WO2023232122A1 - 一种重油加氢脱硫催化剂及其制备方法 - Google Patents

一种重油加氢脱硫催化剂及其制备方法 Download PDF

Info

Publication number
WO2023232122A1
WO2023232122A1 PCT/CN2023/097901 CN2023097901W WO2023232122A1 WO 2023232122 A1 WO2023232122 A1 WO 2023232122A1 CN 2023097901 W CN2023097901 W CN 2023097901W WO 2023232122 A1 WO2023232122 A1 WO 2023232122A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
heavy oil
molecular sieve
pseudo
carrier
Prior art date
Application number
PCT/CN2023/097901
Other languages
English (en)
French (fr)
Inventor
周立旻
卓润生
刘兵
孙秋实
王钦
肖可
兰兴玥
张春雪
赵瑞玲
梁福阳
刘新生
Original Assignee
润和科华催化剂(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 润和科华催化剂(上海)有限公司 filed Critical 润和科华催化剂(上海)有限公司
Publication of WO2023232122A1 publication Critical patent/WO2023232122A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used

Definitions

  • the invention belongs to the technical field of petrochemical industry, and specifically relates to a heavy oil hydrodesulfurization catalyst and a preparation method thereof.
  • alumina as a carrier and Group VIII and Group VIB metal elements as active components.
  • the pore structure of the support has an important influence on the performance of the catalyst.
  • carriers with multi-stage pore sizes and large pore volumes are generally required to facilitate the internal diffusion of macromolecular reactants in heavy oil and avoid or slow down Due to the deposition of metal impurities generated by the reaction, the catalyst pores are clogged, resulting in a rapid decline in catalyst activity.
  • the preparation of heavy oil hydrodemetallization catalysts usually uses alumina with a bimodal pore structure as the carrier matrix, and supports Group VIII and Group VIB metal elements as active components on the alumina carrier.
  • Alumina with a bimodal pore structure has ultra-large pores for rapid migration of metal compound molecules and large pores that provide catalysis.
  • the large pore part is determined by the physical properties of the aluminum source, and the super large pore part is often formed by adding various pore expanders, such as carbon black, dry rubber powder and other obvious pore expanders.
  • the bimodal pore radii are concentrated respectively. In two regions: 5.5-10nm and 10-20nm.
  • CN1179356A discloses a catalyst carrier and its preparation method. During the kneading process, a certain amount of alkaline solution is first added to the catalyst carrier, and then a certain amount of acidic solution is added, and then formed. Although this method reduces the loss of alumina pore volume and specific surface area, the preparation process is complicated and the carrier machinery Not very strong.
  • CN1256969A discloses a heavy oil hydrotreating catalyst carrier and its preparation. In the carrier preparation process, pseudo-boehmite and alumina powder are used. The two are mixed in a certain proportion and then formed with a composite pore expander. The catalyst prepared by this method The carrier has high mechanical strength but low specific surface area.
  • CN201080018712.6 discloses a catalyst and a method for preparing a catalyst from a precursor composition containing reprocessed materials.
  • the reprocessed materials can be materials generated during the formation or shaping process of the catalyst precursor, or a shaped catalyst precursor. formed by crushing or processing.
  • This patent adds reprocessed materials to the masterbatch mixture and then shapes the catalyst precursor.
  • the catalyst has poor mechanical strength and small pore volume and pore diameter.
  • the catalysts disclosed above can all be used as heavy oil hydrodesulfurization catalysts and have certain advantages, but they all have certain defects. In order to develop the heavy oil hydrodesulfurization industry more efficiently, durable and stably, it is crucial to develop better catalysts. important.
  • the object of the present invention is to provide a heavy oil hydrodesulfurization catalyst and a preparation method thereof.
  • the catalyst can achieve heavy oil hydrodesulfurization more efficiently and economically, and the catalyst has more stable catalytic activity and is less susceptible to sulfur poisoning when used. Longer life.
  • the present invention provides the following technical solutions:
  • the catalyst includes a catalyst intermediate and a molecular sieve coating coated on the outer layer of the intermediate.
  • the molecular sieve coating is a silicoaluminum phosphate molecular sieve SAPO and/or an aluminum phosphate molecular sieve AlPO 4 .
  • the catalyst The intermediate includes a carrier and active metal components, and the carrier includes pseudo-boehmite dry glue powder and a physical pore expander.
  • AlPO 4 molecular sieve and SAPO molecular sieve are phosphorus-containing molecular sieves, which can effectively prevent sulfur from combining with the inner catalyst.
  • AlPO 4 molecular sieve uses AlPO 4 -5 molecular sieve.
  • SAPO molecular sieve The synthesis method of SAPO molecular sieve is as follows:
  • Solution a Dissolve silica sol in tetraethylammonium hydroxide, add propanol and stir to form solution a;
  • Solution b Mix ⁇ -Al 2 O 3 and deionized water evenly to form solution b;
  • Solution c orthophosphoric acid (85% by weight), hydrofluoric acid (40% by weight) and deionized water are mixed evenly to form solution c;
  • a further technical solution is that the thickness of the molecular sieve coating is 0.1-1 mm, and the catalyst intermediate is in the shape of a sphere with a diameter of 3-5 mm.
  • the active metal components are Group VIB metal oxides and Group VIII metal oxides, wherein the content of Group VIB metal oxides is 1-10% of the total mass of the catalyst, and the content of Group VIII metal oxides is 5-15% of the total catalyst mass.
  • the Group VIB metals are molybdenum and tungsten, and the Group VIII metals are cobalt and nickel.
  • the catalyst has a pore volume of 0.6-1.5cm 3 /g and a specific surface area of 200-300m 2 /g.
  • the pseudo-boehmite dry glue powder includes a first pseudo-boehmite dry glue powder and a second pseudo-boehmite dry glue powder with a weight ratio of 1:5-5:1,
  • the first pseudo-boehmite dry glue powder is prepared by carbon dioxide neutralization method
  • the second pseudo-boehmite dry glue powder is prepared by adding aluminum chloride and ammonia water. Prepared by the method.
  • a further technical solution is that the physical pore expander is carbon black powder, and the added amount is 5-30% of the total mass of the carrier.
  • the invention also provides a method for preparing a heavy oil hydrodesulfurization catalyst, which includes the following steps: (1) uniformly mix pseudo-boehmite dry rubber powder and a physical pore expander, and then use a peptizer to peptize, shape, and dry and roasting to obtain a carrier; (2) immerse the carrier in a solution containing active metal components, then dry and roast to obtain a catalyst intermediate; (3) Spray and cover the catalyst intermediate with aluminum sol and AlPO 4 and/or SAPO molecular sieves , to obtain a heavy oil hydrodesulfurization catalyst.
  • the peptizer in step (1) is one or more selected from nitric acid, formic acid, acetic acid, citric acid, and oxalic acid, and the amount added is 0.5-3% of the total mass of the carrier.
  • a further technical solution is that the roasting temperature in step (1) is 700-1000°C and the time is 1-5 hours.
  • step (2) the drying temperature is 80-120°C and the time is 4-8h, and the roasting temperature is 300-900°C and the time is 4-8h.
  • a further technical solution is that the preparation method of the aluminum sol in step (3) is as follows: adding the aluminum source to deionized water, dropping concentrated nitric acid with a mass of 50% of the aluminum source while stirring, and then heating to 80°C. Then add nitric acid dropwise until complete degumming, control the pH value of the aluminum sol to ⁇ 2, and the relative density to 1.15-1.20 to obtain the aluminum sol.
  • the present invention has the following beneficial effects:
  • the present invention adds a layer of special molecular sieve coating to the alumina carrier loaded with active metals, which is beneficial to blocking the contact between active metals and sulfur, reducing the phenomenon of active metal sulfur poisoning, and is beneficial to extending the life of the catalyst, and the catalyst prepared by the present invention, It has large pore diameter and pore volume, moderate specific surface area, concentrated pore distribution, long service life and high stability, and is suitable for heavy oil hydrodesulfurization treatment process.
  • the catalyst of the present invention adds a layer of special molecular sieve coating to the alumina carrier loaded with active metals, which is beneficial to blocking the contact between active metals and sulfur, reducing the phenomenon of active metal sulfur poisoning, and extending the life of the catalyst.
  • AlPO 4 and/or SAPO molecular sieves are selected for the molecular sieve coating.
  • AlPO 4 molecular sieve and SAPO molecular sieve are phosphorus-containing molecular sieves, which can effectively prevent S from combining with the inner catalyst.
  • AlPO 4 molecular sieve uses AlPO 4 -5 molecular sieve.
  • Synthesis of AlPO 4 -5 molecular sieve Hydrothermal synthesis method is used to prepare AlPO 4 -5 molecular sieve.
  • the template agent is triethylamine (Et 3 N).
  • Synthesis of SAPO molecular sieve Dissolve 9 parts of silica sol in 15 parts of tetraethylammonium hydroxide, add 10 parts of propanol and stir to form solution a; mix 12.2 parts of ⁇ -Al 2 O 3 and 30 parts of deionized water to form a uniform solution Solution b; 23.5 parts of orthophosphoric acid (85% by weight), 1.82 parts of hydrofluoric acid (40% by weight) and 37.5 parts of deionized water were mixed evenly to form solution c; a and b were mixed and stirred at room temperature for 3 hours to form a uniform gel.
  • Object c Dissolve 9 parts of silica sol in 15 parts of tetraethylammonium hydroxide, add 10 parts of propanol and stir to form solution a; mix 12.2 parts of ⁇ -Al 2 O 3 and 30 parts of deionized water to form a uniform solution Solution b; 23.5 parts of orthophosphoric acid (85% by weight), 1.82
  • a heavy oil hydrodesulfurization catalyst and its preparation method including the following steps: weigh 380g of pseudo-boehmite dry rubber powder prepared by China Qilu Petrochemical Company by carbon dioxide neutralization method and neutralized by Fushun Petrochemical Company with aluminum chloride and ammonia water. 340g of pseudo-boehmite dry glue powder prepared by the method, mixed with 108g of carbon black powder, then added 550 ml of 1.5% nitric acid solution, stirred into a slurry, dropped balls on the oil ammonia column balling device, and put the wet gel balls into Dry at 100-120°C for 4 hours, then reach 1000°C in a baking oven at a heating rate of 200°C/h. After 2 hours, a catalyst carrier with a diameter of about 3.0 mm was obtained.
  • the catalyst carrier is impregnated with an equal volume method, and the specific contents of several supported active metals are shown in Table 1. It is then dried at 130°C for 2 hours and calcined at 550°C for 2 hours to obtain catalyst balls.
  • the catalyst balls into the shaping machine, add AlPO 4 -5 molecular sieve with a mass of 50% of the total mass of the catalyst intermediate, and use a high-efficiency sprayer to spray the above-mentioned mist glue during operation, so that the ball mother molds grow up, and the shaping machine
  • the speed is 20r/min. After running for 1.5 hours, adjust the speed of the shaping machine to 40r/min. After running for 1.5 hours, screen the qualified balls with a diameter of 3.0-4.0mm. After shaping the qualified balls for 4 hours, place them in the fume hood.
  • Example 2 Compared with Example 1, the difference is that SAPO molecular sieve with a mass of 50% of the total mass of the catalyst intermediate is added. Other processes and operating conditions are the same as Example 1 to obtain the final catalyst C2. The test results are as shown in Table 1 .
  • Example 3 Compared with Example 1, the difference is that a 1:1 SAPO and AlPO 4 -5 molecular sieve mixture with a mass of 25% of the total mass of the catalyst intermediate is added.
  • the other processes and operating conditions are the same as in Example 1 to obtain the final Catalyst C3, the test results are shown in Table 1.
  • Example 4 Compared with Example 1, the difference is that the catalyst balls are put into the shaping machine, the AlPO 4 -5 molecular sieve with a mass of 500% of the total mass of the catalyst intermediate is added, and a high-efficiency sprayer is used to spray during operation. Spray the above-mentioned mist glue to make the ball mother mold and grow.
  • the speed of the shaping machine is 20r/min. After 3 hours, adjust the speed of the shaping machine to 40r/min. After running for 3 hours, screen qualified balls with a diameter of 3.5-5.0mm.
  • Other processes and operating conditions are the same as in Example 1 to obtain the final catalyst C4.
  • the test results are as shown in the table 1.
  • Example 5 Compared with Example 4, the difference is that SAPO molecular sieve with a mass of 500% of the total mass of the catalyst intermediate is added. Other processes and operating conditions are the same as in Example 4 to obtain the final catalyst C5. The test results are shown in Table 1 .
  • Example 6 Compared with Example 4, the difference is that a 1:1 SAPO and AlPO 4 -5 molecular sieve mixture with a mass of 500% of the total mass of the catalyst intermediate is added.
  • the other processes and operating conditions are the same as in Example 4 to obtain the final Catalyst C6, the test results are shown in Table 1.
  • Comparative Example 1 Compared with Example 1, the difference is that aluminum sol and molecular sieve are not added, other processes and operating conditions are the same as Example 1, and the final catalyst C7 is obtained. The test results are shown in Table 1.
  • Comparative Example 2 Compared with Example 1, the difference is that no molecular sieve was added, and instead the dry rubber powder of the two pseudo-boehmites in Example 1 was added with a mass of 50% of the catalyst in a ratio of 19:17. , other processes and operating conditions were the same as in Example 1, and the final catalyst C8 was obtained. The test results are shown in Table 1.
  • Comparative Example 3 Compared with Example 1, the difference is that no molecular sieve was added, other processes and operating conditions were the same as Example 1, and the final catalyst C9 was obtained. The test results are shown in Table 1.
  • Table 1 lists the main physical and chemical properties of the catalysts in the Examples and Comparative Examples, and compares the hydrodesulfurization performance of the catalysts in each of the above examples under the same evaluation conditions.
  • the catalyst was evaluated in a 100 ml small fixed-bed reactor.
  • the catalyst loading volume is 100 ml.
  • the reaction conditions are: reaction temperature is 380°C, hydrogen partial pressure is 14 MPa, liquid hourly space velocity is 0.6h -1 , The volume ratio of hydrogen to oil is 1000, and samples are taken after 500 hours of reaction.
  • Use the electricity method to measure the sulfur content for specific methods, see Petrochemical Analysis Method RIPP62-90), and calculate the sulfur removal rate according to the following formula:
  • the catalyst prepared by the method of the present invention has good activity stability because the presence of the AlPO 4 /SAPO molecular sieve coating effectively protects the desulfurization activity of the catalyst.
  • the present invention adds a layer of special molecular sieve coating to the alumina carrier loaded with active metals, which is beneficial to blocking the contact between active metals and sulfur, reducing the phenomenon of active metal sulfur poisoning, and is beneficial to extending the life of the catalyst, and the catalyst prepared by the present invention, It has large pore diameter and pore volume, moderate specific surface area, concentrated pore distribution, long service life and high stability, and is suitable for heavy oil hydrodesulfurization treatment process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种重油加氢脱硫催化剂及其制备方法,所述催化剂包括催化剂中间体和涂覆在中间体外层的分子筛涂层,所述分子筛涂层为硅磷酸铝分子筛SAPO和/或磷酸铝分子筛AlPO4,所述催化剂中间体包括载体和活性金属成分,所述载体包括拟薄水铝石干胶粉和物理扩孔剂。该催化剂可以更高效、更经济性的实现重油加氢脱硫,且该催化剂催化活性更稳定,使用时更不易硫中毒,使用寿命更长。

Description

一种重油加氢脱硫催化剂及其制备方法 技术领域
本发明属于石油化工技术领域,具体涉及一种重油加氢脱硫催化剂及其制备方法。
背景技术
近年来,随着石油工业的发展和对页岩油资源的不断开采,含硫和高硫原油、含酸和高酸原油的占比持续升高。重质油是原油中分子质量最大、结构最复杂的混合物。若想获取大量的优质和低硫含量的燃料油,加氢精制催化剂体现了关键的作用。
目前,工业上加氢精制催化剂通常是以氧化铝为载体,以第Ⅷ族和第ⅥB族金属元素为活性组分。一般来说,载体的孔结构对催化剂的性能有着重要的影响。对于重质油加氢处理催化剂,尤其是渣油加氢处理所用催化剂,一般需要具有多级的孔径和大孔容的载体,以利于重质油中大分子反应物的内扩散,避免或减缓由于反应所生成金属杂质的沉积而堵塞催化剂孔道,从而造成催化剂活性快速下降。目前,制备重质油加氢脱金属催化剂通常选用具有双峰孔结构的氧化铝作为载体基质,并在氧化铝载体上负载第Ⅷ族和第ⅥB族金属元素作为活性组分。双峰孔结构的氧化铝具有用于金属化合物分子迅速迁移的超大孔和提供催化作用的大孔。其中大孔部分由铝源物性所定,超大孔部分则往往通过添加各种扩孔剂而成,例如炭黑、干胶粉等具有明显扩扩孔剂决定的,,其双峰孔半径分别集中在5.5-10nm与10-20nm两个区域。
CN1179356A公开一种催化剂载体及其制备方法,所述催化剂载体是在混捏过程中,先加入一定量的碱性溶液,再加入一定量的酸性溶液,然后成型。该方法虽然减少了氧化铝孔容和比表面积的损失,但制备过程较复杂,载体机械 强度不高。CN1256969A公开一种重油加氢处理催化剂载体及其制备,在载体制备过程中,使用拟薄水铝石和氧化铝粉,二者按一定比例混合后与复合扩孔剂等成型,该方法制备的催化剂载体具有较高的机械强度,但比表面积偏低。CN201080018712.6公开了一种催化剂和由含有再加工材料的前体组合物制备催化剂的方法,再加工材料可以是在催化剂前体的形成或成型过程中生成的材料,或者经过成型的催化剂前体的破碎或处理而形成。该专利在母料混合物中加入再加工材料,然后成型的催化剂前体。该催化剂机械强度差,孔容、孔径小。
上述公开的催化剂都能够作为重油加氢脱硫催化剂,且具有一定优势,但都有一定的缺陷,为了更加高效、持久耐用和稳定地开展重油加氢脱硫工业,开发出更优的催化剂是至关重要的。
发明内容
本发明的目的在于提供一种重油加氢脱硫催化剂及其制备方法,该催化剂可以更高效、更经济性的实现重油加氢脱硫,且该催化剂催化活性更稳定,使用时更不易硫中毒,使用寿命更长。
为了达到上述技术效果,本发明提供了如下技术方案:
一种重油加氢脱硫催化剂,所述催化剂包括催化剂中间体和涂覆在中间体外层的分子筛涂层,所述分子筛涂层为硅磷酸铝分子筛SAPO和/或磷酸铝分子筛AlPO4,所述催化剂中间体包括载体和活性金属成分,所述载体包括拟薄水铝石干胶粉和物理扩孔剂。
其中,AlPO4分子筛、SAPO分子筛为含磷分子筛,能有效阻隔硫与内层催化剂结合。
AlPO4分子筛采用AlPO4-5分子筛,AlPO4-5分子筛的合成方法具体为:采 用水热合成法制备AlPO4-5分子筛,模板剂为三乙胺(Et3N),凝胶配比n(Al2O3):n(P2O5):n(Et3N):n(H2O)=1.0:1.06:1.47:45,晶化温度180℃,晶化时间16h,经过滤、洗涤、干燥和焙烧后得到AlPO4-5分子筛。
SAPO分子筛的合成方法具体为:
a溶液:硅溶胶溶解于四乙基氢氧化铵之中,加入丙醇搅拌后形成溶液a;
b溶液:将γ-Al2O3和去离子水混合均匀形成溶液b;
c溶液:正磷酸(85%重量)、氢氟酸(40%重量)和去离子水混合均匀形成溶液c;
b和c混合后在室温下搅拌3h后形成均一胶状物d。保持搅拌状态,向d中依次加入硅溶胶和四乙基氢氧化铵的溶液a,保持搅拌加入三乙胺和去离子水,充分搅拌后形成晶化液f。将f液在200℃下品化48小时,产物经离心分离后得到固体产品,将之在烘箱中110℃烘干,得到SAPO分子筛。
进一步的技术方案为,所述分子筛涂层的厚度为0.1-1mm,所述催化剂中间体为圆球形状,直径大小为3-5mm。
进一步的技术方案为,所述活性金属成分为ⅥB族金属氧化物和Ⅷ族金属氧化物,其中ⅥB族金属氧化物的含量为催化剂总质量的1-10%,Ⅷ族金属氧化物的含量为催化剂总质量的5-15%。
优选的,所述ⅥB族金属为钼和钨,Ⅷ族金属为钴和镍。
进一步的技术方案为,所述催化剂的孔容为0.6-1.5cm3/g,比表面积为200-300m2/g。
进一步的技术方案为,所述拟薄水铝石干胶粉包括重量比为1:5-5:1的第一拟薄水铝石干胶粉和第二拟薄水铝石干胶粉,所述第一拟薄水铝石干胶粉通过二氧化碳中和法制备得到,所述第二拟薄水铝石干胶粉通过以氯化铝、氨水中 和法制备得到。
进一步的技术方案为,所述物理扩孔剂为碳黑粉,加入量为载体总质量的5-30%。
本发明还提供一种重油加氢脱硫催化剂的制备方法,包括以下步骤:(1)将拟薄水铝石干胶粉和物理扩孔剂均匀混合,然后采用胶溶剂进行胶溶,成型、干燥和焙烧得到载体;(2)将载体浸渍在含有活性金属成分的溶液中,然后干燥和焙烧,得到催化剂中间体;(3)在催化剂中间体上喷洒覆盖铝溶胶和AlPO4和/或SAPO分子筛,得到重油加氢脱硫催化剂。
进一步的技术方案为,所述步骤(1)中胶溶剂为选自硝酸、甲酸、醋酸、柠檬酸、草酸中的一种或多种,加入量为载体总质量的0.5-3%。
进一步的技术方案为,所述步骤(1)中焙烧的温度为700-1000℃,时间为1-5小时。
进一步的,步骤(2)中干燥的温度为80-120℃,时间为4-8h,焙烧的温度为300-900℃,时间为4-8h。
进一步的技术方案为,所述步骤(3)中铝溶胶的制备方法具体为:将铝源加入去离子水中,搅拌的同时滴加质量为铝源50%的浓硝酸,然后加热至80℃,再滴加硝酸至完全解胶,控制铝溶胶的pH值<2,相对密度为1.15-1.20,得到铝溶胶。
与现有技术相比,本发明具有如下有益效果:
本发明向负载了活性金属的氧化铝载体上增加一层特殊的分子筛涂层,有利于阻隔活性金属与硫接触,减少活性金属硫中毒现象,有利于延长催化剂寿命,且本发明制备的催化剂,具有较大的孔径和孔容、适中的比表面积,孔分布集中,使用寿命长,稳定性高,适用于重油加氢脱硫处理过程。
具体实施方式
本发明的催化剂向负载了活性金属的氧化铝载体上增加一层特殊的分子筛涂层,有利于阻隔活性金属与硫接触,减少活性金属硫中毒现象,有利于延长催化剂寿命。其中分子筛涂层选择AlPO4和/或SAPO分子筛,AlPO4分子筛、SAPO分子筛为含磷分子筛,能有效阻隔S与内层催化剂结合。
AlPO4分子筛采用AlPO4-5分子筛,AlPO4-5分子筛的合成:采用水热合成法制备AlPO4-5分子筛,模板剂为三乙胺(Et3N),凝胶配比n(Al2O3):n(P2O5):n(Et3N):n(H2O)=1.0:1.06:1.47:45,晶化温度180℃,晶化时间16h,经过滤、洗涤、干燥和焙烧后得到AlPO4-5分子筛。
SAPO分子筛的合成:9份硅溶胶溶解于15份四乙基氢氧化铵之中,加入10份丙醇搅拌后形成溶液a;12.2份γ-Al2O3和30份去离子水混合均匀形成溶液b;23.5份正磷酸(85%重量)、1.82份氢氟酸(40%重量)和37.5份去离子水混合均匀形成溶液c;a和b混合后在室温下搅拌3h后形成均一胶状物c。保持搅拌状态,向c中依次加入硅溶胶和四乙基氢氧化铵的溶液a,保持搅拌加入18.0份三乙胺和23.2份去离子水。充分搅拌后形成晶化液d。将d液在200℃下品化48小时,产物经离心分离后得到固体产品,将之在烘箱中110℃烘干,得到SAPO分子筛。
实施例1
一种重油加氢脱硫催化剂及其制备方法,包括以下步骤:称取中国齐鲁石化公司以二氧化碳中和法制备的拟薄水铝石干胶粉380g和抚顺石化公司以氯化铝、氨水中和法制备的拟薄水铝石干胶粉340g,和108g炭黑粉混匀后加入1.5%的硝酸溶液550毫升,搅拌成浆液,在油氨柱成球装置上滴球,将湿凝胶球在100-120℃下干燥4h,然后在焙挠炉中以200℃/h的升温速度达到1000℃,恒温 2h,得到直径约为3.0mm左右的催化剂载体。
将催化剂载体用等体积浸渍法,同时几种负载活性金属具体含量见表1,然后在130℃下干燥2小时,在550℃下焙烧2小时,得到催化剂球。
将20g拟薄水铝石粉加入285mL去离子水中,在搅拌的同时滴加约10g浓硝酸。然后加热至80℃,再滴加硝酸至完全解胶,控制铝溶胶的pH值<2,相对密度为1.15-1.20,得到铝溶胶。
将催化剂球投入整形机中,加入质量为催化剂中间体总质量的50%的AlPO4-5分子筛,并在运转的过程中使用高效喷雾器喷洒喷上述雾胶,使得球母成型长大,整形机的转速为20r/min,运转1.5小时后,将整形机的转速调为40r/min,运转1.5小时后筛选直径为3.0-4.0mm的合格球,将合格球整形4小时后,放置在通风柜内自然风干15小时,然后在100℃下的箱式烘箱内干燥2小时,取出放入220℃的焙烧炉内焙烧4小时,升温至380℃焙烧2小时,升温至550℃焙烧4小时,得到最终催化剂C1。对其脱硫活性进行测试,测试结果如表1所示。
实施例2:与实施例1相比较,不同之处是加入质量为催化剂中间体总质量50%的SAPO分子筛,其他过程与操作条件与实施例1相同,得到最终催化剂C2,测试结果如表1。
实施例3:与实施例1相比较,不同之处是加入质量为催化剂中间体总质量25%的1:1SAPO和AlPO4-5分子筛混合物,其他过程与操作条件与实施例1相同,得到最终催化剂C3,测试结果如表1。
实施例4:与实施例1相比较,不同之处是将催化剂球投入整形机中,加入质量为催化剂中间体总质量500%的AlPO4-5分子筛,并在运转的过程中使用高效喷雾器喷洒喷上述雾胶,使得球母成型长大,整形机的转速为20r/min,运转 3小时后,将整形机的转速调为40r/min,运转3小时后筛选直径为3.5-5.0mm的合格球,其他过程与操作条件与实施例1相同,得到最终催化剂C4,测试结果如表1。
实施例5:与实施例4相比较,不同之处是加入质量为催化剂中间体总质量500%的SAPO分子筛,其他过程与操作条件与实施例4相同,得到最终催化剂C5,测试结果如表1。
实施例6:与实施例4相比较,不同之处是加入质量为催化剂中间体总质量500%的1:1SAPO和AlPO4-5分子筛混合物,其他过程与操作条件与实施例4相同,得到最终催化剂C6,测试结果如表1。
对比例1:与实施例1相比较,不同之处是未加入铝溶胶和分子筛,其他过程与操作条件与实施例1相同,得到最终催化剂C7,测试结果如表1。
对比例2:与实施例1相比较,不同之处是未加入分子筛,改为加入质量为催化剂50%的实施例1中两种拟薄水铝石按照19:17的比例混合的干胶粉,其他过程与操作条件与实施例1相同,得到最终催化剂C8,测试结果如表1。
对比例3:与实施例1相比较,不同之处是未加入分子筛,其他过程与操作条件与实施例1相同,得到最终催化剂C9,测试结果如表1。
表1中列出了实施例和对比例中催化剂的主要物化性质,并在相同的评价条件下,比较上述各例催化剂加氢脱硫性能。
按照下列公式计算外层分子筛占各催化剂的质量占比:
以镍含量为14ppm、钒含量为18ppm、硫含量为3.3%、残碳为10%、氮含量0.3%的常压渣油为原料,在100毫升小型固定床反应器上评价催化剂。催化剂装量为100毫升。反应条件为:反应温度为380℃、氢分压为14兆帕、液时空速为0.6h-1, 氢油体积比为1000,反应500小时后取样。使用电量法测定硫的含量(具体方法见石油化工分析方法RIPP62-90),按照下列公式计算硫的脱除率:
表1催化剂物理化学性质以及脱硫性能
从表中数据可以看出,本发明方法制备的催化剂具有良好活性稳定性,因为AlPO4/SAPO分子筛涂层的存在,有效地保护了催化剂脱硫活性。
本发明向负载了活性金属的氧化铝载体上增加一层特殊的分子筛涂层,有利于阻隔活性金属与硫接触,减少活性金属硫中毒现象,有利于延长催化剂寿命,且本发明制备的催化剂,具有较大的孔径和孔容、适中的比表面积,孔分布集中,使用寿命长,稳定性高,适用于重油加氢脱硫处理过程。
尽管这里参照本发明的解释性实施例对本发明进行了描述,上述实施例仅为本发明较佳的实施方式,本发明的实施方式并不受上述实施例的限制,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。

Claims (10)

  1. 一种重油加氢脱硫催化剂,其特征在于,所述催化剂包括催化剂中间体和涂覆在中间体外层的分子筛涂层,所述分子筛涂层为硅磷酸铝分子筛SAPO和/或磷酸铝分子筛AlPO4,所述催化剂中间体包括载体和活性金属成分,所述载体包括拟薄水铝石干胶粉和物理扩孔剂。
  2. 根据权利要求1所述的重油加氢脱硫催化剂,其特征在于,所述分子筛涂层的厚度为0.1-1mm,所述催化剂中间体为圆球形状,直径大小为3-5mm。
  3. 根据权利要求1所述的重油加氢脱硫催化剂,其特征在于,所述活性金属成分为ⅥB族金属氧化物和Ⅷ族金属氧化物,其中ⅥB族金属氧化物的含量为催化剂总质量的1-10%,Ⅷ族金属氧化物的含量为催化剂总质量的5-15%。
  4. 根据权利要求1所述的重油加氢脱硫催化剂,其特征在于,所述催化剂的孔容为0.6-1.5cm3/g,比表面积为200-300m2/g。
  5. 根据权利要求1所述的重油加氢脱硫催化剂,其特征在于,所述拟薄水铝石干胶粉包括重量比为1:5-5:1的第一拟薄水铝石干胶粉和第二拟薄水铝石干胶粉,所述第一拟薄水铝石干胶粉通过二氧化碳中和法制备得到,所述第二拟薄水铝石干胶粉通过以氯化铝、氨水中和法制备得到。
  6. 根据权利要求1所述的重油加氢脱硫催化剂,其特征在于,所述物理扩孔剂为碳黑粉,加入量为载体总质量的5-30%。
  7. 一种权利要求1-6任一项所述的重油加氢脱硫催化剂的制备方法,其特征在于,包括以下步骤:(1)将拟薄水铝石干胶粉和物理扩孔剂均匀混合,然后采用胶溶剂进行胶溶,成型、干燥和焙烧得到载体;(2)将载体浸渍在含有活性金属成分的溶液中,然后干燥、焙烧,得到催化剂中间体;(3)在催化剂中间体上喷洒覆盖铝溶胶和AlPO4和/或SAPO分子筛,得到重油加氢脱硫催化剂。
  8. 根据权利要求7所述的重油加氢脱硫催化剂的制备方法,其特征在于,所述步骤(1)中胶溶剂为包括硝酸、甲酸、醋酸、柠檬酸、草酸中的一种或多种,加入量为载体总质量的0.5-3%。
  9. 根据权利要求7所述的重油加氢脱硫催化剂的制备方法,其特征在于,所述步骤(1)中焙烧的温度为700-1000℃,时间为1-5小时。
  10. 根据权利要求7所述的重油加氢脱硫催化剂的制备方法,其特征在于,所述步骤(3)中铝溶胶的制备方法具体为:将铝源加入去离子水中,搅拌的同时滴加质量为铝源50%的浓硝酸,然后加热至80℃,再滴加硝酸至完全解胶,控制铝溶胶的pH值<2,相对密度为1.15-1.20,得到铝溶胶。
PCT/CN2023/097901 2022-06-02 2023-06-01 一种重油加氢脱硫催化剂及其制备方法 WO2023232122A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210626260.4A CN114768863B (zh) 2022-06-02 2022-06-02 一种重油加氢脱硫催化剂及其制备方法
CN202210626260.4 2022-06-02

Publications (1)

Publication Number Publication Date
WO2023232122A1 true WO2023232122A1 (zh) 2023-12-07

Family

ID=82422108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097901 WO2023232122A1 (zh) 2022-06-02 2023-06-01 一种重油加氢脱硫催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN114768863B (zh)
WO (1) WO2023232122A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114768863B (zh) * 2022-06-02 2023-10-31 润和科华催化剂(上海)有限公司 一种重油加氢脱硫催化剂及其制备方法
CN115739172A (zh) * 2022-12-02 2023-03-07 润和科华催化剂(上海)有限公司 一种协同脱除n2o和no的催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102441368A (zh) * 2010-10-13 2012-05-09 中国石油化工股份有限公司 重油加氢脱金属催化剂的制备方法
US20210354118A1 (en) * 2019-02-01 2021-11-18 China University Of Petroleum-Beijing In situ bifunctional catalyst for deep desulfurization and increasing octane number of gasoline and preparation method thereof
CN114425402A (zh) * 2020-10-29 2022-05-03 中国石油化工股份有限公司 重、渣油加氢脱硫催化剂及其制备方法
CN114768863A (zh) * 2022-06-02 2022-07-22 润和科华催化剂(上海)有限公司 一种重油加氢脱硫催化剂及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103055932B (zh) * 2011-10-24 2015-02-18 中国石油化工股份有限公司 一种渣油加氢处理催化剂及其制备方法
CN110152723B (zh) * 2018-02-13 2022-07-05 中国石油天然气集团有限公司 一种加氢精制催化剂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102441368A (zh) * 2010-10-13 2012-05-09 中国石油化工股份有限公司 重油加氢脱金属催化剂的制备方法
US20210354118A1 (en) * 2019-02-01 2021-11-18 China University Of Petroleum-Beijing In situ bifunctional catalyst for deep desulfurization and increasing octane number of gasoline and preparation method thereof
CN114425402A (zh) * 2020-10-29 2022-05-03 中国石油化工股份有限公司 重、渣油加氢脱硫催化剂及其制备方法
CN114768863A (zh) * 2022-06-02 2022-07-22 润和科华催化剂(上海)有限公司 一种重油加氢脱硫催化剂及其制备方法

Also Published As

Publication number Publication date
CN114768863B (zh) 2023-10-31
CN114768863A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2023232122A1 (zh) 一种重油加氢脱硫催化剂及其制备方法
JP3959107B2 (ja) 高活性触媒
CN110573251B (zh) 在气相中将有机化合物添加到多孔固体中的方法
CN108855024B (zh) 一种大孔径、高机械强度的氧化铝载体的制备方法
CN107937024B (zh) 一种由基础油生产优质轻质白油的方法
JP2014506183A (ja) メタン合成触媒の製造方法及び触媒前駆体
WO2019233009A1 (zh) 一种加氢裂化催化剂的制备方法
CN112742362A (zh) 焦炉气加氢脱硫催化剂及其制备方法与应用
CN107837798A (zh) 一种氧化铝小球载体及其制备方法及催化重整催化剂
JP2001520567A (ja) 低マクロ細孔率の残油転化触媒
JPS6212614A (ja) 大形孔隙を有するアルミナの製造方法
CN107694579B (zh) 一种硫化型加氢脱硫催化剂及其制备方法与应用
CN112742408B (zh) 干气加氢饱和烯烃和脱硫催化剂及其制备方法与应用
CN112742391B (zh) 一种天然气加氢脱硫催化剂及其制备和应用
WO2018188532A1 (zh) 高氮原料油加氢精制催化剂及其制备方法和其载体的制备方法
JPH0295443A (ja) 残油の水素化処理触媒
CN109926077B (zh) 一种劣质原料加氢转化催化剂及其制备方法
CN112742404A (zh) 汽油选择性加氢脱硫催化剂及其制备方法和应用以及汽油选择性加氢脱硫方法
CN114436304A (zh) 一种球形氧化铝载体的制备方法
CN106622299A (zh) 一种高HDS活性Ni基非负载型催化剂的制备方法
JP4519379B2 (ja) 重質炭化水素油の水素化処理触媒
JP2008168257A (ja) 水素化処理触媒、その製造方法及び重質油の水素化処理方法
CN115518645B (zh) 加氢脱金属催化剂及其制法和回收利用
CN107297215A (zh) 加氢处理催化剂及其制备方法
CN116060049B (zh) 一种加氢催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815299

Country of ref document: EP

Kind code of ref document: A1