WO2023236317A1 - 杂质吸附剂、制备方法及利用该吸附剂提纯三甲基铝的方法 - Google Patents

杂质吸附剂、制备方法及利用该吸附剂提纯三甲基铝的方法 Download PDF

Info

Publication number
WO2023236317A1
WO2023236317A1 PCT/CN2022/106247 CN2022106247W WO2023236317A1 WO 2023236317 A1 WO2023236317 A1 WO 2023236317A1 CN 2022106247 W CN2022106247 W CN 2022106247W WO 2023236317 A1 WO2023236317 A1 WO 2023236317A1
Authority
WO
WIPO (PCT)
Prior art keywords
trimethylaluminum
silica gel
impurity
impurity adsorbent
gel powder
Prior art date
Application number
PCT/CN2022/106247
Other languages
English (en)
French (fr)
Inventor
赵毅
刘颖
裴凯
毕聪智
Original Assignee
大连科利德光电子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连科利德光电子材料有限公司 filed Critical 大连科利德光电子材料有限公司
Publication of WO2023236317A1 publication Critical patent/WO2023236317A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/061Aluminium compounds with C-aluminium linkage
    • C07F5/062Al linked exclusively to C
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of purification of electronic industry raw materials, and in particular to an impurity adsorbent, a preparation method and a method for purifying trimethylaluminum using the adsorbent.
  • Electronic grade trimethylaluminum is an aluminum source for compound semiconductor deposition. It is widely used in the production of compound semiconductor thin film materials. It can also be used to produce laser diodes, transistors, light-emitting diodes, high-efficiency solar cells and other electronic products, as well as for Silicon semiconductor industry chemical vapor deposition process. As the precision of semiconductor manufacturing processes improves, the requirements for the purity of raw materials in the semiconductor industry are getting higher and higher.
  • metal ions have the greatest impact on doping sources. Trace levels of metal ions can have a significant impact on the final semiconductor components, easily causing damage to circuit functions within the chip, forming short circuits or open circuits, leading to the failure of integrated circuits and affecting the formation of geometric features.
  • the application number is CN201810125186.1, a method for refining trimethylaluminum.
  • the present invention provides an impurity adsorbent, a preparation method and a method of purifying trimethylaluminum using the adsorbent to overcome the above defects.
  • the present invention provides an impurity adsorbent
  • the outer part of the main body of the silica gel powder is covered with a polydopamine layer;
  • the outer part of the polydopamine layer is grafted with polymer segments
  • the matrix material of the impurity adsorbent in the present invention is silica gel powder, and its main component is silica. It has a rich microporous structure and therefore has the characteristics of high specific surface area. At the same time, because it also has the advantage of high purity, no new impurities will be introduced into trimethylaluminum during the purification process of trimethylaluminum. During the filtration process, it can achieve the purpose of separation and purification through the difference in adsorption retention time of different components in the mixed substance.
  • the above adsorption process is mainly based on the porous nature of silica gel powder. However, as the adsorption process continues, some impurities will still be able to gradually transfer along the microporous structure in the silica gel into the purified product, resulting in the final The quality of the product will decrease as the service life of the silicone is extended.
  • the present invention is based on silica gel powder and coats the surface of the silica gel powder with a polydopamine layer, which contains rich amino groups and can complex with metal ions, thus playing a good role in fixing metal ion impurities. . Prevent metal ion impurities from being transferred into the purified product along with the microporous structure in the silica gel.
  • the polydopamine layer contains a large number of hydroxyl groups
  • the active hydrogen in these hydroxyl groups can react with trimethylaluminum to form methane and aluminum hydroxide, resulting in the loss of trimethylaluminum and reducing the yield of trimethylaluminum.
  • the free amino groups in such amino compounds also contain active hydrogen, they will also react with trimethylaluminum. , resulting in a further reduction in the yield of trimethyl.
  • the present invention also grafts polymer segments to the outside of the polydopamine layer. These polymer segments can be grafted with the hydroxyl groups of the polydopamine layer, thereby reacting and removing the hydroxyl groups of the polydopamine layer, effectively preventing three The reaction between methylaluminum and hydroxyl groups.
  • the nitrogen atoms in polydopamine are not amino groups that exist in free form, so the nitrogen-containing groups in the polydopamine layer will not react with trimethylaluminum.
  • the polymer chain segments can form a cross-linked interpenetrating network. Therefore, after the metal ions are complexed by polydopamine, this part of the cross-linked interpenetrating network can also prevent the metal ions from detaching from the surface of the silica gel powder after dissociation, thereby effectively Enhanced adsorption effect on metal ions.
  • heterocyclic groups containing nitrogen atoms in the polymer chain segments of the present invention and the nitrogen atoms in them can form coordination complexes with metal ions just like the nitrogen atoms in dopamine. Combined, it is possible to confine metal ions between the dopamine layer and the nitrogen atom heterocyclic groups in the polymer chain segments. Since the nitrogen atoms in the polymer are located in the heterocyclic group, they will not react with trimethylaluminum, thus ensuring the normal progress of the adsorption process.
  • the impurity adsorbent in the present invention also has a good regeneration effect.
  • the impurity adsorbent is usually complexed with more metal ions, and these metal ions only require a simple dissociation step. from the impurity adsorbent.
  • the metal ion impurities can be removed by heating or immersing in an acidic solution, thereby extending the service life of the impurity adsorbent and reducing the purification cost of trimethylaluminum during the purification process.
  • the present invention effectively improves the adsorption effect of metal ion impurities in trimethylaluminum through a combination of physical adsorption and chemical coordination adsorption. At the same time, during the adsorption process, the activity of metal ion impurities is effectively reduced, thereby greatly extending the service life of the adsorbent and reducing the purification cost of trimethylaluminum.
  • the polymer segment contains any one or a combination of polyethylene glycol structure and polysiloxane structure.
  • the inventor of the present application unexpectedly found that when the polymer chain segment in the present invention contains a polyethylene glycol structure or a polysiloxane structure, its adsorption effect on metal ions can be improved to a certain extent.
  • the inventor has also conducted some research on this. After research, it was found that the chain segments of both the polyethylene glycol structure and the polysiloxane structure have good flexibility, and both have oxygen atoms arranged at intervals. These oxygen atoms Atoms can also form coordination interactions with a variety of metal ions. When metal ions encounter these polymer chain segments, these polymer chain segments can be folded through rotation, allowing multiple groups of oxygen atoms to coordinate with metal ions. , thereby improving the adsorption effect of metal ions.
  • the polymer graft segment has a branched or hyperbranched structure.
  • the polymer in the present invention may have a branched or hyperbranched structure. These branched structures can increase the entanglement between molecular chains, thereby effectively improving the binding of metal ions.
  • the heterocyclic group is located at the end group of the polymer graft segment.
  • the heterocyclic group is any one or a combination of more of pyridyl, pyrrolyl, pyrazolyl, piperidinyl, imidazolyl, and pyrimidinyl.
  • the present invention also provides a method for preparing the above-mentioned impurity adsorbent,
  • the preparation method of the impurity adsorbent in the present invention is relatively simple. It only needs to use commercially available silica gel powder as raw material, and the synthesis of the impurity adsorbent can be achieved through a two-step method of coating and grafting.
  • the step (1) is as follows: immerse the silica gel powder in a solution containing dopamine hydrochloride, filter it, and dry it in an air atmosphere to obtain a surface-coated polydopamine layer silica gel powder.
  • step (2) there are many methods for grafting polymer segments onto the surface of the above-mentioned silica gel powder in step (2).
  • the basic principle is to react the active groups in the polymer segments with the hydroxyl groups in polydopamine, The polymer segments are thereby grafted onto the polydopamine layer.
  • a polymer containing a Si-Cl bond can be grafted with a hydroxyl group, or a Si-H bond can be used to react with a hydroxyl group, or Si-OR can be used to react with a hydroxyl group.
  • the overall reactions are many and will not be discussed here. Make a list one by one.
  • the method for purifying trimethylaluminum includes the following steps:
  • the purification method of trimethylaluminum in the present invention is relatively simple. It only requires simple distillation of trimethylaluminum to remove metal ion impurities in trimethylaluminum. At the same time, batch distillation or continuous distillation can be used for purification, which can effectively improve the purification efficiency of trimethylaluminum.
  • the reflux temperature in step (S.3) is 120 ⁇ 135°C, and the reflux time is 3 ⁇ 12 hours.
  • the fraction collection temperature in step (S.4) is 126 ⁇ 128°C;
  • the present invention has the following beneficial effects:
  • the present invention effectively improves the adsorption effect of metal ion impurities in trimethylaluminum through a combination of physical adsorption and chemical coordination adsorption, and can reduce ppm-level metal ions in trimethylaluminum to ppb level. .
  • the purification method of trimethylaluminum in the present invention is relatively simple. It only requires simple distillation of trimethylaluminum to remove metal ion impurities in trimethylaluminum. At the same time, batch distillation or continuous distillation can be used for purification, which can effectively improve the purification efficiency of trimethylaluminum.
  • the impurity adsorbent in the present invention is simple to recycle, greatly extending the service life of the adsorbent and reducing the purification cost of trimethylaluminum.
  • Figure 1 is an electron microscope image of the impurity adsorbent prepared in Example 1 of the present invention.
  • a method for preparing an impurity adsorbent including the following steps:
  • Step (1) and step (2) in Embodiment 2 are as shown in Embodiment 1.
  • Example 1 The difference from Example 1 is that the hydroxyethylpyridine in step (3) is replaced by N-hydroxyethylpyrrolidine.
  • Step (1) and step (2) in Embodiment 3 are as shown in Embodiment 1.
  • Example 1 The difference from Example 1 is that the hydroxyethylpyridine in step (3) is replaced by 1-(2-hydroxyethyl)imidazole.
  • a method for preparing an impurity adsorbent including the following steps:
  • Step (1) is as shown in Example 1.
  • a method for preparing an impurity adsorbent including the following steps:
  • Step (1) is shown in Example 1.
  • Comparative Example 1 The difference between Comparative Example 1 and Example 1 is that steps (2) and (3) are omitted, and only silica gel powder coated with a polydopamine layer is obtained.
  • step (3) is omitted, and only silica gel powder grafted with dimethylsilane-terminated polyethylene glycol is obtained.
  • step (1) is omitted and the silica gel powder is not coated with polydopamine.
  • the steps are as follows: Disperse 10g of coated silica gel powder in toluene, then add 10mg of tris(pentafluorobenzene)borane to it, stir evenly, and drop excess dimethylsilane-terminated polyethylene glycol into it. , until no bubbles are generated, filter, and rinse the filter residue with toluene to obtain silica gel powder grafted with dimethylsilane-terminated polyethylene glycol.
  • Aminopropyltriethoxysilane-grafted silica gel powder was prepared according to the method in Example 1 of the patent with application number CN201510193873.3, and was used as an impurity adsorbent.
  • the method for purifying trimethylaluminum includes the following steps:
  • Table 1 Table of impurity metal ion content of trimethylaluminum before and after purification.
  • Comparing Example 1 with Comparative Example 3 it was found that if the silica gel powder was not coated with polydopamine, but dimethylsilane-terminated polyethylene glycol was directly grafted on the silica gel powder, and then passed through hydroxyethylpyridine Although the end-capping effect on the adsorption of impurity metal ions is significantly improved compared to Comparative Example 1, it does not meet the requirements of 6N grade (purity 99.999%) trimethylaluminum.
  • Comparing Example 1 with Comparative Example 4 although the impurity adsorbent in Comparative Example 4 has obvious effects on the adsorption of metal ions, it also cannot achieve the same effect as in Examples 1 to 5 of the present invention, indicating that the The impurity adsorbent in Ratio 4 is difficult to achieve the effect of the technical solution of the present invention under short-time (1 hour) adsorption.
  • the method for purifying trimethylaluminum includes the following steps:
  • Table 2 Table of impurity metal ion contents in trimethylaluminum collected at different time periods.
  • the impurity adsorbent that has been adsorbed for 48 hours in the above application example 2 is subjected to a regeneration test.
  • the regeneration process is as follows:
  • adsorbent Immerse the used impurity adsorbent in an aqueous solution containing 1.5% trifluoroacetic acid, adjust the water temperature to 80°C, stir and desorb for 12 hours, then filter. Dip the impurity adsorbent into ultrapure water at 95°C for 3 hours, and filter the impurities. The adsorbent is vacuum dried at 100°C to obtain a regenerated impurity adsorbent.
  • the obtained regenerated impurity adsorbent was tested according to the method in [Application Example 1 - Adsorption Performance Test], and the adsorption effect of the impurity adsorbent on metal ions after repeated 1, 5, 10 and 20 times was compared.
  • the data is shown in Table 3 below.
  • Table 3 Table of impurity metal ion content in trimethylaluminum collected using impurity adsorbents with different regeneration times.
  • the impurity adsorbent in the present invention still has good impurity metal adsorption effect after multiple regeneration steps, thereby effectively extending the service life of the impurity adsorbent and reducing the use of trimethylaluminum in Purification costs during the purification process.
  • the present invention effectively improves the adsorption effect of metal ion impurities in trimethylaluminum through a combination of physical adsorption and chemical coordination adsorption, and can remove ppm-level metal ions in trimethylaluminum. down to ppb level.
  • the purification method of trimethylaluminum in the present invention is relatively simple. It only requires simple distillation of trimethylaluminum to remove metal ion impurities in trimethylaluminum.
  • batch distillation or continuous distillation can be used for purification, which can effectively improve the purification efficiency of trimethylaluminum.
  • the recycling and utilization of the impurity adsorbent in the present invention is simple, greatly extending the service life of the adsorbent and reducing the purification cost of trimethylaluminum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及电子工业原料的提纯领域,尤其涉及杂质吸附剂、制备方法及利用该吸附剂提纯三甲基铝的方法,所述杂质吸附剂,包括硅胶粉主体;所述硅胶粉主体的外部包覆有聚多巴胺层;所述聚多巴胺层的外部接枝连接有聚合物链段;所述聚合物链段中存在含有氮原子杂环基团。本发明通过物理吸附以及化学配位吸附联用的手段,有效提升了对于三甲基铝中金属离子杂质的吸附效果,能够将三甲基铝中ppm级别的金属离子降低至ppb级别。同时,本发明中三甲基铝的提纯方法较为简单,其仅仅只需要将三甲基铝经过简单的精馏,即可将三甲基铝中的金属离子杂质除去。

Description

杂质吸附剂、制备方法及利用该吸附剂提纯三甲基铝的方法 技术领域
本发明涉及电子工业原料的提纯领域,尤其涉及杂质吸附剂、制备方法及利用该吸附剂提纯三甲基铝的方法。
背景技术
电子级三甲基铝是化合物半导体沉积的铝源,广泛的应用于化合物半导体薄膜材料生产中,也可以用来生产激光二极管、晶体管、发光二极管和高效率太阳能电池等电子产品中,以及用于硅半导体产业化学气相沉积过程中。随着半导体制程精度的提升,半导体工业中对于原料的纯度要求越来越高。
电子级三甲基铝中常见的杂质包括颗粒污染物、金属离子以及化学物质。其中金属离子对于掺杂源而言影响最大。痕量级别的金属离子即可对最终的半导体元件产生重大的影响,很容易造成晶片内电路功能的损坏,形成短路或断路等,导致集成电路的失效以及影响几何特征的形成。
现有技术中,对于三甲基铝的提纯可以参考以下专利
申请号为CN201510193873.3的一种高纯三甲基铝的制备方法;
申请号为CN201810125186.1的一种三甲基铝精制的方法。
技术问题
上述专利文献中,通常采用对吸附剂进行表面改性,从而提升对于三甲基铝中杂质的吸附效果。但是上述两篇专利中所使用的吸附剂的吸附原理较为单一,导致其对于杂质的吸附效果较差,导致需要长时间的吸附才能将三甲基铝中的杂质吸附,不利于电子级高纯三甲基铝的生产。
技术解决方案
本发明是为了克服现有技术中对于三甲基铝的提纯方法效率较低的缺陷,提供了一种杂质吸附剂、制备方法及利用该吸附剂提纯三甲基铝的方法以克服上述缺陷。
为实现上述发明目的,本发明通过以下技术方案实现:
本发明第一方面,提供了一种杂质吸附剂,
包括硅胶粉主体;
所述硅胶粉主体的外部包覆有聚多巴胺层;
所述聚多巴胺层的外部接枝连接有聚合物链段;
所述聚合物链段中存在含有氮原子杂环基团。
本发明中的杂质吸附剂其基质材料为硅胶粉,其主要成分为二氧化硅,其具有丰富微孔结构,因而具有高比表面积的特点。同时由于其还具有高纯度的优点,因此在用于三甲基铝提纯的过程中,不会向三甲基铝中引入新的杂质。在过滤过程中其能够通过对混合物质中的不同成分吸附保留时间的差异,从而达到分离提纯的目的。
上述吸附过程中主要以硅胶粉的多孔性质为基础,但是随着吸附过程的继续,会导致一部分的杂质依然能够沿着硅胶中的微孔结构逐渐转移进入到纯化后的产品中,从而使得最终的产品的品质会随着硅胶使用寿命的延长而降低。
因此,本发明在硅胶粉基础上,在硅胶粉的表面包覆聚多巴胺层,其上含有丰富的氨基,其能够与金属离子之间发生络合,从而对金属离子杂质起到良好的固定作用。防止金属离子杂质随着硅胶中的微孔结构转移至纯化后的产品中。
但是,由于聚多巴胺层中含有大量的羟基,这些羟基中的活泼氢能够与三甲基铝反应,从而形成甲烷以及氢氧化铝,导致三甲基铝出现损失,降低三甲基铝的收率。同时,现有技术方案中也存在一些采用含有氨基的化合物作为金属离子的络合剂,但是这类氨基化合物中由于游离的氨基中也同时含有活泼氢,其也会与三甲基铝发生反应,导致三甲基的收率也会进一步降低。
因此,本发明还在聚多巴胺层的外部接枝连接有聚合物链段,这些聚合物链段能够与聚多巴胺层的羟基进行接枝,从而将聚多巴胺层的羟基反应除去,有效防止了三甲基铝与羟基之间的反应,同时聚多巴胺中的氮原子并不是以游离的形式存在的氨基,因此聚多巴胺层中的含氮基团也不会与三甲基铝反应。
此外,聚合物链段之间能够形成交联互穿网络,因此金属离子在被聚多巴胺络合之后,这部分交联互穿网络还能够防止金属离子解离之后从硅胶粉表面脱离,从而有效增强了对于金属离子的吸附效果。
为了进一步提升杂质吸附剂对于金属离子的吸附效果,本发明中的聚合物链段中存在含有氮原子杂环基团,其中的氮原子与多巴胺中的氮原子一样能够与金属离子发生配位络合,从而能够将金属离子限制在多巴胺层以及聚合物链段中的氮原子杂环基团之间。由于聚合物中的氮原子位于杂环基团中,因此不会与三甲基铝反应,从而保证了吸附过程的正常进行。
与此同时,本发明中的杂质吸附剂还具有良好的再生效果,在经过吸附后,杂质吸附剂中通常络合有较多的金属离子,这些金属离子仅仅只需要简单的解离步骤即可从杂质吸附剂中脱离。例如可以通过加热或者在酸性溶液下浸渍处理,即可除去其中的金属离子杂质,从而延长了杂质吸附剂的使用寿命,降低了三甲基铝在提纯过程中的提纯成本。
因此,综上所述,本发明通过物理吸附以及化学配位吸附联用的手段,有效提升了对于三甲基铝中金属离子杂质的吸附效果。同时在吸附过程中,有效降低了对于金属离子杂质活动性,从而大幅延长了吸附剂的使用寿命,降低了三甲基铝的提纯成本。
作为优选,所述聚合物链段中包含有聚乙二醇结构、聚硅氧烷结构中的任意一种或两种的组合。
经过本申请发明人的试验意外发现,当本发明中的聚合物链段中包含有聚乙二醇结构或聚硅氧烷结构时,其对于金属离子的吸附效果有一定的提升作用。
发明人对此也进行了一定的研究,经过研究发现,聚乙二醇结构以及聚硅氧烷结构其两者的链段均具有良好的柔性,并且其均具有间隔设置的氧原子,这些氧原子也能够与多种金属离子之间形成配位作用,当金属离子遇到这些聚合物链段后,这些聚合物链段可通过旋转折叠,从而使得多组氧原子与金属离子发生配位作用,从而提升了对于金属离子的吸附效果。
作为优选,所述聚合物接枝链段呈支化或者超支化结构。
本发明中的聚合物可为支化或者超支化结构,这些支化结构能够增加分子链之间的缠结作用,从而能够有效提升对于金属离子的束缚。
作为优选,所述杂环基团位于聚合物接枝链段的端基处。
作为优选,所述杂环基团为吡啶基、吡咯基、吡唑基、哌啶基、咪唑基、嘧啶基中的任意一种或多种的组合。
本发明第二方面,还提供了如上所述杂质吸附剂的制备方法,
包括以下步骤:
(1)在硅胶粉表面包覆聚多巴胺层;
(2)将含有氮原子杂环基团的聚合物链段接枝于上述硅胶粉表面,即得所述杂质吸附剂。
本发明中杂质吸附剂的制备方法较为简单,只需以市购硅胶粉作为原料,经过两步法的包覆以及接枝即可实现杂质吸附剂的合成。
作为优选,所述步骤(1)具体如下:将硅胶粉浸渍于含有多巴胺盐酸盐的溶液中,过滤后,在空气氛围下烘干,得到表面包覆聚多巴胺层硅胶粉。
作为优选,所述步骤(2)中将聚合物链段接枝于上述硅胶粉表面的方法有很多种,其基本原理是将聚合物链段中的活性基团与聚多巴胺中的羟基反应,从而将聚合物链段接枝到聚多巴胺层上。
例如可以通过含有Si-Cl键的聚合物与羟基发生接枝反应,也可以通过Si-H键与羟基反应,也可以通过Si-OR与羟基发生反应,总体的反应较多,在此不再做一一列举。
提纯三甲基铝的方法,包括以下步骤:
(S.1)将如上所述杂质吸附剂干燥后,填充于精馏釜的填料塔中;
(S.2)对精馏釜抽负并通入惰性气体,替换精馏釜中的空气;
(S.3)将工业级三甲基铝导入精馏釜中,升温使得三甲基铝在回流过程中与杂质吸附剂接触;
(S.4)从填料塔顶部收集馏分,冷却过滤后,即得高纯三甲基铝。
本发明中三甲基铝的提纯方法较为简单,其仅仅只需要将三甲基铝经过简单的精馏,即可将三甲基铝中的金属离子杂质除去。同时可采用分批法精馏或者连续式精馏进行提纯,从而能够有效提升三甲基铝的提纯效率。
作为优选,所述步骤(S.3)中回流温度为120~135℃,回流时间为3~12h。
作为优选,步骤(S.4)中馏分收集温度为126~128℃;
将馏分冷却至50℃以下后,通过聚四氟乙烯过滤器过滤,即得高纯三甲基铝。
有益效果
因此,本发明具有以下有益效果:
(1)本发明通过物理吸附以及化学配位吸附联用的手段,有效提升了对于三甲基铝中金属离子杂质的吸附效果,能够将三甲基铝中ppm级别的金属离子降低至ppb级别。
(2)本发明中三甲基铝的提纯方法较为简单,其仅仅只需要将三甲基铝经过简单的精馏,即可将三甲基铝中的金属离子杂质除去。同时可采用分批法精馏或者连续式精馏进行提纯,从而能够有效提升三甲基铝的提纯效率。
(3)同时本发明中的杂质吸附剂的回收利用简单,大幅延长了吸附剂的使用寿命,降低了三甲基铝的提纯成本。
附图说明
图1 为本发明实施例1中制备得到的杂质吸附剂的电镜图。
本发明的实施方式
下面结合说明书附图以及具体实施例对本发明做进一步描述。本领域普通技术人员在基于这些说明的情况下将能够实现本发明。此外,下述说明中涉及到的本发明的实施例通常仅是本发明一部分的实施例,而不是全部的实施例。因此,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明中所使用的一些中间体的制备方法如下所示。
二甲基硅烷封端聚乙二醇的制备:
将2g(10mmol)聚乙二醇200以及2g(20mmol)三乙胺溶于50ml二氯甲烷中,在氮气保护条件下,向其中滴加含有1.48g(20mmol)的二甲基氯硅烷与10ml二氯甲烷的混合液,-10℃反应3h后,过滤除去生成的盐酸三乙胺盐,滤液经水洗后,旋蒸除去二氯甲烷,得到二甲基硅烷封端聚乙二醇。
其反应式如下所示:
超支化吡啶封端聚硅氧烷的制备:
取三口烧瓶,在氮气保护下,加入1.48g(10mmol)乙烯基三甲氧基硅烷、3.76g(40mmol)二甲基氯硅烷、100ml四氢呋喃以及0.5g三氯化铁,45℃下搅拌反应5小时,然后降低温度至室温,加入1g活性炭,搅拌30分钟后过滤,蒸除四氢呋喃,然后进行蒸馏得到三(二甲基硅氧基)乙烯基硅烷。
其反应式如下所示:
取2.8g(10mmol)三(二甲基硅氧基)乙烯基硅烷、10mg三(五氟苯)硼烷,溶于100ml甲苯中,在氮气保护以及常温下下向其中滴加含有3.69g(30mmol)羟乙基吡啶与10ml甲苯的混合液,滴加结束后升高温度至40℃,继续反应3h后,加入1g活性炭,搅拌30分钟后过滤,蒸馏除去滤液中的甲苯后得到超支化吡啶封端聚硅氧烷。
其反应式如下所示:
实施例1
一种杂质吸附剂的制备方法,包括以下步骤:
(1)将50g硅胶粉(青岛邦凯柱层析硅胶B型硅胶60 230-400目)分散于500ml浓度为2.5%的盐酸多巴胺(克拉玛尔)溶液中,搅拌浸渍30min后,过滤然后将硅胶粉在空气氛围下烘干,得到灰黑色的包覆有聚多巴胺层的硅胶粉。
(2)将10g包覆有聚多巴胺层的硅胶粉分散于甲苯中,然后向其中加入10mg三(五氟苯)硼烷,搅拌均匀后,向其中滴加过量的二甲基硅烷封端聚乙二醇,直至无气泡产生,过滤,并用甲苯冲洗滤渣,得到接枝有二甲基硅烷封端聚乙二醇的硅胶粉。
(3)取10g上述接枝有二甲基硅烷封端聚乙二醇的硅胶粉分散于100ml甲苯中,向其中加入10mg三(五氟苯)硼烷,向其中滴加2g羟乙基吡啶与10ml甲烷的混合溶液,常温下反应3h后,过滤,并用甲苯冲洗滤渣,烘干滤渣后即得杂质吸附剂。
其电子显微镜照片如图1所示。
实施例2
实施例2中步骤(1)以及步骤(2)如实施例1所示。
与实施例1的区别在于,将步骤(3)中的羟乙基吡啶替换为N-羟乙基吡咯烷。
实施例3
实施例3中步骤(1)以及步骤(2)如实施例1所示。
与实施例1的区别在于,将步骤(3)中的羟乙基吡啶替换为1-(2-羟乙基)咪唑。
实施例4
一种杂质吸附剂的制备方法,包括以下步骤:
步骤(1)如实施例1所示。
(2)将10g包覆有聚多巴胺层的硅胶粉分散于甲苯中,然后向其中加入10mg三(五氟苯)硼烷,搅拌均匀后,向其中加入10g含氢量为0.5%的含氢硅油,搅拌直至无气泡产生,过滤,并用甲苯冲洗滤渣,得到接枝有聚硅氧烷的硅胶粉。
(3)取10g上述接枝有聚硅氧烷的硅胶粉分散于甲苯中,向其中加入10mg三(五氟苯)硼烷,向其中滴加羟乙基吡啶直至无气泡产生,常温下反应3h后,过滤,并用甲苯冲洗滤渣,烘干滤渣后即得杂质吸附剂。
实施例5
一种杂质吸附剂的制备方法,包括以下步骤:
步骤(1)如实施例1所示。
(2)将10g包覆有聚多巴胺层的硅胶粉置于搅拌釜中,然后向搅拌釜中滴加5g甲基氢二氯硅烷(过量),50℃条件下搅拌反应3h后,升温至110℃,减压除去生成的氯化氢以及未反应的甲基氢二氯硅烷,得到硅氢改性的包覆有聚多巴胺层的硅胶粉。
(3)将1g硅氢改性的包覆有聚多巴胺层的硅胶粉与10g上述超支化吡啶封端聚硅氧烷分散于100ml甲苯中,向其中加入0.5ml2%氯铂酸溶液,升温回流反应8h,后过滤,并用甲苯冲洗滤渣,烘干滤渣后即得杂质吸附剂。
对比例1
对比例1与实施例1的区别在于,省略了步骤(2)以及(3),仅得到包覆有聚多巴胺层的硅胶粉。
对比例2
对比例2与实施例1的区别在于,省略了步骤(3),仅得到接枝有二甲基硅烷封端聚乙二醇的硅胶粉。
对比例3
对比例3与实施例1的区别在于,省略了步骤(1),未对硅胶粉进行聚多巴胺包覆。
其步骤如下:将10g包覆有硅胶粉分散于甲苯中,然后向其中加入10mg三(五氟苯)硼烷,搅拌均匀后,向其中滴加过量的二甲基硅烷封端聚乙二醇,直至无气泡产生,过滤,并用甲苯冲洗滤渣,得到接枝有二甲基硅烷封端聚乙二醇的硅胶粉。
(3)取10g上述接枝有二甲基硅烷封端聚乙二醇的硅胶粉分散于100ml甲苯中,向其中加入10mg三(五氟苯)硼烷,向其中滴加2g羟乙基吡啶与10ml甲烷的混合溶液,常温下反应3h后,过滤,并用甲苯冲洗滤渣,烘干滤渣后即得杂质吸附剂。
对比例4
以申请号为CN201510193873.3的专利的实施例1中的方法制备氨丙基三乙氧基硅烷接枝的硅胶粉,将其用作杂质吸附剂。
【应用例1-吸附性能测试】
提纯三甲基铝的方法,包括以下步骤:
(S.1)将实施例1~5以及对比例1~4中的杂质吸附剂干燥后,填充于精馏釜的填料塔中;
(S.2)对精馏釜抽负并通入氩气,替换精馏釜中的空气;
(S.3)将4N级三甲基铝(纯度99.99%)导入精馏釜中,升温至130℃使得三甲基铝回流,并且在回流过程中使得三甲基铝与杂质吸附剂接触;
(S.4)吸附1h后,从填料塔顶部收集126~128℃时的馏分,冷却至50℃以下后通过聚四氟乙烯过滤器过滤,即得高纯三甲基铝,通过ICP-MS测定所得高纯三甲基铝中金属离子的含量。
通过测试三甲基铝在纯化前后杂质金属离子含量,比较杂质吸附剂的吸附效果,其数据如下表1所示。
表1三甲基铝在纯化前后杂质金属离子含量表。
从上表中数据可知,通过本发明中的杂质吸附剂,能够使得三甲基铝在纯化后,其内部的杂质金属离子的含量大幅下降,从原本的ppm级别直接下降至ppb级别,有效提升了三甲基铝的纯度。
将实施例1与对比例1比较后发现,仅仅在硅胶粉外部包覆有聚多巴胺层后,虽然能够具有一定的杂质金属离子吸附的效果,但是其整体的吸附效果较差,纯化后的三甲基铝中仍然含有较高浓度的杂质金属离子。
将实施例1与对比例2比较后发现,仅接枝有二甲基硅烷封端聚乙二醇的硅胶粉,其效果对于杂质金属离子的吸附效果虽然与对比例1相比较提升明显,但是提纯后的三甲基铝中的金属离子含量依旧保持较高水平,远远达不到6N级(纯度99.999%)三甲基铝的要求。
将实施例1与对比例3比较后发现,若没有对硅胶粉进行聚多巴胺包覆,而是直接在硅胶粉上接枝二甲基硅烷封端聚乙二醇,并且再通过羟乙基吡啶封端,其效果对于杂质金属离子的吸附效果虽然与对比例1具有明显的提升,但是也达不到6N级(纯度99.999%)三甲基铝的要求。
将实施例1与对比例4相比较,虽然对比例4中的杂质吸附剂对于金属离子的吸附具有明显的效果,但是同样也达不到与本发明实施例1~5中的效果,表明对比例4中的杂质吸附剂在短时间(1h)的吸附下难以达到本发明技术方案的效果。
因此,综上所述,首先通过在硅胶粉的表面包覆聚多巴胺,然后在聚多巴胺表面接枝聚合物链段,并且聚合物链段中含有氮原子杂环基团,能够在短时间内有效提升三甲基铝的纯度,使得其中的杂质金属离子的含量显著下降。
【应用例2-连续吸附性能测试】
提纯三甲基铝的方法,包括以下步骤:
(S.1)将实施例1中的杂质吸附剂干燥后,填充于精馏釜的填料塔中;
(S.2)对精馏釜抽负并通入氩气,替换精馏釜中的空气;
(S.3)连续向精馏釜中导入4N级三甲基铝(纯度99.99%),升温至130℃使得三甲基铝回流,并且在回流过程中使得三甲基铝与杂质吸附剂接触;
(S.4)从填料塔顶部收集126~128℃时的馏分,冷却至50℃以下后通过聚四氟乙烯过滤器过滤,即得高纯三甲基铝,通过ICP-MS测定不同时间收集得到的高纯三甲基铝中金属离子的含量。
通过测试不同时间收集得到的高纯三甲基铝中金属离子的含量,比较杂质吸附剂的连续吸附效果,其数据如下表2所示。
表2不同时间段收集的三甲基铝中杂质金属离子含量表。
从上表中数据可知,通过本发明中实施例1中的杂质吸附剂,其在连续吸附1h、6h、12h、24h、48h以及96h后,其收集到的馏分中杂质金属离子的含量变化不大,表明本发明中制备得到的杂质吸附剂具有良好的持续吸附能力,同时具有较长的使用寿命。
【应用例3-再生性能测试】
将上述应用例2中吸附了48h后的杂质吸附剂进行再生试验,再生过程如下:
将使用后的杂质吸附剂浸渍于含有1.5%三氟乙酸的水溶液中,将水温调节至80℃,搅拌解吸附12h后,过滤将杂质吸附剂浸渍于超纯水中95℃保持3h,过滤杂质吸附剂,将其在100℃下真空干燥,得到再生的杂质吸附剂。
将得到的再生的杂质吸附剂按照【应用例1-吸附性能测试】中的方法进行测试,比较重复1次,5次、10次、20次后的杂质吸附剂对于金属离子的吸附效果,其数据如下表3所示。
表3使用不同再生次数的杂质吸附剂收集的三甲基铝中杂质金属离子含量表。
从上表数据中可知,本发明中的杂质吸附剂在经过多次的再生步骤后,仍然具有良好的杂质金属吸附效果,从而有效延长了杂质吸附剂的使用寿命,降低了三甲基铝在提纯过程中的提纯成本。
因此,综上所述,本发明通过物理吸附以及化学配位吸附联用的手段,有效提升了对于三甲基铝中金属离子杂质的吸附效果,能够将三甲基铝中ppm级别的金属离子降低至ppb级别。同时,本发明中三甲基铝的提纯方法较为简单,其仅仅只需要将三甲基铝经过简单的精馏,即可将三甲基铝中的金属离子杂质除去。同时可采用分批法精馏或者连续式精馏进行提纯,从而能够有效提升三甲基铝的提纯效率。并且本发明中的杂质吸附剂的回收利用简单,大幅延长了吸附剂的使用寿命,降低了三甲基铝的提纯成本。

Claims (10)

  1. 杂质吸附剂,其特征在于,
    包括硅胶粉主体;
    所述硅胶粉主体的外部包覆有聚多巴胺层;
    所述聚多巴胺层的外部接枝连接有聚合物链段;
    所述聚合物链段中存在含有氮原子杂环基团。
  2. 根据权利要求1所述的杂质吸附剂,其特征在于,
    所述聚合物链段中包含有聚乙二醇结构、聚硅氧烷结构中的任意一种或两种的组合。
  3. 根据权利要求2所述的杂质吸附剂,其特征在于,
    所述聚合物接枝链段呈支化或者超支化结构。
  4. 根据权利要求3所述的杂质吸附剂,其特征在于,
    所述杂环基团位于聚合物接枝链段的端基处。
  5. 根据权利要求1~4中任意一项所述的杂质吸附剂,其特征在于,
    所述杂环基团为吡啶基、吡咯基、吡唑基、哌啶基、咪唑基、嘧啶基中的任意一种或多种的组合。
  6. 如权利要求1~5中任意一项所述杂质吸附剂的制备方法,其特征在于,
    包括以下步骤:
    (1)在硅胶粉表面包覆聚多巴胺层;
    (2)将含有氮原子杂环基团的聚合物链段接枝于上述硅胶粉表面,即得所述杂质吸附剂。
  7. 根据权利要求6所述的杂质吸附剂的制备方法,其特征在于,
    所述步骤(1)具体如下:将硅胶粉浸渍于含有多巴胺盐酸盐的溶液中,过滤后,在空气氛围下烘干,得到表面包覆聚多巴胺层硅胶粉。
  8. 提纯三甲基铝的方法,其特征在于,
    包括以下步骤:
    (S.1)将权利要求1~5中任意一项所述杂质吸附剂干燥后,填充于精馏釜的填料塔中;
    (S.2)对精馏釜抽负并通入惰性气体,替换精馏釜中的空气;
    (S.3)将工业级三甲基铝导入精馏釜中,升温使得三甲基铝在回流过程中与杂质吸附剂接触;
    (S.4)从填料塔顶部收集馏分,冷却过滤后,即得高纯三甲基铝。
  9. 根据权利要求8所述的提纯三甲基铝的方法,其特征在于,
    所述步骤(S.3)中回流温度为120~135℃,回流时间为3~12h。
  10. 根据权利要求8所述的提纯三甲基铝的方法,其特征在于,
    步骤(S.4)中馏分收集温度为126~128℃;
    将馏分冷却至50℃以下后,通过聚四氟乙烯过滤器过滤,即得高纯三甲基铝。
PCT/CN2022/106247 2022-06-10 2022-07-18 杂质吸附剂、制备方法及利用该吸附剂提纯三甲基铝的方法 WO2023236317A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210652998.8 2022-06-10
CN202210652998.8A CN114849671B (zh) 2022-06-10 2022-06-10 杂质吸附剂、制备方法及利用该吸附剂提纯三甲基铝的方法

Publications (1)

Publication Number Publication Date
WO2023236317A1 true WO2023236317A1 (zh) 2023-12-14

Family

ID=82623774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106247 WO2023236317A1 (zh) 2022-06-10 2022-07-18 杂质吸附剂、制备方法及利用该吸附剂提纯三甲基铝的方法

Country Status (2)

Country Link
CN (1) CN114849671B (zh)
WO (1) WO2023236317A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115591272B (zh) * 2022-10-27 2023-04-07 大连科利德光电子材料有限公司 硅基前驱体的提纯方法及提纯系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095979A (ja) * 2011-11-02 2013-05-20 Toshiba Corp 金属回収方法
CN105879841A (zh) * 2016-05-31 2016-08-24 河南师范大学 一种用于选择性吸附废水中铅离子的SiO2@PDA@ZIF-8复合吸附剂及其制备方法
CN106881053A (zh) * 2017-04-01 2017-06-23 中国科学技术大学 一种聚合物复合微球及其制备方法
CN109317117A (zh) * 2018-09-26 2019-02-12 中国工程物理研究院核物理与化学研究所 一种磁性吸附剂及其制备和对锕系元素废液的处理方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8491705B2 (en) * 2009-08-19 2013-07-23 Sunho Choi Application of amine-tethered solid sorbents to CO2 fixation from air
CN104774218B (zh) * 2015-04-23 2016-08-17 苏州普耀光电材料有限公司 高纯三甲基铝的制备方法
CN105112894B (zh) * 2015-08-31 2018-02-27 华南理工大学 一种通过多巴胺对无机粒子进行表面化学镀铜的方法
CN107243321B (zh) * 2017-04-21 2019-07-26 浙江理工大学 一种长效除有机污染物的空气净化用材料
CN107519848B (zh) * 2017-10-18 2019-07-09 福州大学 一种多乙烯多胺改性的聚多巴胺包覆硅胶及其制备方法和应用
CN108456221A (zh) * 2018-02-08 2018-08-28 浙江博瑞电子科技有限公司 一种三甲基铝精制的方法
CN108465114A (zh) * 2018-05-08 2018-08-31 复旦大学 一种聚多巴胺-聚吡咯纳米复合材料及其制备方法和应用
CN109553632A (zh) * 2018-12-29 2019-04-02 贵州威顿晶磷电子材料股份有限公司 一种三甲基铝的提纯方法
CN110652749B (zh) * 2019-09-29 2021-09-24 华中师范大学 一种复合纳米纤维在线微固相萃取柱及其制备方法
CN110938282B (zh) * 2019-10-30 2022-08-19 中国石油化工股份有限公司 具有共价有机框架的核壳结构的复合材料及其制备方法和应用
KR102290136B1 (ko) * 2020-03-26 2021-08-13 충남대학교병원 알지네이트-폴리도파민-실리카 복합체를 포함하는 세포 유리(cell free) DNA 추출용 조성물
CN112076734A (zh) * 2020-08-25 2020-12-15 辽宁大学 一种水杨醛肟/聚多巴胺/三维介孔二氧化硅复合材料的制备方法及在镓回收中的应用
CN112028921B (zh) * 2020-08-28 2023-07-14 江西石华精细化工科技协同创新有限公司 一种高纯度三甲基铝的制备方法
CN113750245A (zh) * 2021-10-09 2021-12-07 燕山大学 一种双腔型纳米级药物载体、载药系统及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095979A (ja) * 2011-11-02 2013-05-20 Toshiba Corp 金属回収方法
CN105879841A (zh) * 2016-05-31 2016-08-24 河南师范大学 一种用于选择性吸附废水中铅离子的SiO2@PDA@ZIF-8复合吸附剂及其制备方法
CN106881053A (zh) * 2017-04-01 2017-06-23 中国科学技术大学 一种聚合物复合微球及其制备方法
CN109317117A (zh) * 2018-09-26 2019-02-12 中国工程物理研究院核物理与化学研究所 一种磁性吸附剂及其制备和对锕系元素废液的处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MA FANG-FANG, ZHANG DI, ZHANG NAN, HUANG TING, WANG YONG: "Polydopamine-assisted deposition of polypyrrole on electrospun poly(vinylidene fluoride) nanofibers for bidirectional removal of cation and anion dyes", CHEMICAL ENGENEERING JOURNAL, ELSEVIER, AMSTERDAM, NL, vol. 354, 1 December 2018 (2018-12-01), AMSTERDAM, NL , pages 432 - 444, XP093114506, ISSN: 1385-8947, DOI: 10.1016/j.cej.2018.08.048 *

Also Published As

Publication number Publication date
CN114849671B (zh) 2022-11-08
CN114849671A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
CN107406981A (zh) 产生薄无机膜的方法
TWI544957B (zh) 廢氣淨化方法和裝置
WO2023236317A1 (zh) 杂质吸附剂、制备方法及利用该吸附剂提纯三甲基铝的方法
WO2023236316A1 (zh) 一种杂质气体吸附剂及其制备方法和应用
CN113929492A (zh) 用于磷回收的类水滑石复合材料制备方法及其产物、应用
CN114272890A (zh) 一种氧气吸附剂、制备方法和降低氧化亚氮原料气中氧含量的方法
CN112802927B (zh) 高纯氧化亚氮在制备太阳能电池片中的应用
CN1126711C (zh) 从卤化氢中除去水分的组合物和方法
CN1774523A (zh) 通过原子层沉积用于沉积铜膜的挥发性铜(ⅰ)配合物
WO2024087340A1 (zh) 硅基前驱体的提纯方法及提纯系统
CN112210769A (zh) 一种低温高生长速率氧化硅薄膜的原子层沉积方法
KR20070118487A (ko) 중금속 흡착용 실리카 화합물 및 이의 합성 방법
KR100458325B1 (ko) 실란 화합물을 중형기공성 세라믹에 고정시킨 귀금속흡착제의 제조방법
CN114849667A (zh) 一种吸附镓改性硅胶树脂、其制备方法及应用
CN115254050B (zh) 一种去除三硅基氮中残余一氯硅烷的方法
CN118221717A (zh) 二异丙氨基硅烷的提纯方法
CN112915814B (zh) 一种用于气体分离的新型膜材料及制备方法
KR100541792B1 (ko) 암모니아로부터 물을 제거하는 데 사용되는 흡착제
CN111587268A (zh) 用于光阴极的光敏剂
CN115624957B (zh) 一种改性功能化硅胶材料及其制备方法和应用
CN105567155A (zh) 抗硫化贴片led封装胶的制备方法
CN115584482B (zh) 钽源前驱体的纯化方法
CN117531240A (zh) 基于Pt@ZIF-8吸附剂高效去除三氯氢硅中甲基氯硅烷杂质的方法
WO2024060353A1 (zh) 纯化氧化亚氮的方法
CN118267970A (zh) 一种吸附剂和应用其预脱硫提纯天然气的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945451

Country of ref document: EP

Kind code of ref document: A1