WO2023123596A1 - 一种氧气吸附剂、制备方法和降低氧化亚氮原料气中氧含量的方法 - Google Patents

一种氧气吸附剂、制备方法和降低氧化亚氮原料气中氧含量的方法 Download PDF

Info

Publication number
WO2023123596A1
WO2023123596A1 PCT/CN2022/074047 CN2022074047W WO2023123596A1 WO 2023123596 A1 WO2023123596 A1 WO 2023123596A1 CN 2022074047 W CN2022074047 W CN 2022074047W WO 2023123596 A1 WO2023123596 A1 WO 2023123596A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
nitrous oxide
gas
oxygen adsorbent
adsorbent
Prior art date
Application number
PCT/CN2022/074047
Other languages
English (en)
French (fr)
Inventor
赵毅
石琳
李文博
金龙
寻虎
Original Assignee
大连科利德光电子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连科利德光电子材料有限公司 filed Critical 大连科利德光电子材料有限公司
Publication of WO2023123596A1 publication Critical patent/WO2023123596A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/22Nitrous oxide (N2O)

Definitions

  • the invention relates to the field of gas purification, in particular to an oxygen adsorbent, a preparation method and a method for reducing the oxygen content in nitrous oxide feed gas.
  • Electron gas is an essential raw material in the IC manufacturing process, and it is also widely used in optoelectronics, compound semiconductors, solar photovoltaic cells, liquid crystal displays, optical fiber manufacturing and many other fields.
  • the front-end processes of IC manufacturing such as epitaxy, chemical vapor deposition, ion implantation, doping, etching, cleaning, and masking film formation, almost all require different types and purity of electrical gases. It is these gases that are used in different processes. Silicon wafers have semiconductor properties.
  • nitrous oxide is used in oxidation and chemical vapor deposition processes in semiconductor production.
  • low-purity nitrous oxide contains higher concentrations of nitrogen, nitrogen monoxide, nitrogen dioxide and oxygen. These impurity gases seriously affect the quality of nitrous oxide.
  • the chip size is increasing continuously, and the line width of feature size is continuously decreasing. It is required that the purity and specific indicators of various electronic gases used in IC manufacturing process continue to increase. At present, most of the required purity needs to be 99.999% ( 5N), so how to purify nitrous oxide gas is an important direction for the localization of electronic gases.
  • Oxygen in the impurity gas easily reacts with other impurities, resulting in uncontrollable types and contents of impurities in the gas. Therefore, in order to improve the purity of nitrous oxide, it is necessary to preferentially remove the impurity oxygen in the nitrous oxide raw material gas.
  • physical or chemical adsorption methods are usually used to adsorb oxygen therein, and the most commonly used adsorbents are molecular sieves and activated carbon.
  • the application number CN201811380324.7 points out a device and method for recovering and purifying electronic grade laughing gas in industrial tail gas. It includes a water washing tower, a reaction tower, an amine liquid absorption tower, a regeneration decarburization tower, an alkali washing water washing tower, an adsorption tower, a compressor and a two-stage rectification tower connected in series.
  • the liquid inlet of the regeneration decarbonization tower is connected through a heat exchanger, and the liquid outlet of the bottom of the regeneration decarbonization tower is connected with the liquid inlet of the amine liquid absorption tower through a heat exchanger.
  • the invention recovers and purifies nitrous oxide in industrial waste gas by means of absorption, reaction, adsorption, rectification, etc., and then obtains 99.999% laughing gas products.
  • the operation process of this system is feasible, and it can be used for continuous and large-scale production, which not only reduces the impact on the environment, but also creates certain economic value, but it has the disadvantage of complicated operation.
  • the present invention aims to overcome the problem of high impurity oxygen content in the nitrous oxide raw material gas in the prior art, resulting in lower quality of nitrous oxide, and provides an oxygen adsorbent, a preparation method and a method for reducing the nitrous oxide raw material The method of oxygen content in the gas to overcome the above defects.
  • porous silica skeleton is connected with boron elements through chemical bonds
  • the porous silica skeleton is also physically loaded with platinum compounds and low-valence manganese compounds.
  • the oxygen adsorbent in the present invention uses a porous silica skeleton as a carrier, which has the advantage of a larger specific surface area, and can enable the oxygen adsorbent loaded on it to have a higher adsorption effect on oxygen.
  • the silica skeleton has excellent stability, so applying it to adsorb oxygen in nitrous oxide can improve and prevent the quality of nitrous oxide from deteriorating.
  • boron is also connected by chemical bonds.
  • boron is introduced into the porous silica framework, it can reduce the physical adsorption adsorption barrier for oxygen, thereby It enables oxygen to be adsorbed by the porous silica framework.
  • the present invention since the present invention is also loaded with low-valence manganese, when the oxygen physically adsorbed in the porous silica framework meets the low-valence manganese, it can be absorbed by the low-valence manganese to generate high-valence manganese, thereby combine with each other. After it is applied to the nitrous oxide gas, it can effectively absorb the trace oxygen doped therein, so that the purity of the nitrous oxide gas can be effectively improved.
  • the oxygen adsorption effect of the oxygen adsorbent in the present invention will gradually decrease as the adsorption process continues. Therefore, after a period of use, it is necessary to reduce high-valent manganese.
  • the conventional reduction method is to place the oxygen adsorbent in a hydrogen environment and perform high-temperature reduction. Usually, the reduction temperature is above 250°C, and the reduction is relatively difficult. Therefore, in the present invention, a platinum catalyst is also physically supported on the porous silica skeleton. The researchers of the present invention have found that the addition of the platinum catalyst can effectively reduce the difficulty of reducing high-valent manganese, and the reduction temperature can be completed at 150°C. Reduction of high valence manganese.
  • the molar ratio of boron to silicon in the oxygen adsorbent is 1:(3 ⁇ 10).
  • the loading amount of the platinum compound in the oxygen adsorbent is 0.01wt% ⁇ 0.05wt%.
  • the loading amount of the low-valence manganese compound in the oxygen adsorbent is 2.5-15 wt %.
  • the low-valence manganese compound in the oxygen adsorbent of the present invention has a significant impact on the adsorption effect of oxygen.
  • the test found that when the loading of the low-valence manganese compound is lower than 2.5 wt %, the adsorption effect on oxygen is poor, and the single service life of the oxygen adsorbent is low.
  • the loading of low-valent manganese compounds is higher than 15 wt%, it will exceed the upper limit of the loading of the porous silica framework, and the low-valent manganese compounds are easy to fall off during use.
  • a kind of preparation method of oxygen adsorbent is as follows:
  • the porous silica skeleton of the main body of the oxygen adsorbent in the present invention is prepared from borosiloxane containing silicon hydrogen structure and vinyl structure through hydrosilylation reaction to obtain polyborosiloxane gel, which is then heat-treated Afterwards, the organic segment in its chain segment will be thermally decomposed to form a silica skeleton with a porous structure.
  • the platinum catalyst can be supported on the silica skeleton.
  • the silicon-oxygen main chain of the borosiloxane main chain is a ring structure, after hydrosilylation and thermal sintering, it can form holes with uniform size to improve the adsorption effect on oxygen.
  • the organic solvent is removed by supercritical drying, and the supercritical medium is carbon dioxide.
  • the heat treatment temperature in the step (3) is 600-800° C.
  • the heat treatment time is 3-8 hours.
  • a method for reducing trace oxygen content in nitrous oxide feed gas comprising the following steps:
  • Oxygen adsorbent in the present invention has good adsorption effect with oxygen because of its high activity, so it may absorb oxygen in the air during storage and cause activity to decrease. Therefore, the present invention first needs to absorb nitrous oxide gas Activate the oxygen adsorbent to reduce the oxidized high-valence manganese to low-valence manganese under the condition of hydrogen, so that its oxygen absorption effect is greatly improved.
  • the present invention In the process of reducing the oxygen in the nitrous oxide raw material gas, the present invention only needs to pass the dried raw gas into the adsorption tower containing the above-mentioned oxygen adsorbent.
  • the use process is simple and convenient. After actual testing, after the adsorption , the oxygen content in the nitrous oxide gas can be reduced to below 1ppm, and the effect is very excellent.
  • the oxygen adsorbent is placed in a nitrogen environment containing 10-30% hydrogen by volume, kept at 110-135°C for 3 hours, and then the gas is replaced with nitrogen, cooled naturally, and filled with Nitrogen preservation, placed in the adsorption tower.
  • the pressure of the adsorption tower in the step (S.4) is 0.1-0.5 MPa, and the adsorption temperature is 20-50°C.
  • the present invention has the following beneficial effects:
  • boron is connected to the porous silica skeleton through chemical bonds, and at the same time, the surface is loaded with a low-valence manganese compound, which can effectively absorb oxygen in nitrous oxide and improve the purity of nitrous oxide gas;
  • the oxygen adsorbent in the present invention has the advantages of good activity and reusability, and at the same time, the condition of the oxygen adsorbent in the reactivation process is simple, safe and effective;
  • the method of using the oxygen adsorbent in the present invention is simple, and at the same time, the concentration of oxygen in the treated nitrous oxide can reach below 1 ppm.
  • Figure 1 is an electron micrograph of the oxygen adsorbent prepared in Example 1 of the present invention.
  • Figure 2 is the GC chart of gas-gas analysis of borosiloxane containing silicon hydrogen structure.
  • Figure 3 is the GC chart of the gas mass analysis of borosiloxine containing vinyl structure.
  • the preparation method of the borosiloxane containing silicon hydrogen structure and vinyl structure used in the present invention is prepared by the method shown in the authorized announcement number CN105585590B.
  • reaction solution was added dropwise to a suspension containing 5g of zinc oxide and 500ml of ethyl acetate, and after reacting at room temperature for 12 hours, the zinc salt was removed by filtration, and the filtrate was washed with water and evaporated to remove tetrahydrofuran to obtain a mixed borosiloxane 2.53 g (yield 78.8%), its gaseous analysis GC chart is shown in Figure 2.
  • reaction solution was added dropwise to a suspension containing 5g of zinc oxide and 500ml of ethyl acetate, and after reacting at room temperature for 12 hours, the zinc salt was removed by filtration, and the filtrate was washed with water and evaporated to remove tetrahydrofuran to obtain a mixed borosilicate 3.58 g (yield 76.9%), its mass spectrometry GC chart is shown in Figure 3.
  • a kind of preparation method of oxygen adsorbent is as follows:
  • a kind of preparation method of oxygen adsorbent is as follows:
  • a kind of preparation method of oxygen adsorbent is as follows:
  • a kind of preparation method of oxygen adsorbent is as follows:
  • a kind of preparation method of oxygen adsorbent is as follows:
  • a kind of preparation method of oxygen adsorbent is as follows:
  • the toluene in polysiloxane gel is removed by supercritical drying.
  • the medium of supercritical drying is carbon dioxide, the supercritical temperature is 32°C, and the supercritical pressure is 7.5MPa. Heat treatment for 4 hours, and cool down to obtain oxygen adsorbent.
  • a kind of preparation method of oxygen adsorbent is as follows:
  • a preparation method of oxygen adsorbent disperse 15.2g (0.1mol) tetramethoxysilane and 1.5g manganese oxide powder into 100ml of methanol, add 1ml of concentrated hydrochloric acid dropwise to it, stir and reflux for 12 hours, and then obtain coating Polysiloxane gel with manganese oxide, remove the toluene in the polysiloxane gel by supercritical drying, the supercritical drying medium is carbon dioxide, the supercritical temperature is 32 °C, and the supercritical pressure is 7.5 MPa, polysiloxane coated with manganese oxide was heat-treated at 700° C. for 6 hours under the protection of nitrogen, and the temperature was lowered to obtain an oxygen adsorbent.
  • the supercritical drying medium is carbon dioxide
  • the supercritical temperature is 32 °C
  • the supercritical pressure is 7.5 MPa
  • a kind of preparation method of oxygen adsorbent is as follows:
  • a method for reducing trace oxygen content in nitrous oxide feed gas comprising the following steps:
  • the specific surface area of the deoxidizer was investigated by low-temperature nitrogen adsorption method.
  • the adsorption effect of the oxygen adsorbent is compared.
  • the used deoxidizers (Examples 1-5 and Comparative Examples 3-4) were heated and regenerated in a nitrogen environment containing 20% hydrogen by volume, and the relative adsorption rate was determined to be 100% based on the adsorption effect at the first use. Test The deoxidation effect after regeneration at different temperatures, and calculate the relative adsorption rate.
  • the oxygen adsorbent prepared by the present invention has a higher specific surface area and good oxygen adsorption capacity, and the oxygen content in the nitrous oxide feed gas after the adsorption treatment is greatly reduced, and can reach less than 1ppm level.
  • the oxygen adsorbents in Comparative Example 1 and Comparative Example 2 do not contain manganese oxide, so their adsorption of oxygen can only rely on physical adsorption, so the adsorption effect of both of them on oxygen is poor. Under the condition that the specific surface areas of the two are similar, in Comparative Example 2, because it contains boron atoms, it has a better adsorption effect on oxygen. It is speculated that boron atoms can reduce the physical adsorption adsorption barrier for oxygen, thereby enabling oxygen to Adsorbed by the porous silica framework.
  • Comparative example 3 adopts the hydrolysis of tetramethoxysilane to prepare the porous silica framework. Compared with the porous silica framework prepared by using cyclosiloxane as raw material, after manganese oxide is loaded, the specific surface area is relatively large. Therefore, its adsorption effect on oxygen is not good, and there is still a relatively high concentration of oxygen in the nitrous oxide gas after adsorption treatment.
  • Cyclosiloxane is used as raw material in Comparative Example 4, so the prepared porous silica skeleton does not contain boron atoms. Under the premise that the specific surface area is similar, its adsorption effect for oxygen is not as good as that of Examples 1-5, indicating that boron The addition of atoms can effectively improve the adsorption effect on oxygen.
  • the present invention has boron atoms connected by chemical bonds on the porous silica skeleton, and at the same time, the surface is loaded with low-valence manganese compounds, which can effectively adsorb oxygen in nitrous oxide and improve the concentration of nitrous oxide gas. purity.
  • the oxygen adsorbent in the present invention has the advantages of good activity and reusability, and the conditions in the reactivation process of the oxygen adsorbent are simple, safe and effective, which is very beneficial to the purification of industrial electronic gases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

涉及气体提纯领域,尤其涉及一种氧气吸附剂,包括多孔二氧化硅骨架,所述多孔二氧化硅骨架通过化学键连接有硼元素;所述多孔二氧化硅骨架上还物理负载有铂化合物以及低价态锰化合物。在多孔二氧化硅骨架上通过化学键连接有硼元素,同时表面负载有低价态锰化合物,能够有效吸附氧化亚氮中的氧气,提升了氧化亚氮气体的纯度。同时,氧气吸附剂还具有良好的活性以及可重复使用的优点,氧气吸附剂在重新活化过程中的条件简单,安全有效,非常利于工业电子气体的纯化。

Description

一种氧气吸附剂、制备方法和降低氧化亚氮原料气中氧含量的方法 技术领域
本发明涉及气体提纯领域,尤其涉及一种氧气吸附剂、制备方法和降低氧化亚氮原料气中氧含量的方法。
背景技术
电子气体是IC制造过程中必不可少的原料,同时其也广泛应用于光电子、化合物半导体、太阳能光伏电池、液晶显示器、光导纤维制造等其他诸多领域。IC制造的前道工序如外延、化学气相沉积、离子注入、掺杂、刻蚀、清洗、掩蔽膜生成等工艺几乎都需要不同种类和不同纯度的电气气体,正是这些气体通过不同的工艺使硅片具有半导体性能。
氧化亚氮作为一种IC制造中的重要的气体,用于半导体生产中的氧化、化学气相沉积工艺,通常低纯氧化亚氮中含有浓度较高的氮气、一氧化氮、二氧化氮以及氧气等杂质气体,这些杂质气体严重影响着氧化亚氮的品质。随着IC制造工艺及技术的发展,芯片尺寸不断增大,特征尺寸线宽不断减少,要求IC制程用的各种电子气体的纯度、特定指标不断提高,目前要求的纯度大都需要在99.999%(5N)以上,因此如何提纯氧化亚氮气体则是电子气体国产化的重要方向。
由于杂质气体中的氧气极易与其他杂质反应,导致气体中的杂质种类及含量不可控。因此,为了提高氧化亚氮的纯度,必须优先脱除氧化亚氮原料气中的杂质氧气。现有技术中,通常采用物理或化学吸附的方法以吸附其中的氧气,通常最常使用的吸附剂为分子筛以及活性炭。
技术问题
申请号 CN201811380324.7指出,一种回收和提纯工业尾气中电子级笑气的装置与方法。包括依次设置的水洗塔、反应塔、胺液吸收塔、再生脱碳塔、碱洗水洗塔、吸附塔、压缩机及串联的两级精馏塔,所述胺液吸收塔塔釜液体出口与再生脱碳塔液体入口通过换热器相连,再生脱碳塔塔釜液体出口与胺液吸收塔液体入口通过换热器相连。该发明利用吸收、反应、吸附、精馏等方式将工业废气中的氧化亚氮进行回收并提纯,进而得到99.999%的笑气产品。本系统操作流程可行,能够连续化及大型化生产,既减少对环境造成的影响,又可创造一定的经济价值,但是其存在操作复杂的缺陷。
技术解决方案
本发明是为了克服现有技术中的氧化亚氮原料气中的杂质氧气含量较高,导致氧化亚氮的品质较低的问题,提供了一种氧气吸附剂、制备方法和降低氧化亚氮原料气中氧含量的方法以克服上述缺陷。
为实现上述发明目的,本发明通过以下技术方案实现:
一种氧气吸附剂,
包括多孔二氧化硅骨架;
所述多孔二氧化硅骨架通过化学键连接有硼元素;
所述多孔二氧化硅骨架上还物理负载有铂化合物以及低价态锰化合物。
本发明中的氧气吸附剂以多孔二氧化硅骨架作为载体,其具有比表面积较大的优点,能够使得负载在其上的氧气吸附剂对于氧气具有更高的吸附效果。同时,二氧化硅骨架具有优异的稳定性,因而将其应用于吸附氧化亚氮中的氧气能够提高防止氧化亚氮的品质的下降。
同时,本发明中的多孔二氧化硅骨架中还通过化学键连接有硼元素,通过本发明研究发现,在多孔二氧化硅骨架中引入硼后,其能够降低对于氧气的物理吸附吸附势垒,从而能够使得氧气能够被多孔二氧化硅骨架所吸附。
同时,由于本发明中还负载有低价态锰,当物理吸附在多孔二氧化硅骨架中的氧气与低价态锰相相遇后,其便能够被低价态锰吸收生成高价态锰,从而相互结合。将其应用于氧化亚氮的气体后,能够有效吸收其中掺杂的微量氧气,使得氧化亚氮气体的纯度能够有效提升。
此外,由于本发明中的低价态锰在吸附过程中会形成高价态锰,因此随着吸附过程的继续,导致本发明中氧气吸附剂对于氧气的吸附效果会逐渐降低。因此在使用一段时间后需要对高价态锰进行还原,常规的还原方法是将氧气吸附剂置于氢气环境下,高温还原,通常还原温度在250℃以上,还原难度较大。因此,本发明在多孔二氧化硅骨架上还物理负载有铂催化剂,经过本发明研究人员发现,铂催化剂的加入其能够有效降低高价态锰的还原难度,能够使得还原温度150℃即可完成对于高价态锰的还原。
作为优选,所述氧气吸附剂中硼与硅的摩尔比为1:(3~10)。
作为优选,所述氧气吸附剂中铂化合物的负载量为0.01wt%~0.05 wt %。
作为优选,所述氧气吸附剂中低价态锰化合物的负载量为2.5~15 wt %。
本发明氧气吸附剂中低价态锰化合物对于氧气的吸附效果具有明显的影响,测试发现,当低价态锰化合物的负载量低于2.5 wt %后,对于氧气的吸附效果较差,同时氧气吸附剂的单次使用寿命较低。而低价态锰化合物的负载量高于15 wt %以后,会超出多孔二氧化硅骨架的负载上限,低价态锰化合物容易在使用过程中脱落。
一种氧气吸附剂的制备方法,所述氧气吸附剂的制备方法如下:
(1)将低价态锰化合物分散至有机溶剂,形成分散液;
(2)分别将含有硅氢结构以及乙烯基结构的环硼硅氧烷溶于分散液中,加入铂催化剂,发生硅氢加成反应,得到包覆有低价态锰化合物以及铂化合物的聚硼硅氧烷凝胶;
(3)除去聚硼硅氧烷凝胶中的有机溶剂,将包覆有低价态锰化合物以及铂化合物的聚硼硅氧烷在惰性气体保护下进行热处理,得到氧气吸附剂。
本发明中的氧气吸附剂其主体的多孔二氧化硅骨架由含有硅氢结构以及乙烯基结构的环硼硅氧烷经硅氢加成反应制备得到聚硼硅氧烷凝胶,将其进行热处理后其链段中的有机链段会受热分解形成具有多孔结构的二氧化硅骨架。而其中的铂催化剂则能够被负载在二氧化硅骨架上。
本发明在制备过程中由于环硼硅氧烷主链的硅氧主链为环形结构,因此在经过硅氢加成以及热烧结后,其能够形成尺寸均一的孔洞从而提高对于氧气的吸附效果。
作为优选,所述步骤(3)中采用超临界干燥除去有机溶剂,超临界介质为二氧化碳。
作为优选,所述步骤(3)中热处理处理温度为600~800℃,热处理时间为3~8h。
一种降低氧化亚氮原料气中微量氧含量的方法,包括以下步骤:
(S.1)将氧气吸附剂于氢气环境下,反应活化,并置于吸附塔中;
(S.2)将吸附塔中的气体替换成高纯氧化亚氮气体;
(S.3)将氧化亚氮原料气体进行脱水,得到干燥的氧化亚氮原料气;
(S.4)将干燥的氧化亚氮原料气通入装载有所述氧气吸附剂的吸附塔中,收集从吸附塔中流出的气体,得到低含氧量的氧化亚氮气体。
本发明中的氧气吸附剂由于活性较高,因此与氧气的吸附效果良好,因此在储存过程中可能在空气中吸附氧气而导致活性降低,因此本发明在吸附氧化亚氮气体的过程中首先需要将氧气吸附剂活化,使其在氢气条件下将氧化后的高价态锰还原成低价态锰,使得其吸氧效果大大提升。
本发明在降低氧化亚氮原料气中氧气的过程中只需将干燥后的原料气通入到含有上述氧气吸附剂的吸附塔中即可,使用过程简单方便,经过实际测试,在经过吸附之后,氧化亚氮气体中的氧气含量能够降至1ppm以下,效果十分优异。
作为优选,所述步骤(S.1中)将氧气吸附剂置于含有氢气体积比10~30%的氮气环境下,110~135℃下保持3h,然后将气体置换成氮气后自然冷却,充氮保藏,置于吸附塔中。
作为优选,所述步骤(S.4)中吸附塔的压力为0.1~0.5MPa,吸附温度为20~50℃。
有益效果
因此,本发明具有以下有益效果:
(1)本发明在多孔二氧化硅骨架上通过化学键连接有硼,同时表面负载有低价态锰化合物,能够有效吸附氧化亚氮中的氧气,提升了氧化亚氮气体的纯度;
(2)本发明中个的氧气吸附剂具有良好的活性以及可重复使用的优点,同时氧气吸附剂在重新活化过程中的条件简单,安全有效;
(3)本发明中氧气吸附剂的使用方法简单,同时经过处理后的氧化亚氮中氧气的浓度能够达到1ppm以下。
附图说明
图1 为本发明实施例1中制备得到的氧气吸附剂电镜照片。
图2 为含有硅氢结构的环硼硅氧的气质分析 GC 图。
图3 为含有乙烯基结构的环硼硅氧的气质分析 GC 图。
本发明的实施方式
下面结合说明书附图以及具体实施例对本发明做进一步描述。本领域普通技术人员在基于这些说明的情况下将能够实现本发明。此外,下述说明中涉及到的本发明的实施例通常仅是本发明一部分的实施例,而不是全部的实施例。因此,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明中所使用的含有硅氢结构以及乙烯基结构的环硼硅氧的制备方法如授权公告号为CN105585590B所示的方法制备得到。
含有硅氢结构的环硼硅氧的制备:
氮气保护下,将1.22g(10mmol)苯硼酸溶于50ml四氢呋喃中,然后向其中滴加5.56g(50mmol)甲基二氯硅烷与20ml四氢呋喃的混合液,常温反应3h后得到反应液。然后将反应液滴加至含有5g氧化锌与500ml乙酸乙酯的悬浊液中,常温反应12h后,过滤除去锌盐,滤液水洗后蒸除四氢呋喃得到含有硅氢结构的混合环硼硅氧2.53g(产率78.8%),其气质分析 GC 图如图2所示。
含有乙烯基结构的环硼硅氧的制备:
氮气保护下,将1.22g(10mmol)苯硼酸溶于50ml四氢呋喃中,然后向其中滴加7.00g(50mmol)甲基二氯硅烷与20ml四氢呋喃的混合液,常温反应3h后得到反应液。然后将反应液滴加至含有5g氧化锌与500ml乙酸乙酯的悬浊液中,常温反应12h后,过滤除去锌盐,滤液水洗后蒸除四氢呋喃得到含有乙烯基结构的混合环硼硅氧3.58g(产率76.9%),其气质分析 GC 图如图3所示。
实施例1
一种氧气吸附剂的制备方法,所述氧气吸附剂的制备方法如下:
(1)将1.5g氧化锰粉末分散至100ml甲苯中,形成分散液;
(2)分别将10g含有硅氢结构的环硼硅氧烷以及8g乙烯基结构的环硼硅氧烷溶于上述分散液中,向其中添加5mg氯铂酸,85℃下搅拌反应4h,得到包覆有氧化锰的聚硼硅氧烷凝胶;
(3)通过超临界干燥的方式除去聚硼硅氧烷凝胶中的甲苯,超临界干燥的介质为二氧化碳,超临界温度为32℃,超临界压力为7.5MPa,将包覆有氧化锰的聚硼硅氧烷在氮气保护下700℃热处理6h,降温得到氧气吸附剂,其电镜照片如图1所示。
实施例2
一种氧气吸附剂的制备方法,所述氧气吸附剂的制备方法如下:
(1)将4.05g氧化锰粉末分散至100ml甲苯中,形成分散液;
(2)分别将15g含有硅氢结构的环硼硅氧烷以及12g乙烯基结构的环硼硅氧烷溶于上述分散液中,向其中添加13.5mg氯铂酸,85℃下搅拌反应3h,得到包覆有氧化锰的聚硼硅氧烷凝胶;
(3)通过超临界干燥的方式除去聚硼硅氧烷凝胶中的甲苯,超临界干燥的介质为二氧化碳,超临界温度为32℃,超临界压力为7.5MPa,将包覆有氧化锰的聚硼硅氧烷在氮气保护下800℃热处理3h,降温得到氧气吸附剂。
实施例3
一种氧气吸附剂的制备方法,所述氧气吸附剂的制备方法如下:
(1)将0.45g氧化锰粉末分散至100ml甲苯中,形成分散液;
(2)分别将10g含有硅氢结构的环硼硅氧烷以及8g乙烯基结构的环硼硅氧烷溶于上述分散液中,向其中添加1.5mg氯铂酸,85℃下搅拌反应5h,得到包覆有氧化锰的聚硼硅氧烷凝胶;
(3)通过超临界干燥的方式除去聚硼硅氧烷凝胶中的甲苯,超临界干燥的介质为二氧化碳,超临界温度为32℃,超临界压力为7.5MPa,将包覆有氧化锰的聚硼硅氧烷在氮气保护下600℃热处理8h,降温得到氧气吸附剂。
实施例4
一种氧气吸附剂的制备方法,所述氧气吸附剂的制备方法如下:
(1)将0.86g氧化锰粉末分散至100ml甲苯中,形成分散液;
(2)分别将10g含有硅氢结构的环硼硅氧烷以及8g乙烯基结构的环硼硅氧烷溶于上述分散液中,向其中添加5.5mg氯铂酸,85℃下搅拌反应4h,得到包覆有氧化锰的聚硼硅氧烷凝胶;
(3)通过超临界干燥的方式除去聚硼硅氧烷凝胶中的甲苯,超临界干燥的介质为二氧化碳,超临界温度为32℃,超临界压力为7.5MPa,将包覆有氧化锰的聚硼硅氧烷在氮气保护下680℃热处理8h,降温得到氧气吸附剂。
实施例5
一种氧气吸附剂的制备方法,所述氧气吸附剂的制备方法如下:
(1)将2.5g氧化锰粉末分散至100ml甲苯中,形成分散液;
(2)分别将10g含有硅氢结构的环硼硅氧烷以及8g乙烯基结构的环硼硅氧烷溶于上述分散液中,向其中添加8.5mg氯铂酸,85℃下搅拌反应4.5h,得到包覆有氧化锰的聚硼硅氧烷凝胶;
(3)通过超临界干燥的方式除去聚硼硅氧烷凝胶中的甲苯,超临界干燥的介质为二氧化碳,超临界温度为32℃,超临界压力为7.5MPa,将包覆有氧化锰的聚硼硅氧烷在氮气保护下700℃热处理4h,降温得到氧气吸附剂。
对比例1
一种氧气吸附剂的制备方法,所述氧气吸附剂的制备方法如下:
将10g四甲基环四硅氧烷(D4H)以及8g四乙烯基四甲基环四硅氧烷(D4Vi)溶于上述分散液中,向其中添加8.5mg氯铂酸,85℃下搅拌反应4.5h,得到聚硅氧烷凝胶;
通过超临界干燥的方式除去聚硅氧烷凝胶中的甲苯,超临界干燥的介质为二氧化碳,超临界温度为32℃,超临界压力为7.5MPa,将聚硅氧烷在氮气保护下700℃热处理4h,降温得到氧气吸附剂。
对比例2
一种氧气吸附剂的制备方法,所述氧气吸附剂的制备方法如下:
(1)分别将10g含有硅氢结构的环硼硅氧烷以及8g乙烯基结构的环硼硅氧烷溶于上述分散液中,向其中添加5mg氯铂酸,85℃下搅拌反应4h,得到聚硼硅氧烷凝胶;
(2)通过超临界干燥的方式除去聚硼硅氧烷凝胶中的甲苯,超临界干燥的介质为二氧化碳,超临界温度为32℃,超临界压力为7.5MPa,将聚硼硅氧烷在氮气保护下700℃热处理6h,降温得到氧气吸附剂。
对比例3
一种氧气吸附剂的制备方法,将15.2g(0.1mol)四甲氧基硅烷以及1.5g氧化锰粉末分散至100ml甲醇中,向其中滴加浓盐酸1ml,搅拌回流反应12h后,得到包覆有氧化锰的聚硅氧烷凝胶,将其通过超临界干燥的方式除去聚硅氧烷凝胶中的甲苯,超临界干燥的介质为二氧化碳,超临界温度为32℃,超临界压力为7.5MPa,将包覆有氧化锰的聚硅氧烷在氮气保护下700℃热处理6h,降温得到氧气吸附剂。
对比例4
一种氧气吸附剂的制备方法,所述氧气吸附剂的制备方法如下:
(1)将1.5g氧化锰粉末分散至100ml甲苯中,形成分散液;
(2)分别将10g四甲基环四硅氧烷(D4H)以及8g四乙烯基四甲基环四硅氧烷(D4Vi)溶于上述分散液中,向其中添加8.5mg氯铂酸,85℃下搅拌反应4.5h,得到包覆有氧化锰的聚硼硅氧烷凝胶;
(3)通过超临界干燥的方式除去聚硼硅氧烷凝胶中的甲苯,超临界干燥的介质为二氧化碳,超临界温度为32℃,超临界压力为7.5MPa,将包覆有氧化锰的聚硼硅氧烷在氮气保护下700℃热处理4h,降温得到氧气吸附剂。
应用例
一种降低氧化亚氮原料气中微量氧含量的方法,包括以下步骤:
(S.1)将实施例1~5以及对比例1~4中制备得到的氧气吸附剂于含有氢气体积比10~30%的氮气环境下,110~135℃反应活化,并置于吸附塔中;
(S.2)将吸附塔中的气体替换成高纯氧化亚氮气体;
(S.3)将氧化亚氮原料气体进行脱水,得到干燥的氧化亚氮原料气;
(S.4)将干燥的氧化亚氮原料气通入氧气吸附剂的吸附塔中,保持吸附塔的压力为0.1~0.5MPa,吸附温度为20~50℃,收集从吸附塔中流出的气体,得到低含氧量的氧化亚氮气体。
【性能测试】
比表面积分析:
采用低温氮气吸附法考察脱氧剂的比表面积。
氧气吸附性能:
通过测试氧化亚氮原料气在纯化前后氧气含量,比较氧气吸附剂的吸附效果。
脱氧剂再生性能评价:
将使用过后的脱氧剂(实施例1~5以及对比例3~4)在含有氢气体积比20%的氮气环境下,升温再生,以初次使用时的吸附效果定相对吸附率为100%,测试不同温度下再生后的脱氧效果,计算相对吸附率。
【性能测试结果】
表1氧气吸附剂的比表面积以及吸附效果比较
Figure dest_path_image002
从上述数据中可知,通过本发明制备得到的氧气吸附剂其具有较高的比表面积,以及良好的氧气吸附能力,经过吸附处理后的氧化亚氮原料气中的氧含量大幅下降,能够达到小于1ppm的级别。
对比例1以及对比例2中的氧气吸附剂中均不含有氧化锰,因此其对于氧气的吸附仅仅只能依靠物理吸附,因此其两者对于氧气的吸附效果较差。在其两者的比表面积相近的条件下,对比例2中由于含有硼原子,因此其对于氧气的吸附效果更好,推测硼原子能够降低对于氧气的物理吸附吸附势垒,从而能够使得氧气能够被多孔二氧化硅骨架所吸附。
对比例3采用四甲氧基硅烷水解制备得到多孔二氧化硅骨架,相较于采用环硅氧烷作为原料制备得到的多孔二氧化硅骨架而言,再负载氧化锰之后,由于其比表面积较小,因此其对于氧气的吸附效果不佳,在吸附处理后的氧化亚氮气体中仍然留有较高浓度的氧气。
对比例4中采用环硅氧烷作为原料,因此制备得到的多孔二氧化硅骨架中不含有硼原子,在比表面积相近的前提下,其对于氧气的吸附效果不如实施例1~5,表明硼原子的加入能够有效提升对于氧气的吸附效果。
表2脱氧剂再生性能表
Figure dest_path_image004
通过上表数据可知,本发明中制备得到的氧气吸附剂的再生性能优良,与对比例3进行比较,由于本发明在多孔二氧化硅骨架中含有铂催化剂,使得其在110℃环境下即可还原再生。而对比例3中由于不含有铂催化剂,导致其还原效果较差,使得其在250℃的条件下也只有72.6%的相对吸附率。而对比例4中由于缺少了硼原子,其相对吸附率相较于实施例1~5而言稍低,表明硼原子的加入能够在一定程度上降低氧气吸附剂的还原温度。
因此,综上所述,本发明在多孔二氧化硅骨架上通过化学键连接有硼原子,同时表面负载有低价态锰化合物,能够有效吸附氧化亚氮中的氧气,提升了氧化亚氮气体的纯度。同时,本发明中的氧气吸附剂具有良好的活性以及可重复使用的优点,氧气吸附剂在重新活化过程中的条件简单,安全有效,非常利于工业电子气体的纯化。

Claims (10)

  1. 一种氧气吸附剂,其特征在于,
    包括多孔二氧化硅骨架;
    所述多孔二氧化硅骨架通过化学键连接有硼元素;
    所述多孔二氧化硅骨架上还物理负载有铂化合物以及低价态锰化合物。
  2. 根据权利要求1所述的一种氧气吸附剂,其特征在于,
    所述氧气吸附剂中硼与硅的摩尔比为1:(3~10)。
  3. 根据权利要求1所述的一种氧气吸附剂,其特征在于,
    所述氧气吸附剂中铂化合物的负载量为0.01wt%~0.05 wt %。
  4. 根据权利要求1所述的一种氧气吸附剂,其特征在于,
    所述氧气吸附剂中低价态锰化合物的负载量为2.5~15 wt %。
  5. 一种氧气吸附剂的制备方法,其特征在于,
    所述氧气吸附剂的制备方法如下:
    (1)将低价态锰化合物分散至有机溶剂,形成分散液;
    (2)分别将含有硅氢结构以及乙烯基结构的环硼硅氧烷溶于分散液中,加入铂催化剂,发生硅氢加成反应,得到包覆有低价态锰化合物以及铂化合物的聚硼硅氧烷凝胶;
    (3)除去聚硼硅氧烷凝胶中的有机溶剂,将包覆有低价态锰化合物以及铂化合物的聚硼硅氧烷在惰性气体保护下进行热处理,得到氧气吸附剂。
  6. 根据权利要求5所述的一种氧气吸附剂的制备方法,其特征在于,
    所述步骤(3)中采用超临界干燥除去有机溶剂,超临界介质为二氧化碳。
  7. 根据权利要求5或6所述的一种氧气吸附剂的制备方法,其特征在于,
    所述步骤(3)中热处理温度为600~800℃,热处理时间为3~8h。
  8. 一种降低氧化亚氮原料气中微量氧含量的方法,其特征在于,
    包括以下步骤:
    (S.1)将氧气吸附剂于氢气环境下,反应活化,并置于吸附塔中;
    (S.2)将吸附塔中的气体替换成高纯氧化亚氮气体;
    (S.3)将氧化亚氮原料气体进行脱水,得到干燥的氧化亚氮原料气;
    (S.4)将干燥的氧化亚氮原料气通入装载有权利要求1~5中任意一项所述氧气吸附剂的吸附塔中,收集从吸附塔中流出的气体,得到低含氧量的氧化亚氮气体。
  9. 根据权利要求8所述的一种降低氧化亚氮原料气中微量氧含量的方法,其特征在于,
    所述步骤(S.1中)将氧气吸附剂置于含有氢气体积比10~30%的氮气环境下,110~135℃下保持3h,然后将气体置换成氮气后自然冷却,充氮保藏,置于吸附塔中。
  10. 根据权利要求8所述的一种降低氧化亚氮原料气中微量氧含量的方法,其特征在于,
    所述步骤(S.4)中吸附塔的压力为0.1~0.5MPa,吸附温度为20~50℃。
PCT/CN2022/074047 2021-12-30 2022-01-26 一种氧气吸附剂、制备方法和降低氧化亚氮原料气中氧含量的方法 WO2023123596A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111639928.0 2021-12-30
CN202111639928.0A CN114272890B (zh) 2021-12-30 2021-12-30 一种氧气吸附剂、制备方法和降低氧化亚氮原料气中氧含量的方法

Publications (1)

Publication Number Publication Date
WO2023123596A1 true WO2023123596A1 (zh) 2023-07-06

Family

ID=80877981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074047 WO2023123596A1 (zh) 2021-12-30 2022-01-26 一种氧气吸附剂、制备方法和降低氧化亚氮原料气中氧含量的方法

Country Status (2)

Country Link
CN (1) CN114272890B (zh)
WO (1) WO2023123596A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870804B (zh) * 2022-06-10 2022-12-09 大连科利德光电子材料有限公司 一种杂质气体吸附剂及其制备方法和应用
CN115430283B (zh) * 2022-09-23 2023-03-28 全椒科利德电子材料有限公司 纯化氧化亚氮的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518241A (en) * 1978-07-27 1980-02-08 Teijin Ltd Oxygen trapping composition
JPS60106530A (ja) * 1983-11-14 1985-06-12 Nippon Chem Ind Co Ltd:The 選択的酸素吸着剤
CN1361749A (zh) * 1999-05-26 2002-07-31 索罗蒂亚公司 纯化一氧化二氮的方法
JP2003311148A (ja) * 2002-04-19 2003-11-05 Nippon Sanso Corp 吸着剤並びにガス精製方法及び装置
US20040127358A1 (en) * 2002-06-25 2004-07-01 Derosa Michael E. Versatile oxygen sorbents and devices
CN109476483A (zh) * 2016-07-20 2019-03-15 韩国化学研究院 从含有一氧化二氮的气体混合物回收和纯化一氧化二氮的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837278A (zh) * 2009-03-18 2010-09-22 中国科学院大连化学物理研究所 一种氧吸附剂、制备方法及其应用
KR101547081B1 (ko) * 2012-08-08 2015-08-24 미츠비시 가스 가가쿠 가부시키가이샤 산소 흡수제

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518241A (en) * 1978-07-27 1980-02-08 Teijin Ltd Oxygen trapping composition
JPS60106530A (ja) * 1983-11-14 1985-06-12 Nippon Chem Ind Co Ltd:The 選択的酸素吸着剤
CN1361749A (zh) * 1999-05-26 2002-07-31 索罗蒂亚公司 纯化一氧化二氮的方法
JP2003311148A (ja) * 2002-04-19 2003-11-05 Nippon Sanso Corp 吸着剤並びにガス精製方法及び装置
US20040127358A1 (en) * 2002-06-25 2004-07-01 Derosa Michael E. Versatile oxygen sorbents and devices
CN109476483A (zh) * 2016-07-20 2019-03-15 韩国化学研究院 从含有一氧化二氮的气体混合物回收和纯化一氧化二氮的方法

Also Published As

Publication number Publication date
CN114272890A (zh) 2022-04-05
CN114272890B (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
WO2023123596A1 (zh) 一种氧气吸附剂、制备方法和降低氧化亚氮原料气中氧含量的方法
TWI544957B (zh) 廢氣淨化方法和裝置
CN107500307B (zh) 一种沸石分子筛的制备方法及其应用
TW201217044A (en) Gas purifying method and gas purifying device
CN114870804B (zh) 一种杂质气体吸附剂及其制备方法和应用
CN109833847B (zh) 一种镍氧化物改性的多孔氮化硼吸附剂及其制备方法
CN111468147A (zh) 一种多孔碳复合二氧化钛-卤氧化物光催化剂及其制备方法
CN113247883A (zh) 一种纯化碳纳米管的方法
KR20240060518A (ko) 실리콘계 전구체의 정제 방법 및 정제 시스템
CN111957333A (zh) 一种Yb2O3/g-C3N4双功能催化剂的制备方法及应用
CN114849671A (zh) 杂质吸附剂、制备方法及利用该吸附剂提纯三甲基铝的方法
CN114231518A (zh) 一种固定化碳酸酐酶及其在制备二氧化碳吸收剂中的应用
US20230364591A1 (en) Bimetallic perovskite loaded graphene-like carbon nitride visible-light photocatalyst and its preparation method
TWI745449B (zh) 多結晶矽之製造方法
CN112573485B (zh) 一种基于烷烃与硅烷反应的SiC-CVD无氯外延制程尾气FTrPSA回收方法
CN1559001A (zh) 净化溴化氢的方法和装置
CN112827319A (zh) 低浓度硅烷/C2+氯基SiC-CVD外延尾气FTrPSA提氢与循环再利用方法
CN111514843A (zh) 一种高比表面积和高热稳定性CaF2纳米材料及其制备方法和应用
CN114539307B (zh) 一种co2捕集材料、其合成方法以及碳捕集工艺
JPS61197415A (ja) ジクロロシランの精製法
CN104528735B (zh) 一种提纯塔产出物的吸附提纯装置
CN115430283B (zh) 纯化氧化亚氮的方法
CN115350690B (zh) 电子级三氯化硼的提纯方法
CN115254050B (zh) 一种去除三硅基氮中残余一氯硅烷的方法
CN216711608U (zh) 一种氯硅烷提纯系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22912903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE