WO2023241434A1 - 一种Micro-LED显示芯片及其制备方法 - Google Patents

一种Micro-LED显示芯片及其制备方法 Download PDF

Info

Publication number
WO2023241434A1
WO2023241434A1 PCT/CN2023/098893 CN2023098893W WO2023241434A1 WO 2023241434 A1 WO2023241434 A1 WO 2023241434A1 CN 2023098893 W CN2023098893 W CN 2023098893W WO 2023241434 A1 WO2023241434 A1 WO 2023241434A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
layer
conductive pillar
led unit
filling structure
Prior art date
Application number
PCT/CN2023/098893
Other languages
English (en)
French (fr)
Inventor
庄永漳
Original Assignee
镭昱光电科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 镭昱光电科技(苏州)有限公司 filed Critical 镭昱光电科技(苏州)有限公司
Publication of WO2023241434A1 publication Critical patent/WO2023241434A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Definitions

  • This specification relates to the field of semiconductor electronic devices, and specifically relates to a Micro-LED display chip and its preparation method.
  • Micro-LED Micro-LED
  • display devices can be made into augmented reality (Augmented Reality, AR) display devices, near-eye display (NED) devices, and wearable display devices.
  • augmented reality Augmented Reality, AR
  • NED near-eye display
  • wearable display devices Such miniaturization and high-resolution devices become possible.
  • Micro LEDs have great market potential due to their small size, high brightness, fast response speed, and long life.
  • Micro-led full-color display chips usually integrate a wavelength conversion layer on a monochrome display chip, and set the RGB three primary colors required for full-color display to meet the needs of full-color display.
  • the LED array of micro-LED display is integrated at high density. The distance between LED pixels in the array is on the order of 0.1-100 microns. The smaller the pixels of the Micro-LED display chip, the more difficult it is to make the wavelength conversion layer. Large, making it significantly more difficult to prepare Micro-LED display chips for color display.
  • multiple embodiments of this specification are dedicated to providing a Micro-LED display chip and its preparation, realizing multi-color or full-color display of the Micro-LED display chip, and conducive to reducing the cost of multi-color or full-color Micro-LED display chips.
  • Preparation difficulty and to a certain extent, it can avoid damage to the driving substrate during the preparation process, improve yield, and reduce production costs.
  • Embodiments of this specification provide a Micro-LED display chip preparation method, which includes: providing a driving substrate, the driving substrate including a driving circuit and contacts electrically connected to the driving circuit; providing a first LED layer, the first The LED layer includes a plurality of first LED units, a first filling structure between the first LED units, and a first conductive pillar penetrating the first filling structure; connecting the first LED layer and the driving substrate Bonding; wherein the first LED unit and the first conductive pillar are electrically connected to the contacts respectively; a second LED layer is provided on the first LED layer; wherein the second LED layer includes A plurality of second LED units and a second filling structure located between the second LED units; the second LED units are electrically connected to the first conductive pillars directly below them, and the second LED units are connected to the The first LED units emit light in different colors.
  • the embodiment of this specification provides a Micro-LED display chip, including: a driving substrate; the driving substrate includes a driving circuit and contacts electrically connected to the driving circuit; a first LED layer provided on the driving substrate; The first LED layer includes a plurality of first LED units, a first filling structure located between the first LED units, and a first conductive pillar penetrating the first filling structure, the first LED unit and the first filling structure.
  • the first conductive pillars are electrically connected to the contacts respectively; a second LED layer is provided on the first LED layer; wherein the second LED layer includes a plurality of second LED units and is located on the second A second filling structure between the LED units, the second LED unit is electrically connected to the first conductive pillar directly below it, and the second LED unit and the first LED unit emit different colors.
  • An embodiment of this specification provides a display panel, which includes any of the above-mentioned Micro-LED display chips.
  • An embodiment of this specification provides a display device, which includes any of the above-mentioned Micro-LED display chips.
  • the Micro-LED display chip preparation method is by arranging filling structures between a plurality of first LED units in the first LED layer, and arranging first conductive pillars penetrating the first filling structures between the filling materials. , the first LED unit and the first conductive pillar are electrically connected to the driving circuit through contacts respectively, and then a second filling structure including a plurality of second LED units and a second filling structure located between the second LED units is provided on the first LED layer, The second LED unit is electrically connected to the first conductive pillar directly below it. The second LED unit and the first LED unit emit light in different colors, thereby achieving colorful display. Since LED display chips can achieve multi-color display without a wavelength conversion layer, the difficulty of preparing LED chips is reduced to a certain extent.
  • the driving substrate can independently drive and control the first LED unit and the second LED unit, reducing the cost.
  • the number of times the driving substrate participates in the process is conducive to protecting the driving substrate and can avoid damage to the driving substrate during the preparation process to a certain extent, thereby improving the yield rate of Micro-LED display chips and reducing costs to a certain extent.
  • FIG. 1 shows a schematic structural diagram of a driving substrate according to an embodiment.
  • Figures 2a-2m show structural schematic diagrams of different preparation stages in a Micro-LED display chip preparation method according to one embodiment.
  • Figures 3a to 3h show structural schematic diagrams of different preparation stages in a Micro-LED display chip preparation method according to one embodiment.
  • FIG. 4 shows a schematic structural diagram of the second LED layer provided in an embodiment.
  • FIG. 5 shows a schematic structural diagram of a third LED layer provided in an embodiment.
  • FIG. 6 shows a schematic structural diagram of a Micro-LED display chip provided in an embodiment.
  • FIG. 7 shows a schematic structural diagram of a Micro-LED display chip provided in an embodiment.
  • FIG. 8 shows a schematic structural diagram of a Micro-LED display chip provided in an embodiment.
  • Figure 9 shows a schematic structural diagram of a Micro-LED display chip provided in an embodiment.
  • the embodiment of this specification provides a method for preparing a Micro-LED display chip.
  • the Micro-LED display chip preparation method may include the following steps.
  • Step S110 Provide a driving substrate 300; the driving substrate 300 includes a driving circuit and contacts electrically connected to the driving circuit.
  • the driving substrate 300 may include semiconductor materials.
  • the semiconductor material may be at least one of silicon, silicon carbide, gallium nitride, germanium, gallium arsenide, indium phosphide and other materials.
  • the driving substrate 300 may be made of non-conductive materials such as glass, plastic, or sapphire wafers.
  • the driving substrate 300 may be a CMOS substrate or a TFT substrate.
  • the driving substrate 300 may include a driving circuit, which is not shown in FIG. 1 .
  • the driving circuit is used to provide an electrical signal to the LED unit and control the brightness of the LED unit through the electrical signal. It can be understood that the LED unit may refer to one or more of the first LED unit 210, the second LED unit 410, and the third LED unit 510.
  • drive substrate 300 includes contacts 310 .
  • the contact points 310 may be spaced apart from each other.
  • the material of the contact 310 may include at least one of Cu, Ag, Au, Al, W, Mo, Ni, Ti, Pt, Pd and other materials.
  • the contacts 310 can be connected to the driving circuit and the LED unit respectively, so that the driving circuit can be electrically connected to the LED unit, so that the driving circuit can drive the LED unit to make the LED unit emit light.
  • the contacts 310 may be located on the surface of the substrate to facilitate electrical connection between the driving circuit and the LED unit.
  • Step S120 Provide a first LED layer 200; the first LED layer 200 includes a plurality of first LED units 210, a first filling structure 220 between the first LED units 210, and a first filling structure passing through the first LED unit 210.
  • the first conductive pillar 221 of 220 is provided.
  • the first LED unit 210 is formed by processing the first LED epitaxial layer 200a including the first doped semiconductor layer 211, the active layer 212 and the second doped semiconductor layer 213.
  • the first doped semiconductor layer 211, the active layer 212 and at least part of the thickness of the second doped semiconductor layer 213 in a partial region of the first LED epitaxial layer 200a may be removed to form the first LED unit 210.
  • the materials of the first doped semiconductor layer 211 and the second doped semiconductor layer 213 may be II-VI materials or III-V nitride materials.
  • the first doped semiconductor layer 211 and the second doped semiconductor layer 213 may be formed of one or more materials selected from ZnSe, ZnO, GaN, AlN, InN, InGaN, GaP, AlInGaP or AlGaAs.
  • the active layer 212 may have one of a single quantum well structure, a multiple quantum well (MQW) structure, a quantum well, and a barrier layer stacked structure.
  • the active layer 212 is located between the first doped semiconductor layer 211 and the second doped semiconductor layer 213 . Holes and electrons are excited in the active layer 212 to emit light of a specific wavelength.
  • the first doped semiconductor layer 211 may be a P-type semiconductor layer
  • the second doped semiconductor layer 213 may be an N-type semiconductor layer.
  • the first doped semiconductor layer 211 and the second doped semiconductor layer 213 may be electrically connected to the contact 310 and the common electrode 600 respectively, and the common electrode 600 may be a cathode.
  • the contact 310 may be electrically connected to the first doped semiconductor layer 211 through the anode.
  • the first doped semiconductor layer 211 may also be an N-type semiconductor layer, and correspondingly, the second doped semiconductor layer 213 may be a P-type semiconductor layer.
  • the first LED epitaxial layer 200a may include a first doped semiconductor layer 211, an active layer 212, and a second doped semiconductor layer 213.
  • the first LED epitaxial layer 200a may be grown on the substrate 100.
  • the substrate 100 may be one of sapphire, Si, GaAs, InP, GaN, AlN, SiC substrates, and the like.
  • the first LED layer 200 includes a plurality of first LED units 210 that can be independently driven.
  • the first LED unit 210 includes a first doped semiconductor layer 211, an active layer 212 and a second doped semiconductor layer 213.
  • the first doped semiconductor layer 211 may be used to electrically connect with the contact 310
  • the second doped semiconductor layer 213 may be used to electrically connect with the common electrode. 600 electrical connections.
  • a conductive layer may be formed on the first doped semiconductor layer 211 of the first LED unit 210 .
  • the conductive layer may be a metal material, such as indium tin oxide.
  • the first LED unit 210 and the contact are electrically connected through the conductive layer on the first doped semiconductor layer 211 .
  • the step of providing the first LED layer includes: providing a first LED epitaxial layer 200a; etching the first LED epitaxial layer 200a to form a plurality of first LED units 210, each of the first LED units 210 being etched.
  • An LED unit 210 includes a first doped semiconductor layer 211, an active layer 212 and a second doped semiconductor layer 213.
  • the second doped semiconductor layers 213 of adjacent first LED units 210 are connected to each other. It can be understood that the first LED epitaxial layer 200a includes a first doped semiconductor layer 211, an active layer 212 and a second doped semiconductor layer 213; some areas of the first doped semiconductor layer 211 and the active layer 212 are removed.
  • first LED units 210 are connected to each other through the second doped semiconductor layer 213 .
  • Two first LED units 210 connected through the second doped semiconductor layer 213 are illustrated in FIG. 2b. Partial areas of the first LED epitaxial layer 200a may be removed through an etching process. Specifically, the etching process may refer to dry etching or wet etching.
  • the step of providing the first LED layer 200 includes: providing a first LED epitaxial layer 200a; etching the first LED epitaxial layer 200a to form a plurality of mutually spaced first LED units 210, each The first LED unit 210 includes a first doped semiconductor layer 211, an active layer 212 and a second doped semiconductor layer 213.
  • a first LED epitaxial layer 200a may be provided.
  • the first LED epitaxial layer 200a includes a first doped semiconductor layer 211, an active layer 212 and a second doped semiconductor layer 213; part of the first LED epitaxial layer is removed.
  • the layer 200a forms a plurality of first LED units 210 spaced apart from each other.
  • a partial area of the first LED epitaxial layer 200a is removed.
  • the unremoved first LED epitaxial layer 200a forms a plurality of first LED units 210, and the plurality of first LED units 210 are spatially separated from each other. , forming a plurality of first LED units 210 spaced apart from each other.
  • the first LED units 210 are independent of each other. Since the first LED unit 210 is formed by removing part or all of the thickness of a partial area of the first LED epitaxial layer 200a, therefore, the plurality of first LED units 210 The first LED epitaxial layer 200a is not retained therebetween, or only a part of the thickness of the epitaxial layer 200a of the first LED unit 210 is retained. Therefore, uneven surfaces are formed between the plurality of first LED units 210 .
  • the step of providing the first LED layer includes: arranging the first filling structure 220 between the first LED units 210 .
  • the first LED layer 200 includes a first filling structure 220 that forms a plurality of first LED units 210 into a first planarized surface.
  • the uneven characteristics of the surface formed by the plurality of first LED units 210 are reduced.
  • the thickness of the first LED layer 200 in each area can be made the same and tend to be the same, thereby forming a first planarized surface.
  • the first filling structure 220 is provided between the first LED units 210 ; wherein the first filling structure 220 is located at least in the circumferential direction of the first LED unit 210 . See Figure 2c.
  • the first filling structure 220 may be located in a circumferential direction of the first LED unit 210 . See Figure 3a.
  • the first filling structure 220 covers the first LED unit 210 .
  • the first filling structure 220 is located in the circumferential direction of the first LED unit 210, and covers the first doped semiconductor layer 211 of the first LED unit 210 and faces away from the second doped semiconductor layer 213 of the first LED unit 210. surface on one side.
  • the first filling structure 220 may be formed by using at least one of deposition, coating, and other processes.
  • the material of the first filling structure 220 may be polyimide, wall glue, OC glue, SU8 photoresist or benzocyclobutene (BCB).
  • the first filling structure 220 is located at least between the first LED units 210 .
  • the first filling structure 220 may be located between the first LED units 210 , or the first filling structure 220 may be located between the first LED units 210 and cover the first LED units 210 . See Figure 2d.
  • the first filling structure 220 is provided with a first conductive pillar 221 penetrating the first filling structure 220 .
  • a first opening may be formed through the first filling structure 220 , and a conductive material is disposed in the first opening to form the first conductive pillar 221 .
  • the material of the first conductive pillar 221 may be a transparent conductive material. Specifically, for example, the transparent electrical material may be indium tin oxide. Of course, the material of the first conductive pillar 221 may also include metal materials.
  • the first conductive pillar 221 can be used for electrical connection between the first LED unit 210 and the contact 310 .
  • the first conductive pillar 221 can also be used for electrical connection between an LED unit whose emitting color is different from that of the first LED unit 210 and the contact 310 .
  • the second LED unit is electrically connected to the contact 310 .
  • the first LED layer 200 includes a first filling structure 220 .
  • the first filling structure 220 is beneficial to planarizing the first LED layer 200 and reduces the difficulty of combining the first LED layer and the driving substrate 300 .
  • the first filling structure 220 can protect and stabilize the first LED unit. Even if the first LED units 210 are spaced apart from each other, the first filling structure 220 can also improve the relationship between the first LED unit 210 and the driving substrate 300 .
  • the difficulty of bonding during the bonding process, as well as improving the stability of the first LED unit 210 after being bonded to the driving substrate 300 reduce the risk of the first LED unit 210 being peeled off during the production process to a certain extent, and improve the efficiency of Micro-LED display chips. yield rate.
  • Step S130 Bond the first LED layer 200 to the driving substrate 300; wherein the first LED unit 210 and The first conductive pillars 221 are electrically connected to the contacts 310 respectively.
  • the first LED unit 210 and the first conductive pillar 221 are electrically connected to the contact 310 respectively.
  • the first LED layer 200 may include first conductive pillars 221 between the first LED units 210 .
  • the first LED layer 200 may further include a first conductive pillar 221 in contact with the first doped semiconductor layer 211 of the first LED unit 210.
  • the first LED unit 210 may be electrically connected to the contact 310 through the first conductive pillar 221.
  • the first filling structure 220 is only located in the circumferential direction of the first LED unit 210.
  • the first conductive pillar 221 may not be provided between the first LED unit 210 and the first conductive pillar 221.
  • the first LED unit 210 may The first doped semiconductor layer 211 is electrically connected to the contact 310 .
  • the first LED layer 200 including the first LED unit 210, the first filling structure 220 and the first conductive pillar 221 is formed first and then combined with the driving substrate 300, it is beneficial to protect the driving substrate 300 and improve the yield rate. Moreover, when the first LED layer 200 is defective, only the first LED layer 200 can be repaired or discarded, which will not affect the driving substrate 300 and is beneficial to reducing costs.
  • Step S140 Set a second LED layer 400 on the first LED layer 200; wherein the second LED layer 400 includes a plurality of second LED units 410 and a second LED unit 410 located between the second LED units 410. Filling structure 420; the second LED unit 410 is electrically connected to the first conductive pillar 221 directly below it, and the second LED unit 410 and the first LED unit 210 emit different colors.
  • the first LED epitaxial layer 200a is etched to form a plurality of first LED units 210.
  • Each of the first LED units 210 includes a first doped semiconductor layer 211, an active layer 212 and a first LED unit 210.
  • the method includes: thinning the second doped semiconductor layer 213 of the first LED unit 210 to expose the top of the first conductive pillar 221; wherein the thinned first LED units 210 are spaced apart from each other.
  • Thinning the second doped semiconductor layer 213 of the first LED unit 210 can be achieved by etching, or all regions of the second doped semiconductor layer 213 can be thinned simultaneously. Since the first filling structure 220 is in surface contact with the second doped semiconductor layer 213, the first conductive pillar 221 penetrates the first filling structure 220. Therefore, when the top of the first conductive pillar 221 is exposed, the second doped semiconductor layer 213 connecting the plurality of first LED units 210 is isolated, and the first conductive pillar 221 faces away from the first doped semiconductor layer 213 . The surface of the semiconductor layer 211 is exposed, the plurality of first LED units 210 are spaced apart from each other, and the first filling structure 220 is between the first LED units 210 .
  • the stability of the first LED unit 210 can be improved. , to prevent the first LED unit 210 from falling off during the bonding process. Moreover, by thinning and forming a plurality of first LED units 210 spaced apart from each other, electrical connection and independent driving of the second LED units 410 and the contacts 310 can be facilitated.
  • the first LED layer 200 is disposed on the surface of the substrate 100 , or the first LED epitaxial layer 200 a is grown and formed on the substrate 100 .
  • the substrate 100 may also be removed. Since a part of the thickness of the second doped semiconductor layer 213 is retained, the risk of part of the first LED unit 210 being removed simultaneously during the removal of the substrate 100 can be reduced, and to a certain extent, improvement in manufacturing yield can be avoided.
  • a conductive layer may be formed on the second doped semiconductor layer 213 of the first LED units 210.
  • the conductive material of the conductive layer may be a metal material or indium tin oxide.
  • the first LED unit 210 may be electrically connected to the second conductive pillar 421 through the conductive layer of the second doped semiconductor layer 213 .
  • the conductive layer on the second doped semiconductor layer 213 is not shown in FIG. 2f.
  • a conductive layer can be provided on the surface of the first doped semiconductor layer and the second doped semiconductor layer of the LED unit.
  • the conductive layer is used for electrical connection between the LED unit and the corresponding contact or the corresponding conductive pillar. sexual connection.
  • the LED unit may refer to the first LED unit, or the second LED unit, or the third LED unit.
  • the step of arranging the second LED layer 400 on the first LED layer 200 includes: providing a second LED layer 400; the second LED layer 400 includes a plurality of second LED units 410 and located at the second filling structure 420 between the second LED units 410; the second LED layer 400 and the first LED layer 200 are combined; the second LED unit 410 is electrically connected through the first conductive pillar 221 directly below it Electrical connection with the contact 310 is achieved.
  • the second LED epitaxial layer 400a includes a first doped semiconductor layer, an active layer and a second doped semiconductor layer, which can be understood with reference to Figure 2a.
  • the first doped semiconductor layer is not shown in Figure 2g. a doped semiconductor layer, an active layer and a second doped semiconductor layer.
  • the active layer included in the second LED epitaxial layer 400a may be different from the active layer 212 included in the first LED epitaxial layer 200a, so that the luminous color of the second LED unit 410 is different from that of the first LED unit 210.
  • the first doped semiconductor layer and the second doped semiconductor layer included in the second LED epitaxial layer 400a may be the same as the first doped semiconductor layer 211 and the second doped semiconductor layer included in the first LED epitaxial layer 200a. 213Same or different.
  • the second LED unit 410 is formed by processing the second LED epitaxial layer 400a including the first doped semiconductor layer, the active layer and the second doped semiconductor layer. Refer to the first LED unit. 210 formation.
  • the second LED units 410 formed after processing of the second LED epitaxial layer 400a may be spaced apart from each other, or may be connected through the second doped semiconductor layer.
  • Figure 2h Two second LED units 410 are shown in .
  • the second filling structure 420 may refer to the first filling structure 220 . See Figure 2i. In some embodiments, the second filling structure 420 is located at least in the circumferential direction of the second LED unit 410 . Specifically, the second filling structure 420 may be located in the circumferential direction of the second LED unit 410; or, the second filling structure 420 covers the second LED unit 410.
  • a conductive layer may be formed on the surface of the first doped semiconductor layer of the second LED unit 410 .
  • the conductive material of the conductive layer may be a metal material, such as indium tin oxide.
  • the second LED unit 210 and the first conductive pillar 221 may be electrically connected through the conductive layer on the first doped semiconductor layer of the second LED unit 210 .
  • the conductive layer on the surface of the first doped semiconductor layer is not shown in Figures 2j and 2k.
  • the second LED layer 400 is further provided with second conductive pillars 421 penetrating the second filling structure 420 , and the number and position of the second conductive pillars 421 can be set according to the first LED unit 210 .
  • the second LED layer 400 may include a second conductive pillar 421 located directly above the first LED unit 210.
  • the second conductive pillar 421 may be used for electrical connection between the first LED unit 210 and the common electrode 600 .
  • the second LED unit 410 is electrically connected to the contact 310 by being electrically connected to the first conductive pillar 221 directly below it. In some embodiments, the second LED unit 410 is spaced apart from the first LED unit 210 . The orthographic projection of the first conductive pillar 221 directly below the second LED unit 410 on the second LED unit 410 is located within the first doped semiconductor layer of the second LED unit 410 . The first doped semiconductor layer of the second LED unit 410 is electrically connected to the first conductive pillar 221 located directly below the second LED unit 410, thereby realizing the electrical connection between the second LED unit 410 and the contact 310. In some embodiments, the first doped semiconductor layer of the second LED unit 410 is electrically connected to the first conductive pillar 221, and the electrical connection can be achieved through direct contact.
  • the second LED layer 400 is also provided with second conductive pillars 421 penetrating the second filling structure 420 .
  • the second conductive pillars 421 located directly above the first LED unit 210 are respectively connected with the third conductive pillar of the first LED unit 210 .
  • the two doped semiconductor layers 213 are electrically connected, thereby facilitating the electrical connection between the first LED unit 210 and the common electrode 600 .
  • the emitting color of the second LED unit 410 is different from the emitting color of the first LED unit 210. Even without a wavelength conversion structure, multi-color display can be achieved, which reduces the manufacturing difficulty and improves the manufacturing efficiency.
  • the second LED epitaxial layer 400a is disposed on the substrate 100. After the second LED layer 400 is combined with the first LED layer 200, the substrate 100 may also be removed. In the case where the second doped semiconductor layer of the second LED unit 410 is connected, it may also include thinning the second LED layer 400 to expose the top of the second conductive pillar 421 . Specifically refer to the above-mentioned content of thinning the second doped semiconductor layer 213 of the first LED unit 210 until the top of the first conductive pillar 221 is exposed, which will not be described again here.
  • the second LED unit 410 may be combined with the first LED layer 200 respectively, and a second filling structure may be disposed between the second LED units 410. 420.
  • a second conductive pillar 421 penetrating the second filling structure 420 may also be provided.
  • the Micro-LED display chip preparation method can realize multi-color display without a wavelength conversion layer due to the provision of the second LED unit 410 and the first LED unit 210 with different emitting colors.
  • the small size of the LED unit of the Micro-LED display chip makes it difficult to prepare the wavelength conversion layer, and has the disadvantage of low conversion efficiency. Therefore, by setting the second LED unit 410 and the first LED unit 210 with different emitting colors, it is beneficial to Reduce preparation difficulty and improve luminous efficiency; since the first LED layer 200 including the first LED unit 210, the first filling structure 220 and the first conductive pillar 221 is formed first, and then the first LED layer 200 is combined with the driving substrate 300 The process sequence is beneficial to protecting the driving substrate 300, improving yield and reducing costs.
  • the second doped semiconductor layer and the second conductive pillar 421 of the second LED unit 410 are electrically connected to the common electrode 600 respectively, so that the first LED unit 210 and the second conductive pillar 421 are electrically connected to the common electrode 600 .
  • the second LED units 410 can be driven independently.
  • electrically connecting the second doped semiconductor layer 213 and the second conductive pillar 421 of the second LED unit 410 to the common electrode 600 may be achieved through direct contact.
  • Other conductive structures may also be additionally provided to achieve electrical connection.
  • a common electrode 600 is provided on the surface of the second LED layer 400 facing away from the driving substrate 300; wherein the second doped semiconductor layer 213 of the second LED unit 410 and the second conductive pillar 421 are electrically connected respectively. Connected to the common electrode 600, the second LED unit 410 and the first LED unit 210 can be driven independently.
  • the common electrode 600 is beneficial to reducing driving difficulty.
  • multiple common electrodes 600 are provided; wherein the second doped semiconductor layer 213 of the second LED unit 410 and the second conductive pillar 421 are electrically connected to the common electrode 600 respectively.
  • Each second LED unit 410 and each first LED unit 210 may be provided with a corresponding common electrode 600 respectively.
  • the first LED unit 210 is electrically connected to the contact 310 of the driving substrate 300 through the corresponding first conductive pillar 221 .
  • the first filling structure 220 covers the first LED unit 210; correspondingly, in the step of arranging the first conductive pillar 221 penetrating the first filling structure 220, It includes: setting a first conductive pillar 221 on the first LED unit 210, and the first LED unit 210 passes through the corresponding first conductive pillar. 221 is electrically connected to the contact 310.
  • the first filling structure 220 covers the first doped semiconductor layer 211 of the first LED unit 210, and a through hole penetrating the first filling structure 220 can be provided on the first doped semiconductor layer 211.
  • Conductive material is filled in the through hole to form a first conductive pillar 221 connected to the first LED unit 210 .
  • the first LED layer 200 is bonded to the driving substrate 300, and the first conductive pillar 221 connected to the first LED unit 210 realizes the electrical connection between the first LED unit 210 and the contact 310.
  • the first LED unit 210 and the contact 310 are electrically connected. 310 realizes electrical connection through indirect connection.
  • the first filling structure 220 covering the first LED unit 210, it is beneficial to reduce the difficulty of preparing the first filling structure 220.
  • the first conductive pillar 221 it is beneficial to improve the bonding strength between the first LED layer 200 and the driving substrate 300, which can avoid During the manufacturing process, the first LED layer is separated from the driving substrate 300, thereby improving the yield.
  • the second filling structure 420 covers the second LED unit 410.
  • a through hole may be provided in the second filling structure 420 covering the first doped semiconductor layer of the second LED unit 410, and the through hole may be filled with
  • the conductive material forms a second conductive pillar 421 connecting the second LED unit 410 and the first conductive pillar 221.
  • the second LED unit 410 is electrically connected to the contact 310 through the first conductive pillar 221 and the second conductive pillar 421 .
  • the second LED unit 410 and the first conductive pillar 221 are electrically connected through indirect connection.
  • the second filling structure 420 is also provided with a second conductive pillar 421 penetrating the second filling structure 420, and the second conductive pillar 421 is electrically connected to the first conductive pillar 221 directly below it.
  • the second LED epitaxial layer 400a is disposed on the substrate 100. After the second LED layer 400 is combined with the first LED layer 200, the substrate 100 may also be removed. In the case where the second doped semiconductor layer of the second LED unit 410 is connected, it may also include thinning the second LED layer 400 to expose the top of the second conductive pillar 421 . Specifically refer to the above-mentioned content of thinning the second doped semiconductor layer 213 of the first LED unit 210 until the top of the first conductive pillar 221 is exposed, which will not be described again here.
  • a conductive layer may be formed on the surface of the second doped semiconductor layer of the second LED unit 410 .
  • the conductive material of the conductive layer may be a metal material or indium tin oxide.
  • the conductive layer on the second doped semiconductor layer of the second LED unit 210 may be used for electrical connection between the second LED unit 210 and the third conductive pillar 521 .
  • the Micro-LED display chip preparation method may further include: disposing a third LED layer 500 on the second LED layer 400; wherein the third LED layer 500 includes a plurality of third LEDs. unit 510 and the third filling structure 520 located between the third LED unit 510; the third LED unit 510 realizes contact with the contact 310 through the first conductive pillar 221 and the second conductive pillar 421 directly below it. Electrical connection; the third LED unit 510, the second LED unit 410 and the first LED unit 210 emit different colors.
  • the color display range of the Micro-LED display chip can be improved. , improve the application scope of Micro-LED display chips.
  • the third LED unit 510 is formed by processing a third epitaxial layer including a first doped semiconductor layer, an active layer and a second doped semiconductor layer.
  • the third LED unit 510 includes a stacked first doped semiconductor layer, an active layer and a second doped semiconductor layer. For details, reference may be made to the preparation of the first LED unit 210, which will not be described again here.
  • a conductive layer may be formed on the surface of the first doped semiconductor layer of the third LED unit 510 .
  • the conductive material of the conductive layer may be a metal material or indium tin oxide.
  • the third filling structure 520 covers the third LED unit 510, and a through hole passing through the third filling structure 520 can be provided on the first doped semiconductor layer, and the conductive material is filled in the through hole to form an electrical connection.
  • the third LED unit 510 is electrically connected to the contact 310 through the first conductive pillar 221, the second conductive pillar 421 and the third conductive pillar 521 directly below it.
  • the third LED unit 510 and the second conductive pillar 421 are electrically connected through indirect connection.
  • a conductive layer may be formed on the surface of the first doped semiconductor layer of the third LED unit 510 .
  • the conductive material of the conductive layer may be a metal material or indium tin oxide.
  • the third LED unit 510 and the third conductive pillar 521 may be electrically connected through the conductive layer on the first doped semiconductor layer of the third LED unit 510 .
  • the luminous color of the third LED unit 510 is different from the luminous color of the second LED unit 410 and the first LED unit 210 .
  • the light-emitting colors of and the first LED unit 210 may be red, blue and green respectively.
  • the third filling structure 520 is also provided with a third conductive pillar 521 penetrating the third filling structure 520; the Micro-LED display chip preparation method further includes: in the third LED A common electrode 600 is provided on the layer; Wherein, the first LED unit 210 is electrically connected to the common electrode 600 through the second conductive pillar 421 and the third conductive pillar 521 located directly above it, and the second LED unit 410 passes through the third conductive pillar located directly above it.
  • the conductive pillar 521 is electrically connected to the common electrode 600
  • the third LED unit 510 is electrically connected to the common electrode 600 .
  • the third LED unit 510 may be electrically connected to the common electrode 600 through the second doped semiconductor layer.
  • the third LED unit 510, the second LED unit 410 and the first LED unit 210 may be driven independently.
  • the material of the common electrode 600 can be a transparent conductive material.
  • the common electrode 600 may be formed through an evaporation process.
  • the embodiment of this specification provides a Micro-LED display chip.
  • the Micro-LED display chip may include: a driving substrate 300; the driving substrate 300 includes a driving circuit and contacts 310 electrically connected to the driving circuit; a first LED layer 200 disposed on the driving substrate 300;
  • the first LED layer 200 includes a plurality of first LED units 210, a first filling structure 220 located between the first LED units 210, and a first conductive pillar 221 penetrating the first filling structure 220;
  • the first LED unit 210 and the first conductive pillar 221 are electrically connected to the contacts 310 respectively;
  • a second LED layer 400 is provided on the first LED layer 200; wherein the second LED layer 400 includes a plurality of A second LED unit 410 and a second filling structure 420 located between the second LED unit 410, the second LED unit 410 and the first conductive pillar 221 directly below it are electrically connected to the second LED unit 410 and the first LED unit 210 have different emitting colors.
  • the first LED layer 200 includes a plurality of spaced first LED units 210.
  • the first LED units 210 include a first doped semiconductor layer 211, an active layer 212 and a second doped semiconductor layer. layer 213, correspondingly, the first doped semiconductor layer 211, the active layer 212 and the second doped semiconductor layer 213 of the plurality of first LED units 210 are all spaced apart from each other.
  • the first doped semiconductor layer 211 , the active layer 212 and the second doped semiconductor layer 213 are stacked, and the active layer 212 is located between the first doped semiconductor layer 211 and the second doped semiconductor layer 213 , therefore, the second doped semiconductor layer 213 is located on the side of the first doped semiconductor layer 211 facing away from the driving substrate 300 .
  • the first conductive pillar 221 located directly below the second LED unit 410 may be the orthographic projection of the first conductive pillar 221 on the second LED unit 410 and located in the first doped semiconductor layer of the second LED unit 410 Inside.
  • the first conductive pillar 221 directly below the second LED unit 410 is connected to the first doped semiconductor layer of the second LED unit 410 , and the second LED unit 410 is electrically connected to the contact 310 through the first conductive pillar 221 .
  • the first LED unit 210 is electrically connected to the contact 310 of the driving substrate 300 . See Figure 6.
  • the first conductive pillar 221 may not be provided between the first LED unit 210 and the driving substrate 300 .
  • the first LED layer 200 includes a first filling structure 220 between the first LED units 210 .
  • the first filling structure 220 is used to form a first planarized surface of the first LED layer 200 .
  • the first LED units 210 are spaced apart, and a height difference is formed between the first LED units 210 and the first LED units 210 .
  • the first filling structure 220 is at least located between the plurality of first LED units 210 and surrounds the circumferential direction of the first LED units 210 to reduce or eliminate the height difference between the first LED units 210 and improve the overall quality of the Micro-LED display chip. Flatness, thereby improving the stability of the Micro-LED display chip structure.
  • the first filling structure 220 is located in the circumferential direction of the first LED unit 210 .
  • the first filling structure 220 is located in the circumferential direction of the first LED unit 210 , which may mean that the first filling structure 220 is located between the first LED units 210 and surrounds the side of the first LED unit 210 .
  • the first LED unit 210 is embedded in the first filling structure 220 .
  • the first filling structure 220 is located in the circumferential direction of the first LED unit 210 and covers the surface of the first doped semiconductor layer 211 of the first LED unit 210 close to the substrate 300 .
  • the first LED unit 210 is embedded in the structure of the first filling structure 220 . It is beneficial to reduce the difficulty of preparing the first filling structure 220, thereby improving the preparation efficiency.
  • a first conductive pillar 221 penetrating the first filling structure 220 is also provided directly below the first LED unit 210.
  • the first conductive pillar 221 and The first doped semiconductor layer 211 of the first LED unit 210 and the contact 310 are electrically connected.
  • the first conductive pillar 221 directly below the first LED unit 210 and the first doped semiconductor layer 211 of the first LED unit 210 are opposite to the second doped semiconductor layer 213 of the first LED unit 210 surface contact.
  • the first filling structure 220 is provided with a first conductive pillar 221 penetrating the first filling structure 220 .
  • the first conductive pillar 221 is spaced apart from the first LED unit 210 and is used to electrically communicate with the second LED unit 410 . connect.
  • the second LED layer 400 is disposed on a surface of the first LED layer 200 facing away from the driving substrate 300 , and at least the second filling structure 420 in the second LED layer is in contact with the first LED layer 200 , or the second filling structure 420 is in contact with the first LED layer 200 .
  • the structure 420 and the first doped semiconductor layer 211 of the first LED unit 210 are in contact with the first LED layer 200 .
  • the second filling structure 420 is located in the circumferential direction of the second LED unit 410 .
  • the second filling structure 420 is located in the circumferential direction of the second LED unit 410 , which may mean that the second filling structure 420 is located between the second LED units 410 and surrounds the side of the second LED unit 410 .
  • the second LED unit 410 is embedded in the second filling structure 420 .
  • the second filling The structure 420 is located in the circumferential direction of the second LED unit 410 and covers the surface of the second LED unit 410 close to the first LED unit 210 . It is beneficial to reduce the difficulty of preparing the second filling structure 420, thereby improving the preparation efficiency.
  • a second conductive pillar 421 penetrating the second filling structure 420 is also provided directly below the second filling structure 420.
  • the second conductive pillar 421 is connected to the second filling structure 420.
  • the first doped semiconductor layer of the second LED unit 410 and the first conductive pillar 221 are electrically connected.
  • the second conductive pillar 421 directly below the second filling structure 420 is in contact with a side surface of the first doped semiconductor layer of the second LED unit 410 close to the first LED unit 210 .
  • the second filling structure 420 is provided with a second conductive pillar 421 penetrating the second filling structure 420 .
  • the second conductive pillar 421 is spaced apart from the second LED unit 410 and is used to electrically communicate with the first LED unit 210 . connect.
  • the second LED unit 410 emits light in a different color than the first LED unit 210 .
  • the first LED unit 210 and the first conductive pillar 221 are electrically connected to the contact 310 respectively, and the second LED unit 410 is electrically connected to the first conductive pillar 221 directly below it.
  • the first LED unit 210 and the second LED unit 410 can be driven independently to realize multi-color display of the Micro-LED display chip, thereby increasing the application range of the Micro-LED display chip.
  • the plurality of second LED units 410 reference may be made to the plurality of spaced first LED units 210, which will not be described again here.
  • the Micro-LED display chip provided in the embodiment of this specification because the first LED unit 210 and the second LED unit 410 with different emitting colors are respectively provided in the first LED layer 200 and the second LED layer 400, can be used without a wavelength conversion layer. Achieve multi-color display in the case of Micro-LED display chip. Moreover, due to the small size of the LED unit of the Micro-LED display chip, it is difficult to prepare the wavelength conversion layer and has the defect of low conversion efficiency.
  • the unit 410 and the first LED unit 210 are conducive to reducing the difficulty of preparation and improving the luminous efficiency, and can also improve the yield; and because the first filling structure 220 and the second filling structure 420 are provided, it is conducive to protecting the first LED unit 210 and the first LED unit 210.
  • the second LED unit 410 improves the flatness between different film layers and improves the stability of the Micro-LED display chip structure.
  • the second filling structure 420 is also provided with a second conductive pillar 421 penetrating the second filling structure 420;
  • the Micro-LED display chip further includes: The third LED layer 500 on 400; wherein the third LED layer 500 includes a plurality of third LED units 510 and a third filling structure 520 located between the third LED units 510; the third LED unit 510 is electrically connected to the contact 310 through the first conductive pillar 221 and the second conductive pillar 421 located directly below it; the third LED unit 510, the second LED unit 410, and the first LED The emitting colors of the units 210 are all different.
  • the first conductive pillar 221 , the second conductive pillar 421 and the third conductive pillar 521 may be made of the same material.
  • the material can be a transparent conductive material or metal.
  • the third LED layer 500 includes a plurality of spaced third LED units 510 .
  • the third LED unit 510 may include a first doped semiconductor layer, an active layer and a second doped semiconductor layer. Correspondingly, the first doped semiconductor layer, active layer and The second doped semiconductor layers are spaced apart from each other. It can be understood that the first doped semiconductor layer, the active layer and the second doped semiconductor layer are stacked, and the active layer is located between the first doped semiconductor layer and the second doped semiconductor layer, and the third The second doped semiconductor layer of the LED unit 510 is located on the side of the first doped semiconductor layer of the third LED unit 510 facing away from the driving substrate 300 .
  • the first doped semiconductor layer of the third LED unit 510 is electrically connected to the second conductive pillar 421 and the first conductive pillar 221 located directly below it.
  • the third LED unit 510 is electrically connected to the contact 310 .
  • the third LED layer 500 further includes a third filling structure 520 .
  • the third filling structure 520 is used to form a third planarized surface of the plurality of third LED units 510 in the third LED layer 500 .
  • the third filling structure 520 may be located in a circumferential direction of the third LED unit 510 .
  • the third filling structure 520 is located in the circumferential direction of the third LED unit 510 , which may mean that the third filling structure 520 is located between the third LED units 510 and surrounds the side of the third LED unit 510 .
  • the third LED unit 510 is embedded in the third filling structure 520 .
  • the third filling structure 520 is located in the circumferential direction of the first LED unit 210 and covers the surface of the first doped semiconductor layer of the third LED unit 510 close to the second LED unit 410 . It is beneficial to reduce the difficulty of preparing the third filling structure 520, thereby improving the efficiency of preparation.
  • a third conductive pillar 521 penetrating the third filling structure 520 is also provided directly below the third LED unit 510.
  • the third conductive pillar 521 and The first doped semiconductor of the third LED unit 510 is electrically connected.
  • the third LED unit 510 is electrically connected to the contact 310 through the third conductive pillar 521, the second conductive pillar 421 and the first conductive pillar 221 located directly below it.
  • the third conductive pillar 521 located directly below the third LED unit 510 is in contact with the surface of the first doped semiconductor layer close to the second LED unit 410 .
  • the third filling structure 520 is further provided with a third conductive pillar 521 penetrating the third filling structure 520 .
  • the third filling structure 520 may be provided with a third conductive pillar 521 between the third LED units 510, which may be used for electrical connection between the second LED unit 410 or the first LED unit 210 and the common electrode.
  • the third filling structure 520 may be provided with a third The third conductive pillar 521 directly below the LED unit 510 can be used for electrical connection between the third LED unit 510 and the contact 310 .
  • the Micro-LED display chip also includes a common electrode 600 disposed on the third LED layer 500; wherein the first LED unit 210 passes through the second conductive pillar 421 and the third conductive column located directly above it.
  • the pillar 521 is electrically connected to the common electrode 600.
  • the second LED unit 410 is electrically connected to the common electrode 600 through the third conductive pillar 521 located directly above it.
  • the third LED unit 510 is electrically connected to the common electrode. 600 electrical connections.
  • the luminous color of the first LED unit 210 , the second LED unit 410 and the third LED unit 510 may be selected from red, green and blue respectively.
  • the light emitting color of the first LED unit 210 , the second LED unit 410 and the third LED unit 510 are different from each other. Conducive to achieving full-color display.
  • the luminescent color of the first LED unit 210 , the second LED unit 410 , and the third LED unit 510 can also be selected from any color such as purple, yellow, etc., thereby improving Micro -Application scope of LED display chips.
  • the Micro-LED display chip is divided into a plurality of pixel units arranged in an array, and the pixel units include at least one first LED unit 210, at least one second LED unit 410, at least One third LED unit 510; wherein the number of the first LED units 210, the number of the second LED units 410 and the number of the third LED units 510 in the pixel unit are not exactly the same. See Figure 9. A pixel unit is illustrated in the dotted box in FIG. 9 , and the pixel unit includes two first LED units 210 , a second LED unit 410 and a third LED unit 510 .
  • the luminous colors of the first LED unit 210, the second LED unit 410 and the third LED unit 510 are red, green and blue respectively.
  • the second LED The number of units 410 may be greater than the number of first LED units 210, the number of second LED units 410 may be greater than the number of third LED units 510, and may be composed of the first LED unit, the second LED unit and the third LED unit.
  • a pixel provides multiple ways to form a pixel.
  • An embodiment of this specification provides a display panel, which includes any of the above-mentioned Micro-LED display chips.
  • the display panel includes any of the above-mentioned Micro-LED display chips. Since the display color range of the Micro-LED display chip becomes larger, the display color range of the display panel is increased and the application of the display panel is increased. scope.
  • An embodiment of this specification provides a display device, which includes any of the above-mentioned Micro-LED display chips.
  • the display device includes any one of the above-mentioned Micro-LED display chips. Since the display color range of the Micro-LED display chip becomes larger, the display color range of the display device is increased, thereby increasing the display color range of the display device. Application scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

本发明提供了一种Micro-LED显示芯片及其制备方法,所述方法包括:提供驱动基板,驱动基板包括驱动电路以及与驱动电路电连接的触点;提供第一LED层,第一LED层包括多个第一LED单元、位于第一LED单元之间的第一填充结构以及贯穿第一填充结构的第一导电柱;将第一LED层与驱动基板键合;第一LED单元和第一导电柱分别与触点电连接;在第一LED层上设置第二LED层;第二LED层包括多个第二LED单元和位于第二LED单元之间的第二填充结构;第二LED单元与其正下方的第一导电柱电连接,第二LED单元与第一LED单元的发光颜色不同。有利于降低制备多色Micro-LED显示芯片的工艺难度。

Description

一种Micro-LED显示芯片及其制备方法 技术领域
本说明书涉及半导体电子器件领域,具体涉及一种Micro-LED显示芯片及其制备方法。
背景技术
随着微型LED(Micro-LED)显示技术的出现,使得显示设备可以被制作为如增强现实(Augmented Reality,简称AR)显示设备、近眼显示(Near-eye display简称NED)设备以及可穿戴显示设备等的微型化和高分辨率的设备成为可能。微型LED以其体积小、亮度高、响应速度快、寿命长等优点而极具市场潜力。
目前,Micro-led全彩显示芯片通常采用在单色显示芯片上集成波长转换层,通过设置全彩显示所需的RGB三原色,以满足全彩显示的需要。但是微型LED显示的LED阵列是通过高密度集成的,该阵列中的LED像素点距离在0.1-100微米量级,该Micro-led显示芯片的像素点越小,波长转换层的制作难度就越大,使得彩色显示的Micro-led显示芯片制备难度显著增加。
发明内容
有鉴于此,本说明书多个实施方式致力于提供一种Micro-LED显示芯片及其制备,实现Micro-LED显示芯片多色或者全彩显示,有利于降低多色或者全彩Micro-LED显示芯片制备难度,并在一定程度上可以避免驱动基板在制备过程中的损坏,提高良率,降低生产成本。
本说明书实施方式提供一种Micro-LED显示芯片制备方法,包括:提供驱动基板,所述驱动基板包括驱动电路以及与所述驱动电路电连接的触点;提供第一LED层,所述第一LED层包括多个第一LED单元、位于所述第一LED单元之间的第一填充结构以及贯穿所述第一填充结构的第一导电柱;将所述第一LED层与所述驱动基板键合;其中,所述第一LED单元和所述第一导电柱分别与所述触点电连接;在所述第一LED层上设置第二LED层;其中,所述第二LED层包括多个第二LED单元和位于所述第二LED单元之间的第二填充结构;所述第二LED单元与其正下方的所述第一导电柱电连接,所述第二LED单元与所述第一LED单元的发光颜色不同。
本说明书实施方式提供一种Micro-LED显示芯片,包括:驱动基板;所述驱动基板包括驱动电路以及与所述驱动电路电连接的触点;设置在所述驱动基板上的第一LED层;所述第一LED层包括多个第一LED单元、位于所述第一LED单元之间的第一填充结构以及贯穿所述第一填充结构的第一导电柱,所述第一LED单元和所述第一导电柱分别与所述触点电连接;设置在所述第一LED层上的第二LED层;其中,所述第二LED层包括多个第二LED单元和位于所述第二LED单元之间的第二填充结构,所述第二LED单元与其正下方的所述第一导电柱电连接,所述第二LED单元与所述第一LED单元的发光颜色不同。
本说明书实施方式提供一种显示面板,所述显示面板包括上述任一所述的Micro-LED显示芯片。
本说明书实施方式提供一种显示装置,所述显示装置包括上述任一所述的Micro-LED显示芯片。
本说明书实施方式提供的Micro-LED显示芯片制备方法,通过在第一LED层的多个第一LED单元之间设置填充结构,以及在填充物之间设置贯穿第一填充结构的第一导电柱,第一LED单元和第一导电柱分别通过触点与驱动电路进行电连接,再在第一LED层上设置包括多个第二LED单元和位于第二LED单元之间的第二填充结构,第二LED单元与其正下方的第一导电柱进行电连接,第二LED单元和第一LED单元的发光颜色是不同的,从而实现多彩显示。由于LED显示芯片可以在无波长转换层的情况下实现多色显示,在一定程度上降低了LED芯片的制备难度。
还有通过分别形成第一LED层、第二LED层,然后依次将第一LED层、第二LED层与驱动基板连接,实现驱动基板分别单独驱动控制第一LED单元、第二LED单元,降低驱动基板参与工艺制程的次数,有利于保护驱动基板,在一定程度上可以避免驱动基板在制备过程中的损坏,从而在一定程度上提高了Micro-LED显示芯片的良率和降低了成本。
附图说明
图1所示为一实施方式提供驱动基板的结构示意图。
图2a-图2m所示为一实施方式提供Micro-LED显示芯片制备方法中处于不同制备阶段的结构示意图。
图3a-图3h所示为一实施方式提供Micro-LED显示芯片制备方法中处于不同制备阶段的结构示意图。
图4所示为一实施方式提供的第二LED层结构示意图。
图5所示为一实施方式提供的第三LED层结构示意图。
图6所示为一实施方式提供的Micro-LED显示芯片结构示意图。
图7所示为一实施方式提供的Micro-LED显示芯片结构示意图。
图8所示为一实施方式提供的Micro-LED显示芯片结构示意图。
图9所示为一实施方式提供的Micro-LED显示芯片结构示意图。
具体实施方式
下面将结合说明书部分实施方式中的附图,对本说明书部分实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅是本说明书一部分实施方式,而不是全部的实施方式。基于本说明书中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本说明书的范围。
本说明书实施方式提供一种Micro-LED显示芯片制备方法。所述Micro-LED显示芯片制备方法可以包括以下步骤。
步骤S110:提供驱动基板300;所述驱动基板300包括驱动电路以及与所述驱动电路电连接的触点。
请参阅图1。在一些实施方式中,驱动基板300可以包括半导体材料。半导体材料可以是硅、碳化硅、氮化镓、锗、砷化镓、磷化铟等材料中至少一者。驱动基板300可以由玻璃、塑料或蓝宝石晶片等非导电材料制成。驱动基板300可以是CMOS基板,还可以是TFT基板。驱动基板300可以包括驱动电路,驱动电路在图1中未示出,驱动电路用于将电信号提供给LED单元,并通过电信号控制LED单元亮度。可以理解,LED单元可以是指第一LED单元210、第二LED单元410以及第三LED单元510中一个或多个。
请参阅图1。在一些实施方式中,驱动基板300包括触点310。触点310可以为多个,触点310可以相互间隔。触点310的材质可以包括Cu、Ag、Au、Al、W、Mo、Ni、Ti、Pt、Pd等材料中至少一者。触点310可以分别与驱动电路以及LED单元连接,使驱动电路可以与LED单元进行电连接,实现驱动电路对LED单元的驱动,使其LED单元发光。触点310可以位于基板表面,便于实现驱动电路与LED单元的电连接。
步骤S120:提供第一LED层200;所述第一LED层200包括多个第一LED单元210、位于所述第一LED单元210之间的第一填充结构220以及贯穿所述第一填充结构220的第一导电柱221。
请参阅图2a。在一些实施方式中,第一LED单元210是将包括第一掺杂型半导体层211、有源层212和第二掺杂型半导体层213的第一LED外延层200a加工形成的。可以去除第一LED外延层200a部分区域的第一掺杂型半导体层211、有源层212和至少部分厚度的第二掺杂型半导体层213形成第一LED单元210。
在一些实施方式中,第一掺杂型半导体层211和第二掺杂型半导体层213的材料可以是II-VI材料或III-V氮化物材料。具体的,例如,第一掺杂型半导体层211和第二掺杂型半导体层213可以分别是ZnSe、ZnO、GaN、AlN、InN、InGaN、GaP、AlInGaP或AlGaAs中一种或多种材料形成的一层或多层半导体结构。有源层212可以具有单量子阱结构、多量子阱(MQW)结构、量子阱和势垒层层叠结构中的一个。有源层212位于第一掺杂型半导体层211和第二掺杂型半导体层213之间。空穴和电子在有源层212被激发出特定波长的光。
在一些实施方式中,第一掺杂型半导体层211可以是P型半导体层,第二掺杂型半导体层213可以是N型半导体层。第一掺杂型半导体层211和第二掺杂型半导体层213可以分别与触点310和公共电极600电连接,公共电极600可以是阴极。触点310可以通过阳极与第一掺杂型半导体层211电性连接。在一些实施方式中,第一掺杂型半导体层211也可以是N型半导体层,相应地,第二掺杂型半导体层213为P型半导体层。
请参阅图2a。在一些实施方式中,第一LED外延层200a可以包括第一掺杂型半导体层211、有源层212和第二掺杂型半导体层213。第一LED外延层200a可以是在衬底100上生长形成的。衬底100可以是蓝宝石、Si、GaAs、InP、GaN、AlN、SiC衬底等衬底中的一者。
在一些实施方式中,第一LED层200包括多个第一LED单元210,第一LED单元210能够被独立驱动。第一LED单元210包括第一掺杂型半导体层211、有源层212和第二掺杂型半导体层213。第一掺杂型半导体层211可以用于与触点310电连接,第二掺杂型半导体层213可以用于与公共电极 600电连接。
在一些实施方式中,可以在第一LED单元210的第一掺杂型半导体层211上形成导电层。导电层可以是金属材料,可以为氧化铟锡。第一LED单元210与触点通过第一掺杂型半导体层211上的导电层电性连接。
请参阅图2a和图2b。在一些实施方式中,在提供第一LED层的步骤中,包括:提供第一LED外延层200a;刻蚀所述第一LED外延层200a形成多个第一LED单元210,每一所述第一LED单210元包括第一掺杂型半导体层211、有源层212和第二掺杂型半导体层213,相邻所述第一LED单元210的第二掺杂型半导体层213相互连接。可以理解,第一LED外延层200a包括第一掺杂型半导体层211、有源层212和第二掺杂型半导体层213;去除部分区域的第一掺杂型半导体层211、有源层212和部分厚度的第二掺杂型半导体层213,形成多个第一LED单元210。部分区域的第一掺杂型半导体层211、有源层212被完全去除,第二掺杂型半导体层213被部分保留。相应的,形成多个第一LED单元210,且第一LED单元210之间通过第二掺杂型半导体层213相互连接。图2b中示意出通过第二掺杂型半导体层213相连接的两个第一LED单元210。可以通过刻蚀工艺去除部分区域的第一LED外延层200a。具体的,刻蚀工艺可以是指干法刻蚀,或者湿法刻蚀。
在一些实施方式中,在提供第一LED层200的步骤中,包括:提供第一LED外延层200a;刻蚀所述第一LED外延层200a形成多个相互间隔的第一LED单元210,每一所述第一LED单元210包括第一掺杂型半导体层211、有源层212和第二掺杂型半导体层213。具体的,可以提供第一LED外延层200a,第一LED外延层200a包括第一掺杂型半导体层211、有源层212和第二掺杂型半导体层213;去除部分区域的第一LED外延层200a,形成多个相互间隔的第一LED单元210。部分区域的第一LED外延层200a被去除,相应的,未被去除的第一LED外延层200a形成多个第一LED单元210,且多个第一LED单元210之间在空间上相互隔开,形成多个相互间隔的第一LED单元210。
在一些实施方式中,第一LED单元210相互独立,由于第一LED单元210是经过去除第一LED外延层200a的部分区域的部分厚度或者全部厚度形成的,因此,多个第一LED单元210之间未保留第一LED外延层200a,或者仅保留了部分厚度的第一LED单元210的外延层200a。因此,多个第一LED单元210之间形成不平坦的表面。
请参阅图2c。在一些实施方式中,在提供第一LED层的步骤中,包括:在所述第一LED单元210之间设置所述第一填充结构220。第一LED层200包括将多个第一LED单元210形成第一平坦化表面的第一填充结构220。通过设置第一填充结构220,降低了多个第一LED单元210形成的表面的不平坦特性。通过设置第一填充结构220,可以使得各个区域的第一LED层200的厚度相同趋于相同,从而形成第一平坦化表面。
在一些实施方式中,在所述第一LED单元210之间设置所述第一填充结构220;其中,第一填充结构220至少位于第一LED单元210的周向。请参阅图2c。第一填充结构220可以位于第一LED单元210的周向。请参阅图3a。或者,第一填充结构220覆盖第一LED单元210。具体的,第一填充结构220位于第一LED单元210的周向,并且覆盖第一LED单元210的第一掺杂型半导体层211背对第一LED单元210的第二掺杂型半导体层213一侧的表面。可以通过采用沉积、涂敷等工艺中至少一者形成第一填充结构220。第一填充结构220的材料可以选择聚酰亚胺、挡墙胶、OC胶、SU8光刻胶或苯并环丁烯(BCB)。在一些实施方中,在第一LED单元210相互间隔的情况下,第一填充结构220至少位于第一LED单元210之间。第一填充结构220可以位于第一LED单元210之间,或者,第一填充结构220可以位于第一LED单元210之间,并且覆盖第一LED单元210。请参阅图2d。在一些实施方式中,第一填充结构220中设置有贯穿所述第一填充结构220的第一导电柱221。可以形成贯穿第一填充结构220的第一开孔,在第一开孔中设置导电材料形成第一导电柱221。第一导电柱221的材料可以是透明导电材料。具体的,例如,透明电材料可以是氧化铟锡。当然,第一导电柱221的材料还可以包括金属材料。第一导电柱221可以用于第一LED单元210和触点310电性连接。第一导电柱221也可以用于发光颜色与第一LED单元210发光颜色不同的LED单元与触点310的电性连接。例如,第二LED单元与触点310的电性连接。
第一LED层200包括第一填充结构220,第一填充结构220有利于将第一LED层200平整化,降低了第一LED层和驱动基板300结合的难度。此外,第一填充结构220可以起到保护和稳定第一LED单元的作用,即使是第一LED单元210相互间隔的,第一填充结构220也能起到提高第一LED单元210与驱动基板300结合过程中的结合难度,以及提高第一LED单元210与驱动基板300结合后的稳定性,在一定程度上降低了在制作过程中第一LED单元210被剥离风险,提高了Micro-LED显示芯片的良率。
步骤S130:将所述第一LED层200与所述驱动基板300键合;其中,所述第一LED单元210和 所述第一导电柱221分别与所述触点310电连接。
请参阅图2e。在一些实施方式中,第一LED单元210和第一导电柱221分别与触点310电连接。第一LED层200可以包括位于第一LED单元210之间的第一导电柱221。第一LED层200还可以包括与第一LED单元210的第一掺杂型半导体层211接触的第一导电柱221。第一LED单元210可以通过第一导电柱221与触点310电连接。在一些实施方式中,第一填充结构220仅位于第一LED单元210的周向,第一LED单元210与第一导电柱221之间可以未设置第一导电柱221,第一LED单元210可以通过第一掺杂型半导体层211与触点310电连接。
由于采用了先形成包括第一LED单元210、第一填充结构220和第一导电柱221的第一LED层200,后与驱动基板300结合的工艺顺序,有利于保护驱动基板300,提高良率。而且在第一LED层200存在不良的情况下可以仅修复或者舍弃第一LED层200,不会对驱动基板300造成影响,有利于降低成本。
步骤S140:在所述第一LED层200上设置第二LED层400;其中,所述第二LED层400包括多个第二LED单元410和位于所述第二LED单元410之间的第二填充结构420;所述第二LED单元410与其正下方的所述第一导电柱221电连接,所述第二LED单元410与所述第一LED单元210的发光颜色不同。
请参阅图2c、图2b和图2f。在一些实施方式中,刻蚀所述第一LED外延层200a形成多个第一LED单元210,每一所述第一LED单元210包括第一掺杂型半导体层211、有源层212和第二掺杂型半导体层213,相邻所述第一LED单元210的第二掺杂型半导体层213相互连接情况下,在所述第一LED层上设置第二LED层400的步骤之前,还包括:减薄所述第一LED单元210的第二掺杂型半导体层213,至露出所述第一导电柱221的顶端;其中,减薄后的多个第一LED单元210相互间隔。减薄第一LED单元210的第二掺杂型半导体层213,可以通过刻蚀实现减薄,还可以是第二掺杂型半导体层213的各个区域同时减薄。由于第一填充结构220与第二掺杂型半导体层213表面接触,第一导电柱221贯穿第一填充结构220。因此,在将第一导电柱221的顶端露出的情况下,实现连接多个第一LED单元210的第二掺杂型半导体层213被隔断,且第一导电柱221背对第一掺杂型半导体层211的表面被露出,多个第一LED单元210之间相互间隔,第一LED单元210之间为第一填充结构220。
通过保留部分厚度的第二掺杂型半导体层213,在第一LED层200与所述驱动基板300键合后减薄第二掺杂型半导体层213,可以提高第一LED单元210的稳定性,防止键合过程中第一LED单元210脱落。并且,通过减薄后形成多个第一LED单元210相互间隔,可以便于第二LED单元410与触点310的电连接和独立驱动。
在一些实施方式中,第一LED层200设置在衬底100表面,或者说第一LED外延层200a在衬底100上生长形成。在减薄第一LED单元210的第二掺杂型半导体层213之前,还可以包括去除衬底100。由于保留部分厚度的第二掺杂型半导体层213,衬底100去除过程中可以降低部分第一LED单元210被同时移除的风险,在一定程度上,避免了提高制备良率。
在一些实施方式中,在形成多个相互间隔的第一LED单元210后,可以在第一LED单元210的第二掺杂型半导体层213上形成导电层。导电层的导电材料可以是金属材料,也可以为氧化铟锡。第一LED单元210可以通过第二掺杂型半导体层213的导电层与第二导电柱421电性连接。图2f中未示意出第二掺杂型半导体层213上的导电层。在一些实施方中,可以在LED单元的第一掺杂型半导体层和第二掺杂型半导体层的表面设置导电层,导电层用于LED单元与对应的触点或者对应的导电柱的电性连接。LED单元可以指第一LED单元,或者第二LED单元,或者第三LED单元。
请参阅图2g和图2h。在一些实施方式中,在第一LED层200上设置第二LED层400的步骤中,包括:提供第二LED层400;所述第二LED层400包括多个第二LED单元410以及位于所述第二LED单元410之间的第二填充结构420;将第二LED层400与第一LED层200结合;所述第二LED单元410通过与其正下方的所述第一导电柱221电连接实现与所述触点310电连接。
在一些实施方式中,第二LED外延层400a包括的第一掺杂型半导体层、有源层和第二掺杂型半导体层,可以参阅图2a理解,在图2g中未分别示出第一掺杂型半导体层、有源层和第二掺杂型半导体层。第二LED外延层400a包括的有源层与第一LED外延层200a包括的有源层212可以不同,以实现第二LED单元410的发光颜色与第一LED单元210的发光颜色不同。第二LED外延层400a包括的第一掺杂型半导体层和第二掺杂型半导体层,可以与第一LED外延层200a包括的第一掺杂型半导体层211和第二掺杂型半导体层213相同或不同。
在一些实施方式中,第二LED单元410是将包括第一掺杂型半导体层、有源层和第二掺杂型半导体层的第二LED外延层400a加工形成的,可以参照第一LED单元210的形成。第二LED外延层400a加工后形成的第二LED单元410之间可以相互间隔,或者可以通过第二掺杂型半导体层连接。图2h 中示意出两个第二LED单元410。
在一些实施方式中,第二填充结构420可以参照第一填充结构220。请参阅图2i。在一些实施方式中,第二填充结构420至少位于第二LED单元410的周向。具体的,第二填充结构420可以位于第二LED单元410的周向;或者,第二填充结构420覆盖第二LED单元410。
在一些实施方式中,可以在第二LED单元410的第一掺杂型半导体层表面形成导电层。导电层的导电材料可以是金属材料,可以为氧化铟锡。第二LED单元210与第一导电柱221可以通过第二LED单元210的第一掺杂型半导体层上的导电层电性连接。图2j和图2k中未示意出第一掺杂型半导体层表面的导电层。
请参阅图2j。在一些实施方式中,第二LED层400还设置有贯穿第二填充结构420的第二导电柱421,第二导电柱421的数量和位置可以根据第一LED单元210设置。第二LED层400可以包括位于第一LED单元210正上方的第二导电柱421。第二导电柱421可以用于第一LED单元210与公共电极600电连接。
请参阅图2k。在一些实施方式中,第二LED单元410通过与其正下方的所述第一导电柱221电连接实现与所述触点310电连接。在一些实施方式中,第二LED单元410与第一LED单元210相间隔。第二LED单元410正下方的第一导电柱221在第二LED单元410上的正投影位于第二LED单元410的第一掺杂型半导体层内。第二LED单元410的第一掺杂型半导体层与位于第二LED单元410正下方的第一导电柱221电连接,从而实现第二LED单元410与触点310的电连接。在一些实施方式中,第二LED单元410的第一掺杂型半导体层与第一导电柱221电连接,可以通过直接接触实现电连接。
在一些实施方式中,第二LED层400还设置有贯穿第二填充结构420的第二导电柱421,位于第一LED单元210正上方的第二导电柱421分别与第一LED单元210的第二掺杂型半导体层213电连接,从而便于实现第一LED单元210与公共电极600的电连接。第二LED单元410的发光颜色与第一LED单元210的发光颜色不同,即使无波长转换结构,也可实现多色显示,降低了制作难度,提高制作效率。
请参阅图21。在一些实施方式中,第二LED外延层400a设置在衬底100上。在第二LED层400与第一LED层200结合后,还可以包括去除衬底100。在第二LED单元410的第二掺杂型半导体层相连接的情况下,还可以包括减薄第二LED层400至暴露出第二导电柱421的顶端。具体参照上述减薄所述第一LED单元210的第二掺杂型半导体层213,至露出所述第一导电柱221的顶端的内容,在此不再赘述。
在一些实施方式中,在第一LED层200上设置第二LED层400,可以采用分别将第二LED单元410与第一LED层200结合,在第二LED单元410之间设置第二填充结构420。还可以设置贯穿第二填充结构420的第二导电柱421。
本说明书实施方式提供的Micro-LED显示芯片制备方法,由于设置了发光颜色不同的第二LED单元410和第一LED单元210,可以在无波长转换层的情况下实现多色显示,而且,由于Micro-LED显示芯片的LED单元尺寸小的特性,波长转换层制备难度大,且存在转换效率低的缺陷,因此,通过设置发光颜色不同的第二LED单元410和第一LED单元210,有利于降低制备难度和提高发光效率;由于采用了先形成包括第一LED单元210、第一填充结构220和第一导电柱221的第一LED层200,后将第一LED层200与驱动基板300结合的工艺顺序,有利于保护驱动基板300,提高良率和降低成本。
在一些实施方式中,分别将所述第二LED单元410的第二掺杂型半导体层和所述第二导电柱421,电连接至公共电极600,以使所述第一LED单元210和所述第二LED单元410可被分别独立驱动。
请参阅图2m。在一些实施方式中,将第二LED单元410的第二掺杂型半导体层213和第二导电柱421,电连接至公共电极600,可以是通过直接接触实现电连接。也可以是额外设置其他的导电结构实现电连接。
在一些实施方式中,在第二LED层400背对驱动基板300的表面设置公共电极600;其中,第二LED单元410的第二掺杂型半导体层213和所述第二导电柱421分别电连接至公共电极600,第二LED单元410和第一LED单元210可被分别独立驱动。公共电极600有利于降低驱动难度。
在一些实施方式中,设置多个公共电极600;其中,第二LED单元410的第二掺杂型半导体层213和所述第二导电柱421分别电连接至公共电极600。各第二LED单元410和各第一LED单元210可以分别设置对应的公共电极600。
请参阅图3a、图3b和图3c。在一些实施方式中,第一LED单元210通过对应的第一导电柱221与驱动基板300的触点310电性连接。具体的,所述第一LED层200中,所述第一填充结构220覆盖所述第一LED单元210;相应的,设置贯穿所述第一填充结构220的第一导电柱221的步骤中,包括:在所述第一LED单元210上设置第一导电柱221,所述第一LED单元210通过对应的所述第一导电柱 221与所述触点310电连接。
在一些实施方式中,第一填充结构220覆盖第一LED单元210的第一掺杂型半导体层211,可以通过在第一掺杂型半导体层211上设置贯通第一填充结构220的通孔,在通孔中填充导电材料形成连接第一LED单元210的第一导电柱221。相应的,第一LED层200与驱动基板300键合,与第一LED单元210连接的第一导电柱221实现第一LED单元210与触点310的电连接,第一LED单元210与触点310通过间接连接实现电连接。
通过设置覆盖第一LED单元210第一填充结构220,有利于降低第一填充结构220制备难度,通过设置第一导电柱221,有利于提高第一LED层200与驱动基板300结合强度,可以避免在制作过程中第一LED层与驱动基板300分离,提高了良率。
请参阅图3e。在一些实施方式中,第二填充结构420覆盖第二LED单元410,可以在覆盖第二LED单元410的第一掺杂型半导体层的第二填充结构420中设置通孔,在通孔中填充导电材料形成连接第二LED单元410和第一导电柱221的第二导电柱421。相应的,第二LED单元410通过第一导电柱221和第二导电柱421与触点310电连接。第二LED单元410与第一导电柱221通过间接连接实现电连接。
请参阅图3b、图3d、图3e和图4。所述第二填充结构420中还设置有贯穿所述第二填充结构420的第二导电柱421,所述第二导电柱421与其正下方的所述第一导电柱221电连接。
请参阅图3f。在一些实施方式中,第二LED外延层400a设置在衬底100上。在第二LED层400与第一LED层200结合后,还可以包括去除衬底100。在第二LED单元410的第二掺杂型半导体层相连接的情况下,还可以包括减薄第二LED层400至暴露出第二导电柱421的顶端。具体参照上述减薄所述第一LED单元210的第二掺杂型半导体层213,至露出所述第一导电柱221的顶端的内容,在此不再赘述。
在一些实施方式中,可以在第二LED单元410的第二掺杂型半导体层表面形成导电层。导电层的导电材料可以是金属材料,也可以为氧化铟锡。第二LED单元210的第二掺杂型半导体层上的导电层可以用于第二LED单元210与第三导电柱521的电性连接。
请参阅图3g和图5。在一些实施方式中,所述Micro-LED显示芯片制备方法还可以包括:在所述第二LED层400上设置第三LED层500;其中,所述第三LED层500包括多个第三LED单元510和位于所述第三LED单元510之间的第三填充结构520;所述第三LED单元510通过其正下方的第一导电柱221和第二导电柱421实现与所述触点310电连接;所述第三LED单元510、所述第二LED单元410及所述第一LED单元210的发光颜色各不相同。通过设置与第一导电柱221电连接的第二导电柱421,以及与第一LED单元和第二LED单元的发光颜色均不同的第三LED单元,可以提高Micro-LED显示芯片的颜色显示范围,提高Micro-LED显示芯片应用范围。
在一些实施方式中,第三LED单元510是将包括第一掺杂型半导体层、有源层和第二掺杂型半导体层的第三外延层加工形成的。第三LED单元510包括层叠设置的第一掺杂型半导体层、有源层和第二掺杂型半导体层。具体可以参照第一LED单元210的制备,在此不再赘述。
在一些实施方式中,可以在第三LED单元510的第一掺杂型半导体层表面形成导电层。导电层的导电材料可以是金属材料,也可以为氧化铟锡。在第三LED单元510的正下方未设置第三导电柱521的情况下,第三LED单元510与第二导电柱421可以通过第三LED单元510的第一掺杂型半导体层上的导电层电性连接。
请参阅图3g和图5。在一些实施方式中,第三填充结构520覆盖第三LED单元510,可以通过在第一掺杂型半导体层上设置贯通第三填充结构520的通孔,在通孔中填充导电材料形成电连接第三LED单元510的第三导电柱521。相应的,第三LED单元510通过其正下方的第一导电柱221、第二导电柱421和第三导电柱521与触点310电连接。第三LED单元510与第二导电柱421通过间接连接实现电连接。
在一些实施方式中,可以在第三LED单元510的第一掺杂型半导体层表面形成导电层。导电层的导电材料可以是金属材料,也可以为氧化铟锡。第三LED单元510与第三导电柱521可以通过第三LED单元510的第一掺杂型半导体层上的导电层电性连接。
在一些实施方式中,第三LED单元510的发光颜色与第二LED单元410的发光颜色及第一LED单元210的发光颜色均不相同,第三LED单元510的发光颜色、第二LED单元410的发光颜色及第一LED单元210的发光颜色可以分别为红色、蓝色和绿色。通过设置多种发光颜色不同的LED单元,可以增大Micro-LED显示芯片的显示颜色范围,从而增大Micro-LED显示芯片应用范围。
请参阅图3h。在一些实施方式中,所述第三填充结构520中还设置有贯穿所述第三填充结构520的第三导电柱521;所述Micro-LED显示芯片制备方法还包括:在所述第三LED层上设置公共电极600; 其中,所述第一LED单元210通过位于其正上方的第二导电柱421和第三导电柱521与所述公共电极600电连接,所述第二LED单元410通过位于其正上方的第三导电柱521与所述公共电极600电连接,所述第三LED单元510与所述公共电极600电连接。第三LED单元510可以通过第二掺杂型半导体层与共电极600电连接。第三LED单元510、第二LED单元410和第一LED单元210可被分别独立驱动。公共电极600材料可以采用透明导材料。可以通过蒸镀工艺形成公共电极600。通过在第三LED层500背对所述驱动基板300的表面设置公共电极600,有利于提高公共电极600的平整度,提高电连接的稳定性,从而提高良率。
本说明书实施方式提供一种Micro-LED显示芯片。所述Micro-LED显示芯片可以包括:驱动基板300;所述驱动基板300包括驱动电路以及与所述驱动电路电连接的触点310;设置在所述驱动基板300上的第一LED层200;所述第一LED层200包括多个第一LED单元210、位于所述第一LED单元210之间的第一填充结构220以及贯穿所述第一填充结构220中的第一导电柱221;所述第一LED单元210和所述第一导电柱221分别与触点310电连接;设置在所述第一LED层200上的第二LED层400;其中,所述第二LED层400包括多个第二LED单元410和位于所述第二LED单元410之间的第二填充结构420,所述第二LED单元410与其正下方的所述第一导电柱221电连接所述第二LED单元410与所述第一LED单元210的发光颜色不同。
请参阅图6。在一些实施方式中,所述第一LED层200包括多个间隔的第一LED单元210,第一LED单元210包括第一掺杂型半导体层211、有源层212和第二掺杂型半导体层213,相应的,多个第一LED单元210的第一掺杂型半导体层211、有源层212和第二掺杂型半导体层213均相互间隔。第一掺杂型半导体层211、有源层212和第二掺杂型半导体层213层叠设置,且有源层212位于第一掺杂型半导体层211和第二掺杂型半导体层213之间,因此,第二掺杂型半导体层213位于第一掺杂型半导体层211背对驱动基板300的一侧。在一些实施方式中,位于第二LED单元410正下方第一导电柱221可以是第一导电柱221在第二LED单元410上的正投影位于第二LED单元410的第一掺杂型半导体层内。第二LED单元410正下方第一导电柱221与第二LED单元410的第一掺杂型半导体层连接,第二LED单元410通过第一导电柱221与触点310电连接。
在一些实施方式中,第一LED单元210与驱动基板300的触点310电连接。请参阅图6。可以是第一LED单元210与驱动基板300之间可以未设置有第一导电柱221。
请参阅图6和图2c。在一些实施方式中,第一LED层200包括位于第一LED单元210之间的第一填充结构220。第一填充结构220用于在将第一LED层200形成第一平坦化表面。第一LED单元210相间隔,第一LED单元210之间和第一LED单元210形成高度差。第一填充结构220至少位于多个第一LED单元210之间,围绕第一LED单元210的周向,减小或者消除第一LED单元210之间的高度差,提高Micro-LED显示芯片的整体平整性,从而提高Micro-LED显示芯片结构的稳定性。
请参阅图6。在一些实施方式中,第一填充结构220位于第一LED单元210周向。第一填充结构220位于第一LED单元210周向,可以是指第一填充结构220位于第一LED单元210之间,围绕第一LED单元210的侧面。
请参阅图7。在一些实施方式中,第一LED单元210嵌入第一填充结构220。相应的,第一填充结构220位于第一LED单元210周向且覆盖第一LED单元210的第一掺杂型半导体层211靠近基底300的表面。第一LED单元210嵌入第一填充结构220的结构。有利于降低第一填充结构220制备难度,从而提高制备效率。
请参阅图7。在一些实施方式中,第一LED单元210嵌入第一填充结构220的情况下,第一LED单元210正下方还设置有贯通第一填充结构220的第一导电柱221,第一导电柱221与第一LED单元210的第一掺杂型半导体层211和触点310电连接。
在一些实施方式中,第一LED单元210正下方的第一导电柱221与第一LED单元210的第一掺杂型半导体层211背对第一LED单元210的第二掺杂型半导体层213的表面接触。
请参阅图6或图7。在一些实施方式中,第一填充结构220中设置有贯穿第一填充结构220的第一导电柱221,第一导电柱221与第一LED单元210相间隔,用于与第二LED单元410电连接。
在一些实施方式中,第二LED层400设置在第一LED层200背对驱动基板300的表面,第二LED层中至少第二填充结构420与第一LED层200相接触,或者第二填充结构420和第一LED单元210的第一掺杂型半导体层211与第一LED层200相接触。
请参阅图6。在一些实施方式中,第二填充结构420位于第二LED单元410周向。第二填充结构420位于第二LED单元410周向,可以是指第二填充结构420位于第二LED单元410之间,围绕第二LED单元410的侧面。
请参阅图7。在一些实施方式中,第二LED单元410嵌入第二填充结构420。具体的,第二填充 结构420位于第二LED单元410周向且覆盖第二LED单元410靠近第一LED单元210的表面。有利于降低第二填充结构420制备难度,从而提高制备效率。
请参阅图7。在一些实施方式中,第二LED单元410嵌入第二填充结构420的情况下,第二填充结构420正下方还设置有贯通第二填充结构420的第二导电柱421,第二导电柱421与第二LED单元410的第一掺杂型半导体层和第一导电柱221电连接。
在一些实施方式中,第二填充结构420正下方的第二导电柱421与第二LED单元410的第一掺杂型半导体层靠近第一LED单元210的一侧表面接触。
在一些实施方式中,第二填充结构420中设置有贯穿第二填充结构420的第二导电柱421,第二导电柱421与第二LED单元410相间隔,用于与第一LED单元210电连接。
在一些实施方式中,第二LED单元410的发光颜色与第一LED单元210的发光颜色不同。第一LED单元210和所述第一导电柱221分别与所述触点310电连接,第二LED单元410与其正下方的所述第一导电柱221电连接。第一LED单元210和第二LED单元410可被分别独立驱动,实现Micro-LED显示芯片的多色显示,从而增大Micro-LED显示芯片应用范围。关于多个第二LED单元410可以参照多个间隔第一LED单元210,在此不再赘述。
本说明书实施方式提供的Micro-LED显示芯片,由于分别在第一LED层200和第二LED层400设置了发光颜色不同的第一LED单元210和第二LED单元410,可以在无波长转换层的情况下实现多色显示,而且,由于Micro-LED显示芯片的LED单元尺寸小的特性,波长转换层制备难度大,且存在转换效率低的缺陷,因此,通过设置发光颜色不同的第二LED单元410和第一LED单元210,有利于降低制备难度和提高发光效率,还可以提高良率;而且由于设置了第一填充结构220和第二填充结构420,有利于保护第一LED单元210和第二LED单元410的同时,提高不同膜层之间的平坦性,提高Micro-LED显示芯片结构的稳定性。
请参阅图8。在一些实施方式中,所述第二填充结构420中还设置有贯穿所述第二填充结构420的第二导电柱421;所述Micro-LED显示芯片还包括:设置在所述第二LED层400上的第三LED层500;其中,所述第三LED层500包括多个第三LED单元510和位于所述第三LED单元510之间的第三填充结构520;所述第三LED单元510通过位于其正下方的第一导电柱221和第二导电柱421实现与所述触点310电连接;所述第三LED单元510、所述第二LED单元410、及所述第一LED单元210的发光颜色均不相同。
请参阅图8。在一些实施方式中,第一导电柱221、第二导电柱421和第三导电柱521的材料可以相同。该材料可以是透明导电材料,也可以是金属等。
在一些实施方式中,所述第三LED层500包括多个间隔的第三LED单元510。第三LED单元510可以包括第一掺杂型半导体层、有源层和第二掺杂型半导体层,相应的,多个第三LED单元510的第一掺杂型半导体层、有源层和第二掺杂型半导体层均相互间隔。可以理解,第一掺杂型半导体层、有源层和第二掺杂型半导体层层叠设置,且有源层位于第一掺杂型半导体层和第二掺杂型半导体层之间,第三LED单元510的第二掺杂型半导体层位于第三LED单元510的第一掺杂型半导体层背对驱动基板300的一侧。第三LED单元510的第一掺杂型半导体层与位于其正下方的第二导电柱421和第一导电柱221电连接。实现第三LED单元510与触点310的电连接。
在一些实施方式中,第三LED层500还包括第三填充结构520。第三填充结构520用于在第三LED层500中将多个第三LED单元510形成第三平坦化表面。第三填充结构520可以位于第三LED单元510周向。第三填充结构520位于第三LED单元510周向,可以是指第三填充结构520位于第三LED单元510之间,围绕第三LED单元510的侧面。
在一些实施方式中,第三LED单元510嵌入第三填充结构520。具体的,第三填充结构520位于第一LED单元210周向且覆盖第三LED单元510的第一掺杂型半导体层靠近第二LED单元410的表面。有利于降低第三填充结构520制备难度,从而提高制备的效率。
请参阅图8。在一些实施方式中,第三LED单元510嵌入第三填充结构520的情况下,第三LED单元510正下方还设置有贯通第三填充结构520的第三导电柱521,第三导电柱521与第三LED单元510的第一掺杂型半导体电连接。第三LED单元510通过位于其正下方的第三导电柱521、第二导电柱421和第一导电柱221与触点310电连接。
在一些实施方式中,位于第三LED单元510正下方的第三导电柱521与第一掺杂型半导体层靠近第二LED单元410的表面接触。
在一些实施方式中,所述第三填充结构520中还设置有贯穿所述第三填充结构520的第三导电柱521。第三填充结构520中可以设置有位于第三LED单元510之间的第三导电柱521,可以用于第二LED单元410或者第一LED单元210与公共电极电连接。第三填充结构520中可以设置有位于第三 LED单元510正下方的第三导电柱521,可以用于第三LED单元510与触点310的电连接。
在一些实施方式中,Micro-LED显示芯片还包括设置在所述第三LED层500上的公共电极600;其中,第一LED单元210通过位于其正上方的第二导电柱421和第三导电柱521与所述公共电极600电连接,所述第二LED单元410通过位于其正上方的第三导电柱521与所述公共电极600电连接,所述第三LED单元510与所述公共电极600电连接。
在一些实施方式中,所述第一LED单元210的发光颜色、所述第二LED单元410的发光颜色和所述第三LED单元510的发光颜色可以分别选自红色、绿色和蓝色中一者。第一LED单元210的发光颜色、所述第二LED单元410的发光颜色和所述第三LED单元510的发光颜色互不相同。有利于实现全彩显示。在一些实施方式中,第一LED单元210的发光颜色、所述第二LED单元410的发光颜色和所述第三LED单元510的发光颜色也可以选自紫色、黄色等任意颜色,从而提高Micro-LED显示芯片应用范围。
在一些实施方式中,所述Micro-LED显示芯片划分为多个阵列排布的像素单元,所述像素单元包括至少一个所述第一LED单元210、至少一个所述第二LED单元410、至少一个所述第三LED单元510;其中,所述像素单元中所述第一LED单元210的数量、所述第二LED单元410的数量和所述第三LED单元510的数量不完全相同。请参阅图9。图9中虚线框中示意出一个像素单元,该像素单元包括两个第一LED单元210、一个第二LED单元410以及一个第三LED单元510。
在一些实施方式中,第一LED单元210的发光颜色、第二LED单元410的发光颜色和第三LED单元510的发光颜色分别为红色、绿色和蓝色,在一个像素单元中,第二LED单元410的数量可以大于第一LED单元210的数量,第二LED单元410的数量可以大于第三LED单元510的数量,可以通过第一LED单元、第二LED单元和第三LED单元的数量组成一个像素,提供多种形成一个像素的方法。
本说明书实施方式提供一种显示面板,所述显示面板包括上述任一所述的Micro-LED显示芯片。
在本实施方式中,显示面板包括上述任一所述的Micro-LED显示芯片,由于Micro-LED显示芯片的显示颜色范围变大,从而增大显示面板的显示颜色范围,增大显示面板的应用范围。
本说明书实施方式提供一种显示装置,所述显示装置包括上述任一所述的Micro-LED显示芯片。
在本实施方式中,显示装置包括上述任一所述的Micro-LED显示芯片,由于Micro-LED显示芯片的显示颜色范围变大,增大了显示装置的显示颜色范围,从而增大显示装置的应用范围。
本说明书中的多个实施方式本身均着重于强调与其他实施方式不同的部分,各实施方式之间可以相互对照解释。所属领域技术人员基于一般的技术常识对本说明书中的多个实施方式的任意组合均涵盖于本说明书的揭示范围内。
以上实施方式的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施方式中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述仅为本说明书中的部分实施方式而已,并不用以限制本说明书,凡在本说明书的精神和原则之内,所作的任何修改、等同替换等,均应包含在本说明书的公开范围之内。

Claims (14)

  1. 一种Micro-LED显示芯片制备方法,其特征在于,包括:
    提供驱动基板,所述驱动基板包括驱动电路以及与所述驱动电路电连接的触点;
    提供第一LED层,所述第一LED层包括多个第一LED单元、位于所述第一LED单元之间的第一填充结构以及贯穿所述第一填充结构的第一导电柱;
    将所述第一LED层与所述驱动基板键合;其中,所述第一LED单元和所述第一导电柱分别与所述触点电连接;
    在所述第一LED层上设置第二LED层;其中,所述第二LED层包括多个第二LED单元和位于所述第二LED单元之间的第二填充结构;所述第二LED单元与其正下方的所述第一导电柱电连接,所述第二LED单元与所述第一LED单元的发光颜色不同。
  2. 根据权利要求1所述的Micro-LED显示芯片制备方法,其特征在于,在提供第一LED层的步骤中,包括:
    提供第一LED外延层;
    刻蚀所述第一LED外延层形成多个所述第一LED单元,每一所述第一LED单元包括第一掺杂型半导体层、有源层和第二掺杂型半导体层,相邻所述第一LED单元的所述第二掺杂型半导体层相互连接;
    在所述第一LED单元之间设置所述第一填充结构;
    设置贯穿所述第一填充结构的所述第一导电柱。
  3. 根据权利要求2所述的Micro-LED显示芯片制备方法,其特征在于,在所述第一LED层上设置第二LED层的步骤之前,还包括:
    减薄所述第一LED单元的所述第二掺杂型半导体层,至露出所述第一导电柱的顶端;其中,减薄后的多个所述第一LED单元相互间隔。
  4. 根据权利要求1所述的Micro-LED显示芯片制备方法,其特征在于,在提供第一LED层的步骤中,包括:
    提供第一LED外延层;
    刻蚀所述第一LED外延层形成多个相互间隔的第一LED单元,每一所述第一LED单元包括第一掺杂型半导体层、有源层和第二掺杂型半导体层;
    在所述第一LED单元之间设置所述第一填充结构;
    设置贯穿所述第一填充结构的所述第一导电柱。
  5. 根据权利要求1所述的Micro-LED显示芯片制备方法,其特征在于,所述第一LED层中,所述第一填充结构覆盖所述第一LED单元;
    相应的,设置贯穿所述第一填充结构的第一导电柱的步骤中,包括:
    在所述第一LED单元上设置第一导电柱,所述第一LED单元通过对应的所述第一导电柱与所述触点电连接。
  6. 根据权利要求1所述的Micro-LED显示芯片制备方法,其特征在于,在所述第一LED层上设置第二LED层的步骤中,包括:
    提供第二LED层,所述第二LED层包括多个第二LED单元以及位于所述第二LED单元之间的第二填充结构;
    将所述第二LED层与所述第一LED层结合;其中,所述第二LED单元通过与其正下方的所述第一导电柱电连接实现与所述触点电连接。
  7. 根据权利要求1所述的Micro-LED显示芯片制备方法,其特征在于,所述第二填充结构中还设置有贯穿所述第二填充结构的第二导电柱,所述第二导电柱与其正下方的所述第一导电柱电连接;所述Micro-LED显示芯片制备方法还包括:
    在所述第二LED层上设置第三LED层;其中,所述第三LED层包括多个第三LED单元和位于所述第三LED单元之间的第三填充结构;所述第三LED单元通过其正下方的所述第一导电柱和所述第二导电柱实现与所述触点电连接;所述第三LED单元、所述第二LED单元及所述第一LED单元的发光颜色各不相同。
  8. 根据权利要求7所述的Micro-LED显示芯片制备方法,其特征在于,所述第三填充结构中还设置有贯穿所述第三填充结构的第三导电柱;所述Micro-LED显示芯片制备方法还包括:
    在所述第三LED层上设置公共电极;其中,所述第一LED单元通过位于其正上方的第二导电柱和第三导电柱与所述公共电极电连接,所述第二LED单元通过位于其正上方的第三导电柱与所述公共 电极电连接,所述第三LED单元与所述公共电极电连接。
  9. 一种Micro-LED显示芯片,其特征在于,包括:
    驱动基板;所述驱动基板包括驱动电路以及与所述驱动电路电连接的触点;
    设置在所述驱动基板上的第一LED层;所述第一LED层包括多个第一LED单元、位于所述第一LED单元之间的第一填充结构以及贯穿所述第一填充结构的第一导电柱,所述第一LED单元和所述第一导电柱分别与所述触点电连接;
    设置在所述第一LED层上的第二LED层;其中,所述第二LED层包括多个第二LED单元和位于所述第二LED单元之间的第二填充结构,所述第二LED单元与其正下方的所述第一导电柱电连接,所述第二LED单元与所述第一LED单元的发光颜色不同。
  10. 根据权利要求9所述的Micro-LED显示芯片,其特征在于,所述第二填充结构中还设置有贯穿所述第二填充结构的第二导电柱;
    所述Micro-LED显示芯片还包括:设置在所述第二LED层上第三LED层;其中,所述第三LED层包括多个第三LED单元和位于所述第三LED单元之间的第三填充结构;所述第三LED单元通过位于其正下方的所述第一导电柱和所述第二导电柱实现与所述触点电连接,所述第三LED单元、所述第二LED单元及所述第一LED单元的发光颜色各不相同。
  11. 根据权利要求10所述的Micro-LED显示芯片,其特征在于,所述第三填充结构中还设置有贯穿所述第三填充结构的第三导电柱,所述Micro-LED显示芯片还包括:设置在所述第三LED层上的公共电极;其中,所述第一LED单元通过位于其正上方的第二导电柱和第三导电柱与所述公共电极电连接,所述第二LED单元通过位于其正上方的第三导电柱与所述公共电极电连接,所述第三LED单元与所述公共电极电连接。
  12. 根据权利要求10所述的Micro-LED显示芯片,其特征在于,所述Micro-LED显示芯片划分为多个阵列排布的像素单元,所述像素单元包括至少一个所述第一LED单元、至少一个所述第二LED单元、至少一个所述第三LED单元;其中,所述像素单元中所述第一LED单元的数量、所述第二LED单元的数量和所述第三LED单元的数量不完全相同。
  13. 根据权利要求10所述的Micro-LED显示芯片,其特征在于,所述第一LED单元的发光颜色、所述第二LED单元的发光颜色和所述第三LED单元的发光颜色分别选自红色、绿色和蓝色中一者。
  14. 根据权利要求10所述的Micro-LED显示芯片,其特征在于,所述第一LED单元嵌入所述第一填充结构;所述第一LED单元通过位于其正下方的所述第一导电柱与所述触点电连接;和/或,所述第二LED单元嵌入所述第二填充结构;所述第二LED单元通过位于其正下方的所述第二导电柱和所述第一导电柱实现与所述触点电连接。
PCT/CN2023/098893 2022-06-15 2023-06-07 一种Micro-LED显示芯片及其制备方法 WO2023241434A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210675860.XA CN114759130B (zh) 2022-06-15 2022-06-15 一种Micro-LED显示芯片及其制备方法
CN202210675860.X 2022-06-15

Publications (1)

Publication Number Publication Date
WO2023241434A1 true WO2023241434A1 (zh) 2023-12-21

Family

ID=82337112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098893 WO2023241434A1 (zh) 2022-06-15 2023-06-07 一种Micro-LED显示芯片及其制备方法

Country Status (2)

Country Link
CN (1) CN114759130B (zh)
WO (1) WO2023241434A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114759130B (zh) * 2022-06-15 2022-09-02 镭昱光电科技(苏州)有限公司 一种Micro-LED显示芯片及其制备方法
CN117352625B (zh) * 2023-12-04 2024-02-20 镭昱光电科技(苏州)有限公司 MicroLED微显示芯片及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160163940A1 (en) * 2014-12-05 2016-06-09 Industrial Technology Research Institute Package structure for light emitting device
CN110462850A (zh) * 2017-03-20 2019-11-15 香港北大青鸟显示有限公司 通过堆叠微型led的层来制造半导体器件
CN110783366A (zh) * 2019-12-05 2020-02-11 苏州市奥视微科技有限公司 一种全彩显示芯片及半导体芯片的制造工艺
CN111403372A (zh) * 2020-03-31 2020-07-10 湖北长江新型显示产业创新中心有限公司 Micro LED显示面板及其制备方法、显示装置
CN114334923A (zh) * 2021-12-23 2022-04-12 厦门士兰明镓化合物半导体有限公司 显示屏、Micro-LED显示基板及其制备方法
CN114759130A (zh) * 2022-06-15 2022-07-15 镭昱光电科技(苏州)有限公司 一种Micro-LED显示芯片及其制备方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232004A (zh) * 2007-01-23 2008-07-30 联华电子股份有限公司 芯片堆叠封装结构
CN102468284B (zh) * 2010-11-10 2014-04-16 中国科学院微电子研究所 堆叠的半导体器件及其制造方法
TWI434405B (zh) * 2011-06-07 2014-04-11 Univ Nat Chiao Tung 具有積體電路與發光二極體之異質整合結構及其製作方法
CN103296014A (zh) * 2012-02-28 2013-09-11 刘胜 扇出晶圆级半导体芯片三维堆叠封装结构及工艺
CN105304612B (zh) * 2014-07-04 2018-02-13 旺宏电子股份有限公司 三维叠层多芯片结构及其制造方法
TWI652788B (zh) * 2017-11-09 2019-03-01 大陸商上海兆芯集成電路有限公司 晶片封裝結構及晶片封裝結構陣列
CN108899332A (zh) * 2018-07-17 2018-11-27 南方科技大学 一种Micro-LED显示面板及其制造方法
TWI682436B (zh) * 2018-12-20 2020-01-11 茂丞科技股份有限公司 微型發光二極體巨量轉移的方法及該方法所製作的發光面板組件
CN110233200B (zh) * 2019-05-13 2024-03-05 厦门云天半导体科技有限公司 一种Micro LED的三维集成结构和制作方法
CN112670191A (zh) * 2019-10-16 2021-04-16 长鑫存储技术有限公司 半导体封装方法、半导体封装结构及封装体
CN111224013B (zh) * 2019-11-28 2022-08-09 京东方科技集团股份有限公司 显示面板封装结构及其制备方法
CN210516726U (zh) * 2019-12-05 2020-05-12 苏州市奥视微科技有限公司 一种全彩显示芯片
CN111128977A (zh) * 2019-12-25 2020-05-08 华进半导体封装先导技术研发中心有限公司 一种多层芯片的封装结构和封装方法
CN111261658B (zh) * 2020-02-10 2023-02-28 Tcl华星光电技术有限公司 微型发光二极管显示面板及微型发光二极管的转印方法
CN112992964B (zh) * 2020-04-09 2023-07-07 镭昱光电科技(苏州)有限公司 发光二极管结构及其制造方法
CN112864290B (zh) * 2020-04-09 2022-04-22 镭昱光电科技(苏州)有限公司 微型led显示器及其制造方法
CN111554618A (zh) * 2020-04-30 2020-08-18 通富微电子股份有限公司 一种芯片封装方法
CN111554658A (zh) * 2020-04-30 2020-08-18 通富微电子股份有限公司 一种半导体封装器件
CN115836341A (zh) * 2020-06-03 2023-03-21 上海显耀显示科技有限公司 用于具有竖向发光的多色led像素单元的系统和方法
CN111863791A (zh) * 2020-07-28 2020-10-30 南通通富微电子有限公司 一种半导体封装体和芯片封装体
CN112117356B (zh) * 2020-08-13 2021-09-17 厦门大学 一种全彩有源寻址Micro-LED芯片结构及其制作方法
CN114334854A (zh) * 2020-09-30 2022-04-12 华为技术有限公司 芯片及其制造方法、电子设备
CN113488576A (zh) * 2021-04-13 2021-10-08 镭昱光电科技(苏州)有限公司 发光二极管结构及其制造方法
CN112992696A (zh) * 2021-05-06 2021-06-18 通富微电子股份有限公司 堆叠芯片的封装方法和封装结构
CN114171394A (zh) * 2021-06-18 2022-03-11 格芯致显(杭州)科技有限公司 半导体装置的制备方法和半导体装置
CN113594142A (zh) * 2021-07-20 2021-11-02 日月光半导体制造股份有限公司 半导体封装结构及其制造方法
CN113990998A (zh) * 2021-11-01 2022-01-28 镭昱光电科技(苏州)有限公司 波长转换矩阵及其制作方法
CN114171540A (zh) * 2021-12-08 2022-03-11 镭昱光电科技(苏州)有限公司 微显示led芯片结构及其制作方法
CN114497333A (zh) * 2021-12-21 2022-05-13 镭昱光电科技(苏州)有限公司 Micro-LED微显示芯片及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160163940A1 (en) * 2014-12-05 2016-06-09 Industrial Technology Research Institute Package structure for light emitting device
CN110462850A (zh) * 2017-03-20 2019-11-15 香港北大青鸟显示有限公司 通过堆叠微型led的层来制造半导体器件
CN110783366A (zh) * 2019-12-05 2020-02-11 苏州市奥视微科技有限公司 一种全彩显示芯片及半导体芯片的制造工艺
CN111403372A (zh) * 2020-03-31 2020-07-10 湖北长江新型显示产业创新中心有限公司 Micro LED显示面板及其制备方法、显示装置
CN114334923A (zh) * 2021-12-23 2022-04-12 厦门士兰明镓化合物半导体有限公司 显示屏、Micro-LED显示基板及其制备方法
CN114759130A (zh) * 2022-06-15 2022-07-15 镭昱光电科技(苏州)有限公司 一种Micro-LED显示芯片及其制备方法

Also Published As

Publication number Publication date
CN114759130B (zh) 2022-09-02
CN114759130A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
US10586829B2 (en) Full-color monolithic micro-LED pixels
US11031525B2 (en) Micro light emitting diode chip and display panel having a backplane and a plurality of sub-pixels regions
US8058663B2 (en) Micro-emitter array based full-color micro-display
WO2023241434A1 (zh) 一种Micro-LED显示芯片及其制备方法
CN109390437B (zh) 微型发光二极管装置及其制作方法
CN111108613A (zh) Led单元、图像显示元件及其制造方法
CN213845301U (zh) 显示用发光元件以及具有该显示用发光元件的单元像素
CN114334923A (zh) 显示屏、Micro-LED显示基板及其制备方法
JP7460650B2 (ja) ディスプレイ用発光素子及びそれを有するディスプレイ装置
WO2023071910A1 (zh) Micro-LED芯片结构及其制作方法
KR20180060704A (ko) 수직 적층형 마이크로 디스플레이
KR20210113983A (ko) 디스플레이용 발광 소자 및 그것을 가지는 디스플레이 장치
CN112968080B (zh) 一种红光led芯片及制备方法
CN215118931U (zh) 显示器用发光元件以及具有该发光元件的显示装置
CN109390368B (zh) 微显示器件及其制备方法、显示面板
CN212412081U (zh) 显示用发光元件以及具有其的显示装置
JP2023519989A (ja) モノリシック電子デバイス
JP2023515983A (ja) 多重波長発光素子およびそれを製造する方法
WO2021109094A1 (zh) 一种全彩显示芯片及半导体芯片的制造工艺
EP4060753A1 (en) Light-emitting device for display and display apparatus comprising same
CN211088274U (zh) 显示装置
US11437353B2 (en) Light emitting device for display and display apparatus having the same
TWI830171B (zh) 微型發光二極體
WO2022067530A1 (zh) 发光二极管芯片、显示基板及其制作方法
CN211088273U (zh) 显示器用发光元件以及具有该发光元件的显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823002

Country of ref document: EP

Kind code of ref document: A1