WO2023243259A1 - ヘテロエピタキシャルウェーハの製造方法 - Google Patents

ヘテロエピタキシャルウェーハの製造方法 Download PDF

Info

Publication number
WO2023243259A1
WO2023243259A1 PCT/JP2023/017373 JP2023017373W WO2023243259A1 WO 2023243259 A1 WO2023243259 A1 WO 2023243259A1 JP 2023017373 W JP2023017373 W JP 2023017373W WO 2023243259 A1 WO2023243259 A1 WO 2023243259A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
temperature
sic
film
silicon substrate
Prior art date
Application number
PCT/JP2023/017373
Other languages
English (en)
French (fr)
Inventor
寿樹 松原
温 鈴木
剛 大槻
達夫 阿部
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2023243259A1 publication Critical patent/WO2023243259A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy

Definitions

  • the present invention relates to a method for manufacturing a heteroepitaxial wafer in which a 3C-SiC single crystal film is heteroepitaxially grown on a single crystal silicon substrate.
  • SiC Compared to Si's bandgap of 1.1eV, SiC has a wide bandgap of 2.2 to 3.3eV, so it has high dielectric breakdown strength and high thermal conductivity, making it suitable for power devices, high-frequency devices, etc. This material is expected to be used as a semiconductor material for various semiconductor devices.
  • GaN gallium nitride
  • Patent Document 1 and Non-Patent Document 1 use as a platform for gallium nitride (GaN) growth (for example, Patent Document 1 and Non-Patent Document 1) is being promoted, but on the other hand, SiC wafers are mainly small in diameter and are not suitable for use in power devices or high frequency devices. Larger diameters are required, and if a high-quality 3C-SiC single crystal film can be formed on a large-diameter substrate, in addition to using the 3C-SiC single-crystal film itself, a large-diameter, high-quality GaN layer can be formed. It becomes possible to fabricate a heteroepitaxial wafer with
  • Patent Documents 1 and 2 disclose that a 3C-SiC single crystal film can be grown on a silicon substrate, and that a 3C-SiC single crystal film can be grown on a large diameter substrate such as a 300 mm diameter substrate by selecting the type of reactor. There is.
  • 3C-SiC single crystal film involves introducing two types of raw material gases, a gas containing a carbon source precursor and a gas containing a silicon source precursor, into a reactor together with a carrier gas, and performing high-temperature treatment ( ⁇ It is characterized by growth by decomposing these source gases using a combination of high-temperature treatment (1200° C.) or a combination of high-temperature treatment and plasma treatment.
  • Patent Document 3 discloses that in order to further reduce the lattice mismatch between silicon and SiC, single crystal silicon with a plane orientation of (110) is grown as a single crystal silicon substrate. Disclosed is the use of a substrate. Although it is advantageous in terms of lattice mismatch, it is not desirable to limit the plane orientation when considering the production of heteroepitaxial wafers. In addition, it is also disclosed that a 3C-SiC single crystal layer containing hydrogen is formed, but it is assumed that hydrogen will easily escape during the temperature increase process during the epitaxial growth sequence, and the conditions do not depend on the amount of hydrogen. It is hoped that
  • Patent Document 4 mentions the off-angle of a single crystal silicon substrate, but it refers to carbonization by propane and subsequent growth of propane + silane gas, which again increases the number of raw material gas species, which is disadvantageous for epitaxial growth.
  • Patent Document 5 describes a method of growing a 3C-SiC single crystal layer on a single crystal silicon substrate with a plane orientation of (111) and a diameter of less than 8 inches (200 mm) using monomethylsilane as a source gas.
  • the film forming conditions at this time are that after the temperature of the single crystal silicon substrate reaches the film forming condition of 1050 to 1100°C, the pressure in the chamber is increased to 2 ⁇ 10 - for 5 to 12 hours.
  • the process is carried out under conditions of 4 to 3 ⁇ 10 -4 Torr (0.02 to 0.03 Pa), and the formation speed is said to be slow because the 3C-SiC single crystal layer is formed under extremely low pressure conditions. There's a problem.
  • the present invention has been made to solve the above problems, and aims to provide a method for manufacturing a heteroepitaxial wafer that can efficiently epitaxially grow a high quality 3C-SiC single crystal film on a single crystal silicon substrate.
  • the purpose is
  • the present invention provides a method for manufacturing a heteroepitaxial wafer in which a 3C-SiC single crystal film is heteroepitaxially grown on a single crystal silicon substrate, comprising: Using a low pressure CVD device, a first step of removing a natural oxide film on the surface of the single crystal silicon substrate by hydrogen baking; A second step of nucleating SiC on the single crystal silicon substrate under conditions of a pressure of 13 Pa or more and 13332 Pa or less and a temperature of 600° C. or more and 1200° C. or less while supplying a source gas containing carbon into the reduced pressure CVD apparatus.
  • the 3C-SiC single crystal film is grown by growing a SiC single crystal under conditions of a pressure of 13 Pa or more and 13332 Pa or less and a temperature of 800° C. or more and less than 1200° C. while supplying a source gas containing carbon and silicon into the low-pressure CVD apparatus.
  • a third step of forming Provided is a method for manufacturing a heteroepitaxial wafer, the method comprising:
  • the second step by setting the temperature to 600° C. or higher, it is possible to prevent SiC nucleation from becoming inefficient due to the low temperature. Further, by setting the temperature to 1200° C. or lower, it is possible to prevent the reaction between the single crystal silicon substrate and the source gas from proceeding due to the high temperature, and thereby preventing the formation of SiC nuclei on the surface of the single crystal silicon substrate. Further, by setting the pressure to 13 Pa (0.1 Torr) or more, it is possible to prevent SiC nucleation from becoming inefficient due to the low pressure. In addition, by setting the pressure to 13332 Pa (100 Torr) or less, it is possible to prevent secondary or higher order reactions such as reaction of reactive species with source gas in the gas phase from occurring, which is efficient. .
  • the temperature by setting the temperature to 800° C. or higher, it is possible to prevent the growth of the SiC single crystal from slowing down due to the low temperature. Further, by setting the temperature to be less than 1200°C, it is possible to prevent slip dislocation from occurring. In addition, by setting the pressure to 13 Pa (0.1 Torr) or more, it is possible to prevent the growth of the SiC single crystal from progressing due to too low pressure. In addition, by setting the pressure to 13332 Pa (100 Torr) or less, it is possible to prevent secondary or even higher order reactions, such as reaction of reactive species with source gas in the gas phase, to ensure epitaxial growth. It can be made into something. This can prevent the 3C-SiC single crystal film from becoming polycrystalline.
  • methane, ethylene, acetylene, or propane may be used as the carbon-containing source gas.
  • monomethylsilane or trimethylsilane may be used as the source gas containing carbon and silicon.
  • these source gases (raw material gases) are used in the second and third steps, they can be prepared relatively easily, and one type of source gas can be used under very simple conditions. Nucleation of SiC and growth of a single crystal of SiC can be performed using this method.
  • the first step can be performed at a temperature of 1000°C or more and 1200°C or less.
  • the natural oxide film on the surface of the single-crystal silicon substrate can be removed more efficiently, and the occurrence of slip dislocations can be prevented.
  • the second step can be performed under conditions where the temperature is gradually raised from a range of 600°C or more and 800°C or less to a range of 900°C or more and 1200°C or less.
  • a heteroepitaxial wafer of the present invention it is possible to efficiently provide a heteroepitaxial wafer in which a 3C-SiC single crystal film is directly formed on a single crystal silicon substrate through a simple manufacturing process.
  • 1 is a graph showing the results of in-plane XRD analysis of 3C-SiC on Si (111) grown in Example 1.
  • 2 is a graph showing the results of in-plane XRD analysis of 3C-SiC on Si (111) grown in Comparative Example 1.
  • high-quality 3C-SiC single crystals can be grown by combining predetermined conditions [pressure: 13 Pa or higher and 13,332 Pa or lower, temperature: 800°C or higher and lower than 1200°C] (third step) that facilitate the growth of SiC single crystals. They discovered that a film can be formed efficiently and completed the present invention.
  • FIG. 1 shows an example of the growth sequence of the embodiment.
  • the first step of hydrogen baking (hereinafter also referred to as H 2 annealing), the second step of SiC nucleation step, and the third step of SiC single crystal growth step (3C-SiC single crystal film formation step) were performed in order. ing.
  • Each step will be explained below.
  • a single crystal silicon substrate is placed in a reduced pressure CVD device (hereinafter also referred to as RP-CVD [Reduced Pressure - Chemical Vaper Deposition] device), hydrogen gas is introduced, and the natural oxide film on the surface is subjected to hydrogen baking (H 2 annealing). ).
  • RP-CVD Reduced Pressure - Chemical Vaper Deposition
  • the H 2 annealing at this time is preferably performed at a temperature of, for example, 1000° C. or more and 1200° C. or less. By setting the temperature to 1000° C. or higher, it is possible to prevent the processing time for preventing the natural oxide film from remaining from becoming long, which is efficient. Furthermore, if the temperature is 1200° C. or less, slip dislocation caused by high temperatures can be effectively prevented.
  • the pressure and time of the H 2 annealing at this time are not particularly limited as long as the natural oxide film can be removed. In the example shown in FIG. 1, H 2 annealing is performed at 1080° C. for 1 minute. Further, hydrogen gas can be introduced continuously even after the first step and also in the second and third steps (carrier gas).
  • a source gas containing carbon into the RP-CVD apparatus, a predetermined pressure and temperature are set to form SiC nuclei on the single crystal silicon substrate.
  • a hydrocarbon gas for example, can be used as the source gas.
  • methane, ethylene, acetylene, propane, etc. can be introduced.
  • Such a source gas can be easily prepared, and one type of source gas can simplify the conditions for SiC nucleation.
  • this SiC nucleation can be performed on the surface of a single crystal silicon substrate if the pressure is 13 Pa or more and 13332 Pa or less (0.1 Torr or more and 100 Torr or less) and the temperature is 600° C. or more and 1200° C. or less.
  • the temperature is higher than 1200° C., the reaction between the single crystal silicon substrate and the source gas will proceed, making it impossible to form SiC nuclei on the surface of the single crystal silicon substrate. Further, if the temperature is less than 600° C., the temperature is too low to form SiC nuclei efficiently.
  • the pressure is set to 13332 Pa (100 Torr) or less, it is possible to prevent secondary or higher order reactions such as reaction of reactive species with raw material gas in the gas phase from occurring, which is efficient. .
  • the pressure is set to 13 Pa (0.1 Torr).
  • the manner in which the temperature changes from the first step to the second step is not particularly limited.
  • the temperature can be adjusted by directly raising or lowering the temperature from 1080° C. to a predetermined temperature maintained in the second step.
  • the temperature is once lowered to a temperature range of 600°C to 800°C.
  • the temperature may be gradually raised from the temperature in the range of 600°C to 800°C to the temperature in the range of 900°C to 1200°C.
  • the temperature can be maintained at a predetermined temperature for 10 minutes, for example. By doing so, nucleation of SiC can be performed more effectively.
  • the rate of temperature increase when increasing the temperature from the above temperature range of 600°C or more and 800°C or less is preferably about 1.0°C/sec.
  • the temperature increase rate is not too fast, and it effectively prevents the deviation between the set temperature and the actual temperature of the board during and after heating up, which makes control difficult. It can be prevented.
  • the temperature increase rate is not too slow, and it is possible to effectively suppress the occurrence of non-uniform nucleation and defect formation during epitaxial growth due to the long passage time through the 3C-SiC nucleation temperature zone. .
  • the temperature is lowered to 700°C after the first step, and as the second step, the temperature is increased to 1100°C at a temperature increase rate of 1.0°C/sec, and then held at 1100°C for 10 minutes.
  • the pressure is 13332 Pa (100 Torr).
  • ⁇ Third step> While supplying a source gas containing carbon and silicon into the RP-CVD equipment, a SiC single crystal is grown under the conditions of a pressure of 13 Pa or more and 13332 Pa or less (0.1 Torr or more and 100 Torr or less) and a temperature of 800° C. or more and less than 1200° C. A 3C-SiC single crystal film is then formed. Under these conditions, SiC single crystal can be grown efficiently to form a 3C-SiC single crystal film. For example, monomethylsilane or trimethylsilane can be introduced as the source gas. Such a source gas can be easily prepared, and one type of source gas can simplify the conditions for growing the SiC single crystal.
  • the 3C-SiC to be formed will become polycrystalline.
  • the pressure is set to 13332 Pa (100 Torr) or less in this third step, it is possible to suppress secondary or even higher order reactions in the gas phase as described above, and the 3C-SiC single crystal film can be formed reliably and efficiently.
  • the pressure can be set to 1333 Pa (10 Torr) or less, and even 133 Pa (1 Torr) or less. Under these conditions, vacancies are formed directly under the 3C-SiC single crystal film, and the stress of the entire heteroepitaxial layer is reduced.
  • the temperature is set at 800°C or more and less than 1200°C.
  • the third step is held at 1000° C. for 10 minutes. Note that the pressure is 13332 Pa (100 Torr).
  • the method for manufacturing a heteroepitaxial wafer of the present invention has been described.
  • SiC nucleation step after removing the natural oxide film on the surface of the single crystal silicon substrate, it is possible to It is possible to form SiC nuclei and, in turn, to form a 3C-SiC single crystal film.
  • SiC nuclei by performing the SiC nucleation step after removing the natural oxide film on the surface of the single crystal silicon substrate, it is possible to It is possible to form SiC nuclei and, in turn, to form a 3C-SiC single crystal film.
  • SiC nucleation process before the 3C-SiC single crystal film formation process, it is possible to suppress deterioration of crystallinity due to lattice mismatch between Si and 3C-SiC, and to produce high-quality 3C-SiC. It becomes possible to form a single crystal film.
  • the film forming time is appropriately set based on the pressure and temperature conditions set so as to obtain the desired film thickness.
  • the thickness of the 3C-SiC single crystal film can range from a thin film of about 4 nm to a thick film of several ⁇ m, for example.
  • GaN is further grown on the surface of the 3C-SiC single crystal film to form a high quality layer on the 3C-SiC single crystal film. It is also possible to provide a method for manufacturing a heteroepitaxial wafer with a GaN layer. Alternatively, it is also possible to further grow Si on the surface of the 3C-SiC single crystal film to provide a high quality Si layer on the 3C-SiC single crystal film.
  • Example 1 Prepare a boron-doped single-crystal silicon substrate with a diameter of 300 mm, plane orientation (111), and high resistivity (1000 ⁇ cm), place the wafer on a susceptor in the reactor of an RP-CVD equipment, and heat it at 1080°C for 1 minute. H 2 annealing was performed (first step).
  • Example 1 A single crystal silicon substrate similar to that in Example 1 was prepared, the wafer was placed on a susceptor in a reactor of an RP-CVD apparatus, and H 2 annealing was performed at 1080° C. for 1 minute (first step). Subsequently, without performing the second step (3C-SiC nucleation step), the furnace temperature was set to 1000°C, trimethylsilane gas was introduced, and the temperature was maintained for 10 minutes to form a 3C-SiC single crystal film ( Third step). The growth pressure was 13332 Pa (100 Torr). As a result, the film thickness was 45 nm.
  • Example 2 A single crystal silicon substrate similar to that in Example 1 was prepared, the wafer was placed on a susceptor in a reactor of an RP-CVD apparatus, and H 2 annealing was performed at 1080° C. for 1 minute (first step). Subsequently, the temperature inside the furnace was set to 600° C., propane gas was introduced, and the temperature was maintained for 10 minutes to form nuclei of 3C-SiC (second step). Thereafter, after the temperature inside the furnace was lowered to 800° C., trimethylsilane gas was introduced and maintained for 10 minutes to form a 3C-SiC single crystal film (third step). The growth pressure was uniformly 13 Pa, 13332 Pa (0.1 Torr, 100 Torr). As a result, the film thicknesses were 60 nm and 92 nm for each pressure pattern.
  • Example 3 The 3C-SiC single crystal film was grown under the same conditions as in Example 2 (growth pressures were uniformly 13 Pa (0.1 Torr) and 13332 Pa (100 Torr)) except that the temperatures in the second and third steps were 1200°C and 1190°C, respectively. growth. As a result, the film thicknesses were 90 nm and 120 nm for each pressure pattern.
  • Example 2 A 3C-SiC single crystal film was grown under the same conditions as in Example 2, where the growth temperature was 13332 Pa (100 Torr), except that the temperature in the second step was 500°C. Separately, a 3C-SiC single crystal film was grown under the same conditions as in Example 2, where the growth temperature was 13332 Pa (100 Torr), except that the temperature in the second step was 1250°C. As a result, the film thickness was 38 nm and 43 nm in each temperature pattern of the second step.
  • the film thickness formed in this manner was extremely thin compared to Example 2, and the efficiency was significantly poor. This is considered to be because the temperature in the second step was too low or too high, so that nucleation of SiC was not sufficiently performed, and therefore, little heteroepitaxial growth occurred in the third step.
  • Example 3 A 3C-SiC single crystal film was grown under the same conditions as in Example 2, where the growth temperature was 13332 Pa (100 Torr), except that the temperature in the third step was 700°C. Separately, a 3C-SiC single crystal film was grown under the same conditions as in Example 2, where the growth temperature was 13332 Pa (100 Torr), except that the temperature in the third step was 1250°C. As a result, the film thickness was 40 nm and 130 nm in each temperature pattern of the third step.
  • Example 4 A 3C-SiC single crystal film was grown under the same conditions as in Example 2, except that the growth pressure in the second and third steps was uniformly 1.3 Pa (0.01 Torr). As a result, the film thickness was 18 nm.
  • Example 5 A 3C-SiC single crystal film was grown under the same conditions as in Example 2, except that the growth pressure in the second and third steps was uniformly 19998 Pa (150 Torr). As a result, the film thickness was 98 nm.
  • a method for manufacturing a heteroepitaxial wafer in which a 3C-SiC single crystal film is heteroepitaxially grown on a single crystal silicon substrate Using a low pressure CVD device, a first step of removing a natural oxide film on the surface of the single crystal silicon substrate by hydrogen baking; A second step of nucleating SiC on the single crystal silicon substrate under conditions of a pressure of 13 Pa or more and 13332 Pa or less and a temperature of 600° C. or more and 1200° C. or less while supplying a source gas containing carbon into the reduced pressure CVD apparatus.
  • the 3C-SiC single crystal film is grown by growing a SiC single crystal under conditions of a pressure of 13 Pa or more and 13332 Pa or less and a temperature of 800° C. or more and less than 1200° C. while supplying a source gas containing carbon and silicon into the low-pressure CVD apparatus.
  • a method for manufacturing a heteroepitaxial wafer comprising: [2]: The method for manufacturing a heteroepitaxial wafer according to [1] above, wherein methane, ethylene, acetylene, or propane is used as the carbon-containing source gas.
  • [3] The method for manufacturing a heteroepitaxial wafer according to [1] or [2] above, wherein monomethylsilane or trimethylsilane is used as the source gas containing carbon and silicon.
  • [4] The method for manufacturing a heteroepitaxial wafer according to any one of [1] to [3] above, wherein the first step is performed at a temperature of 1000°C or higher and 1200°C or lower.
  • [5] Any of the above [1] to [4] above, in which the second step is performed under conditions where the temperature is gradually increased from a range of 600°C to 800°C to a range of 900°C to 1200°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本発明は、単結晶シリコン基板上に3C-SiC単結晶膜をヘテロエピタキシャル成長させるヘテロエピタキシャルウェーハの製造方法であって、減圧CVD装置を用いて、単結晶シリコン基板の表面の自然酸化膜を水素ベイクにより除去する第一工程と、炭素を含むソースガスを供給しつつ、圧力が13Pa以上13332Pa以下、温度が600℃以上1200℃以下の条件で単結晶シリコン基板上にSiCの核形成を行う第二工程と、炭素とケイ素を含むソースガスを供給しつつ、圧力が13Pa以上13332Pa以下、温度が800℃以上1200℃未満の条件でSiC単結晶を成長させて3C-SiC単結晶膜を形成する第三工程と、を含むヘテロエピタキシャルウェーハの製造方法である。これにより、単結晶シリコン基板上に良質な3C-SiC単結晶膜を効率よくエピタキシャル成長させることができるヘテロエピタキシャルウェーハの製造方法が提供される。

Description

ヘテロエピタキシャルウェーハの製造方法
 本発明は単結晶シリコン基板上に3C-SiC単結晶膜をヘテロエピタキシャル成長させるヘテロエピタキシャルウェーハの製造方法に関する。
 Siのバンドギャップ1.1eVと比べ、SiCは2.2~3.3eVという広いバンドギャップを有することから高い絶縁破壊強度を有し、また熱伝導率も大きいためパワーデバイスや高周波用デバイスなどの各種半導体デバイス用の半導体材料として期待されている材料である。
 また、窒化ガリウム(GaN)成長のプラットフォームとしての利用(例えば特許文献1および非特許文献1)も進められているが、一方でSiCウェーハは小口径が主流であり、パワーデバイスや高周波デバイス向けとして大口径化が求められており、良質な3C-SiC単結晶膜を大口径基板上に成膜することができれば、3C-SiC単結晶膜そのものの利用以外に、大口径で良質なGaN層をもつヘテロエピタキシャルウェーハを作製することが可能になる。
 そこで、この大口径化の方法として、デバイスプロセスとの整合性がよいシリコン基板上へのエピタキシャル成長が検討されてきた(例えば特許文献1および2)。
 これらの特許文献では、シリコン基板上に3C-SiC単結晶膜が成長できること、ならびにリアクタの種類を選べば直径300mm基板のような大口径基板へ3C-SiC単結晶膜が成長できることが開示されている。
 これらの特許文献における3C-SiC単結晶膜の形成は、炭素源前駆体を含むガスとシリコン源前駆体を含むガスの2種類の原料ガスをキャリアガスとともにリアクタ内に導入し、高温処理(~1200℃)ないしは高温処理とプラズマ処理を組合せてこれらの原料ガスを分解して成長することを特徴としている。
 このように2種類の原料ガスを同時に流して成膜する場合、それぞれのガス種の熱的安定性や拡散係数の違いにより、これらを制御して良質な3C-SiC単結晶膜を成長することが非常に困難であり、使用できるプロセス条件の範囲が狭くなる問題がある(エピタキシャル成長が起こらず、分解した原料ガスが気相中で反応してリアクタを汚染することのないようなプロセス条件で行う必要があるなど)。また高温処理を必要とするために既存プロセスとの親和性が低くなる(直径が300mmのように大口径化するとスリップ耐性などの問題のためできるだけ低温での成膜が望ましい)問題がある。また、使用する原料ガス種が多くなると、装置および付帯設備のコストアップや安全上の問題(特にシリコン源となるガスは概して反応性が高い)が生じることから、使用する原料ガス種は少ない方がよい。
 シリコン基板上への3C-SiC単結晶膜の成長例として、特許文献3には、シリコンとSiCの格子不整合をより小さくするために、単結晶シリコン基板として面方位(110)の単結晶シリコン基板を使用することが開示されている。格子不整合の面からは有利だが、ヘテロエピタキシャルウェーハの製造を考慮した場合、面方位を限定することは望ましくない。また、水素を含む3C-SiC単結晶層を形成することが同時に開示されているが、エピタキシャル成長シーケンス中の昇温過程で水素は容易に抜けてしまうことが想像され、水素量に依存した条件でないことが望まれる。
 また、特許文献4には、単結晶シリコン基板のオフ角度について言及されているが、プロパンによる炭化とそれに続くプロパン+シランガスの成長であり、やはり原料ガス種が多くなり、エピタキシャル成長には不利である。
 また、特許文献5には、原料ガスとしてモノメチルシランを用いて、面方位が(111)で直径が8インチ(200mm)未満の単結晶シリコン基板上に3C-SiC単結晶層を成長する方法が公開されているが、このときの成膜条件は単結晶シリコン基板の温度が1050~1100℃の成膜条件に達した後で、5~12時間の間、チャンバー内の圧力を2×10-4~3×10-4Torr(0.02~0.03Pa)の条件で行うというものであり、極めて圧力が低い条件で3C-SiC単結晶層の形成を行っているので形成速度が遅いという問題がある。
特表2018-522412号公報 特開2021-020819号公報 特開2006-253617号公報 特開2008-184361号公報 特開2017-039622号公報
Japanese Journal of Applied Physics 53, 05FL09 (2014)
 本発明は、上記問題を解決するためになされたものであり、単結晶シリコン基板上に良質な3C-SiC単結晶膜を効率よくエピタキシャル成長させることができるヘテロエピタキシャルウェーハの製造方法を提供することを目的としている。
 上記目的を達成するために、本発明は、単結晶シリコン基板上に3C-SiC単結晶膜をヘテロエピタキシャル成長させるヘテロエピタキシャルウェーハの製造方法であって、
 減圧CVD装置を用いて、
 前記単結晶シリコン基板の表面の自然酸化膜を水素ベイクにより除去する第一工程と、
 前記減圧CVD装置内に炭素を含むソースガスを供給しつつ、圧力が13Pa以上13332Pa以下、温度が600℃以上1200℃以下の条件で前記単結晶シリコン基板上にSiCの核形成を行う第二工程と、
 前記減圧CVD装置内に炭素とケイ素を含むソースガスを供給しつつ、圧力が13Pa以上13332Pa以下、温度が800℃以上1200℃未満の条件でSiC単結晶を成長させて前記3C-SiC単結晶膜を形成する第三工程と、
 を含むことを特徴とするヘテロエピタキシャルウェーハの製造方法を提供する。
 このように、第一工程で単結晶シリコン基板表面の自然酸化膜を除去することで、第二工程でSiCの核形成が可能となる。
 そして、炭素を含むソースガスの供給による第二工程と、炭素とケイ素を含むソースガスの供給による第三工程を組み合わせることにより、目的とする良質な3C-SiC単結晶膜を有するヘテロエピタキシャルウェーハを効率よく製造することが可能となる。
 また、第二工程において、温度を600℃以上とすることで、低温のためSiCの核形成が非効率的になるのを防ぐことができる。また1200℃以下にすることで、高温のため単結晶シリコン基板とソースガスとの反応が進行してしまい、単結晶シリコン基板表面にSiCの核形成ができなくなるのを防ぐことができる。
 また、圧力を13Pa(0.1Torr)以上とすることにより、低圧のためSiCの核形成が非効率的になるのを防ぐことができる。また、圧力を13332Pa(100Torr)以下とすることで、反応活性種が気相中でソースガスと反応するなど、二次あるいはさらに高次の反応が起こるのを防ぐことができ、効率的である。
 また、第三工程において、温度を800℃以上とすることにより、低温のためSiC単結晶の成長が進まなくなるのを防ぐことができる。また、1200℃未満とすることで、スリップ転位が発生するのを防ぐことができる。
 また、圧力を13Pa(0.1Torr)以上とすることにより、低圧すぎてSiC単結晶の成長が進まなくなるのを防ぐことができる。また、圧力を13332Pa(100Torr)以下とすることで、反応活性種が気相中でソースガスと反応するなど、二次あるいはさらに高次の反応が起こるのを防ぐことができるので、エピタキシャル成長を確実なものとすることができる。これにより3C-SiC単結晶膜が多結晶化してしまうのを防ぐことができる。
 このとき、前記炭素を含むソースガスとしてメタン、エチレン、アセチレン、またはプロパンを用いることができる。
 また、前記炭素とケイ素を含むソースガスとしてモノメチルシランまたはトリメチルシランを用いることができる。
 第二工程、第三工程において、各々これらのようなソースガス(原料ガス)を用いるのであれば、比較的簡便に用意することができるし、1種類の原料ガスを用いて非常にシンプルな条件でSiCの核形成やSiC単結晶の成長を行うことができる。
 また、前記第一工程を、温度が1000℃以上1200℃以下の条件で行うことができる。
 このような温度条件とすることで、単結晶シリコン基板表面の自然酸化膜をより効率よく除去でき、また、スリップ転位の発生を防止することができる。
 また、前記第二工程を、温度が600℃以上800℃以下の範囲から900℃以上1200℃以下の範囲に徐々に昇温する条件で行うことができる。
 このようにすれば、第二工程でのSiCの核形成をより効果的に行うことができる。
 本発明のヘテロエピタキシャルウェーハの製造方法により、簡易な製造プロセスによって、効率良く、単結晶シリコン基板上に3C-SiC単結晶膜を直接形成したヘテロエピタキシャルウェーハを提供することができる。
第1の実施形態の成長シーケンスの一例を示すグラフである。 実施例1で成長した3C-SiC on Si(111)のIn plane XRD解析の結果を示すグラフである。 比較例1で成長した3C-SiC on Si(111)のIn plane XRD解析の結果を示すグラフである。
 以下、本発明の実施形態について図面を参照して説明するが、本発明はこれに限定されるものではない。
 前述したように単結晶シリコン基板上への3C-SiC単結晶膜の形成が可能なヘテロエピタキシャルウェーハの製造方法が求められていた。そこで本発明者らが鋭意研究を行ったところ、減圧CVD装置を用いて、単結晶シリコン基板表面の自然酸化膜除去のための水素ベイク(第一工程)に加え、ソースガス(炭素を含む)を供給しつつ、SiCの核形成がしやすい所定の条件[圧力:13Pa以上13332Pa以下、温度:600℃以上1200℃以下](第二工程)と、ソースガス(炭素とケイ素を含む)を供給しつつ、SiC単結晶が成長しやすい所定の条件[圧力:13Pa以上13332Pa以下、温度:800℃以上1200℃未満](第三工程)を組み合わせて行うことで、高品質の3C-SiC単結晶膜を効率よく形成できることを見出し、本発明を完成させた。
 以下では、各工程の具体例を挙げて説明する。
 図1は実施形態の成長シーケンスの一例を示したものである。水素ベイク(以下、Hアニールとも言う)の第一工程、SiCの核形成工程の第二工程、SiC単結晶の成長工程(3C-SiC単結晶膜の形成工程)の第三工程を順に行っている。以下、各工程について説明する。
 <第一工程>
 まず、減圧CVD装置(以下、RP-CVD[Reduced Pressure - Chemical Vaper Deposition]装置とも言う)に単結晶シリコン基板を配置し、水素ガスを導入し、表面の自然酸化膜を水素ベイク(Hアニール)により除去する。酸化膜が残っていると、単結晶シリコン基板上にSiCの核形成が出来なくなってしまう。この時のHアニールは、例えば温度が1000℃以上1200℃以下の条件とすることが好ましい。温度を1000℃以上とすることで、自然酸化膜の残留を防ぐための処理時間が長時間になるのを防ぐことができ、効率的である。また1200℃以下とすれば、高温によるスリップ転位の発生を効果的に防止することができる。ただし、このときのHアニールの圧力や時間は自然酸化膜が除去できればよく、特に制約はない。
 図1に示す例ではHアニールを1080℃で1分間行っている。また、水素ガスの導入はこの第一工程後においても、第二、第三工程においても引き続き行うことができる(キャリアガス)。
 <第二工程>
 次に、RP-CVD装置内に炭素を含むソースガスを供給しつつ、所定の圧力と温度に設定し、単結晶シリコン基板上にSiCの核形成を行う。単結晶シリコン基板表面に3C-SiCの核形成を行うため、上記ソースガスとしては例えば炭化水素ガスを用いることができる。例えばメタン、エチレン、アセチレン、またはプロパン等を導入することができる。このようなソースガスであれば簡便に用意することができるし、1種類のソースガスでSiCの核形成の条件をシンプルなものとすることができる。
 また、このSiCの核形成は、圧力が13Pa以上13332Pa以下(0.1Torr以上100Torr以下)、温度が600℃以上1200℃以下であれば単結晶シリコン基板の表面に行うことができる。
 SiCの核形成工程において、温度が1200℃よりも高温の条件では単結晶シリコン基板と原料ガスとの反応が進行してしまい、単結晶シリコン基板表面にSiCの核形成ができなくなってしまう。また、温度が600℃未満の場合においては、温度が低すぎてSiCの核形成を効率良く行うことができない。
 また、圧力を13332Pa(100Torr)以下とするので、反応活性種が気相中で原料ガスと反応するなど、二次あるいはさらに高次の反応が生じてしまうのを防止できるため、効率的である。一方で低圧過ぎてもSiCの核形成が非効率的になってしまうので、圧力の下限値は13Pa(0.1Torr)とする。
 ところで第一工程から第二工程への温度の変遷の仕方は特に限定されない。例えば、前述したように1080℃で第一工程を行った後、その1080℃から直接的に、第二工程の保持する所定の温度まで昇温または降温して調整することができる。
 あるいは、1080℃で第一工程を行った後、一旦、600℃以上800℃以下の温度範囲にまで降温する。そして、第二工程としてその600℃以上800℃以下の範囲の温度から900℃以上1200℃以下の範囲の温度まで徐々に昇温させても良い。このとき、昇温したのちに、その昇温後の所定の温度で例えば10分間温度を保持することができる。このようにすることで、SiCの核形成をより効果的に行うことができる。
 なお、上記の600℃以上800℃以下の温度範囲から昇温するときの昇温速度は1.0℃/sec程度が好ましい。この程度の昇温速度であれば、昇温速度が速すぎることもなく、昇温中や昇温後の設定温度と基板の実温度に乖離が生じて制御が困難となるのを効果的に防ぐことができる。また昇温速度が遅すぎることもなく、3C-SiC核形成温度帯の通過時間が長くなり不均一な核形成やエピタキシャル成長中の欠陥形成が発生しやすくなるのを効果的に抑制することができる。
 図1に示す例では、第一工程後に700℃にまで降温し、第二工程として昇温速度1.0℃/secで1100℃にまで昇温し、その後1100℃で10分間保持している。なお、圧力は13332Pa(100Torr)としている。
 <第三工程>
 RP-CVD装置内に炭素とケイ素を含むソースガスを供給しつつ、圧力が13Pa以上13332Pa以下(0.1Torr以上100Torr以下)、温度が800℃以上1200℃未満の条件でSiC単結晶を成長させて3C-SiC単結晶膜を形成する。このような条件により、効率良くSiC単結晶を成長させて3C-SiC単結晶膜を形成することができる。上記ソースガスとして、例えばモノメチルシランまたはトリメチルシランを導入することができる。このようなソースガスであれば簡便に用意することができるし、1種類のソースガスでSiC単結晶の成長の条件をシンプルなものとすることができる。
 なお、成長圧力が13332Pa(100Torr)よりも大きいと、形成する3C-SiCが多結晶化してしまう。一方、本発明ではこの第三工程において圧力を13332Pa(100Torr)以下とするので、前述したように気相中で二次あるいはさらに高次の反応を抑制することができ、3C-SiC単結晶膜を確実かつ効率良く形成することができる。そして好ましくは1333Pa(10Torr)以下、さらには133Pa(1Torr)以下とすることができ、これらの条件では3C-SiC単結晶膜直下に空孔が形成されるようになり、ヘテロエピタキシャル層全体の応力を緩和する効果を得ることができる。一方で低圧すぎてもSiC単結晶の成長が非効率的になってしまうので、圧力の下限値は13Pa(0.1Torr)とする。
 また温度については、800℃未満では前述したようにSiC単結晶の成長が進まなく、1200℃以上ではスリップ転位が発生し得る。そのため、上記のように800℃以上1200℃未満とする。
 図1に示す例では、第三工程では1000℃で10分間保持している。なお、圧力は13332Pa(100Torr)としている。
 以上のように本発明のヘテロエピタキシャルウェーハの製造方法について説明してきたが、上記のように、単結晶シリコン基板表面の自然酸化膜を除去してからSiCの核形成工程を行うことにより、確実にSiCの核を形成可能で、ひいては3C-SiC単結晶膜の形成が可能となる。
 また、3C-SiC単結晶膜の形成工程前にSiCの核形成工程を導入することにより、Siと3C-SiCの格子不整合による結晶性の悪化を抑制することが出来、良質な3C-SiC単結晶膜を形成することが可能となる。
 また、前述した成長条件であれば、ヘテロエピキシャル成長を供給ガスの輸送律速とすることが可能であり、単結晶シリコン基板の面方位の制約を受けない。また水素を含むような層を形成する必要もなく3C-SiC単結晶膜を成長させることが可能である。さらに、直径が例えば300mm、さらにはそれ以上の大口径の単結晶シリコンの基板上に3C-SiC単結晶膜の形成が可能となる。
 このときの膜厚は圧力や温度に依存するため、目的の膜厚となるように設定した圧力と温度条件に基づいて成膜時間を適宜設定する。
 この場合、3C-SiC単結晶膜の膜厚は例えば4nm程度の薄い膜から数μmの厚膜まで成膜が可能である。
 また、このようにして成長させた3C-SiC単結晶膜は表面が平坦であるので、3C-SiC単結晶膜の表面に、さらにGaNを成長させ、3C-SiC単結晶膜上に高品質なGaN層を有するヘテロエピタキシャルウェーハの製造方法を提供することも可能である。あるいは、3C-SiC単結晶膜の表面に、さらにSiを成長させ、3C-SiC単結晶膜上に高品質なSi層を有するものも提供可能である。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 直径300mm、面方位(111)、ボロンドープの高抵抗率(1000Ω・cm)の単結晶シリコン基板を準備し、RP-CVD装置の反応炉内のサセプター上にウェーハを配置し、1080℃で1分間のHアニールを行った(第一工程)。
 続いて、炉内温度を700℃まで降温させた後、昇温レート1℃/secで1100℃まで昇温させながらプロパンガスを導入し、1100℃まで到達後10分間保持し、3C-SiCの核形成を行った(第二工程)。
 核形成工程後、炉内温度を1000℃まで降温させた後、トリメチルシランガスを導入して3C-SiC単結晶膜の形成を行った(第三工程)。
 成長圧力は一律13Pa、13332Pa(0.1Torr、100Torr)とした。
 10分間の成長を行った結果、それぞれの圧力パターンで、膜厚は80nm、115nmとなっていた。
 成膜後、In plane配置にてXRD(X線回析)スペクトルを確認したところ、いずれの成長圧力条件であっても、図2のXRD解析結果のグラフに示すようにSi(220)に平行な3C-SiC(220)のピークを確認することが出来、単結晶の3C-SiC膜が成長していることが確認された。
(比較例1)
 実施例1と同様の単結晶シリコン基板を準備し、RP-CVD装置の反応炉内のサセプター上にウェーハを配置し、1080℃で1分間のHアニールを行った(第一工程)。
 続いて、第二工程(3C-SiCの核形成工程)を実施せず、炉内温度を1000℃としてトリメチルシランガスを導入して10分間保持し、3C-SiC単結晶膜の形成を行った(第三工程)。
 成長圧力は13332Pa(100Torr)とした。
 その結果、膜厚は45nmとなっていた。
 In plane配置にてXRDスペクトルを確認したところ、図3のXRD解析結果のグラフに示すようにSi(220)に平行な3C-SiC(220)のピークの他に3C-SiC(111),3C-SiC(311)のピークが確認され、多結晶の3C-SiC膜が成長していることが確認された。
(実施例2)
 実施例1と同様の単結晶シリコン基板を準備し、RP-CVD装置の反応炉内のサセプター上にウェーハを配置し、1080℃で1分間のHアニールを行った(第一工程)。
 続いて、炉内温度を600℃としてプロパンガスを導入して10分間保持し、3C-SiCの核形成を行った(第二工程)。
 その後、炉内温度を800℃まで降温させた後、トリメチルシランガスを導入して10分間保持し、3C-SiC単結晶膜の形成を行った(第三工程)。
 成長圧力は一律13Pa、13332Pa(0.1Torr、100Torr)とした。
 その結果、それぞれの圧力パターンで、膜厚は60nm、92nmとなっていた。
 In plane配置にてXRDスペクトルを確認したところ、Si(220)に平行な3C-SiC(220)のピークが確認することが出来、単結晶の3C-SiC膜が成長していることが確認された。
(実施例3)
 第二工程、第三工程の温度をそれぞれ1200℃、1190℃とした以外は実施例2と同じ条件(成長圧力は一律13Pa(0.1Torr)、13332Pa(100Torr))で3C-SiC単結晶膜の成長を行った。
 その結果、それぞれの圧力パターンで、膜厚は90nm、120nmとなっていた。
 In plane配置にてXRDスペクトルを確認したところ、Si(220)に平行な3C-SiC(220)のピークが確認することが出来、単結晶の3C-SiC膜が成長していることが確認された。
(比較例2)
 第二工程の温度を500℃とした以外は実施例2の成長温度が13332Pa(100Torr)の場合と同じ条件で、3C-SiC単結晶膜の成長を行った。
 また別途、第二工程の温度を1250℃とした以外は実施例2の成長温度が13332Pa(100Torr)の場合と同じ条件で、3C-SiC単結晶膜の成長を行った。
 その結果、それぞれの第二工程の温度パターンで、膜厚は38nm、43nmとなっていた。
 このように形成された膜厚は実施例2に比べて極めて薄く、効率が著しく悪かった。これは、第二工程の温度が低すぎたり高すぎたりしたためSiCの核形成が十分に行われず、そのため第三工程でヘテロエピタキシャル成長がほとんどなされなかったためと考えられる。
(比較例3)
 第三工程の温度を700℃とした以外は実施例2の成長温度が13332Pa(100Torr)の場合と同じ条件で、3C-SiC単結晶膜の成長を行った。
 また別途、第三工程の温度を1250℃とした以外は実施例2の成長温度が13332Pa(100Torr)の場合と同じ条件で、3C-SiC単結晶膜の成長を行った。
 その結果、それぞれの第三工程の温度パターンで、膜厚は40nm、130nmとなっていた。
 このように700℃の場合は形成された膜厚が実施例2に比べて極めて薄く、効率が著しく悪かった。また、1250℃の場合はスリップ転位が発生してしまった。
(比較例4)
 第二工程、第三工程の成長圧力を一律1.3Pa(0.01Torr)とした以外は実施例2と同じ条件で、3C-SiC単結晶膜の成長を行った。
 その結果、膜厚は18nmとなっていた。
 このように成長圧力が1.3Pa(0.01Torr)の場合は形成された膜厚が実施例2に比べて極めて薄く、効率が著しく悪かった。
(比較例5)
 第二工程、第三工程の成長圧力を一律19998Pa(150Torr)とした以外は実施例2と同じ条件で、3C-SiC単結晶膜の成長を行った。
 その結果、膜厚は98nmとなっていた。
 In plane配置にてXRDスペクトルを確認したところ、Si(220)に平行な3C-SiC(220)のピークの他に3C-SiC(111),3C-SiC(311)のピークが確認され、多結晶の3C-SiC膜が成長していることが確認された。
 本明細書は、以下の態様を包含する。
[1]: 単結晶シリコン基板上に3C-SiC単結晶膜をヘテロエピタキシャル成長させるヘテロエピタキシャルウェーハの製造方法であって、
 減圧CVD装置を用いて、
 前記単結晶シリコン基板の表面の自然酸化膜を水素ベイクにより除去する第一工程と、
 前記減圧CVD装置内に炭素を含むソースガスを供給しつつ、圧力が13Pa以上13332Pa以下、温度が600℃以上1200℃以下の条件で前記単結晶シリコン基板上にSiCの核形成を行う第二工程と、
 前記減圧CVD装置内に炭素とケイ素を含むソースガスを供給しつつ、圧力が13Pa以上13332Pa以下、温度が800℃以上1200℃未満の条件でSiC単結晶を成長させて前記3C-SiC単結晶膜を形成する第三工程と、
 を含むヘテロエピタキシャルウェーハの製造方法。
[2]: 前記炭素を含むソースガスとしてメタン、エチレン、アセチレン、またはプロパンを用いる上記[1]のヘテロエピタキシャルウェーハの製造方法。
[3]: 前記炭素とケイ素を含むソースガスとしてモノメチルシランまたはトリメチルシランを用いる上記[1]または上記[2]のヘテロエピタキシャルウェーハの製造方法。
[4]: 前記第一工程を、温度が1000℃以上1200℃以下の条件で行う上記[1]から上記[3]のいずれかのヘテロエピタキシャルウェーハの製造方法。
[5]: 前記第二工程を、温度が600℃以上800℃以下の範囲から900℃以上1200℃以下の範囲に徐々に昇温する条件で行う上記[1]から上記[4]のいずれかのヘテロエピタキシャルウェーハの製造方法。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (7)

  1.  単結晶シリコン基板上に3C-SiC単結晶膜をヘテロエピタキシャル成長させるヘテロエピタキシャルウェーハの製造方法であって、
     減圧CVD装置を用いて、
     前記単結晶シリコン基板の表面の自然酸化膜を水素ベイクにより除去する第一工程と、
     前記減圧CVD装置内に炭素を含むソースガスを供給しつつ、圧力が13Pa以上13332Pa以下、温度が600℃以上1200℃以下の条件で前記単結晶シリコン基板上にSiCの核形成を行う第二工程と、
     前記減圧CVD装置内に炭素とケイ素を含むソースガスを供給しつつ、圧力が13Pa以上13332Pa以下、温度が800℃以上1200℃未満の条件でSiC単結晶を成長させて前記3C-SiC単結晶膜を形成する第三工程と、
     を含むことを特徴とするヘテロエピタキシャルウェーハの製造方法。
  2.  前記炭素を含むソースガスとしてメタン、エチレン、アセチレン、またはプロパンを用いることを特徴とする請求項1に記載のヘテロエピタキシャルウェーハの製造方法。
  3.  前記炭素とケイ素を含むソースガスとしてモノメチルシランまたはトリメチルシランを用いることを特徴とする請求項1に記載のヘテロエピタキシャルウェーハの製造方法。
  4.  前記炭素とケイ素を含むソースガスとしてモノメチルシランまたはトリメチルシランを用いることを特徴とする請求項2に記載のヘテロエピタキシャルウェーハの製造方法。
  5.  前記第一工程を、温度が1000℃以上1200℃以下の条件で行うことを特徴とする請求項1から請求項4のいずれか一項に記載のヘテロエピタキシャルウェーハの製造方法。
  6.  前記第二工程を、温度が600℃以上800℃以下の範囲から900℃以上1200℃以下の範囲に徐々に昇温する条件で行うことを特徴とする請求項1から請求項4のいずれか一項に記載のヘテロエピタキシャルウェーハの製造方法。
  7.  前記第二工程を、温度が600℃以上800℃以下の範囲から900℃以上1200℃以下の範囲に徐々に昇温する条件で行うことを特徴とする請求項5に記載のヘテロエピタキシャルウェーハの製造方法。
PCT/JP2023/017373 2022-06-14 2023-05-09 ヘテロエピタキシャルウェーハの製造方法 WO2023243259A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-095410 2022-06-14
JP2022095410A JP7218832B1 (ja) 2022-06-14 2022-06-14 ヘテロエピタキシャルウェーハの製造方法

Publications (1)

Publication Number Publication Date
WO2023243259A1 true WO2023243259A1 (ja) 2023-12-21

Family

ID=85158961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017373 WO2023243259A1 (ja) 2022-06-14 2023-05-09 ヘテロエピタキシャルウェーハの製造方法

Country Status (3)

Country Link
JP (1) JP7218832B1 (ja)
TW (1) TW202400841A (ja)
WO (1) WO2023243259A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026388A (ja) * 1988-06-09 1990-01-10 Fujitsu Ltd 薄膜形成方法
JPH02267197A (ja) * 1989-04-06 1990-10-31 Nec Corp 炭化硅素の成長方法
JPH07165497A (ja) * 1993-08-16 1995-06-27 Dow Corning Corp 低温における結晶質炭化ケイ素コーティングの作成方法
JPH11228297A (ja) * 1998-02-10 1999-08-24 Japan Atom Energy Res Inst 立方晶炭化珪素単結晶薄膜の作製方法
JP2000264792A (ja) * 1999-03-17 2000-09-26 Tohoku Techno Arch Co Ltd シリコンカーバイト単結晶薄膜の形成方法
JP2005347666A (ja) * 2004-06-07 2005-12-15 Toshiba Ceramics Co Ltd SiC半導体及びその製造方法
JP2012171830A (ja) * 2011-02-21 2012-09-10 Seiko Epson Corp 立方晶炭化珪素半導体基板の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026388A (ja) * 1988-06-09 1990-01-10 Fujitsu Ltd 薄膜形成方法
JPH02267197A (ja) * 1989-04-06 1990-10-31 Nec Corp 炭化硅素の成長方法
JPH07165497A (ja) * 1993-08-16 1995-06-27 Dow Corning Corp 低温における結晶質炭化ケイ素コーティングの作成方法
JPH11228297A (ja) * 1998-02-10 1999-08-24 Japan Atom Energy Res Inst 立方晶炭化珪素単結晶薄膜の作製方法
JP2000264792A (ja) * 1999-03-17 2000-09-26 Tohoku Techno Arch Co Ltd シリコンカーバイト単結晶薄膜の形成方法
JP2005347666A (ja) * 2004-06-07 2005-12-15 Toshiba Ceramics Co Ltd SiC半導体及びその製造方法
JP2012171830A (ja) * 2011-02-21 2012-09-10 Seiko Epson Corp 立方晶炭化珪素半導体基板の製造方法

Also Published As

Publication number Publication date
JP7218832B1 (ja) 2023-02-07
TW202400841A (zh) 2024-01-01
JP2023182034A (ja) 2023-12-26

Similar Documents

Publication Publication Date Title
EP2196565B1 (en) Method for producing sic epitaxial substrate
CN111029246B (zh) 一种降低SiC外延层中三角形缺陷的方法
JP4946264B2 (ja) 炭化珪素半導体エピタキシャル基板の製造方法
EP2642001A1 (en) Method for producing epitaxial silicon carbide single crystal substrate
WO2011126145A1 (ja) エピタキシャル炭化珪素単結晶基板の製造方法、及びこの方法によって得られたエピタキシャル炭化珪素単結晶基板
WO2010044484A1 (ja) 炭化珪素単結晶及び炭化珪素単結晶ウェハ
JP5786759B2 (ja) エピタキシャル炭化珪素ウエハの製造方法
CN111334860B (zh) 一种高质量碳化硅晶体的制备方法
CN117672815A (zh) 一种SiC外延片及其制备方法
WO2023079880A1 (ja) ヘテロエピタキシャルウェーハの製造方法
WO2023243259A1 (ja) ヘテロエピタキシャルウェーハの製造方法
JP2006253617A (ja) SiC半導体およびその製造方法
WO2023047755A1 (ja) ヘテロエピタキシャルウェーハの製造方法
JP3909690B2 (ja) エピタキシャル成長によるSiC膜の製造方法
JP2013035731A (ja) 単結晶炭化シリコン膜の製造方法及び単結晶炭化シリコン膜付き基板の製造方法
CN113322512A (zh) 一种提高外延片过渡区一致性的工艺方法
CN113089091A (zh) 氮化硼模板及其制备方法
WO2012090268A1 (ja) 単結晶炭化珪素エピタキシャル基板とその製造方法および単結晶SiCデバイス
JP2012171830A (ja) 立方晶炭化珪素半導体基板の製造方法
JP2020200223A (ja) Iii族元素窒化物結晶の製造方法および製造装置
KR101138193B1 (ko) 다층의 에피택셜 실리콘 단결정 웨이퍼의 제조 방법 및다층의 에피택셜 실리콘 단결정 웨이퍼
WO2023058355A1 (ja) ヘテロエピタキシャル膜の作製方法
WO2023100578A1 (ja) 単結晶ダイヤモンド膜の形成方法
JP2010225734A (ja) 半導体基板の製造方法
US20220367643A1 (en) Method of manufacturing a silicon carbide epitaxial substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823562

Country of ref document: EP

Kind code of ref document: A1