WO2023185120A1 - 极耳边距控制方法、装置、控制器以及存储介质 - Google Patents

极耳边距控制方法、装置、控制器以及存储介质 Download PDF

Info

Publication number
WO2023185120A1
WO2023185120A1 PCT/CN2022/140372 CN2022140372W WO2023185120A1 WO 2023185120 A1 WO2023185120 A1 WO 2023185120A1 CN 2022140372 W CN2022140372 W CN 2022140372W WO 2023185120 A1 WO2023185120 A1 WO 2023185120A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
needle
winding
pole
preset
Prior art date
Application number
PCT/CN2022/140372
Other languages
English (en)
French (fr)
Inventor
李峰
许天锋
周明浪
黄振奎
Original Assignee
广东利元亨智能装备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东利元亨智能装备股份有限公司 filed Critical 广东利元亨智能装备股份有限公司
Publication of WO2023185120A1 publication Critical patent/WO2023185120A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Embodiments of the present invention relate to but are not limited to the field of numerical control, and in particular, to a pole-to-ear margin control method, device, controller and storage medium.
  • the main purpose of the embodiments of the present invention is to propose a pole-lug margin control method, device, controller and storage medium that can avoid positioning errors in the production process and improve equipment production excellence and efficiency.
  • embodiments of the present invention provide a method for controlling pole-to-lug margins.
  • the method includes:
  • the interruption signal indicates the detection of the first tab arranged on the material belt
  • the conveying module is stopped, and the material strip is wound by the winding needle module.
  • the method before obtaining the spindle tracking distance data of the needle rolling module, the method includes:
  • a tracking database of the needle rolling module corresponding to the needle setting parameters in the turntable is established according to the needle setting parameters, and the tracking database is used to obtain spindle tracking distance data of the needle rolling module.
  • control of the transport module according to the interruption signal to cause the first pole to move a preset interruption distance includes:
  • the roller feeding module is controlled to increase from the first speed to the second speed according to the interrupt signal, and the first pole is driven to move a preset interruption distance by the roller feeding module running at the second speed.
  • the preset condition includes that the material strip is wound to a preset number of turns during the pre-winding process, or that the needle rolling module reaches a preset number of turns during the pre-winding process. Default rotation angle.
  • the winding process of the material strip through the winding needle module includes:
  • the winding needle module is controlled to drop from the fourth speed to the fifth speed, and the cutting module is controlled to cut the material tape.
  • the method further includes:
  • the inertia ratio parameter value and/or the mechanical rigidity parameter value of the roller feeding module is increased or decreased.
  • the method further includes:
  • the alarm module is controlled to send out alarm information, and the roller feeding module and the needle coiling module are controlled to stop working according to the alarm information.
  • an embodiment of the present invention provides a pole-lug margin control device, including:
  • the first acquisition module is used to acquire an interruption signal through the detection module, where the interruption signal indicates the detection of the first tab arranged on the material belt;
  • a control module configured to control the transport module according to the interruption signal so that the first pole moves a preset interruption distance
  • the second acquisition module is used to control the startup of the needle rolling module and obtain the spindle tracking distance data of the needle rolling module;
  • a determination module configured to determine the coupling cut-in parameter information of the transport module and the electronic cam according to the spindle tracking distance data
  • a coupling module configured to couple the transport module and the electronic cam according to the coupling cut-in parameter information
  • a pre-winding module used to control the conveying module to send the first lug roller into the needle rolling module, and perform pre-winding processing on the material strip through the conveying module and the rolling needle module;
  • a winding module configured to stop the conveying module and wind the material strip through the needle module when the pre-winding parameters obtained according to the pre-winding process meet the preset conditions.
  • it also includes a creation module, which is used to obtain the needle setting parameters; and establish a tracking database of the needle module corresponding to the needle setting parameters in the turntable according to the needle setting parameters, so The tracking database is used to obtain the spindle tracking distance data of the needle rolling module.
  • control module is further configured to control the roller feeding module to increase from the first speed to the second speed according to the interrupt signal, and drive the roller feeding module through the roller feeding module running at the second speed.
  • the first pole moves the preset interruption distance.
  • the winding module is also used to control the winding needle module to increase from the third speed to the fourth speed, so that the winding needle module winds the material strip at the fourth speed; after completion After the material strip is wound, the winding needle module is controlled to drop from the fourth speed to the fifth speed, and the cutting module is controlled to cut the material strip.
  • an adjustment module is also included.
  • the adjustment module is used to obtain the response error information of the roller feeding module and the preset roller feeding module; if the response error information is greater than the preset error requirement, the adjustment module is added to the roller feeding module. Or reduce the inertia ratio parameter value and/or mechanical rigidity parameter value of the roller feeding module.
  • the adjustment module is also used to obtain position fluctuation information obtained by comparing the positioning information of the head electrode with the preset head electrode positioning information; if the position fluctuation information is greater than the preset fluctuation range, control the alarm The module sends out an alarm message, and controls the roller feeding module and the needle rolling module to stop working according to the alarm message.
  • an embodiment of the present invention provides a controller, including: a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the computer program, it implements the following steps: The pole-lug margin control method described in one aspect.
  • a fourth aspect is a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute the ear margin control method described in the first aspect.
  • Embodiments of the present invention include: the pole edge distance control method includes the following steps: obtaining an interruption signal, which represents the detection of the first pole set on the material belt; controlling the transport module according to the interruption signal to move the first pole by the preset interruption distance; control the startup of the needle rolling module, and obtain the spindle tracking distance data of the needle rolling module; determine the coupling cut-in parameter information of the conveyor module and the electronic cam based on the spindle tracking distance data; perform coupling processing on the conveyor module and the electronic cam based on the coupling cut-in parameter information.
  • the first lug roller is fed into the needle module through the conveyor module, and the material strip is pre-winded through the conveyor module and the needle module; when the pre-winding parameters obtained according to the pre-winding process meet the preset conditions , stop the conveying module, and wind the tape through the needle module.
  • the detection module is used to sense the head tab and move the head tab to the interruption distance to eliminate errors caused by the material line or mechanical structure of the conveyor module during the film feeding process, and through the conveyor module.
  • Figure 1 is a schematic diagram of a pole-lug margin control device provided by an embodiment of the present invention
  • Figure 2 is a flow chart of a pole-lug margin control method provided by an embodiment of the present invention.
  • Figure 3 is a positioning detection diagram in the pole-lug margin control method provided by an embodiment of the present invention.
  • Figure 4 is a graph of changes in winding control speed in the pole edge distance control method provided by an embodiment of the present invention.
  • Figure 5 is a flow chart for adjusting parameters according to response error information in the pole-lug margin control method provided by an embodiment of the present invention
  • Figure 6 is a flow chart of the positioning detection of the first pole in the pole margin control method provided by an embodiment of the present invention.
  • Figure 7 is a schematic diagram of a pole-lug margin control device provided by an embodiment of the present invention.
  • Figure 8 is a schematic diagram of a controller provided by an embodiment of the present invention.
  • the pole-lug margin control method includes the following steps: obtaining an interruption signal of the material strip, interrupting the signal Symbolizes the detection of the first tab set on the material belt; controls the conveyor module to move according to the set distance according to the interruption signal to obtain the preset interruption distance of the movement of the first tab; controls the start of the needle rolling module, and obtains the spindle tracking distance of the needle rolling module data; determine the coupling cut-in parameter information of the conveyor module and the preset electronic cam based on the spindle tracking distance data; perform coupling processing on the conveyor module and the electronic cam based on the coupling cut-in parameter information; control the conveyor module to send the first pole lug roller into the needle roll module , and pre-wind the material strip through the conveyor module and the coiling needle module; when the pre-winding parameters obtained according to the pre-winding process meet the preset conditions, the movement of the conveying module is stopped, and the
  • the detection module is used to sense the first pole and the transport module is controlled according to the sensed interruption signal so that the first pole moves the interruption distance, which can reduce the problem of the transport module due to the material line or the interruption distance during the film feeding process.
  • Errors caused by the mechanical structure, and the solution of conveying module and electronic cam coupling can improve efficiency without affecting the stability of the margin, that is, positioning errors in the production process can be avoided, and the production excellence rate and efficiency of the equipment can be improved.
  • Figure 1 is a schematic diagram of the pole edge distance control device provided by an embodiment of the present invention
  • the pole edge distance control device of the embodiment of the present invention includes a detection module 110, a conveying module 120, a needle rolling module 130 and The controller (not shown in the figure) is communicatively connected to the detection module 110, the transport module 120 and the needle rolling module 130 respectively.
  • the transport module 120 is divided into an anode tab transport module and a cathode
  • the tab transport module, the anode tab transport module and the cathode tab transport module all include a roller feeding drive roller 121 and a Czochralski correction clamping roller 122.
  • the roller feeding driving roller 121 in the conveying module 120 is a fixed roller
  • the straight pull correction clamping roller 122 in the conveying module 120 is a moving roller
  • the conveying module 120 is used to send the first pole lug roller on the material belt 140 to the roll.
  • the needle rolling module 130 is used to wind the material strip 140 into an electric core.
  • multiple tab groups are provided on the material strip 140.
  • One tab group includes a first tab, a plurality of middle tabs and a tail tab, where the first tab refers to the one detected in this workflow.
  • the first pole that arrives can be the first pole on the head of the pole piece, the second pole, or the third pole. This embodiment does not specifically limit it.
  • the first pole and The tail tab is used as a cutting mark.
  • the conveying module 120 may be a roller conveying module or other equipment capable of transmitting the material strip to the needle rolling module 130, which is not specifically limited in this embodiment.
  • the detection module 110 may be a photoelectric detection module or other equipment capable of detecting the tabs on the tape, which is not specifically limited in this embodiment.
  • the electrode margin control method of this embodiment can be applied not only to the electrode margin control device, but also to other devices, which is not specifically limited in this embodiment.
  • Figure 2 is a flow chart of a pole-to-lug margin control method provided by an embodiment of the present invention.
  • the control method of the embodiment of the present invention may include, but is not limited to, steps S100, S200, S300, S400 and S500.
  • Step S100 Obtain an interrupt signal through the detection module.
  • the interrupt signal indicates that the first tab set on the material belt is detected.
  • the control detection module starts the positioning detection process, and at the same time the roller feeding module works at the preset first speed. It is understandable that in the process of positioning detection, in order to improve the detection For accuracy, the first speed will not be set too fast.
  • the detection module detects the first pole, the detection module will generate an interrupt signal and send the interrupt signal to the controller. At this time, the controller will receive the interrupt signal.
  • the control detection module starts the positioning detection process, and the roller feeding module operates at a preset first speed. If the interrupt signal can be obtained within the set valid detection window range, the detection window range It is a detection range preset during the positioning detection process, and the preset fixed interruption distance is executed; if there is no interruption signal or the interruption signal is not within the detection window range, it will be judged as an error and the first pole cannot be detected. If there are no tabs, it can be considered that the tape no longer has tabs or there are other problems with the tape settings, then the work will stop and there is no need to continue with the subsequent process.
  • the detection module is affected by its long scan cycle in the PLC control mode.
  • the fixed refresh cycle of the ordinary IO channel signal is long.
  • the scan cycle is extremely short and the response is extremely fast.
  • Improve response time; for trapezoidal tabs, installing the detection module at 1/3 of the height of the tab root can effectively reduce the positioning error caused by the offset of the trapezoidal tabs and the material line.
  • the material line is in the correction setting The exact position of the pole lug in the case.
  • Step S200 Control the transport module according to the interruption signal to move the first pole by a preset interruption distance.
  • the controller after receiving the interrupt signal, the controller will immediately control the roller feeding module according to the interrupt signal, so that the first tab moves the preset interruption distance from the detection position to the end position of the interruption distance.
  • the detection module is disposed behind the roller feeding module in the belt rolling direction.
  • the controller receives the interrupt signal sent by the photoelectric module, it controls the roller feeding module according to the interrupt signal, so that the first pole lug moves from The detection position starts to move by the preset interruption distance.
  • the material belt moves from the rear of the roller feeding module in the belt rolling direction to the front of the roller feeding module in the belt rolling direction.
  • the position of the film feeding is unstable after the tape is cut, and the position of the tab cannot be effectively monitored and closed-loop controlled.
  • by adding a detection module to detect the first tab, and moving a fixed length after the first tab is detected errors caused by the material line or mechanical structure during the film feeding process can be eliminated.
  • the controller can control the roller feeding module to increase from the first speed (positioning speed) to the second speed (interruption speed), and control the roller feeding module to move to the second speed (interruption speed).
  • the roller feeding module running at the second speed drives the first pole to move the preset interruption distance
  • the roller feeding module is controlled to gradually decelerate from the second speed to stop. Increasing the speed between interruption distances can effectively improve efficiency.
  • EXCUTE represents the judgment and positioning processing process
  • INFEED represents the process of adjusting the speed of the roller feeding module.
  • the first speed and the second speed are set according to the actual production time and production process, and are not specifically limited in this embodiment.
  • the first speed can be set to a larger speed; if the interruption distance is longer, the second speed can be set to a larger speed, and the second speed can be set to a larger speed.
  • the speed can be determined according to the interruption distance.
  • the second speed has no necessary relationship with the first speed and can be set according to the distance they need to travel.
  • the controller may not control the speed of the roller feeding module, so that the roller feeding module keeps running at the first speed, driving the first pole to move the preset interruption distance, and the first pole It refers to the pole that triggers this interrupt signal. It can be the first pole on the head of the pole piece, the second pole, or the third pole. This embodiment does not specifically limit it. .
  • interruption distance is set according to actual process requirements, and is not specifically limited in this embodiment.
  • Step S300 control the needle rolling module to start, and obtain the spindle tracking distance data of the needle rolling module.
  • parameters can be set individually for each needle module, then the controller will obtain the needle setting parameters, and then establish a tracking database of the needle module corresponding to the needle setting parameters in the turntable based on the needle setting parameters, where The established tracking database is used to obtain the spindle tracking distance data of the needle rolling module. After completing the interrupt positioning process, control the needle rolling module to start, and then obtain the spindle tracking distance data of the needle rolling module through the tracking database.
  • the needle setting parameters may include needle margin compensation value, cathode (or anode) pre-roller length, cathode (or anode) pre-roller speed, roll feed synchronization ratio, detection starting point, detection terminal, cathode ( or anode) in the positioning mode, the signal is sensed and the data such as the fixed length is not specifically limited in this embodiment, and can be set according to the control requirements.
  • the spindle tracking distance data is the working data obtained during the actual working process by setting the parameters of the winding needle.
  • Step S400 Determine the coupling cut-in parameter information of the transport module and the electronic cam based on the spindle tracking distance data.
  • the coupling cut-in parameter information required for coupling the roll feed module and the electronic cam can be determined based on the spindle tracking distance data, the operation status of the roller feed module, and the electronic cam.
  • the coupling cut-in Parameter information is used to synchronize the speed and position of the conveyor module and the winding needle.
  • the electronic cam is a preset electronic cam, which is used to synchronize the speed and position of the needle rolling module and the roller feeding module.
  • the specific electronic cam curve is set according to the actual situation, and this embodiment does not make any adjustments to it. Specific limitations.
  • Step S500 perform coupling processing on the transport module and the electronic cam according to the coupling cut-in parameter information.
  • the technical solution of using a roller feeding module coupled with an electronic cam is more efficient than the technical solution of parallel film roller feeding, and is not limited by the battery core winding process. Furthermore, although the parallel film roller feeding solution has stable margins , but the X-Ray of the cell head is very poor.
  • the technical solution of the roller feed module coupling electronic cam through the technical solution of roller feed coupling cam synchronization, can improve the efficiency without affecting the margin stability.
  • the technical solution of roller feed coupling cam synchronization is electronic
  • the cam combined with the spindle offset scheme is equivalent to early coupling. For example, this scheme can calculate the set electronic cam trajectory of the roller feed by setting three electronic cam coordinate parameters on the touch screen. When the winding starts, the roller feed motor performs electronic operation at the same time. Cam coupling can achieve the purpose of synchronous coupling.
  • Step S600 the first pole lug roller is sent to the needle rolling module through the conveying module, and the material strip is pre-winded through the conveying module and the rolling needle module.
  • the first pole lug roller is fed into the appropriate position of the needle module through the roller feeding module, and then the material strip is pre-wound through the roller feeding module and the needle module. Processing can make the material tape transition smoothly after entering the needle coiling module, reducing offset problems and improving accuracy.
  • Step S700 when the pre-winding parameters obtained according to the pre-winding process meet the preset conditions, stop the movement of the conveying module, and wind the material strip through the winding needle module.
  • the pre-winding parameters are obtained.
  • the conveying module and the needle module reach speed and position synchronization. After the conveying module stops rolling, the pre-rolling is completed.
  • the winding process is carried out, and then the material strip is subjected to subsequent winding processing through the winding needle module, and finally the target battery core is obtained.
  • the preset conditions include that the material strip is wound to a preset number of turns during the pre-winding process, or that the needle module reaches a preset rotation angle during the pre-winding process.
  • preset number of turns and the preset rotation angle are set according to actual process requirements, and are not specifically limited in this embodiment.
  • the conveying module and the needle module reach speed and position synchronization and then the conveying module stops rolling, completes the pre-winding process, and controls the needle module to start from
  • the third speed (pre-winding speed) is increased to the fourth speed (winding speed), so that the winding needle module winds the material strip at the fourth speed (winding speed).
  • the winding needle is controlled.
  • the module drops from the fourth speed (winding speed) to the fifth speed (cutting speed), and controls the cutting module to cut the material strip. After the cutting is completed, the needle module is controlled to stop.
  • EXCUTE represents the process of the coiling needle module winding the material strip
  • CAMIN represents the coupling process of the conveying module and the electronic cam
  • CAMOUT represents the processing process of adjusting the conveying module and the coiling module respectively after the coupling process of the conveying module and the electronic cam is completed.
  • the third speed, the fourth speed and the fifth speed are set according to the actual production time and production process, and are not specifically limited in this embodiment.
  • the control detection module After completing the production of the previous battery cell, the control detection module starts the positioning detection process, and at the same time, the roller feeding module works at the preset first speed.
  • the detection module detects the first tab, the detection module An interrupt signal will be generated and sent to the controller.
  • the controller will receive the interrupt signal, and then the controller will control the roller feeding module according to the interrupt signal, so that the first pole starts to move from the detection position by the preset Interrupt the distance, control the roller feeding module to stop, then control the rolling needle module to start, and then obtain the spindle tracking distance data of the rolling needle module through the tracking database, and determine the coupling cut-in parameter information of the rolling feeding module and the electronic cam based on the spindle tracking distance data, and then Couple the roller feed module and the electronic cam according to the coupling cut-in parameter information.
  • the first pole lug roller is fed to the appropriate position of the needle module through the roller feed module, and then through The roller feeding module and the winding needle module perform pre-winding processing on the material strip.
  • the pre-winding parameters are obtained.
  • the roller feeding module and the rolling needle reach the speed After synchronizing with the position, the roller feeding module stops the roller feeding, completes the pre-winding process, and then performs subsequent winding processing on the material strip through the needle module, and finally obtains the target battery core.
  • the error caused by the material line or mechanical structure of the roller feeding module during the film feeding process can be eliminated by sensing the first pole lug through the detection module and causing the head lug movement interruption distance, and through the roller
  • the solution of feeding module and electronic cam coupling can improve efficiency without affecting margin stability, that is, it can avoid positioning errors in the production process and improve equipment production excellence and efficiency.
  • FIG. 5 is a flow chart of adjusting parameters according to response error information in a pole-lug margin control method provided by an embodiment of the present invention.
  • the pole margin control method also includes but is not limited to step S510 and step S520.
  • Step S510 obtain the response error information of the roller feeding module and the preset roller feeding module
  • Step S520 if the response error information is greater than the preset error requirement, increase or decrease the inertia ratio parameter value and/or the mechanical rigidity parameter value of the roller feeding module for the roller feeding module.
  • the synchronization accuracy of the roller feeding module is easily lost, and it is easily affected by the relationship between the magnitude of the friction force. , causing the originally positioned position to shift, thus affecting the stability of the entire battery cell electrode edge distance. Therefore, on the premise that the roller feeding module does not vibrate or scream, the inertia ratio parameter value and/or the mechanical rigidity parameter value of the servo can be appropriately increased to improve the ability to resist external force interference.
  • FIG. 6 is a flow chart of positioning detection of the first pole in the pole margin control method provided by one embodiment of the present invention.
  • the pole margin control method also includes but is not limited to step S610 and step S620.
  • Step S610 Obtain the position fluctuation information obtained by comparing the positioning information of the first electrode with the preset positioning information of the first electrode;
  • Step S620 if the position fluctuation information is greater than the preset fluctuation range, the alarm module is controlled to send out alarm information, and the roller feeding module and the needle coiling module are controlled to stop working according to the alarm information.
  • the head electrode positioning error fluctuation program is used to monitor the position fluctuation information obtained by comparing the head electrode positioning information with the preset head electrode positioning information each time.
  • the alarm module is controlled in a timely manner to issue an alarm message, and the roller feeding module and needle rolling module are controlled to stop working based on the alarm message to prompt the user to check the incoming materials or modify and adjust the parameters.
  • pole-to-lug margin control device 700 which includes:
  • the first acquisition module 710 is used to acquire an interrupt signal through the detection module.
  • the interrupt signal represents the detection of the first tab set on the material belt;
  • the control module 720 is used to control the transport module according to the interruption signal so that the first pole moves a preset interruption distance
  • the second acquisition module 730 is used to control the startup of the needle rolling module and obtain the spindle tracking distance data of the needle rolling module;
  • Determining module 740 used to determine the coupling cut-in parameter information of the transport module and the electronic cam based on the spindle tracking distance data
  • the coupling module 750 is used to couple the transport module and the electronic cam according to the coupling cut-in parameter information
  • the pre-winding module 760 is used to control the conveying module to send the first lug roller into the needle module, and pre-wind the material strip through the conveying module and the needle module;
  • the winding module 770 is used to stop the conveying module and wind the material strip through the winding needle module when the pre-winding parameters obtained according to the pre-winding process meet the preset conditions.
  • it also includes a creation module, which is used to obtain the rolling needle setting parameters; establish a tracking database of the rolling needle module corresponding to the rolling needle setting parameters in the turntable according to the rolling needle setting parameters, and the tracking database is used to obtain the rolling needle
  • the module s spindle tracking distance data.
  • control module 720 is also used to control the roller feeding module to increase from the first speed to the second speed according to the interrupt signal, and drive the first pole to move a preset interruption distance through the roller feeding module running at the second speed. .
  • the winding module 770 is also used to control the winding needle module to increase from the third speed to the fourth speed, so that the winding needle module winds the material strip at the fourth speed; after completing the winding of the material strip After the winding process, the needle rolling module is controlled to drop from the fourth speed to the fifth speed, and the cutting module is controlled to cut the material strip.
  • an adjustment module is also included.
  • the adjustment module is used to obtain the response error information of the roller feeding module and the preset roller feeding module; if the response error information is greater than the preset error requirement, increase or decrease the roller feeding module.
  • the adjustment module is also used to obtain position fluctuation information obtained by comparing the positioning information of the head electrode with the preset positioning information of the head electrode; if the position fluctuation information is greater than the preset fluctuation range, the alarm module is controlled to issue an alarm message. , and control the roller feeding module and needle rolling module to stop working according to the alarm information.
  • one embodiment of the present invention provides a controller 800 , which includes a memory 820 , a processor 810 , and a computer program stored on the memory 820 and executable on the processor 810 .
  • the processor 810 and the memory 820 may be connected through a bus or other means.
  • the non-transient software programs and instructions required to implement the pole edge distance control method on the controller 180 side of the above embodiment are stored in the memory 820.
  • the pole edge distance control of the above embodiment is performed.
  • the method for example, executes the above-described method steps S100 to S700 in FIG. 2 , method steps S410 to S420 in FIG. 4 , and method steps S510 to S520 in FIG. 5 .
  • one embodiment of the present invention also provides a computer-readable storage medium, which stores computer-executable instructions.
  • the computer-executable instructions are used to execute the pole-ear margin control method of the above-mentioned controller, , for example, perform the above-described method steps S100 to S700 in Figure 2, method steps S410 to S420 in Figure 4, and method steps S510 to S520 in Figure 5.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically includes computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Abstract

本发明实施例提供了一种极耳边距控制方法、装置、控制器以及存储介质,该方法包括以下步骤:获取中断信号;根据中断信号控制输送模块使得首极耳移动预设的中断距离;控制卷针模块启动并获取卷针模块的主轴追踪距离数据;根据主轴追踪距离数据确定输送模块与电子凸轮的耦合切入参数信息;根据耦合切入参数信息对输送模块和电子凸轮进行耦合处理;通过输送模块将首极耳辊送入卷针模块并通过输送模块和卷针模块对料带进行预卷绕处理;当根据预卷绕处理所获取的预卷绕参数满足预设条件时,停止输送模块,并通过卷针模块对料带进行卷绕处理。在本实施例的技术方案中,能够避免生产过程中的定位误差,且提高设备生产优率和效率。

Description

极耳边距控制方法、装置、控制器以及存储介质 技术领域
本发明实施例涉及但不限于数控领域,尤其涉及一种极耳边距控制方法、装置、控制器以及存储介质。
背景技术
目前卷绕机在运行中时,会受到多方面因素的共同影响,例如光电位置与响应时间、电机响应与不同步、极耳区间来料不稳定、辊送压力和摩擦系数不匹配等,这些因素都会导致极耳边距的稳定性受到影响,直接或者间接导致卷绕机在生产过程中出现偶发性或者批量性电芯品质不良,从而降低设备生产优率。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例的主要目的在于提出一种极耳边距控制方法、装置、控制器以及存储介质,能够避免生产过程中的定位误差,且提高设备生产优率和效率。
第一方面,本发明实施例提供了一种极耳边距控制方法,所述方法包括:
通过检测模块获取中断信号,所述中断信号表征检测到设置在料带上的首极耳;
根据所述中断信号控制输送模块使得所述首极耳移动预设的中断距离;
控制卷针模块启动,并获取所述卷针模块的主轴追踪距离数据;
根据所述主轴追踪距离数据确定所述输送模块与电子凸轮的耦合切入参数信息;
根据所述耦合切入参数信息对所述输送模块和所述电子凸轮进行耦合处理;
控制所述输送模块将所述首极耳辊送入所述卷针模块,并通过所述输送模块和所述卷针模块对所述料带进行预卷绕处理;
当根据所述预卷绕处理所获取的预卷绕参数满足预设条件时,停止所述输送模块,并通过所述卷针模块对所述料带进行卷绕处理。
在一实施例中,在所述获取所述卷针模块的主轴追踪距离数据之前,所述方法包括:
获取卷针设置参数;
根据所述卷针设置参数建立转盘中的所述卷针设置参数对应的所述卷针模块的追踪数据库,所述追踪数据库用于获取所述卷针模块的主轴追踪距离数据。
在一实施例中,所述根据所述中断信号控制输送模块使得所述首极耳移动预设的中断距离,包括:
根据所述中断信号控制所述辊送模块从第一速度提高至第二速度,并通过以所述第二速度运行的所述辊送模块带动所述首极耳移动预设的中断距离。
在一实施例中,所述预设条件包括在所述预卷绕处理的过程中料带卷绕达到预设圈数,或者,在所述预卷绕处理的过程中所述卷针模块达到预设旋转角度。
在一实施例中,所述通过所述卷针模块对所述料带进行卷绕处理,包括:
控制所述卷针模块从第三速度提高至第四速度,使得所述卷针模块以第四速度对所述料带进行卷绕处理;
在完成对所述料带的卷绕处理之后,控制所述卷针模块从第四速度下降至第五速度,并控制裁切模块对所述料带进行裁切处理。
在一实施例中,所述控制裁切模块对所述料带进行裁切处理的同时,所述方法还包括:
获取所述辊送模块与预设辊送模块的响应误差信息;
若响应误差信息大于预设误差要求时,对所述辊送模块增加或减少所述辊送模块的惯量比参数值和/或机械刚性参数值。
在一实施例中,所述控制裁切模块对所述料带进行裁切处理的同时,所述方法还包括:
获取所述首极耳的定位信息与预设首极耳定位信息所比较得到的位置波动信息;
若所述位置波动信息大于预设波动范围,控制报警模块发出报警信息,并根据所述报警信息控制所述辊送模块和所述卷针模块停止工作。
第二方面,本发明实施例提供了一种极耳边距控制装置,包括:
第一获取模块,用于通过检测模块获取中断信号,所述中断信号表征检测到设置在料带上的首极耳;
控制模块,用于根据所述中断信号控制输送模块使得所述首极耳移动预设的中断距离;
第二获取模块,用于控制卷针模块启动,并获取所述卷针模块的主轴追踪距离数据;
确定模块,用于根据所述主轴追踪距离数据确定所述输送模块与电子凸轮的耦合切入参数信息;
耦合模块,用于根据所述耦合切入参数信息对所述输送模块和所述电子凸轮进行耦合处理;
预卷绕模块,用于控制所述输送模块将所述首极耳辊送入所述卷针模块,并通过所述输送模块和所述卷针模块对所述料带进行预卷绕处理;
卷绕模块,用于当根据所述预卷绕处理所获取的预卷绕参数满足预设条件时,停止所述输送模块,并通过所述卷针模块对所述料带进行卷绕处理。
在一实施例中,还包括建立模块,建立模块用于获取卷针设置参数;根据所述卷针设置参数建立转盘中的所述卷针设置参数对应的所述卷针模块的追踪数据库,所述追踪数据库用于获取所述卷针模块的主轴追踪距离数据。
在一实施例中,控制模块还用于根据所述中断信号控制所述辊送模块从第一速度提高至第二速度,并通过以所述第二速度运行的所述辊送模块带动所述首极耳移动预设的中断距离。
在一实施例中,卷绕模块还用于控制所述卷针模块从第三速度提高至第四速度,使得所述卷针模块以第四速度对所述料带进行卷绕处理;在完成对所述料带的卷绕处理之后,控制所述卷针模块从第四速度下降至第五速度,并控制裁切模块对所述料带进行裁切处理。
在一实施例中,还包括调整模块,调整模块用于获取所述辊送模块与预设辊送模块的响应误差信息;若响应误差信息大于预设误差要求时,对所述辊送模块增加或减少所述辊送模块的惯量比参数值和/或机械刚性参数值。
在一实施例中,调整模块还用于获取所述首极耳的定位信息与预设首极耳定位信息所比较得到的位置波动信息;若所述位置波动信息大于预设波动范围,控制报警模块发出报警信息,并根据所述报警信息控制所述辊送模块和所述卷针模块停止工作。
第三方面,本发明实施例提供了一种控制器,包括:存储器、处理器及存储 在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面所述的极耳边距控制方法。
第四方面,一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行第一方面所述的极耳边距控制方法。
本发明实施例包括:极耳边距控制方法包括以下步骤:获取中断信号,中断信号表征检测到设置在料带上的首极耳;根据中断信号控制输送模块使得首极耳移动预设的中断距离;控制卷针模块启动,并获取卷针模块的主轴追踪距离数据;根据主轴追踪距离数据确定输送模块与电子凸轮的耦合切入参数信息;根据耦合切入参数信息对输送模块和电子凸轮进行耦合处理;通过输送模块将首极耳辊送入卷针模块,并通过输送模块和卷针模块对料带进行预卷绕处理;当根据预卷绕处理所获取的预卷绕参数满足预设条件时,停止输送模块,并通过卷针模块对料带进行卷绕处理。在本实施例的技术方案中,通过检测模块对首极耳进行感应并使得首极耳移动中断距离能够消除输送模块在送片过程中因料线或者机械结构所引起的误差,并且通过输送模块和电子凸轮耦合的方案能够在不影响边距稳定性的情况下提高效率,即能够避免生产过程中的定位误差,且提高设备生产优率和效率。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
图1是本发明一个实施例提供的极耳边距控制设备的示意图;
图2是本发明一个实施例提供的极耳边距控制方法的流程图;
图3是本发明一个实施例提供的极耳边距控制方法中定位检测图;
图4是本发明一个实施例提供的极耳边距控制方法中卷绕控制速度变化图;
图5是本发明一个实施例提供的极耳边距控制方法中根据响应误差信息调整参数的流程图;
图6是本发明一个实施例提供的极耳边距控制方法中的首极耳的定位检测的流程图;
图7是本发明一个实施例提供的极耳边距控制装置的示意图;
图8是本发明一个实施例提供的控制器的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书、权利要求书或上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
目前卷绕机在运行中时,会受到多方面因素的共同影响,例如光电位置与响应时间、电机响应与不同步、极耳区间来料不稳定、辊送压力和摩擦系数不匹配等,这些因素都会导致极耳边距的稳定性受到影响,直接或者间接导致卷绕机在生产过程中出现偶发性或者批量性电芯品质不良,从而降低设备生产优率。
为解决上述存在的问题,本发明实施例提供了一种极耳边距控制方法、装置、控制器以及存储介质,该极耳边距控制方法包括以下步骤:获取料带的中断信号,中断信号表征检测到设置在料带上的首极耳;根据中断信号控制输送模块按设定距离运动获得首极耳移动的预设中断距离;控制卷针模块启动,并获取卷针模块的主轴追踪距离数据;根据主轴追踪距离数据确定输送模块与预设置的电子凸轮的耦合切入参数信息;根据耦合切入参数信息对输送模块和电子凸轮进行耦合处理;控制输送模块将首极耳辊送入卷针模块,并通过输送模块和卷针模块对料带进行预卷绕处理;当根据预卷绕处理所获取的预卷绕参数满足预设条件时,停止输送模块运动,并控制卷针模块对料带进行卷绕处理。在本实施例的技术方案中,通过检测模块对首极耳进行感应并根据所感应到的中断信号控制输送模块使得首极耳移动中断距离,能减少输送模块在送片过程中因料线或者机械结构所引起的误差,并且通过输送模块和电子凸轮耦合的方案能够在不影响边距稳定性的情况下提高效率,即能够避免生产过程中的定位误差,且提高设备生产优率和效率。
下面结合附图,对本发明实施例作进一步阐述。
如图1所示,图1是本发明一个实施例提供的极耳边距控制设备的示意图; 本发明实施例的极耳边距控制设备包括检测模块110、输送模块120、卷针模块130和控制器(图中未示出),控制器(图中未示出)分别与检测模块110、输送模块120和卷针模块130通信连接,其中,输送模块120分为阳极极耳输送模块和阴极极耳输送模块,阳极极耳输送模块和阴极极耳输送模块均包括辊送驱动辊121和直拉纠偏夹紧辊122。其中,输送模块120中的辊送驱动辊121为定辊,输送模块120中的直拉纠偏夹紧辊122为动辊,输送模块120用于将料带140上的首极耳辊送至卷针模块130上,卷针模块130用于将料带140卷绕成电芯。可以理解的,在料带140上设置有多个极耳组,一个极耳组包括首极耳、多个中间极耳和尾极耳,其中首极耳指的是在本工作流程中所检测到的第一极耳,可以是极片头部的第一个极耳,可以是第二个极耳,也可以是第三个极耳,本实施例对其不作具体限定,首极耳和尾极耳用于作为裁切的标识。
需要说明的是,输送模块120可以是辊送模块,也可以是其他能够实现将料带进行传输至卷针模块130的设备,本实施例对其不作具体限定。
需要说明的是,检测模块110可以是光电检测模块,也可以是其他能够实现检测到料带上的极耳的设备,本实施例对其不作具体限定。
可以理解的,本实施例的极耳边距控制方法除了可以应用于极耳边距控制设备中,还可以应用于其他设备中,本实施例对其不作具体限定。
基于上述于极耳边距控制设备,下面提出本发明的极耳边距控制方法的各个实施例。
参照图2,图2为本发明一个实施例提供的极耳边距控制方法的流程图,本发明实施例的控制方法可以包括但不限于包括步骤S100、步骤S200、步骤S300、步骤S400和步骤S500。
步骤S100,通过检测模块获取中断信号,中断信号表征检测到设置在料带上的首极耳。
具体地,在完成上一个电芯完成制作后,控制检测模块启动定位检测处理,同时辊送模块以预设的第一速度进行工作,可以理解的是,在定位检测的过程中为了能够提高检测的精确度,第一速度不会设定太快。当检测模块检测到首极耳时,检测模块会生成中断信号,并向控制器发送中断信号,此时,控制器会接收到中断信号。
在一实施例中,控制检测模块启动定位检测处理,同时辊送模块以预设的第 一速度进行工作,如果在设定的有效的检测窗口范围内能够获取中断信号后,其中,检测窗口范围为在定位检测处理的过程中所预设的一个检测范围,执行设定的预设的固定的中断距离;若无中断信号或中断信号不在检测窗口范围内则判定为错误,无法检测到首极耳,那么可以认为此料带已经没有极耳或者料带设置上存在其他问题,那么则停止工作,无需要继续执行后续流程。
在一实施例中,检测模块在PLC控制模式受到其扫描周期长的影响,普通IO通道信号固定刷新周期较长,而采用高速探针的驱动器控制模式,其扫描周期极短,响应极快可以提升响应时间;针对梯形极耳,将检测模块安装在极耳根部高度1/3处可有效减小因为梯形极耳与料线偏移所造成的定位误差,其中,料线为在纠偏设定的准确的情况下极耳的位置。
步骤S200,根据中断信号控制输送模块使得首极耳移动预设的中断距离。
具体地,控制器在接收到中断信号之后,会立即根据中断信号对辊送模块进行控制,使得首极耳从检测位置开始移动预设的中断距离,达到中断距离结束位置。
在一实施例中,检测模块设置在辊送模块的料带辊送方向的后方,当控制器接收到光电模块发出的中断信号之后,根据中断信号对辊送模块进行控制,使得首极耳从检测位置开始移动预设的中断距离,当首极耳移动中断距离之后,料带从辊送模块的料带辊送方向的后方移动至辊送模块的料带辊送方向的前方。相比通过直接走绝对定位,在料带裁切后送片位置不稳定,对极耳位置无法进行有效监控与闭环控制。而本实施例中,通过增加检测模块检测首极耳,检测到首极耳后走定长可以消除送片过程中因料线或者机械结构所引起的误差。
在一实施例中,参照图3,在接收到中断信号之后,控制器可以控制辊送模块从第一速度(定位速度)提升至第二速度(中断速度),并通过以第二速度(中断速度)运行的辊送模块带动首极耳移动预设的中断距离后,控制辊送模块从第二速度逐渐减速至停止,提高中断距离间的速度能够有效提高效率。其中,EXCUTE表征断定位处理过程,INFEED表征对辊送模块的速度进行调整的过程。
需要说明的是,第一速度和第二速度根据实际生产时间和生产工艺等方面进行设置,本实施例对其不作具体限定。例如,以第一速度去找中断信号时,如果检测的距离较长,可以将一速度设置较大的速度;如果中断距离较长,则可以将 第二速度设置为更大的速度,第二速度是可以根据中断距离而定的,第二速度与第一速度没有必然的关系,可以根据各自需要走的距离进行设定。
在一是实施例中,在接收到中断信号之后,控制器可以不对辊送模块的速度进行控制,使得辊送模块保持第一速度运行,带动首极耳移动预设的中断距离,首极耳指的是触发本次中断信号的极耳,可以是极片头部的第一个极耳,可以是第二个极耳,也可以是第三个极耳,本实施例对其不作具体限定。
需要说明的是,中断距离根据实际工艺要求进行设置,本实施例对其不作具体限定。
步骤S300,控制卷针模块启动,并获取卷针模块的主轴追踪距离数据。
具体地,可以对每根卷针模块进行单独设置参数,那么控制器会获取到卷针设置参数,然后根据卷针设置参数建立转盘中的卷针设置参数对应的卷针模块的追踪数据库,其中所建立的追踪数据库用于获取卷针模块的主轴追踪距离数据。在完成中断定位处理后,控制卷针模块启动,然后通过追踪数据库获取卷针模块的主轴追踪距离数据。
需要说明的是,卷针设置参数可以是包括卷针边距补偿值、阴极(或者阳极)预辊长度、阴极(或者阳极)预辊速度、辊送同步比率、检测起点、检测终端、阴极(或者阳极)在定位模式下感应到信号走定长等数据,本实施例对其不作具体限定,可以根据控制的要求进行设置。
需要说明的是,主轴追踪距离数据为卷针设置参数所得到的在实际工作过程中工作数据。
步骤S400,根据主轴追踪距离数据确定输送模块与电子凸轮的耦合切入参数信息。
具体地,获取卷针模块的主轴追踪距离数据后,可以根据主轴追踪距离数据和辊送模块的运行情况以及电子凸轮确定辊送模块与电子凸轮进行耦合所需要的耦合切入参数信息,该耦合切入参数信息用于使得输送模块和卷针达到速度和位置进行同步。
需要说明的是,电子凸轮是预设定的电子凸轮,该电子凸轮用于同步卷针模块和辊送模块的速度和位置,具体的电子凸轮的曲线根据实际情况设置,本实施例对其不作具体限定。
步骤S500,根据耦合切入参数信息对输送模块和电子凸轮进行耦合处理。
具体地,采用辊送模块耦合电子凸轮的技术方案,相比于并膜辊送的技术方案效率更高,而且不受电芯卷绕工艺限制,再而并膜辊送的方案虽然边距稳定,但是电芯头部X-Ray极差。辊送模块耦合电子凸轮的技术方案,通过辊送耦合凸轮同步的技术方案,可在不影响边距稳定性的情况下提高效率与头部X-Ray,辊送耦合凸轮同步的技术方案是电子凸轮结合主轴偏置方案,相当于提前耦合,例如:该方案可以通过在触摸屏设置3个电子凸轮坐标参数,计算出设定好的辊送电子凸轮轨迹,在卷绕启动同时辊送电机进行电子凸轮耦合,可以达到同步耦合的目的。
步骤S600,通过输送模块将首极耳辊送入卷针模块,并通过输送模块和卷针模块对料带进行预卷绕处理。
具体地,在完成辊送模块和电子凸轮的耦合处理之后,通过辊送模块将首极耳辊送入卷针模块的合适位置,然后通过辊送模块和卷针模块对料带进行预卷绕处理,能够使得料带在进入卷针模块后能够平稳过渡,减少出现偏移的问题,提高准确度。
步骤S700,当根据预卷绕处理所获取的预卷绕参数满足预设条件时,停止输送模块运动,并通过卷针模块对料带进行卷绕处理。
具体地,在预卷绕处理的过程中,获取预卷绕参数,当预卷绕参数大于预设条件时,输送模块和卷针模块达到速度和位置同步后输送模块停止辊送,完成预卷绕处理,然后通过卷针模块对料带进行后续的卷绕处理,最后得到目标电芯。
需要说明的是,预设条件包括在预卷绕处理的过程中料带卷绕达到预设圈数,或者,在预卷绕处理的过程中卷针模块达到预设旋转角度。
需要说明的是,预设圈数和预设旋转角度根据实际工艺要求进行设置,本实施例对其不作具体限定。
在一实施例中,参照图4,当预卷绕参数大于预设条件时,输送模块和卷针模块达到速度和位置同步后输送模块停止辊送,完成预卷绕处理,控制卷针模块从第三速度(预卷速度)提高至第四速度(卷绕速度),使得卷针模块以第四速度(卷绕速度)对料带进行卷绕处理,在完成卷绕处理后,控制卷针模块从第四速度(卷绕速度)下降至第五速度(裁切速度),并控制裁切模块对料带进行裁切处理,裁切处理完之后控制卷针模块停止。其中,EXCUTE表征卷针模块卷绕料带的过程,CAMIN表征输送模块和电子凸轮进行耦合处理的过程,CAMOUT 表征输送模块和电子凸轮进行耦合处理完成之后分别调整输送模块和卷针模块的处理过程。
需要说明的是,第三速度、第四速度和第五速度根据实际生产时间和生产工艺等方面进行设置,本实施例对其不作具体限定。
在一实施例中,在完成上一个电芯完成制作后,控制检测模块启动定位检测处理,同时辊送模块以预设的第一速度进行工作,当检测模块检测到首极耳时,检测模块会生成中断信号,并向控制器发送中断信号,此时,控制器会接收到中断信号,然后控制器会根据中断信号对辊送模块进行控制,使得首极耳从检测位置开始移动预设的中断距离,控制辊送模块停止,接着控制卷针模块启动,然后通过追踪数据库获取卷针模块的主轴追踪距离数据,并根据主轴追踪距离数据确定辊送模块与电子凸轮的耦合切入参数信息,然后根据耦合切入参数信息对辊送模块和电子凸轮进行耦合处理,在完成辊送模块和电子凸轮的耦合处理完毕之后,通过辊送模块将首极耳辊送入卷针模块的合适位置,然后通过辊送模块和卷针模块对料带进行预卷绕处理,在预卷绕处理的过程中,获取预卷绕参数,当预卷绕参数大于预设条件时,辊送模块和卷针达到速度和位置同步后辊送模块停止辊送,完成预卷绕处理,然后通过卷针模块对料带进行后续的卷绕处理,最后得到目标电芯。在本实施例的技术方案中,通过检测模块对首极耳进行感应并使得首极耳移动中断距离能够消除辊送模块在送片过程中因料线或者机械结构所引起的误差,并且通过辊送模块和电子凸轮耦合的方案能够在不影响边距稳定性的情况下提高效率,即能够避免生产过程中的定位误差,且提高设备生产优率和效率。
在一实施例中,参照图5,图5为本发明一个实施例提供的极耳边距控制方法中的根据响应误差信息调整参数的流程图。在步骤S700之后,极耳边距控制方法还包括但不限于步骤S510和步骤S520。
步骤S510,获取辊送模块与预设辊送模块的响应误差信息;
步骤S520,若响应误差信息大于预设误差要求时,对辊送模块增加或减少辊送模块的惯量比参数值和/或机械刚性参数值。
在一实施例中,当定位检测处理完成时如果辊送模块的响应达不到要求(正常需要将响应降低到10ms以内),容易丢失辊送模块同步精度,而且容易受到摩擦力大小关系的影响,导致原先定位好的位置发生偏移,从而影响整个电芯极耳 边距的稳定性。所以在辊送模块不震荡、不尖叫的前提下,可适当加大伺服的惯量比参数值和/或机械刚性参数值,以提高抗外界力干扰的能力。
在一实施例中,参照图6,图6为本发明一个实施例提供的极耳边距控制方法中的首极耳的定位检测的流程图。在步骤S700之后,极耳边距控制方法还包括但不限于步骤S610和步骤S620。
步骤S610,获取首极耳的定位信息与预设首极耳定位信息所比较得到的位置波动信息;
步骤S620,若位置波动信息大于预设波动范围,控制报警模块发出报警信息,并根据报警信息控制辊送模块和卷针模块停止工作。
在一实施例中,通过首极耳定位误差波动程序,监控每次首极耳的定位信息与预设首极耳定位信息所比较得到的位置波动信息的情况,当首极耳的位置波动信息连续或者波动较大时,及时控制报警模块发出报警信息,并根据报警信息控制辊送模块和卷针模块停止工作,以提示用户检查来料或者对参数进行修改调节。
另外,参照图7,本发明的一个实施例还提供了一种极耳边距控制装置700,包括:
第一获取模块710,用于通过检测模块获取中断信号,中断信号表征检测到设置在料带上的首极耳;
控制模块720,用于根据中断信号控制输送模块使得首极耳移动预设的中断距离;
第二获取模块730,用于控制卷针模块启动,并获取卷针模块的主轴追踪距离数据;
确定模块740,用于根据主轴追踪距离数据确定输送模块与电子凸轮的耦合切入参数信息;
耦合模块750,用于根据耦合切入参数信息对输送模块和电子凸轮进行耦合处理;
预卷绕模块760,用于控制输送模块将首极耳辊送入卷针模块,并通过输送模块和卷针模块对料带进行预卷绕处理;
卷绕模块770,用于当根据预卷绕处理所获取的预卷绕参数满足预设条件时,停止输送模块,并通过卷针模块对料带进行卷绕处理。
在一实施例中,还包括建立模块,建立模块用于获取卷针设置参数;根据卷针设置参数建立转盘中的卷针设置参数对应的卷针模块的追踪数据库,追踪数据库用于获取卷针模块的主轴追踪距离数据。
在一实施例中,控制模块720还用于根据中断信号控制辊送模块从第一速度提高至第二速度,并通过以第二速度运行的辊送模块带动首极耳移动预设的中断距离。
在一实施例中,卷绕模块770还用于控制卷针模块从第三速度提高至第四速度,使得卷针模块以第四速度对料带进行卷绕处理;在完成对料带的卷绕处理之后,控制卷针模块从第四速度下降至第五速度,并控制裁切模块对料带进行裁切处理。
在一实施例中,还包括调整模块,调整模块用于获取辊送模块与预设辊送模块的响应误差信息;若响应误差信息大于预设误差要求时,对辊送模块增加或减少辊送模块的惯量比参数值和/或机械刚性参数值。
在一实施例中,调整模块还用于获取首极耳的定位信息与预设首极耳定位信息所比较得到的位置波动信息;若位置波动信息大于预设波动范围,控制报警模块发出报警信息,并根据报警信息控制辊送模块和卷针模块停止工作。
需要说明的是,上述极耳边距控制装置的各个实施例与极耳边距控制方法的实施例中所使用的技术手段、解决的技术问题以及达到的技术效果一致,此处不作具体赘述,详见极耳边距控制方法的实施例。
另外,参照图8,本发明的一个实施例提供了一种控制器800,该控制器800包括:存储器820、处理器810及存储在存储器820上并可在处理器810上运行的计算机程序。
处理器810和存储器820可以通过总线或者其他方式连接。
实现上述实施例的控制器180侧的极耳边距控制方法所需的非暂态软件程序以及指令存储在存储器820中,当被处理器810执行时,执行上述实施例的极耳边距控制方法,例如,执行以上描述的图2中的方法步骤S100至S700、图4中的方法步骤S410至S420和图5中的方法步骤S510至S520。
此外,本发明的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,当计算机可执行指令用于执行上述控制器的极耳边距控制方法,例如,执行以上描述的图2中的方法步骤S100至S700、 图4中的方法步骤S410至S420和图5中的方法步骤S510至S520。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包括计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本发明的较佳实施进行了具体说明,但本发明并不局限于上述实施方式,熟悉本领域的技术人员在不违背本发明精神的共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本发明权利要求所限定的范围内。

Claims (10)

  1. 一种极耳边距控制方法,所述方法包括:
    通过检测模块获取中断信号,所述中断信号表征检测到设置在料带上的首极耳;
    根据所述中断信号控制输送模块使得所述首极耳移动预设的中断距离;
    控制卷针模块启动,并获取所述卷针模块的主轴追踪距离数据;
    根据所述主轴追踪距离数据确定所述输送模块与电子凸轮的耦合切入参数信息;
    根据所述耦合切入参数信息对所述输送模块和所述电子凸轮进行耦合处理;
    控制所述输送模块将所述首极耳辊送入所述卷针模块,并通过所述输送模块和所述卷针模块对所述料带进行预卷绕处理;
    当根据所述预卷绕处理所获取的预卷绕参数满足预设条件时,停止所述输送模块,并通过所述卷针模块对所述料带进行卷绕处理;
    在所述获取所述卷针模块的主轴追踪距离数据之前,所述方法包括:
    获取卷针设置参数;
    根据所述卷针设置参数建立转盘中的所述卷针设置参数对应的所述卷针模块的追踪数据库,所述追踪数据库用于获取所述卷针模块的主轴追踪距离数据。
  2. 根据权利要求1所述的极耳边距控制方法,其特征在于,所述输送模块为辊送模块,所述根据所述中断信号控制输送模块使得所述首极耳移动预设的中断距离,包括:
    根据所述中断信号控制所述辊送模块从第一速度提高至第二速度,并通过以所述第二速度运行的所述辊送模块带动所述首极耳移动预设的中断距离。
  3. 根据权利要求1所述的极耳边距控制方法,其特征在于,所述预设条件包括在所述预卷绕处理的过程中料带卷绕达到预设圈数,或者,在所述预卷绕处理的过程中所述卷针模块达到预设旋转角度。
  4. 根据权利要求1所述的极耳边距控制方法,其特征在于,所述通过所述卷针模块对所述料带进行卷绕处理,包括:
    控制所述卷针模块从第三速度提高至第四速度,使得所述卷针模块以第四速度对所述料带进行卷绕处理。
  5. 根据权利要求4所述的极耳边距控制方法,其特征在于,在所述通过所 述卷针模块对所述料带进行卷绕处理之后,所述方法还包括:
    控制所述卷针模块从第四速度下降至第五速度,并控制裁切模块对所述料带进行裁切处理。
  6. 根据权利要求5所述的极耳边距控制方法,其特征在于,所述输送模块为辊送模块,所述方法还包括:
    获取所述辊送模块与预设辊送模块的响应误差信息;
    若响应误差信息大于预设误差要求时,对所述辊送模块增加或减少所述辊送模块的惯量比参数值和/或机械刚性参数值。
  7. 根据权利要求6所述的极耳边距控制方法,其特征在于,所述方法还包括:
    获取所述首极耳的定位信息与预设首极耳定位信息所比较得到的位置波动信息;
    若所述位置波动信息大于预设波动范围,控制报警模块发出报警信息,并根据所述报警信息控制所述辊送模块和所述卷针模块停止工作。
  8. 一种极耳边距控制装置,其特征在于,包括:
    第一获取模块,用于通过检测模块获取中断信号,所述中断信号表征检测到设置在料带上的首极耳;
    控制模块,用于根据所述中断信号控制输送模块使得所述首极耳移动预设的中断距离;
    第二获取模块,用于控制卷针模块启动,并获取所述卷针模块的主轴追踪距离数据;
    确定模块,用于根据所述主轴追踪距离数据确定所述输送模块与电子凸轮的耦合切入参数信息;
    耦合模块,用于根据所述耦合切入参数信息对所述输送模块和所述电子凸轮进行耦合处理;
    预卷绕模块,用于控制所述输送模块将所述首极耳辊送入所述卷针模块,并通过所述输送模块和所述卷针模块对所述料带进行预卷绕处理;
    卷绕模块,用于当根据所述预卷绕处理所获取的预卷绕参数满足预设条件时,停止所述输送模块,并通过所述卷针模块对所述料带进行卷绕处理;
    建立模块,用于获取卷针设置参数,根据所述卷针设置参数建立转盘中的所 述卷针设置参数对应的所述卷针模块的追踪数据库,所述追踪数据库用于获取所述卷针模块的主轴追踪距离数据。
  9. 一种控制器,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至7任意一项所述的极耳边距控制方法。
  10. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至7任意一项所述的极耳边距控制方法。
PCT/CN2022/140372 2022-04-01 2022-12-20 极耳边距控制方法、装置、控制器以及存储介质 WO2023185120A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210337457.6A CN114843621B (zh) 2022-04-01 2022-04-01 极耳边距控制方法、装置、控制器以及存储介质
CN202210337457.6 2022-04-01

Publications (1)

Publication Number Publication Date
WO2023185120A1 true WO2023185120A1 (zh) 2023-10-05

Family

ID=82563188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140372 WO2023185120A1 (zh) 2022-04-01 2022-12-20 极耳边距控制方法、装置、控制器以及存储介质

Country Status (2)

Country Link
CN (1) CN114843621B (zh)
WO (1) WO2023185120A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114843621B (zh) * 2022-04-01 2023-03-24 广东利元亨智能装备股份有限公司 极耳边距控制方法、装置、控制器以及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160412A (ja) * 1999-12-03 2001-06-12 Sony Corp 巻き取り装置
CN109301147A (zh) * 2017-07-24 2019-02-01 宁德时代新能源科技股份有限公司 极耳错位控制方法及卷绕装置
CN110504493A (zh) * 2018-05-16 2019-11-26 深圳市佳得设备科技有限公司 一种用于卷绕机预卷绕机构
CN113782819A (zh) * 2021-08-30 2021-12-10 广东利元亨智能装备股份有限公司 一种卷芯极耳边距确定方法及卷绕设备校正方法
CN114843621A (zh) * 2022-04-01 2022-08-02 广东利元亨智能装备股份有限公司 极耳边距控制方法、装置、控制器以及存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101774041B (zh) * 2010-02-08 2012-02-22 深圳市赢合科技股份有限公司 极耳裁切装置
CN104466228B (zh) * 2014-12-31 2017-02-22 深圳市赢合科技股份有限公司 一种极片卷绕方法
CN104600348B (zh) * 2015-01-22 2017-02-22 深圳市微秒控制技术有限公司 自学习卷绕装置及方法
CN109301352B (zh) * 2017-07-24 2020-06-19 宁德时代新能源科技股份有限公司 极耳错位控制方法及卷绕装置
CN207501826U (zh) * 2017-11-17 2018-06-15 宁德新能源科技有限公司 电芯尺寸检具
CN208432218U (zh) * 2018-08-21 2019-01-25 东莞市爱康电子科技有限公司 一种电芯尺寸自动检测设备
CN109365307B (zh) * 2018-09-19 2020-07-24 东莞泓宇智能装备有限公司 一种卷绕机的电芯检测装置
WO2020207184A1 (zh) * 2019-04-11 2020-10-15 无锡先导智能装备股份有限公司 卷绕设备及其极片入料装置
CN111906461B (zh) * 2019-05-08 2022-04-01 大族激光科技产业集团股份有限公司 一种传动送料方法及系统
CN113468680B (zh) * 2020-03-30 2023-01-03 沈机(上海)智能系统研发设计有限公司 从轴耦合到凸轮曲线的平滑切入方法、系统、介质及终端
CN212571094U (zh) * 2020-03-31 2021-02-19 宁德新能源科技有限公司 电芯极耳纠偏装置
WO2021212417A1 (zh) * 2020-04-23 2021-10-28 深圳市诚捷智能装备股份有限公司 一种电容器素子的自动化生产控制系统及生产控制方法
CN113300057B (zh) * 2021-05-24 2022-10-25 广东利元亨智能装备股份有限公司 一种极耳错位调整方法及系统
CN113744244B (zh) * 2021-09-03 2022-05-13 广东奥普特科技股份有限公司 测量锂电池极片边缘到极耳边缘距离的在线视觉检测系统
CN114171773B (zh) * 2021-11-30 2022-08-16 广东利元亨智能装备股份有限公司 一种主动式缓存的方法、装置、存储介质及连续卷绕机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160412A (ja) * 1999-12-03 2001-06-12 Sony Corp 巻き取り装置
CN109301147A (zh) * 2017-07-24 2019-02-01 宁德时代新能源科技股份有限公司 极耳错位控制方法及卷绕装置
CN110504493A (zh) * 2018-05-16 2019-11-26 深圳市佳得设备科技有限公司 一种用于卷绕机预卷绕机构
CN113782819A (zh) * 2021-08-30 2021-12-10 广东利元亨智能装备股份有限公司 一种卷芯极耳边距确定方法及卷绕设备校正方法
CN114843621A (zh) * 2022-04-01 2022-08-02 广东利元亨智能装备股份有限公司 极耳边距控制方法、装置、控制器以及存储介质

Also Published As

Publication number Publication date
CN114843621B (zh) 2023-03-24
CN114843621A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2023185120A1 (zh) 极耳边距控制方法、装置、控制器以及存储介质
WO2023207142A1 (zh) 极片自动接带方法、装置、控制器以及存储介质
JP2007290870A (ja) 長尺の巻取線材を移動させるための方法および装置
CN112498865B (zh) 一种切割材料的方法及系统
US10005196B2 (en) Cutting apparatus
CN117163724A (zh) 一种涂布基材复合纠偏控制系统及方法
CN109301147B (zh) 极耳错位控制方法及卷绕装置
KR20200112419A (ko) 노칭 금형의 엣지 포지션 컨트롤러 기능을 구현한 노칭 복합장비
WO2023160174A1 (zh) 短片异常贴胶控制方法、装置、控制器以及存储介质
CN110329832B (zh) 一种减速裁切控制方法及控制装置
CN108367372B (zh) 张力控制方法以及放电加工装置
WO2023160173A1 (zh) 长片异常贴胶控制方法、控制器以及存储介质
WO2023173866A1 (zh) 极耳定位区间贴胶控制方法、装置、控制器以及存储介质
WO2023185119A1 (zh) 换工位过程隔膜放卷控制方法、装置、控制器及存储介质
JP4439103B2 (ja) テープ巻き取り装置およびテープ巻き取り方法
CN115911585A (zh) 首层极耳边距控制方法和计算机可读存储介质
CN114852756A (zh) 贴胶定位控制方法、装置、控制器以及存储介质
CN113097425B (zh) 电池极片制片方法及设备
CN104354947B (zh) 可对标签行走进行纠正的高速贴标机的纠正方法
CN111857039B (zh) 多电机剪切系统协同规划方法及系统
CN110695542B (zh) 一种激光切割控制方法、系统、装置及存储介质
CN111070922A (zh) 热转印打码机及其碳带控制方法、装置及存储介质
CN111309063B (zh) 放卷速度控制方法、装置、电子设备及存储介质
JP3174959B2 (ja) 巻取装置
CN116216388A (zh) 预折纠偏装置及其控制方法、控制器和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934936

Country of ref document: EP

Kind code of ref document: A1