CN111514843A - 一种高比表面积和高热稳定性CaF2纳米材料及其制备方法和应用 - Google Patents

一种高比表面积和高热稳定性CaF2纳米材料及其制备方法和应用 Download PDF

Info

Publication number
CN111514843A
CN111514843A CN202010315774.9A CN202010315774A CN111514843A CN 111514843 A CN111514843 A CN 111514843A CN 202010315774 A CN202010315774 A CN 202010315774A CN 111514843 A CN111514843 A CN 111514843A
Authority
CN
China
Prior art keywords
caf
water
gas
sample
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010315774.9A
Other languages
English (en)
Other versions
CN111514843B (zh
Inventor
朱伟东
张璐璐
许春慧
王雪
王宁伟
陈德利
赵晓亚
王树华
周黎旸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Normal University CJNU
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Priority to CN202010315774.9A priority Critical patent/CN111514843B/zh
Publication of CN111514843A publication Critical patent/CN111514843A/zh
Application granted granted Critical
Publication of CN111514843B publication Critical patent/CN111514843B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/046Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/28035Membrane, sheet, cloth, pad, lamellar or mat with more than one layer, e.g. laminates, separated sheets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride
    • C01B7/195Separation; Purification
    • C01B7/197Separation; Purification by adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/20Halides
    • C01F11/22Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及吸附分离领域,具体涉及一种高比表面积和高热稳定性CaF2纳米材料及其制备方法和应用,所述CaF2纳米材料是以乙二胺四乙酸二钠为络合剂,醋酸钙为钙源,四氟硼酸钠为氟源,采用水热法合成多层纳米片花状CaF2材料。本发明提供的CaF2纳米材料通过优化合成液中的pH值及晶化时间,有效控制了CaF2纳米材料的形貌和尺寸,获得了CaF2纳米材料的最高热稳定性、最大比表面积和最优的吸水性能。此外,用本发明的技术方案制备得到的CaF2材料作为吸水剂可高效吸附HF气体中微量水分制HF高纯电子特气,并且通过再生后可循环使用。

Description

一种高比表面积和高热稳定性CaF2纳米材料及其制备方法和 应用
技术领域
本发明涉及吸附分离领域,具体涉及一种高比表面积和高热稳定性CaF2纳米材料及其制备方法和在吸附HF气体微量水分制HF高纯电子特气中的应用。
背景技术
腐蚀性电子气体HF主要用于半导体工业中硅晶片的刻蚀和表面清洗,是微纳电子制造中的关键气体之一。随着微纳电子工业先进制造向高集成度、大尺寸、窄线宽、高均匀性和完整性的发展,对HF电子气体纯度的要求也越来越高,尤其对杂质水分的控制提出了更严格的要求,因为杂质水分会诱发、加速HF气体对所接触材料的腐蚀,造成腐蚀产物和材料自身杂质等二次污染物释出,降低HF气体的纯度,导致下游产品缺陷。所以对研发HF气体中杂质水分的去除技术一直受到了科研工作者的广泛关注。
目前,用于HF气体除水提纯的主要方法有精馏、膜分离和吸附分离等。由于H2O与HF极易形成共沸物,简单精馏技术无法分离痕量水分。专利(CN 105217575A)报道了一种反应精馏去除HF中水分的方法,通过在反应釜中加入吸水剂WF4和含痕量水分的HF,经充分接触后,再经精馏柱后得到水含量小于1ppm(ppm:part per million,百万分之一,下同)的HF气体,但该法在操作过程中会造成设备的腐蚀,并在HF中易引入金属杂质污染物。膜分离技术利用不同组分在膜中的吸附和扩散性能上的差异来达到分离的目的,具有能耗低、操作简单安全、投资少、对环境友好等优点。专利(US 4844719A)应用含氟聚合物制成的可渗透膜脱除HF气体中的痕量水,得到水含量为1ppm的HF气体,显然其除水深度不够。吸附分离技术利用固体吸附剂的表面化学特性选择性地吸附HF气体中的痕量水,从而达到分离提纯的目的。应用吸附分离技术于HF气体进行深度脱水工艺中,吸附剂的选择是决定吸附分离效能至关重要的因素,由于HF与杂质水可能对吸附材料的协同腐蚀,可导致吸附剂结构和性能被破坏,所以用于HF气体深度脱水的吸附剂应具备吸水性能好、耐腐蚀及易再生等特性。专利(US 6790358B2,WO 2009151723)采用吸附分离法,将活性炭材料在超干燥的惰性气体氛围中加热制备出水含量低于1ppb(ppb:part per billion,十亿分之一,下同)的超低排放(ultra-low emission,ULE)碳材料作为吸附剂应用于HF气体中痕量水的脱除,得到水含量为1ppm的HF气体,结果表明,该碳材料虽具有耐HF与H2O的协同腐蚀性,但其除水深度不够。专利(US 5910292A,WO 2001076723,US 6395070B1)将高硅铝比(Si/Al>50)丝光沸石分子筛在873K下进行预处理活化,形成脱羟基丝光沸石,将其应用于吸附卤化氢HX(其中X=Cl、Br或F,尤其是Cl或Br)腐蚀性气体中的痕量水分,制得的HX电子气体水分含量小于100ppb。然而,HF气体极易与分子筛中的SiO2和Al2O3发生化学反应,形成SiF4和AlF3,致使丝光沸石分子筛骨架坍塌,同时对HF气体造成二次污染。因此,高硅铝比丝光沸石分子筛不适用于HF气体中的吸附除水。专利(US 005958356)报道了MgCl2负载在活性碳或硅胶上的吸附剂可应用于HCl气体中痕量水的脱除,专利(US 20070138102A1)报道了MgX2(其中X=Cl或Br)负载在大孔活性碳上的吸附剂可应用于HX(其中X=Cl或Br)气体中痕量水的脱除,但这二类吸附剂不适用于HF气体中痕量水的脱除,由于MgCl2或MgBr2可与HF发生交换反应导致在HF气体中引入HCl或HBr污染物。专利(US 4853148A,US 4925646)报道了一种去除卤化氢HX(其中X=Cl、Br、I或F)气体中杂质水的吸附分离方法,所用吸附剂为金属卤化物MXy(其中M为y价金属Ca、Mg或Al,X为卤素Cl、Br、I或F)负载到多孔材料硅铝酸盐(沸石分子筛)、SiO2或Al2O3上的复合材料,该吸附剂能有效地吸收HX气体中的杂质水分,可将水分降低至100ppb以下,且通过简单热处理可脱除金属卤化物中的结合水而再生。此外,该专利指出吸附剂中的金属卤化物应该与被纯化的卤化物气体中的卤元素组分相同,且所负载金属卤化物与水分子形成金属卤化物水合物(MXy·nH2O)的结合能应大于n×42kJ·mol-1,其中n是金属卤化物水合物中结合水的个数。显而易见,金属卤化物负载到多孔材料上的主要目的是为了增加金属卤化物与水分子的接触面,提高水分子的吸附量。然而,含痕量杂质水的HF气体极易与载体沸石分子筛、SiO2或Al2O3发生化学反应,因此,负载在这类载体上的金属卤化物不适合作为去除HF气体中杂质水的吸附剂。
已有的技术表明,金属氟化物对于去除HF气体中的杂质水具有应用前景,其中,CaF2因具有耐HF与H2O的协同腐蚀性能,且能与水分子形成具有高结合能的结合水,可望用于HF气体除水工艺中。Barraclough和Hall(J.Chem.Soc.Faraday Trans.,1975,71,2266-2276)通过原位红外技术系统地研究了水分子在CaF2表面的吸附-脱附性能,结果表明,被吸附在CaF2表面的水分子需在473K及以上才发生完全脱附,可见,CaF2作为除水剂其再生温度不得低于473K,即CaF2材料的热稳定性应高于473K。然而,到目前为止,对CaF2材料的热稳定性研究尚无公开报道。此外,利用传统的制备方法制得的CaF2材料比表面积很小,吸水性能差,应用于HF气体深度脱水工艺中效率很低,需时常再生或更换吸附剂。例如,文献(J.Chem.Soc.Faraday Trans,1970,66,1520-1529)采用沉淀法,以氯化钙为钙源,以氟化钠为氟源,制得的CaF2材料BET比表面积只有32m2·g-1,其相应的吸水性能也差。近年来,科研工作者通过水热法制备了不同尺寸及形貌的CaF2材料,例如,文献(Physica.B,2016,501,106-112)以Na2EDTA为络合剂,硝酸钙为钙源,氟化铵为氟源,采用水热法合成了纳米颗粒状CaF2材料;文献(CrystEngComm,2011,13,835-840)同样采用水热法,以Na2EDTA为络合剂,以Ca(CH3COO)2为钙源,以NaBF4为氟源,制备了具有多层纳米片花状的CaF2材料;然而,这些报道均没有对所制备出的CaF2材料进行热稳定性以及吸水性能的研究。
发明内容
为了克服现有技术中存在的问题,本发明一方面提供了一种具有高比表面积、热稳定性且在超低水蒸气压下拥有优异吸水性能的多层纳米片花状CaF2材料。
所述CaF2材料以Na2EDTA为络合剂,Ca(CH3COO)2为钙源,NaBF4为氟源,采用水热法制备得到。
优选的,所述CaF2材料为实施例1对应的XRD图谱。
优选的,所述CaF2材料具有图2所示的SEM图。
优选的,所述CaF2材料具有图3所示的的TEM图。
通过优化合成液中的pH值及晶化时间,可有效控制CaF2纳米材料的形貌和尺寸,从而获得CaF2纳米材料的最高热稳定性、最大比表面积和最优的吸水性能。
本发明制备得到的CaF2材料具有多层纳米片花状形貌,经573K热处理7h后其BET比表面仍高达116m2·g-1;在298K下和水蒸气压为300Pa时其吸水量高达0.4mol·kg-1,且该材料被水蒸气吸附后经加热至473K可完全脱附被吸附的水而再生,作为吸附剂可循环使用。
另一方面,本发明提供了所述CaF2材料的制备方法,所述方法包括以下步骤:
1)在Ca(CH3COO)2加入Na2EDTA,搅拌形成混合液A;
2)在混合液A中加入NaBF4,同时滴加醋酸,搅拌,得混合液B;
3)将混合液B转入内衬为聚四氟乙烯的不锈钢反应釜中,置于烘箱中晶化;
4)将反应釜自然冷却至室温,所得混合液离心、洗涤,所得的样品烘干,得到CaF2
优选的,步骤1)中,Ca(CH3COO)2与Na2EDTA的摩尔比为1:5。
优选的,步骤2)中,Ca(CH3COO)2与NaBF4的摩尔比为1:2。
优选的,步骤3)中,晶化时间为1-2小时。
优选的,步骤4)中,所述混合液蒸馏水和无水乙醇交替进行离心。
优选的,本发明提供了所述CaF2材料的制备方法,所述方法包括以下步骤:
1)将Ca(CH3COO)2溶于蒸馏水中,待搅拌溶解后,加入Na2EDTA,磁力搅拌30min,形成混合液A,Ca(CH3COO)2与Na2EDTA的摩尔比为1:5;
2)在混合液A中加入NaBF4,同时滴加醋酸调节溶液pH值至3.9,磁力搅拌10min,得混合液B,Ca(CH3COO)2与NaBF4的摩尔比为1:2;
3)将混合液B转入内衬为聚四氟乙烯的不锈钢反应釜中,置于433K烘箱中晶化1h;
4)将反应釜自然冷却至室温,所得混合液用蒸馏水和无水乙醇交替进行离心、洗涤,重复3次,所得的样品置于333K烘箱中干燥过夜,得到CaF2白色粉末固体。
再一方面,本发明提供了一种CaF2纳米材料应用于吸附HF气体中微量水分制HF高纯电子特气。
优选的,所述CaF2纳米材料应用包括以下步骤:
1)将所制得的CaF2样品装入长度、外径和内径分别为10cm、0.635cm和0.465cm的哈氏合金(Inconel)样品管中,将样品管与穿透柱装置连接置于加热炉中,并通入高纯N2(纯度>7N),在N2流量为20ml(STP)min-1及温度为573K下对CaF2样品下进行预处理10h。预处理结束后,待样品管温度降至298K时,通入含水量为10ppm、总流速为8ml(STP)min-1HF气体通过CaF2吸附床层,总压为105kPa,同时用Unisearch RB110-MPCO-H2O水分仪检测穿透吸附床层后HF气流中的水分含量。当含水量为10ppm的HF气体持续通过CaF2吸附床层,水分在CaF2床层吸附饱和时,吸附剂需再生。
2)当水分在CaF2床层吸附饱和后,将HF进气切换为高纯N2(纯度>7N),在N2流量为20ml(STP)min-1和温度为473K下对CaF2吸附剂进行预处理3h,完成对吸附剂再生。预处理结束后,待样品管温度降至298K时,再次通入含水量为10ppm、总流速为8ml(STP)min-1HF气体通过CaF2吸附床层,总压为105kPa,同时用Unisearch RB110-MPCO-H2O水分仪检测穿透吸附床层后HF气流中水分含量。当含水量为10ppm的HF气体持续通过CaF2吸附床层,水分在CaF2床层吸附饱和时,吸附剂需再生。
结果显示,本技术所制备的CaF2纳米材料作为吸水剂可高效吸附HF气体中的微量水分,并且通过再生后可循环使用。
附图说明
图1为实施例1、对比例1和对比例2的XRD图谱;
图2为实施例1的SEM图;
图3为实施例1的TEM图;
图4为实施例1在298K下的水蒸气吸脱附等温线,其中(▲)为吸附等温线图,(△)为脱附等温线和(●)样品经一次水蒸气吸脱附循环后,在473K下抽真空热处理4h后,再次测试其在298K下的水蒸气吸附等温线;
图5为实施例1在298K、308K和318K下的水蒸气吸附等温线;
图6为实施例1的水蒸气等量吸附热随吸附量的变化曲线;
图7为对比例1的SEM图;
图8为对比例1的TEM图;
图9为对比例1在298K下的水蒸气吸附等温线;
图10为对比例2的SEM图;
图11为对比例2的TEM图;
图12为对比例2在298K下的水蒸气吸附等温线。
具体实施方式
提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1
按各物料的摩尔比为Ca(CH3COO)2:Na2EDTA:NaBF4:H2O=1:5:2:1676.6,将1mmolCa(CH3COO)2溶于30mL蒸馏水中,待搅拌溶解后,加入5mmol Na2EDTA·2H2O,磁力搅拌30min,得到混合液A,随后在混合液A中加入2mmol NaBF4,同时滴加醋酸调节溶液pH值至3.9;磁力搅拌10min后得到混合液B,将混合液B转入内衬为聚四氟乙烯的水热不锈钢反应釜中,并置于433K的烘箱中晶化1h;冷却至室温,用蒸馏水和无水乙醇交替离心、洗涤,重复3次,最后将所得的样品置于333K烘箱中干燥过夜,得到白色粉末状固体。在573K和抽真空条件下热处理7h,得到573K热处理后的样品。
用布鲁克(Bruker)公司的D8 Advance型粉末X射线衍射仪表征样品的晶体结构,采用Cu靶Kα线(波长为0.1541nm,nm为纳米,下同),X射线的管电压为40kV(kV为千伏,下同),管电流为40mA(mA为毫安,下同),扫描速率为2.4min-1,2θ的扫描范围为10~80°,步长为0.033s,每步停留时间为8s,扫描时间3.04min。对所合成的样品进行XRD表征,结果参见图1,所合成的样品与标准CaF2的晶型结构相一致,且无杂峰出现。
用日立(Hitachi)公司的S-4800型扫描电子显微镜表征样品的形貌尺寸,电子枪为冷场发射电子源,二次电子分辨率为1nm,在测试前均使用配有E-1030的喷金装置进行表面喷金处理,喷金时长为60s,测试的工作电压为10.0kV,测试电流为10μA(为微安,下同),测试距离为10mm(mm为毫米,下同),真空度为10Pa。对合成的样品进行SEM表征,结果参见图2(a),所合成的CaF2外观呈多层纳米片花状,其形貌一致、大小均匀,直径约1μm(μm为微米,下同)。对573K抽真空热处理7h后的样品进行SEM表征,结果参见图2(b),经573K抽真空热处理7h后,样品的纳米薄片形貌未发生变化。表征结果说明,本发明所制备的多层纳米片花状CaF2材料至少可耐至573K。
用日本电子(JEOL)公司的JEM-2100F型透射电子显微镜进一步表征样品的形貌尺寸,采用加速电压200kV,点分辨率0.24nm,线分辨率0.10nm,最大倾转角25°。对573K抽真空热处理7h后的样品进行TEM表征,结果参见图3,进一步证明所合成的样品由多层纳米片组成,经573K抽真空热处理7h后样品的纳米薄片形貌未发生变化。
用麦克默瑞提克(Micromeritics)公司的ASAP 2020物理吸附仪表征样品的孔结构,称取样品约0.1g,在573K下抽真空预处理7h,在77K下测定N2吸脱附等温线,利用BET方程计算求得样品的比表面积。结果表明,所合成样品的BET比表面积为116m2·g-1
用MicrotracBEL(麦奇克拜尔)公司的BELSORP-max三站全功能型多用吸附仪测定样品的水蒸气吸脱附等温线:称取0.1g样品装入样品管,在573K下抽真空脱气预处理7h,用循环水浴控制样品池温度,测定298K下水蒸汽的吸脱附等温线;再将样品在473K下抽真空脱气处理4h,测定298K下水蒸汽的吸附等温线,结果见图4。在298K下和水蒸气压为300Pa时其吸水量达0.4mol kg-1,明显优于已报道的CaF2材料吸水性能。在298K下,样品经一次水蒸气吸脱附循环后,样品在473K下抽真空热处理4h后,再次测试其在298K下的水蒸气吸附等温线,两次水蒸汽吸附等温线重合,说明该样品经热处理后可完全脱附被吸附的水而再生,作为吸附剂可循环使用。三个不同温度(298K、308K和318K)下水蒸汽的吸附等温线参见图5,基于测得的三个不同温度下水蒸气的吸附等温线,采用Clausius-Clapeyron方程计算水蒸气在合成材料上的等量吸附热,结果见图6,在考察的水蒸气吸附量范围内,等量吸附热随吸附量的变化在48-44kJ·mol-1范围内波动。
将上述所制得的CaF2纳米材料应用于吸附HF气体中微量水分制HF高纯电子特气:
称取CaF2样品0.5g,装入长度、外径和内径分别为10cm、0.635cm和0.465cm的哈氏合金(Inconel)样品管中,将样品管与穿透柱装置连接置于加热炉中,并通入高纯N2(纯度>7N),在N2流量为20ml(STP)min-1及温度为573K下对CaF2样品下进行预处理10h。预处理结束后,待样品管温度降至298K时,通入含水量为10ppm、总流速为8ml(STP)min-1HF气体通过CaF2吸附床层,总压为105kPa,同时用Unisearch RB110-MPCO-H2O水分仪检测穿透吸附床层后HF气流中的水分含量。结果显示,吸附床层出口处水分含量降低至100ppb及以下,当含水量为10ppm的HF气体持续通过CaF2吸附床层108h后,吸附床层出口处水分含量与床层入口处一样,说明水分在CaF2床层已吸附饱和,这时吸附剂需再生。
当水分在CaF2床层吸附饱和后(108h后),将HF进气切换为高纯N2(纯度>7N),在N2流量为20ml(STP)min-1和温度为473K下对CaF2吸附剂进行预处理3h,完成对吸附剂再生。预处理结束后,待样品管温度降至298K时,再次通入含水量为10ppm、总流速为8ml(STP)min- 1HF气体通过CaF2吸附床层,总压为105kPa,同时用Unisearch RB110-MPCO-H2O水分仪检测穿透吸附床层后HF气流中水分含量。结果显示,吸附床层出口处其水分含量降低至100ppb及以下,当含水量为10ppm的HF气体持续通过CaF2吸附床层108h后,吸附床层出口处水分含量与床层入口处一样,说明水分在CaF2床层已吸附饱和,这时吸附剂需再生或更换。
结果表明,用本技术制备的多层纳米片花状CaF2材料作为吸水剂能有效地吸附HF气体中的微量水分制备HF高纯电子特气,并且再生后可循环使用。
对比例1
作为对比例,按照文献(CrystEngComm,2011,13,835-840)中的合成方法,按各物料的摩尔比为Ca(CH3COO)2:Na2EDTA:NaBF4:H2O=1:5:2:1676.6,将1mmol Ca(CH3COO)2溶于30mL蒸馏水中,待搅拌溶解后,加入5mmol Na2EDTA·2H2O形成金属钙有机络合物,磁力搅拌10min,加入2mmol NaBF4。最后将所得溶液转入聚四氟乙烯水热不锈钢反应釜中,并置于温度为433K的烘箱中晶化1h;冷却至室温,用蒸馏水和无水乙醇交替离心、洗涤,重复3次,最后将所得的样品置于333K烘箱中干燥过夜,得到白色粉末状固体。在573K下抽真空热处理7h,得到573K热处理后的样品。
XRD表征结果参见图1,所合成的样品与标准CaF2的晶型结构相一致。
对合成的样品进行SEM表征,结果参见图7(a),所合成的CaF2外观呈多层纳米片花状,其形貌一致、大小均匀,直径约550nm。对573K下抽真空热处理7h样品进行SEM表征,结果参见图7(b),经573K下抽真空热处理后,样品的纳米薄片已经发生明显破裂和团聚。
573K抽真空热处理7h后的样品TEM表征结果参见图8,进一步证明所合成的样品经573K抽真空热处理7h后样品的纳米薄片形貌已经发生明显破裂和团聚,说明按文献(CrystEngComm,2011,13,835-840)所制备的多层纳米片花状CaF2材料的热稳定性明显低于本发明合成的CaF2材料。
在77K下进行N2吸脱附表征,结果表明,所合成样品的BET比表面积为37m2·g-1。远低于实施例1中的比表面积。
298K下的水蒸气吸附等温线参见图9,在298K和水蒸气压为300Pa时其吸水量仅为0.12mol·kg-1,明显低于实施例1中的吸水性能。
将上述所制得的CaF2纳米材料应用于吸附HF气体中微量水分制HF高纯电子特气:
称取CaF2样品0.5g,装入长度、外径和内径分别为10cm、0.635cm和0.465cm的哈氏合金(Inconel)样品管中,将样品管与穿透柱装置连接置于加热炉中,并通入高纯N2(纯度>7N),在N2流量为20ml(STP)min-1及温度为573K下对CaF2样品下进行预处理10h。预处理结束后,待样品管温度降至298K时,通入含水量为10ppm、总流速为8ml(STP)min-1HF气体通过CaF2吸附床层,实验总压为105kPa,同时用Unisearch RB110-MPCO-H2O水分仪检测穿透吸附床层后HF气流中的水分含量。结果显示,吸附床层出口处其水分含量降低至100ppb及以下,当含水量为10ppm的HF气体持续通过CaF2吸附床层30h后,吸附床层出口处水分含量与床层入口处一样,说明水分在CaF2床层已吸附饱和,这时吸附剂需再生或更换,说明该材料的吸水效果明显差于实施例1。
对比例2
作为对比,按各物料的摩尔比为Ca(CH3COO)2:Na2EDTA:NaBF4:H2O=1:5:2:1676.6,将1mmol Ca(CH3COO)2溶于30mL蒸馏水中,待搅拌溶解后,加入5mmol Na2EDTA·2H2O形成金属钙有机络合物,磁力搅拌10min,加入2mmol NaBF4,同时滴加醋酸调节溶液pH值至3.8。最后将所得溶液转入聚四氟乙烯水热不锈钢反应釜中,并置于温度为433K的烘箱中晶化6h;冷却至室温,用蒸馏水和无水乙醇交替离心、洗涤,重复3次,最后将所得的样品置于333K烘箱中干燥过夜,得到白色粉末状固体。在573K下抽真空热处理7h,得到573K热处理后的样品。
XRD表征结果参见图1,所合成的样品与标准CaF2的晶型结构相一致。
SEM表征结果参见图10(a),所合成的CaF2外观呈多层纳米片花状,其形貌一致、大小均匀,颗粒平均尺寸约为1.4μm。对573K下抽真空热处理7h后的样品进行SEM表征,结果参见图10(b),经573K下抽真空热处理7h后,样品的纳米薄片形貌未发生变化,说明所制备的多层纳米片花状CaF2材料能耐高温至少至573K。573K抽真空热处理7h后的样品TEM表征结果参见图11,进一步证明所合成的样品由多层纳米片组成,形貌均一,平均颗粒尺寸约为1.4μm,经573K抽真空热处理7h后样品的纳米薄片形貌未发生变化。
在77K下进行N2吸脱附表征,结果表明,所合成样品的BET比表面积为81m2·g-1。低于实施例1中的比表面积。
298K下的水蒸气吸附等温线参见图12,在298K下和水蒸气压为300Pa时其吸水量为0.24mol·kg-1,低于实施例1中的吸水性能。
将上述所制得的CaF2纳米材料应用于吸附HF气体中微量水分制HF高纯电子特气:
称取CaF2样品0.5g,装入长度、外径和内径分别为10cm、0.635cm和0.465cm的哈氏合金(Inconel)样品管中,将样品管与穿透柱装置连接置于加热炉中,并通入高纯N2(纯度>7N),在N2流量为20ml(STP)min-1及温度为573K下对CaF2样品下进行预处理10h。预处理结束后,待样品管温度降至298K时,通入含水量为10ppm、总流速为8ml(STP)min-1HF气体通过CaF2吸附床层,总压为105kPa,同时用Unisearch RB110-MPCO-H2O水分仪检测穿透吸附床层后HF气流中的水分含量。结果显示,吸附床层出口处其水分含量降低至100ppb及以下,当含水量为10ppm的HF气体持续通过CaF2吸附床层55h后,吸附床层出口处水分含量与床层入口处一样,说明水分在CaF2床层已吸附饱和,这时吸附剂需再生或更换,说明该材料的吸水效果明显差于实施例1。

Claims (10)

1.一种高比表面积和高热稳定性的CaF2纳米材料,以Na2EDTA为络合剂,Ca(CH3COO)2为钙源,NaBF4为氟源,采用水热法制备得到。
2.根据权利要求1所述的CaF2纳米材料,具有多层纳米片花状形貌,经573K热处理7h后其BET比表面高达116m2·g-1;在298K下和水蒸气压为300Pa时其吸水量高达0.4mol·kg-1,且该材料被水蒸气吸附后经加热至473K可完全脱附被吸附的水而再生,作为吸附剂可循环使用。
3.权利要求1或2所述CaF2材料的制备方法,所述方法包括以下步骤:
1)在Ca(CH3COO)2加入Na2EDTA,搅拌形成混合液A;
2)在混合液A中加入NaBF4,同时滴加醋酸,搅拌,得混合液B;
3)将混合液B转入内衬为聚四氟乙烯的不锈钢反应釜中,置于烘箱中晶化;
4)将反应釜自然冷却至室温,所得混合液离心、洗涤,所得的样品烘干,得到CaF2
4.根据权利要求3所述的制备方法,其中所述步骤1)中,Ca(CH3COO)2与Na2EDTA的摩尔比为1:5。
5.根据权利要求3所述的制备方法,其中所述步骤2)中,Ca(CH3COO)2与NaBF4的摩尔比为1:2。
6.根据权利要求3所述的制备方法,其中所述步骤3)中,晶化时间为1-2小时。
7.根据权利要求3所述的制备方法,其中所述步骤4)中,所述混合液蒸馏水和无水乙醇交替进行离心。
8.根据权利要求3所述的制备方法,所述方法包括以下步骤:
1)将Ca(CH3COO)2溶于蒸馏水中,待搅拌溶解后,加入Na2EDTA,磁力搅拌30min,形成混合液A,Ca(CH3COO)2与Na2EDTA的摩尔比为1:5;
2)在混合液A中加入NaBF4,同时滴加醋酸调节溶液pH值至3.9,磁力搅拌10min,得混合液B,Ca(CH3COO)2与NaBF4的摩尔比是1:2;
3)将混合液B转入内衬为聚四氟乙烯的不锈钢反应釜中,置于433K烘箱中晶化1h;
4)将反应釜自然冷却至室温,所得混合液用蒸馏水和无水乙醇交替进行离心、洗涤,重复3次,所得的样品置于333K烘箱中干燥过夜,得到CaF2白色粉末固体。
9.权利要求1或2所述的CaF2纳米材料的应用,用于吸附HF气体中微量水分制HF高纯电子特气。
10.权利要求9所述的应用,具体包括以下步骤:
1)将所制得的CaF2样品装入长度、外径和内径分别为10cm、0.635cm和0.465cm的哈氏合金(Inconel)样品管中,将样品管与穿透柱装置连接置于加热炉中,并通入高纯N2(纯度>7N),在N2流量为20ml(STP:标准温度和压力,下同)min-1及温度为573K下对CaF2样品下进行预处理10h。预处理结束后,待样品管温度降至298K时,通入含水量为10ppm、总流速为8ml(STP)min-1HF气体通过CaF2吸附床层,总压为105kPa,同时用Unisearch RB110-MPCO-H2O水分仪检测穿透吸附床层后HF气流中的水分含量。当含水量为10ppm的HF气体持续通过CaF2吸附床层,水分在CaF2床层吸附饱和时,吸附剂需再生;
2)当水分在CaF2床层吸附饱和后,将HF进气切换为高纯N2(纯度>7N),在N2流量为20ml(STP)min-1和温度为473K下对CaF2吸附剂进行预处理3h,完成对吸附剂再生。预处理结束后,待样品管温度降至298K时,再次通入含水量为10ppm、总流速为8ml(STP)min-1HF气体通过CaF2吸附床层,总压为105kPa,同时用Unisearch RB110-MPCO-H2O水分仪检测穿透吸附床层后HF气流中水分含量。当含水量为10ppm的HF气体持续通过CaF2吸附床层,水分在CaF2床层吸附饱和时,吸附剂需再生。
CN202010315774.9A 2020-04-21 2020-04-21 一种高比表面积和高热稳定性CaF2纳米材料及其制备方法和应用 Active CN111514843B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010315774.9A CN111514843B (zh) 2020-04-21 2020-04-21 一种高比表面积和高热稳定性CaF2纳米材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010315774.9A CN111514843B (zh) 2020-04-21 2020-04-21 一种高比表面积和高热稳定性CaF2纳米材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111514843A true CN111514843A (zh) 2020-08-11
CN111514843B CN111514843B (zh) 2024-01-05

Family

ID=71903912

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010315774.9A Active CN111514843B (zh) 2020-04-21 2020-04-21 一种高比表面积和高热稳定性CaF2纳米材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111514843B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021208949A1 (zh) * 2020-04-15 2021-10-21 浙江博瑞电子科技有限公司 一种hf电子气体深度纯化材料的制备及应用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709487B1 (en) * 2002-10-22 2004-03-23 Air Products And Chemicals, Inc. Adsorbent for moisture removal from fluorine-containing fluids
CN109734116A (zh) * 2019-03-05 2019-05-10 浙江师范大学 一种CaF2纳米材料空心球的制备方法
CN110038509A (zh) * 2019-04-29 2019-07-23 浙江师范大学 一种用于吸附HF气体中微量水分的CaF2材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709487B1 (en) * 2002-10-22 2004-03-23 Air Products And Chemicals, Inc. Adsorbent for moisture removal from fluorine-containing fluids
CN109734116A (zh) * 2019-03-05 2019-05-10 浙江师范大学 一种CaF2纳米材料空心球的制备方法
CN110038509A (zh) * 2019-04-29 2019-07-23 浙江师范大学 一种用于吸附HF气体中微量水分的CaF2材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUYING HOU ET AL.: "CaF2 and CaF2:Ln3+ (Ln = Er, Nd, Yb) hierarchical nanoflowers: hydrothermal synthesis and luminescent properties", 《CRYSTENGCOMM》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021208949A1 (zh) * 2020-04-15 2021-10-21 浙江博瑞电子科技有限公司 一种hf电子气体深度纯化材料的制备及应用方法

Also Published As

Publication number Publication date
CN111514843B (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
CN110038509B (zh) 一种用于吸附HF气体中微量水分的CaF2材料及其制备方法
Chen et al. An ethane-trapping MOF PCN-250 for highly selective adsorption of ethane over ethylene
CN109748770B (zh) 一种基于超微孔金属有机框架材料的乙烯乙烷吸附分离方法
EP0770836B1 (en) Adsorption heat pump
Chen et al. One-pot synthesis of novel hierarchically porous and hydrophobic Si/SiOx composite from natural palygorskite for benzene adsorption
Si et al. Use of breakthrough experiment to evaluate the performance of hydrogen isotope separation for metal-organic frameworks M-MOF-74 (M= Co, Ni, Mg, Zn)
AU6356501A (en) Temperature swing adsorption process
CN1762572A (zh) 含硅纳米氧化钙高温二氧化碳吸附剂和该吸附剂的制备方法以及在制氢工艺中的应用
Yang et al. Enhanced mass transfer on hierarchical porous pure silica zeolite used for gas separation
CN113683740A (zh) 卤素离子功能化有机多孔材料及其制备方法和用途
Shi et al. A metal-OH group modification strategy to prepare highly-hydrophobic MIL-53-Al for efficient acetone capture under humid conditions
CN112058226A (zh) 一种有机硅-活性炭改性复合材料及其制备方法
CN112827470A (zh) 一种具有高稳定性的选择性空气吸水MOFs材料及其制备方法
CN111514843A (zh) 一种高比表面积和高热稳定性CaF2纳米材料及其制备方法和应用
Chi et al. Porous molecular sieve polymer composite with high CO2 adsorption efficiency and hydrophobicity
JP2011504156A (ja) 四フッ化ケイ素の精製方法
Zhang et al. Dual hydrophobic modification on MIL-101 (Cr) with outstanding toluene removal under high relative humidity
Shan et al. Plasma-assisted synthesis of ZIF-8 membrane for hydrogen separation
Li et al. Adsorption and separation of CH4/N2 by electrically neutral skeleton AlPO molecular sieves
Cao et al. Synthesis of cobalt-silicon molecular sieve with excellent CO2/N2 adsorption selectivity for dynamic CO2 capture
JP4025228B2 (ja) 空気のサイズ/形態的選択分離用モレキュラーシーブ吸着剤の調製法
Zhang et al. In-situ confined growth of defective MIL-100 (Fe) in macroporous polyacrylate spherical substrate at room temperature for high-efficient toluene removal
CN113769715A (zh) 一种钇基金属有机骨架材料及其制备方法与应用
Kim et al. Tetraethylenepentamine embedded zeolite a for carbon dioxide adsorption
CN106044710A (zh) 一种电子级氯化氢的提纯方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant