上500nm以下の範囲内であり、
     前記繊維状物質の平均繊維長が1.0μm以上40μm以下の範囲内である、請求項14~21のいずれか一項に記載の水電解装置用膜電極接合体。
  23.  前記カソード側電極触媒層中の前記触媒含有物質が、前記触媒と、前記触媒を担持する担体とを有する触媒担持粒子であり、
     前記カソード側電極触媒層中の前記繊維状物質がカーボン繊維であり、
     前記繊維状物質の配合量が、前記担体の質量の0.3倍以上1.5倍以下の範囲内である、請求項15又は16に記載の水電解装置用膜電極接合体。
  24.  前記カソード側電極触媒層中の前記触媒含有物質が、前記触媒と、前記触媒を担持する担体とを有する触媒担持粒子であり、
     前記カソード側電極触媒層中の前記繊維状物質が高分子繊維であり、
     前記繊維状物質の配合量が、前記担体の質量の0.05倍以上0.3倍以下の範囲内である、請求項15~19のいずれか一項に記載の水電解装置用膜電極接合体。
  25.  前記アノード側電極触媒層中の前記繊維状物質の含有率が、0.5質量%以上20質量%以下の範囲内である、請求項15~24のいずれか一項に記載の水電解装置用膜電極接合体。
  26.  前記アノード側電極触媒層における前記繊維状物質の含有率(DF2)に対する前記カソード側電極触媒層中の前記繊維状物質の含有率(DF1)の比R(DF1/DF2)が1よりも大きい、請求項15~25のいずれか一項に記載の水電解装置用膜電極接合体。
  27.  前記カソード側電極触媒層中の前記繊維状物質がカーボン繊維であり、
     前記比Rが5以上30以下である、請求項26に記載の水電解装置用膜電極接合体。
  28.  前記カソード側電極触媒層中の前記繊維状物質が高分子繊維であり、
     前記比Rが1.1以上15以下である、請求項26に記載の水電解装置用膜電極接合体。
  29.  前記カソード側電極触媒層及び前記アノード側電極触媒層のうち少なくとも一方において、前記高分子電解質がイオノマーであり、前記繊維状物質が、前記イオノマーを吸着する性質を有するイオノマー吸着繊維である、請求項15~28のいずれか一項に記載の水電解装置用膜電極接合体。
  30.  カソード、膜電極接合体及びアノードをこの順に備え、
     前記膜電極接合体が、
     請求項14~29のいずれか一項に記載の水電解装置用膜電極接合体である、水電解装置。
PCT/JP2023/020691 2022-06-14 2023-06-02 水電解装置用積層体、水電解装置用膜電極接合体及び水電解装置 WO2023243449A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022095543 2022-06-14
JP2022095542 2022-06-14
JP2022-095542 2022-06-14
JP2022-095543 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023243449A1 true WO2023243449A1 (ja) 2023-12-21

Family

ID=89191084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020691 WO2023243449A1 (ja) 2022-06-14 2023-06-02 水電解装置用積層体、水電解装置用膜電極接合体及び水電解装置

Country Status (1)

Country Link
WO (1) WO2023243449A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110178A (ja) * 2000-09-29 2002-04-12 Sony Corp ガス拡散電極の製造方法及び電気化学デバイスの製造方法
JP2006164612A (ja) * 2004-12-03 2006-06-22 Fuji Electric Holdings Co Ltd 固体高分子型燃料電池
WO2009075357A1 (ja) * 2007-12-13 2009-06-18 Asahi Glass Company, Limited 固体高分子形燃料電池用電極、膜電極接合体および触媒層の製造方法
JP2009152143A (ja) * 2007-12-21 2009-07-09 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体および固体高分子形燃料電池用膜電極接合体の製造方法
JP2014504424A (ja) * 2010-10-27 2014-02-20 ヴァンダービルト ユニヴァーシティ ナノ繊維電極およびそれを形成する方法
JP2018181508A (ja) * 2017-04-07 2018-11-15 パナソニックIpマネジメント株式会社 電気化学デバイス用電極触媒層、膜/電極接合体、および電気化学デバイス
JP2019075277A (ja) * 2017-10-16 2019-05-16 トヨタ自動車株式会社 燃料電池
JP2020068146A (ja) * 2018-10-25 2020-04-30 株式会社豊田中央研究所 空気極触媒層
JP2020094282A (ja) * 2018-12-11 2020-06-18 カーリットホールディングス株式会社 水電解用電極及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110178A (ja) * 2000-09-29 2002-04-12 Sony Corp ガス拡散電極の製造方法及び電気化学デバイスの製造方法
JP2006164612A (ja) * 2004-12-03 2006-06-22 Fuji Electric Holdings Co Ltd 固体高分子型燃料電池
WO2009075357A1 (ja) * 2007-12-13 2009-06-18 Asahi Glass Company, Limited 固体高分子形燃料電池用電極、膜電極接合体および触媒層の製造方法
JP2009152143A (ja) * 2007-12-21 2009-07-09 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体および固体高分子形燃料電池用膜電極接合体の製造方法
JP2014504424A (ja) * 2010-10-27 2014-02-20 ヴァンダービルト ユニヴァーシティ ナノ繊維電極およびそれを形成する方法
JP2018181508A (ja) * 2017-04-07 2018-11-15 パナソニックIpマネジメント株式会社 電気化学デバイス用電極触媒層、膜/電極接合体、および電気化学デバイス
JP2019075277A (ja) * 2017-10-16 2019-05-16 トヨタ自動車株式会社 燃料電池
JP2020068146A (ja) * 2018-10-25 2020-04-30 株式会社豊田中央研究所 空気極触媒層
JP2020094282A (ja) * 2018-12-11 2020-06-18 カーリットホールディングス株式会社 水電解用電極及びその製造方法

Similar Documents

Publication Publication Date Title
US11563218B2 (en) Manufacturing method of membrane electrode assembly, membrane electrode assembly manufactured thereby, and fuel cell comprising membrane electrode assembly
JP4672683B2 (ja) 金属触媒とその製造方法、電極とその製造方法、及び燃料電池
KR20150097024A (ko) 고분자 전해질막, 이를 포함하는 막전극 접합체 및 연료전지
JP2013109856A (ja) 燃料電池用電極触媒層
CN113226548B (zh) 催化剂、其制备方法、包括其的电极、包括该电极的膜-电极组件和包括该组件的燃料电池
JP2020145210A (ja) 電極の製造方法、これによって製造された電極、前記電極を含む膜−電極アセンブリー、そして前記膜−電極アセンブリーを含む燃料電池
JP6638675B2 (ja) 燃料電池用触媒インク、燃料電池用触媒層、及び、膜電極接合体
JP7385014B2 (ja) 膜電極接合体
JP4131408B2 (ja) 固体高分子型燃料電池の製造方法
US11444288B2 (en) Electrode comprising organic functional metal oxide, manufacturing method therefor, membrane-electrode assembly comprising same, and fuel cell comprising membrane-electrode assembly
JP6131944B2 (ja) 固体高分子形燃料電池用膜電極接合体の製造方法
JP2008293971A (ja) 固体高分子形燃料電池用高分子電解質膜の製造方法、固体高分子形燃料電池用膜電極組立体および固体高分子形燃料電池
WO2022124407A1 (ja) 電極触媒層、膜電極接合体及び固体高分子形燃料電池
JP2022087296A (ja) 電極触媒層、膜電極接合体及び固体高分子形燃料電池
JP2021093259A (ja) 電極触媒層、膜電極接合体及び固体高分子形燃料電池
WO2011114949A1 (ja) 固体高分子形燃料電池用膜電極接合体、および固体高分子形燃料電池用カソードの製造方法
JP2006253042A (ja) 固体高分子形燃料電池用触媒の製造方法
JP2009037902A (ja) 燃料電池用電極形成用の触媒担持担体とその製造方法および固体高分子型燃料電池
WO2023243449A1 (ja) 水電解装置用積層体、水電解装置用膜電極接合体及び水電解装置
JP2020057516A (ja) 電極層ならびに当該電極層を用いた膜電極接合体および燃料電池
WO2024018944A1 (ja) 電極触媒層、膜電極接合体、および、固体高分子形燃料電池
JP2008258060A (ja) 膜・電極接合体の製造方法
JP2024040839A (ja) 電極触媒層、及び、膜電極接合体
JP6521168B1 (ja) 触媒層、膜電極接合体、固体高分子形燃料電池
WO2020196419A1 (ja) 固体高分子形燃料電池用触媒層、膜電極接合体、及び固体高分子形燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823742

Country of ref document: EP

Kind code of ref document: A1