WO2023231430A1 - Mémoire ferroélectrique et condensateur ferroélectrique associé et son procédé de préparation - Google Patents

Mémoire ferroélectrique et condensateur ferroélectrique associé et son procédé de préparation Download PDF

Info

Publication number
WO2023231430A1
WO2023231430A1 PCT/CN2023/073667 CN2023073667W WO2023231430A1 WO 2023231430 A1 WO2023231430 A1 WO 2023231430A1 CN 2023073667 W CN2023073667 W CN 2023073667W WO 2023231430 A1 WO2023231430 A1 WO 2023231430A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferroelectric
layer
antiferroelectric
memory
phase
Prior art date
Application number
PCT/CN2023/073667
Other languages
English (en)
Chinese (zh)
Inventor
黄芊芊
杨勐譞
黄如
Original Assignee
北京超弦存储器研究院
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京超弦存储器研究院, 北京大学 filed Critical 北京超弦存储器研究院
Publication of WO2023231430A1 publication Critical patent/WO2023231430A1/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the invention belongs to the technical field of integrated circuits, and specifically relates to a ferroelectric memory with high storage window and high reliability.
  • the storage in the system adopts a three-tier architecture.
  • the memory changes from high-speed static random access memory (SRAM) to dynamic random access memory (DRAM) to high-density flash memory (Flash).
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • Flash high-density flash memory
  • Ferroelectric memory has the advantages of non-volatility, low power consumption, and high speed, and is expected to partially replace or supplement existing memory technology.
  • ferroelectric memory composed of a selection transistor and a ferroelectric capacitor (1T1C) is similar to DRAM in structure and operation mode. It can read and write data at high speed and has better performance.
  • the purpose of the present invention is to propose a ferroelectric memory, a ferroelectric capacitor and a preparation method thereof.
  • the ferroelectric capacitor of the ferroelectric memory is inserted into a layer of low surface energy, T-phase dominated antiferroelectric layer to achieve high Memory window for high-reliability ferroelectric memory.
  • a ferroelectric memory includes a ferroelectric capacitor and a unit selection transistor; the bottom electrode of the ferroelectric capacitor is connected to the memory board line, and the top electrode of the ferroelectric capacitor is connected to the source end of the unit selection transistor; the gate of the unit selection transistor It is connected to the memory word line, and the drain end of the cell selection transistor is connected to the memory bit line. It is characterized in that an antiferroelectric layer is inserted between the ferroelectric layer and the bottom electrode of the ferroelectric capacitor.
  • the antiferroelectric layer is made of T Phase-dominated antiferroelectric materials or antiferroelectric materials in which the phase with the lowest surface energy dominates.
  • the core of the present invention is that in the ferroelectric capacitor of the ferroelectric memory, an antiferroelectric layer is inserted between the ferroelectric layer and the bottom electrode.
  • the antiferroelectric layer uses an antiferroelectric material with a dominant T phase or the lowest surface energy. Antiferroelectric materials where the phase dominates.
  • the ferroelectric layer serves as the storage medium layer, and the antiferroelectric layer serves as the contact interface layer between the ferroelectric layer and the bottom electrode. At the same time, during the preparation, the antiferroelectric layer also serves as the seed layer of the ferroelectric layer.
  • the antiferroelectric material of the present invention guides the growth of grains of the hafnium oxide-based ferroelectric layer and increases the proportion of the orthorhombic phase (O phase) in the ferroelectric layer medium, thereby improving the residual polarization of the ferroelectric layer, thereby increasing the iron content of the ferroelectric material.
  • Electricity, and suppresses the generation of monoclinic phase (M phase) in the ferroelectric layer medium reduces the proportion of M phase, reduces the growth rate of oxygen vacancy concentration caused by M phase transformation, thereby improving durability; as an optimized
  • the contact interface layer because it has a lower surface energy and a more stable electrode contact interface than other phases, can reduce the initial oxygen vacancy concentration at the interface and inhibit the growth of oxygen vacancies in electrical cycle tests, achieving durability. Effective improvement.
  • the antiferroelectric layer can be selected from pure ZrO 2 , HfZrO with a Zr proportion greater than that of Hf, PbZrO 3 , or NH 4 H 2 PO 4 (ADP) type, (NH 4 ) 2 SO 4 type, (NH 4 ) 2 H 3 O 6 type, perovskite type and RbNO 3 type antiferroelectric materials.
  • the thickness of the antiferroelectric layer may be below 10 nm.
  • the ferroelectric layer can be selected from traditional perovskite ferroelectric materials, ferroelectric polymers, or new ferroelectric materials based on HfO2 that produce ferroelectricity under doping, stress, and annealing treatments.
  • the thickness of the ferroelectric layer may be below 30 nm.
  • the bottom electrode and top electrode of the ferroelectric capacitor can be selected from Ti, TiN, TiSi, TiAlN, TaN, TaCN, TaSi, W, WSi, WN, Al, Ru, RuO, RuO 2 , Re, Pt, Mo, Ir , IrO 2 , In 2 O 3 , SnO, ZnO, Ti, Ni, Nb, Ga, GaN, GeSi, doped Si, SiC, GeSi or combinations thereof.
  • a method for preparing a ferroelectric capacitor of a ferroelectric memory The steps are as follows: 1) Prepare the bottom electrode on the surface of the silicon substrate; 2) Grow an antiferroelectric layer on the bottom electrode.
  • the antiferroelectric layer uses an antiferroelectric material dominated by the T phase or an antiferroelectric material dominated by the phase with the lowest surface energy.
  • the antiferroelectric layer serves as the ferroelectric layer.
  • the seed layer 3) Growth of the ferroelectric layer on the surface of the antiferroelectric layer; 4) Grow the top electrode on the surface of the ferroelectric layer; 5) Define the capacitor area through photolithography, and remove other parts of the material through wet etching or dry etching to expose the bottom electrode; 6) Under the same annealing conditions, by adjusting the growth temperature of the antiferroelectric layer in step 2), the material of the ferroelectric layer is in an orthorhombic phase and the material of the antiferroelectric layer is in a phase dominated by the T phase or the phase with the lowest surface energy. leading.
  • the ferroelectric memory of the present invention is based on a ferroelectric capacitor inserted into an antiferroelectric layer, and has the beneficial effects of high storage window and high reliability: 1.
  • an antiferroelectric material dominated by the T phase or an antiferroelectric material dominated by the phase with the lowest surface energy is used as a seed layer to grow the ferroelectric layer, so that the crystal phase of the ferroelectric layer
  • the proportion of the O phase in the medium is higher, which increases the ferroelectric polarization strength, thereby increasing the storage window; at the same time, the proportion of the M phase is reduced, inhibiting the generation of oxygen vacancies, and improving the durability.
  • the antiferroelectric layer serves as a seed layer.
  • the antiferroelectric layer guides the grain growth of the ferroelectric layer material, reducing the activation energy of the ferroelectric layer material to crystallize to the ferroelectric phase when crystallizing, causing the ferroelectric layer material to produce A larger proportion of the ferroelectric phase crystallizes, and the proportion of the ferroelectric phase in the ferroelectric dielectric layer increases, which improves the overall ferroelectricity of the material, increases the ferroelectric residual polarization strength while maintaining the same thickness, and thereby increases the memory storage window; At the same time, the generation of M phase in the ferroelectric layer is suppressed, which reduces the proportion of M phase and reduces the growth rate of oxygen vacancy concentration caused by M phase transformation, thereby improving durability.
  • the proportion of the ferroelectric phase in the ferroelectric dielectric layer of the present invention is increased by about 10%; the proportion of M phase in the ferroelectric capacitor is as low as 3.7%, and no antiferroelectric medium is introduced.
  • the ferroelectric capacitance of the M phase is reduced by 6% compared to the M phase.
  • the antiferroelectric layer As an interface layer in contact with the bottom electrode, the antiferroelectric layer has a lower surface energy than other phases and a more stable electrode contact interface, which reduces interface defects, leakage current, oxygen vacancy concentration, and inhibits oxygen during electrical cycling.
  • the generation of vacancies reduces the initial oxygen vacancy concentration at the interface, effectively improving the durability and improving the reliability of the memory. Taking the results of specific embodiments as an example, compared with a ferroelectric capacitor without an antiferroelectric layer, interface defects are reduced by about 12%. .
  • Figure 1 is a schematic diagram of a ferroelectric memory according to a specific embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a ferroelectric capacitor prepared according to a specific embodiment of the present invention.
  • this embodiment provides a high storage window and high reliability ferroelectric memory, including a cell selection transistor T1, a ferroelectric capacitor C FE/DE with an antiferroelectric layer, and an equivalent bit line load capacitor C BL , sensitive regenerative amplifier SA.
  • the unit selection transistor T1 is an n-type MOSFET device used to realize unit selection control.
  • the source end is connected to the top electrode of the asymmetric ferroelectric capacitor, and the drain end is connected to the bit line;
  • the ferroelectric capacitor is made of TaN/Hf 0.5 Zr 0.5 O 2 /ZrO 2 /TaN, in which the ferroelectric layer Hf 0.5 Zr 0.5 O 2 is used to store data, the antiferroelectric layer ZrO 2 is located between the ferroelectric layer and the bottom electrode, and the bottom electrode TaN is connected to the board line.
  • the ferroelectric capacitor When the ferroelectric capacitor When the ferroelectric polarization direction is toward the bottom electrode, it means that the storage state is "1", otherwise it is "0"; the sensitive regenerative amplifier is used to amplify the bit line differential signal to achieve data readout and write-back, and its input end is connected Bit lines,reference terminated to virtual cells.
  • the word line When logic "0" and “1” states are written, or the cell's storage state is read, the word line (WL) is selected to access the storage capacitor.
  • PL When reading data, PL is set to high level, and WL and PL are selected at the same time.
  • FeRAM stores data 0 or 1
  • the ferroelectric capacitor polarization state is P r+ or P r- .
  • the core of the invention lies in the ferroelectric capacitor of the ferroelectric memory.
  • the ferroelectric layer is the storage medium; the antiferroelectric layer is located between the ferroelectric layer and the bottom electrode.
  • the antiferroelectric layer is a layer of antiferroelectric in which the T phase is dominant.
  • Materials or antiferroelectric materials in which the phase with the lowest surface energy dominates are ZrO 2 in which the T phase dominates or HfZrO in which the T phase dominates and the Zr proportion is greater than the Hf proportion; PbZrO 3 type and NH 4 with low surface energy H 2 PO 4 (ADP) type, (NH 4 ) 2 SO 4 type, (NH 4 ) 2 H 3 O 6 type, perovskite type and RbNO 3 type antiferroelectric materials.
  • the CMOS process-compatible preparation method of the ferroelectric capacitor of the present invention is as follows: (1) Magnetron sputtering bottom tantalum nitride (TaN) metal plate.
  • ALD Atomic layer deposition
  • the specific steps are to prepare a ZrO 2 film with a thickness of 2 nm by thermal oxidation atomic layer deposition.
  • TEMAZ serves as the Zr precursor source and H 2 O serves as the O precursor source.
  • the growth temperature range is 200-250°C, and the Zr source and 100 sccm O source are alternately circulated with a carrier gas flow rate of 50 sccm to complete the growth of the ZrO 2 film.
  • HZO Atomic layer deposition
  • Rapid thermal annealing with an annealing temperature range of 400 ⁇ 600°C and an annealing time of 30s ⁇ 90s, to achieve orthorhombic phase HZO and antiferroelectric ZrO 2 dominated by T phase with the lowest surface energy.
  • the storage window is the difference in the polarization flipping amount of the ferroelectric capacitor when reading different states, which is proportional to the remaining polarization amount of the ferroelectric capacitor;
  • the T phase containing low surface energy in the present invention accounts for
  • the present invention is based on T containing low surface energy.
  • the high-reliability ferroelectric memory of the ferroelectric capacitor with the dominant antiferroelectric layer enhances the ferroelectric residual polarization intensity and increases the storage window of the ferroelectric memory; improves durability and reliability.
  • the ferroelectric capacitor When operating a ferroelectric memory normally, after multiple operations, the ferroelectric capacitor will have increased oxygen vacancies, increased leakage current, and increased interface defects, leading to fatigue, breakdown, and failure.
  • the antiferroelectric ZrO 2 layer dominated by the T phase in the ferroelectric capacitor containing the antiferroelectric layer dominated by the T phase with low surface energy in the present invention serves as the optimized interface layer, and the T phase ZrO 2 is the surface of ZrO 2 The phase with the lowest energy is the most stable.
  • the ferroelectric capacitor of the dielectric layer can reduce the oxygen vacancy concentration at the interface, inhibit the generation of oxygen vacancies, reduce interface defects and leakage current during multiple electrical cycles, so that the T phase with low surface energy dominates the anti-iron
  • the number of durable electrical cycles of the ferroelectric capacitor of the dielectric layer is increased by several orders of magnitude, and the durability is improved; to sum up, the ferroelectric capacitor of the present invention based on the antiferroelectric layer with low surface energy dominated by T phase has high reliability
  • the durability of ferroelectric memory is enhanced and the reliability of ferroelectric memory is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

Mémoire ferroélectrique et condensateur ferroélectrique associé et son procédé de préparation, appartenant au domaine des dispositifs de stockage à semi-conducteurs. Une couche de couche diélectrique antiferroélectrique est introduite avant la croissance d'une couche diélectrique ferroélectrique dans le condensateur ferroélectrique. Lorsque la couche antiferroélectrique est utilisée en tant que couche de germe, un modèle de cristallisation est fourni pour la couche diélectrique ferroélectrique, de telle sorte que la proportion d'une phase ferroélectrique est augmentée, l'intensité de polarisation résiduelle est améliorée, et la fenêtre de stockage est encore améliorée. De plus, lorsque la couche antiferroélectrique est utilisée en tant que couche d'interface, ladite couche a une énergie de surface inférieure et une interface de contact d'électrode plus stable que d'autres phases, des défauts d'interface et des courants de fuite sont réduits, la concentration de lacunes d'oxygène est réduite, la génération de lacunes d'oxygène pendant un processus de circulation électrique est inhibée, la durabilité est améliorée, et la fiabilité de la mémoire est améliorée. La présente invention facilite l'utilisation à faible consommation d'énergie, à haute performance et à haute fiabilité de la mémoire vive ferroélectrique.
PCT/CN2023/073667 2022-06-02 2023-01-29 Mémoire ferroélectrique et condensateur ferroélectrique associé et son procédé de préparation WO2023231430A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210620069.9A CN114927526A (zh) 2022-06-02 2022-06-02 一种铁电存储器及其铁电电容和制备方法
CN202210620069.9 2022-06-02

Publications (1)

Publication Number Publication Date
WO2023231430A1 true WO2023231430A1 (fr) 2023-12-07

Family

ID=82811698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073667 WO2023231430A1 (fr) 2022-06-02 2023-01-29 Mémoire ferroélectrique et condensateur ferroélectrique associé et son procédé de préparation

Country Status (2)

Country Link
CN (1) CN114927526A (fr)
WO (1) WO2023231430A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114927526A (zh) * 2022-06-02 2022-08-19 北京超弦存储器研究院 一种铁电存储器及其铁电电容和制备方法
CN117769257A (zh) * 2022-09-14 2024-03-26 华为技术有限公司 铁电存储阵列及其制备方法、存储器、电子设备
CN116209258B (zh) * 2022-11-01 2024-03-29 北京超弦存储器研究院 存储单元的存储结构和制备方法
CN116209259B (zh) * 2022-11-01 2024-03-15 北京超弦存储器研究院 存储单元阵列结构和制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047189A (zh) * 2007-04-12 2007-10-03 复旦大学 一种铁电电容器和铁电场效应管及其制造方法
WO2017027744A1 (fr) * 2015-08-11 2017-02-16 James Lin Circuit intégré comportant des cellules mémoire ferroélectriques et ses procédés de fabrication
CN109148454A (zh) * 2017-06-27 2019-01-04 爱思开海力士有限公司 铁电存储器件
CN110165053A (zh) * 2019-05-28 2019-08-23 肇庆市华师大光电产业研究院 一种面向铁电存储器应用的ALD制备Hf0.5Zr0.5O2铁电薄膜的方法
CN113871386A (zh) * 2021-09-13 2021-12-31 北京大学 基于非对称叠层的铁电电容和低压高速铁电存储器以及制备方法
CN114388510A (zh) * 2020-10-16 2022-04-22 铁电存储器股份有限公司 存储器单元及其方法
CN114927526A (zh) * 2022-06-02 2022-08-19 北京超弦存储器研究院 一种铁电存储器及其铁电电容和制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560617A (zh) * 2012-02-14 2012-07-11 中国科学院福建物质结构研究所 铁电单晶铌铟酸铅-钛酸铅的制备方法
US9460770B1 (en) * 2015-09-01 2016-10-04 Micron Technology, Inc. Methods of operating ferroelectric memory cells, and related ferroelectric memory cells
KR102620866B1 (ko) * 2018-12-27 2024-01-04 에스케이하이닉스 주식회사 강유전층 및 비-강유전층을 포함하는 유전층 구조물을 구비하는 반도체 소자
US11063131B2 (en) * 2019-06-13 2021-07-13 Intel Corporation Ferroelectric or anti-ferroelectric trench capacitor with spacers for sidewall strain engineering
US11502104B2 (en) * 2019-08-15 2022-11-15 Sandisk Technologies Llc Antiferroelectric memory devices and methods of making the same
KR20210085460A (ko) * 2019-12-30 2021-07-08 삼성전자주식회사 강유전성의 커패시터, 트랜지스터, 메모리 소자 및 강유전성의 커패시터의 제조방법
US11177267B2 (en) * 2020-01-30 2021-11-16 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and manufacturing method thereof
CN111769122B (zh) * 2020-07-06 2023-07-28 中国科学院微电子研究所 反铁电存储器
CN111945133A (zh) * 2020-07-31 2020-11-17 肇庆市华师大光电产业研究院 一种提升铪基铁电薄膜性能的方法和应用
CN113690370A (zh) * 2021-09-15 2021-11-23 复旦大学 能量存储电容器及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047189A (zh) * 2007-04-12 2007-10-03 复旦大学 一种铁电电容器和铁电场效应管及其制造方法
WO2017027744A1 (fr) * 2015-08-11 2017-02-16 James Lin Circuit intégré comportant des cellules mémoire ferroélectriques et ses procédés de fabrication
CN109148454A (zh) * 2017-06-27 2019-01-04 爱思开海力士有限公司 铁电存储器件
CN110165053A (zh) * 2019-05-28 2019-08-23 肇庆市华师大光电产业研究院 一种面向铁电存储器应用的ALD制备Hf0.5Zr0.5O2铁电薄膜的方法
CN114388510A (zh) * 2020-10-16 2022-04-22 铁电存储器股份有限公司 存储器单元及其方法
CN113871386A (zh) * 2021-09-13 2021-12-31 北京大学 基于非对称叠层的铁电电容和低压高速铁电存储器以及制备方法
CN114927526A (zh) * 2022-06-02 2022-08-19 北京超弦存储器研究院 一种铁电存储器及其铁电电容和制备方法

Also Published As

Publication number Publication date
CN114927526A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2023231430A1 (fr) Mémoire ferroélectrique et condensateur ferroélectrique associé et son procédé de préparation
JP6783290B2 (ja) 有極性、カイラル、非中心対称性強誘電体材料、その材料を含むメモリセルおよび関連するデバイスと方法
US10763261B2 (en) Semiconductor memory device comprising memory cell over driver
CN107134487B (zh) 一种基于氧化铪的铁电栅结构及其制备工艺
US5434742A (en) Capacitor for semiconductor integrated circuit and method of manufacturing the same
Vorotilov et al. Ferroelectric memory
CN111223873B (zh) 非对称的铁电功能层阵列、铁电隧道结多值存储单元的制备方法
CN100388497C (zh) 金属薄膜及其制造方法、电介质电容器及其制造方法及半导体装置
CN111211135B (zh) 一种非对称铁电隧穿结多值存储单元的调制方法
JPH10313097A (ja) 強誘電体薄膜、製造方法及び強誘電体薄膜を含んでなる素子
CN103180952B (zh) 存储器电荷存储结构中的吸气剂
CN101894843B (zh) 基于锆钛酸铅存储介质的铁电动态随机存储器及制备方法
TWI765812B (zh) 鐵電電容器、鐵電記憶體及其製造方法
CN111627920B (zh) 一种铁电存储单元
WO2013120304A1 (fr) Dispositif de mémoire à semi-conducteurs et procédé d'accès à ce dispositif
CN114361257A (zh) 一种高速度、高耐久、低涨落的FeFET及其制备方法
JP5561300B2 (ja) 半導体装置の製造方法
CN1319256A (zh) 减少四方性的铁电薄膜
CN113871386A (zh) 基于非对称叠层的铁电电容和低压高速铁电存储器以及制备方法
CN112002364B (zh) 互补型存储单元及其制备方法、互补型存储器
US11690228B2 (en) Annealed seed layer to improve ferroelectric properties of memory layer
WO2023216965A1 (fr) Mémoire ferroélectrique, son procédé de formation et dispositif électronique
WO2023024101A1 (fr) Mémoire ferroélectrique et son procédé de formation, et dispositif électronique
WO2023220962A1 (fr) Transistor à effet de champ ferroélectrique, mémoire vive ferroélectrique et procédé de fabrication
WO2024000324A1 (fr) Réseau de mémoire ferroélectrique et son procédé de préparation, et mémoire et dispositif électronique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814629

Country of ref document: EP

Kind code of ref document: A1