WO2023221785A1 - 一种极片的纠偏方法、装置、设备、存储介质 - Google Patents

一种极片的纠偏方法、装置、设备、存储介质 Download PDF

Info

Publication number
WO2023221785A1
WO2023221785A1 PCT/CN2023/092331 CN2023092331W WO2023221785A1 WO 2023221785 A1 WO2023221785 A1 WO 2023221785A1 CN 2023092331 W CN2023092331 W CN 2023092331W WO 2023221785 A1 WO2023221785 A1 WO 2023221785A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
offset
correction
offset amount
pole
Prior art date
Application number
PCT/CN2023/092331
Other languages
English (en)
French (fr)
Inventor
吴卿
胡军
冯仕平
常文
郑秋辉
卢浩冉
雷扬
段彭飞
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023221785A1 publication Critical patent/WO2023221785A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H16/00Unwinding, paying-out webs
    • B65H16/10Arrangements for effecting positive rotation of web roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H16/00Unwinding, paying-out webs
    • B65H16/10Arrangements for effecting positive rotation of web roll
    • B65H16/103Arrangements for effecting positive rotation of web roll in which power is applied to web-roll spindle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/02Registering, tensioning, smoothing or guiding webs transversely
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/02Registering, tensioning, smoothing or guiding webs transversely
    • B65H23/0204Sensing transverse register of web
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/02Registering, tensioning, smoothing or guiding webs transversely
    • B65H23/032Controlling transverse register of web
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/02Registering, tensioning, smoothing or guiding webs transversely
    • B65H23/032Controlling transverse register of web
    • B65H23/038Controlling transverse register of web by rollers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/045Cells or batteries with folded plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/005Devices for making primary cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/19Specific article or web
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, and specifically, to a pole piece correction method, device, equipment, and storage medium.
  • the battery pole pieces can be unrolled through a laminating machine. During the unwinding process of the pole pieces, the pole pieces may deviate. The deviation of the pole pieces will affect the composite pole pieces. Therefore, it is necessary to correct the deviation of the pole pieces during the unwinding process of the pole pieces. .
  • the existing pole piece correction scheme corrects the pole piece in the unwinding direction of the pole piece. This correction method cannot achieve effective pole piece correction, and thus cannot guarantee the performance of the pole piece.
  • the purpose of the embodiments of the present application is to provide a pole piece correction method, device, equipment, and storage medium to achieve effective pole piece correction and ensure the performance of the pole piece.
  • this application provides a method for correcting pole pieces, which includes: determining a first offset of the pole pieces on a lamination machine in a first direction; Correcting the pole piece upward; determining a second offset amount of the pole piece in the second direction; and correcting the pole piece in the second direction according to the second offset amount.
  • the pole pieces are corrected in the first direction based on the first offset amount, and the pole pieces are corrected in the second direction based on the second offset amount. Make corrections. In this way, the offset of the pole piece in different directions can be corrected, thereby achieving effective correction of the pole piece, thereby ensuring the performance of the pole piece, such as the stability and uniformity of the pole piece.
  • the first direction is a vertical direction of the unwinding direction of the lamination machine in the unwinding plane of the lamination machine
  • the first offset is the polarity.
  • the piece is offset in the vertical direction by a distance from the first reference position.
  • the pole piece may be offset in the vertical direction of the unwinding direction. Therefore, by correcting the pole piece in the vertical direction based on the first offset amount, Realize the pole piece deviation correction in the vertical direction.
  • determining the first offset amount of the pole piece on the lamination machine in the first direction includes: detecting the first offset amount through a distance detection device.
  • correcting the deflection of the pole piece in the first direction according to the first offset includes: determining a first deflection of the pole piece in the first direction. Offset direction; control the pole piece to move the first offset amount in the first direction in the opposite direction of the first offset direction.
  • the offset direction of the pole piece in the first direction is first determined, and then the pole piece is controlled to move by a first offset amount in the opposite direction of the offset direction, so that the pole piece no longer exists in the first direction. Offset to achieve pole piece correction in the first direction.
  • the controlling the pole piece to move the first offset amount in the first direction in a direction opposite to the first offset direction includes: according to the first offset direction The movement direction and the first offset amount generate a control instruction of the first correction motor; the control instruction is sent to the first correction motor, so that the first correction motor controls the pole piece in the first correction motor.
  • the first offset amount is moved in a direction opposite to the first offset direction.
  • the correction motor is used as a correction mechanism, and a control instruction of the correction motor is generated, so that the correction motor realizes correction according to the control instruction.
  • the second direction is the rotation direction corresponding to the unwinding direction of the stacker in the unwinding plane of the stacker, and the second offset is the polarity.
  • the blade is offset in the direction of rotation by an angle of the second reference position.
  • the pole piece In this application, if the pole piece is subjected to uneven external force during advancement, it will wrinkle and rotate, causing the pole piece to shift in the direction of rotation. Therefore, through the second offset amount of the pole piece in the rotation direction, the deflection of the pole piece in the rotation direction is achieved. Combined with the aforementioned deflection correction in the first direction, the deflection correction of the pole piece in various possible deflection directions can be achieved.
  • determining the second offset of the pole piece in the second direction includes: collecting images of the pole piece at different times through an image acquisition device; The image determines the second offset.
  • the second offset is effectively and accurately determined based on the images at different times.
  • correcting the deflection of the pole piece in the second direction according to the second offset includes: determining a second deflection of the pole piece in the second direction. Offset direction; control the second offset amount of the pole piece in the second direction to reversely rotate in the second offset direction.
  • the offset direction of the pole piece in the second direction is first determined, and then the pole piece is controlled to rotate by a second offset amount in the opposite direction of the offset direction, so that the pole piece no longer exists in the second direction. Offset to achieve pole piece correction in the second direction.
  • the controlling the pole piece to rotate the second offset amount in the second direction in the opposite direction to the second offset direction includes: according to the second offset The direction and the second offset generate a control instruction for the second correction motor; the control instruction is sent to the second correction motor so that the pole piece moves toward the second correction motor in the second direction.
  • the opposite direction of the offset rotates the second offset amount.
  • the correction motor is used as a correction mechanism, and a control instruction of the correction motor is generated, so that the correction motor realizes correction according to the control instruction.
  • determining the first offset of the pole piece in the first direction includes: during the unwinding process of the pole piece, determining the first offset of the pole piece in the first direction. the first offset.
  • the pole piece may be offset left and right.
  • the first offset amount can be detected to facilitate the first Vertical correction in direction.
  • determining the second offset of the pole piece on the lamination machine in the second direction includes: during the advancement process after the pole piece is cut off, and when the pole piece Before the sheet is fed into the material, the second offset amount of the pole piece in the second direction is determined.
  • the pole piece after the pole piece is cut off, the pole piece may rotate due to uneven friction and other reasons.
  • the second offset amount can be used to facilitate rotation correction in the second direction.
  • the present application provides a pole piece deflection correction device, including: various functional modules for implementing the pole piece deflection correction method described in the first aspect and any possible implementation of the first aspect.
  • the present application provides a pole piece correction device, including: a processor; and a memory communicatively connected to the processor; the memory stores instructions that can be executed by the processor, and the instructions are The processor executes, so that the processor can execute the pole piece correction method described in the first aspect and any possible implementation manner of the first aspect.
  • the present application provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is run by a computer, the first aspect and any one of the possibilities of the first aspect are executed.
  • Figure 1 is a schematic structural diagram of a pole piece correction system provided by an embodiment of the present application.
  • Figure 2 is a flow chart of a pole piece correction method provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of the first direction and the first offset provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram of the second direction and the second offset provided by the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a pole piece correction device provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a pole piece correction device provided by an embodiment of the present application.
  • Icon 10-correction system; 11-first correction mechanism; 12-second correction mechanism; 13-pole piece correction equipment; 130-processor; 131-memory; 14-distance detection device; 15-image acquisition device; 20-pole piece; 500-pole piece correction device; 510-detection module; 520-correction module.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • Batteries are not only used in energy storage power systems such as hydraulic, thermal, wind and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • the battery pole pieces can be unrolled through a laminating machine. During the unwinding process of the pole pieces, the pole pieces may deviate. The deviation of the pole pieces will affect the composite pole pieces. Therefore, it is necessary to correct the deviation of the pole pieces during the unwinding process of the pole pieces. .
  • the existing correction scheme corrects the pole pieces in the unwinding direction of the pole pieces. For example: detect the offset of the pole piece in the unwinding direction, and then use the correction mechanism to correct the pole piece in the unwinding direction.
  • the existing correction scheme only takes into account the deviation of the pole piece in the unwinding direction during the unwinding process. But in fact, there are many types of pole piece deflection. For example, during the continuous unwinding process of the pole piece, due to the influence of friction, installation accuracy, etc., the pole piece will shift left and right. And, after the pole piece is cut (also called after the pole piece is cut off), uneven external force is applied during the advancement process, which will cause wrinkles and rotation, that is, rotational deviation.
  • the existing correction scheme has a single correction method, which makes it impossible to achieve effective correction of the pole pieces, and thus cannot guarantee the performance of the pole pieces.
  • the pole pieces are offset during the unwinding process, or offset after cutting. In these different offset situations, the offset directions of the pole pieces are different. Then, if the pole pieces are corrected in multiple deflection directions, it can be ensured that the pole pieces are effectively corrected.
  • the pole pieces are corrected in the first direction based on the first offset amount, and the pole pieces are corrected based on the second offset. Use the amount to correct the pole piece in the second direction. In this way, the correction of different offsets of the pole pieces in different directions is achieved, thereby achieving effective correction of the pole pieces and ensuring the performance of the pole pieces, such as the stability and uniformity of the pole pieces.
  • Figure 1 is a schematic structural diagram of the correction system 10 provided by an embodiment of the present application.
  • the correction system 10 includes: a first correction mechanism 11 , a second correction mechanism 12 and a pole piece correction device 13 .
  • the first correction mechanism 11 and the second correction mechanism 12 are used to realize pole piece correction in different correction directions.
  • G1-G7 represent the transition roller
  • the lines passing through G1-G7 in sequence represent the unwinding material
  • M1 represents the unwinding motor
  • the first correcting mechanism 11 and the second correcting mechanism 12 are also disposed at different positions.
  • the correction device 13 of the pole piece is communicatively connected with the first correction mechanism 11 and the second correction mechanism 12 respectively.
  • the pole piece correction device 13 is used to control the first correction mechanism 11 and the second correction mechanism 12 respectively according to the detected relevant parameters to achieve corresponding pole piece correction.
  • the correction system 10 may further include a distance detection device and an image acquisition device, the distance detection device is used to detect the offset distance, and the image acquisition device is used to detect the offset angle.
  • the offset distance and offset angle can be understood as offset amounts in different offset directions.
  • the correction device 13 of the pole piece is also connected to the distance detection device and the image acquisition device respectively, thereby obtaining the detected offset information from the distance detection device and the detected offset information from the image acquisition device.
  • the method for correcting the deviation of the pole piece provided by the embodiment of the present application can be applied to the correction of the anode piece and/or the cathode piece, and is not limited here.
  • Figure 2 is a flow chart of the correction method of the pole piece provided by the embodiment of the present application.
  • the correction method includes:
  • Step 210 Determine the first offset of the pole piece on the lamination machine in the first direction.
  • Step 220 Correct the pole piece in the first direction according to the first offset amount.
  • Step 230 Determine the second offset of the pole piece in the second direction.
  • Step 240 Correct the pole piece in the second direction according to the second offset amount.
  • the pole pieces on the lamination machine can refer to the unwinding material represented by the lines passing through G1-G7 in sequence in Figure 1. That is, the pole pieces, as unwinding materials, will pass through the unwinding motor in sequence on the lamination machine. and transition rollers, moving forward.
  • the pole piece may be offset in the first direction.
  • the corresponding detection The measuring device detects the first offset amount; in step 220, the pole piece deflection correction device performs pole piece deflection correction in the first direction according to the first offset amount.
  • step 230 the corresponding detection device detects the second offset; in step 240, the pole piece correction equipment performs pole piece correction in the second direction according to the second offset.
  • correction directions may have different values and parameter types of corresponding correction amounts.
  • distance and angle are two types of offsets.
  • the pole pieces are corrected in the first direction based on the first offset amount, and the pole pieces are corrected in the first direction based on the second offset amount. In the second direction, the pole piece is corrected. In this way, the offset of the pole piece in different directions can be corrected, thereby achieving effective correction of the pole piece, thereby ensuring the performance of the pole piece, such as the stability and uniformity of the pole piece.
  • FIG. 3 is a schematic diagram of the first direction and the first offset.
  • the unwinding direction of the lamination machine is N.
  • the first direction is the vertical direction S of the unwinding direction N in the unwinding plane of the lamination machine.
  • the first offset amount d1 is the distance by which the pole piece 20 is offset from the first reference position Q1 in the vertical direction S.
  • the pole piece 20 will shift left and right (that is, shift left and right in the vertical direction S). Therefore, the pole piece 20 can be corrected in the vertical direction S.
  • the pole piece 20 may be offset in the vertical direction S of the unwinding direction N. Therefore, by adjusting the position in the vertical direction S based on the first The offset d1 corrects the deflection of the pole piece 20 to realize the deflection correction of the pole piece 20 in the vertical direction S.
  • a distance detection device 14 is provided in the unwinding direction N of the pole piece 20 . Therefore, in some embodiments, the first offset d1 is detected by the distance detection device 14 .
  • the distance detection device 14 shown in Figure 3 is disposed on the right. In some embodiments, the distance detection device 14 can also be disposed on the left. What is shown in Figure 3 does not constitute a limitation on the embodiments of the present application.
  • the distance detection device 14 is a photoelectric sensor, an area array camera, a line array camera, or other sensor or device capable of distance detection.
  • the distance detection device 14 when detecting the first offset d1, the distance detection device 14 performs detection based on the aforementioned first reference position Q1. Taking FIG. 3 as an example, the distance detection device 14 detects the first offset d1 by detecting the distance between the right edge of the pole piece 20 and the reference position Q1 in real time.
  • multiple distance detection devices can be arranged at different positions in the unwinding direction of the pole piece 20 , and then the first offset d1 is determined based on the respective detection results of the multiple distance detection devices 14 .
  • a detection period of the first offset d1 may also be set, and the first offset d1 is periodically detected according to the detection period.
  • the pole piece 20 is not offset in the first direction. At this time, there is no need to correct the pole piece 20 in the first direction.
  • step 220 includes: determining the first deflection direction of the pole piece 20 in the first direction; controlling the pole piece 20 to move in the first direction in the opposite direction of the first deflection direction. Offset.
  • the first offset direction may be determined by combining the current edge position of the pole piece 20 and the reference edge position of the pole piece 20 . For example: Assume that the current edge position coordinates of pole piece 20 are (1,0) and the reference edge position coordinates of pole piece 20 are (2,0). Then, compared with the reference edge position coordinates of pole piece 20, the pole piece 20 is Piece 20 is shifted to the left. Then, the first offset direction is to the left.
  • the first offset direction can also be determined by combining the current center position of the pole piece 20 and the center position of the reference.
  • the specific determination method is the same as combining the edge position of the pole piece 20 .
  • the first offset direction is the direction compared to the vertical direction S, that is, in the vertical direction S, it is judged whether to offset to the left or to the right.
  • the offset direction of the pole piece 20 in the first direction is first determined, and then the pole piece 20 is controlled to move a first offset amount in the opposite direction of the offset direction, so that the pole piece 20 is in the There is no longer any offset in the first direction, and the pole piece 20 can be corrected in the first direction.
  • controlling the pole piece 20 to move in the first direction by a first offset amount in the opposite direction of the first offset direction includes: according to the first offset direction and the first offset direction.
  • An offset generates a control command for the first deviation motor M2; the control command is sent to the first deviation motor M2 so that the first deviation motor M2 controls the pole piece 20 to move in the first direction in the opposite direction of the first deviation direction.
  • the first correction motor M2 can be used as an implementation of the aforementioned first correction mechanism 11 .
  • other correction mechanisms may also be used to implement correction, which is not limited here.
  • a control instruction of the first correction motor M2 can be generated; the control instruction is sent to the first correction motor M2, and the first correction motor Based on the control command, M2 can control the pole piece 20 to move in the first direction by the first offset amount d1 in the opposite direction of the first offset direction.
  • control of the first correction motor M2 can be implemented through a PID (Proportion Integral Differential) algorithm; or other control algorithms, which are not limited here.
  • PID Proportion Integral Differential
  • the first correction motor M2 controls the movement of the pole piece 20 . It can be understood that the relative movement between the first correction motor M2 and the pole piece 20 generates friction, and the friction force suppresses the movement of the pole piece 20 . Move left and right, thereby changing the distance between the pole piece 20 and the first reference position Q1 to achieve deviation correction.
  • the correction motor is used as a correction mechanism, and a control instruction of the correction motor is generated, so that the correction motor realizes correction according to the control instruction.
  • FIG 4 is a schematic diagram of the second direction and the second offset.
  • the second direction is the rotation direction R corresponding to the unwinding direction N of the stacker in the unwinding plane of the stacker.
  • the offset amount d2 is the angle by which the pole piece 20 is offset from the second reference position Q2 in the rotation direction.
  • the rotation direction R is based on the unwinding direction N, and may rotate clockwise or counterclockwise. If the pole piece 20 is not offset in the rotation direction R, the second offset amount d2 is 0. If the pole piece 20 is offset in the rotation direction R, the second offset amount d2 is the corresponding offset angle, for example, it is offset by 15 degrees compared to the unwinding direction N.
  • the pole piece 20 if the pole piece 20 is subjected to uneven external force during the advancement process, it will wrinkle and rotate, causing the pole piece 20 to be offset in the rotation direction R. Therefore, through the second offset amount d2 of the pole piece 20 in the rotation direction R, the deflection correction of the pole piece 20 in the rotation direction R is achieved. Combined with the aforementioned deflection correction in the first direction, the deflection correction of the pole piece 20 in various possible deflection directions can be achieved.
  • determining the second offset d2 of the pole piece 20 in the second direction includes: collecting images of the pole piece 20 at different times through the image acquisition device 15; determining the second offset based on the images at different times. quantity.
  • the image acquisition device 15 can collect images of the pole piece 20 at different times, and by comparing the images at different times, the offset of the pole piece 20 in the rotation direction R can be determined. For example: compare the deviation between the edges of the same pole in images at different times.
  • the image acquisition device 15 is a CCD (Charge Coupled Device Camera) camera.
  • step 240 includes: determining the second deflection direction of the pole piece 20 in the second direction; controlling the reverse rotation of the pole piece 20 in the second direction to the second deflection direction. Shift amount d2.
  • the pole piece 20 may deviate clockwise or counterclockwise in the second direction. Therefore, it is necessary to determine whether the pole piece 20 is The specific offset direction in the second direction.
  • the process of determining the second offset direction includes: determining whether the second offset is offset clockwise or counterclockwise compared to the second reference position Q2. If it is offset clockwise, If the pointer is offset, the second offset direction is clockwise; if it is offset counterclockwise, the second offset direction is counterclockwise.
  • the pole piece's deflection correction device 13 controls the pole piece 20 to reversely rotate in the second direction to the second deflection direction by a second offset amount d2 to achieve deflection correction of the pole piece 20 .
  • the offset direction of the pole piece 20 in the second direction is first determined, and then the pole piece 20 is controlled to rotate by the second offset amount d2 in the opposite direction of the offset direction, so that the pole piece 20 There is no longer any deviation in the second direction, and the pole piece 20 can be corrected in the second direction.
  • controlling the pole piece 20 to rotate in the second direction by a second offset amount d2 in the opposite direction of the second offset direction includes: generating a second offset amount d2 according to the second offset direction and the second offset amount d2.
  • Control command of the second correction motor send the control command to the second correction motor to cause the pole piece 20 to rotate in the second direction by a second offset amount d2 in the opposite direction of the second offset direction.
  • the second correction motor can be used as an implementation of the aforementioned second correction mechanism 12 .
  • the second correction mechanism 12 can also adopt other implementation modes, which are not limited here.
  • control of the second correction motor can be implemented through a PID algorithm; or other control algorithms, which are not limited here.
  • the second correction motor since the second correction motor needs to rotate the pole piece 20 in the second direction in the reverse direction, the second correction motor may be a rotating motor. That is, the movement of the second correction motor is a rotary movement to drive the pole piece 20 to rotate.
  • the correction motor is used as a correction mechanism, and a control instruction of the correction motor is generated, so that the correction motor realizes correction according to the control instruction.
  • step 210 includes: determining a first offset d1 of the pole piece 20 in the first direction during the unwinding process of the pole piece 20 .
  • the first direction may be the aforementioned vertical direction S.
  • the pole piece 20 may be offset left and right.
  • the first offset can be detected by Amount to achieve vertical correction in the first direction.
  • step 230 includes: determining the second offset d2 of the pole piece 20 in the second direction during the advancement process after the pole piece 20 is cut off and before the pole piece 20 is fed into the material.
  • the second direction may be the aforementioned rotation direction R.
  • the pole piece 20 may rotate due to uneven friction and other reasons. At this time, the rotation deviation in the second direction can be corrected through the second offset d2.
  • FIG. 5 is a schematic structural diagram of a pole piece correction device 500 provided by an embodiment of the present application.
  • the pole piece correction device 500 includes: a detection module 510 and a correction module 520 .
  • the detection module 510 is used to determine the first offset of the pole piece 20 on the lamination machine in the first direction;
  • the correction module 520 is used to correct the pole piece 20 in the first direction according to the first offset; the detection module 510 is also used to: determine the second offset of the pole piece in the second direction; The deviation correction module 520 is also used to correct the deviation of the pole piece 20 in the second direction according to the second offset amount.
  • the detection module 510 is specifically configured to detect the first offset through a distance detection device.
  • the deviation correction module 520 is specifically used to: determine the first deflection direction of the pole piece 20 in the first direction; and control the first deflection of the pole piece 20 in the first direction. Move the first offset amount in the opposite direction of the direction.
  • the correction module 520 is specifically configured to: generate a control instruction for the first correction motor according to the first offset direction and the first offset amount; and send the control instruction to the first correction motor.
  • the first deflection motor controls the pole piece 20 to move in the first direction by the first deflection amount in the opposite direction of the first deflection direction.
  • the detection module 510 is specifically configured to: collect images of the pole piece 20 at different times through an image acquisition device; and determine the second offset amount based on the images at different times.
  • the correction module 520 is specifically used to: determine the second offset direction of the pole piece 20 in the second direction; and control the pole piece 20 to offset in the second direction. The direction of rotation is reversed by the second offset.
  • the correction module 520 is specifically configured to: generate a control instruction for a second correction motor according to the second offset direction and the second offset amount; and send the control instruction to the second correction motor.
  • the deflection correction motor is used to rotate the pole piece 20 in the second direction by the second offset amount in the opposite direction of the second offset direction.
  • the detection module 510 is specifically used to determine the first offset of the pole piece 20 in the first direction during the unwinding process of the pole piece 20 .
  • the detection module 510 is specifically used to determine the third position of the pole piece 20 in the second direction during the advancement process after the pole piece 20 is cut off and before the pole piece 20 is fed into the material. Two offsets.
  • the pole piece correction device 500 corresponds to the aforementioned pole piece correction method, and each functional module corresponds to each step of the method. Therefore, the implementation of each functional module refers to the aforementioned method implementation, and will not be repeated here.
  • FIG. 6 is a schematic structural diagram of a pole piece correction device 13 provided by an embodiment of the present application.
  • the pole piece correction device 13 includes a processor 130 and a memory 131 communicatively connected to the processor 130 .
  • the memory 131 stores instructions that can be executed by the processor 130, and the instructions are executed by the processor 130, so that the processor 130 can perform the pole piece correction method described in the previous embodiment.
  • the communication connection between the processor 130 and the memory 131 can be realized through a communication bus.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the method for correcting the pole pieces described in the previous embodiments is executed.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some communication interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application can be integrated together to form an independent part, each module can exist alone, or two or more modules can be integrated to form an independent part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Control Of Position Or Direction (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

一种极片(20)的纠偏方法、装置(500)、设备(13)、存储介质。极片(20)的纠偏方法包括:确定叠片机上的极片(20)在第一方向上的第一偏移量(d1);根据第一偏移量(d1)在第一方向上对极片(20)进行纠偏;确定极片(20)在第二方向上的第二偏移量(d2);第二偏移量(d2)与第一偏移量(d1)不同;根据第二偏移量(d2)在第二方向上对极片(20)进行纠偏。

Description

一种极片的纠偏方法、装置、设备、存储介质
相关申请的交叉引用
本申请要求享有于2022年5月20日提交的名称为“一种极片的纠偏方法、装置、设备、存储介质”的中国专利申请202210551595.4的优先权。
技术领域
本申请涉及电池技术领域,具体而言,涉及一种极片的纠偏方法、装置、设备、存储介质。
背景技术
电池的成型工艺中,可通过叠片机对电池极片进行放卷。在极片的放卷过程中,极片可能会存在跑偏的情况,极片的跑偏会对复合后的极片造成影响,因此,需要在极片的放卷过程中对极片进行纠偏。
现有的极片纠偏方案,在极片的放卷方向上对极片进行纠偏,这种纠偏方式不能实现极片的有效纠偏,进而不能保证极片的性能。
发明内容
本申请实施例的目的在于提供一种极片的纠偏方法、装置、设备、存储介质,用以实现极片的有效纠偏,保证极片的性能。
第一方面,本申请提供一种极片的纠偏方法,包括:确定叠片机上的极片在第一方向上的第一偏移量;根据所述第一偏移量在所述第一方向上对所述极片进行纠偏;确定所述极片在第二方向上的第二偏移量;根据所述第二偏移量在所述第二方向上对所述极片进行纠偏。
在本申请中,考虑到极片在多个方向上可能分别存在偏移,基于第一偏移量在第一方向对极片进行纠偏,以及基于第二偏移量在第二方向对极片进行纠偏。通过这种方式,实现极片不同方向上的偏移量的纠偏,从而实现极片的有效纠偏,进而保证极片的性能,例如:极片的稳定性、统一性等。
作为一种可能的实现方式,所述第一方向为在所述叠片机的放卷平面内,所述叠片机的放卷方向的垂直方向,所述第一偏移量为所述极片在所述垂直方向上偏移第一基准位置的距离。
在本申请中,由于摩擦力、安装精度等影响,极片在放卷方向的垂直方向上可能会发生偏移,因此,通过在该垂直方向上基于第一偏移量对极片进行纠偏,实现该垂直方向上的极片纠偏。
作为一种可能的实现方式,所述确定叠片机上的极片在第一方向上的第一偏移量,包括:通过距离检测装置检测所述第一偏移量。
在本申请中,通过距离检测装置,实现第一偏移量的有效且准确的检测。
作为一种可能的实现方式,所述根据所述第一偏移量在所述第一方向上对所述极片进行纠偏,包括:确定所述极片在所述第一方向上的第一偏移方向;控制所述极片在所述第一方向上向所述第一偏移方向的反方向移动所述第一偏移量。
在本申请中,先确定极片在第一方向上的偏移方向,再控制极片在该偏移方向的反方向上移动第一偏移量,使极片在该第一方向上不再存在偏移,实现第一方向上的极片纠偏。
作为一种可能的实现方式,所述控制所述极片在所述第一方向上向所述第一偏移方向的反方向移动所述第一偏移量,包括:根据所述第一偏移方向和所述第一偏移量生成第一纠偏电机的控制指令;将所述控制指令发送给所述第一纠偏电机,以使所述第一纠偏电机控制所述极片在所述第一方向上向所述第一偏移方向的反方向移动所述第一偏移量。
在本申请中,将纠偏电机作为纠偏机构,通过生成纠偏电机的控制指令,以使纠偏电机根据控制指令实现纠偏。
作为一种可能的实现方式,所述第二方向为在所述叠片机放卷平面内,所述叠片机的放卷方向对应的旋转方向,所述第二偏移量为所述极片在所述旋转方向上偏移第二基准位置的角度。
在本申请中,若极片在前进过程中受到不均匀外力会产生褶皱、旋转,导致极片在旋转方向上产生偏移。因此,通过极片在旋转方向上的第二偏移量,实现极片在旋转方向上的纠偏。再结合前述的第一方向上的纠偏,可实现极片在各个可能的偏移方向上的纠偏。
作为一种可能的实现方式,所述确定所述极片在第二方向上的第二偏移量,包括:通过图像采集装置采集所述极片在不同时刻的图像;根据所述不同时刻的图像确定所述第二偏移量。
在本申请中,通过采集极片在不同时刻的图像,基于不同时刻的图像实现第二偏移量的有效且准确的确定。
作为一种可能的实现方式,所述根据所述第二偏移量在所述第二方向上对所述极片进行纠偏,包括:确定所述极片在所述第二方向上的第二偏移方向;控制所述极片在所述第二方向上向所述第二偏移方向的逆向旋转所述第二偏移量。
在本申请中,先确定极片在第二方向上的偏移方向,再控制极片在该偏移方向的逆向上旋转第二偏移量,使极片在该第二方向上不再存在偏移,实现第二方向上的极片纠偏。
作为一种可能的实现方式,所述控制所述极片在所述第二方向上向所述第二偏移方向的逆向旋转所述第二偏移量,包括:根据所述第二偏移方向和所述第二偏移量生成第二纠偏电机的控制指令;将所述控制指令发送给所述第二纠偏电机,以使所述极片在所述第二方向上向所述第二偏移方向的逆向旋转所述第二偏移量。
在本申请中,将纠偏电机作为纠偏机构,通过生成纠偏电机的控制指令,以使纠偏电机根据控制指令实现纠偏。
作为一种可能的实现方式,所述确定极片在第一方向上的第一偏移量,包括:在所述极片的放卷过程中,确定所述极片在所述第一方向上的第一偏移量。
在本申请中,在极片的放卷过程中,由于摩擦力,安装精度等情况的影响,可能会造成极片左右偏移,此时可通过检测第一偏移量,以便于实现第一方向上的垂直纠偏。
作为一种可能的实现方式,所述确定所述叠片机上的极片在第二方向上的第二偏移量,包括:在所述极片切断后的前进过程中,且在所述极片被送片入料之前,确定所述极片在所述第二方向上的第二偏移量。
在本申请中,极片切断后由于摩擦不均等原因可能会造成极片旋转,此时可通过第二偏移量,以便于实现第二方向上的旋转纠偏。
第二方面,本申请提供一种极片的纠偏装置,包括:用于实现第一方面以及第一方面的任意一种可能的实现方式中所述的极片的纠偏方法的各个功能模块。
第三方面,本申请提供一种极片的纠偏设备,包括:处理器;以及与所述处理器通信连接的存储器;所述存储器存储有可被所述处理器执行的指令,所述指令被所述处理器执行,以使所述处理器能够执行第一方面以及第一方面的任意一种可能的实现方式中所述的极片的纠偏方法。
第四方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被计算机运行时,执行第一方面以及第一方面的任意一种可能的实现方式中所述的极片的纠偏方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的 附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的极片的纠偏系统的结构示意图;
图2为本申请实施例提供的极片的纠偏方法的流程图;
图3为本申请实施例提供的第一方向和第一偏移量的示意图;
图4为本申请实施例提供的第二方向和第二偏移量的示意图;
图5为本申请实施例提供的极片的纠偏装置的结构示意图;
图6为本申请实施例提供的极片的纠偏设备的结构示意图。
图标:10-纠偏系统;11-第一纠偏机构;12-第二纠偏机构;13-极片的纠偏设备;130-处理器;131-存储器;14-距离检测装置;15-图像采集装置;20-极片;500-极片的纠偏装置;510-检测模块;520-纠偏模块。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
目前,从市场形势的发展来看,电池的应用越加广泛。电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
随着电池的应用越加广泛,电池的生产工艺技术也在不断发展。在电池的成型工艺中,可通过叠片机对电池极片进行放卷。在极片的放卷过程中,极片可能会存在跑偏的情况,极片的跑偏会对复合后的极片造成影响,因此,需要在极片的放卷过程中对极片进行纠偏。
现有的纠偏方案,在极片的放卷方向上对极片进行纠偏。例如:检测极片在放卷方向上的偏移量,然后利用纠偏机构对极片在该放卷方向上进行纠偏。
经研究发现,现有的这种纠偏方案仅考虑到极片在放卷过程中,在放卷方向上的偏移。但是实际上,极片的偏移情况分为多种,例如:在极片不停的放卷过程中,由于摩擦力、安装精度等情况的影响,极片会发生左右偏移。以及,在极片裁剪完成之后(也称极片切断后),在前进过程中受到不均匀外力作用,会产生皱褶、旋转,即,旋转偏移。
因此,现有的纠偏方案的纠偏方式单一,导致无法实现极片的有效纠偏,进而无法保证极片的性能。
极片在放卷过程中产生偏移,或者在切断后产生偏移,这些不同的偏移情况中,极片的偏移方向是有区别的。那么,如果在多个偏移方向上均对极片进行纠偏,便可以保证极片得到有效的纠偏。
基于此,在本申请实施例的技术方案中,考虑到极片在多个方向上可能分别存在偏移,基于第一偏移量在第一方向对极片进行纠偏,以及基于第二偏移量在第二方向对极片进行纠偏。通过这种方式,实现极片不同方向上的不同偏移量的纠偏,从而实现极片的有效纠偏,进而保证极片的性能,例如:极片的稳定性、统一性等。
本申请实施例提供的技术方案可以应用于极片的纠偏系统,请参照图1,为本申请一实施例提供的纠偏系统10的结构示意图。纠偏系统10包括:第一纠偏机构11、第二纠偏机构12和极片的纠偏设备13。
其中,第一纠偏机构11和第二纠偏机构12用于实现不同的纠偏方向的极片纠偏。
在图1中,G1-G7代表过渡辊,依次经过G1-G7的线条代表放卷材料,M1代表放卷电机。
由于极片在不同方向上的偏移,发生在不同的放卷过程中,因此,第一纠偏机构11和第二纠偏机构12的设置位置也不相同。
极片的纠偏设备13,分别与第一纠偏机构11和第二纠偏机构12通信连接。极片的纠偏设备13用于根据检测到的相关参数,对第一纠偏机构11和第二纠偏机构12分别进行控制,以实现对应的极片纠偏。
在一些实施例中,该纠偏系统10还可以包括距离检测装置和图像采集装置,距离检测装置用于检测偏移距离,图像采集装置用于检测偏移角度。在本申请实施例中,偏移距离和偏移角度可以理解为在不同的偏移方向上的偏移量。
极片的纠偏设备13还分别与距离检测装置和图像采集装置通信连接,进而从距离检测装置处获取检测的偏移信息,以及从图像采集装置处获取检测的偏移信息。
本申请实施例提供的极片的纠偏方法可以应用于阳极片和/或阴极片的纠偏,在此不作限定。
除了应用于叠片机中的极片的纠偏,在另一些实施例中,也可以应用于其他的电池处理设备(例如卷绕机)中的极片的纠偏,在此不作限定。
基于上述发明构思和应用场景的介绍,接下来请参照图2,为本申请实施例提供的极片的纠偏方法的流程图,该纠偏方法包括:
步骤210:确定叠片机上的极片在第一方向上的第一偏移量。
步骤220:根据第一偏移量在第一方向上对极片进行纠偏。
步骤230:确定极片在第二方向上的第二偏移量。
步骤240:根据第二偏移量在第二方向上对极片进行纠偏。
在步骤210中,叠片机上的极片可以参照图1中的依次经过G1-G7的线条所代表的放卷材料,即,极片作为放卷材料,在叠片机上会依次经过放卷电机以及过渡辊,不断前进。
在极片的放卷过程中,极片在第一方向上可能会发生偏移,在步骤210中,对应的检 测装置检测到第一偏移量;在步骤220中,极片的纠偏设备根据第一偏移量在第一方向上进行极片纠偏。
以及在步骤230中,对应的检测装置检测到第二偏移量;在步骤240中,极片的纠偏设备根据第二偏移量在第二方向上进行极片纠偏。
可以理解,不同的纠偏方向,对应的纠偏量的值和参数类型可能均不同。例如:距离和角度,属于两种偏移量。
在本申请实施例提供的技术方案中,考虑到极片在多个方向上可能分别存在偏移,基于第一偏移量在第一方向对极片进行纠偏,以及基于第二偏移量在第二方向对极片进行纠偏。通过这种方式,实现极片不同方向上的偏移量的纠偏,从而实现极片的有效纠偏,进而保证极片的性能,例如:极片的稳定性、统一性等。
作为一种可选的实施方式,请参照图3,为第一方向和第一偏移量的示意图。在图3中,在叠片机的放卷平面内,叠片机的放卷方向为N。则,第一方向为在叠片机的放卷平面内,放卷方向N的垂直方向S。对应的,第一偏移量d1为极片20在垂直方向S上偏移第一基准位置Q1的距离。
在这种实施方式中,在极片20不停的放卷过程中,由于摩擦力,安装精度等情况的影响,极片20会发生左右偏移(即在垂直方向S上左右偏移)的情况,因此,可以在该垂直方向S上进行极片20纠偏。
在本申请实施例的技术方案中,由于摩擦力、安装精度等影响,极片20在放卷方向N的垂直方向S上可能会发生偏移,因此,通过在该垂直方向S上基于第一偏移量d1对极片20进行纠偏,实现该垂直方向S上的极片20纠偏。
请继续参照图3,在极片20的放卷方向N上设置距离检测装置14。因此,在一些实施例中,通过距离检测装置14检测第一偏移量d1。
图3所示的距离检测装置14设置在右方,在一些实施例中,距离检测装置14也可以设置在左方,图3所示不构成对本申请实施例的限定。
在一些实施例中,距离检测装置14为光电传感器、面阵相机、线阵相机等能够实现距离检测的传感器或者设备。
可以理解,距离检测装置14在检测第一偏移量d1时,基于前述的第一基准位置Q1进行检测。以图3为例,距离检测装置14通过实时检测极片20的右侧边缘与基准位置Q1之间的距离,实现第一偏移量d1的检测。
在一些实施例中,可以在极片20的放卷方向的不同位置上设置多个距离检测装置,然后结合多个距离检测装置14分别的检测结果确定第一偏移量d1。
在另一些实施例中,还可以设置第一偏移量d1的检测周期,按照该检测周期对第一偏移量d1进行周期性的检测。
在本申请实施例中,通过距离检测装置14,实现第一偏移量d1的有效且准确的检测。
可以理解,若第一偏移量d1为0,则代表极片20在第一方向上没有产生偏移,此时无需在第一方向上对极片20进行纠偏。
作为一种可选的实施方式,步骤220包括:确定极片20在第一方向上的第一偏移方向;控制极片20在第一方向上向第一偏移方向的反方向移动第一偏移量。
在一些实施例中,第一偏移方向可结合当前的极片20边缘位置与基准的极片20边缘位置确定。例如:假设当前的极片20边缘位置坐标为(1,0),基准的极片20边缘位置坐标为(2,0),则,相较于基准的极片20边缘位置坐标来说,极片20往左偏移。则,第一偏移方向为向左偏移。
在另一些实施例中,第一偏移方向还可以结合当前的极片20中心位置与基准的中心位置确定,具体的确定方式与结合极片20边缘位置同理。
需要注意的是,此处的第一偏移方向为相较于垂直方向S的方向,即在垂直方向S上,判断向左还是向右偏移。
由于极片20在第一方向上向第一偏移方向偏移,为了使极片20回到基准位置,需要控制极片20在第一方向上向第一偏移方向的反方向移动第一偏移量d1。
在本申请实施例的技术方案中,先确定极片20在第一方向上的偏移方向,再控制极片20在该偏移方向的反方向上移动第一偏移量,使极片20在该第一方向上不再存在偏移,实现第一方向上的极片20纠偏。
请继续参照图3,作为一种可选的实施方式,控制极片20在第一方向上向第一偏移方向的反方向移动第一偏移量,包括:根据第一偏移方向和第一偏移量生成第一纠偏电机M2的控制指令;将控制指令发送给第一纠偏电机,以使第一纠偏电机M2控制极片20在第一方向上向第一偏移方向的反方向移动第一偏移量d1。
在这种实施方式中,第一纠偏电机M2可以作为前述的第一纠偏机构11的一种实施方式。在另一些实施例中,也可以采用其他的纠偏机构实现纠偏,在此不作限定。
对于极片的纠偏设备13来说,基于第一偏移方向和第一偏移量,可生成第一纠偏电机M2的控制指令;将该控制指令发送给第一纠偏电机M2,第一纠偏电机M2基于该控制指令便可以控制极片20在第一方向上向第一偏移方向的反方向移动第一偏移量d1。
在一些实施例中,第一纠偏电机M2的控制,可以通过PID(Proportion Integral Differential,比例积分微分)算法实现;或者其他的控制算法实现,在此不作限定。
在这种实施方式中,第一纠偏电机M2控制极片20的移动,可以理解为,第一纠偏电机M2与极片20之间的相对运动产生摩擦力,通过该摩擦力抑制极片20的左右运动,进而改变极片20距离第一基准位置Q1的距离,实现纠偏。
在本申请实施例的技术方案中,将纠偏电机作为纠偏机构,通过生成纠偏电机的控制指令,以使纠偏电机根据控制指令实现纠偏。
请参照图4,为第二方向和第二偏移量的示意图,第二方向为在叠片机放卷平面内,叠片机的放卷方向N对应的旋转方向R,对应的,第二偏移量d2为极片20在旋转方向上偏移第二基准位置Q2的角度。
如图4所示,旋转方向R以放卷方向N为基准,可能朝顺时针旋转,也可能朝逆时针旋转。若极片20在旋转方向R上没有偏移,则第二偏移量d2为0。若极片20在旋转方向R上存在偏移,则第二偏移量d2为对应的偏移角度,例如:相较于放卷方向N,偏移15度。
在本申请实施例的技术方案中,若极片20在前进过程中受到不均匀外力会产生褶皱、旋转,导致极片20在旋转方向R上产生偏移。因此,通过极片20在旋转方向R上的第二偏移量d2,实现极片20在旋转方向R上的纠偏。再结合前述的第一方向上的纠偏,可实现极片20在各个可能的偏移方向上的纠偏。
在一些实施例中,确定极片20在第二方向上的第二偏移量d2,包括:通过图像采集装置15采集极片20在不同时刻的图像;根据不同时刻的图像确定第二偏移量。
在这种实施方式中,图像采集装置15可以采集极片20在不同时刻的图像,通过比较不同时刻的图像,可确定极片20在旋转方向R上的偏移量。例如:比较不同时刻的图像中,同一极耳侧边缘之间的偏差量。
在一些实施例中,图像采集装置15为CCD(Charge Coupled Device Camera,电荷耦合器件)相机。
在本申请实施例的技术方案中,通过采集极片20在不同时刻的图像,基于不同时刻的 图像实现第二偏移量d2的有效且准确的确定。
作为一种可选的实施方式,步骤240包括:确定极片20在第二方向上的第二偏移方向;控制极片20在第二方向上向第二偏移方向的逆向旋转第二偏移量d2。
在一些实施例中,以第二方向为旋转方向R为例,极片20在第二方向上可能向顺时针方向偏移,也可能向逆时针方向偏移,因此,需要判断极片20在第二方向上的具体偏移方向。
作为一种可选的实施方式,第二偏移方向的确定过程包括:判断第二偏移量相较于第二基准位置Q2是朝顺时针偏移,还是朝逆时针偏移,若朝顺指针偏移,则第二偏移方向为顺时针;若朝逆时针偏移,则第二偏移方向为逆时针。
基于第二偏移方向,极片的纠偏设备13控制极片20在第二方向上向第二偏移方向的逆向旋转第二偏移量d2,实现极片20的纠偏。
在本申请实施例的技术方案中,先确定极片20在第二方向上的偏移方向,再控制极片20在该偏移方向的逆向上旋转第二偏移量d2,使极片20在该第二方向上不再存在偏移,实现第二方向上的极片20纠偏。
作为一种可选的实施方式,控制极片20在第二方向上向第二偏移方向的逆向旋转第二偏移量d2,包括:根据第二偏移方向和第二偏移量d2生成第二纠偏电机的控制指令;将控制指令发送给第二纠偏电机,以使极片20在第二方向上向第二偏移方向的逆向旋转第二偏移量d2。
在这种实施方式中,第二纠偏电机可作为前述的第二纠偏机构12的一种实施方式。第二纠偏机构12也可以采用其他实施方式,在此不作限定。
在一些实施例中,第二纠偏电机的控制,可以通过PID算法实现;或者其他的控制算法实现,在此不作限定。
在一些实施例中,由于第二纠偏电机需要使极片20在第二方向上逆向旋转,因此,第二纠偏电机可采用旋转电机。即,第二纠偏电机的运动为旋转式运动,以带动极片20旋转。
在本申请实施例的技术方案中,将纠偏电机作为纠偏机构,通过生成纠偏电机的控制指令,以使纠偏电机根据控制指令实现纠偏。
在一些实施例中,步骤210包括:在极片20的放卷过程中,确定极片20在所述第一方向上的第一偏移量d1。
在这种实施方式中,第一方向可以为前述的垂直方向S。
在本申请实施例的技术方案中,在极片20的放卷过程中,由于摩擦力,安装精度等情况的影响,可能会造成极片20左右偏移,此时可通过检测第一偏移量实现第一方向上的垂直纠偏。
在一些实施例中,步骤230包括:在极片20切断后的前进过程中,且在极片20被送片入料之前,确定极片20在第二方向上的第二偏移量d2。
在这种实施方式中,第二方向可以为前述的旋转方向R。
在本申请实施例的技术方案中,极片20切断后由于摩擦不均等原因可能会造成极片20旋转,此时可通过第二偏移量d2实现第二方向上的旋转纠偏。
请参照图5,为本申请实施例提供的极片的纠偏装置500的结构示意图,极片的纠偏装置500包括:检测模块510和纠偏模块520。
检测模块510,用于确定叠片机上的极片20在第一方向上的第一偏移量;
纠偏模块520,用于根据所述第一偏移量在所述第一方向上对极片20进行纠偏;检测模块510还用于:确定极片在第二方向上的第二偏移量;纠偏模块520还用于:根据所述第二偏移量在所述第二方向上对极片20进行纠偏。
在本申请实施例中,检测模块510具体用于:通过距离检测装置检测所述第一偏移量。
在本申请实施例中,纠偏模块520具体用于:确定极片20在所述第一方向上的第一偏移方向;控制极片20在所述第一方向上向所述第一偏移方向的反方向移动所述第一偏移量。
在本申请实施例中,纠偏模块520具体用于:根据所述第一偏移方向和所述第一偏移量生成第一纠偏电机的控制指令;将所述控制指令发送给所述第一纠偏电机,以使所述第一纠偏电机控制极片20在所述第一方向上向所述第一偏移方向的反方向移动所述第一偏移量。
在本申请实施例中,检测模块510具体用于:通过图像采集装置采集极片20在不同时刻的图像;根据所述不同时刻的图像确定所述第二偏移量。
在本申请实施例中,纠偏模块520具体用于:确定极片20在所述第二方向上的第二偏移方向;控制极片20在所述第二方向上向所述第二偏移方向的逆向旋转所述第二偏移量。
在本申请实施例中,纠偏模块520具体用于:根据所述第二偏移方向和所述第二偏移量生成第二纠偏电机的控制指令;将所述控制指令发送给所述第二纠偏电机,以使极片20在所述第二方向上向所述第二偏移方向的逆向旋转所述第二偏移量。
在本申请实施例中,检测模块510具体用于:在极片20的放卷过程中,确定极片20在所述第一方向上的第一偏移量。
在本申请实施例中,检测模块510具体用于:在极片20切断后的前进过程中,且在极片20被送片入料之前,确定极片20在所述第二方向上的第二偏移量。
极片的纠偏装置500与前述的极片的纠偏方法对应,各个功能模块与方法的各个步骤对应,因此,各个功能模块的实施方式参照前述的方法实施方式,在此不再重复介绍。
请参照图6,为本申请实施例提供的极片的纠偏设备13的结构示意图,极片的纠偏设备13包括:处理器130以及与处理器130通信连接的存储器131。
存储器131存储有可被处理器130执行的指令,所述指令被处理器130执行,以使处理器130能够执行前述实施例中所述的极片的纠偏方法。
其中,处理器130和存储器131之间可以通过通信总线实现通信连接。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被计算机运行时,执行前述实施例中所述的极片的纠偏方法。
在本申请所提供的实施例中,应该理解到,所揭露装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
再者,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种极片的纠偏方法,其特征在于,包括:
    确定叠片机上的极片在第一方向上的第一偏移量;
    根据所述第一偏移量在所述第一方向上对所述极片进行纠偏;
    确定所述极片在第二方向上的第二偏移量;
    根据所述第二偏移量在所述第二方向上对所述极片进行纠偏。
  2. 根据权利要求1所述的极片的纠偏方法,其特征在于,所述第一方向为在所述叠片机的放卷平面内,所述叠片机的放卷方向的垂直方向,所述第一偏移量为所述极片在所述垂直方向上偏移第一基准位置的距离。
  3. 根据权利要求1或2所述的极片的纠偏方法,其特征在于,所述确定叠片机上的极片在第一方向上的第一偏移量,包括:
    通过距离检测装置检测所述第一偏移量。
  4. 根据权利要求1或2所述的极片的纠偏方法,其特征在于,所述根据所述第一偏移量在所述第一方向上对所述极片进行纠偏,包括:
    确定所述极片在所述第一方向上的第一偏移方向;
    控制所述极片在所述第一方向上向所述第一偏移方向的反方向移动所述第一偏移量。
  5. 根据权利要求4所述的极片的纠偏方法,其特征在于,所述控制所述极片在所述第一方向上向所述第一偏移方向的反方向移动所述第一偏移量,包括:
    根据所述第一偏移方向和所述第一偏移量生成第一纠偏电机的控制指令;
    将所述控制指令发送给所述第一纠偏电机,以使所述第一纠偏电机控制所述极片在所述第一方向上向所述第一偏移方向的反方向移动所述第一偏移量。
  6. 根据权利要求1所述的叠片机的纠偏方法,其特征在于,所述第二方向为在所述叠片机放卷平面内,所述叠片机的放卷方向对应的旋转方向,所述第二偏移量为所述极片在所述旋转方向上偏移第二基准位置的角度。
  7. 根据权利要求1或6所述的极片的纠偏方法,其特征在于,所述确定所述极片在第二方向上的第二偏移量,包括:
    通过图像采集装置采集所述极片在不同时刻的图像;
    根据所述不同时刻的图像确定所述第二偏移量。
  8. 根据权利要求1或6所述的极片的纠偏方法,其特征在于,所述根据所述第二偏移量在所述第二方向上对所述极片进行纠偏,包括:
    确定所述极片在所述第二方向上的第二偏移方向;
    控制所述极片在所述第二方向上向所述第二偏移方向的逆向旋转所述第二偏移量。
  9. 根据权利要求8所述的极片的纠偏方法,其特征在于,所述控制所述极片在所述第二方向上向所述第二偏移方向的逆向旋转所述第二偏移量,包括:
    根据所述第二偏移方向和所述第二偏移量生成第二纠偏电机的控制指令;
    将所述控制指令发送给所述第二纠偏电机,以使所述极片在所述第二方向上向所述第二偏移方向的逆向旋转所述第二偏移量。
  10. 根据权利要求1所述的极片的纠偏方法,其特征在于,所述确定极片在第一方向上的第一偏移量,包括:
    在所述极片的放卷过程中,确定所述极片在所述第一方向上的第一偏移量。
  11. 根据权利要求1所述的极片的纠偏方法,其特征在于,所述确定所述叠片机上的极片在第二方向上的第二偏移量,包括:
    在所述极片切断后的前进过程中,且在所述极片被送片入料之前,确定所述极片在所述第二方向上的第二偏移量。
  12. 一种极片的纠偏装置,其特征在于,包括:
    检测模块,用于确定叠片机上的极片在第一方向上的第一偏移量;
    纠偏模块,用于根据所述第一偏移量在所述第一方向上对所述极片进行纠偏;
    所述检测模块还用于:确定所述极片在第二方向上的第二偏移量;
    所述纠偏模块还用于:根据所述第二偏移量在所述第二方向上对所述极片进行纠偏。
  13. 一种极片的纠偏设备,其特征在于,包括:
    处理器;以及与所述处理器通信连接的存储器;
    所述存储器存储有可被所述处理器执行的指令,所述指令被所述处理器执行,以使所述处理器能够执行如权利要求1-11任一项所述的极片的纠偏方法。
  14. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被计算机运行时,执行如权利要求1-11任一项所述的极片的纠偏方法。
PCT/CN2023/092331 2022-05-20 2023-05-05 一种极片的纠偏方法、装置、设备、存储介质 WO2023221785A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210551595.4A CN117125528A (zh) 2022-05-20 2022-05-20 一种极片的纠偏方法、装置、设备、存储介质
CN202210551595.4 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023221785A1 true WO2023221785A1 (zh) 2023-11-23

Family

ID=88834527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092331 WO2023221785A1 (zh) 2022-05-20 2023-05-05 一种极片的纠偏方法、装置、设备、存储介质

Country Status (2)

Country Link
CN (1) CN117125528A (zh)
WO (1) WO2023221785A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088263A (ja) * 2012-10-04 2014-05-15 Ricoh Co Ltd 搬送装置、及び、画像形成装置
CN111532856A (zh) * 2020-03-17 2020-08-14 深圳吉阳智能科技有限公司 制片装置及方法
CN111702032A (zh) * 2020-05-25 2020-09-25 江苏中关村嘉拓新能源设备有限公司 一种放卷机构
CN215709935U (zh) * 2021-07-30 2022-02-01 广东利元亨智能装备股份有限公司 一种极片上料装置及电芯生产系统
CN216548885U (zh) * 2021-11-19 2022-05-17 东莞市雅康精密机械有限公司 一种极片分切成型装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088263A (ja) * 2012-10-04 2014-05-15 Ricoh Co Ltd 搬送装置、及び、画像形成装置
CN111532856A (zh) * 2020-03-17 2020-08-14 深圳吉阳智能科技有限公司 制片装置及方法
CN111702032A (zh) * 2020-05-25 2020-09-25 江苏中关村嘉拓新能源设备有限公司 一种放卷机构
CN215709935U (zh) * 2021-07-30 2022-02-01 广东利元亨智能装备股份有限公司 一种极片上料装置及电芯生产系统
CN216548885U (zh) * 2021-11-19 2022-05-17 东莞市雅康精密机械有限公司 一种极片分切成型装置

Also Published As

Publication number Publication date
CN117125528A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
US8397372B2 (en) Electrode winding apparatus
JP6554072B2 (ja) 極シートへのリチウム補充の方法及びシステム
EP3330532B1 (en) Yaw control method and device for wind generator set
CN104779879B (zh) 永磁同步电机的电角度旋向和初始值辨识方法及系统
CN103986388B (zh) 旋转电机驱动系统
US11355770B2 (en) Apparatus and method for manufacturing membrane-electrode assembly of fuel cell
WO2022227963A1 (zh) 补锂设备
WO2023221785A1 (zh) 一种极片的纠偏方法、装置、设备、存储介质
EP4273984A1 (en) Deviation correction apparatus and winding machine
JP6662245B2 (ja) 電極の製造装置
EP4362150A1 (en) Electrode sheet dislocation control method and apparatus, electrode sheet, battery cell, and battery
US20240150149A1 (en) Electrode plate wrinkling detection apparatus and cell production equipment
WO2023197176A1 (zh) 用于叠片机的料带入料检测方法、装置、叠片机、设备和介质
KR20200070921A (ko) 극판 사행 교정 효율을 향상시킨 노칭 복합장비
EP4369447A1 (en) Electrode plate stacking method and apparatus, and stacking machine
CN116899837B (zh) 涂布系统和方法
WO2023028897A1 (zh) 电池卷绕方法、电池卷绕系统、电池和用电装置
US11355769B2 (en) Apparatus and method for manufacturing membrane-electrode assembly of fuel cell
EP4230953A1 (en) Deviation detection method and deviation detection device
CN205122710U (zh) 涂膜错位处理系统
CN117718198B (zh) 涂布纠偏控制方法、装置、计算机设备和存储介质
CN220277477U (zh) 一种双面涂布对齐度系统
CN117339842B (zh) 极片涂布纠偏方法及系统
KR20210134166A (ko) 이차전지의 전극셀 제조방법
CN117718198A (zh) 涂布纠偏控制方法、装置、计算机设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806737

Country of ref document: EP

Kind code of ref document: A1