WO2023221464A1 - 端盖、电池单体、电池及用电设备 - Google Patents

端盖、电池单体、电池及用电设备 Download PDF

Info

Publication number
WO2023221464A1
WO2023221464A1 PCT/CN2022/137556 CN2022137556W WO2023221464A1 WO 2023221464 A1 WO2023221464 A1 WO 2023221464A1 CN 2022137556 W CN2022137556 W CN 2022137556W WO 2023221464 A1 WO2023221464 A1 WO 2023221464A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
end cap
pressure relief
radius
cover body
Prior art date
Application number
PCT/CN2022/137556
Other languages
English (en)
French (fr)
Inventor
周文林
徐良帆
李全坤
王鹏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280048722.7A priority Critical patent/CN117616622A/zh
Publication of WO2023221464A1 publication Critical patent/WO2023221464A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, specifically, to an end cap, a battery cell, a battery and electrical equipment.
  • batteries are used more and more widely, such as in mobile phones, laptops, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes and electric tools, etc. superior.
  • Embodiments of the present application provide an end cover, battery cells, batteries and electrical equipment, which can effectively improve the impact resistance of the end cover.
  • embodiments of the present application provide an end cap, including a cap body and a groove; the cap body has a first surface; the groove is provided on the cap body to form a pressure relief area in the area where the groove is provided on the cap body.
  • the groove is recessed from the first surface along the thickness direction of the cover body, and the groove side of the groove includes a corner surface located at a corner position of the groove; wherein the corner surface is connected to the first surface through a first chamfered surface.
  • the corner surface and the first surface are connected through a first chamfered surface.
  • the provision of the first chamfered surface weakens the strength of the pressure relief area at the corner of the groove and evens out the strength of the pressure relief area at the corner of the groove.
  • the strength at corners and edges reduces the risk of local stress concentration in the pressure relief area, can well protect the pressure relief area, and improves the impact resistance of the end cover.
  • the radius of the first chamfer surface gradually increases from both ends to the middle position. This structure makes the strength of the pressure relief zone at the corner position of the groove gradually increase from the middle of the first chamfer surface to both ends.
  • the maximum radius of the first chamfer surface is R 1 , which satisfies: 0.5mm ⁇ R 1 ⁇ 2mm.
  • the groove side also includes a first side connected to the corner surface, and the first side and the first surface are connected through a second chamfered surface; wherein the maximum radius of the second chamfered surface is smaller than the first chamfered surface the maximum radius.
  • the provision of the second chamfered surface allows the first side surface to transition to the first surface more smoothly, and prevents the first side surface from being directly connected to the first surface to form a sharp angle.
  • the maximum radius of the second chamfering surface is smaller than the maximum radius of the first chamfering surface, which can equalize the strength of the pressure relief zone at the corners and edges of the groove.
  • both ends of the second chamfered surface are connected to the first chamfered surface, and the radius of the second chamfered surface gradually decreases from both ends to the middle position.
  • the first chamfer surface and the second chamfer surface are connected at the first connection position, and the radius of the first chamfer surface at the first connection position is equal to the radius of the second chamfer surface at the first connection position. .
  • This structure allows the first chamfering surface to transition to the second chamfering surface more smoothly, so that the first chamfering surface and the second chamfering surface can form a continuous chamfering surface.
  • the maximum radius of the second chamfer surface is R 2 , which satisfies: 0.1 mm ⁇ R 2 ⁇ 0.5 mm.
  • the groove side also includes a second side, the second side and the first side are located at different orientations of the groove, the second side and the first side are connected through a corner surface, and the second side and the first surface are connected through a third surface.
  • the chamfering surfaces are connected; the maximum radius of the third chamfering surface is smaller than the maximum radius of the first chamfering surface.
  • the provision of the third chamfered surface allows the second side surface to transition to the first surface more smoothly, preventing the second side surface from being directly connected to the first surface to form a sharp angle.
  • the maximum radius of the third chamfering surface is smaller than the maximum radius of the first chamfering surface, which can equalize the strength of the pressure relief zone at the corners and edges of the groove.
  • both ends of the third chamfered surface are connected to the first chamfered surface, and the radius of the third chamfered surface gradually decreases from both ends to the middle position.
  • the first chamfer surface and the third chamfer surface are connected at the second connection position, and the radius of the first chamfer surface at the second connection position is equal to the radius of the third chamfer surface at the second connection position. .
  • This structure allows the first chamfer surface to transition to the third chamfer surface more smoothly, so that the first chamfer surface and the third chamfer surface can form a continuous chamfer surface.
  • the maximum radius of the third chamfer surface is R 3 , which satisfies: 0.1mm ⁇ R 3 ⁇ 0.5mm.
  • the groove sides include two first sides and two second sides, the two first sides are oppositely arranged along the first direction, and the two second sideways are oppositely arranged along the second direction, and the first direction is perpendicular to Second direction.
  • the two first side surfaces and the two second side surfaces are located in different directions, so that the groove is a rectangular groove with a substantially rectangular cross section, which has a simple structure and is easy to form.
  • the distance between the two first side surfaces along the first direction is a first distance
  • the distance between the two second side surfaces along the second direction is a second distance
  • the first distance is smaller than the second distance.
  • the groove is a rectangular groove with a generally rectangular cross-section
  • the pressure relief area is also generally rectangular, with a large pressure relief area.
  • the first direction is the length direction of the cover body
  • the second direction is the width direction of the cover body.
  • the cover body is provided with pressure relief scores, and the pressure relief scores are located in the pressure relief area.
  • the area where the pressure relief notch is set on the cover body is weaker, so that when the pressure inside the battery cell reaches the detonation pressure, the pressure relief area will crack at the location where the pressure relief notch is set, so that pressure can be released from the pressure relief area.
  • the pressure relief score is a groove extending along an end-to-end closed trajectory. This structure allows the pressure relief area to be opened in the area defined by the pressure relief notch when the pressure inside the battery cell reaches the detonation pressure. It has a larger pressure relief area and improves the pressure relief efficiency.
  • the end cap further includes a protective component connected to the cap body and covering the groove.
  • the protective piece covers the groove, and the protective piece protects the pressure relief area and reduces the risk of damage to the pressure relief area by foreign objects.
  • the protector is attached to the first surface.
  • this structure makes it easier to install the protective parts; on the other hand, the protective parts can cover each chamfered surface to better protect the pressure relief area.
  • the cover body is provided with an exhaust channel, and the exhaust channel communicates with the inside of the groove and the outside of the cover body.
  • the arrangement of the exhaust channel allows the inside of the groove to communicate with the outside world to balance the air pressure inside the groove and the outside world, and reduce the risk of the protective piece falling off due to the increase in air pressure inside the groove.
  • the exhaust channel is an exhaust groove provided on the cover body, and one end of the exhaust groove extends to the first surface.
  • the exhaust channel of this structure can effectively connect the inside of the groove with the outside world and is easy to form.
  • embodiments of the present application provide a battery cell, including a case and an end cover provided in any embodiment of the first aspect; the case has an opening; and the cover body closes the opening.
  • embodiments of the present application provide a battery, including the battery cell provided in any embodiment of the second aspect.
  • the battery further includes a box body, the battery cells are accommodated in the box body, the box body has a bottom wall, and the end cover is disposed on a side of the battery cells facing the bottom wall.
  • embodiments of the present application further provide an electrical device, including the battery provided in any embodiment of the third aspect.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is an exploded view of a battery provided by some embodiments of the present application.
  • Figure 3 is an exploded view of a battery cell provided by some embodiments of the present application.
  • Figure 4 is a schematic structural diagram of an end cap provided by some embodiments of the present application.
  • Figure 5 is a partial enlarged view of the end cap shown in Figure 4 at position A;
  • Figure 6 is a schematic structural diagram of an end cap provided by other embodiments of the present application.
  • Figure 7 is a partial enlarged view of the end cap shown in Figure 6 at B;
  • Figure 8 is a partial view of the end cap (unformed chamfered surface) provided in some embodiments of the present application.
  • Figure 9 is a top view of the end cap shown in Figure 6;
  • Figure 10 is a C-C cross-sectional view of the end cap shown in Figure 9;
  • Figure 11 is a D-D cross-sectional view of the end cap shown in Figure 9;
  • Figure 12 is a partial enlarged view of the end cap shown in Figure 11 at F;
  • Figure 13 is an E-E cross-sectional view of the end cap shown in Figure 9;
  • Figure 14 is a partial enlarged view of the end cap shown in Figure 13 at G;
  • Figure 15 is a schematic structural diagram of an end cap provided in some embodiments of the present application.
  • Figure 16 is an exploded view of the end cap shown in Figure 15;
  • FIG. 17 is a partial enlarged view of the end cap shown in FIG. 15 with the protective member removed.
  • Icon 1-Casing; 2-Electrode assembly; 21-Positive lug; 22-Negative lug; 3-End cover; 31-Cover body; 311-Boss; 3111-First surface; 312-Pressure relief area; 313 -Pressure relief score; 314-exhaust channel; 32-groove; 321-corner surface; 322-first chamfered surface; 323-first side; 324-second chamfered surface; 325-second side; 326-Third chamfered surface; 33-protection piece; 4-electrode terminal; 4a-positive electrode terminal; 4b-negative electrode terminal; 5-current collecting member; 10-battery cell; 20-box; 201-No.
  • Part 202-second part; 100-battery; 200-controller; 300-motor; 1000-vehicle; a-first connection position; b-second connection position; W-extending direction of corner surface; X-th One direction; Y-second direction; Z-thickness direction.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode plate, a negative electrode plate and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode collector that is coated with the positive electrode active material layer. Fluid, the positive electrode current collector without the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode collector that is coated with the negative electrode active material layer.
  • Fluid, the negative electrode current collector that is not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • a pressure relief structure can be set on the end cover of the battery cell.
  • a groove is provided on the end cover, making the end cover relatively weak at the location where the groove is set. , to form a pressure relief zone, which can be used to release the internal pressure of the battery cell when the battery cell is thermally out of control, thereby reducing the risk of battery cell explosion and fire, and improving the safety of the battery cell.
  • the strength of the pressure relief area at the edge of the groove is smaller than the strength of the pressure relief area at the corner of the groove.
  • the strength of the edge position of the groove is relatively small, which causes the stress to be concentrated at the edge position of the groove, causing large deformation at the edge position of the groove, and small deformation at the corner position of the groove, resulting in abnormal opening of the pressure relief area. , affecting the service life of the battery cells.
  • an end cap which includes a cap body and a groove.
  • the cover body has a first surface.
  • the groove is provided on the cover body to form a pressure relief area in the area where the groove is provided on the cover body.
  • the groove is recessed from the first surface along the thickness direction of the cover body.
  • the groove side of the groove includes a groove located at a corner of the groove. corner face. The corner surface is connected to the first surface through a first chamfer surface.
  • the corner surface and the first surface are connected through a first chamfered surface.
  • the provision of the first chamfered surface weakens the strength of the pressure relief area at the corner of the groove and evens out the pressure relief area at the corner of the groove.
  • the strength of the corners and edges of the groove When the end cover is subjected to impact force, the deformation amount of the pressure relief area at the edge of the groove will not be too different from the deformation amount of the pressure relief area at the corner of the groove. It reduces the risk of local stress concentration in the pressure relief area, can well protect the pressure relief area, and improves the impact resistance of the end cover.
  • Power-consuming devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical equipment as a vehicle as an example.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is an exploded view of a battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a battery cell 10 and a box 20 , and the box 20 is used to accommodate the battery cell 10 .
  • the box 20 is a component that accommodates the battery cells 10.
  • the box 20 provides a storage space for the battery cells 10.
  • the box 20 can adopt a variety of structures.
  • the box 20 may include a first part 201 and a second part 202 , and the first part 201 and the second part 202 cover each other to define an accommodation space for accommodating the battery cells 10 .
  • the first part 201 and the second part 202 can be in various shapes, such as cuboid, cylinder, etc.
  • the first part 201 may be a hollow structure open on one side, and the second part 202 may also be a hollow structure open on one side.
  • the open side of the second part 202 is covered with the open side of the first part 201 to form a box with accommodating space.
  • Body 20 is a component that accommodates the battery cells 10.
  • the box 20 provides a storage space for the battery cells 10.
  • the box 20 can adopt a variety of structures.
  • the box 20 may include a first part 201 and a second part
  • the first part 201 may be a hollow structure with one side open
  • the second part 202 may be a plate-like structure
  • the second part 202 covers the open side of the first part 201 to form a box 20 with a receiving space.
  • the first part 201 and the second part 202 can be sealed by sealing elements, which can be sealing rings, sealants, etc.
  • the battery 100 there may be one battery cell 10 or a plurality of battery cells 10. If there are multiple battery cells 10 , the multiple battery cells 10 can be connected in series, in parallel, or in mixed connection. Mixed connection means that the multiple battery cells 10 are both connected in series and in parallel. Multiple battery cells 10 may be first connected in series, parallel, or mixed to form a battery module, and then multiple battery modules may be connected in series, parallel, or mixed to form a whole, and be accommodated in the box 20 . It is also possible that all the battery cells 10 are directly connected in series or in parallel or mixed together, and then the whole battery cells 10 are accommodated in the box 20 .
  • FIG. 3 is an exploded view of the battery cell 10 provided in some embodiments of the present application.
  • the battery cell 10 includes a case 1 , an electrode assembly 2 , an end cap 3 , an electrode terminal 4 and a current collecting member 5 .
  • the housing 1 is a component used to accommodate the electrode assembly 2.
  • the housing 1 may be a hollow structure with an opening formed at one end.
  • the housing 1 may be a hollow structure with openings formed at two opposite ends.
  • the housing 1 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the housing 1 can be made of various materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the electrode assembly 2 is a component in the battery cell 10 where electrochemical reactions occur.
  • the electrode assembly 2 may include a positive electrode sheet, a negative electrode sheet and a separation film.
  • the electrode assembly 2 may be a rolled structure formed by winding a positive electrode sheet, a separator film and a negative electrode sheet, or may be a laminated structure formed by a stacked arrangement of positive electrode sheets, separator films and negative electrode sheets.
  • the electrode assembly 2 has a positive electrode tab 21 and a negative electrode tab 22.
  • the positive electrode tab 21 may be a portion of the positive electrode sheet that is not coated with a positive electrode active material layer
  • the negative electrode tab 22 may be a portion of the negative electrode sheet that is not coated with a negative electrode active material layer.
  • the end cap 3 is a component that closes the opening of the case 1 to isolate the internal environment of the battery cell 10 from the external environment.
  • the end cover 3 and the housing 1 jointly define a sealed space for accommodating the electrode assembly 2, electrolyte and other components.
  • the shape of the end cover 3 can be adapted to the shape of the housing 1.
  • the housing 1 has a rectangular parallelepiped structure, and the end cover 3 has a rectangular structure matching the housing 1.
  • the end cap 3 can also be made of various materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the end cover 3 can be fixed to the housing 1 by welding.
  • the housing 1 is a hollow structure with an opening formed at one end, a corresponding end cap 3 can be provided. If the housing 1 is a hollow structure with openings formed at both ends, two end caps 3 can be provided correspondingly, and the two end caps 3 respectively close the two openings of the housing 1 .
  • the electrode terminal 4 is a component that connects the battery cell 10 to other components to output the electric energy of the battery cell 10 .
  • the electrode terminal 4 is disposed on the end cover 3 and is used for electrical connection with the positive electrode lug 21 or the negative electrode lug 22 of the electrode assembly 2 .
  • the two electrode terminals 4 are a positive electrode terminal 4a and a negative electrode terminal 4b respectively.
  • the positive electrode terminal 4a is used for electrical connection with the positive electrode lug 21, and the negative electrode terminal 4b Used for electrical connection with the negative ear 22.
  • the positive electrode terminal 4 a and the negative electrode terminal 4 b can be provided on the same end cap 3 , or the positive electrode terminal 4 a and the negative electrode terminal 4 b can be separated.
  • the positive electrode terminal 4 a and the negative electrode terminal 4 b can be disposed on the same end cover 3 .
  • the current collecting member 5 is a component that realizes electrical connection between the tab and the electrode terminal 4 .
  • the positive electrode terminal 4a and the negative electrode terminal 4b are both arranged on the end cover 3.
  • the positive electrode terminal 4a can be connected to the positive electrode ear 21 through a current collecting member 5, and the negative electrode terminal 4b can be connected through another current collecting member 5.
  • a current collecting member 5 is connected to the negative electrode tab 22 .
  • Figure 4 is a schematic structural diagram of the end cover 3 provided by some embodiments of the present application
  • Figure 5 is a partial enlarged view of the end cover 3 shown in Figure 4 at position A
  • Figure 6 is another view of the end cover 3 of the present application.
  • Some embodiments provide a schematic structural diagram of the end cap 3
  • Figure 7 is a partial enlarged view of the end cap 3 shown in Figure 6 at position B.
  • the embodiment of the present application provides an end cover 3 , including a cover body 31 and a groove 32 .
  • the cover body 31 has a first surface 3111.
  • the groove 32 is provided on the cover body 31 to form a pressure relief area 312 in the area where the groove 32 is provided on the cover body 31.
  • the groove 32 is recessed from the first surface 3111 along the thickness direction Z of the cover body 31.
  • the groove side of the groove 32 It includes a corner surface 321 located at a corner position of the groove 32 .
  • the corner surface 321 and the first surface 3111 are connected through a first chamfered surface 322 .
  • the cover body 31 is used to connect with the housing 1 (shown in FIG. 3 ), so that the end cover 3 closes the opening of the housing 1 .
  • the cover body 31 and the end cover 3 can be fixed by welding.
  • the cover body 31 has a rectangular structure.
  • the first surface 3111 may be the outermost surface of the cover body 31 in the thickness direction Z.
  • the first surface 3111 is the surface of the cover body 31 that is furthest away from the housing 1 in the thickness direction Z.
  • the cover body 31 has a flat plate structure, and the first surface 3111 can be the outer surface of the cover body 31 away from the housing 1 in the thickness direction Z.
  • the cover body 31 partially protrudes away from the housing 1 along its thickness direction Z to form a boss 311 , and the first surface 3111 can be a boss 311 in the thickness direction Z of the cover body 31 . on the outer surface facing away from the housing 1.
  • the cover body 31 forms a recessed space at a position corresponding to the protrusion on the side facing the case 1.
  • the recessed space can accommodate internal components of the battery cell 10, such as the current collecting member 5, the tabs of the electrode assembly 2, etc., thereby The energy density of the battery cell 10 is increased.
  • this structure can also improve the bending strength of the cover body 31 and the impact resistance of the end cover 3 .
  • the groove 32 can be formed in various ways, such as stamping, milling, etc.
  • the cross-section of the groove 32 can be in various shapes, such as rectangle, parallelogram, trapezoid, etc., and the cross-section of the groove 32 is perpendicular to the thickness direction Z.
  • the groove 32 is a rectangular groove with a substantially rectangular cross-section.
  • the groove 32 can be formed on the first surface 3111 first; as shown in Figure 7 As shown in the figure, the first chamfered surface 322 is then formed so that the first chamfered surface 322 connects the corner surface 321 and the first surface 3111 .
  • the groove side of the groove 32 is the surface around the groove 32.
  • the groove side is distributed around the opening formed by the groove 32 on the first surface 3111.
  • the groove side of the groove 32 and the groove bottom surface of the groove 32 jointly define the groove 32. internal space.
  • the groove side of the groove 32 has four sides located in different directions, and the four sides are respectively located on the four sides of the rectangle.
  • the two adjacent sides are connected by the corner surface 321.
  • the corner surface 321 corresponds to the corner position of the groove 32
  • the side surface corresponds to the edge position of the groove 32 .
  • the pressure relief area 312 is the part of the cover body 31 corresponding to the groove 32. That is to say, after the groove 32 is provided on the cover body 31, the remaining part of the cover body 31 where the groove 32 is located is the pressure relief area 312. .
  • the pressure relief area 312 is weaker than other areas of the cover body 31.
  • the pressure relief area 312 is the part of the end cover 3 used for pressure relief. When the internal pressure of the battery cell 10 reaches the detonation pressure, the pressure relief area 312 can be partially ruptured. , partially or completely falling off, etc., to form a channel for the emissions inside the battery cell 10 to flow out to achieve the purpose of pressure relief.
  • the corner surface 321 is a portion of the groove side located at the corner of the groove 32 .
  • the corner surface 321 may be an arc surface, and the center line of the arc surface may extend along the thickness direction Z of the cover body 31 .
  • the groove 32 has four sides located in different directions, and the two adjacent sides are connected by the corner surface 321, so that the two adjacent sides are connected by the corner surface 321. Smooth transition.
  • the first chamfered surface 322 connects the corner surface 321 and the first surface 3111 to achieve a smooth transition between the corner surface 321 and the first surface 3111.
  • the first chamfered surface 322 extends along the extending direction W of the corner surface.
  • the cross-section of the first chamfered surface 322 is arc-shaped, and the cross-section of the first chamfered surface 322 is perpendicular to the extending direction W of the corner surface.
  • the first chamfer surface 322 may have a variable diameter structure, that is, the radius of the first chamfer surface 322 changes along the extending direction of the first chamfer surface 322; the first chamfer surface 322 may also have a constant diameter structure, that is, the first chamfer surface 322 may have a constant diameter structure, that is, the radius of the first chamfer surface 322 changes along the extending direction of the first chamfer surface 322.
  • the radius of a chamfer surface 322 does not change along the extending direction of the first chamfer surface 322 .
  • the extension direction of the first chamfer surface 322 is consistent with the extension direction W of the corner surface.
  • the corner surface 321 and the first surface 3111 are connected through a first chamfered surface 322.
  • the provision of the first chamfered surface 322 weakens the strength of the pressure relief area 312 at the corner position of the groove 32 and homogenizes it. This increases the strength of the pressure relief area 312 at the corners and edges of the groove 32, reduces the risk of local stress concentration in the pressure relief area 312, can well protect the pressure relief area 312, and improves the impact resistance of the end cover 3.
  • the radius of the first chamfer surface 322 gradually increases from both ends to the middle position.
  • the circumferential direction of the groove 32 is the extending direction of the groove side surfaces of the groove 32 .
  • the two ends of the first chamfered surface 322 in the circumferential direction of the groove 32 are the two ends of the first chamfered surface 322 in the extending direction.
  • the extension direction of the first chamfer surface 322 is consistent with the extension direction W of the corner surface.
  • the radii of the first chamfer surface 322 at both ends may be equal or unequal.
  • the first chamfer surface 322 has a variable diameter structure.
  • the radius of the first chamfered surface 322 gradually increases from both ends to the middle position.
  • the cover body 31 has a smaller thickness at the middle position of the first chamfered surface 322 and a thicker thickness at both ends of the first chamfered surface 322 .
  • the thickness of the cover body 31 at the position of the first chamfered surface 322 gradually decreases from both ends of the first chamfered surface 322 to the middle position, so that the strength of the pressure relief area 312 at the corner position of the groove 32 decreases from the first to the middle position.
  • the chamfered surface 322 gradually increases from the middle toward both ends.
  • Figure 9 is a top view of the end cap 3 shown in Figure 6;
  • Figure 10 is a CC cross-sectional view of the end cap 3 shown in Figure 9.
  • the maximum radius of the first chamfer surface 322 is R 1 , which satisfies: 0.5mm ⁇ R 1 ⁇ 2mm.
  • R 1 can be 0.5mm, 0.6mm, 0.7mm, 0.8mm, 0.9mm, 1mm, 1.1mm, 1.2mm, 1.3mm, 1.4mm, 1.5mm, 1.6mm, 1.7mm, 1.8mm, 1.9mm, 2mm Either pip value or any range value between the two.
  • the radius of the first chamfering surface 322 at any position in its extension direction is R 1 ; in the embodiment where the first chamfering surface 322 has a variable diameter structure , taking the radius of the first chamfering surface 322 gradually increasing from both ends to the middle position as an example, the radius of the middle position of the first chamfering surface 322 is R 1 .
  • the groove side also includes a first side 323 connected to the corner surface 321 , and the first side 323 is connected to the first surface 3111 through a second chamfered surface 324 .
  • the maximum radius of the second chamfering surface 324 is smaller than the maximum radius of the first chamfering surface 322 .
  • the first side 323 is one of the groove sides. Taking the groove 32 as an example, the cross-section is rectangular. The first side 323 is a plane. The first side 323 can be a side extending along the length direction of the groove side, or it can be a groove. A side that extends widthwise.
  • the second chamfered surface 324 connects the first side 323 and the first surface 3111 to achieve a smooth transition between the first side 323 and the first surface 3111 .
  • the second chamfered surface 324 extends along the extending direction of the first side surface 323 .
  • the cross section of the second chamfered surface 324 is arc-shaped.
  • the cross section of the second chamfered surface 324 is perpendicular to the extending direction of the first side surface 323 .
  • the second chamfer surface 324 may have a variable diameter structure, that is, the radius of the second chamfer surface 324 changes along the extension direction of the second chamfer surface 324; the second chamfer surface 324 may also have a constant diameter structure, that is, the second chamfer surface 324 may have a constant diameter structure, that is, the radius of the second chamfer surface 324 changes along the extending direction of the second chamfer surface 324.
  • the radius of the second chamfer surface 324 does not change along the extending direction of the second chamfer surface 324 .
  • the radius of any position of the second chamfered surface 324 in its extension direction is equal to the maximum radius of the second chamfered surface 324 .
  • the provision of the second chamfered surface 324 enables the first side surface 323 to transition to the first surface 3111 more smoothly, avoiding the direct connection between the first side surface 323 and the first surface 3111 to form a sharp angle.
  • the maximum radius of the second chamfered surface 324 is smaller than the maximum radius of the first chamfered surface 322 , which can equalize the strength of the pressure relief area 312 at the corners and edges of the groove 32 .
  • both ends of the second chamfered surface 324 are connected to the first chamfered surface 322 , and the radius of the second chamfered surface 324 is from both ends. gradually decreases to the middle position.
  • the two ends of the second chamfered surface 324 in the circumferential direction of the groove 32 are the two ends of the second chamfered surface 324 in the extending direction.
  • the extension direction of the second chamfer surface 324 is consistent with the extension direction of the first side surface 323 .
  • the radii of the second chamfer surface 324 at both ends may be equal or unequal. For example, in FIG. 7 , the radii of the second chamfer surface 324 at both end positions are equal.
  • the radius of the first chamfering surface 322 gradually increases from both ends to the middle position, and the maximum radius of the second chamfering surface 324 is smaller than the maximum radius of the first chamfering surface 322 , it can be understood that the second chamfering surface 324 The radius of both ends of the corner surface 324 is smaller than the radius of the middle position of the first chamfer surface 322 .
  • the second chamfer surface 324 has a variable diameter structure.
  • the radius of the second chamfered surface 324 gradually decreases from both ends to the middle position.
  • the cover body 31 has a greater thickness at the middle position of the second chamfered surface 324 and a thicker thickness at both ends of the second chamfered surface 324 .
  • the thickness of the cover body 31 at the position of the second chamfered surface 324 gradually increases from both ends of the second chamfered surface 324 to the middle position, so that the strength of the pressure relief area 312 at the edge of the groove 32 increases from the second chamfered surface 324 to the middle position.
  • the two chamfered surfaces 324 gradually increase in size from both ends to the middle, thereby enhancing the strength of the pressure relief area 312 in the middle of the edge of the groove 32 and providing better impact resistance.
  • the first chamfering surface 322 and the second chamfering surface 324 are connected at the first connection position a, and the radius of the first chamfering surface 322 at the first connection position a is equal to the first connection position a.
  • the two chamfered surfaces 324 are located at the radius of the first connection position a.
  • the first connection position a is the position where the first chamfered surface 322 and the second chamfered surface 324 are connected. In an embodiment in which both ends of the second chamfered surface 324 are connected to the first chamfered surface 322 , two first connection positions a are formed correspondingly at both ends of the second chamfered surface 324 .
  • the radius of the first chamfering surface 322 at the first connection position a is equal to the radius of the second chamfering surface 324 at the first connection position a, so that the first chamfering surface 322 can have a smoother transition. to the second chamfer surface 324, so that the first chamfer surface 322 and the second chamfer surface 324 can form a continuous chamfer surface.
  • Figure 11 is a DD cross-sectional view of the end cap 3 shown in Figure 9;
  • Figure 12 is a partial enlarged view of the end cap 3 shown in Figure 11 at F.
  • the maximum radius of the second chamfer surface 324 is R 2 , which satisfies: 0.1mm ⁇ R 2 ⁇ 0.5mm.
  • R 2 can be any point value among 0.1mm, 0.15mm, 0.2mm, 0.25mm, 0.3mm, 0.35mm, 0.4mm, 0.45mm, 0.5mm or any range value between the two.
  • the radius of the second chamfering surface 324 at any position in its extension direction is R 2 ; in the embodiment where the second chamfering surface 324 has a variable diameter structure , taking the radius of the second chamfering surface 324 gradually decreasing from both ends to the middle position as an example, the radius of at least one end of the two ends of the second chamfering surface 324 is R 2 .
  • the groove side also includes a second side 325 .
  • the second side 325 and the first side 323 are located at different orientations of the groove 32 .
  • the second side 325 and the first side 323 pass through the corner surface.
  • 321 is connected to each other, and the second side surface 325 and the first surface 3111 are connected to each other through a third chamfered surface 326 .
  • the maximum radius of the third chamfering surface 326 is smaller than the maximum radius of the first chamfering surface 322 .
  • the second side 325 is one of the groove sides. Taking the groove 32 as a rectangular shape as an example, the second side 325 is a plane.
  • the second side 325 can be a side extending along the length direction of the groove side, or it can be a side along the width of the groove side. direction extending side.
  • the third chamfered surface 326 connects the second side 325 and the first surface 3111 to achieve a smooth transition between the second side 325 and the first surface 3111 .
  • the third chamfered surface 326 extends along the extending direction of the second side surface 325 .
  • the cross section of the third chamfered surface 326 is arc-shaped.
  • the cross section of the third chamfered surface 326 is perpendicular to the extending direction of the second side surface 325 .
  • the third chamfer surface 326 may have a variable diameter structure, that is, the radius of the third chamfer surface 326 changes along the extension direction of the third chamfer surface 326; the third chamfer surface 326 may also have a constant diameter structure, that is, the third chamfer surface 326 may have a constant diameter structure, that is, the radius of the third chamfer surface 326 changes along the extending direction of the third chamfer surface 326.
  • the radius of the third chamfered surface 326 does not change along the extending direction of the third chamfered surface 326 .
  • the radius of the third chamfer surface 326 at any position in its extension direction is equal to the maximum radius of the third chamfer surface 326 .
  • the provision of the third chamfered surface 326 enables the second side surface 325 to transition to the first surface 3111 more smoothly, avoiding the direct connection between the second side surface 325 and the first surface 3111 to form a sharp angle.
  • the maximum radius of the third chamfered surface 326 is smaller than the maximum radius of the first chamfered surface 322 , which can equalize the strength of the pressure relief area 312 at the corners and edges of the groove 32 .
  • both ends of the third chamfered surface 326 are connected to the first chamfered surface 322 , and the radius of the third chamfered surface 326 is from both ends. gradually decreases to the middle position.
  • the two ends of the third chamfered surface 326 in the circumferential direction of the groove 32 are the two ends of the third chamfered surface 326 in the extending direction.
  • the extension direction of the third chamfer surface 326 is consistent with the extension direction of the second side surface 325 .
  • the radii of the third chamfer surface 326 at both ends may be equal or unequal. For example, in FIG. 7 , the radii of the third chamfer surface 326 at both ends are equal.
  • the radius of the first chamfering surface 322 gradually increases from both ends to the middle position, and the maximum radius of the third chamfering surface 326 is smaller than the maximum radius of the first chamfering surface 322, it can be understood that the third chamfering surface 326 The radius of both ends of the corner surface 326 is smaller than the radius of the middle position of the first chamfer surface 322 .
  • the third chamfer surface 326 has a variable diameter structure.
  • the radius of the third chamfered surface 326 gradually decreases from both ends to the middle position.
  • the cover body 31 has a greater thickness at the middle position of the third chamfered surface 326 and a thicker thickness at both ends of the third chamfered surface 326 .
  • the thickness of the cover body 31 at the third chamfered surface 326 gradually increases from both ends of the third chamfered surface 326 to the middle position, so that the strength of the pressure relief area 312 at the edge of the groove 32 increases from the third chamfered surface 326 to the middle position.
  • the three chamfered surfaces 326 gradually increase in size from both ends to the middle, thereby enhancing the strength of the pressure relief area 312 in the middle of the edge of the groove 32 and providing better impact resistance.
  • the first chamfering surface 322 and the third chamfering surface 326 are connected at the second connection position b, and the radius of the first chamfering surface 322 at the second connection position b is equal to the second connection position b.
  • the tri-chamfer surface 326 is located at the radius of the second connection position b.
  • the second connection position b is the position where the first chamfered surface 322 and the third chamfered surface 326 are connected.
  • both ends of the third chamfered surface 326 are connected to the first chamfered surface 322
  • two second connection positions b are formed correspondingly at both ends of the third chamfered surface 326.
  • the radius of the first chamfering surface 322 at the second connection position b is equal to the radius of the third chamfering surface 326 at the second connection position b, so that the first chamfering surface 322 can transition more smoothly to
  • the third chamfering surface 326 enables the first chamfering surface 322 and the third chamfering surface 326 to form a continuous chamfering surface.
  • Figure 13 is an EE cross-sectional view of the end cap 3 shown in Figure 9;
  • Figure 14 is a partial enlarged view of the end cap 3 shown in Figure 13 at G. .
  • the maximum radius of the third chamfer surface 326 is R 3 , which satisfies: 0.1mm ⁇ R 3 ⁇ 0.5mm.
  • R 3 can be any point value among 0.1mm, 0.15mm, 0.2mm, 0.25mm, 0.3mm, 0.35mm, 0.4mm, 0.45mm, 0.5mm or any range value between the two.
  • the radius of the third chamfering surface 326 at any position in its extension direction is R 3 ; in the embodiment where the third chamfering surface 326 has a variable diameter structure , taking the radius of the third chamfering surface 326 gradually decreasing from both ends to the middle position as an example, the radius of at least one of the two ends of the third chamfering surface 326 is R 3 .
  • the side surfaces of the groove include two first side surfaces 323 and two second side surfaces 325 , the two first side surfaces 323 are arranged oppositely along the first direction X, and the two second side surfaces 325 are arranged along the first direction X.
  • the second direction Y is arranged oppositely, and the first direction X is perpendicular to the second direction Y.
  • the first direction X and the second direction Y are both perpendicular to the thickness direction Z of the cover body 31 .
  • the two first side surfaces 323 are both flat and arranged in parallel, and the two second side surfaces 325 are both flat and arranged in parallel.
  • the groove side is generally rectangular, and the cross section of the groove 32 is also generally rectangular.
  • the structure is simple and easy to form.
  • the distance between the two first side surfaces 323 along the first direction X is the first distance
  • the distance between the two second side surfaces 325 along the second direction Y is the second distance
  • the first The distance is smaller than the second distance
  • the groove 32 is generally rectangular, the first side 323 extends along the length direction of the groove 32 , and the second side 325 extends along the width direction of the groove 32 . It can be understood that the first direction X is the width direction of the groove 32 , the second direction Y is the length direction of the groove 32 , the first distance is the width of the groove 32 , and the second distance is the length of the groove 32 .
  • the size of the first side 323 in the length direction of the groove 32 is larger than the size of the second side 325 in the width direction of the groove 32 .
  • the size of the second chamfered surface 324 in the length direction of the groove 32 is larger than the size of the third chamfered surface 326 in the width direction of the groove 32 .
  • the radius of the first chamfering surface 322 gradually increases from both ends to the middle position
  • the radius of the second chamfering surface 324 gradually decreases from both ends to the middle position
  • the third chamfering surface 326 In an embodiment where the radius gradually decreases from both ends to the middle position, the radius of the end connecting the first chamfering surface 322 and the second chamfering surface 324 may be larger than the radius of the first chamfering surface 322 and the third chamfering surface 326 The radius of the connected end.
  • the groove 32 is generally rectangular, and the pressure relief area 312 is also generally rectangular, with a large pressure relief area.
  • the first direction X is the length direction of the cover body 31
  • the second direction Y is the width direction of the cover body 31 .
  • the cover body 31 is rectangular, the width direction of the groove 32 is consistent with the length direction of the cover body 31 , and the length direction of the groove 32 is consistent with the width direction of the cover body 31 .
  • the width direction of the groove 32 is consistent with the length direction of the cover body 31
  • the length direction of the groove 32 is consistent with the width direction of the cover body 31
  • the pressure relief area 312 The short side of the groove 32 is more likely to be damaged.
  • the pressure relief area 312 is more easily damaged at the long side of the groove 32.
  • the pressure relief area 312 can be damaged in two different ways. The positions that are easily damaged under different working conditions are different, which enhances the impact resistance of the end cover 3 and increases the service life of the battery cell 10.
  • the cover body 31 is provided with a pressure relief score 313 , and the pressure relief score 313 is located in the pressure relief area 312 .
  • the pressure relief score 313 may be provided on the bottom surface of the groove 32 .
  • the pressure relief score 313 can be formed in various ways, such as stamping forming, milling forming, etc.
  • the area where the pressure relief notch 313 is provided on the cover body 31 is weaker, so that when the pressure inside the battery cell 10 reaches the detonation pressure, the pressure relief area 312 will crack at the location where the pressure relief notch 313 is provided, so as to separate from the pressure relief area 312 Perform pressure relief.
  • the pressure relief score 313 is a groove extending along a closed track connected end to end.
  • Closed trajectories can be in various shapes, such as circles, ellipses, rectangles, etc.
  • the closed track is roughly rectangular, and the area defined by the pressure relief notch 313 is also generally rectangular.
  • the length direction of the area defined by the pressure relief notch 313 is consistent with the length direction of the groove 32 .
  • the area of the area defined by the pressure relief score 313 is more than half of the area of the pressure relief area 312 .
  • the pressure relief score 313 is a groove extending along a closed trajectory connected end to end.
  • the pressure relief area 312 can be separated from the area defined by the pressure relief score 313.
  • the openings are formed correspondingly, and the emissions inside the battery cell 10 can be discharged outward through the openings, thereby having a larger pressure relief area and improving the pressure relief efficiency.
  • the pressure relief score 313 may be a groove extending along a non-closed trajectory.
  • the pressure relief score 313 may be linear, U-shaped, C-shaped, etc.
  • FIG. 15 is a schematic structural diagram of the end cap 3 provided in some embodiments of the present application.
  • FIG. 16 is an exploded view of the end cap 3 shown in FIG. 15 .
  • the end cover 3 also includes a protective member 33 , which is connected to the cover body 31 and covers the groove 32 .
  • the protective member 33 may be a sheet structure, and the shape of the protective member 33 may be adapted to the shape of the groove 32. For example, if the groove 32 is rectangular, the protective member 33 is also rectangular.
  • the protective member 33 can be made of metal materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.; the protective member 33 can also be made of non-metallic materials, such as rubber, plastic, etc.
  • the protective member 33 can be connected to the cover body 31 in various ways, such as snapping, adhesion, etc.
  • the protective member 33 covers the groove 32 , and the protective member 33 protects the pressure relief area 312 and reduces the risk of damage to the pressure relief area 312 by foreign objects.
  • the protective member 33 is connected to the first surface 3111 .
  • the protective member 33 is bonded to the first surface 3111.
  • the protective member 33 completely covers the first chamfered surface 322 , the second chamfered surface 324 and the third chamfered surface 326 .
  • the third chamfer surface 326 In the embodiment in which the cover body 31 is formed with the first chamfered surface 322 , the second chamfered surface 324 and the third chamfered surface 326 , the protective member 33 completely covers the first chamfered surface 322 , the second chamfered surface 324 and the third chamfered surface 326 .
  • the third chamfer surface 326 is formed with the first chamfered surface 322 , the second chamfered surface 324 and the third chamfered surface 326 .
  • the protective member 33 is connected to the first surface 3111.
  • this structure can make the installation of the protective member 33 more convenient; on the other hand, the protective member 33 can cover each chamfered surface, which is effective for pressure relief. Area 312 plays a better protective role.
  • the cover body 31 is provided with an exhaust channel 314 , and the exhaust channel 314 communicates with the inside of the groove 32 and the outside of the cover body 31 .
  • the exhaust channel 314 may be a hole provided in the cover body 31 , and may have one end of the hole extending to the groove side of the groove 32 and the other end extending to the first surface 3111 .
  • the exhaust passage 314 may also be a groove provided in the cover body 31 . There may be one exhaust channel 314 on the cover body 31 or multiple exhaust channels 314 .
  • the exhaust channel 314 is provided to connect the inside of the groove 32 with the outside world, so as to balance the air pressure between the inside of the groove 32 and the outside world, and reduce the risk of the protective member 33 falling off due to the increase in air pressure inside the groove 32 .
  • FIG. 17 is a partial enlarged view of the end cover 3 shown in FIG. 15 with the protective member 33 removed.
  • the exhaust channel 314 is an exhaust slot provided on the cover body 31 .
  • the exhaust slot One end extends to the first surface 3111.
  • the exhaust groove may be provided at the edge of the groove 32, for example, the exhaust groove may be provided corresponding to the first side 323 or the second side 325 of the groove 32; the exhaust groove may also be provided at the corner of the groove 32, such as , the exhaust groove is provided corresponding to the corner surface 321 of the groove 32 .
  • the exhaust groove is provided corresponding to the first side surface 323 , and the exhaust groove extends to the second chamfered surface 324 .
  • the exhaust channel 314 is an exhaust groove provided on the cover body 31.
  • the exhaust channel 314 can effectively communicate the inside of the groove 32 with the outside world and is easy to form.
  • the embodiment of the present application provides a battery cell 10, which includes a case 1 and an end cover 3 provided in any of the above embodiments.
  • the housing 1 has an opening, and the cover body 31 closes the opening.
  • An embodiment of the present application provides a battery 100, including the battery cell 10 provided in any of the above embodiments.
  • the battery 100 further includes a box 20 in which the battery cell 10 is accommodated.
  • the box 20 has a bottom wall, and the end cover 3 is disposed on a side of the battery cell 10 facing the bottom wall.
  • the bottom wall is the wall located at the bottom of the box 20 in normal use.
  • the second part 202 covers the top of the first part 201, and the wall of the first part 201 facing away from the second part 202 is the bottom wall.
  • the end cap 3 is disposed on the side of the battery cell 10 facing the bottom wall, so that the battery cell 10 is in an inverted state.
  • An embodiment of the present application also provides an electrical device, including the battery 100 provided in any of the above embodiments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

本申请实施例提供了一种端盖、电池单体、电池及用电设备,属于电池技术领域。其中,端盖包括盖本体和凹槽。盖本体具有第一表面。凹槽设置于盖本体,以在盖本体设置凹槽的区域形成泄压区,凹槽从第一表面沿盖本体的厚度方向凹陷,凹槽的槽侧面包括位于凹槽的拐角位置的拐角面。拐角面与第一表面通过第一倒角面相连。第一倒角面的设置削弱了泄压区在凹槽的拐角位置的强度,均化了泄压区在凹槽的拐角和边部位置的强度,降低泄压区出现局部应力集中的风险,能够很好的保护泄压区,提高了端盖的抗冲击能力。

Description

端盖、电池单体、电池及用电设备
相关申请的交叉引用
本申请要求享有于2022年05月16日提交的名称为“端盖、电池单体、电池及用电设备”的国际专利申请PCT/CN2022/093132的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,具体而言,涉及一种端盖、电池单体、电池及用电设备。
背景技术
随着新能源技术的发展,电池的应用越来越广泛,例如应用在手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等上。
在电池技术中,不仅需要考虑电池单体的安全性,还要考虑电池单体的使用寿命,端盖的抗冲击能力直接影响电池单体的使用寿命。因此,如何提高端盖的抗冲击能力是电池技术中一个亟待解决的问题。
发明内容
本申请实施例提供一种端盖、电池单体、电池及用电设备,能够有效提高端盖的抗冲击能力。
第一方面,本申请实施例提供一种端盖,包括盖本体和凹槽;盖本体具有第一表面;凹槽设置于盖本体,以在盖本体设置凹槽的区域形成泄压区,凹槽从第一表面沿盖本体的厚度方向凹陷,凹槽的槽侧面包括位于凹槽的拐角位置的拐角面;其中,拐角面与第一表面通过第一倒角面相连。
上述技术方案中,拐角面与第一表面通过第一倒角面相连,第一倒角面的设置削弱了泄压区在凹槽的拐角位置的强度,均化了泄压区在凹槽的拐角和边部位置的强度,降低泄压区出现局部应力集中的风险,能够很好的保护泄压区,提高了端盖的抗冲击能力。
在一些实施例中,沿凹槽的周向,第一倒角面的半径从两端到中间位置逐渐增大。这种结构使得泄压区在凹槽的拐角位置的强度从第一倒角面的中间向两端逐渐增大。
在一些实施例中,第一倒角面的最大半径为R 1,满足:0.5mm≤R 1≤2mm。
在一些实施例中,槽侧面还包括与拐角面相连的第一侧面,第一侧面与第一表面通过第二倒角面相连;其中,第二倒角面的最大半径小于第一倒角面的最大半径。第二倒角面的设置使得第一侧面能够更为圆滑地过渡至第一表面,避免第一侧面与第一表面直接相连形成尖角。第二倒角面的最大半径小于第一倒角面的最大半径,能够均化了泄压区在凹槽的拐角和边部位置的强度。
在一些实施例中,沿凹槽的周向,第二倒角面的两端均连接有第一倒角面,第二倒角面的半径从两端到中间位置逐渐减小。这种结构使得泄压区在凹槽的边部位置的强度从第二倒角面的两端到中间逐渐增大,增强泄压区在凹槽的边部的中间位置的强度,具有更好的抗冲击能力。
在一些实施例中,第一倒角面与第二倒角面相连于第一连接位置,第一倒角面位于在第一连接位置的半径等于第二倒角面位于第一连接位置的半径。这种结构使得第一倒角面能够更为平缓的过渡至第二倒角面,使得第一倒角面和第二倒角面能够形成一个连续的倒角面。
在一些实施例中,第二倒角面的最大半径为R 2,满足:0.1mm≤R 2≤0.5mm。
在一些实施例中,槽侧面还包括第二侧面,第二侧面与第一侧面位于凹槽的不同方位,第二侧面与第一侧面通过拐角面相连,第二侧面与第一表面通过第三倒角面相连;其中,第三倒角面的最大半径小于第一倒角面的最大半径。第三倒角面的设置使得第二侧面能够更为圆滑地过渡至第 一表面,避免第二侧面与第一表面直接相连形成尖角。第三倒角面的最大半径小于第一倒角面的最大半径,能够均化了泄压区在凹槽的拐角和边部位置的强度。
在一些实施例中,沿凹槽的周向,第三倒角面的两端均连接有第一倒角面,第三倒角面的半径从两端到中间位置逐渐减小。这种结构使得泄压区在凹槽的边部位置的强度从第三倒角面的两端到中间逐渐增大,增强泄压区在凹槽的边部的中间位置的强度,具有更好的抗冲击能力。
在一些实施例中,第一倒角面与第三倒角面相连于第二连接位置,第一倒角面位于在第二连接位置的半径等于第三倒角面位于第二连接位置的半径。这种结构使得第一倒角面能够更为平缓的过渡至第三倒角面,使得第一倒角面和第三倒角面能够形成一个连续的倒角面。
在一些实施例中,第三倒角面的最大半径为R 3,满足:0.1mm≤R 3≤0.5mm。
在一些实施例中,槽侧面包括两个第一侧面和两个第二侧面,两个第一侧面沿第一方向相对设置,两个第二侧面沿第二方向相对设置,第一方向垂直于第二方向。这样,两个第一侧面与两个第二侧面位于不同的方位,使得凹槽为横截面大致呈矩形的矩形槽,结构简单,易于成型。
在一些实施例中,两个第一侧面沿第一方向的距离为第一距离,两个第二侧面沿第二方向的距离为第二距离,第一距离小于第二距离。这样,使得凹槽为横截面大致呈长方形的长方形槽,泄压区也大致呈长方形,具有较大的泄压面积。
在一些实施例中,第一方向为盖本体的长度方向,第二方向为盖本体的宽度方向。在端盖内侧受到电池单体内部的压力时,泄压区在凹槽的短边位置更容易被破坏,在端盖外侧受到冲击力时,泄压区在凹槽的长边位置更容易被破坏,从而使得泄压区在两种不同的工况下容易被破坏的位置不同,增强了端盖的抗冲击能力,提高电池单体的使用寿命。
在一些实施例中,盖本体设有泄压刻痕,泄压刻痕位于泄压区。盖本体设置泄压刻痕的区域更为薄弱,使得泄压区在电池单体内部的压力达到起爆压力时在设置泄压刻痕的位置裂开,以从泄压区进行泄压。
在一些实施例中,泄压刻痕为沿首尾相连的封闭轨迹延伸的槽。这种结构使得泄压区在泄压刻痕限定的区域能够在电池单体内部的压力达到起爆压力时打开,具有较大的泄压面积,提高泄压效率。
在一些实施例中,端盖还包括保护件,保护件连接于盖本体,并覆盖凹槽。保护件覆盖凹槽,保护件对泄压区起到保护作用,降低外物对泄压区造成损坏的风险。
在一些实施例中,保护件连接于第一表面。这种结构一方面,能够更为方便地实现保护件的安装;另一方面,保护件能够覆盖各个倒角面,对泄压区起到更好的保护作用。
在一些实施例中,盖本体设置有排气通道,排气通道连通凹槽内部和盖本体外部。排气通道的设置使得凹槽内部与外界连通,以平衡凹槽内部与外界的气压,降低因凹槽内部气压升高,而造成保护件脱落的风险。
在一些实施例中,排气通道为设置于盖本体的排气槽,排气槽的一端延伸至第一表面。这种结构的排气通道能够有效地将凹槽内部与外界连通,易于成型。
第二方面,本申请实施例提供一种电池单体,包括壳体和第一方面任意一个实施例提供的端盖;壳体具有开口;盖本体封闭开口。
第三方面,本申请实施例提供一种电池,包括第二方面任意一个实施例提供的电池单体。
在一些实施例中,电池还包括箱体,电池单体容纳于箱体内,箱体具有底壁,端盖设置于电池单体面向底壁的一侧。
第四方面,本申请实施例还提供一种用电设备,包括第三方面任意一个实施例提供的电池。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸图;
图3为本申请一些实施例提供的电池单体的爆炸图;
图4为本申请一些实施例提供的端盖的结构示意图;
图5为图4所示的端盖在A处的局部放大图;
图6为本申请另一些实施例提供的端盖的结构示意图;
图7为图6所示的端盖在B处的局部放大图;
图8为本申请一些实施例提的端盖(未成型倒角面)局部视图;
图9为图6所示的端盖的俯视图;
图10为图9所示的端盖的C-C剖视图;
图11为图9所示的端盖的D-D剖视图;
图12为图11所示的端盖在F处的局部放大图;
图13为图9所示的端盖的E-E剖视图;
图14为图13所示的端盖在G处的局部放大图;
图15为本申请又一些实施例提供的端盖的结构示意图;
图16为图15所示的端盖的爆炸图;
图17为图15所示的端盖去除保护件后的局部放大图。
图标:1-壳体;2-电极组件;21-正极耳;22-负极耳;3-端盖;31-盖本体;311-凸台;3111-第一表面;312-泄压区;313-泄压刻痕;314-排气通道;32-凹槽;321-拐角面;322-第一倒角面;323-第一侧面;324-第二倒角面;325-第二侧面;326-第三倒角面;33-保护件;4-电极端子;4a-正电极端子;4b-负电极端子;5-集流构件;10-电池单体;20-箱体;201-第一部分;202-第二部分;100-电池;200-控制器;300-马达;1000-车辆;a-第一连接位置;b-第二连接位置;W-拐角面的延伸方向;X-第一方向;Y-第二方向;Z-厚度方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
对于电池单体来说,为保证安全性,可以在电池单体的端盖上设置泄压结构,比如,比如,在端盖上设有凹槽,使得端盖在设置凹槽的位置较为薄弱,以形成泄压区,在电池单体热失控时通过泄压区来泄放电池单体内部的压力,降低电池单体爆炸、起火的风险,提高电池单体的安全性。
发明人注意到,电池单体在实际使用工况下,端盖的泄压区容易出现电池单体未发生热失控就异常打开的情况,影响电池单体的使用寿命。
发明人研究发现,对于端盖来说,泄压区在凹槽的边部位置的强度小于泄压区在凹槽的拐角位置的强度,在端盖受到冲击力时,由于泄压区在凹槽的边部位置的强度相对较小,使得应力集中在凹槽的边部位置,造成凹槽的边部位置发生变形较大,凹槽的拐角位置变形较小,从而导致泄压区异常打开,影响电池单体的使用寿命。
鉴于此,本申请实施例提供一种端盖,端盖包括盖本体和凹槽。盖本体具有第一表面。凹槽设置于盖本体,以在盖本体设置凹槽的区域形成泄压区,凹槽从所述第一表面沿盖本体的厚度方向凹陷,凹槽的槽侧面包括位于凹槽的拐角位置的拐角面。拐角面与第一表面通过第一倒角面相连。
在这样的端盖中,拐角面与第一表面通过第一倒角面相连,第一倒角面的设置削弱了泄压区在凹槽的拐角位置的强度,均化了泄压区在凹槽的拐角和边部位置的强度,在端盖受到冲击力时,泄压区在凹槽的边部位置的变形量与泄压区在凹槽的拐角位置的变形量相差不会过大,降低泄压区出现局部应力集中的风险,能够很好的保护泄压区,提高了端盖的抗冲击能力。
本申请实施例描述的技术方案适用于电池以及使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。
车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的爆炸图,电池100包括电池单体10和箱体20,箱体20用于容纳电池单体10。
其中,箱体20是容纳电池单体10的部件,箱体20为电池单体10提供容纳空间,箱体20可以采用多种结构。在一些实施例中,箱体20可以包括第一部分201和第二部分202,第一部分201与第二部分202相互盖合,以限定出用于容纳电池单体10的容纳空间。第一部分201和第二部分202可以是多种形状,比如,长方体、圆柱体等。第一部分201可以是一侧开放的空心结构,第二部分202也可以是一侧开放的空心结构,第二部分202的开放侧盖合于第一部分201的开放侧,则形成具有容纳空间的箱体20。也可以是第一部分201为一侧开放的空心结构,第二部分202为板状结构,第二部分202盖合于第一部分201的开放侧,则形成具有容纳空间的箱体20。第一部分201与第二部分202可以通过密封元件来实现密封,密封元件可以是密封圈、密封胶等。
在电池100中,电池单体10可以是一个、也可以是多个。若电池单体10为多个,多个电池单体10之间可串联或并联或混联,混联是指多个电池单体10中既有串联又有并联。可以是多个电池单体10先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体20内。也可以是所有电池单体10之间直接串联或并联或混联在一起,再将所有电池单体10构成的整体容纳于箱体20内。
请参照图3,图3为本申请一些实施例提供的电池单体10的爆炸图。电池单体10包括壳体1、电极组件2、端盖3、电极端子4和集流构件5。
壳体1是用于容纳电极组件2的部件,壳体1可以是一端形成开口的空心结构,壳体1可以是相对的两端形成开口的空心结构。壳体1可以是多种形状,比如,圆柱体、长方体等。壳体1的材质可以是多种,比如,铜、铁、铝、钢、铝合金等。
电极组件2是电池单体10中发生电化学反应的部件。电极组件2可以包括正极片、负极片和隔离膜。电极组件2可以是由正极片、隔离膜和负极片通过卷绕形成的卷绕式结构,也可以是由正极片、隔离膜和负极片通过层叠布置形成的叠片式结构。电极组件2具有正极耳21和负极耳22,正极耳21可以是正极片上未涂覆正极活性物质层的部分,负极耳22可以是负极片上未涂覆负极活性物质层的部分。
端盖3是封闭壳体1的开口以将电池单体10的内部环境与外部环境隔绝的部件。端盖3与壳体1共同限定出容纳电极组件2、电解液以及其他部件的密封空间。端盖3的形状可以与壳体1的形状相适配,比如,壳体1为长方体结构,端盖3为与壳体1相适配的矩形结构。端盖3的材质也可以是多种,比如,铜、铁、铝、钢、铝合金等。端盖3可以通过焊接的方式固定于壳体1。
电池单体10中,端盖3可以是一个,也可以是两个。若壳体1是一端形成开口的空心结构,则可以将端盖3对应设置一个。若壳体1是两端形成开口的空心结构,则可以将端盖3对应设置两个,两个端盖3分别封闭壳体1的两个开口。
电极端子4是电池单体10与其他部件相连,以输出电池单体10的电能的部件。电极端子4设置于端盖3上,电极端子4用于与电极组件2的正极耳21或负极耳22电连接。在电池单体10中,电极端子4可以设置为两个,两个电极端子4分别为正电极端子4a和负电极端子4b,正电极端子4a用于与正极耳21电连接,负电极端子4b用于与负极耳22电连接。在电池单体10中的端盖3为两个的实施例中,可以将正电极端子4a和负电极端子4b设置在同一端盖3上,也可以将正电极端子4a和负电极端子4b分别设置在两个端盖3上。如图3所示,在电池单体10中的端盖3为一个的实施例中,可以将正电极端子4a和负电极端子4b设置在同一端盖3上。
集流构件5为实现极耳与电极端子4电连接的部件。如图3所示的实施例,正电极端子4a和负电极端子4b均设置于端盖3上,正电极端子4a可以通过一个集流构件5与正极耳21连接,负电极端子4b可以通过另一个集流构件5与负极耳22连接。
请参照图4-图7,图4为本申请一些实施例提供的端盖3的结构示意图;图5为图4所示的端盖3在A处的局部放大图;图6为本申请另一些实施例提供的端盖3的结构示意图;图7为图6所示的端盖3在B处的局部放大图。本申请实施例提供一种端盖3,包括盖本体31和凹槽32。盖本体31具有第一表面3111。凹槽32设置于盖本体31,以在盖本体31设置凹槽32的区域形成泄压区312,凹槽32从第一表面3111沿盖本体31的厚度方向Z凹陷,凹槽32的槽侧面包括位于凹槽32的拐角位置的拐角面321。其中,拐角面321与第一表面3111通过第一倒角面322相连。
盖本体31用于与壳体1(图3中示出)连接,以实现端盖3封闭壳体1的开口,盖本体31与端盖3可以通过焊接的方式固定。示例性的,盖本体31为长方形结构。
第一表面3111可以是盖本体31在厚度方向Z上最外侧的表面,第一表面3111即为盖本体31在厚度方向Z上最远离壳体1的表面。比如,如图4所示的实施例,盖本体31为平板结构,第一表面3111则可以是盖本体31在厚度方向Z上背离壳体1的外表面。再如,如图6所示的实施例,盖本体31局部沿其厚度方向Z背离壳体1凸出形成凸台311,第一表面3111则可以是凸台311在盖本体31的厚度方向Z上背离壳体1的外表面。盖本体31在面向壳体1的一侧与凸部相对应的位置形成凹陷空间,凹陷空间能够容纳电池单体10内部的部件,比如,集流构件5、电极组件2的极耳等,从而提高电池单体10的能量密度。此外,这种结构还可以提高盖本体31的抗弯强度,提高端盖3的抗冲击能力。
凹槽32可以通过多种方式成型,比如,冲压成型、铣削成型等。凹槽32的横截面可以是多种形状,比如,矩形、平行四边形、梯形等,凹槽32的横截面垂直于厚度方向Z。示例性的,在图4-图7中,凹槽32为横截面大致呈矩形的矩形槽。
在成型时,如图8所示,图8为本申请一些实施例提的端盖3(未成型倒角面)局部视图,可以先在第一表面3111上成型出凹槽32;如图7所示,再成型出第一倒角面322,使得第一倒角面322连接拐角面321与第一表面3111。
凹槽32的槽侧面即为凹槽32四周的面,槽侧面围绕凹槽32在第一表面3111所形成开口分布,凹槽32的槽侧面和凹槽32的槽底面共同界定出凹槽32的内部空间。以凹槽32的横截面大致呈矩形为例,凹槽32的槽侧面具有位于不同方位四个侧面,四个侧面分别位于矩形的四边,相邻的两个侧面之间通过拐角面321相连,拐角面321对应凹槽32的拐角位置,侧面对应凹槽32的边部位置。
泄压区312为盖本体31与凹槽32相对应的部分,也就是说,在盖本体31上设置凹槽32后,盖本体31在凹槽32所在位置剩余的部分即为泄压区312。泄压区312较盖本体31的其他区 域更为薄弱,泄压区312为端盖3用于泄压的部分,在电池单体10内部压力达到起爆压力时,泄压区312可以通过局部破裂、局部或整体脱落等方式打开,以形成电池单体10内部的排放物向外流出的通道,达到泄压的目的。
拐角面321为槽侧面位于凹槽32的拐角位置的部分,拐角面321可以是圆弧面,圆弧面的中心线可以沿盖本体31的厚度方向Z延伸。以凹槽32的横截面大致为矩形为例,凹槽32具有四个位于不同方位的侧面,相邻的两个侧面之间通过拐角面321相连,使得相邻的两个侧面通过拐角面321圆滑过渡。
第一倒角面322连接拐角面321和第一表面3111,实现拐角面321与第一表面3111的圆滑过渡。第一倒角面322沿着拐角面的延伸方向W延伸,第一倒角面322的横截面为圆弧形,第一倒角面322的横截面垂直于拐角面的延伸方向W。第一倒角面322可以是变径结构,即第一倒角面322的半径沿第一倒角面322的延伸方向是变化的;第一倒角面322也可以是等径结构,即第一倒角面322的半径沿第一倒角面322的延伸方向并未发生变化。第一倒角面322的延伸方向的延伸方向与拐角面的延伸方向W一致。
在本申请实施例中,拐角面321与第一表面3111通过第一倒角面322相连,第一倒角面322的设置削弱了泄压区312在凹槽32的拐角位置的强度,均化了泄压区312在凹槽32的拐角和边部位置的强度,降低泄压区312出现局部应力集中的风险,能够很好的保护泄压区312,提高了端盖3的抗冲击能力。
在一些实施例中,请继续参照图7,沿凹槽32的周向,第一倒角面322的半径从两端到中间位置逐渐增大。
凹槽32的周向即为凹槽32的槽侧面的延伸方向。第一倒角面322在凹槽32的周向上的两端即为第一倒角面322在延伸方向上的两端。第一倒角面322的延伸方向与拐角面的延伸方向W一致。第一倒角面322在两端位置的半径可以相等,也可以不等。
可理解的,在本实施例中,第一倒角面322为变径结构。第一倒角面322的半径从两端到中间位置逐渐增大,盖本体31在第一倒角面322的中间位置的厚度更小,在第一倒角面322的两端位置的厚度更大,盖本体31在第一倒角面322位置的厚度,从第一倒角面322的两端到中间位置逐渐减小,使得泄压区312在凹槽32的拐角位置的强度从第一倒角面322的中间向两端逐渐增大。
在一些实施例中,请参照图9和图10,图9为图6所示的端盖3的俯视图;图10为图9所示的端盖3的C-C剖视图。第一倒角面322的最大半径为R 1,满足:0.5mm≤R 1≤2mm。
R 1可以是0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1mm、1.1mm、1.2mm、1.3mm、1.4mm、1.5mm、1.6mm、1.7mm、1.8mm、1.9mm、2mm中任意一者点值或者任意两者之间的范围值。
在第一倒角面322为等径结构的实施例中,第一倒角面322在其延伸方向上任意位置的半径均为R 1;在第一倒角面322为变径结构的实施例中,以第一倒角面322的半径从两端到中间位置逐渐增大为例,第一倒角面322中间位置的半径为R 1
在一些实施例中,请继续参照图7,槽侧面还包括与拐角面321相连的第一侧面323,第一侧面323与第一表面3111通过第二倒角面324相连。其中,第二倒角面324的最大半径小于第一倒角面322的最大半径。
第一侧面323为槽侧面中的一个侧面,以凹槽32为的横截面长方形为例,第一侧面323为平面,第一侧面323可以是槽侧面沿长度方向延伸的侧面,也可以是槽侧面沿宽度方向延伸的侧面。
第二倒角面324连接第一侧面323和第一表面3111,实现第一侧面323与第一表面3111的圆滑过渡。第二倒角面324沿着第一侧面323的延伸方向延伸,第二倒角面324的横截面为圆弧形,第二倒角面324的横截面垂直于第一侧面323的延伸方向。第二倒角面324可以是变径结构,即第二倒角面324的半径沿第二倒角面324的延伸方向是变化的;第二倒角面324也可以是等径结构,即第二倒角面324的半径沿着第二倒角面324的延伸方向并未发生变化。在第二倒角面324为 等径结构的实施例中,第二倒角面324在其延伸方向上任意位置的半径均与第二倒角面324的最大半径相等。
在本实施例中,第二倒角面324的设置使得第一侧面323能够更为圆滑地过渡至第一表面3111,避免第一侧面323与第一表面3111直接相连形成尖角。第二倒角面324的最大半径小于第一倒角面322的最大半径,能够均化了泄压区312在凹槽32的拐角和边部位置的强度。
在一些实施例中,请继续参照图7,沿凹槽32的周向,第二倒角面324的两端均连接有第一倒角面322,第二倒角面324的半径从两端到中间位置逐渐减小。
第二倒角面324的两端在凹槽32的周向上的两端即为第二倒角面324在延伸方向上的两端。第二倒角面324的延伸方向与第一侧面323的延伸方向一致。第二倒角面324在两端位置的半径可以相等,也可以不等。示例性的,在图7中,第二倒角面324在两端位置的半径相等。
在第一倒角面322的半径从两端到中间位置逐渐增大,且第二倒角面324的最大半径小于第一倒角面322的最大半径的情况下,可理解的,第二倒角面324两端的半径小于第一倒角面322中间位置的半径。
在本实施例中,第二倒角面324为变径结构。第二倒角面324的半径从两端到中间位置逐渐减小,盖本体31在第二倒角面324的中间位置的厚度更大,在第二倒角面324的两端位置的厚度更小,盖本体31在第二倒角面324位置的厚度,从第二倒角面324的两端到中间位置逐渐增大,使得泄压区312在凹槽32的边部位置的强度从第二倒角面324的两端到中间逐渐增大,增强泄压区312在凹槽32的边部的中间位置的强度,具有更好的抗冲击能力。
在一些实施例中,请继续参照图7,第一倒角面322与第二倒角面324相连于第一连接位置a,第一倒角面322位于在第一连接位置a的半径等于第二倒角面324位于第一连接位置a的半径。
第一连接位置a为第一倒角面322与第二倒角面324相连的位置。在第二倒角面324的两端均连接有第一倒角面322的实施例中,第二倒角面324的两端对应形成两个第一连接位置a。
在本实施例中,第一倒角面322位于在第一连接位置a的半径等于第二倒角面324位于第一连接位置a的半径,使得第一倒角面322能够更为平缓的过渡至第二倒角面324,使得第一倒角面322和第二倒角面324能够形成一个连续的倒角面。
在一些实施例中,请参照图11和图12,图11为图9所示的端盖3的D-D剖视图;图12为图11所示的端盖3在F处的局部放大图。第二倒角面324的最大半径为R 2,满足:0.1mm≤R 2≤0.5mm。
R 2可以是0.1mm、0.15mm、0.2mm、0.25mm、0.3mm、0.35mm、0.4mm、0.45mm、0.5mm中任意一者点值或者任意两者之间的范围值。
在第二倒角面324为等径结构的实施例中,第二倒角面324在其延伸方向上任意位置的半径均为R 2;在第二倒角面324为变径结构的实施例中,以第二倒角面324的半径从两端到中间位置逐渐减小为例,第二倒角面324两端中的至少一端的半径为R 2
在一些实施例中,请继续参照图7,槽侧面还包括第二侧面325,第二侧面325与第一侧面323位于凹槽32的不同方位,第二侧面325与第一侧面323通过拐角面321相连,第二侧面325与第一表面3111通过第三倒角面326相连。其中,第三倒角面326的最大半径小于第一倒角面322的最大半径。
第二侧面325为槽侧面中的一个侧面,以凹槽32为长方形为例,第二侧面325为平面,第二侧面325可以是槽侧面沿长度方向延伸的侧面,也可以是槽侧面沿宽度方向延伸的侧面。
第三倒角面326连接第二侧面325和第一表面3111,实现第二侧面325与第一表面3111的圆滑过渡。第三倒角面326沿着第二侧面325的延伸方向延伸,第三倒角面326的横截面为圆弧形,第三倒角面326的横截面垂直于第二侧面325的延伸方向。第三倒角面326可以是变径结构,即第三倒角面326的半径沿第三倒角面326的延伸方向是变化的;第三倒角面326也可以是等径结 构,即第三倒角面326的半径沿着第三倒角面326的延伸方向并未发生变化。在第三倒角面326为等径结构的实施例中,第三倒角面326在其延伸方向上任意位置的半径均与第三倒角面326的最大半径相等。
在本实施例中,第三倒角面326的设置使得第二侧面325能够更为圆滑地过渡至第一表面3111,避免第二侧面325与第一表面3111直接相连形成尖角。第三倒角面326的最大半径小于第一倒角面322的最大半径,能够均化了泄压区312在凹槽32的拐角和边部位置的强度。
在一些实施例中,请继续参照图7,沿凹槽32的周向,第三倒角面326的两端均连接有第一倒角面322,第三倒角面326的半径从两端到中间位置逐渐减小。
第三倒角面326的两端在凹槽32的周向上的两端即为第三倒角面326在延伸方向上的两端。第三倒角面326的延伸方向与第二侧面325的延伸方向一致。第三倒角面326在两端位置的半径可以相等,也可以不等。示例性的,在图7中,第三倒角面326在两端位置的半径相等。
在第一倒角面322的半径从两端到中间位置逐渐增大,且第三倒角面326的最大半径小于第一倒角面322的最大半径的情况下,可理解的,第三倒角面326两端的半径小于第一倒角面322中间位置的半径。
可理解的,在本实施例中,第三倒角面326为变径结构。第三倒角面326的半径从两端到中间位置逐渐减小,盖本体31在第三倒角面326的中间位置的厚度更大,在第三倒角面326的两端位置的厚度更小,盖本体31在第三倒角面326位置的厚度,从第三倒角面326的两端到中间位置逐渐增大,使得泄压区312在凹槽32的边部位置的强度从第三倒角面326的两端到中间逐渐增大,增强泄压区312在凹槽32的边部的中间位置的强度,具有更好的抗冲击能力。
在一些实施例中,请继续参照图7,第一倒角面322与第三倒角面326相连于第二连接位置b,第一倒角面322位于在第二连接位置b的半径等于第三倒角面326位于第二连接位置b的半径。
第二连接位置b为第一倒角面322与第三倒角面326相连的位置。在第三倒角面326的两端均连接有第一倒角面322的实施例中,第三倒角面326的两端对应形成两个第二连接位置b。
本实施例中,第一倒角面322位于在第二连接位置b的半径等于第三倒角面326位于第二连接位置b的半径,使得第一倒角面322能够更为平缓的过渡至第三倒角面326,使得第一倒角面322和第三倒角面326能够形成一个连续的倒角面。
在一些实施例中,请参照图请参照图13和图14,图13为图9所示的端盖3的E-E剖视图;图14为图13所示的端盖3在G处的局部放大图。第三倒角面326的最大半径为R 3,满足:0.1mm≤R 3≤0.5mm。
R 3可以是0.1mm、0.15mm、0.2mm、0.25mm、0.3mm、0.35mm、0.4mm、0.45mm、0.5mm中任意一者点值或者任意两者之间的范围值。
在第三倒角面326为等径结构的实施例中,第三倒角面326在其延伸方向上任意位置的半径均为R 3;在第三倒角面326为变径结构的实施例中,以第三倒角面326的半径从两端到中间位置逐渐减小为例,第三倒角面326两端中的至少一端的半径为R 3
在一些实施例中,请继续参照图7,槽侧面包括两个第一侧面323和两个第二侧面325,两个第一侧面323沿第一方向X相对设置,两个第二侧面325沿第二方向Y相对设置,第一方向X垂直于第二方向Y。
其中,第一方向X和第二方向Y均垂直于盖本体31的厚度方向Z。
两个第一侧面323均为平面且平行设置,两个第二侧面325均为平面且平行设置。
在本实施例中,槽侧面大致呈矩形,则凹槽32的横截面也大致呈矩形,结构简单,易于成型。
在一些实施例中,请继续参照图7,两个第一侧面323沿第一方向X的距离为第一距离, 两个第二侧面325沿第二方向Y的距离为第二距离,第一距离小于第二距离。
凹槽32大致为长方形,第一侧面323沿凹槽32的长度方向延伸,第二侧面325沿凹槽32的宽度方向延伸。可理解的,第一方向X为凹槽32的宽度方向,第二方向Y为凹槽32的长度方向,第一距离为凹槽32的宽度,第二距离为凹槽32的长度。
示例性的,第一侧面323在凹槽32的长度方向上的尺寸大于第二侧面325在凹槽32的宽度方向上的尺寸。第二倒角面324在凹槽32的长度方向上的尺寸大于第三倒角面326在凹槽32的宽度方向上的尺寸。
如图7所示,在第一倒角面322的半径从两端到中间位置逐渐增大,第二倒角面324的半径从两端到中间位置逐渐减小,且第三倒角面326的半径从两端到中间位置逐渐减小的实施例中,可以是第一倒角面322与第二倒角面324相连的一端的半径大于第一倒角面322与第三倒角面326相连的一端的半径。
在本实施例中,凹槽32大致为长方形,泄压区312也大致呈长方形,具有较大的泄压面积。
在一些实施例中,第一方向X为盖本体31的长度方向,第二方向Y为盖本体31的宽度方向。
示例性的,盖本体31为长方形,凹槽32的宽度方向与盖本体31的长度方向一致,凹槽32的长度方向与盖本体31的宽度方向一致。
由于凹槽32的宽度方向与盖本体31的长度方向一致,凹槽32的长度方向与盖本体31的宽度方向一致,在端盖3内侧受到电池单体10内部的压力时,泄压区312在凹槽32的短边位置更容易被破坏,在端盖3外侧受到冲击力时,泄压区312在凹槽32的长边位置更容易被破坏,从而使得泄压区312在两种不同的工况下容易被破坏的位置不同,增强了端盖3的抗冲击能力,提高电池单体10的使用寿命。
在一些实施例中,请继续参照图7,盖本体31设有泄压刻痕313,泄压刻痕313位于泄压区312。
泄压刻痕313可以设置在凹槽32的槽底面上。泄压刻痕313可以通过多种方式成型,比如,冲压成型、铣削成型等。
盖本体31设置泄压刻痕313的区域更为薄弱,使得泄压区312在电池单体10内部的压力达到起爆压力时在设置泄压刻痕313的位置裂开,以从泄压区312进行泄压。
在一些实施例中,请继续参照图7,泄压刻痕313为沿首尾相连的封闭轨迹延伸的槽。
封闭轨迹可以是多种形状,比如、圆形、椭圆形、长方形等。示例性的,在图7中,封闭轨迹大致为长方形,泄压刻痕313限定出的区域也大致为长方形,泄压刻痕313限定出的区域的长度方向与凹槽32的长度方向一致。
示例性的,泄压刻痕313限定出的区域的面积是泄压区312的面积的二分之一以上。
在本实施例中,泄压刻痕313为沿首尾相连的封闭轨迹延伸的槽,在电池单体10内部压力达到起爆压力时,泄压区312在泄压刻痕313限定的区域能够脱离,以对应形成开口部,电池单体10内部的排放物能够通过开口部向外排出,具有较大的泄压面积,提高泄压效率。
在其他实施例中,泄压刻痕313可以是沿非封闭轨迹延伸的槽,比如,泄压刻痕313为直线形、U形、C形等。
在一些实施例中,请参照图15和图16,图15为本申请又一些实施例提供的端盖3的结构示意图,图16为图15所示的端盖3的爆炸图。端盖3还包括保护件33,保护件33连接于盖本体31,并覆盖凹槽32。
保护件33可以是片状结构,保护件33的形状可以与凹槽32的形状相适配,比如,凹槽32为长方形,保护件33也为长方形。保护件33可以是金属材料,比如,铜、铁、铝、钢、铝合 金等;保护件33也可以是非金属材料,比如,橡胶、塑料等。保护件33可以通过多种方式连接于盖本体31,比如,卡接、粘接等。
在本实施例中,保护件33覆盖凹槽32,保护件33对泄压区312起到保护作用,降低外物对泄压区312造成损坏的风险。
在一些实施例中,请继续参照图15和图16,保护件33连接于第一表面3111。示例性的,保护件33粘接于第一表面3111。
在盖本体31形成有第一倒角面322、第二倒角面324和第三倒角面326的实施例中,保护件33完全覆盖第一倒角面322、第二倒角面324和第三倒角面326。
在本实施例中,保护件33连接第一表面3111,这种结构一方面,能够更为方便地实现保护件33的安装;另一方面,保护件33能够覆盖各个倒角面,对泄压区312起到更好的保护作用。
在一些实施例中,请继续参照图15和图16,盖本体31设置有排气通道314,排气通道314连通凹槽32内部和盖本体31外部。
排气通道314可以是设置于盖本体31的孔道,可以是孔道的一端延伸至凹槽32的槽侧面,另一端延伸至第一表面3111。排气通道314也可以是设置于盖本体31的槽。盖本体31上的排气通道314可以是一个,也可以是多个。
排气通道314的设置使得凹槽32内部与外界连通,以平衡凹槽32内部与外界的气压,降低因凹槽32内部气压升高,而造成保护件33脱落的风险。
在一些实施例中,请参照图17,图17为图15所示的端盖3去除保护件33后的局部放大图,排气通道314为设置于盖本体31的排气槽,排气槽的一端延伸至第一表面3111。
排气槽可以设置于凹槽32的边部位置,比如,排气槽对应凹槽32的第一侧面323或第二侧面325设置;排气槽也可以设置于凹槽32的拐角位置,比如,排气槽对应凹槽32的拐角面321设置。
示例性的,在图17中,排气槽对应第一侧面323设置,并且排气槽延伸至第二倒角面324。
在本实施例中,排气通道314为设置于盖本体31的排气槽,排气通道314能够有效地将凹槽32内部与外界连通,易于成型。
本申请实施例提供一种电池单体10,包括壳体1和上述任意一个实施例提供的端盖3。壳体1具有开口,盖本体31封闭开口。
本申请实施例提供一种电池100,包括上述任意一个实施例提供的电池单体10。
在一些实施例中,电池100还包括箱体20,电池单体10容纳于箱体20内,箱体20具有底壁,端盖3设置于电池单体10面向底壁的一侧。
底壁为箱体20常规使用下位于底部的壁。以箱体20包括第一部分201和第二部分202为例,在常规使用下,第二部分202盖合于第一部分201的顶部,第一部分201背离第二部分202的壁即为底壁。
端盖3设置于电池单体10面向底壁的一侧,使得电池单体10处于倒置状态。
本申请实施例还提供一种用电设备,包括上述任意一个实施例提供的电池100。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
以上实施例仅用以说明本申请的技术方案,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (24)

  1. 一种端盖,包括:
    盖本体,具有第一表面;
    凹槽,设置于所述盖本体,以在所述盖本体设置所述凹槽的区域形成泄压区,所述凹槽从所述第一表面沿所述盖本体的厚度方向凹陷,所述凹槽的槽侧面包括位于所述凹槽的拐角位置的拐角面;
    其中,所述拐角面与所述第一表面通过第一倒角面相连。
  2. 根据权利要求1所述的端盖,其中,沿所述凹槽的周向,所述第一倒角面的半径从两端到中间位置逐渐增大。
  3. 根据权利要求1或2所述的端盖,其中,所述第一倒角面的最大半径为R 1,满足:0.5mm≤R 1≤2mm。
  4. 根据权利要求1-3任一项所述的端盖,其中,所述槽侧面还包括与所述拐角面相连的第一侧面,所述第一侧面与所述第一表面通过第二倒角面相连;
    其中,所述第二倒角面的最大半径小于所述第一倒角面的最大半径。
  5. 根据权利要求4所述的端盖,其中,沿所述凹槽的周向,所述第二倒角面的两端均连接有所述第一倒角面,所述第二倒角面的半径从两端到中间位置逐渐减小。
  6. 根据权利要求4或5所述的端盖,其中,所述第一倒角面与所述第二倒角面相连于第一连接位置,所述第一倒角面位于在所述第一连接位置的半径等于所述第二倒角面位于所述第一连接位置的半径。
  7. 根据权利要求4-6任一项所述的端盖,其中,所述第二倒角面的最大半径为R 2,满足:0.1mm≤R 2≤0.5mm。
  8. 根据权利要求4-7任一项所述的端盖,其中,所述槽侧面还包括第二侧面,所述第二侧面与所述第一侧面位于所述凹槽的不同方位,所述第二侧面与所述第一侧面通过所述拐角面相连,所述第二侧面与所述第一表面通过第三倒角面相连;
    其中,所述第三倒角面的最大半径小于所述第一倒角面的最大半径。
  9. 根据权利要求8所述的端盖,其中,沿所述凹槽的周向,所述第三倒角面的两端均连接有所述第一倒角面,所述第三倒角面的半径从两端到中间位置逐渐减小。
  10. 根据权利要求8或9所述的端盖,其中,所述第一倒角面与所述第三倒角面相连于第二连接位置,所述第一倒角面位于在所述第二连接位置的半径等于所述第三倒角面位于所述第二连接位置的半径。
  11. 根据权利要求8-10任一项所述的端盖,其中,所述第三倒角面的最大半径为R 3,满足:0.1mm≤R 3≤0.5mm。
  12. 根据权利要求8-11任一项所述的端盖,其中,所述槽侧面包括两个所述第一侧面和两个所述第二侧面,两个所述第一侧面沿第一方向相对设置,两个所述第二侧面沿第二方向相对设置,所述第一方向垂直于第二方向。
  13. 根据权利要求12所述的端盖,其中,两个所述第一侧面沿所述第一方向的距离为第一距离,两个所述第二侧面沿第二方向的距离为第二距离,所述第一距离小于所述第二距离。
  14. 根据权利要求13所述的端盖,其中,所述第一方向为所述盖本体的长度方向,所述第二方向为所述盖本体的宽度方向。
  15. 根据权利要求1-14任一项所述的端盖,其中,所述盖本体设有泄压刻痕,所述泄压刻痕位于所述泄压区。
  16. 根据权利要求15所述的端盖,其中,所述泄压刻痕为沿首尾相连的封闭轨迹延伸的槽。
  17. 根据权利要求1-16任一项所述的端盖,其中,所述端盖还包括保护件,所述保护件连接于所述盖本体,并覆盖所述凹槽。
  18. 根据权利要求17所述的端盖,其中,所述保护件连接于所述第一表面。
  19. 根据权利要求17或18所述的端盖,其中,所述盖本体设置有排气通道,所述排气通道连通凹槽内部和盖本体外部。
  20. 根据权利要求19所述的端盖,其中,所述排气通道为设置于所述盖本体的排气槽,所述排气槽的一端延伸至所述第一表面。
  21. 一种电池单体,包括:
    壳体,具有开口;
    如权利要求1-20任一项所述的端盖,所述盖本体封闭所述开口。
  22. 一种电池,包括
    如权利要求21所述的电池单体。
  23. 根据权利要求22所述的电池,其中,所述电池还包括箱体,所述电池单体容纳于所述箱体内,所述箱体具有底壁,所述端盖设置于所述电池单体面向所述底壁的一侧。
  24. 一种用电设备,包括如权利要求22或23所述的电池。
PCT/CN2022/137556 2022-05-16 2022-12-08 端盖、电池单体、电池及用电设备 WO2023221464A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280048722.7A CN117616622A (zh) 2022-05-16 2022-12-08 端盖、电池单体、电池及用电设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/093132 WO2023220882A1 (zh) 2022-05-16 2022-05-16 端盖、电池单体、电池及用电设备
CNPCT/CN2022/093132 2022-05-16

Publications (1)

Publication Number Publication Date
WO2023221464A1 true WO2023221464A1 (zh) 2023-11-23

Family

ID=88834453

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/093132 WO2023220882A1 (zh) 2022-05-16 2022-05-16 端盖、电池单体、电池及用电设备
PCT/CN2022/137556 WO2023221464A1 (zh) 2022-05-16 2022-12-08 端盖、电池单体、电池及用电设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093132 WO2023220882A1 (zh) 2022-05-16 2022-05-16 端盖、电池单体、电池及用电设备

Country Status (4)

Country Link
US (1) US20240120608A1 (zh)
EP (1) EP4318769A1 (zh)
CN (2) CN117413411A (zh)
WO (2) WO2023220882A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109216638A (zh) * 2017-06-30 2019-01-15 Lg电子株式会社 电池模块
CN213304257U (zh) * 2020-09-14 2021-05-28 湖北亿纬动力有限公司 一种电池箱盖及电池箱
CN113270962A (zh) * 2021-07-06 2021-08-17 张玉伟 电机端盖及电机
CN215911484U (zh) * 2021-09-30 2022-02-25 蜂巢能源科技有限公司 动力电池的顶盖和具有其的动力电池
CN216288669U (zh) * 2021-10-09 2022-04-12 宁德时代新能源科技股份有限公司 端盖、电池单体、电池以及用电装置
CN217507493U (zh) * 2022-05-16 2022-09-27 宁德时代新能源科技股份有限公司 端盖、电池单体、电池及用电设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175937A (ja) * 2010-02-25 2011-09-08 Sanyo Electric Co Ltd 密閉型電池
JP5819051B2 (ja) * 2010-09-08 2015-11-18 日立オートモティブシステムズ株式会社 二次電池
CN202395055U (zh) * 2011-11-03 2012-08-22 中山天贸电池有限公司 带有防爆装置的锂离子电池
CN215496871U (zh) * 2021-09-22 2022-01-11 中化国际(控股)股份有限公司 电芯盖板和电芯

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109216638A (zh) * 2017-06-30 2019-01-15 Lg电子株式会社 电池模块
CN213304257U (zh) * 2020-09-14 2021-05-28 湖北亿纬动力有限公司 一种电池箱盖及电池箱
CN113270962A (zh) * 2021-07-06 2021-08-17 张玉伟 电机端盖及电机
CN215911484U (zh) * 2021-09-30 2022-02-25 蜂巢能源科技有限公司 动力电池的顶盖和具有其的动力电池
CN216288669U (zh) * 2021-10-09 2022-04-12 宁德时代新能源科技股份有限公司 端盖、电池单体、电池以及用电装置
CN217507493U (zh) * 2022-05-16 2022-09-27 宁德时代新能源科技股份有限公司 端盖、电池单体、电池及用电设备

Also Published As

Publication number Publication date
CN117413411A (zh) 2024-01-16
EP4318769A1 (en) 2024-02-07
US20240120608A1 (en) 2024-04-11
WO2023220882A1 (zh) 2023-11-23
CN117616622A (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
CN215989104U (zh) 泄压装置、电池单体、电池及用电设备
CN217507493U (zh) 端盖、电池单体、电池及用电设备
WO2023134479A1 (zh) 电池和用电设备
WO2023185327A1 (zh) 端盖、电池单体、电池及用电设备
US20230327275A1 (en) Pressure relief apparatus, battery cell, battery, and electrical device
WO2024087381A1 (zh) 电池单体、电池及用电设备
US20230223642A1 (en) Pressure relief apparatus, battery cell, battery, and electrical device
US20230155262A1 (en) Housing, battery cell, battery and electric apparatus
WO2023236220A1 (zh) 电池单体、电池及用电设备
WO2023221464A1 (zh) 端盖、电池单体、电池及用电设备
WO2023220881A1 (zh) 端盖、电池单体、电池及用电设备
WO2023184110A1 (zh) 外壳、电池单体、电池及用电设备
WO2023173416A1 (zh) 泄压机构、电池单体、电池及用电设备
WO2023206451A1 (zh) 电池单体、电池及用电设备
WO2023220887A1 (zh) 端盖、电池单体、电池及用电设备
WO2023220885A1 (zh) 端盖、电池单体、电池及用电设备
WO2024040530A1 (zh) 电池单体、电池及用电设备
WO2024077557A1 (zh) 电池单体、电池及用电设备
WO2024077627A1 (zh) 端盖、电池单体、电池、用电设备及制造方法
WO2023220889A1 (zh) 外壳、电池单体、电池及用电设备
WO2024082140A1 (zh) 端盖、电池单体、电池及用电设备
WO2024065457A1 (zh) 端盖、电池单体、电池及用电设备
WO2023220886A1 (zh) 端盖、电池单体、电池及用电设备
WO2023231014A1 (zh) 泄压装置、外壳、电池单体、电池及用电设备
WO2023077312A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942484

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280048722.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022942484

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022942484

Country of ref document: EP

Effective date: 20240403