WO2018188532A1 - 高氮原料油加氢精制催化剂及其制备方法和其载体的制备方法 - Google Patents
高氮原料油加氢精制催化剂及其制备方法和其载体的制备方法 Download PDFInfo
- Publication number
- WO2018188532A1 WO2018188532A1 PCT/CN2018/082172 CN2018082172W WO2018188532A1 WO 2018188532 A1 WO2018188532 A1 WO 2018188532A1 CN 2018082172 W CN2018082172 W CN 2018082172W WO 2018188532 A1 WO2018188532 A1 WO 2018188532A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carrier
- alumina carrier
- alumina
- catalyst
- hydrotreating catalyst
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 75
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 229910052757 nitrogen Inorganic materials 0.000 title claims abstract description 41
- 239000010779 crude oil Substances 0.000 title abstract 3
- 238000002360 preparation method Methods 0.000 title description 24
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 81
- 239000011148 porous material Substances 0.000 claims abstract description 64
- 238000009826 distribution Methods 0.000 claims abstract description 20
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- 238000012546 transfer Methods 0.000 claims abstract description 6
- 229910052755 nonmetal Inorganic materials 0.000 claims abstract description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 57
- 238000000034 method Methods 0.000 claims description 31
- 238000005470 impregnation Methods 0.000 claims description 25
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 23
- 229910017604 nitric acid Inorganic materials 0.000 claims description 23
- 238000003756 stirring Methods 0.000 claims description 21
- 238000001354 calcination Methods 0.000 claims description 20
- 150000002894 organic compounds Chemical class 0.000 claims description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 19
- 229910052760 oxygen Inorganic materials 0.000 claims description 19
- 239000001301 oxygen Substances 0.000 claims description 19
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 18
- 239000000843 powder Substances 0.000 claims description 18
- 229910002706 AlOOH Inorganic materials 0.000 claims description 17
- 238000011068 loading method Methods 0.000 claims description 17
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims description 17
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims description 17
- 229910018104 Ni-P Inorganic materials 0.000 claims description 14
- 229910018536 Ni—P Inorganic materials 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 12
- 238000001035 drying Methods 0.000 claims description 10
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 9
- 238000001125 extrusion Methods 0.000 claims description 9
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 claims description 9
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 8
- 239000012752 auxiliary agent Substances 0.000 claims description 8
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 8
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 239000011574 phosphorus Substances 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 7
- 239000002243 precursor Substances 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000002736 nonionic surfactant Substances 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 3
- 239000002202 Polyethylene glycol Substances 0.000 claims description 2
- 239000001913 cellulose Substances 0.000 claims description 2
- 229920002678 cellulose Polymers 0.000 claims description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 claims description 2
- 229920001223 polyethylene glycol Polymers 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 9
- 238000009792 diffusion process Methods 0.000 abstract description 7
- 239000002671 adjuvant Substances 0.000 abstract 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 abstract 2
- 239000003921 oil Substances 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 238000001914 filtration Methods 0.000 description 7
- 241000198620 Infundibulicybe gibba Species 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000013256 coordination polymer Substances 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000000975 co-precipitation Methods 0.000 description 4
- 239000000376 reactant Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000003513 alkali Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 241000736305 Marsilea quadrifolia Species 0.000 description 1
- 241000219793 Trifolium Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- -1 alkali metal aluminate Chemical class 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 1
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 150000004684 trihydrates Chemical class 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/188—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
- B01J27/19—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/635—0.5-1.0 ml/g
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/06—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/08—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/70—Catalyst aspects
Definitions
- the invention relates to the field of catalytic hydrogenation technology, in particular to a high-nitrogen feedstock oil hydrotreating catalyst, a preparation method thereof and a preparation method thereof.
- the pore structure of the catalyst is required to facilitate the diffusion and reaction of the reactants and product molecules.
- the hydrotreating reaction is less affected by diffusion control, and the pore size range does not have a major influence on the purification activity of the catalyst.
- the hydrorefining of heavy distillate and wax oil is not the case, because the reactant molecules are large, and the suitable carrier pore size is very important.
- the requirement of the pore size distribution of the hydrotreating catalyst is related to the distillation range of the feedstock oil. If the pore diameter is too small, diffusion restriction may be caused. Conversely, the specific surface of the catalyst is lowered, thereby reducing the activity of the catalyst.
- the pore distribution of the catalyst is determined by the support, and the development of a suitable support is a key factor in the development of the catalyst.
- Activated alumina has good thermal stability, certain activity, suitable pore structure, suitable specific surface area, high mechanical strength and other excellent properties, and has become a carrier of various catalysts in the petrochemical industry, especially hydrogenation catalysts.
- the requirements for the pore structure of the catalyst carrier are firstly to provide as large a reaction contact area as possible, to increase the dispersion of the active component, followed by pore size, pore size is too large, the specific surface area of the carrier is reduced, the pore diameter is too small, and the reactants are The diffusion has an adverse effect, which affects the activity of the catalyst. Therefore, the development of a ⁇ -Al 2 O 3 with a concentrated pore size has become one of the important topics in the development of catalysts.
- Patent CN101088605A discloses a process for the preparation of an alumina support.
- the acidic aluminum salt and the alkali metal aluminate are cocurrently neutralized, and during the oscillating process, the material is aged, and then filtered, washed and dried to obtain an alumina dry glue.
- the method prepares alumina, has high production efficiency and small environmental pollution, but the two materials used for neutralization are strong acid and strong alkali, so the stability of the reaction system is poor, and the product quality is fluctuated easily. When the local alkali is too strong, it is easy. Alumina trihydrate is formed.
- the alumina dry glue prepared by the method has a large particle size, the crystallinity is low, the particles are not complete, and the particles are easily destroyed during the preparation of the carrier, and the pores collapse, and it is difficult to prepare the alumina carrier having the pore size concentration. .
- the object of the present invention is to provide a high-nitrogen feedstock hydrotreating catalyst, a preparation method thereof and a preparation method thereof.
- the high-nitrogen feedstock hydrotreating catalyst prepared by using the alumina carrier of the invention has a high specific surface area and The pore volume and the pore size distribution are concentrated, and the mass transfer and diffusion effect is good.
- the high-nitrogen feedstock hydrotreating catalyst disclosed in the present invention comprises three parts: a carrier, an active component and an auxiliary agent, characterized in that the carrier is an alumina carrier, and the active component It is a two-component of metal Mo and metal Ni, in the form of MoO 3 and NiO, the auxiliary agent is a non-metal P, and the loading amount of MoO 3 in the active component is 20 to 26% of the mass of the entire catalyst, The loading of NiO is 3.0 to 3.8% of the mass of the entire catalyst.
- the loading amount of the auxiliary agent P is 0.9 to 1.3% of the total mass of the catalyst.
- a method for preparing an alumina carrier in the above high-nitrogen feedstock hydrotreating catalyst comprising the following steps:
- Step 1 Weigh Al (OC(CH 3 ) 2 ) 3 solid, place it in a flask, add 80-90 ° C hot water to the flask, and stir at 90-100 ° C for 10 to 60 min;
- Step 2 adding 0.001 to 0.05 mol of concentrated nitric acid to the flask in step 1, the mass fraction of nitric acid in the concentrated nitric acid is in the range of 65 to 68%, forming a colloidal solution, ensuring that the pH of the colloidal solution is 2 to 5, the gel solution is further stirred under heating conditions of 90 ⁇ 100 ° C for 2 ⁇ 24h (hours);
- Step 3 The flask containing the colloidal solution in step 2 is cooled to 5 to 25 ° C, and an oxygen-containing organic compound is added, and stirring is continued for 2 to 12 hours at 22 to 26 ° C;
- Step 4 Transfer the colloidal solution in the flask of step 3 to a beaker and dry at 60-80 ° C for 12-24 hours to obtain an alumina precursor, labeled as n-AlOOH (m), where m is an organic compound.
- n-AlOOH (m) an alumina precursor
- Step 5 The sample A in the step 4 is calcined, the calcination temperature is 500-600 ° C, the calcination time is 4-6 h, and the activated alumina obtained by calcination is labeled as ⁇ -Al 2 O 3 (m), and m is an organic compound. a molar ratio of oxygen in the alloy to aluminum in Al(OC(CH 3 ) 2 ) 3 ;
- Step 6 The sample B in step 4 is uniformly rolled with the alumina dry powder and the extrusion aid, and a dilute nitric acid solution having a mass fraction of 1.8 to 4.0% is added, kneaded, and extruded on a extruder to form a squeeze.
- the stripped material is dried at a temperature of 90-110 ° C for 8-16 h.
- the sample is calcined at a temperature of 500-600 ° C for 4-6 h.
- an alumina carrier with a pore size distribution is obtained, which is labeled Carrier-Al. 2 O 3 (m), m is a molar ratio of oxygen in the organic compound to aluminum in Al(OC(CH 3 ) 2 ) 3 .
- a method for preparing a high-nitrogen feedstock hydrotreating catalyst by using the above alumina carrier comprising the following steps:
- Step 001 Weigh molybdenum oxide, basic nickel carbonate and phosphoric acid, place them in a flask and mix them evenly, and heat them in an oil bath condition of 92-110 ° C for 3-6 h. After heating, drop to 23-27 ° C. Capacited to 250mL, prepared into a Mo-Ni-P impregnation solution;
- Step 002 Impregnating the Mo-Ni-P impregnation liquid prepared in the step 001 onto the alumina carrier Carrier-Al 2 O 3 (m), drying at 90 to 110 ° C for 8 to 16 hours, and drying the sample.
- a high-nitrogen feedstock hydrotreating catalyst is obtained, which is labeled as Catalyst-Al 2 O 3 (m, M%/N%/W%), wherein m is an organic compound.
- the molar ratio of oxygen to aluminum in Al(OC(CH 3 ) 2 ) 3 M% is the loading of MoO 3
- N% is the loading of NiO
- W% is the loading of P
- Catalyst represents the catalyst.
- the alumina precursor prepared by the invention has stable quality, is a typical pseudo-boehmite phase, has a large pore volume and a large pore size, and has a large pore size distribution and an ideal pore structure.
- the organic compound inducing agent used in the present invention is inexpensive and readily available, and an alumina carrier having a large specific surface area and a large pore volume and a large pore size distribution can be obtained by using a relatively inexpensive aluminum isopropoxide.
- the preparation process of SB powder imported from Germany is simple and the cost is lower.
- the high-nitrogen feedstock hydrotreating catalyst prepared by using the alumina carrier of the invention has high specific surface area and pore volume, and has a large pore size distribution, good mass transfer and diffusion effect, and can effectively improve the dispersion degree of the active metal component. And utilization rate, reducing catalyst cost, and improving the hydrodesulfurization and denitrification ability of the catalyst.
- the invention relates to a high-nitrogen feedstock hydrotreating catalyst, which comprises three parts: a carrier, an active component and an auxiliary agent, the carrier is an alumina carrier, and the active component is a metal Mo and a metal Ni.
- the auxiliary agent is a non-metal P, wherein the loading amount of MoO 3 in the active component is 20 to 26% of the total mass of the catalyst, and the loading of NiO is the entire catalyst.
- the quality is 3.0 to 3.8%.
- the loading amount of the auxiliary agent P is 0.9 to 1.3% of the total mass of the catalyst.
- a method for preparing an alumina carrier in the above high-nitrogen feedstock hydrotreating catalyst comprising the following steps:
- Step 1 Weigh 0.1 mol of Al(OC(CH 3 ) 2 ) 3 solid, place it in a dry three-necked flask, and add 3 to 12 mol of hot water of 80-90 ° C to the above three-necked flask, 90-100 ° C Stirring under heating for 10 to 60 minutes;
- Step 2 0.001-0.05 mol of concentrated nitric acid is added dropwise to the three-necked flask in step 1, the mass fraction of nitric acid in the concentrated nitric acid is in the range of 65 to 68%, and a colloidal solution is formed to ensure the pH of the colloidal solution is 2 ⁇ 5, the gel solution is further stirred under heating conditions of 90 to 100 ° C for 2 to 24 hours;
- Step 3 The ice bath condition of the flask containing the colloidal solution in step 2 is lowered to 5 to 25 ° C, and an oxygen-containing organic compound is added, and stirring is continued for 2 to 12 hours at 22 to 26 ° C;
- Step 4 Transfer the colloidal solution in the flask of step 3 to a beaker, and dry it in a blast dryer at 60-80 ° C for 12-24 hours to obtain an alumina precursor, labeled as n-AlOOH (m).
- m is the molar ratio of oxygen in the organic compound to aluminum in Al(OC(CH 3 ) 2 ) 3 ; the sample is divided into two parts, labeled A and B;
- Step 5 The sample A in the step 4 is placed in a muffle furnace for calcination at a calcination temperature of 500 to 600 ° C, a calcination time of 4 to 6 h, and the activated alumina obtained by calcination is labeled as ⁇ -Al 2 O 3 (m).
- m is the molar ratio of oxygen in the organic compound to aluminum in Al(OC(CH 3 ) 2 ) 3 ;
- the obtained ⁇ -Al 2 O 3 (m) is used to characterize low temperature nitrogen adsorption and desorption, ie for characterization Specific surface area, pore diameter and pore distribution of the material;
- Step 6 The sample B in step 4 is uniformly rolled with the alumina dry powder and the extrusion aid, and a dilute nitric acid solution having a mass fraction of 1.8% to 4.0% is added, kneaded, and extruded on a squeezer.
- the material after extruding is dried in a blast dryer at a temperature of 90-110 ° C for 8-16 h.
- the sample is calcined in a muffle furnace at a temperature of 500-600 ° C for 4-6 h, and the hole is obtained after calcination.
- the alumina carrier in the distribution is labeled Carrier-Al 2 O 3 (m), m is the molar ratio of oxygen in the organic compound to aluminum in Al(OC(CH 3 ) 2 ) 3 , and carrier represents the carrier.
- the oxygen-containing organic compound in the step 3 of the above technical solution is one of polyethylene glycol, nonionic surfactant F127, nonionic surfactant P123, cellulose, and phthalocyanine powder.
- the molar ratio of oxygen in the organic compound to aluminum in Al(OC(CH 3 ) 2 ) 3 is in the range of 0.1 to 1.5, preferably 0.5 to 1.2.
- the ⁇ -Al 2 O 3 (m) has a specific surface area of 250 to 280 m 2 /g, and a pore volume of 0.5 to 0.8 cm 3 /g, wherein the pore volume of the pore diameter of 4 to 10 nm accounts for The ratio of pore volume is 90 to 95%.
- the shape of the alumina carrier is a cylindrical strip shape or a clover shape or a four-leaf clover shape, and the diameter of the cylindrical strip-shaped alumina carrier ranges from 1.2 to 1.6 mm, and the cylindrical strip-shaped alumina carrier
- the length ranges from 5 to 10 mm; the two-leaf pitch of the clover-shaped alumina carrier ranges from 1.1 to 1.8 mm, the length of the clover-shaped alumina carrier ranges from 5 to 10 mm, and the distance between the two leaves of the four-leafed alumina carrier ranges from 1.1 to 1.1 mm. ⁇ 1.8mm, the length range is 5 ⁇ 10mm;
- the prepared carrier-Al 2 O 3 (m) has a specific surface area ranging from 200 to 330 m 2 /g, and a pore volume ranging from 0.4 to 0.9 cm 3 /g, wherein the pore volume of the pore diameter of 4 to 10 nm accounts for the total pore volume.
- the ratio is 90 to 95%.
- a method for preparing a high-nitrogen feedstock hydrotreating catalyst by using the above alumina carrier comprising the following steps:
- Step 001 Weigh molybdenum oxide, basic nickel carbonate and phosphoric acid, mix them in a three-necked flask, and heat for 3 to 6 hours under oil bath conditions of 92-110 ° C. After heating, drop to 23-27 ° C. Diluted to 250 mL, prepared into a Mo-Ni-P impregnation solution;
- Step 002 impregnating the Mo-Ni-P impregnation liquid prepared in the step 001 onto the alumina carrier Carrier-Al 2 O 3 (m) (impregnating the carrier by excess impregnation method), filtering, and blowing in a blast dryer It is dried at 90-110 °C for 8-16 h. After drying, the sample is calcined in a muffle furnace at 500-600 ° C for 4-6 h to obtain a high-nitrogen feedstock hydrotreating catalyst, labeled as Catalyst-Al 2 O 3 .
- the mass concentration of the molybdenum oxide is in the range of 0.2 to 0.8 g/mL, preferably 0.3 to 0.6 g/mL; the mass concentration of the nickel oxide is 0.02 to 0.1 g/mL, and the mass concentration of the phosphorus element is 0.008 to ⁇ . 0.05 g/mL, preferably 0.04 to 0.08 g/mL.
- the volume ratio of the carrier of the alumina carrier Carrier-Al 2 O 3 (m) to the volume of the Mo-Ni-P impregnation solution is 1.5 to 4.0, preferably 2.0 to 3.0, and the prepared high nitrogen raw material oil is added.
- the hydrogen purification catalyst has a specific surface area in the range of 160 to 180 m 2 /g and a pore volume ranging from 0.3 to 0.5 cm 3 /g, wherein the ratio of the pore volume of the pore diameter of 4 to 10 nm to the total pore volume is 90 to 95%.
- the performance evaluation of the high nitrogen feedstock hydrotreating catalyst according to the present invention is carried out in a fixed bed reactor under the following operating conditions: the catalyst bed temperature ranges from 300 to 400 ° C, the reaction pressure ranges from 8 to 15 MPa, and the liquid air velocity range It is 0.5 to 2.0 h -1 and the hydrogen to oil ratio ranges from 500 to 1,000.
- the catalyst performance evaluation results are shown in Table 1.
- ⁇ -Al 2 O 3 (0) Preparation of ⁇ -Al 2 O 3 (0): Weigh 20.43 g of Al(OC(CH 3 ) 2 ) 3 and place it in a dry 250 mL three-necked flask; add 180 mL of hot water heated to 85 ° C to the above three In the flask, heating and stirring were continued for 15 min; under stirring, 0.5 mL of concentrated nitric acid was added dropwise to the above three-necked flask, and after the completion of the dropwise addition, stirring was continued for 24 hours; the three-necked flask was cooled to 25 ° C in an ice bath; The colloidal solution was transferred to a beaker, dried at 60 ° C for 24 h, and labeled as n-AlOOH (0); n-AlOOH (0) was calcined in a muffle furnace at a calcination temperature of 550 ° C to obtain activated alumina ⁇ - Al 2
- F-127 was added to a three-necked flask and stirred at 23 ° C for 10 h.
- the colloidal solution in the above three-necked flask was transferred to a beaker and dried at 60 ° C for 24 h, labeled as n-AlOOH (0.6); n-AlOOH (0.6) It was calcined in a muffle furnace at a calcination temperature of 550 ° C to obtain activated alumina ⁇ -Al 2 O 3 (0.6).
- F-127 was added to a three-necked flask and stirred at 23 ° C for 10 h; the colloidal solution in the above three-necked flask was transferred to a beaker and dried at 60 ° C for 24 h, labeled as n-AlOOH (1.2); n-AlOOH (1.2) It was calcined in a muffle furnace at a calcination temperature of 550 ° C to obtain activated alumina ⁇ -Al 2 O 3 (1.2).
- F-127 was added to a three-necked flask and stirred at 23 ° C for 10 h; the colloidal solution in the above three-necked flask was transferred to a beaker and dried at 60 ° C for 24 h, labeled as n-AlOOH (1.2); n-AlOOH (1.2) It was calcined in a muffle furnace at a calcination temperature of 550 ° C to obtain activated alumina ⁇ -Al 2 O 3 (1.2).
- Carrier-Al 2 O 3 (0.5): Roll the n-AlOOH (0.5) sample with ordinary alumina dry rubber powder and extrusion aid evenly, add a dilute nitric acid solution with a mass fraction of 2.0%, knead and knead The cake was extruded on a squeezer, and the obtained material was dried at 110 ° C, and then calcined at 550 ° C to obtain an alumina carrier Carrier-Al 2 O 3 (0.5) having a pore size distribution.
- Carrier-Al 2 O 3 (0.6): Roll the n-AlOOH (0.6) sample with ordinary alumina dry rubber powder and extrusion aid evenly, add a dilute nitric acid solution with a mass fraction of 2.0%, knead and knead The cake was extruded on a extruder, and the obtained material was dried at 110 ° C, and then calcined at 550 ° C to obtain an alumina carrier Carrier-Al 2 O 3 (0.6) having a pore size distribution.
- Carrier-Al 2 O 3 (1.2): Roll the n-AlOOH (1.2) sample with ordinary alumina dry rubber powder and extrusion aid evenly, add a dilute nitric acid solution with a mass fraction of 2.0%, knead and knead The cake was extruded on a squeezer, and the obtained material was dried at 110 ° C, and then calcined at 550 ° C to obtain an alumina carrier Carrier-Al 2 O 3 (1.2) having a pore size distribution.
- German SB powder is used as raw material powder to prepare carrier Carrier-Al 2 O 3 (SB): the purchased German SB powder and ordinary alumina dry rubber powder and extrusion aid are evenly rolled, and a dilute nitric acid solution with a mass fraction of 2.0% is added. Kneading, the kneaded cake is extruded on a squeezer. The obtained material was dried at 110 ° C, and calcined at 550 ° C to obtain an alumina carrier C-Al 2 O 3 (SB) having a pore size distribution.
- SB carrier Carrier-Al 2 O 3
- Carrier-Al 2 O 3 (CP) prepared from domestic coprecipitation raw material powder the raw material powder prepared by the domestic coprecipitation method purchased is uniformly rolled with ordinary alumina dry rubber powder and extrusion aid, and the mass fraction is 2.0. % dilute nitric acid solution, kneading, the kneaded cake is extruded on a squeezer, and the obtained material is dried at 110 ° C, and then calcined at 550 ° C to obtain an alumina carrier Carrier-Al 2 having a pore size distribution. O 3 (CP).
- the above impregnation solution was immersed on the carrier Carrier-Al 2 O 3 (0) by an excessive impregnation method, and immersed for 20 hours; the sample was transferred to a common funnel and filtered; the sample obtained after filtration was dried at 110 ° C for 10 hours. The dried sample was transferred to a muffle furnace and calcined at 550 ° C for 6 h to obtain a high-nitrogen feedstock hydrotreating catalyst Catalyst-Al 2 O 3 (0, 20 % / 3% / 1%).
- Catalyst-Al 2 O 3 (0.5, 20%/3%/1%): weighed molybdenum oxide, mixed with basic nickel carbonate and phosphoric acid, heated in an oil bath at 100 ° C for 3 h, after heating, reduced to 25 °C, constant volume to 250mL, get Mo-Ni-P impregnation solution, spare; the mass concentration of molybdenum oxide is 0.4g / mL, the concentration of nickel oxide is 0.06g / mL, the concentration of phosphorus is 0.02g / mL, The above impregnation solution was immersed on the carrier Carrier-Al 2 O 3 (0.5) by an excessive impregnation method, and immersed for 20 hours; the sample was transferred to a common funnel and filtered; the sample obtained after filtration was dried at 110 ° C for 10 hours.
- the dried sample was transferred to a muffle furnace and calcined at 550 ° C for 6 h to obtain a high-nitrogen feedstock hydrotreating catalyst Catalyst-Al 2 O 3 (0.5, 20% / 3% / 1%).
- the dried sample was transferred to a muffle furnace and calcined at 550 ° C for 6 h to obtain a high-nitrogen feedstock hydrotreating catalyst Catalyst-Al 2 O 3 (0.6, 20% / 3% / 1%).
- the concentration was 0.02 g/mL, and the above impregnation solution was immersed on the carrier Carrier-Al 2 O 3 (SB) by an excessive impregnation method, and immersed for 20 hours; the sample was transferred to a common funnel and filtered; the sample obtained after filtration was After drying at 110 ° C for 10 h, the dried sample was transferred to a muffle furnace and calcined at 550 ° C for 6 h to obtain a high-nitrogen feedstock hydrotreating catalyst Catalyst-Al 2 O 3 (SB, 20%/3%/ 1%).
- SB carrier Carrier-Al 2 O 3
- the above impregnation solution was immersed on the carrier Carrier-Al 2 O 3 (CP) by an excessive impregnation method, immersed for 20 hours, the sample was transferred to a common funnel, and filtered; the sample obtained after filtration was dried at 110 ° C, After drying, the sample was transferred to a muffle furnace and calcined at 550 ° C for 6 h to obtain a high-nitrogen feedstock hydrotreating catalyst Catalyst-Al 2 O 3 (CP, 20%/3%/1%).
- CP carrier Carrier-Al 2 O 3
- the examples (1) to (4) are a method for preparing an alumina precursor having a pore size concentration and an activated alumina; and the examples (6) to (9) are a method for preparing an alumina carrier;
- Examples (10) to (11) are alumina carriers prepared from the purchased German SB powder and the raw materials obtained by the domestic coprecipitation method;
- Examples (12) to (15) are prepared using the examples (1) to (9).
- Examples (16) to (17) are high-nitrogen feedstock hydrotreating catalysts prepared using the supports prepared in Examples (10) to (11).
- Table 1 The physical properties of the samples obtained in the examples are shown in Table 1.
- the performance evaluation conditions of the high-nitrogen feedstock hydrotreating catalyst described in the examples of the present invention are as follows: the catalyst bed temperature is 365 ° C, the reaction pressure is 10.5 MPa, the liquid space velocity is 1.0 h -1 , and the hydrogen to oil ratio is 800.
- the properties of the raw material oil used for the evaluation of activity are shown in Table 2.
- the performance evaluation results of different hydrogenation catalysts are shown in Table 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
一种高氮原料油加氢精制催化剂,由载体、活性组分和助剂三部分组成,载体为氧化铝载体,活性组分为金属Mo和金属Ni的双组分,助剂为非金属P。活性组分中MoO 3的负载量为催化剂质量的20%~26%,NiO的负载量为催化剂质量的3.0~3.8%。采用氧化铝载体制备的高氮原料油加氢精制催化剂具有较高的比表面积和孔容,且孔径分布集中,传质扩散效果好。
Description
本发明涉及催化加氢技术领域,具体涉及一种高氮原料油加氢精制催化剂及其制备方法和其载体的制备方法。
加氢精制反应中,要求催化剂孔结构利于反应物、产物分子的扩散和反应。对于反应物分子较小的轻质油或中间馏分油,加氢精制反应受扩散控制影响较小,孔径范围大小不会对催化剂的精制活性构成主要影响。但是重馏分油和蜡油的加氢精制则不然,因为反应物分子较大,适宜的载体孔径十分重要。加氢精制催化剂对载体孔分布的要求与原料油的馏程有关,若孔径过小,可能导致扩散限制。反之,会降低催化剂的比表面,从而降低催化剂的活性。催化剂的孔分布是由载体决定的,因而研制合适的载体是研制催化剂的关键因素。
活性氧化铝具有较好的热稳定性、一定的活性、适宜的孔结构、适宜的比表面积、较高的机械强度等优良性能,成为石油化工行业中多种催化剂的载体,尤其是加氢催化剂的载体。对催化剂载体孔结构的要求首先是提供尽可能大的反应接触面积,提高活性组分的分散度,其次是孔径,孔径过大,载体的比表面积就会减小,孔径过小,对反应物的扩散带来不利的影响,从而影响催化剂的活性。因此,开发一种孔径集中的γ-Al
2O
3成为催化剂开发的重要课题之一。
专利CN101088605A公开了一种氧化铝载体的制备方法。该方法是将酸性铝盐和碱金属铝酸盐并流中和,并在摆动过程中和,物料老化,然后过滤、洗涤、干燥,得到氧化铝干胶。该方法制备氧化铝,生产效率高,环境污染小,但是用于中和的2种物料是强酸和强碱,因此反应体系稳定性差,容易造成产品质量波动,当局部碱性过强时,易生成三水氧化铝。而且,该方法所制备的氧化铝干胶虽然粒径较大,但是结晶度低,颗粒不够完整,在制备载体的过程中很容易造成颗粒破坏,孔道坍塌,很难制备孔径集中的氧化铝载体。
针对普通共沉淀法制备的氧化铝孔径分布不集中、反应体系稳定性差、产 品质量不稳定的问题,开发一种孔径分布集中、质量稳定的氧化铝载体制备方法具有重要的研究和应用意义。
发明内容
本发明的目的在于提供一种高氮原料油加氢精制催化剂及其制备方法和其载体的制备方法,本发明采用氧化铝载体制备的高氮原料油加氢精制催化剂具有较高的比表面积和孔容,且孔径分布集中,传质扩散效果好。
为解决上述技术问题,本发明公开的高氮原料油加氢精制催化剂,它由载体、活性组分和助剂三部分组成,其特征在于:所述载体为氧化铝载体,所述活性组分为金属Mo和金属Ni的双组分,以MoO
3和NiO的形式存在,所述助剂为非金属P,所述活性组分中MoO
3的负载量为整个催化剂质量的20~26%,NiO的负载量为整个催化剂质量的3.0~3.8%。
所述助剂P的负载量为整个催化剂质量的0.9~1.3%。
一种上述高氮原料油加氢精制催化剂中氧化铝载体的制备方法,它包括如下步骤:
步骤1:称取Al(OC(CH
3)
2)
3固体,置于烧瓶中,将80~90℃的热水加入上述烧瓶中,90~100℃加热条件下搅拌10~60min;
步骤2:向步骤1所述烧瓶中滴加0.001~0.05mol浓硝酸,所述浓硝酸中硝酸的质量分数范围为65~68%,形成胶体溶液,保证所述胶体溶液的pH值为2~5,对所述胶体溶液在90~100℃的加热条件下继续搅拌2~24h(小时);
步骤3:将步骤2所述装有胶体溶液的烧瓶降温至5~25℃,并加入含氧有机化合物,22~26℃条件下继续搅拌2~12h;
步骤4:将步骤3所述烧瓶中的胶体溶液转移至烧杯中,在60~80℃条件下干燥12~24h,得到氧化铝前驱体,标记为n-AlOOH(m),其中m为有机化合物中的氧与Al(OC(CH
3)
2)
3中铝的摩尔比;将该样品分为两部分,标记为A和B;
步骤5:将步骤4所述样品A进行焙烧,焙烧温度为500~600℃,焙烧时间为4~6h,焙烧得到的活性氧化铝标记为γ-Al
2O
3(m),m为有机化合物中的氧 与Al(OC(CH
3)
2)
3中铝的摩尔比;
步骤6:将步骤4所述样品B与氧化铝干胶粉和助挤剂碾压均匀,并加入质量分数为1.8~4.0%的稀硝酸溶液,混捏,并在挤条机上挤条成型,挤条成型后的物料在90~110℃的温度中干燥8~16h,干燥后样品在500~600℃的温度中焙烧4~6h,焙烧后得到孔径分布集中的氧化铝载体,标记为Carrier-Al
2O
3(m),m为有机化合物中的氧与Al(OC(CH
3)
2)
3中铝的摩尔比。
一种利用上述氧化铝载体制备高氮原料油加氢精制催化剂的方法,它包括如下步骤:
步骤001:称取氧化钼,碱式碳酸镍和磷酸,置于烧瓶中混合均匀,并在92~110℃的油浴条件下加热3~6h,加热完毕后,降至23~27℃,定容至250mL,制备成Mo-Ni-P浸渍液;
步骤002:将步骤001所制备成的Mo-Ni-P浸渍液浸渍到所述氧化铝载体Carrier-Al
2O
3(m)上,在90~110℃条件下干燥8~16h,干燥后样品在500~600℃条件下焙烧4~6h,得到高氮原料油加氢精制催化剂,标记为Catalyst-Al
2O
3(m,M%/N%/W%),其中,m为有机化合物中的氧与Al(OC(CH
3)
2)
3中铝的摩尔比,M%为MoO
3的负载量,N%为NiO的负载量,W%为P的负载量,Catalyst表示催化剂。
本发明的有益效果:
1、本发明制备的氧化铝前驱体质量稳定,为典型的拟薄水铝石相,孔容和孔径较大,且孔径分布集中,孔结构理想。
2、本发明使用的有机化合物诱导剂便宜易得,使用相对便宜的异丙醇铝为原料即可得到比表面积和孔容较大且孔径分布集中的氧化铝载体。比德国进口的SB粉的制备工艺简单,成本较低。
3、本发明使用该氧化铝载体制备的高氮原料油加氢精制催化剂具有较高的比表面积和孔容,且孔径分布集中,传质扩散效果好,可以有效提高活性金属组分的分散度和利用率,降低催化剂成本,且对催化剂的加氢脱硫和脱氮能力有所提高。
以下结合具体实施例对本发明作进一步的详细说明:
本发明所涉及的一种高氮原料油加氢精制催化剂,它由载体、活性组分和助剂三部分组成,所述载体为氧化铝载体,所述活性组分为金属Mo和金属Ni的双组分,以MoO
3和NiO的形式存在,所述助剂为非金属P,所述活性组分中MoO
3的负载量为整个催化剂质量的20~26%,NiO的负载量为整个催化剂质量的3.0~3.8%。所述助剂P的负载量为整个催化剂质量的0.9~1.3%。
一种上述高氮原料油加氢精制催化剂中氧化铝载体的制备方法,它包括如下步骤:
步骤1:称取0.1mol的Al(OC(CH
3)
2)
3固体,置于干燥的三口烧瓶中,将3~12mol的80~90℃的热水加入上述三口烧瓶中,90~100℃加热条件下搅拌10~60min;
步骤2:向步骤1所述三口烧瓶中滴加0.001~0.05mol浓硝酸,所述浓硝酸中硝酸的质量分数范围为65~68%,形成胶体溶液,保证所述胶体溶液的pH值为2~5,对所述胶体溶液在90~100℃的加热条件下继续搅拌2~24h;
步骤3:将步骤2所述装有胶体溶液的烧瓶冰浴条件下降温至5~25℃,并加入含氧有机化合物,22~26℃条件下继续搅拌2~12h;
步骤4:将步骤3所述烧瓶中的胶体溶液转移至烧杯中,在鼓风干燥器中60~80℃条件下干燥12~24h,得到氧化铝前驱体,标记为n-AlOOH(m),其中,m为有机化合物中的氧与Al(OC(CH
3)
2)
3中铝的摩尔比;将该样品分为两部分,标记为A和B,;
步骤5:将步骤4所述样品A置于马弗炉中进行焙烧,焙烧温度为500~600℃,焙烧时间为4~6h,焙烧得到的活性氧化铝标记为γ-Al
2O
3(m),m为有机化合物中的氧与Al(OC(CH
3)
2)
3中铝的摩尔比;得到的γ-Al
2O
3(m)用于表征低温氮气吸脱附,即用于表征材料的比表面积、孔融孔径和孔分布;
步骤6:将步骤4所述样品B与氧化铝干胶粉和助挤剂碾压均匀,并加入质量分数为1.8%~4.0%的稀硝酸溶液,混捏,并在挤条机上挤条成型,挤条成型后的物料在鼓风干燥器中用90~110℃的温度中干燥8~16h,干燥后样品在马 弗炉中用500~600℃的温度中焙烧4~6h,焙烧后得到孔径分布集中的氧化铝载体,标记为Carrier-Al
2O
3(m),m为有机化合物中的氧与Al(OC(CH
3)
2)
3中铝的摩尔比,carrier表示载体。
上述技术方案的步骤3中的含氧有机化合物为聚乙二醇、非离子表面活性剂F127、非离子表面活性剂P123、纤维素和田菁粉中的一种。
上述技术方案的步骤4、步骤5和步骤6中,有机化合物中氧与Al(OC(CH
3)
2)
3中铝的摩尔比范围为0.1~1.5,优选为0.5~1.2。
上述技术方案中,所述γ-Al
2O
3(m)的比表面积为250~280m
2/g,孔容为0.5~0.8cm
3/g,其中,孔径在4~10nm的孔容占总孔容的比率为90~95%。
上述技术方案的步骤6中,氧化铝载体的形状为圆柱条形或三叶草形或四叶草形,圆柱条形氧化铝载体的粒径范围为:1.2~1.6mm,圆柱条形氧化铝载体的长度范围为5~10mm;三叶草形氧化铝载体的两叶间距范围为1.1~1.8mm,三叶草形氧化铝载体的长度范围为5~10mm;四叶草形氧化铝载体的两叶间距范围为1.1~1.8mm,长度范围为5~10mm;
所制备的Carrier-Al
2O
3(m)的比表面积范围为200~330m
2/g,孔容范围为0.4~0.9cm
3/g,其中孔径在4~10nm的孔容占总孔容的比率为90~95%。
一种利用上述氧化铝载体制备高氮原料油加氢精制催化剂的方法,它包括如下步骤:
步骤001:称取氧化钼,碱式碳酸镍和磷酸,置于三口烧瓶中混合均匀,并在92~110℃的油浴条件下加热3~6h,加热完毕后,降至23~27℃,定容至250mL,制备成Mo-Ni-P浸渍液;
步骤002:将步骤001所制备成的Mo-Ni-P浸渍液浸渍到所述氧化铝载体Carrier-Al
2O
3(m)上(采用过量浸渍法浸渍载体),过滤,在鼓风干燥器中用90~110℃条件下干燥8~16h,干燥后样品在马弗炉中用500~600℃下焙烧4~6h,得到高氮原料油加氢精制催化剂,标记为Catalyst-Al
2O
3(m,M%/N%/W%),其中,m为有机化合物中的氧与Al(OC(CH
3)
2)
3中铝的摩尔比,M%为MoO
3的负载量,N%为NiO的负载量,W%为P的负载量,Catalyst表示催化剂。
上述技术方案的步骤001中,氧化钼的质量浓度范围为0.2~0.8g/mL,优 选为0.3~0.6g/mL;氧化镍质量浓度为0.02~0.1g/mL,磷元素质量浓度为0.008~0.05g/mL,优选的为0.04~0.08g/mL。
上述技术方案的步骤002中,氧化铝载体Carrier-Al
2O
3(m)质量与Mo-Ni-P浸渍液体积比为1.5~4.0,优选为2.0~3.0,所制备的高氮原料油加氢精制催化剂的比表面积范围为160~180m
2/g,孔容范围为0.3~0.5cm
3/g,其中,孔径在4~10nm的孔容占总孔容的比率为90~95%。
本发明所述的高氮原料油加氢精制催化剂性能评价在固定床反应器中进行,操作条件如下:催化剂床层温度范围为300~400℃,反应压力范围为8~15MPa,液空速范围为0.5~2.0h
-1,氢油比范围为500~1000。催化剂性能评价结果见表1。
实施例1:
γ-Al
2O
3(0)的制备:称取20.43g的Al(OC(CH
3)
2)
3,置于干燥的250mL三口烧瓶中;将180mL加热到85℃的热水加入到上述三口烧瓶中,继续加热搅拌15min;搅拌条件下,向上述三口烧瓶中滴加浓硝酸0.5mL,滴加完毕后,继续搅拌24h;将三口烧瓶在冰浴中降温至25℃;将上述三口烧瓶中胶体溶液转移至烧杯中,60℃条件下干燥24h,标记为n-AlOOH(0);将n-AlOOH(0)在马弗炉中焙烧,焙烧温度为550℃,得到的活性氧化铝γ-Al
2O
3(0)。
实施例2:
γ-Al
2O
3(0.5)的制备:称取20.43g的Al(OC(CH
3)
2)
3,置于干燥的250mL三口烧瓶中;将180mL加热到85℃的热水加入到上述三口烧瓶中,继续加热搅拌15min;搅拌条件下,向上述三口烧瓶中滴加浓硝酸0.5mL,滴加完毕后,继续搅拌24h;将三口烧瓶在冰浴中降温到25℃后,将2.97g的F-127加入到三口烧瓶中,23℃下,搅拌10h;将上述三口烧瓶中胶体溶液转移至烧杯中,60℃条件下干燥24h,标记为n-AlOOH(0.5);将n-AlOOH(0.5)在马弗炉中焙烧,焙烧温度为550℃,得到的活性氧化铝γ-Al
2O
3(0.5)。
实施例3:
γ-Al
2O
3(0.6)的制备:称取20.43g的Al(OC(CH
3)
2)
3,置于干燥的250mL三口烧瓶中;将180mL加热到85℃的热水加入到上述三口烧瓶中,继续加热搅拌15min;搅拌条件下,向上述三口烧瓶中滴加浓硝酸0.5mL,滴加完毕后,继续搅拌24h;将三口烧瓶在冰浴中降温到25℃后,将3.56g的F-127加入到三口烧瓶中,23℃下,搅拌10h;将上述三口烧瓶中胶体溶液转移至烧杯中,60℃条件下干燥24h,标记为n-AlOOH(0.6);将n-AlOOH(0.6)在马弗炉中焙烧,焙烧温度为550℃,得到的活性氧化铝γ-Al
2O
3(0.6)。
实施例4:
γ-Al
2O
3(1.2)的制备:称取20.43g的Al(OC(CH
3)
2)
3,置于干燥的250mL三口烧瓶中;将180mL加热到85℃的热水加入到上述三口烧瓶中,继续加热搅拌15min;搅拌条件下,向上述三口烧瓶中滴加浓硝酸0.5mL,滴加完毕后,继续搅拌24h;将三口烧瓶在冰浴中降温到25℃后,将7.12g的F-127加入到三口烧瓶中,23℃下,搅拌10h;将上述三口烧瓶中胶体溶液转移至烧杯中,60℃条件下干燥24h,标记为n-AlOOH(1.2);将n-AlOOH(1.2)在马弗炉中焙烧,焙烧温度为550℃,得到的活性氧化铝γ-Al
2O
3(1.2)。
实施例5:
γ-Al
2O
3(1.2)的制备:称取20.43g的Al(OC(CH
3)
2)
3,置于干燥的250mL三口烧瓶中;将180mL加热到85℃的热水加入到上述三口烧瓶中,继续加热搅拌15min;搅拌条件下,向上述三口烧瓶中滴加浓硝酸0.5mL,滴加完毕后,继续搅拌24h;将三口烧瓶在冰浴中降温到25℃后,将7.12g的F-127加入到三口烧瓶中,23℃下,搅拌10h;将上述三口烧瓶中胶体溶液转移至烧杯中,60℃条件下干燥24h,标记为n-AlOOH(1.2);将n-AlOOH(1.2)在马弗炉中焙烧,焙烧温度为550℃,得到的活性氧化铝γ-Al
2O
3(1.2)。
实施例6:
Carrier-Al
2O
3(0)的制备:将n-AlOOH(0)样品与普通氧化铝干胶粉和助挤剂碾压均匀,加入质量分数为2.0%的稀硝酸溶液,混捏,将混捏的料饼在挤条机上挤条成型,所得物料在110℃条件下干燥,再在550℃条件下焙烧后得到孔径分布集中的氧化铝载体Carrier-Al
2O
3(0)。
实施例7:
Carrier-Al
2O
3(0.5)的制备:将n-AlOOH(0.5)样品与普通氧化铝干胶粉和助挤剂碾压均匀,加入质量分数为2.0%的稀硝酸溶液,混捏,将混捏的料饼在挤条机上挤条成型,所得物料在110℃条件下干燥,再在550℃条件下焙烧后得到孔径分布集中的氧化铝载体Carrier-Al
2O
3(0.5)。
实施例8:
Carrier-Al
2O
3(0.6)的制备:将n-AlOOH(0.6)样品与普通氧化铝干胶粉和助挤剂碾压均匀,加入质量分数为2.0%的稀硝酸溶液,混捏,将混捏的料饼在挤条机上挤条成型,所得物料在110℃条件下干燥,再在550℃条件下焙烧后得到孔径分布集中的氧化铝载体Carrier-Al
2O
3(0.6)。
实施例9:
Carrier-Al
2O
3(1.2)的制备:将n-AlOOH(1.2)样品与普通氧化铝干胶粉和助挤剂碾压均匀,加入质量分数为2.0%的稀硝酸溶液,混捏,将混捏的料饼在挤条机上挤条成型,所得物料在110℃条件下干燥,再在550℃条件下焙烧后得到孔径分布集中的氧化铝载体Carrier-Al
2O
3(1.2)。
实施例10:
德国SB粉为原料粉制备载体Carrier-Al
2O
3(SB):将购买的德国SB粉与普通氧化铝干胶粉和助挤剂碾压均匀,加入质量分数为2.0%的稀硝酸溶液,混捏,将混捏的料饼在挤条机上挤条成型。所得物料在110℃条件下干燥,再在550℃条件下焙烧后得到孔径分布集中的氧化铝载体C-Al
2O
3(SB)。
实施例11:
国产共沉淀法原料粉制备载体Carrier-Al
2O
3(CP):将购买的国产的共沉淀法制备的原料粉与普通氧化铝干胶粉和助挤剂碾压均匀,加入质量分数为2.0%的稀硝酸溶液,混捏,将混捏的料饼在挤条机上挤条成型,所得物料在110℃条件下干燥,再在550℃条件下焙烧后得到孔径分布集中的氧化铝载体Carrier-Al
2O
3(CP)。
实施例12:
Catalyst-Al
2O
3(0,20%/3%/1%)的制备:称取氧化钼,碱式碳酸镍与磷酸混合,100℃油浴条件下加热3h,加热完毕后,降至25℃,定容至250mL,得到Mo-Ni-P浸渍液,备用;其中氧化钼的质量浓度为0.4g/mL,氧化镍质量浓度为0.06g/mL,磷元素质量浓度为0.02g/mL。采用过量浸渍法,将上述浸渍液浸渍在载体Carrier-Al
2O
3(0)上,浸渍20h;将样品转移到普通漏斗中,过滤;将过滤后得到的样品在110℃条件下干燥,10h,将干燥后样品转移至马弗炉中,550℃条件下焙烧6h,得到高氮原料油加氢精制催化剂Catalyst-Al
2O
3(0,20%/3%/1%)。
实施例13:
Catalyst-Al
2O
3(0.5,20%/3%/1%)的制备:称取氧化钼,碱式碳酸镍与磷酸混合,100℃油浴条件下加热3h,加热完毕后,降至25℃,定容至250mL,得到Mo-Ni-P浸渍液,备用;其中氧化钼的质量浓度为0.4g/mL,氧化镍质量浓度为0.06g/mL,磷元素质量浓度为0.02g/mL,采用过量浸渍法,将上述浸渍液浸渍在载体Carrier-Al
2O
3(0.5)上,浸渍20h;将样品转移到普通漏斗中,过滤;将过滤后得到的样品在110℃条件下干燥,10h,将干燥后样品转移至马弗炉中,550℃条件下焙烧6h,得到高氮原料油加氢精制催化剂Catalyst-Al
2O
3(0.5,20%/3%/1%)。
实施例14:
Catalyst-Al
2O
3(0.6,20%/3%/1%)的制备:称取氧化钼,碱式碳酸镍与磷酸混合,100℃油浴条件下加热3h,加热完毕后,降至25℃,定容至250mL,得到Mo-Ni-P浸渍液,备用,其中氧化钼的质量浓度为0.4g/mL,氧化镍质量浓度为0.06g/mL,磷元素质量浓度为0.02g/mL,采用过量浸渍法,将上述浸渍液浸渍在载体Carrier-Al
2O
3(0.6)上,浸渍20h;将样品转移到普通漏斗中,过滤;将过滤后得到的样品在110℃条件下干燥,10h,将干燥后样品转移至马弗炉中,550℃条件下焙烧6h,得到高氮原料油加氢精制催化剂Catalyst-Al
2O
3(0.6,20%/3%/1%)。
实施例15:
Catalyst-Al
2O
3(1.2,20%/3%/1%)的制备:称取氧化钼,碱式碳酸镍与磷酸混合,100℃油浴条件下加热3h,加热完毕后,降至25℃,定容至250mL,得到Mo-Ni-P浸渍液,备用,其中氧化钼的质量浓度为0.4g/mL,氧化镍质量浓度为0.06g/mL,磷元素质量浓度为0.02g/mL,采用过量浸渍法,将上述浸渍液浸渍在载体Carrier-Al
2O
3(1.2)上,浸渍20h;将样品转移到普通漏斗中,过滤;将过滤后得到的样品在110℃条件下干燥,10h,将干燥后样品转移至马弗炉中,550℃条件下焙烧6h,得到高氮原料油加氢精制催化剂Catalyst-Al
2O
3(1.2,20%/3%/1%)。
实施例16:
Catalyst-Al
2O
3(SB,20%/3%/1%)的制备:称取氧化钼,碱式碳酸镍与磷酸混合,100℃油浴条件下加热3h。加热完毕后,降至25℃,定容至250mL,得到Mo-Ni-P浸渍液,备用,其中氧化钼的质量浓度为0.4g/mL,氧化镍质量浓度为0.06g/mL,磷元素质量浓度为0.02g/mL,采用过量浸渍法,将上述浸渍液浸渍在载体Carrier-Al
2O
3(SB)上,浸渍20h;将样品转移到普通漏斗中,过滤;将过滤后得到的样品在110℃条件下干燥,10h,将干燥后样品转移至马弗炉中,550℃条件下焙烧6h,得到高氮原料油加氢精制催化剂Catalyst-Al
2O
3 (SB,20%/3%/1%)。
实施例17:
Catalyst-Al
2O
3(CP,20%/3%/1%)的制备:称取一定量的氧化钼,碱式碳酸镍与一定量的磷酸混合,加热回流,制备Mo-Ni-P浸渍液,备用,其中氧化钼的浓度为0.4g/mL,氧化镍浓度为0.06g/mL,磷浓度为0.02g/mL。采用过量浸渍法,将上述浸渍液浸渍在载体Carrier-Al
2O
3(CP)上,浸渍20h,将样品转移到普通漏斗中,过滤;将过滤后得到的样品在110℃条件下干燥,将干燥后样品转移至马弗炉中,550℃条件下焙烧6h,得到高氮原料油加氢精制催化剂Catalyst-Al
2O
3(CP,20%/3%/1%)。
以上所述实施例中,实施例(1)~(4)为孔径集中的氧化铝前驱体和活性氧化铝的制备方法;实施例(6)~(9)为氧化铝载体的制备方法;实施例(10)~(11)为购买的德国SB粉和国产的共沉淀法所得原料制备的氧化铝载体;实施例(12)~(15)为使用实施例(1)~(9)制备的载体制备的高氮原料油加氢精制催化剂;实施例(16)~(17)为使用实施例(10)~(11)制备的载体制备的高氮原料油加氢精制催化剂。实施例中所得样品的物理性能见附表1。
本发明实施例中所述的高氮原料油加氢精制催化剂的性能评价条件为:催化剂床层温度365℃,反应压力为10.5MPa,液空速为1.0h
-1,氢油比为800。活性评价使用原料油的性质见表2。不同加氢催化剂性能评价结果见表3。
表1 活性氧化铝及对应载体和高氮原料油加氢精制催化剂的比表面积、孔容和孔分布
附表2 原料油性质
原料油 | 催化柴油 |
密度(20℃),g·cm -3 | 0.9608 |
馏程,℃ | |
IBP/10%/50%/95% | 100/230/292/378 |
S,μg·g -1 | 1800 |
N,μg·g -1 | 1212 |
附表3 高氮原料油加氢精制催化剂的性能评价结果
本说明书未作详细描述的内容属于本领域专业技术人员公知的现有技术。
Claims (10)
- 一种高氮原料油加氢精制催化剂,它由载体、活性组分和助剂三部分组成,其特征在于:所述载体为氧化铝载体,所述活性组分为金属Mo和金属Ni的双组分,以MoO 3和NiO的形式存在,所述助剂为非金属P,所述活性组分中MoO 3的负载量为整个催化剂质量的20~26%,NiO的负载量为整个催化剂质量的3.0~3.8%。
- 根据权利要求1所述的高氮原料油加氢精制催化剂,其特征在于:所述助剂P的负载量为整个催化剂质量的0.9~1.3%。
- 一种权利要求1所述高氮原料油加氢精制催化剂中氧化铝载体的制备方法,其特征在于,它包括如下步骤:步骤1:取Al(OC(CH 3) 2) 3固体,置于烧瓶中,将80~90℃的热水加入上述烧瓶中,90~100℃加热条件下搅拌10~60min;步骤2:向步骤1所述烧瓶中滴加0.001~0.05mol浓硝酸,所述浓硝酸中硝酸的质量分数范围为65~68%,形成胶体溶液,保证所述胶体溶液的pH值为2~5,对所述胶体溶液在90~100℃的加热条件下继续搅拌2~24h;步骤3:将步骤2所述装有胶体溶液的烧瓶降温至5~25℃,并加入含氧有机化合物,22~26℃条件下继续搅拌2~12h;步骤4:将步骤3所述烧瓶中的胶体溶液转移至烧杯中,在60~80℃条件下干燥12~24h,得到氧化铝前驱体,标记为n-AlOOH(m),其中m为有机化合物中的氧与Al(OC(CH 3) 2) 3中铝的摩尔比;将该样品分为两部分,标记为A和B;步骤5:将步骤4所述样品A进行焙烧,焙烧温度为500~600℃,焙烧时间为4~6h,焙烧得到的活性氧化铝标记为γ-Al 2O 3(m),m为有机化合物中的氧与Al(OC(CH 3) 2) 3中铝的摩尔比;步骤6:将步骤4所述样品B与氧化铝干胶粉和助挤剂碾压均匀,并加入质量分数为1.8~4.0%的稀硝酸溶液,混捏,并在挤条机上挤条成型,挤条成型后的物料在90~110℃的温度中干燥8~16h,干燥后样品在500~600℃的温度中 焙烧4~6h,焙烧后得到孔径分布集中的氧化铝载体,标记为Carrier-Al 2O 3(m),m为有机化合物中的氧与Al(OC(CH 3) 2) 3中铝的摩尔比。
- 根据权利要求3所述的高氮原料油加氢精制催化剂中氧化铝载体的制备方法,其特征在于:所述步骤1中,称取0.1mol的Al(OC(CH 3) 2) 3固体,置于烧瓶中,将3~12mol的80~90℃的热水加入上述烧瓶中;所述步骤3中,含氧有机化合物为聚乙二醇、非离子表面活性剂F127、非离子表面活性剂P123、纤维素和田菁粉中的一种。
- 根据权利要求3所述的高氮原料油加氢精制催化剂中氧化铝载体的制备方法,其特征在于:所述步骤4、步骤5和步骤6中,有机化合物中氧与Al(OC(CH 3) 2) 3中铝的摩尔比范围为0.1~1.5。
- 根据权利要求3所述的高氮原料油加氢精制催化剂中氧化铝载体的制备方法,其特征在于:所述步骤5中,活性氧化铝γ-Al 2O 3(m)的比表面积为250~280m 2/g,孔容为0.5~0.8cm 3/g,其中,孔径在4~10nm的孔容占总孔容的比率为90~95%。
- 根据权利要求3所述的高氮原料油加氢精制催化剂中氧化铝载体的制备方法,其特征在于:所述步骤6中,氧化铝载体Carrier-Al 2O 3(m)的比表面积范围为200~330m 2/g,孔容范围为0.4~0.9cm 3/g,其中孔径在4~10nm的孔容占总孔容的比率为90~95%;氧化铝载体的形状为圆柱条形或三叶草形或四叶草形,圆柱条形氧化铝载体的粒径范围为:1.2~1.6mm,圆柱条形氧化铝载体的长度范围为5~10mm;三叶草形氧化铝载体的两叶间距范围为1.1~1.8mm,三叶草形氧化铝载体的长度范围为5~10mm;四叶草形氧化铝载体的两叶间距范围为1.1~1.8mm,长度范围为5~10mm。
- 一种利用权利要求3所述氧化铝载体制备高氮原料油加氢精制催化剂的方法,其特征在于,它包括如下步骤:步骤001:取氧化钼,碱式碳酸镍和磷酸,置于烧瓶中混合均匀,并在92~110℃的油浴条件下加热3~6h,加热完毕后,降至23~27℃,定容至250mL,制备成Mo-Ni-P浸渍液;步骤002:将步骤001所制备成的Mo-Ni-P浸渍液浸渍到所述氧化铝载体Carrier-Al 2O 3(m)上,在90~110℃条件下干燥8~16h,干燥后样品在500~600℃条件下焙烧4~6h,得到高氮原料油加氢精制催化剂,标记为Catalyst-Al 2O 3(m,M%/N%/W%),其中,m为有机化合物中的氧与Al(OC(CH 3) 2) 3中铝的摩尔比,M%为MoO 3的负载量,N%为NiO的负载量,W%为P的负载量,Catalyst表示催化剂。
- 根据权利要求8所述的制备高氮原料油加氢精制催化剂的方法,其特征在于:所述步骤001中,氧化钼的质量浓度范围为0.2~0.8g/mL;氧化镍质量浓度为0.02~0.1g/mL,磷元素质量浓度为0.008~0.05g/mL。
- 根据权利要求8所述的制备高氮原料油加氢精制催化剂的方法,其特征在于:所述步骤002中,氧化铝载体Carrier-Al 2O 3(m)的质量与Mo-Ni-P浸渍液的体积比为1.5~4.0,所制备的高氮原料油加氢精制催化剂的比表面积范围为160~180m 2/g,孔容范围为0.3~0.5cm 3/g;其中,孔径在4~10nm的孔容占总孔容的比率为90~95%。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710228490.4 | 2017-04-10 | ||
CN201710228490.4A CN106994362A (zh) | 2017-04-10 | 2017-04-10 | 高氮原料油加氢精制催化剂及其制备方法和其载体的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018188532A1 true WO2018188532A1 (zh) | 2018-10-18 |
Family
ID=59434309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/082172 WO2018188532A1 (zh) | 2017-04-10 | 2018-04-08 | 高氮原料油加氢精制催化剂及其制备方法和其载体的制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106994362A (zh) |
WO (1) | WO2018188532A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115672346A (zh) * | 2022-10-12 | 2023-02-03 | 中国石油大学(华东) | 一种Ni-Mo双金属负载催化剂及其制备方法和应用 |
CN115814839A (zh) * | 2022-12-27 | 2023-03-21 | 中触媒新材料股份有限公司 | 一种硼或磷掺杂Silicalite-1分子筛封装金属催化剂及其制备方法和应用 |
CN116020427A (zh) * | 2021-10-25 | 2023-04-28 | 中国石油化工股份有限公司 | 一种氧化铝载体及其制备方法和应用 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106994362A (zh) * | 2017-04-10 | 2017-08-01 | 武汉凯迪工程技术研究总院有限公司 | 高氮原料油加氢精制催化剂及其制备方法和其载体的制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4880524A (en) * | 1987-11-20 | 1989-11-14 | Shell Oil Company | Process for hydrotreating hydrocarbon feeds |
CN101492605A (zh) * | 2008-01-23 | 2009-07-29 | 中国石油化工股份有限公司 | 一种页岩油加氢工艺方法 |
CN102614856A (zh) * | 2012-04-20 | 2012-08-01 | 北京化工大学 | 一种介孔氧化铝负载型金属催化剂的制备方法及应用 |
CN104785196A (zh) * | 2015-03-18 | 2015-07-22 | 昆明理工大学 | 一种用于脱硫脱硝的改性介孔氧化铝吸附剂的制备方法 |
CN105944717A (zh) * | 2016-05-26 | 2016-09-21 | 北京神雾环境能源科技集团股份有限公司 | 用于费托合成的催化剂及其制备方法和应用 |
CN106362782A (zh) * | 2015-07-21 | 2017-02-01 | 中国石油化工股份有限公司 | 一种加氢精制催化剂及其应用 |
CN106807419A (zh) * | 2017-03-09 | 2017-06-09 | 武汉凯迪工程技术研究总院有限公司 | 浸渍法制备加氢处理催化剂的方法 |
CN106994362A (zh) * | 2017-04-10 | 2017-08-01 | 武汉凯迪工程技术研究总院有限公司 | 高氮原料油加氢精制催化剂及其制备方法和其载体的制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1102643C (zh) * | 1998-09-28 | 2003-03-05 | 中国石油化工集团公司 | 一种石油蜡加氢精制催化剂及其制备方法 |
CN1331995C (zh) * | 2004-10-29 | 2007-08-15 | 中国石油化工股份有限公司 | 一种石蜡加氢精制催化剂及其制备方法 |
CN101811060B (zh) * | 2009-02-19 | 2012-07-18 | 中国石油天然气股份有限公司 | 一种馏分油加氢精制催化剂 |
CN103191754A (zh) * | 2013-04-17 | 2013-07-10 | 上海兖矿能源科技研发有限公司 | 用于费托合成油加氢精制的催化剂及其制备方法和应用 |
-
2017
- 2017-04-10 CN CN201710228490.4A patent/CN106994362A/zh active Pending
-
2018
- 2018-04-08 WO PCT/CN2018/082172 patent/WO2018188532A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4880524A (en) * | 1987-11-20 | 1989-11-14 | Shell Oil Company | Process for hydrotreating hydrocarbon feeds |
CN101492605A (zh) * | 2008-01-23 | 2009-07-29 | 中国石油化工股份有限公司 | 一种页岩油加氢工艺方法 |
CN102614856A (zh) * | 2012-04-20 | 2012-08-01 | 北京化工大学 | 一种介孔氧化铝负载型金属催化剂的制备方法及应用 |
CN104785196A (zh) * | 2015-03-18 | 2015-07-22 | 昆明理工大学 | 一种用于脱硫脱硝的改性介孔氧化铝吸附剂的制备方法 |
CN106362782A (zh) * | 2015-07-21 | 2017-02-01 | 中国石油化工股份有限公司 | 一种加氢精制催化剂及其应用 |
CN105944717A (zh) * | 2016-05-26 | 2016-09-21 | 北京神雾环境能源科技集团股份有限公司 | 用于费托合成的催化剂及其制备方法和应用 |
CN106807419A (zh) * | 2017-03-09 | 2017-06-09 | 武汉凯迪工程技术研究总院有限公司 | 浸渍法制备加氢处理催化剂的方法 |
CN106994362A (zh) * | 2017-04-10 | 2017-08-01 | 武汉凯迪工程技术研究总院有限公司 | 高氮原料油加氢精制催化剂及其制备方法和其载体的制备方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116020427A (zh) * | 2021-10-25 | 2023-04-28 | 中国石油化工股份有限公司 | 一种氧化铝载体及其制备方法和应用 |
CN115672346A (zh) * | 2022-10-12 | 2023-02-03 | 中国石油大学(华东) | 一种Ni-Mo双金属负载催化剂及其制备方法和应用 |
CN115814839A (zh) * | 2022-12-27 | 2023-03-21 | 中触媒新材料股份有限公司 | 一种硼或磷掺杂Silicalite-1分子筛封装金属催化剂及其制备方法和应用 |
CN115814839B (zh) * | 2022-12-27 | 2024-03-22 | 中触媒新材料股份有限公司 | 一种硼或磷掺杂Silicalite-1分子筛封装金属催化剂及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN106994362A (zh) | 2017-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018188532A1 (zh) | 高氮原料油加氢精制催化剂及其制备方法和其载体的制备方法 | |
EP2772308B1 (en) | Hydrogenation catalyst and method for producing same | |
WO2018019203A1 (zh) | 高负载量硼改性加氢精制催化剂及其制备方法 | |
WO2018161952A1 (zh) | 浸渍法制备加氢处理催化剂的方法 | |
CN102441437B (zh) | 大孔氧化铝载体及加氢脱金属催化剂的制备方法 | |
CN1048037C (zh) | 一种重油加氢处理催化剂 | |
CN102861593A (zh) | 一种加氢精制催化剂及其制备方法 | |
CN103041870B (zh) | 一种氧化铝载体及其制备方法和应用 | |
CN108654700A (zh) | 一种三峰孔分布加氢脱金属催化剂及其制备方法 | |
CN108745392A (zh) | 一种加氢脱金属催化剂及其制备方法 | |
CN114768863B (zh) | 一种重油加氢脱硫催化剂及其制备方法 | |
CN103785396A (zh) | 一种重油加氢脱金属催化剂的制备方法 | |
WO2019080921A1 (zh) | 氧化铝载体材料及其制备方法、加氢催化剂和渣油加氢方法 | |
CN102861588B (zh) | 一种渣油加氢脱金属催化剂及其制备方法 | |
CN105363461B (zh) | 一种水热合成油品加氢催化剂的方法 | |
CN104549330B (zh) | 一种加氢精制活性支撑剂及其制备方法 | |
CN106552640A (zh) | 重整原料预加氢催化剂及其制备方法 | |
CN107670699A (zh) | 一种采用复合载体的重油悬浮床加氢催化剂 | |
CN1235684C (zh) | 一种烃类加氢处理催化剂的制备方法 | |
CN109794299A (zh) | 一种加氢催化剂及其制备方法、馏分油加氢精制方法 | |
CN112717949B (zh) | 一种加氢精制催化剂及其制备方法和应用 | |
JP4644351B2 (ja) | 金属化合物担持処理耐火性無機酸化物担体及び該担体を用いた水素化処理触媒 | |
JP4519379B2 (ja) | 重質炭化水素油の水素化処理触媒 | |
CN115608371B (zh) | 一种蛋壳型渣油加氢催化剂及其制备方法 | |
CN112745894B (zh) | 对劣质原料油进行加氢精制以拓宽生产催化重整原料的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18784361 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18784361 Country of ref document: EP Kind code of ref document: A1 |