WO2024060353A1 - 纯化氧化亚氮的方法 - Google Patents

纯化氧化亚氮的方法 Download PDF

Info

Publication number
WO2024060353A1
WO2024060353A1 PCT/CN2022/127325 CN2022127325W WO2024060353A1 WO 2024060353 A1 WO2024060353 A1 WO 2024060353A1 CN 2022127325 W CN2022127325 W CN 2022127325W WO 2024060353 A1 WO2024060353 A1 WO 2024060353A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
liquid
nitrous oxide
impurity gas
gas
Prior art date
Application number
PCT/CN2022/127325
Other languages
English (en)
French (fr)
Inventor
赵毅
石琳
金龙
曲胜伟
李庆东
Original Assignee
全椒科利德电子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全椒科利德电子材料有限公司 filed Critical 全椒科利德电子材料有限公司
Publication of WO2024060353A1 publication Critical patent/WO2024060353A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Definitions

  • the present invention relates to the field of gas purification, and in particular to a method for purifying nitrous oxide.
  • Nitrous oxide is an important gas in IC manufacturing and is used in oxidation and chemical vapor deposition processes in semiconductor production. Usually low-purity nitrous oxide contains higher concentrations of nitrogen, nitric oxide, nitrogen dioxide and oxygen. and other impurity gases, which seriously affect the quality of nitrous oxide. With the development of IC manufacturing processes and technologies, chip size continues to increase, and characteristic size line widths continue to decrease. The purity and specific indicators of various electronic gases used in the IC process are required to continue to improve. Currently, most of the required purity needs to be 99.999% ( 5N) or above, so how to purify nitrous oxide gas is an important direction for the localization of electronic gases.
  • Oxygen, nitrogen and high-valence oxides of nitrogen are common impurities in nitrous oxide gas.
  • the oxygen in the impurity gas easily reacts with other impurities, resulting in uncontrollable impurity types and contents in the gas. Therefore, in order to improve the purity of nitrous oxide, the impurity oxygen in the nitrous oxide raw gas must be removed first.
  • the patent with application number CN202111639928.0 provides an oxygen adsorbent, which includes a porous silica skeleton.
  • the porous silica skeleton is connected to the boron element through chemical bonds; the porous silica skeleton is also physically loaded with platinum. compounds and low-valence manganese compounds.
  • boron elements are connected to the porous silica skeleton through chemical bonds, and low-valent manganese compounds are loaded on the surface, which can effectively absorb oxygen in nitrous oxide and improve the purity of nitrous oxide gas.
  • adsorbents in the prior art can only adsorb specific impurity gases in a targeted manner, resulting in low applicability of the adsorbent.
  • the overall gas flow rate during the adsorption process is large, so it is difficult to completely adsorb the impurity gas wrapped in the target gas, resulting in low adsorption efficiency.
  • the present invention is to overcome the defects in the prior art that nitrous oxide can only adsorb specific impurity gases during the adsorption process, and at the same time the adsorption efficiency is low, and provides a method for purifying nitrous oxide to overcome the above defects.
  • the first aspect of the present invention first provides an impurity gas adsorbent
  • the liquid adsorbent includes an ionic liquid and a polymer adsorbent dissolved in the ionic liquid;
  • the polymer adsorbent contains phenolic hydroxyl groups
  • the solid adsorbent contains a porous structure that allows liquid adsorbent to enter and exit;
  • a deposition layer containing elemental metal and metal oxide is also deposited on the surface of the solid adsorbent.
  • the impurity gas adsorbent in the present invention includes a liquid adsorbent and a solid adsorbent, and their respective adsorption mechanisms are as follows.
  • the liquid adsorbent of the present invention contains a polymer adsorbent. Since the polymer adsorbent contains a phenolic hydroxyl structure, and since the phenolic hydroxyl groups are relatively active, these phenolic hydroxyl groups can react with oxygen impurities doped in nitrous oxide to form a structure. A more stable quinone structure enables the adsorption of oxygen in nitrous oxide.
  • gaseous nitrous oxide is introduced into a liquid liquid adsorbent. Therefore, in the process of nitrous oxide floating in the liquid adsorbent, it is subject to the resistance of the liquid adsorbent, resulting in a slower flow rate. Therefore, the contact time between the impurity gas in the nitrous oxide and the liquid adsorbent can be effectively prolonged, so that the impurity gas in the nitrous oxide can be removed more thoroughly.
  • the present invention also disperses a certain amount of solid adsorbent inside the liquid adsorbent. Therefore, the nitrous oxide bubbles will come into contact with these solid adsorbents during the floating process, thus achieving the goal of controlling nitrous oxide.
  • the shearing effect of nitrogen bubbles divides large bubbles into small bubbles. This effectively increases the contact area between the nitrous oxide raw gas and the liquid adsorbent, thereby improving the adsorption effect of impurity gases in the nitrous oxide raw gas.
  • the solid adsorbent in the present invention has a porous structure, so after the nitrous oxide raw gas is divided into small bubbles, it can enter the interior of the solid adsorbent along the porous structure of the solid adsorbent, prolonging the floating time of the bubbles. movement path. And during the floating process, the van der Waals force can be formed between the impurity gas and the porous structure, thereby achieving physical adsorption of the impurity gas.
  • an elemental metal layer and a metal oxide are deposited on the surface of the solid adsorbent. Since the elemental metal contains more electrons, when the impurity gas in the nitrous oxide comes into contact with the elemental metal, the elemental metal contains The electrons can be transferred to the impurity gas, so that the elemental metal and the impurity gas can be adsorbed through electrostatic force, thereby fixing the impurity gas. At this time, oxygen in the impurity gas reacts more easily with the polymer adsorbent in the ionic liquid, while high-valence nitrogen oxides (such as nitrogen dioxide) in nitrous oxide can react with metal oxides to form nitrates .
  • high-valence nitrogen oxides such as nitrogen dioxide
  • the impurity gas adsorbent in the present invention adsorbs the impurity gas in the nitrous oxide gas through dual physical and chemical adsorption during the process of adsorbing the impurity gas.
  • the flow rate of nitrous oxide gas is slowed down and the flow path of nitrous oxide gas is lengthened, thereby prolonging the contact time with the impurity gas adsorbent and reducing the diameter of the nitrous oxide gas bubbles.
  • This increases the contact area with the impurity gas adsorbent. Therefore, the adsorption effect on impurity gases in nitrous oxide is effectively improved.
  • the ionic liquid includes one or a combination of imidazole ionic liquids, quaternary ammonium ionic liquids, quaternary phosphonium ionic liquids, pyrrolidine ionic liquids, and piperidine ionic liquids.
  • the cations of the ionic liquid are N-hexylpyridine, N-butylpyridine, N-octylpyridine, N-butyl-N-methylpyrrolidine, 1-butyl-3-methylimidazole, 1-propyl-3-methylimidazole, 1-ethyl-3-methylimidazole, 1-hexyl-3-methylimidazole, 1-octyl-3-methylimidazole, 1-allyl-3 -Methylimidazole, 1-butyl-2,3-dimethylimidazole, 1-butyl-3-methylimidazole, tributylmethylphosphine, tributylethylphosphine, tetrabutylphosphine, tributyl Hexylphosphine, tributyloctylphosphine, tributyldecylphosphine, tributyldodecylphosphine,
  • the anions of the ionic liquid are BF 4 - , PF 6 - , CF 3 SO 3 - , (CF 3 SO 2 ) 2 N - , C 3 F 7 COO - , C 4 F 9 SO 3 , CF 3 Any one of COO - , (CF 3 SO 2 ) 3 C - , (C 2 F 5 SO 2 ) 3 C - , (C 2 F 5 SO 2 ) 2 N - and SbF 6 - .
  • the ionic liquid includes 1-butyl-3-methylimidazole triflate, 1-butyl-3-methylimidazole dicyanamide salt, 1-ethyl-3-methylimidazole Trifluoroacetate, 1-ethyl-3-methylimidazole chloroaluminate, 1-ethyl-2,3-dimethylimidazole tetrafluoroborate, 1-hexyl-3-methylimidazole bis Trifluoromethanesulfonimide salt, 1-allyl-3-methylimidazole bistrifluoromethanesulfonimide salt, 1-ethyl-3-methylimidazole chloride salt, 1-ethyl-3- Methyl imidazole bistrifluoromethanesulfonyl imide salt, 1-butyl sulfonate-2-methyl-3-hexadecyl imidazole hydrogen sulfate, 1-ethyl-3-methylimidazole tetrafluo
  • the polymer adsorbent contains a polysiloxane backbone
  • the phenolic hydroxyl group is grafted onto the side chain of the polysiloxane main chain.
  • the preparation method of the polymer adsorbent is as follows: graft a compound containing a phenolic hydroxyl group onto an organosilicon monomer to obtain an organosilicon monomer with a phenolic hydroxyl group, and then graft the organosilicon monomer with a phenolic hydroxyl group. polymerization to obtain the polymer adsorbent.
  • phenol containing double bonds can be used to undergo a hydrosilylation reaction with an organosilicon monomer containing a silicon hydrogen structure (such as D 3 H, D 4 H), thereby obtaining an organic compound with a phenolic hydroxyl group.
  • organosilicon monomer containing a silicon hydrogen structure such as D 3 H, D 4 H
  • the silicon monomer is then subjected to ring-opening polymerization of the organic silicon monomer under the catalysis of acid or alkali to obtain the polymer adsorbent.
  • the solid adsorbent includes any one of silica gel powder, diatomite, layered graphite, activated carbon, and activated carbon fiber.
  • the elemental metal includes any one of copper or silver;
  • the metal oxide includes one or any one of magnesium, aluminum, zinc and iron oxides.
  • the present invention further provides a method for preparing the impurity gas adsorbent.
  • the elemental metal layer on the surface of the solid adsorbent there are many methods that can be used to deposit the elemental metal layer on the surface of the solid adsorbent.
  • the elemental metal can be deposited on the surface of the solid adsorbent through technical means such as chemical vapor deposition or electroless plating or electroplating.
  • the elemental metals deposited on the surface of the solid adsorbent are then oxidized. Due to the different activity sequences of the metals, the oxides of individual metal elements can be reduced to elemental metals through the selective reduction of hydrogen.
  • hydrogen can be used to reduce the oxides of individual metal elements to elemental metals. Copper oxide and silver oxide are reduced to simple copper and silver.
  • Metal oxides such as zinc oxide, aluminum oxide, and iron oxide are difficult to reduce to simple metals under normal conditions because their metal elements are more reactive than hydrogen. Therefore, after reduction, elemental metal layers and metal oxides can be formed simultaneously on the surface of the solid adsorbent.
  • the solid adsorbent needs to be activated in a hydrogen atmosphere before being added to the liquid adsorbent dispersion;
  • the activation temperature is 200 ⁇ 250°C, and the activation time is 1 ⁇ 5h.
  • the present invention needs to activate the solid adsorbent before use to effectively remove metal oxides on the surface of the elemental metal.
  • the volume ratio of the solid adsorbent to the liquid adsorbent is 1:(2 ⁇ 10).
  • the present invention also provides a method for purifying nitrous oxide
  • the present invention only needs to pass the nitrous oxide raw material gas into the adsorber filled with the impurity gas adsorbent, and make the nitrous oxide raw material gas come into contact with the impurity gas adsorbent, that is, It can effectively adsorb impurities in the nitrous oxide raw gas.
  • the impurity gas content in nitrous oxide gas can be reduced to the ppb level, and the effect is very excellent.
  • the impurity gas adsorbent in the present invention can achieve a good adsorption effect on the impurity gas in the nitrous oxide raw gas through a combination of physical adsorption and chemical adsorption technical means;
  • the present invention further improves the adsorption efficiency of impurity gases by extending the contact time and contact area between nitrous oxide and the impurity gas adsorbent during the adsorption process;
  • the present invention has the advantage of simple steps in the purification process of nitrous oxide. At the same time, it has excellent adsorption effect on impurity gases. The concentration of impurity gases in the nitrous oxide after simple adsorption treatment can reach the ppb level.
  • Figure 1 is an electron microscope photo of solid adsorbent A.
  • Figure 2 is an electron microscope photo of solid adsorbent B.
  • Figure 3 is a schematic structural diagram of the nitrous oxide purification system.
  • raw gas tank 100 raw gas tank 100, adsorption assembly 200, first-level adsorber 211, second-level adsorber 212, third-level adsorber 213, and product tank 300.
  • the polymer adsorbent in the present invention is prepared by the following method:
  • the formula of the electroplating solution is as follows: copper sulfate 50g/L, zinc sulfate 30g/L, HEDP 90g/L, sodium carbonate 25g/L, disodium EDTA 1 ⁇ 2mL/L, pH value 13.0 ⁇ 13.5 ;
  • Electroplating Dip the activated carbon fiber into the electroplating solution, and then pass a current of 1.5 to 3.5A/ dm2 at room temperature, thereby depositing a layer of zinc and copper on the surface of the activated carbon fiber;
  • the formula of electroplating solution is as follows: 30g/L copper sulfate pentahydrate, 25 g/L zinc sulfate, 60ml/L formaldehyde, 75g/L disodium EDTA, 45g/L sodium tartrate, hydrogen Sodium oxide 20% (w);
  • Electroless plating Dissolve 30g/L copper sulfate pentahydrate, 25 g/L zinc sulfate, 75 g/L disodium EDTA, and 45 g/L sodium tartrate in a beaker, and then heat to a temperature of 60°C. Then add silica gel powder and formaldehyde in sequence, and use sodium hydroxide to adjust the pH between 11 and 13, thereby depositing a deposition layer containing metallic zinc and metallic copper on the surface of the silica gel powder;
  • silica gel powder with metal zinc and metal copper deposited on the surface is heated to 150° C. in air and maintained for 1 hour to oxidize the metal zinc and metal copper to form zinc oxide and copper oxide;
  • electroplating solution (1) Prepare chemical plating solution.
  • the formula of electroplating solution is as follows: copper sulfate pentahydrate 30g/L, ferrous sulfate 15g/L, potassium borohydride 1.5ml/L, disodium EDTA 75 g/L, sodium dihydrogen phosphate 20 g/L, sodium tartrate 45 g/L, sodium hydroxide 20% (w);
  • Electroless plating Mix 30g/L copper sulfate pentahydrate, 25 g/L ferrous sulfate, 75 g/L disodium EDTA, sodium dihydrogen phosphate, and 45% sodium tartrate. g/L is dissolved in a beaker, and then heated to a temperature of 60°C. The person then adds silica gel powder and potassium borohydride in sequence, and uses sodium hydroxide to adjust the pH between 11 and 13, thereby depositing a layer containing metal on the surface of the silica gel powder. Deposits of iron and metallic copper;
  • silica gel powder with iron oxide and copper oxide deposited on the surface is heated to 200°C in a mixed atmosphere containing 20% hydrogen and 80% nitrogen for 1 hour, so that the copper oxide is reduced to copper element, thereby obtaining solid adsorbent C .
  • the formula of the plating solution is as follows: 30 g/L copper sulfate pentahydrate, 25 g/L zinc sulfate, 60 ml/L formaldehyde, 75 g/L disodium EDTA, 45 g/L sodium tartrate, and 20% (w) sodium hydroxide.
  • Electroless plating Dissolve 30g/L copper sulfate pentahydrate, 25 g/L zinc sulfate, 75 g/L disodium EDTA, and 45 g/L sodium tartrate in a beaker, and then heat to a temperature of 60°C. Then add silica gel powder and formaldehyde in sequence, and use sodium hydroxide to adjust the pH between 11 and 13, thereby depositing a deposition layer containing metallic zinc and metallic copper on the surface of the silica gel powder, thereby obtaining solid adsorbent D.
  • the formula of the plating solution is as follows: 30 g/L copper sulfate pentahydrate, 25 g/L zinc sulfate, 60 ml/L formaldehyde, 75 g/L disodium EDTA, 45 g/L sodium tartrate, and 20% (w) sodium hydroxide.
  • Electroless plating Dissolve 30g/L copper sulfate pentahydrate, 25 g/L zinc sulfate, 75 g/L disodium EDTA, and 45 g/L sodium tartrate in a beaker, and then heat to a temperature of 60°C. Then add silica gel powder and formaldehyde in sequence, and use sodium hydroxide to adjust the pH between 11 and 13, thereby depositing a deposition layer containing metallic zinc and metallic copper on the surface of the silica gel powder;
  • silica gel powder with metallic zinc and metallic copper deposited on the surface is heated to 150° C. in air and maintained for 1 hour, so that the metallic zinc and metallic copper are oxidized to form zinc oxide and copper oxide, thereby obtaining a solid adsorbent E.
  • a method for preparing an impurity gas adsorbent including the following steps:
  • a method for preparing an impurity gas adsorbent including the following steps:
  • a method for preparing an impurity gas adsorbent including the following steps:
  • a method for preparing an impurity gas adsorbent including the following steps:
  • a method for preparing an impurity gas adsorbent comprises the following steps:
  • the solid adsorbent C is dispersed in the liquid adsorbent in a volume ratio of 1:5 to obtain the impurity gas adsorbent.
  • a method for preparing an impurity gas adsorbent including the following steps:
  • the solid adsorbent C is dispersed inside the liquid adsorbent in a volume ratio of 1:2 to obtain the impurity gas adsorbent.
  • a method for preparing an impurity gas adsorbent comprises the following steps:
  • the solid adsorbent C is dispersed inside the liquid adsorbent in a volume ratio of 1:8 to obtain the impurity gas adsorbent.
  • a method for preparing an impurity gas adsorbent including the following steps:
  • the solid adsorbent C is dispersed inside the liquid adsorbent at a volume ratio of 1:10 to obtain the impurity gas adsorbent.
  • Example 4 The difference from Example 4 is that no solid adsorbent B was added.
  • Example 4 The difference from Example 4 is that the solid adsorbent is silica gel powder.
  • Example 4 The difference from Example 4 is that solid adsorbent A is replaced by solid adsorbent D.
  • the difference between the embodiment 4 and the embodiment 4 is that the solid adsorbent A is replaced by the solid adsorbent E.
  • a nitrous oxide purification system includes a raw gas tank 100, an adsorption component 200 and a product tank 300 connected in sequence through pipelines.
  • the adsorption assembly 200 includes a plurality of adsorbers 210 connected in series;
  • It includes a first-level adsorber 211, a second-level adsorber 212 and a third-level adsorber 213 connected in sequence.
  • the first-level adsorber 211 has a volume of 30 liters, a design pressure of 5.0MPa, a maximum working temperature of 300°C, and is filled with 13X molecular sieve;
  • the secondary adsorber 212 has a volume of 30 liters, a design pressure of 5.0 MPa, a maximum operating temperature of 300°C, and is filled with the impurity gas adsorbents in Examples 1 to 8 and Comparative Examples 1 to 4 as shown above. ;
  • the three-stage adsorber 213 has a volume of 30 liters, a design pressure of 5.0MPa, a maximum working temperature of 300°C, and is filled with activated carbon inside.
  • the nitrous oxide purification system in Application Example 1 is subjected to negative pressure treatment to remove the air in the adsorber, and then high-purity nitrous oxide gas is introduced to remove the residual impurity gas therein, and the raw gas tank 100 is adjusted by a valve to maintain the pressure in the raw gas tank 100 at 1.8 MPa, so that the nitrous oxide passes through the primary adsorber 211, the secondary adsorber 212 and the tertiary adsorber 213 in sequence at a pressure of 0.10 MPa and a flow rate of 1.5 L/min, and contacts with the 13X molecular sieve, the impurity gas adsorbent in Examples 1 to 8 and Comparative Examples 1 to 4, and the activated carbon, respectively, and then the adsorbed nitrous oxide is introduced into the product tank 300 to obtain electronic grade nitrous oxide gas.
  • the impurity gas content in the purified nitrous oxide gas in Application Examples 1 to 8 and Comparative Application Examples 1 to 4 is as shown in Table 1 below.
  • the impurity gas adsorbent prepared by the present invention has good impurity gas adsorption capacity. After adsorption treatment, the impurity gas content in nitrous oxide gas is greatly reduced and can reach the ppb level.
  • Example 4 shows that the present invention can effectively improve the resistance to impurity gases in nitrous oxide by dispersing the solid adsorbent in the liquid adsorbent. adsorption efficiency.
  • the metal elements and metal oxides in the solid adsorbent can promote the adsorption of impurity gases in nitrous oxide.
  • Example 4 Compared Example 4 with Comparative Examples 3 and 4, we can see that when the solid adsorbent only contains metal elements or only metal oxides, its adsorption effect on impurity gas pairs is significantly reduced, indicating that Metal oxides can play a synergistic role with metal elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种纯化氧化亚氮的方法,将氧化亚氮原料气通入到填充有杂质气体吸附剂的吸附器(210)中,并使得氧化亚氮原料气与所述杂质气体吸附剂接触,得到电子级氧化亚氮。杂质气体吸附剂包括液体吸附剂,以及分散在液体吸附剂内部的固体吸附剂;液体吸附剂包括离子液体以及溶解在离子液体中的聚合物吸附剂;聚合物吸附剂中包含有酚羟基;固体吸附剂包含有可供液体吸附剂进出的多孔结构;固体吸附剂的表面还沉积有含有单质金属以及金属氧化物的沉积层。杂质气体吸附剂能够通过物理吸附以及化学吸附联用的技术手段,从而对氧化亚氮原料气中的杂质气体起到良好的吸附效果。

Description

纯化氧化亚氮的方法 技术领域
本发明涉及气体纯化领域,尤其涉及一种纯化氧化亚氮的方法。
背景技术
氧化亚氮作为一种IC制造中的重要的气体,用于半导体生产中的氧化、化学气相沉积工艺,通常低纯氧化亚氮中含有浓度较高的氮气、一氧化氮、二氧化氮以及氧气等杂质气体,这些杂质气体严重影响着氧化亚氮的品质。随着IC制造工艺及技术的发展,芯片尺寸不断增大,特征尺寸线宽不断减少,要求IC制程用的各种电子气体的纯度、特定指标不断提高,目前要求的纯度大都需要在99.999%(5N)以上,因此如何提纯氧化亚氮气体则是电子气体国产化的重要方向。
氧气、氮气以及氮的高价态氧化物是氧化亚氮气体中的常见杂质,其中杂质气体中的氧气极易与其他杂质反应,导致气体中的杂质种类及含量不可控。因此,为了提高氧化亚氮的纯度,必须优先脱除氧化亚氮原料气中的杂质氧气。
申请号为CN202111639928.0的专利提供了一种氧气吸附剂,包括多孔二氧化硅骨架,所述多孔二氧化硅骨架通过化学键连接有硼元素;所述多孔二氧化硅骨架上还物理负载有铂化合物以及低价态锰化合物。该发明在多孔二氧化硅骨架上通过化学键连接有硼元素,同时表面负载有低价态锰化合物,能够有效吸附氧化亚氮中的氧气,提升了氧化亚氮气体的纯度。
技术问题
但是,现有技术中的吸附剂在吸附目标气体中的杂质气体时,只能针对性的对于个别特定的杂质气体进行吸附,导致吸附剂的适用性较低。同时在吸附过程中整体气体的流速较大,因此难以将目标气体中包裹的杂质气体完全吸附,导致吸附效率较低。
技术解决方案
本发明是为了克服现有技术中氧化亚氮在吸附过程中只能吸附特定的杂质气体,同时吸附效率较低的缺陷,提供了一种纯化氧化亚氮的方法以克服上述缺陷。
为实现上述发明目的,本发明通过以下技术方案实现:
本发明第一方面,首先提供了一种杂质气体吸附剂,
包括液体吸附剂,以及分散在液体吸附剂内部的固体吸附剂;
所述液体吸附剂包括离子液体以及溶解在离子液体中的聚合物吸附剂;
所述聚合物吸附剂中包含有酚羟基;
所述固体吸附剂包含有可供液体吸附剂进出的多孔结构;
所述固体吸附剂的表面还沉积有含有单质金属以及金属氧化物的沉积层。
本发明中的杂质气体吸附剂其包含液体吸附剂以及固体吸附剂,其两者分别的吸附机理如下。
本发明的液体吸附剂中包含有聚合物吸附剂,由于聚合物吸附剂中含有酚羟基结构,由于酚羟基较为活泼,因而这些酚羟基能够与氧化亚氮中掺杂的氧气杂质反应,形成结构更加稳定的醌结构,从而实现对于氧化亚氮中氧气的吸附。
同时,本发明中是将气态的氧化亚氮通入到液态的液体吸附剂中,因此在氧化亚氮在液体吸附剂中上浮的过程中,其受到液体吸附剂的阻力,导致其流速较慢,因而可以有效延长氧化亚氮中杂质气体与液体吸附剂的接触时间,从而使得氧化亚氮中的杂质气体能够被清除的更加彻底。
此外,通常情况下,气体在液体中上浮的过程中,由于受到的压强逐渐减小,因此气泡在上浮过程中体积会逐渐增大,使得在气泡内部的杂质气体难以与液体吸附剂相接触。因此,本发明为了克服这一缺陷,还在液体吸附剂的内部分散了一定量的固体吸附剂,因此氧化亚氮气泡在上浮过程中会与这些固体吸附剂相接触,从而实现了对于氧化亚氮气泡的剪切作用,从而把大尺寸的气泡分割成小体积的气泡。这样便有效增加了氧化亚氮原料气与液体吸附剂之间的接触面积,从而提升了对于氧化亚氮原料气中的杂质气体的吸附效果。
同时,本发明中的固体吸附剂为多孔结构,因此氧化亚氮原料气在被分割成小气泡之后,能够沿着固体吸附剂的多孔结构,进入到固体吸附剂的内部,延长了气泡上浮时的运动路径。并且在上浮过程中由于杂质气体能够与多孔结构之间形成范德华力,从而实现了对于杂质气体的物理吸附。
此外,本发明中还在固体吸附剂的表面沉积有单质金属层以及金属氧化物,其中由于单质金属中含有较多的电子,当氧化亚氮中的杂质气体与单质金属接触后,单质金属中的电子能够转移到杂质气体上,从而单质金属与杂质气体之间能够通过静电力进行吸附,从而将杂质气体起到固定的作用。此时,杂质气体中的氧气更容易与离子液体中的聚合物吸附剂反应,而氧化亚氮中的高价态氮氧化物(例如二氧化氮)则能够与金属氧化物反应,从而形成硝酸盐。
因此,综上所述,本发明中的杂质气体吸附剂在吸附杂质气体的过程中通过物理以及化学双重的吸附作用对氧化亚氮气体中的杂质气体的进行了吸附。同时,在吸附过程中减缓了氧化亚氮气体的流速、延长了氧化亚氮气体的流动路径,从而延长了与杂质气体吸附剂的接触时间,同时还减小了氧化亚氮气体气泡的直径,从而增大了与杂质气体吸附剂的接触面积。因而,有效提升了对于氧化亚氮中杂质气体的吸附效果。
作为优选,所述离子液体包括咪唑类离子液体、季铵类离子液体、季鏻类离子液体、吡咯烷类离子液体、哌啶类离子液体中的一种或多种的组合。
作为优选,所述离子液体的阳离子为N-己基吡啶、N-丁基吡啶、N-辛基吡啶、N-丁基-N-甲基吡咯烷、1-丁基-3-甲基咪唑、1-丙基-3-甲基咪唑、1-乙基-3-甲基咪唑、1-己基-3-甲基咪唑、1-辛基-3-甲基咪唑、1-烯丙基-3-甲基咪唑、1-丁基-2,3-二甲基咪唑、1-丁基-3-甲基咪唑、三丁基甲基膦、三丁基乙基膦、四丁基膦、三丁基己基膦、三丁基辛基膦、三丁基癸基膦、三丁基十二烷基膦、三丁基十四烷基膦、三苯基乙基膦、三苯基丁基膦、三苯基甲基膦、三苯基丙基膦、三苯基戊基膦、三苯基丙酮基膦、三苯基苄基膦、三苯基(3-溴丙基)膦、三苯基溴甲基膦、三苯基甲氧基膦、三苯基乙氧羰基甲基膦、三苯基((3-溴丙基)膦、三苯基乙烯基膦、四苯基膦中的任意一种。
作为优选,所述离子液体的阴离子为BF 4 -、PF 6 - 、CF 3SO 3 -、(CF 3SO 2) 2N -、C 3F 7COO -、C 4F 9SO 3、CF 3COO - 、(CF 3SO 2) 3C - 、(C 2F 5SO 2) 3C - 、(C 2F 5SO 2) 2N -、SbF 6 -中的任意一种。
作为优选,所述离子液体包括1-丁基-3-甲基咪唑三氟甲磺酸盐、1-丁基-3-甲基咪唑二氰胺盐、1-乙基-3-甲基咪唑三氟乙酸盐、1-乙基-3-甲基咪唑氯铝酸盐、1-乙基-2,3-二甲基咪唑四氟硼酸盐、1-己基-3-甲基咪唑双三氟甲磺酰亚胺盐、1-烯丙基-3-甲基咪唑双三氟甲磺酰亚胺盐、1-乙基-3-甲基咪唑氯盐、1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐、1-磺酸丁基-2-甲基-3-十六烷基咪唑硫酸氢盐、1-乙基-3-甲基咪唑四氟硼酸盐、1-乙基-3-甲基咪唑碳酸盐、1-乙基-3-甲基咪唑L-乳酸盐、1,3-二甲基咪唑六氟磷酸盐、1-乙基-3-甲基咪唑六氟磷酸盐、1-丙基-3-甲基咪唑六氟磷酸盐、1-丁基-3-甲基咪唑六氟磷酸盐、1-己基-3-甲基咪唑六氟磷酸盐、1-辛基-3-甲基咪唑六氟磷酸盐、1-癸基-3-甲基咪唑六氟磷酸盐、1-十四烷基-3-甲基咪唑六氟磷酸盐、1-苄基-3-甲基咪唑六氟磷酸盐、1-烯丙基-3-甲基咪唑六氟磷酸盐、1-乙烯基-3-乙基咪唑六氟磷酸盐、1-乙烯基-3-丁基咪唑六氟磷酸盐、1-十六烷基-2,3-二甲基咪唑六氟磷酸盐、1-辛基-2,3-二甲基咪唑六氟磷酸盐、1,3-二甲基咪唑四氟硼酸盐、1-丁基-3-甲基咪唑四氟硼酸盐、1-癸基-3-甲基咪唑四氟硼酸盐、1-苄基-3-甲基咪唑四氟硼酸盐、1-乙基-2,3-二甲基咪唑四氟硼酸盐、1-丙基-2,3-二甲基咪唑四氟硼酸盐、1-辛基-2,3-二甲基咪唑四氟硼酸盐、1-辛基-2,3-二甲基咪唑四氟硼酸盐。
作为优选,所述聚合物吸附剂包含有聚硅氧烷主链;
所述酚羟基接枝于聚硅氧烷主链的侧链上。
作为优选,所述聚合物吸附剂制备方法如下:将含有酚羟基的化合物接枝到有机硅单体上,得到带有酚羟基的有机硅单体,然后将带有酚羟基的有机硅单体聚合,即得所述聚合物吸附剂。
作为优选,所述本发明中可选用含有双键的苯酚与含有硅氢结构的有机硅单体(例如D 3H、D 4H)发生硅氢加成反应,从而得到带有酚羟基的有机硅单体,然后在酸或碱的催化下,使得有机硅单体开环聚合,即得所述聚合物吸附剂。
作为优选,所述固体吸附剂包括硅胶粉、硅藻土、层状石墨、活性炭、活性炭纤维中的任意一种。
作为优选,所述单质金属包括铜或者银中的任意一种;
所述金属氧化物包括镁、铝、锌、铁中的一种或任意一种的氧化物。
本发明第二方面,还提供了一种用于制备所述杂质气体吸附剂的方法,
包括以下步骤:
(1)在固体吸附剂表面沉积含有单质金属以及金属氧化物的沉积层;
(2)将聚合物吸附剂溶解于离子液体中,形成液体吸附剂;
(3)将表面沉积有沉积层的固体吸附剂分散在液体吸附剂内部,即得所述杂质气体吸附剂。
本发明中在固体吸附剂表面沉积单质金属层的过程中可选用的方法较多,例如可通过化学气相沉积或者化学镀或者电镀等技术手段即可将单质金属沉积到固体吸附剂的表面。然后将沉积在固体吸附剂表面的单质金属进行氧化,由于金属的活动顺序的不同,因此可以通过氢气的选择性还原从而对其中的个别金属元素的氧化物还原成金属单质,例如通过氢气可以将氧化铜以及氧化银还原成铜单质以及银单质,而氧化锌、氧化铝、氧化铁等金属氧化物由于其金属元素的活泼性大于氢气,因此在常规条件下氢气难以将其还原成单质金属,因此经过还原后即可在固体吸附剂的表面同时形成单质金属层以及金属氧化物。
作为优选,所固体吸附剂在加入到液体吸附剂分散中前,还需要在氢气氛围下活化;
活化温度为200~250℃,活化时间1~5h。
本发明为了使得单质金属与杂质气体之间能够保持足够的静电力,因此需要在使用前对固体吸附剂进行活化处理,从而有效除去单质金属表面的金属氧化物。
作为优选,所述固体吸附剂与液体吸附剂的体积比为1:(2~10)。
本发明第三方面,还提供了一种纯化氧化亚氮的方法,
包括以下步骤:
(S.1)将所述杂质气体吸附剂填充于吸附器中;
(S.2)将吸附器抽负处理,除去吸附器中的空气,然后通入高纯氧化亚氮气体;
(S.3)向吸附器中通入氧化亚氮原料气,使得氧化亚氮原料气与所述吸附组合物接触,收集从吸附器中流出的气体,得到电子级氧化亚氮。
有益效果
本发明在氧化亚氮提纯过程中只需要将氧化亚氮原料气通入到填充有所述杂质气体吸附剂的吸附器中,并使得氧化亚氮原料气与所述杂质气体吸附剂接触,即可将氧化亚氮原料气中的杂质起到有效吸附。经过实际测试,在经过吸附之后,氧化亚氮气体中的杂质气体含量能够降至ppb级别,效果十分优异。
(1)本发明中的杂质气体吸附剂能够通过物理吸附以及化学吸附联用的技术手段,从而对氧化亚氮原料气中的杂质气体起到良好的吸附效果;
(2)本发明在吸附过程中通过延长了氧化亚氮与杂质气体吸附剂之间的接触时间以及接触面积,进一步提升了对于杂质气体的吸附效率;
(3)本发明在提纯氧化亚氮的提纯过程中具有步骤简单的优点,同时对于杂质气体的吸附效果优良,经过简单的吸附处理后的氧化亚氮中杂质气体的浓度能够达到ppb级别。
附图说明
图1 为固体吸附剂A的电镜照片。
图2 为固体吸附剂B的电镜照片。
图3为氧化亚氮纯化系统的结构示意图。
其中:原料气罐100、吸附组件200、一级吸附器211、二级吸附器212、三级吸附器213、产品罐300。
本发明的实施方式
下面结合说明书附图以及具体实施例对本发明做进一步描述。本领域普通技术人员在基于这些说明的情况下将能够实现本发明。此外,下述说明中涉及到的本发明的实施例通常仅是本发明一部分的实施例,而不是全部的实施例。因此,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
【聚合物吸附剂】
本发明中的聚合物吸附剂通过以下方法制备得到:
(1)单体制备:将24g(100mmol)四甲基环四硅氧烷溶于50ml甲苯中,然后向其中加入48g(400mmol)4-乙烯基苯酚以及0.5g卡斯特催化剂,升温至85℃反应10h后,结束反应,反应物中加入5g活性炭,搅拌吸附30min后,过滤,蒸除滤液中的甲苯,得到有机硅单体(1),其制备反应示意式如下式(1)所示:
式(1)
(2)氮气保护下,取30g八甲基化四硅氧烷、20g有机硅单体(1)以及2g六甲基二硅氧烷,混合均匀后加入1g酸性白土,升温至80℃后搅拌反应3h,反应结束后过滤除去酸性白土,得到聚合物吸附剂,其制备反应示意式如下式(2)所示:
式(2)
【固体吸附剂】
固体吸附剂A的制备:
(1)配制电镀液,电镀液的配方如下:硫酸铜50g/L、硫酸锌30g/L、HEDP 90g/L、碳酸钠25g/L、 EDTA二钠1~2mL/L,pH值13.0~13.5;
(2)电镀:将活性炭纤维浸渍于电镀液中,然后在常温下通入1.5~3.5A/dm 2的电流,从而在活性炭纤维表面沉积一层含有金属锌以及金属铜的沉积层;
(3)将表面沉积有金属锌以及金属铜的活性炭纤维在空气下加热至150℃保持1h,使得金属锌以及金属铜氧化形成氧化锌以及氧化铜;
(4)将表面沉积有氧化锌以及氧化铜的活性炭纤维在含有20%氢气以及80%氮气的混合气氛中加热至200℃,持续1h,使得氧化铜还原成铜单质,从而得到固体吸附剂A,其电镜照片如图1所示。
固体吸附剂B的制备:
(1)配制化学镀液,电镀液的配方如下:五水硫酸铜30g/L、硫酸锌25 g/L、甲醛60ml/L、EDTA二钠75 g/L、酒石酸钠45 g/L、氢氧化钠20%(w);
(2)化学镀:将五水硫酸铜30g/L、硫酸锌25 g/L、EDTA二钠75 g/L、酒石酸钠45 g/L在烧杯中溶解,然后加热至温度为60℃,人然后依次加入硅胶粉和甲醛,用氢氧化钠调节pH在11~13之间,从而在硅胶粉表面沉积一层含有金属锌以及金属铜的沉积层;
(3)将表面沉积有金属锌以及金属铜的硅胶粉在空气下加热至150℃保持1h,使得金属锌以及金属铜氧化形成氧化锌以及氧化铜;
(4)将表面沉积有氧化锌以及氧化铜的硅胶粉在含有20%氢气以及80%氮气的混合气氛中加热至200℃,持续1h,使得氧化铜还原成铜单质,从而得到固体吸附剂B,其电镜照片如图2所示。
固体吸附剂C的制备:
(1)配制化学镀液,电镀液的配方如下:五水硫酸铜30g/L、硫酸亚铁15 g/L、硼氢化钾1.5ml/L、EDTA二钠75 g/L、磷酸二氢钠20 g/L、酒石酸钠45 g/L、氢氧化钠20%(w);
(2)化学镀:将五水硫酸铜30g/L、硫酸亚铁25 g/L、EDTA二钠75 g/L、磷酸二氢钠、酒石酸钠45 g/L在烧杯中溶解,然后加热至温度为60℃,人然后依次加入硅胶粉和硼氢化钾,用氢氧化钠调节pH在11~13之间,从而在硅胶粉表面沉积一层含有金属铁以及金属铜的沉积层;
(3)将表面沉积有金属铁以及金属铜的硅胶粉在空气下加热至150℃保持1h,使得金属铁以及金属铜氧化形成氧化铁以及氧化铜;
(4)将表面沉积有氧化铁以及氧化铜的硅胶粉在含有20%氢气以及80%氮气的混合气氛中加热至200℃,持续1h,使得氧化铜还原成铜单质,从而得到固体吸附剂C。
固体吸附剂D的制备:
(1)配制化学镀液,电镀液的配方如下:五水硫酸铜30g/L、硫酸锌25 g/L、甲醛60ml/L、EDTA二钠75 g/L、酒石酸钠45 g/L、氢氧化钠20%(w);
(2)化学镀:将五水硫酸铜30g/L、硫酸锌25 g/L、EDTA二钠75 g/L、酒石酸钠45 g/L在烧杯中溶解,然后加热至温度为60℃,人然后依次加入硅胶粉和甲醛,用氢氧化钠调节pH在11~13之间,从而在硅胶粉表面沉积一层含有金属锌以及金属铜的沉积层,从而得到固体吸附剂D。
固体吸附剂E的制备:
(1)配制化学镀液,电镀液的配方如下:五水硫酸铜30g/L、硫酸锌25 g/L、甲醛60ml/L、EDTA二钠75 g/L、酒石酸钠45 g/L、氢氧化钠20%(w);
(2)化学镀:将五水硫酸铜30g/L、硫酸锌25 g/L、EDTA二钠75 g/L、酒石酸钠45 g/L在烧杯中溶解,然后加热至温度为60℃,人然后依次加入硅胶粉和甲醛,用氢氧化钠调节pH在11~13之间,从而在硅胶粉表面沉积一层含有金属锌以及金属铜的沉积层;
(3)将表面沉积有金属锌以及金属铜的硅胶粉在空气下加热至150℃保持1h,使得金属锌以及金属铜氧化形成氧化锌以及氧化铜,从而得到固体吸附剂E。
实施例1
一种用于制备杂质气体吸附剂的方法,包括以下步骤:
(1)按照重量比1:5聚合物吸附剂溶解于1-丁基-3-甲基咪唑三氟甲磺酸盐中,形成液体吸附剂;
(2)将按照体积比1:5将固体吸附剂A与分散在液体吸附剂内部,即得所述杂质气体吸附剂。
实施例2
一种用于制备杂质气体吸附剂的方法,包括以下步骤:
(1)按照重量比1:10聚合物吸附剂溶解于1-丁基-3-甲基咪唑三氟甲磺酸盐中,形成液体吸附剂;
(2)将按照体积比1:5将固体吸附剂A与分散在液体吸附剂内部,即得所述杂质气体吸附剂。
实施例3
一种用于制备杂质气体吸附剂的方法,包括以下步骤:
(1)按照重量比1:3聚合物吸附剂溶解于1-丁基-3-甲基咪唑三氟甲磺酸盐中,形成液体吸附剂;
(2)将按照体积比1:5将固体吸附剂A与分散在液体吸附剂内部,即得所述杂质气体吸附剂。
实施例4
一种用于制备杂质气体吸附剂的方法,包括以下步骤:
(1)按照重量比1:5聚合物吸附剂溶解于1-乙基-3-甲基咪唑三氟乙酸盐中,形成液体吸附剂;
(2)将按照体积比1:5将固体吸附剂B与分散在液体吸附剂内部,即得所述杂质气体吸附剂。
实施例5
一种用于制备杂质气体吸附剂的方法,包括以下步骤:
(1)按照重量比1:5聚合物吸附剂溶解于1-乙基-3-甲基咪唑三氟乙酸盐中,形成液体吸附剂;
(2)将按照体积比1:5将固体吸附剂C与分散在液体吸附剂内部,即得所述杂质气体吸附剂。
实施例6
一种用于制备杂质气体吸附剂的方法,包括以下步骤:
(1)按照重量比1:5聚合物吸附剂溶解于1-乙基-3-甲基咪唑三氟乙酸盐中,形成液体吸附剂;
(2)将按照体积比1:2将固体吸附剂C与分散在液体吸附剂内部,即得所述杂质气体吸附剂。
实施例7
一种用于制备杂质气体吸附剂的方法,包括以下步骤:
(1)按照重量比1:5聚合物吸附剂溶解于1-乙基-3-甲基咪唑三氟乙酸盐中,形成液体吸附剂;
(2)将按照体积比1:8将固体吸附剂C与分散在液体吸附剂内部,即得所述杂质气体吸附剂。
实施例8
一种用于制备杂质气体吸附剂的方法,包括以下步骤:
(1)按照重量比1:5聚合物吸附剂溶解于1-乙基-3-甲基咪唑三氟乙酸盐中,形成液体吸附剂;
(2)将按照体积比1:10将固体吸附剂C与分散在液体吸附剂内部,即得所述杂质气体吸附剂。
对比例1
其与实施例4的区别在于没有添加固体吸附剂B。
对比例2
其与实施例4的区别在于固体吸附剂为硅胶粉。
对比例3
其与实施例4的区别在于将固体吸附剂A替换为固体吸附剂D。
对比例4
其与实施例4的区别在于将固体吸附剂A替换为固体吸附剂E。
应用例1
如图3所示,一种氧化亚氮纯化系统,包括依次通过管路连接的原料气罐100、吸附组件200以及产品罐300。
其中:
所述吸附组件200包括若干相互串联的吸附器210;
其包括依次连接的一级吸附器211、二级吸附器212以及三级吸附器213。
一级吸附器211容积为30升,设计压力为5.0MPa,工作最高温度为300℃,且其内部填充有13X 分子筛;
二级吸附器212中容积为30升,设计压力为5.0MPa,工作最高温度为300℃,且其内部填充有如上所示的实施例1~8以及对比例1~4中的杂质气体吸附剂;
三级吸附器213容积为30升,设计压力为5.0MPa,工作最高温度为300℃,且其内部填充有活性炭。
应用例2
将应用例1中的氧化亚氮提纯系统进行抽负处理,除去吸附器中的空气,然后通入高纯氧化亚氮气体,以除去其中的残留杂质气体,将原料气罐100通过阀门调节原料气罐100内维持在1.8MPa,使得氧化亚氮以0.10MPa的压力,1.5L/min的流速依次经过一级吸附器211、二级吸附器212以及三级吸附器213,并与13X 分子筛、实施例1~8以及对比例1~4中的杂质气体吸附剂以及活性炭分别接触,然后把经过吸附后的氧化亚氮通入产品罐300中,得到电子级氧化亚氮气体。
应用例1~8以及对比应用例1~4中的提纯得到的氧化亚氮气体中杂质气体含量如下表1所示。
表1
从上表数据中可知,通过本发明制备得到的杂质气体吸附剂其具有良好的杂质气体吸附能力,经过吸附处理后,氧化亚氮气体中的杂质气体含量大幅下降,能够达到ppb级别。
从细节方面看,将实施例4与对比例1以及2进行比较后,我们可知,本发明中通过在液体吸附剂中分散有固体吸附剂中后能够有效提升对于氧化亚氮中的杂质气体的吸附效率。同时固体吸附剂中的金属单质以及金属氧化物能够对于氧化亚氮中的杂质气体的吸附有着促进作用。
同时,将实施例4与对比例3以及4相比较,我们可知,当固体吸附剂中仅仅含有金属单质或者仅仅只含有金属氧化物时,其对于杂质气体对的吸附效果有明显的下降,表明金属氧化物能够与金属单质起到协同增效的作用。

Claims (10)

  1. 一种杂质气体吸附剂,其特征在于,
    包括液体吸附剂,以及分散在液体吸附剂内部的固体吸附剂;
    所述液体吸附剂包括离子液体以及溶解在离子液体中的聚合物吸附剂;
    所述聚合物吸附剂中包含有酚羟基;
    所述固体吸附剂包含有可供液体吸附剂进出的多孔结构;
    所述固体吸附剂的表面还沉积有含有单质金属以及金属氧化物的沉积层。
  2. 根据权利要求1所述的一种杂质气体吸附剂,其特征在于,
    所述离子液体包括咪唑类离子液体、季铵类离子液体、季鏻类离子液体、吡咯烷类离子液体、哌啶类离子液体中的一种或多种的组合。
  3. 根据权利要求1所述的一种杂质气体吸附剂,其特征在于,
    所述聚合物吸附剂包含有聚硅氧烷主链;
    所述酚羟基接枝于聚硅氧烷主链的侧链上。
  4. 根据权利要求1或3所述的一种杂质气体吸附剂,其特征在于,
    所述聚合物吸附剂制备方法如下:将含有酚羟基的化合物接枝到有机硅单体上,得到带有酚羟基的有机硅单体,然后将带有酚羟基的有机硅单体聚合,即得所述聚合物吸附剂。
  5. 根据权利要求1所述的一种杂质气体吸附剂,其特征在于,
    所述固体吸附剂包括硅胶粉、硅藻土、层状石墨、活性炭、活性炭纤维中的任意一种。
  6. 根据权利要求1所述的一种杂质气体吸附剂,其特征在于,
    所述单质金属包括铜或者银中的任意一种;
    所述金属氧化物包括镁、铝、锌、铁中的一种或任意一种的氧化物。
  7. 一种用于制备如权利要求1~6中任意一项所述杂质气体吸附剂的方法,其特征在于,
    包括以下步骤:
    (1)在固体吸附剂表面沉积含有单质金属以及金属氧化物的沉积层;
    (2)将聚合物吸附剂溶解于离子液体中,形成液体吸附剂;
    (3)将表面沉积有沉积层的固体吸附剂分散在液体吸附剂内部,即得所述杂质气体吸附剂。
  8. 根据权利要求7所述的方法,其特征在于,
    所固体吸附剂在加入到液体吸附剂分散中前,还需要在氢气氛围下活化;
    活化温度为200~250℃,活化时间1~5h。
  9. 根据权利要求7所述的方法,其特征在于,
    所述固体吸附剂与液体吸附剂的体积比为1:(2~10)。
  10. 纯化氧化亚氮的方法,其特征在于,
    包括以下步骤:
    (S.1)将如权利要求1~6中任意一项所述杂质气体吸附剂填充于吸附器中;
    (S.2)将吸附器抽负处理,除去吸附器中的空气,然后通入高纯氧化亚氮气体;
    (S.3)向吸附器中通入氧化亚氮原料气,使得氧化亚氮原料气与所述吸附组合物接触,收集从吸附器中流出的气体,得到电子级氧化亚氮。
PCT/CN2022/127325 2022-09-23 2022-10-25 纯化氧化亚氮的方法 WO2024060353A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211167259.6 2022-09-23
CN202211167259.6A CN115430283B (zh) 2022-09-23 2022-09-23 纯化氧化亚氮的方法

Publications (1)

Publication Number Publication Date
WO2024060353A1 true WO2024060353A1 (zh) 2024-03-28

Family

ID=84249397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127325 WO2024060353A1 (zh) 2022-09-23 2022-10-25 纯化氧化亚氮的方法

Country Status (2)

Country Link
CN (1) CN115430283B (zh)
WO (1) WO2024060353A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090266230A1 (en) * 2004-08-05 2009-10-29 Maciej Radosz Poly(ionic liquid)s as new materials for co2 separation and other applications
CN107552006A (zh) * 2017-09-29 2018-01-09 浙江工业大学 一种富集HCl气体的多孔固体负载金属基离子液体
CN107651651A (zh) * 2017-09-29 2018-02-02 浙江工业大学 一种吸附HCl气体的多孔固体负载离子液体
CN109745952A (zh) * 2019-03-18 2019-05-14 上海科技大学 一种多孔液体及其制备方法和用途
CN113350970A (zh) * 2021-05-31 2021-09-07 北京工业大学 一种多孔有机小分子液体吸收剂、制备方法及用途
CN114272890A (zh) * 2021-12-30 2022-04-05 大连科利德光电子材料有限公司 一种氧气吸附剂、制备方法和降低氧化亚氮原料气中氧含量的方法
CN114308064A (zh) * 2021-12-22 2022-04-12 东北电力大学 多级孔固体材料限域金属基催化剂及其制备方法和应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536302A (en) * 1994-03-23 1996-07-16 Air Products And Chemicals, Inc. Adsorbent for removal of trace oxygen from inert gases
US6576044B1 (en) * 1999-02-25 2003-06-10 The Boc Group, Inc. Process for the purification of nitric oxide
US7070746B1 (en) * 1999-05-26 2006-07-04 Solutia Inc. Process for nitrous oxide purification
WO2005105297A1 (ja) * 2004-04-27 2005-11-10 Takasago International Corporation 脱酸素剤組成物
JP2012217918A (ja) * 2011-04-08 2012-11-12 Denso Corp ガス分離回収装置及びガス分離回収方法
US10464813B2 (en) * 2013-06-18 2019-11-05 Versum Materials Us, Llc Process for recovery and purification of nitrous oxide
JP6510257B2 (ja) * 2015-02-10 2019-05-08 昭和電工株式会社 亜酸化窒素の精製方法
WO2017130833A1 (ja) * 2016-01-27 2017-08-03 シャープ株式会社 酸素吸収能を有する液体、その製造方法およびそれを含む錯体溶液
KR101858190B1 (ko) * 2016-07-20 2018-05-16 한국화학연구원 아산화질소 함유 기체 혼합물로부터 아산화질소의 회수 및 정제공정
CN106422673A (zh) * 2016-11-03 2017-02-22 浙江大学 一种利用羧酸阴离子功能化离子液体捕集一氧化氮的方法
CN106563334A (zh) * 2016-11-22 2017-04-19 浙江大学 一种利用苯酚阴离子功能化离子液体捕集一氧化氮的方法
CN106731491A (zh) * 2016-11-22 2017-05-31 浙江大学 一种利用卤素阴离子功能化离子液体捕集一氧化氮的方法
CN107362661B (zh) * 2017-09-14 2019-09-10 中南大学 一种气体净化装置及其应用
CN112802927B (zh) * 2021-04-14 2021-08-17 浙江陶特容器科技股份有限公司 高纯氧化亚氮在制备太阳能电池片中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090266230A1 (en) * 2004-08-05 2009-10-29 Maciej Radosz Poly(ionic liquid)s as new materials for co2 separation and other applications
CN107552006A (zh) * 2017-09-29 2018-01-09 浙江工业大学 一种富集HCl气体的多孔固体负载金属基离子液体
CN107651651A (zh) * 2017-09-29 2018-02-02 浙江工业大学 一种吸附HCl气体的多孔固体负载离子液体
CN109745952A (zh) * 2019-03-18 2019-05-14 上海科技大学 一种多孔液体及其制备方法和用途
CN113350970A (zh) * 2021-05-31 2021-09-07 北京工业大学 一种多孔有机小分子液体吸收剂、制备方法及用途
CN114308064A (zh) * 2021-12-22 2022-04-12 东北电力大学 多级孔固体材料限域金属基催化剂及其制备方法和应用
CN114272890A (zh) * 2021-12-30 2022-04-05 大连科利德光电子材料有限公司 一种氧气吸附剂、制备方法和降低氧化亚氮原料气中氧含量的方法

Also Published As

Publication number Publication date
CN115430283B (zh) 2023-03-28
CN115430283A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
CN110743613B (zh) 一种负载型金属催化剂及其制备方法与应用
CN110743616B (zh) 一种环境友好型乙炔氢氯化催化剂及其制备方法
CN110743619B (zh) 一种负载离子液体催化剂及其制备方法与应用
WO2018088822A1 (ko) 산화-환원 활성을 갖는 다공체를 이용한 올레핀 선택성 흡착제 및 이를 이용한 올레핀 분리 방법
CN112044401A (zh) 一种多孔有机笼吸附材料及其制备方法
Li et al. Adjusting accommodation microenvironment for Cu+ to enhance oxidation inhibition for thiophene capture
CN114870804B (zh) 一种杂质气体吸附剂及其制备方法和应用
CN115591272B (zh) 硅基前驱体的提纯方法及提纯系统
CN114849671B (zh) 杂质吸附剂、制备方法及利用该吸附剂提纯三甲基铝的方法
JPH11509466A (ja) 流体の濾過および/または精製に関する装置および方法
WO2023123596A1 (zh) 一种氧气吸附剂、制备方法和降低氧化亚氮原料气中氧含量的方法
JP4893918B2 (ja) 含窒素炭素系電極触媒
WO2024060353A1 (zh) 纯化氧化亚氮的方法
CN111375374A (zh) 一种负载型铜基吸附剂及其制备方法
CN115350690B (zh) 电子级三氯化硼的提纯方法
CN101380540B (zh) 镓铟铝低共熔熔融体及其在提纯气体中的应用
CN115584482B (zh) 钽源前驱体的纯化方法
CN115869903B (zh) 一种铜基沸石分子筛杂化材料及其制备方法和应用
CN112108105B (zh) 一种降低卷烟烟气中hcn和苯酚的吸附材料及其应用
CN1820841A (zh) 一种同时脱除氯化氢和汞蒸气的吸附剂的制备方法
KR20020082816A (ko) 알칼리 금속의 전기화학적 표면처리에 의한 고기능성 탄소나노소재 및 이의 제조 방법
CN114369253B (zh) 一种改性mof材料及其制备方法
FR2795002A1 (fr) Solution aqueuse utilisable dans un procede d'echange ions
CN118206139A (zh) 一种六氟磷酸锂液态盐的纯化方法
CN118221718A (zh) 一种氨基硅烷的提纯方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959355

Country of ref document: EP

Kind code of ref document: A1