WO2023231014A1 - 泄压装置、外壳、电池单体、电池及用电设备 - Google Patents

泄压装置、外壳、电池单体、电池及用电设备 Download PDF

Info

Publication number
WO2023231014A1
WO2023231014A1 PCT/CN2022/096957 CN2022096957W WO2023231014A1 WO 2023231014 A1 WO2023231014 A1 WO 2023231014A1 CN 2022096957 W CN2022096957 W CN 2022096957W WO 2023231014 A1 WO2023231014 A1 WO 2023231014A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure relief
relief device
weak
area
battery cell
Prior art date
Application number
PCT/CN2022/096957
Other languages
English (en)
French (fr)
Inventor
陈小波
顾明光
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/096957 priority Critical patent/WO2023231014A1/zh
Priority to CN202280060588.2A priority patent/CN117981153A/zh
Priority to KR1020247012035A priority patent/KR20240055843A/ko
Priority to PCT/CN2022/134419 priority patent/WO2023231327A1/zh
Priority to CN202280021334.XA priority patent/CN117501526A/zh
Priority to CN202280021333.5A priority patent/CN117501525A/zh
Priority to PCT/CN2022/134421 priority patent/WO2023231328A1/zh
Priority to CN202223593122.5U priority patent/CN219226528U/zh
Publication of WO2023231014A1 publication Critical patent/WO2023231014A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/143Fireproof; Explosion-proof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, specifically, to a pressure relief device, a casing, a battery cell, a battery and electrical equipment.
  • batteries are used more and more widely, such as in mobile phones, laptops, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes and electric tools, etc. superior.
  • the battery cell As an energy storage element, the battery cell generally outputs electrical energy through a chemical reaction between the electrode assembly and the electrolyte.
  • safety issues are also an issue that needs to be considered. Therefore, how to improve the safety of battery cells is an urgent problem to be solved in battery technology.
  • Embodiments of the present application provide a pressure relief device, casing, battery cells, batteries and electrical equipment, which can effectively improve the safety of battery cells.
  • embodiments of the present application provide a pressure relief device for a battery cell.
  • the pressure relief device is partially formed with a weak area.
  • the weak area is used to rupture when the battery cell releases pressure.
  • the thickness of the weak area is a
  • the hardness of the weak zone is A, satisfying: 5HBW/mm ⁇ A/a ⁇ 10000HBW/mm.
  • the impact of the thickness of the weak zone on the performance of the pressure relief device is taken into consideration, but also the impact of the hardness of the weak zone on the performance of the pressure relief device is taken into account, and the ratio of the hardness of the weak zone to the thickness of the weak zone is set.
  • it can not only make the weak area have sufficient strength during the normal use of the battery cell, but also make the pressure relief device less likely to rupture in the weak area, improve the service life of the battery cell, and also make the pressure relief device in the battery
  • a cell is thermally out of control, it can promptly relieve pressure through the weak area, reducing the risk of fire or explosion in the battery cell and improving the safety of the battery cell.
  • 190HBW/mm ⁇ A/a ⁇ 4000HBW/mm In this way, the performance of the pressure relief device is better, while ensuring that the weak area has sufficient strength during normal use of the battery cell, and at the same time ensuring that the weak area ruptures and releases pressure in time when the battery cell thermally runs out of control. On the premise of ensuring the safety of the battery cells, the service life of the battery cells is increased.
  • the pressure relief device includes a non-weak zone, the non-weak zone is connected around the weak zone, and the thickness of the non-weak zone is b, satisfying: a ⁇ b.
  • the hardness of the non-weakened area is B, satisfying: B ⁇ A.
  • the hardness of the weak area is greater than the hardness of the non-weak area, which is equivalent to increasing the hardness of the weak area, increasing the strength of the weak area, and reducing the risk of rupture of the weak area during normal use of the battery cell.
  • A/B the greater the ratio of the hardness of the weak area to the hardness of the non-weak area, the less likely the weak area is to rupture. If the ratio between the two is too large, the weak area may not be able to rupture and relieve pressure in time when the battery cell is thermally out of control. Therefore, , set the ratio of the hardness of the weak area to the hardness of the non-weak area to no more than 3 to ensure that the weak area can rupture and release pressure in time when the battery cell is thermally out of control, thus improving the safety of the battery cell.
  • non-weak areas are directly connected to weak areas.
  • the structure is simple and easy to form.
  • the pressure relief device is provided with a groove, the pressure relief device forms a connection area at the position where the groove is provided, the non-weak area is connected around the connection area, and the connection area partially forms a weak area. In this way, the connection area is thinner than the weak area, and it is easier to form a weak area in the connection area.
  • the weakened areas are integrally formed with the non-weakened areas. It reduces the molding difficulty of the pressure relief device, has good economic efficiency, and makes the weak area and non-weak area have good integrity, which can improve the strength of the weak area.
  • the pressure relief device includes a pressure relief portion, the weak zone extends along an edge of the pressure relief portion, and the pressure relief portion is configured to open with the weak zone as a boundary. In this way, the pressure relief area of the pressure relief device is increased and the pressure relief efficiency is improved.
  • the pressure relief device is provided with a pressure relief groove, and the pressure relief device forms a weak area at a location where the pressure relief groove is provided. The weak area is formed by arranging a pressure relief groove in the pressure relief device, and the forming method of the weak area is simple.
  • an anti-oxidation layer is formed on the surface of the pressure relief device, and the anti-oxidation layer is arranged along the groove wall of the pressure relief groove in the area where the pressure relief groove is provided.
  • the anti-oxidation layer protects the pressure relief device and reduces the risk of oxidation of the pressure relief device. Since the anti-oxidation layer is arranged along the wall of the pressure relief tank in the area where the pressure relief groove is installed, the anti-oxidation layer can play a very good protective role in the area where the pressure relief device is equipped with the pressure relief groove, reducing the pressure of the pressure relief device when the pressure relief groove is installed. There is a risk that the area of the pressure groove will become oxidized, resulting in weakening of the weak area.
  • the pressure relief device includes a non-weak zone, the non-weak zone is connected around the weak zone, the thickness of the anti-oxidation layer in the weak zone is d, and the thickness of the anti-oxidation layer in the non-weak zone is e, satisfying: d ⁇ e. Reduce the impact of the anti-oxidation layer on the weak area and ensure that the weak area can rupture and release pressure in time when the battery cell is thermally out of control.
  • the pressure relief device includes a plurality of walls, the plurality of walls collectively enclose to define an accommodating space, the accommodating space is used to accommodate the electrode assembly of the battery cell, and at least one wall is formed with a weak area.
  • the pressure relief device can provide an accommodation space for the electrode assembly, so that the pressure relief device has both the accommodation function of accommodating the battery cells and the pressure relief function.
  • the plurality of walls include a bottom wall and a plurality of side walls.
  • the plurality of side walls are surrounding the bottom wall.
  • the plurality of side walls and the bottom wall together define an accommodation space.
  • the pressure relief device is located between An opening is formed on an opposite end of the bottom wall; a weak area is formed on the bottom wall; and/or at least one side wall is formed on a weak area.
  • the pressure relief device is a plate-like structure.
  • the pressure relief device has a simple structure and is easy to shape and manufacture.
  • embodiments of the present application provide a housing, including the pressure relief device provided in any embodiment of the first aspect.
  • embodiments of the present application provide a battery cell, including an electrode assembly and a casing provided in any embodiment of the second aspect, and the electrode assembly is accommodated in the casing.
  • an embodiment of the present application provides a battery, including a box and a battery cell provided in any embodiment of the third aspect, and the battery cell is accommodated in the box.
  • an embodiment of the present application provides an electrical device, including the battery provided in any embodiment of the fourth aspect.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is an exploded view of a battery provided by some embodiments of the present application.
  • Figure 3 is an exploded view of a battery cell provided by some embodiments of the present application.
  • Figure 4 is a top view of a pressure relief device provided by some embodiments of the present application.
  • Figure 5 is an A-A cross-sectional view of the pressure relief device shown in Figure 4.
  • Figure 6 is a top view of a pressure relief device provided by other embodiments of the present application.
  • Figure 7 is a B-B cross-sectional view of the pressure relief device shown in Figure 6;
  • Figure 8 is a top view of a pressure relief device provided by some further embodiments of the present application.
  • Figure 9 is a C-C cross-sectional view of the pressure relief device shown in Figure 8.
  • Figure 10 is a top view of a pressure relief device provided by some further embodiments of the present application.
  • Figure 11 is a top view of a pressure relief device provided by other embodiments of the present application.
  • Figure 12 is a partial enlarged view of D of the pressure relief device shown in Figure 5;
  • Figure 13 is a partial enlarged view of E of the pressure relief device shown in Figure 7;
  • Figure 14 is a partial enlarged view of F of the pressure relief device shown in Figure 9;
  • Figure 15 is an isometric view of a pressure relief device provided by some embodiments of the present application.
  • Figure 16 is a cross-sectional view of the pressure relief device shown in Figure 15;
  • Figure 17 is an isometric view of a pressure relief device provided by some further embodiments of the present application.
  • Figure 18 is a schematic structural diagram of a housing provided by some embodiments of the present application.
  • Figure 19 is a schematic structural diagram of a housing provided by other embodiments of the present application.
  • Icon 1-casing; 11-casing; 12-end cover; 121-positive electrode terminal; 122-negative electrode terminal; 13-pressure relief device; 131-weak zone; 1311-first weak section; 1312-second Weak section; 1313-the third weak section; 132-non-weak zone; 133-groove; 134-connection zone; 135-pressure relief part; 136-pressure relief groove; 137-first surface; 138-second surface; 139-anti-oxidation layer; 140-accommodating space; 141-bottom wall; 142-side wall; 2-electrode assembly; 21-positive electrode ear; 22-negative electrode ear; 10-battery cell; 20-box; 201-No. One part; 202-the second part; 100-battery; 200-controller; 300-motor; 1000-vehicle; Z-thickness direction.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode plate, a negative electrode plate and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode collector that is coated with the positive electrode active material layer. Fluid, the positive electrode current collector without the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode collector that is coated with the negative electrode active material layer.
  • Fluid, the negative electrode current collector that is not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • a pressure relief device In the battery cell, in order to ensure the safety of the battery cell, a pressure relief device can be installed in the battery cell. A weak area is formed in the pressure relief device. When the battery cell is thermally out of control, the pressure is released through the weak area. The pressure inside the battery cell to improve the safety of the battery cell.
  • the thickness of the weak area can be set smaller.
  • the weak area is prone to appear in a vibration environment.
  • the battery may rupture due to long-term changes in the internal pressure of the battery cell, and the battery cell has a shorter service life.
  • the thickness of the weak area can be set larger, but it is easy for the weak area to not release the pressure in time when the battery cell thermally loses control, and the battery cell is prone to fire or explosion. Such as accidents, the safety of battery cells is poor.
  • embodiments of the present application provide a pressure relief device that sets the ratio of the hardness of the weak zone to the thickness of the weak zone to 5HBW/mm ⁇ 10000HBW/mm.
  • the pressure relief device described in the embodiments of this application is suitable for battery cells, batteries, and electrical equipment using batteries.
  • Power-consuming devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical equipment as a vehicle as an example.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is an exploded view of the battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a battery cell 10 and a case 20 .
  • the battery cell 10 is accommodated in the case 20 .
  • the box 20 is a component that accommodates the battery cells 10.
  • the box 20 provides a receiving space for the battery cells 10.
  • the box 20 can adopt a variety of structures.
  • the box 20 may include a first part 201 and a second part 202 , and the first part 201 and the second part 202 cover each other to define a receiving space for accommodating the battery cells 10 .
  • the first part 201 and the second part 202 can be in various shapes, such as cuboid, cylinder, etc.
  • the first part 201 may be a hollow structure open on one side, and the second part 202 may also be a hollow structure open on one side.
  • the open side of the second part 202 is covered with the open side of the first part 201 to form a box with a receiving space.
  • the first part 201 may be a hollow structure with one side open
  • the second part 202 may be a plate-like structure
  • the second part 202 covers the open side of the first part 201 to form a box 20 with a receiving space.
  • the first part 201 and the second part 202 can be sealed by sealing elements, which can be sealing rings, sealants, etc.
  • the battery 100 there may be one battery cell 10 or a plurality of battery cells 10. If there are multiple battery cells 10 , the multiple battery cells 10 can be connected in series, in parallel, or in mixed connection. Mixed connection means that the multiple battery cells 10 are both connected in series and in parallel. Multiple battery cells 10 may be first connected in series, parallel, or mixed to form a battery module, and then multiple battery modules may be connected in series, parallel, or mixed to form a whole, and be accommodated in the box 20 . It is also possible that all the battery cells 10 are directly connected in series or in parallel or mixed together, and then the whole battery cells 10 are accommodated in the box 20 .
  • the battery 100 may further include a bus component, through which the multiple battery cells 10 may be electrically connected to achieve series, parallel, or mixed connection of the multiple battery cells 10 .
  • the bus component can be a metal conductor, such as copper, iron, aluminum, stainless steel, aluminum alloy, etc.
  • FIG. 3 is an exploded view of the battery cell 10 provided in some embodiments of the present application.
  • the battery cell 10 may include a case 1 and an electrode assembly 2 .
  • the housing 1 is a component for housing the electrode assembly 2 .
  • the shell 1 can be in various shapes, such as cylinder, cuboid, etc.
  • the housing 1 may include a housing 11 and an end cap 12 .
  • the housing 11 may be a hollow structure with an opening formed at one end, or the housing 11 may be a hollow structure with openings formed at two opposite ends.
  • the housing 11 can be made of various materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the end cap 12 is a component that closes the opening of the case 11 to isolate the internal environment of the battery cell 10 from the external environment.
  • the end cap 12 and the housing 11 jointly define a sealed space for accommodating the electrode assembly 2, electrolyte and other components.
  • the end cap 12 can be connected to the housing 11 by welding or crimping to close the opening of the housing 11 .
  • the shape of the end cap 12 can be adapted to the shape of the shell 1.
  • the shell 11 is a rectangular parallelepiped structure
  • the end cap 12 is a rectangular plate structure matching the shell 1.
  • the shell 11 is a cylinder
  • the end cap 12 is a circular plate-shaped structure that matches the housing 11 .
  • the end cap 12 can also be made of various materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the housing 11 is a hollow structure with openings formed at both ends
  • two end caps 12 can be provided correspondingly.
  • the two end caps 12 respectively close the two openings of the housing 11 .
  • the two end caps 12 are in contact with the housing 11 jointly define a sealed space.
  • one end cover 12 may be provided correspondingly.
  • the end cover 12 closes the opening at one end of the housing 11, and the end cover 12 and the housing 11 jointly define a sealed space.
  • the electrode assembly 2 is a component in the battery cell 10 where electrochemical reactions occur.
  • the electrode assembly 2 may include a positive electrode sheet, a negative electrode sheet and a separation film.
  • the electrode assembly 2 may be a rolled structure formed by winding a positive electrode sheet, a separator film and a negative electrode sheet, or may be a laminated structure formed by a stacked arrangement of positive electrode sheets, separator films and negative electrode sheets.
  • the electrode assembly 2 has a positive electrode tab 21 and a negative electrode tab 22.
  • the positive electrode tab 21 may be a portion of the positive electrode sheet that is not coated with a positive electrode active material layer
  • the negative electrode tab 22 may be a portion of the negative electrode sheet that is not coated with a negative electrode active material layer.
  • the battery cell 10 may also include electrode terminals, which are disposed on the end cover 12 .
  • the electrode terminals are used to electrically connect with the tabs of the electrode assembly 2 to output the electrical energy of the battery cell 10 .
  • the electrode terminal and the tab can be directly connected, for example, the electrode terminal and the tab are directly welded.
  • the electrode terminal and the tab may also be indirectly connected.
  • the electrode terminal and the tab are indirectly connected through a current collecting member.
  • the current collecting member may be a metal conductor, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • two electrode terminals can be provided on the end cover 12.
  • the two electrode terminals are a positive electrode terminal 121 and a negative electrode terminal 122.
  • the positive electrode terminal 121 is electrically connected to the positive electrode lug 21
  • the negative electrode terminal 122 is electrically connected to the negative electrode lug 22 .
  • the battery cell 10 may be provided with a pressure relief device 13 (not shown in FIG. 3 ), and the pressure relief device 13 is a component that releases the pressure inside the battery cell 10 .
  • the pressure relief device 13 is a component that releases the pressure inside the battery cell 10 .
  • the pressure relief device 13 is released through the pressure relief device 13 .
  • Figure 4 is a top view of the pressure relief device 13 provided by some embodiments of the present application
  • Figure 5 is an A-A cross-sectional view of the pressure relief device 13 shown in Figure 4.
  • the embodiment of the present application provides a pressure relief device 13 for a battery cell 10.
  • the pressure relief device 13 is partially formed with a weak area 131.
  • the weak area 131 is used to rupture when the battery cell 10 releases pressure.
  • the weak area 131 The thickness is a, and the hardness of the weak zone 131 is A, which satisfies: 5HBW/mm ⁇ A/a ⁇ 10000HBW/mm.
  • the pressure relief device 13 may be the end cover 12 itself or the housing 11 itself.
  • the pressure relief device 13 may also be an independent component provided on the housing 11 and/or the end cover 12 .
  • the pressure relief device 13 is an explosion-proof disc provided on the end cover 12 and/or the housing 11 .
  • the pressure relief device 13 may be made of metal, such as copper, iron, aluminum, steel, aluminum alloy, etc.; the pressure relief device 13 may also be made of non-metal material, such as plastic.
  • the weak area 131 is a part of the pressure relief device 13 that is weaker than other areas thereof. In the pressure relief device 13 , the weak area 131 is more likely to rupture than other areas. When the internal pressure of the battery cell 10 reaches the pressure relief pressure and needs to be released, the weak area 131 can rupture so that the emissions inside the battery cell 10 can be discharged to achieve the purpose of releasing the pressure inside the battery cell 10 .
  • the thickness of the weak area 131 may be uniform or non-uniform.
  • the thickness measured at any position of the weak zone 131 is the thickness of the weak zone 131; if the thickness of the weak zone 131 is non-uniform, the thickness measured at the thinnest position of the weak zone 131 That is, is the thickness of the weak area 131, that is, a is the minimum thickness of the weak area 131.
  • the weak area 131 can be in various shapes, such as rectangular, circular, oval, ring, U-shaped, C-shaped, H-shaped, etc. If the weak area 131 is annular, then the weak area 131 is a closed structure extending along a closed track connected at both ends.
  • the annular shape may be a rectangular ring, a circular ring, etc.
  • the hardness of the weak zone 131 is Brinell hardness, and the unit is HBW.
  • the measurement method of Brinell hardness can be implemented according to the measurement principles in GB/T 23.1-2018. In the actual measurement process, the hardness of the weak zone 131 can be measured on any surface in the thickness direction Z of the weak zone 131. Taking the end cover 12 of the battery cell 10 as the pressure relief device 13 as an example, the hardness of the weak area 131 can be measured on the outer surface of the weak area 131 , or the hardness of the weak area 131 can be measured on the inner surface of the weak area 131 .
  • the inner surface of the weak zone 131 is the surface where the weak zone 131 faces the inside of the battery cell 10
  • the outer surface of the weak zone 131 is the weak zone 131 facing the battery cell 10 external surface.
  • A/a can be any value between 5HBW/mm and 10000HBW/mm, for example, 5HBW/mm, 50HBW/mm, 100HBW/mm, 190HBW/mm, 500HBW/mm, 1000HBW/mm, 4000HBW/mm, 8000HBW/ mm, 10000HBW/mm, etc.
  • the weak area 131 When A/a>10000HBW/mm, the weak area 131 is thinner and has a greater hardness, which will cause the weak area 131 to be very brittle and easy to break. The weak area 131 will break during the normal use cycle of the battery cell 10, and the battery cell will be damaged. Body 10 has a shorter service life. When A/a ⁇ 5HBW/mm, the weak zone 131 is thicker and has lower hardness. When the battery cell 10 thermally runs out of control, the weak zone 131 will first deform and then be elongated, without rupturing and releasing pressure in time.
  • the weak area 131 does not rupture during the normal use cycle of the battery cell 10. During the thermal runaway of the battery cell 10, the weak area 131 can rupture in time to relieve pressure. .
  • 190HBW/mm ⁇ A/a ⁇ 4000HBW/mm In some embodiments, 190HBW/mm ⁇ A/a ⁇ 4000HBW/mm.
  • A/a can be 190HBW/mm, 500HBW/mm, 1000HBW/mm, 4000HBW/mm, etc.
  • A/a is set to 190HBW/mm ⁇ 4000HBW/mm, so that the performance of the pressure relief device 13 is better, while ensuring that the weak area 131 ruptures and relieves pressure in time when the battery cell 10 thermally runs out of control.
  • the weak area 131 has sufficient strength during normal use of the battery cell 10 .
  • the service life of the battery cell 10 is increased.
  • A can be any value between 8HBW/mm and 200HBW/mm, such as 8HBW, 10HBW, 15HBW, 19HBW, 50HBW, 100HBW, 200HBW, etc.
  • a can be any value between 0.02mm and 1.6mm, such as 0.02mm, 0.025mm, 0.05mm, 0.1mm, 0.15mm, 0.2mm, 1.6mm, etc.
  • the pressure relief device 13 includes a non-weak zone 132 , the non-weak zone 132 is connected around the weak zone 131 , and the thickness of the non-weak zone 132 is b, satisfying: a ⁇ b.
  • the non-weak zone 132 is more difficult to rupture than the weak zone 131.
  • the weak zone 131 ruptures and releases the pressure, while the non-weak zone 132 will not rupture.
  • the thickness of the non-weakened region 132 may be uniform or non-uniform.
  • the thickness measured at any position of the non-weak zone 132 is the thickness of the non-weak zone 132; if the thickness of the non-weak zone 132 is non-uniform, the thickness measured at the thinnest position of the non-weak zone 132
  • the thickness of is the thickness of the weak area 131, that is, b is the minimum thickness of the non-weak area 132.
  • the non-weak area 132 and the weak area 131 may be directly connected or indirectly connected.
  • the weak area 131 is more likely to rupture than the non-weak area 132, ensuring that the pressure relief device 13 is in operation when the battery cell 10 is thermally out of control.
  • the location of the weak zone 131 ruptures and releases pressure.
  • the weak area 131 can be more easily broken than the non-weak area 132 through other methods.
  • the weak area 131 and the non-weak area 132 are equally thick, and the weak area 131 and the non-weak area 132 are made of different materials.
  • the material of the weak area 131 is more likely to break than the material of the non-weak area 132, so that the weak area 131 breaks when the battery cell 10 thermally runs out of control, while the non-weak area 132 does not break.
  • a/b can be any value between 0.05 and 0.95, such as 0.05, 0.12, 0.2, 0.8, 0.95, etc.
  • the ratio of the thickness of the weak area 131 to the thickness of the non-weak area 132 is too small, the strength of the weak area 131 may be insufficient. If the ratio of the thickness of the weak area 131 to the thickness of the non-weak area 132 is too large, the weak area 131 may not easily crack when the battery cell 10 is thermally out of control. If the pressure is not released in time, the battery cell 10 may catch fire. Explosions and other accidents.
  • a/b is set to 0.12 to 0.8, so that the performance of the pressure relief device 13 is better, while ensuring that the weak zone 131 ruptures and releases the pressure in time when the battery cell 10 is thermally out of control.
  • the battery cell 10 has sufficient strength during normal use.
  • the hardness of the non-weakened region 132 is B, satisfying: B ⁇ A.
  • the hardness of the non-weakened area 132 is also Brinell hardness.
  • the hardness of the non-weak zone 132 can be measured on any surface in the thickness direction Z of the non-weak zone 132 .
  • the hardness of the non-weak zone 132 can be measured on the outer surface of the non-weak zone 132, or the non-weak zone can be measured on the inner surface of the non-weak zone 132. 132 hardness.
  • the inner surface of the non-weak zone 132 is the surface where the non-weak zone 132 faces the inside of the battery cell 10
  • the outer surface of the non-weak zone 132 is the surface where the non-weak zone 132 faces the outside of the battery cell 10. surface.
  • the hardness of the weak area 131 is greater than the hardness of the non-weak area 132, which is equivalent to increasing the hardness of the weak area 131, increasing the strength of the weak area 131, and reducing the impact of the weak area 131 during normal use of the battery cell 10. Risk of rupture.
  • A/B 3.
  • A/B can be 1.1, 1.5, 2, 2.5, 3, etc.
  • the ratio of the hardness of the weak area 131 to the hardness of the non-weak area 132 is set to no more than 3 to ensure that the weak area 131 can rupture and release pressure in time when the battery cell 10 is thermally out of control, thereby improving the safety of the battery cell 10 .
  • the non-weak zone 132 is directly connected to the weak zone 131 .
  • the non-weak zone 132 is the portion of the pressure relief device 13 surrounding the edges of the weak zone 131 .
  • the non-weak area 132 and the weak area 131 are directly connected, and the structure is simple and easy to form.
  • FIG. 6 is a top view of the pressure relief device 13 provided in other embodiments of the present application
  • FIG. 7 is a B-B cross-sectional view of the pressure relief device 13 shown in FIG. 6
  • the pressure relief device 13 is provided with a groove 133.
  • the pressure relief device 13 forms a connection area 134 at the position where the groove 133 is provided.
  • the non-weak area 132 is connected around the connection area 134, and the connection area 134 partially forms a weak area 131.
  • the groove 133 can be in various shapes, such as rectangular, circular, oval, etc.
  • the groove 133 can be formed in a variety of ways, such as stamping, milling, etc., and the embodiments of the present application are not particularly limited in this regard.
  • the non-weak area 132 is indirectly connected to the weak area 131, and the connecting area 134, except for the weak area 131, connects the weak area 131 and the non-weak area 132 together.
  • the non-weak area 132 is the portion of the pressure relief device 13 surrounding the peripheral edges of the connecting area 134, and the connecting area 134 is surrounded by the surrounding edges of the weak area 131.
  • the weak area 131 and the non-weak area 132 are connected together.
  • connection area 134 is thinner than the non-weak area 132 , and it is easier to form the weak area 131 in the connection area 134 so that the weak area 131 is not too thick to meet the thickness requirement of the weak area 131 .
  • the weak area 131 and the non-weak area 132 are integrally formed.
  • the weak area 131 and the non-weak area 132 can be integrally formed.
  • the weak area 131 and the non-weak area 132 are formed into an integrated structure, which reduces the difficulty of forming the pressure relief device 13, has good economy, and makes the weak area 131 and the non-weak area 132 have a good integrity. property, which can improve the strength of the weak area 131.
  • Figure 8 is a top view of the pressure relief device 13 provided in some embodiments of the present application
  • Figure 9 is a C-C cross-sectional view of the pressure relief device 13 shown in Figure 8
  • Figure 10 A top view of the pressure relief device 13 provided in some further embodiments of the present application
  • Figure 11 is a top view of the pressure relief device 13 provided in other embodiments of the present application.
  • the pressure relief device 13 includes a pressure relief portion 135 , the weak zone 131 extends along the edge of the pressure relief portion 135 , and the pressure relief portion 135 is configured to open with the weak zone 131 as a boundary.
  • the pressure relief portion 135 is a region of the pressure relief device 13 defined by the weak zone 131 .
  • the pressure relief portion 135 defined by the weak zone 131 may be one.
  • the weak zone 131 is annular; for another example, as shown in FIG. 10 , the weak zone 131 is C-shaped; There may also be multiple pressure relief parts 135 .
  • the weak zone 131 is H-shaped, and the weak zone 131 defines two pressure relief parts 135 .
  • the weak area 131 may include a first weak section 1311, a second weak section 1312, and a third weak section 1313.
  • the first weak section 1311 and the third weak section The first weak section 1311, the second weak section 1312 and the third weak section 1313 together form an H shape.
  • the weak area 131 may also include a fourth weak section.
  • the fourth weak section is located between the first weak section 1311 and the third weak section 1313 and is arranged crosswise with the second weak section 1312.
  • the fourth weak section The intersection with the second weak section 1312 forms the position where the weak area 131 first breaks.
  • the weak area 131 may be a closed structure extending along a closed trajectory connected at both ends.
  • the weak area 131 is annular; the weak area 131 may also extend along a non-closed trajectory with a distance between the beginning and the end.
  • the weak zone is C-shaped.
  • the weak area 131 ruptures, and the pressure relief part 135 can be opened with the weak area 131 as a boundary to release the pressure inside the battery cell 10 . If the weak area 131 has a closed structure, the weak area 131 can be opened in a detached manner; if the weak area 131 has a non-closed structure, the weak area 131 can be opened in an outward flipping manner.
  • the weak area 131 is directly connected to the non-weak area 132
  • the non-weak area 132 is connected to the outer edge of the weak area 131
  • the pressure relief portion 135 is connected to the inner edge of the weak area 131 .
  • a groove 133 is provided on the pressure relief device 13.
  • the pressure relief device 13 forms a connection area 134 at the position where the groove 133 is provided, and the non-weakened area 132 is connected around the connection area 134.
  • the connection area 134 partially forms a weak area 131 to realize indirect connection between the weak area 131 and the non-weak area 132.
  • the pressure relief part 135 increases the pressure relief area of the pressure relief device 13 and improves the pressure relief efficiency.
  • the pressure relief device 13 is provided with a pressure relief groove 136 , and the pressure relief device 13 forms a weak area 131 at the position where the pressure relief groove 136 is provided.
  • the remaining portion of the pressure relief device 13 at the position of the pressure relief groove 136 is the weak area 131 .
  • the thickness of the non-weak zone 132 of the pressure relief device 13 can be greater than the thickness of the weak zone 131 .
  • the weak area 131 and the non-weak area 132 can be integrally formed. .
  • the pressure relief groove 136 can be provided at the end of the groove 133.
  • the bottom surface of the groove (the surface of the connection area 134).
  • a groove 133 can be machined on the pressure relief device 13, and then a pressure relief groove 136 can be machined on the bottom surface of the groove 133, so that the weak area 131 and the non-weak area 132 can be integrally formed.
  • the pressure relief groove 136 can be in various shapes, such as rectangular, circular, oval, annular, U-shaped, C-shaped, H-shaped, etc.
  • the shape of the pressure relief groove 136 is the same as the shape of the weak area 131.
  • the pressure relief groove 136 is rectangular, then the weak area 131 is also rectangular; for example, if the pressure relief groove 136 is C-shaped, then the weak area 131 is also C-shaped. ;
  • the pressure relief groove 136 is H-shaped, the weak area 131 is also H-shaped.
  • the pressure relief groove 136 can be formed in a variety of ways, such as stamping, milling, etc., which are not particularly limited in the embodiment of the present application. After the pressure relief groove 136 is formed by stamping, the hardness of the weak area 131 can be greater than the hardness of the non-weak area 132 .
  • the pressure relief device 13 has a first surface 137 and a second surface 138 that are oppositely arranged along the thickness direction Z of the non-weakened area 132 , and between the first surface 137 and the second surface 138 The distance is the thickness of the non-weakened zone 132.
  • a pressure relief may be provided on one of the first surface 137 and the second surface 138
  • the groove 136 may also be provided with a pressure relief groove 136 on both the first surface 137 and the second surface 138 .
  • the groove 133 may be provided on one of the first surface 137 and the second surface 138, Then, a pressure relief groove 136 is provided on the bottom surface of the groove 133 .
  • grooves 133 can be provided on both the first surface 137 and the second surface 138 , and then a pressure relief groove 136 is provided on the bottom surface of the groove 133 .
  • the first surface 137 can be the surface of the end cover 12 facing the inside of the battery cell 10
  • the second surface 138 can be the end cover 12 facing the outside of the battery cell 10 . s surface.
  • the weak area 131 is formed by providing a pressure relief groove 136 in the pressure relief device 13 , and the forming method of the weak area 131 is simple.
  • Figure 12 is a partial enlarged view of D of the pressure relief device 13 shown in Figure 5;
  • Figure 13 is a partial enlarged view of E of the pressure relief device 13 shown in Figure 7.
  • Figure 14 is a partial enlarged view of F of the pressure relief device 13 shown in Figure 9.
  • An anti-oxidation layer 139 is formed on the surface of the pressure relief device 13 .
  • the anti-oxidation layer 139 is arranged along the wall of the pressure relief groove 136 in the area where the pressure relief groove 136 is provided.
  • the portion of the anti-oxidation layer 139 located in the weak zone 131 defines a pressure relief groove 136 .
  • the wall surface of the pressure relief groove 136 includes the groove side surface and the groove bottom surface. Both the groove side surface and the groove bottom surface are part of the outer surface of the anti-oxidation layer 139 .
  • the anti-oxidation layer 139 may be a metal plating layer located on the surface of the pressure relief device 13 .
  • the main body of the pressure relief device 13 is a steel layer
  • the anti-oxidation layer 139 is a nickel layer plated on the surface of the main body.
  • the anti-oxidation layer 139 protects the pressure relief device 13 and reduces the risk of the pressure relief device 13 being oxidized. Since the anti-oxidation layer 139 is arranged along the wall of the pressure relief groove 136 in the area where the pressure relief groove 136 is provided, the anti-oxidation layer 139 can play a very good protective role in the area where the pressure relief groove 136 is provided on the pressure relief device 13, reducing the risk of The pressure relief device 13 is oxidized in the area where the pressure relief groove 136 is provided, resulting in the risk of weakening the strength of the weak area 131 .
  • the pressure relief device 13 includes a non-weak zone 132, the non-weak zone 132 is connected around the weak zone 131, and the thickness of the anti-oxidation layer 139 in the weak zone 131 is d, The thickness of the anti-oxidation layer 139 in the non-weak region 132 is e, which satisfies: d ⁇ e.
  • the non-weak area 132 and the weak area 131 may be directly connected or indirectly connected.
  • d ⁇ e reduces the impact of the anti-oxidation layer 139 on the weak area 131 and ensures that the weak area 131 can rupture and release pressure in time when the battery cell 10 thermally runs out of control.
  • Figure 15 is an isometric view of the pressure relief device 13 provided in some embodiments of the present application
  • Figure 16 is a cross-sectional view of the pressure relief device 13 shown in Figure 15.
  • the pressure relief device 13 includes a plurality of walls, which together define an accommodating space 140 .
  • the accommodating space 140 is used to accommodate the electrode assembly 2 of the battery cell 10 , and at least one wall is formed with a weak area 131 .
  • the pressure relief device 13 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the pressure relief device 13 is a rectangular parallelepiped.
  • the weak area 131 may be formed on one wall or on multiple walls. For a wall formed with a weak area 131, if the weak area 131 is directly connected to the non-weak area 132, the other areas of the wall except the weak area 131 are non-weak areas 132.
  • the pressure relief device 13 as a rectangular parallelepiped as an example, there may be six walls in the pressure relief device 13, five of which constitute the shell 11 of the shell 1, and the other wall serves as the end cover 12 of the shell 1.
  • the shell 11 and the end The covers 12 together form a pressure relief device 13 .
  • the number of walls in the pressure relief device 13 may also be five.
  • the five walls constitute the shell 11 of the housing 1 , and the shell 11 serves as the pressure relief device 13 .
  • the pressure relief device 13 can provide an accommodation space 140 for the electrode assembly 2 , so that the pressure relief device 13 has both an accommodation function for accommodating the battery cells 10 and a pressure relief function.
  • the plurality of walls include a bottom wall 141 and a plurality of side walls 142.
  • the plurality of side walls 142 are surrounding the bottom wall 141.
  • the plurality of side walls 142 are connected to the bottom wall. 141 together define an accommodating space 140, and the pressure relief device 13 forms an opening at an end opposite to the bottom wall 141.
  • the bottom wall 141 is formed with a weak area 131; and/or at least one side wall 142 is formed with a weak area 131.
  • the number of side walls 142 in the pressure relief device 13 may be three, four, five or more.
  • the pressure relief device 13 is a rectangular parallelepiped. There are five walls in the pressure relief device 13 , one wall is the bottom wall 141 , and four walls are the side walls 142 .
  • the bottom wall 141 is formed with a weak area 131.
  • a weak area 131 may be formed on the bottom wall 141 to relieve pressure from the bottom wall 141 . It is also possible that at least one side wall 142 is formed with a weak area 131 to relieve pressure from the side wall 142 . If multiple side walls 142 are formed with weak areas 131, the pressure relief device 13 can relieve pressure from multiple directions. Even if the weak area 131 of one side wall 142 is blocked, it can also be performed through the weak areas 131 of other side walls 142. Relieve pressure. Of course, weak areas 131 may also be formed on both the bottom wall 141 and at least one side wall 142 to improve the pressure relief efficiency of the pressure relief device 13 .
  • FIG. 17 is an isometric view of the pressure relief device 13 provided in some embodiments of the present application.
  • the pressure relief device 13 has a plate-like structure.
  • the plate-shaped pressure relief device 13 can be used as the end cover 12 of the housing 1 to close the opening of the housing 11 .
  • the pressure relief device 13 may also be a plate-shaped member installed on the end cover 12 and/or the housing 11, such as a burst disc.
  • the pressure relief device 13 can be in various shapes, such as circular, rectangular, etc.
  • the pressure relief device 13 is a rectangular plate-shaped structure.
  • the pressure relief device 13 has a plate-like structure.
  • the pressure relief device 13 has a simple structure and is easy to be molded and manufactured.
  • Figure 18 is a schematic structural diagram of the housing 1 provided by some embodiments of the present application
  • Figure 19 is a schematic structural diagram of the housing 1 provided by other embodiments of the present application.
  • the embodiment of the present application provides a housing 1.
  • the housing 1 includes the pressure relief device 13 provided in any of the above embodiments.
  • the pressure relief device 13 is the housing 11 of the housing 1 . In other embodiments, as shown in FIG. 19 , the pressure relief device 13 is the end cover 12 of the housing 1 .
  • the embodiment of the present application provides a battery cell 10, which includes an electrode assembly 2 and the casing 1 provided in any of the above embodiments.
  • the electrode assembly 2 is accommodated in the casing 1.
  • the embodiment of the present application provides a battery 100, which includes a box 20 and the battery cell 10 provided in any of the above embodiments.
  • the battery cell 10 is accommodated in the box 20.
  • An embodiment of the present application provides an electrical device, including the battery 100 provided in any of the above embodiments.
  • the embodiment of the present application also provides a square housing 1, including a housing 11 and an end cover 12.
  • the end cover 12 closes the opening of the housing 11.
  • the end cover 12 includes a weak area 131 and a weak area 131.
  • 131 is directly connected to the non-weak zone 132
  • the non-weak zone 132 is connected around the weak zone 131
  • the thickness of the weak zone 131 is a
  • the hardness of the weak zone 131 is A
  • the thickness of the non-weak zone 132 is b
  • the hardness is B, satisfying: a ⁇ b, B ⁇ A, 5HBW/mm ⁇ A/a ⁇ 10000HBW/mm.
  • the weak area 131 can have sufficient strength during normal use of the battery cell 10 , and the pressure relief device 13 will not be easily damaged in the weak area 131 When the battery cell 10 is thermally out of control, the pressure relief device 13 can timely release the pressure through the weak zone 131, thereby reducing the risk of fire or explosion of the battery cell 10 and improving the efficiency of the battery cell 10. The safety of the battery cell 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供了一种泄压装置、外壳、电池单体、电池及用电设备,属于电池技术领域。其中,泄压装置用于电池单体,泄压装置局部形成有薄弱区,薄弱区用于在电池单体泄放压力时破裂,薄弱区的厚度为a,薄弱区的硬度为A,满足:5HBW/mm≤A/a≤10000HBW/mm。将薄弱区的硬度与薄弱区的厚度的比值设置在合理范围内,既能够使得薄弱区在电池单体正常使用过程中具有足够的强度,泄压装置不易在薄弱区位置发生破裂,提高电池单体的使用寿命,又能够使得泄压装置在电池单体热失控时能够通过薄弱区及时泄压,降低电池单体发生起火、爆炸的风险,提高电池单体的安全性。

Description

泄压装置、外壳、电池单体、电池及用电设备 技术领域
本申请涉及电池技术领域,具体而言,涉及一种泄压装置、外壳、电池单体、电池及用电设备。
背景技术
随着新能源技术的发展,电池的应用越来越广泛,例如应用于手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等上。
电池单体作为储能元件,一般通过电极组件和电解液发生化学反应,从而输出电能。在电池技术的发展中,除了提高电池单体的性能外,安全问题也是一个需要考虑的问题。因此,如何提高电池单体的安全性,是电池技术中一个亟待解决的问题。
发明内容
本申请实施例提供一种泄压装置、外壳、电池单体、电池及用电设备,能够有效提高电池单体的安全性问题。
第一方面,本申请实施例提供一种泄压装置,用于电池单体,泄压装置局部形成有薄弱区,薄弱区用于在电池单体泄放压力时破裂,薄弱区的厚度为a,薄弱区的硬度为A,满足:5HBW/mm≤A/a≤10000HBW/mm。
上述技术方案中,不仅考虑到薄弱区的厚度对泄压装置的性能的影响,还考虑到薄弱区的硬度对泄压装置的性能的影响,将薄弱区的硬度与薄弱区的厚度的比值设置在合理范围内,既能够使得薄弱区在电池单体正常使用过程中具有足够的强度,泄压装置不易在薄弱区位置发生破裂,提高电池单体的使用寿命,又能够使得泄压装置在电池单体热失控时能够通过薄弱区及时泄压,降低电池单体发生起火、爆炸的风险,提高电池单体的安全性。
在一些实施例中,190HBW/mm≤A/a≤4000HBW/mm。这样,使得泄压装置性能更优,在保证薄弱区在电池单体正常使用过程中具有足够的强度的同时,保证薄弱区在电池单体热失控时及时破裂泄压。在保证电池单体的安全性的前提下,提高了电池单体的使用寿命。
在一些实施例中,8HBW≤A≤200HBW。
在一些实施例中,0.02mm≤a≤1.6mm。
在一些实施例中,泄压装置包括非薄弱区,非薄弱区连接于薄弱区的周围,非薄弱区的厚度为b,满足:a<b。通过将薄弱区的厚度设置为小于非薄弱区的厚度,使得薄弱区较非薄弱区更容易破裂,保证泄压装置在电池单体热失控时在薄弱区的位置破裂泄压。
在一些实施例中,0.05≤a/b≤0.95。将薄弱区的厚度与非薄弱区的厚度的比值设置为0.05~0.95之间,既能够降低薄弱区在电池单体正常使用过程中破裂的概率,又能够降低电池单体热失控时发生起火、爆炸等事故的概率。
在一些实施例中,0.12≤a/b≤0.8。
在一些实施例中,非薄弱区的硬度为B,满足:B<A。薄弱区的硬度大于非薄弱区的硬度,相当于提高了薄弱区的硬度,提高了薄弱区的强度,降低薄弱区在电池单体正常使用过程中发生破裂的风险。
在一些实施例中,A/B≤3。薄弱区的硬度与非薄弱区的硬度的比值越大,薄弱区越不容易破裂,若两者比值过大,可能会出现薄弱区在电池单体热失控时无法及时破裂泄压的情况,因此,将薄弱区的硬度与非薄弱区的硬度的比值设置为不大于3,保证薄弱区能够在电池单体热失控 时及时破裂泄压,提高电池单体的安全性。
在一些实施例中,非薄弱区与薄弱区直接连接。结构简单,易于成型。
在一些实施例中,泄压装置设置有凹槽,泄压装置在设置凹槽的位置形成连接区,非薄弱区连接于连接区的周围,连接区局部形成薄弱区。这样,连接区相对于薄弱区更薄,更容易在连接区成型薄弱区。
在一些实施例中,薄弱区与非薄弱区一体成型。降低泄压装置的成型难度,具有很好的经济性,并且使得薄弱区和非薄弱区具有很好的整体性,能够提高薄弱区的强度。
在一些实施例中,泄压装置包括泄压部,薄弱区沿着泄压部的边缘延伸,泄压部被配置为以薄弱区为边界打开。这样,增大了泄压装置的泄压面积,提高泄压效率。在一些实施例中,泄压装置设置有泄压槽,泄压装置在设置泄压槽的位置形成薄弱区。通过在泄压装置设置泄压槽的方式形成薄弱区,薄弱区的成型方式简单。
在一些实施例中,泄压装置的表层形成有抗氧化层,抗氧化层在设置泄压槽的区域沿着泄压槽的槽壁面布置。抗氧化层对泄压装置起到保护作用,降低泄压装置被氧化的风险。由于抗氧化层在设置泄压槽的区域沿着泄压槽的槽壁面布置,抗氧化层对泄压装置设置泄压槽的区域能够起到很好的保护作用,降低泄压装置在设置泄压槽的区域被氧化,而导致薄弱区强度减弱的风险。
在一些实施例中,泄压装置包括非薄弱区,非薄弱区连接于薄弱区的周围,抗氧化层在薄弱区的厚度为d,抗氧化层在非薄弱区的厚度为e,满足:d<e。降低抗氧化层对薄弱区的影响,保证薄弱区在电池单体热失控时能够及时破裂泄压。
在一些实施例中,泄压装置包括多个壁,多个壁共同围合限定出容纳空间,容纳空间用于容纳电池单体的电极组件,至少一个壁形成有薄弱区。泄压装置能够为电极组件提供容纳空间,使得泄压装置既具有容纳电池单体的容纳功能,又具有泄压功能。
在一些实施例中,多个壁包括底壁和多个侧壁,多个侧壁围设于底壁的周围,多个侧壁与底壁共同围合限定出容纳空间,泄压装置在与底壁相对的一端形成开口;底壁形成有薄弱区;和/或,至少一个侧壁形成有薄弱区。
在一些实施例中,泄压装置为板状结构。泄压装置的结构简单,易于成型制造。
第二方面,本申请实施例提供一种外壳,包括第一方面任意一个实施例提供的泄压装置。
第三方面,本申请实施例提供一种电池单体,包括电极组件和第二方面任意一个实施例提供的外壳,电极组件容纳于外壳内。
第四方面,本申请实施例提供一种电池,包括箱体和第三方面任意一个实施例提供的电池单体,电池单体容纳于箱体内。
第五方面,本申请实施例提供一种用电设备,包括第四方面任意一个实施例提供的电池。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸图;
图3为本申请一些实施例提供的电池单体的爆炸图;
图4为本申请一些实施例提供的泄压装置的俯视图;
图5为图4所示的泄压装置的A-A剖视图;
图6为本申请另一些实施例提供的泄压装置的俯视图;
图7为图6所示的泄压装置的B-B剖视图;
图8为本申请又一些实施例提供的泄压装置的俯视图;
图9为图8所示的泄压装置的C-C剖视图;
图10为本申请再一些实施例提供的泄压装置的俯视图;
图11为本申请其他实施例提供的泄压装置的俯视图;
图12为图5所示的泄压装置的D处的局部放大图;
图13为图7所示的泄压装置的E处的局部放大图;
图14为图9所示的泄压装置的F处的局部放大图;
图15为本申请一些实施例提供的泄压装置的轴测图;
图16为图15所示的泄压装置的剖视图;
图17为本申请又一些实施例提供的泄压装置的轴测图;
图18为本申请一些实施例提供的外壳的结构示意图;
图19为本申请另一些实施例提供的外壳的结构示意图。
图标:1-外壳;11-壳体;12-端盖;121-正电极端子;122-负电极端子;13-泄压装置;131-薄弱区;1311-第一薄弱段;1312-第二薄弱段;1313-第三薄弱段;132-非薄弱区;133-凹槽;134-连接区;135-泄压部;136-泄压槽;137-第一表面;138-第二表面;139-抗氧化层;140-容纳空间;141-底壁;142-侧壁;2-电极组件;21-正极耳;22-负极耳;10-电池单体;20-箱体;201-第一部分;202-第二部分;100-电池;200-控制器;300-马达;1000-车辆;Z-厚度方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
在电池单体中,为保证电池单体的安全性,可以在在电池单体中设置泄压装置,泄压装置中形成有薄弱区,在电池单体热失控时,通过薄弱区来泄放电池单体内部的压力,以提高电池单体的安全性。
发明人注意到,为保证泄压装置在电池单体热失控时能够及时泄压,可以将薄弱区的厚度设置得小一些,但电池单体在正常使用过程中,容易出现薄弱区在振动环境中或因电池单体内部压力长期变化而破裂,电池单体的使用寿命较短。为保证电池单体具有较长的使用寿命,可以将薄弱区的厚度设置得大一些,但容易出现薄弱区在电池单体热失控时泄压不及时的情况,容易出现电池单体起火、爆炸等事故,电池单体的安全性较差。
鉴于此,本申请实施例提供一种泄压装置,将薄弱区的硬度与薄弱区的厚度的比值设置为5HBW/mm~10000HBW/mm。
在这样的泄压装置中,不仅考虑到薄弱区的厚度对泄压装置的性能的影响,还考虑到薄弱区的硬度对泄压装置的性能的影响,通过将薄弱区的硬度与薄弱区的厚度的比值设置在合理范围内,既能够使得薄弱区在电池单体正常使用过程中具有足够的强度,泄压装置不易在薄弱区位置发生破裂,提高电池单体的使用寿命,又能够使得泄压装置在电池单体热失控时能够通过薄弱区及时泄压,降低电池单体发生起火、爆炸的风险,提高电池单体的安全性。
本申请实施例描述的泄压装置适用于电池单体、电池以及使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂 轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。
车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的爆炸图。电池100包括电池单体10和箱体20,电池单体10容纳于箱体20内。
其中,箱体20是容纳电池单体10的部件,箱体20为电池单体10提供收容空间,箱体20可以采用多种结构。在一些实施例中,箱体20可以包括第一部分201和第二部分202,第一部分201与第二部分202相互盖合,以限定出用于容纳电池单体10的收容空间。第一部分201和第二部分202可以是多种形状,比如,长方体、圆柱体等。第一部分201可以是一侧开放的空心结构,第二部分202也可以是一侧开放的空心结构,第二部分202的开放侧盖合于第一部分201的开放侧,则形成具有收容空间的箱体20。也可以是第一部分201为一侧开放的空心结构,第二部分202为板状结构,第二部分202盖合于第一部分201的开放侧,则形成具有收容空间的箱体20。第一部分201与第二部分202可以通过密封元件来实现密封,密封元件可以是密封圈、密封胶等。
在电池100中,电池单体10可以是一个、也可以是多个。若电池单体10为多个,多个电池单体10之间可串联或并联或混联,混联是指多个电池单体10中既有串联又有并联。可以是多个电池单体10先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体20内。也可以是所有电池单体10之间直接串联或并联或混联在一起,再将所有电池单体10构成的整体容纳于箱体20内。
在一些实施例中,电池100还可以包括汇流部件,多个电池单体10之间可通过汇流部件实现电连接,以实现多个电池单体10的串联或并联或混联。汇流部件可以是金属导体,比如,铜、铁、铝、不锈钢、铝合金等。
请参照图3,图3为本申请一些实施例提供的电池单体10的爆炸图。电池单体10可以包括外壳1和电极组件2。
外壳1是用于容纳电极组件2的部件。外壳1可以是多种形状,比如,圆柱体、长方体等。外壳1可以包括壳体11和端盖12。
壳体11可以是一端形成开口的空心结构,壳体11也可以是相对的两端形成开口的空心结构。壳体11的材质可以是多种,比如,铜、铁、铝、钢、铝合金等。
端盖12是封闭壳体11的开口以将电池单体10的内部环境与外部环境隔绝的部件。端盖12与壳体11共同限定出用于容纳电极组件2、电解液以及其他部件的密封空间。端盖12可以通过焊接或卷封的方式连接于壳体11,以封闭壳体11的开口。端盖12的形状可以与外壳1的形状相适配,比如,壳体11为长方体结构,端盖12为与外壳1相适配的矩形板状结构,再如,壳体11为圆柱体,端盖12为与壳体11相适配的圆形板状结构。端盖12的材质也可以是多种,比如,铜、铁、铝、钢、铝合金等。
在电池单体10中,端盖12可以是一个,也可以是两个。在壳体11为两端形成开口的空心结构的实施例中,端盖12可以对应设置两个,两个端盖12分别封闭壳体11的两个开口,两个端盖12与壳体11共同限定出密封空间。在壳体11为一端形成开口的空心结构的实施例中,端盖12可以对应设置一个,端盖12封闭壳体11一端的开口,一个端盖12与壳体11共同限定出密封 空间。
电极组件2是电池单体10中发生电化学反应的部件。电极组件2可以包括正极片、负极片和隔离膜。电极组件2可以是由正极片、隔离膜和负极片通过卷绕形成的卷绕式结构,也可以是由正极片、隔离膜和负极片通过层叠布置形成的叠片式结构。电极组件2具有正极耳21和负极耳22,正极耳21可以是正极片上未涂覆正极活性物质层的部分,负极耳22可以是负极片上未涂覆负极活性物质层的部分。
电池单体10还可以包括电极端子,电极端子设置于端盖12上,电极端子用于与电极组件2的极耳电连接,以输出电池单体10的电能。电极端子与极耳可以直接连接,比如,电极端子与极耳直接焊接。电极端子与极耳也可以间接连接,比如,电极端子与极耳通过集流构件间接连接。集流构件可以是金属导体,比如,铜、铁、铝、钢、铝合金等。
如图3所示,以壳体11为一端形成开口的空心结构为例,端盖12上可以设置两个电极端子,两个电极端子分别为正电极端子121和负电极端子122,正电极端子121与正极耳21电连接,负电极端子122与负极耳22电连接。
电池单体10中可以设置泄压装置13(图3未示出),泄压装置13是泄放电池单体10内部的压力的部件。在电池单体10内部的压力或温度达到阈值时,通过泄压装置13泄放电池单体10内部的压力。以下结合附图对泄压装置13的具体结构进行详细阐述。
请参照图4和图5,图4为本申请一些实施例提供的泄压装置13的俯视图,图5为图4所示的泄压装置13的A-A剖视图。本申请实施例提供一种泄压装置13,用于电池单体10,泄压装置13局部形成有薄弱区131,薄弱区131用于在电池单体10泄放压力时破裂,薄弱区131的厚度为a,薄弱区131的硬度为A,满足:5HBW/mm≤A/a≤10000HBW/mm。
泄压装置13可以是端盖12本身,也可以是壳体11本身。泄压装置13也可以是设置于壳体11和/或端盖12上的独立部件,比如,泄压装置13为设置于端盖12和/或壳体11上的防爆片。泄压装置13可以是金属材质,如,铜、铁、铝、钢、铝合金等;泄压装置13也可以是非金属材质,比如,塑料。
薄弱区131为泄压装置13较其他其区域更为薄弱的部分,在泄压装置13中,薄弱区131相较于其他区域更容易破裂。在电池单体10内部压力达到泄压压力需要泄放压力时,薄弱区131能够破裂,以使电池单体10内部的排放物能够排出,以达到泄放电池单体10内部的压力的目的。薄弱区131的厚度可以是均匀的,也可以是非均匀的。若薄弱区131的厚度是均匀的,在薄弱区131的任意位置测量到的厚度即为薄弱区131的厚度;若薄弱区131的厚度是非均匀的,在薄弱区131最薄位置测量到的厚度即为薄弱区131的厚度,即a为薄弱区131的最小厚度。
薄弱区131可以是多种形状,比如,矩形、圆形、椭圆形、环形、U形、C形、H形等。若薄弱区131为环形,则薄弱区131为沿首尾两端相连的封闭轨迹延伸的封闭结构,环形可以是矩形环、圆环等。
薄弱区131的硬度为布氏硬度,单位为HBW。布氏硬度的测量方法可参见GB/T 23.1-2018中的测量原理进行实施。在实际测量过程中,薄弱区131的硬度可以在薄弱区131厚度方向Z上的任意表面进行测量获得。以电池单体10的端盖12作为泄压装置13为例,可以在薄弱区131的外表面上测量薄弱区131的硬度,也可以在薄弱区131的内表面上测量薄弱区131的硬度。在电池单体10中,沿薄弱区131的厚度方向Z,薄弱区131的内表面为薄弱区131面向电池单体10内部的表面,薄弱区131的外表面为薄弱区131面向电池单体10外部的表面。
A/a可以是5HBW/mm~10000HBW/mm之间的任意值,比如,5HBW/mm、50HBW/mm、100HBW/mm、190HBW/mm、500HBW/mm、1000HBW/mm、4000HBW/mm、8000HBW/mm、10000HBW/mm等。
为测试薄弱区131的硬度与薄弱区131的厚度的比值对泄压装置13的性能的影响,对多组电池单体10进行了测试,测试结果如表一:
表一
Figure PCTCN2022096957-appb-000001
当A/a>10000HBW/mm时,薄弱区131较薄且硬度较大,这样会导致薄弱区131非常薄脆,容易破裂,薄弱区131在电池单体10的正常使用周期内发生破裂,电池单体10的使用寿命较短。当A/a<5HBW/mm时,薄弱区131较厚且硬度较小,在电池单体10热失控时,薄弱区131会先变形,然后再被拉长,并未及时破裂泄压。
而当5HBW/mm≤A/a≤10000HBW/mm时,薄弱区131在电池单体10的正常使用周期内并未发生破裂,在电池单体10热失控内,薄弱区131能够及时破裂泄压。
由此可见,将薄弱区131的硬度与薄弱区131的厚度的比值设置在合理范围内,既能够使得薄弱区131在电池单体10正常使用过程中具有足够的强度,泄压装置13不易在薄弱区131位置发生破裂,提高电池单体10的使用寿命,又能够使得泄压装置13在电池单体10热失控时能够通过薄弱区131及时泄压,降低电池单体10发生起火、爆炸的风险,提高电池单体10的安全性。
在一些实施例中,190HBW/mm≤A/a≤4000HBW/mm。
示例性的,A/a可以为190HBW/mm、500HBW/mm、1000HBW/mm、4000HBW/mm等。
在本实施例中,将A/a设置为190HBW/mm~4000HBW/mm,使得泄压装置13性能更优,在保证薄弱区131在电池单体10热失控时及时破裂泄压的同时,保证薄弱区131在电池单体10正常使用过程中具有足够的强度。在保证电池单体10的安全性的前提下,提高了电池单体10的使用寿命。
在一些实施例中,8HBW≤A≤200HBW。
A可以是8HBW/mm~200HBW/mm之间的任意值,比如,8HBW、10HBW、15HBW、19HBW、50HBW、100HBW、200HBW等。
在一些实施例中,0.02mm≤a≤1.6mm。
a可以是0.02mm~1.6mm之间的任意值,比如,0.02mm、0.025mm、0.05mm、0.1mm、0.15mm、0.2mm、1.6mm等。
在一些实施例中,请继续参照图4,泄压装置13包括非薄弱区132,非薄弱区132连接于薄弱区131的周围,非薄弱区132的厚度为b,满足:a<b。
非薄弱区132较薄弱区131更难破裂,在电池单体10热失控内部压力达到泄压压力时, 薄弱区131破裂泄压,而非薄弱区132并不会破裂。非薄弱区132的厚度可以是均匀的,也可以是非均匀的。若非薄弱区132的厚度是均匀的,在非薄弱区132的任意位置测量到厚度即为非薄弱区132的厚度;若非薄弱区132的厚度是非均匀的,在非薄弱区132最薄位置测量到的厚度即为薄弱区131的厚度,即b为非薄弱区132的最小厚度。
非薄弱区132与薄弱区131可以直接连接,也可以间接连接。
在本实施例中,通过将薄弱区131的厚度设置为小于非薄弱区132的厚度,使得薄弱区131较非薄弱区132更容易破裂,保证泄压装置13在电池单体10热失控时在薄弱区131的位置破裂泄压。
在其他实施例中,也可以通过其他方式实现薄弱区131比非薄弱区132更容易破裂,比如,薄弱区131和非薄弱区132等厚,薄弱区131与非薄弱区132的材质并不相同,薄弱区131的材质较非薄弱区132的材质更容易破裂,使得薄弱区131在电池单体10热失控时破裂,非薄弱区132不破裂。
在一些实施例中,0.05≤a/b≤0.95。
a/b可以是0.05~0.95之间的任意值,比如,0.05、0.12、0.2、0.8、0.95等。
薄弱区131的厚度与非薄弱区132的厚度的比值过小,可能会出现薄弱区131的强度不足的情况。薄弱区131的厚度与非薄弱区132的厚度的比值过大,可能会出现薄弱区131在电池单体10热失控时不容易裂开的情况,泄压不及时,导致电池单体10起火、爆炸等事故。
因此,将薄弱区131的厚度与非薄弱区132的厚度的比值设置为0.05~0.95之间,既能够降低薄弱区131在电池单体10正常使用过程中破裂的概率,又能够降低电池单体10热失控时发生起火、爆炸等事故的概率。
在一些实施例中,0.12≤a/b≤0.8。
在本实施例中,将a/b设置为0.12~0.8,使得泄压装置13性能更优,在保证薄弱区131在电池单体10热失控时及时破裂泄压的同时,保证薄弱区131在电池单体10正常使用过程中具有足够的强度。
在一些实施例中,非薄弱区132的硬度为B,满足:B<A。
非薄弱区132的硬度也为布氏硬度。非薄弱区132的硬度可以在非薄弱区132厚度方向Z上的任意表面进行测量获得。以电池单体10的端盖12作为泄压装置13为例,可以在非薄弱区132的外表面上测量非薄弱区132的硬度,也可以在非薄弱区132的内表面上测量非薄弱区132的硬度。沿非薄弱区132的厚度方向Z,非薄弱区132的内表面为非薄弱区132面向电池单体10内部的表面,非薄弱区132的外表面为非薄弱区132面向电池单体10外部的表面。
在本实施例中,薄弱区131的硬度大于非薄弱区132的硬度,相当于提高了薄弱区131的硬度,提高了薄弱区131的强度,降低薄弱区131在电池单体10正常使用过程中发生破裂的风险。
在一些实施例中,A/B≤3。
由于B<A,可理解的,1<A/B≤3。示例性的,A/B可以为1.1、1.5、2、2.5、3等。
薄弱区131的硬度与非薄弱区132的硬度的比值越大,薄弱区131越不容易破裂,若两者比值过大,可能会出现薄弱区131在电池单体10热失控时无法及时破裂泄压的情况。
因此,将薄弱区131的硬度与非薄弱区132的硬度的比值设置为不大于3,保证薄弱区131能够在电池单体10热失控时及时破裂泄压,提高电池单体10的安全性。
在一些实施例中,请继续参照图4和图5,非薄弱区132与薄弱区131直接连接。
如图4所示,以泄压装置13为矩形板,且薄弱区131为矩形为例,非薄弱区132为泄压装置13围设于薄弱区131的四周边缘的部分。
本实施例中,非薄弱区132与薄弱区131直接连接,结构简单,易于成型。
在一些实施例中,请参照图6和图7,图6为本申请另一些实施例提供的泄压装置13的俯视图,图7为图6所示的泄压装置13的B-B剖视图。泄压装置13设置有凹槽133,泄压装置13在设置凹槽133的位置形成连接区134,非薄弱区132连接于连接区134的周围,连接区134局部形成薄弱区131。
凹槽133可以是多种形状,比如,矩形、圆形、椭圆形等。凹槽133可以通过多种方式成型,比如,冲压成型、铣削加工成型等,本申请实施例对此不作特殊限制。
可理解的,在本实施例中,非薄弱区132与薄弱区131间接连接,连接区134除了薄弱区131以外的部分将薄弱区131与非薄弱区132连接在一起。以凹槽133和薄弱区131均为矩形为例,非薄弱区132为泄压装置13围设于连接区134的四周边缘的部分,连接区134围设于薄弱区131的四周边缘的部分将薄弱区131与非薄弱区132连接在一起。
在本实施例中,连接区134相对于非薄弱区132更薄,更容易在连接区134成型薄弱区131,使得薄弱区131不会过厚,以满足薄弱区131的厚度要求。
在一些实施例中,薄弱区131与非薄弱区132一体成型。
需要说明的是,无论薄弱区131与非薄弱区132是直接连接,还是间接连接,薄弱区131与非薄弱区132均可以一体成型。
在本实施例中,薄弱区131与非薄弱区132为一体成型结构,降低泄压装置13的成型难度,具有很好的经济性,并且使得薄弱区131和非薄弱区132具有很好的整体性,能够提高薄弱区131的强度。
在一些实施例中,请参照图8-图11,图8为本申请又一些实施例提供的泄压装置13的俯视图;图9为图8所示的泄压装置13的C-C剖视图;图10为本申请再一些实施例提供的泄压装置13的俯视图;图11为本申请其他实施例提供的泄压装置13的俯视图。泄压装置13包括泄压部135,薄弱区131沿着泄压部135的边缘延伸,泄压部135被配置为以薄弱区131为边界打开。
泄压部135为泄压装置13由薄弱区131限定出来的区域。薄弱区131限定出的泄压部135可以是一个,比如,如图8所示,薄弱区131为环形;再如,如图10所示,薄弱区131为C形;薄弱区131限定出的泄压部135也可以是多个,比如,如图11所示,薄弱区131为H形,薄弱区131限定出两个泄压部135。
如图11所示,在薄弱区131为H形的实施中,薄弱区131可以包括第一薄弱段1311、第二薄弱段1312和第三薄弱段1313,第一薄弱段1311与第三薄弱段1313相对设置,第二薄弱段1312连接于第一薄弱段1311和第三薄弱段1313之间,第一薄弱段1311、第二薄弱段1312和第三薄弱段1313三者共同构成H形。在其他实施例中,薄弱区131还可以包括第四薄弱段,第四薄弱段位于第一薄弱段1311和第三薄弱段1313之间,并与第二薄弱段1312交叉布置,第四薄弱段与第二薄弱段1312相交的位置形成薄弱区131最先破裂的位置。
薄弱区131可以是沿首尾两端相连的封闭轨迹延伸的封闭结构,比如,如图8所示,薄弱区131为环形;薄弱区131也可以是沿首尾两端存在距离的非封闭轨迹延伸的非封闭结构,比如,如图10所示,薄弱区为C形。
在电池单体10热失控时,薄弱区131破裂,泄压部135能够以薄弱区131为边界打开,以泄放电池单体10内部的压力。若薄弱区131为封闭结构,薄弱区131可以以脱离的方式打开;若薄弱区131为非封闭结构,薄弱区131可以以向外翻转的方式打开。
示例性的,如图8和图9所示,薄弱区131与非薄弱区132直接连接,非薄弱区132连接于薄弱区131的外边缘,泄压部135连接于薄弱区131的内边缘。
示例性的,如图10和图11,在泄压装置13上设置凹槽133,泄压装置13在设置凹槽133的位置形成连接区134,非薄弱区132连接于连接区134的周围,连接区134局部形成薄弱区131,实现薄弱区131与非薄弱区132间接连接。
在本实施例中,泄压部135增大了泄压装置13的泄压面积,提高泄压效率。
在一些实施例中,请继续参照图4-图11,泄压装置13设置有泄压槽136,泄压装置13在设置泄压槽136的位置形成薄弱区131。
在泄压装置13上设置泄压槽136后,泄压装置13在泄压槽136位置剩余的部分即为薄弱区131。通过在泄压装置13上设置泄压槽136的方式可以实现泄压装置13的非薄弱区132的厚度大于薄弱区131的厚度。如图4、图5、图8和图9所示,在泄压装置13中未设置凹槽133,但设置有泄压槽136的情况下,可以实现薄弱区131与非薄弱区132一体成型。如图6、图7、图10和图11所示,在泄压装置13中既设置有凹槽133,又设置有泄压槽136的情况下,泄压槽136可以设置在凹槽133的槽底面(连接区134的表面)。在成型时,可以在泄压装置13上加工出凹槽133,然后,再在凹槽133的槽底面上加工出泄压槽136,从而实现薄弱区131与非薄弱区132一体成型。
泄压槽136可以是多种形状,比如,矩形、圆形、椭圆形、环形、U形、C形、H形等。泄压槽136的形状与薄弱区131的形状相同,比如,泄压槽136为矩形,则薄弱区131也为矩形;又如,泄压槽136为C形,则薄弱区131也为C形;再如,泄压槽136为H形,则薄弱区131也为H形。泄压槽136可以通过多种方式成型,比如,冲压成型、铣削加工成型等,本申请实施例对此不作特殊限制。在通过冲压的方式成型泄压槽136后,可以实现薄弱区131的硬度大于非薄弱区132的硬度。
如图5、图7和图9所示,泄压装置13具有沿非薄弱区132的厚度方向Z相对设置的第一表面137和第二表面138,第一表面137与第二表面138之间的距离为非薄弱区132的厚度。如图5和图9所示,在泄压装置13设置有泄压槽136,但未设置凹槽133的实施例中,可以在第一表面137和第二表面138中的一者设置泄压槽136,也可以在第一表面137和第二表面138上均设置泄压槽136。如图7所示,在泄压装置13既设置有泄压槽136,又设置有凹槽133的实施例中,可以在第一表面137和第二表面138中的一者设置凹槽133,再在凹槽133的槽底面设置泄压槽136,也可以在第一表面137和第二表面138上均设置凹槽133,再在凹槽133的槽底面设置泄压槽136。以泄压装置13为电池单体10的端盖12为例,第一表面137可以是端盖12面向电池单体10内部的表面,第二表面138可以是端盖12面向电池单体10外部的表面。
在本实施例中,通过在泄压装置13设置泄压槽136的方式形成薄弱区131,薄弱区131的成型方式简单。
在一些实施例中,请参照图12-图14,图12为图5所示的泄压装置13的D处的局部放大图;图13为图7所示的泄压装置13的E处的局部放大图;图14为图9所示的泄压装置13的F处的局部放大图。泄压装置13的表层形成有抗氧化层139,抗氧化层139在设置泄压槽136的区域沿着泄压槽136的槽壁面布置。
抗氧化层139位于薄弱区131的部分限定出泄压槽136。泄压槽136槽壁面包括槽侧面和槽底面,槽侧面和槽底面均为抗氧化层139的外表面的一部分。抗氧化层139可以是位于泄压装置13的表层的金属镀层。比如,泄压装置13的主体部分为钢层,抗氧化层139为镀于主体部分的表面的镍层。在测量薄弱区131的硬度时,以测量主体部分位于薄弱区131的部分的硬度为准。在测量非薄弱区132的硬度时,以测量主体部分位于非薄弱区132的部分的硬度为准。
抗氧化层139对泄压装置13起到保护作用,降低泄压装置13被氧化的风险。由于抗氧化层139在设置泄压槽136的区域沿着泄压槽136的槽壁面布置,抗氧化层139对泄压装置13设置泄压槽136的区域能够起到很好的保护作用,降低泄压装置13在设置泄压槽136的区域被氧化,而导致薄弱区131强度减弱的风险。
在一些实施例中,请继续参照图12-图14,泄压装置13包括非薄弱区132,非薄弱区132连接于薄弱区131的周围,抗氧化层139在薄弱区131的厚度为d,抗氧化层139在非薄弱区132的厚度为e,满足:d<e。
非薄弱区132与薄弱区131可以直接连接,也可以间接连接。
在本实施例中,d<e,降低了抗氧化层139对薄弱区131的影响,保证薄弱区131在电池单体10热失控时能够及时破裂泄压。
在一些实施例中,请参照图15和图16,图15为本申请一些实施例提供的泄压装置13的轴测图;图16为图15所示的泄压装置13的剖视图。泄压装置13包括多个壁,多个壁共同围合限定出容纳空间140,容纳空间140用于容纳电池单体10的电极组件2,至少一个壁形成有薄弱区131。
泄压装置13可以是多种形状,比如,圆柱体,长方体等。示例性的,在图15和图16中,泄压装置13为长方体。在泄压装置13中,可以在一个壁上形成薄弱区131,也可以在多个壁上形成薄弱区131。对于形成有薄弱区131的壁而言,若薄弱区131与非薄弱区132直接相连,该壁除了薄弱区131以外的其他区域为非薄弱区132。
以泄压装置13为长方体为例,泄压装置13中的壁可以是六个,其中五个壁构成外壳1的壳体11,另一个壁作为外壳1的端盖12,壳体11和端盖12共同构成泄压装置13。泄压装置13中的壁也可以是五个,五个壁构成外壳1的壳体11,壳体11则作为泄压装置13。
泄压装置13能够为电极组件2提供容纳空间140,使得泄压装置13既具有容纳电池单体10的容纳功能,又具有泄压功能。
在一些实施例中,请继续参照图15和16,多个壁包括底壁141和多个侧壁142,多个侧壁142围设于底壁141的周围,多个侧壁142与底壁141共同围合限定出容纳空间140,泄压装置13在与底壁141相对的一端形成开口。底壁141形成有薄弱区131;和/或,至少一个侧壁142形成有薄弱区131。
泄压装置13中的侧壁142可以是三个、四个、五个或者更多。示例性的,泄压装置13为长方体,泄压装置13中一共五个壁,一个壁为底壁141,四个壁为侧壁142。在图16中,底壁141形成有薄弱区131。
在本实施例中,可以底壁141形成有薄弱区131,以从底壁141进行泄压。也可以至少一个侧壁142形成有薄弱区131,以从侧壁142进行泄压。若多个侧壁142形成有薄弱区131,使得泄压装置13可以从多个方向进行泄压,即使一个侧壁142的薄弱区131被遮挡,也可以通过其他侧壁142的薄弱区131进行泄压。当然,也可以底壁141和至少一个侧壁142上均形成有薄弱区131,以提高泄压装置13的泄压效率。
在一些实施例中,请参照图17,图17为本申请又一些实施例提供的泄压装置13的轴测图。泄压装置13为板状结构。
呈板状的泄压装置13可以作为外壳1的端盖12,以封闭壳体11的开口。泄压装置13也可以是安装于端盖12和/或壳体11上的板状件,比如,防爆片。泄压装置13可以是多种形状,比如,圆形、矩形等。示例性的,在图17中,泄压装置13为矩形板状结构。
在本实施例中,泄压装置13为板状结构,泄压装置13的结构简单,易于成型制造。
请参照图18和图19,图18为本申请一些实施例提供的外壳1的结构示意图;图19为本申请另一些实施例提供的外壳1的结构示意图。本申请实施例提供一种外壳1,外壳1包括上述任意一个实施例提供的泄压装置13。
在一些实施例中,如图18所示,泄压装置13为外壳1的壳体11。在另一些实施例中,如图19所示,泄压装置13为外壳1的端盖12。
本申请实施例提供一种电池单体10,包括电极组件2和上述任意一个实施例提供的外壳1,电极组件2容纳于外壳1内。
本申请实施例提供一种电池100,包括箱体20和上述任意一个实施例提供的电池单体10,电池单体10容纳于箱体20内。
本申请实施例提供一种用电设备,包括上述任意一个实施例提供的电池100。
此外,如图19所示,本申请实施例还提供一种方形外壳1,包括壳体11和端盖12,端盖12封闭壳体11的开口,端盖12包括薄弱区131和与薄弱区131直接相连的非薄弱区132,非薄弱区132连接于薄弱区131的周围,薄弱区131的厚度为a,薄弱区131的硬度为A,非薄弱区132的厚度为b,非薄弱区132的硬度为B,满足:a<b,B<A,5HBW/mm≤A/a≤10000HBW/mm。通过将薄弱区131的硬度与薄弱区131的厚度的比值设置在合理范围内,既能够使得薄弱区131在电池单体10正常使用过程中具有足够的强度,泄压装置13不易在薄弱区131位置发生破裂,提高电池单体10的使用寿命,又能够使得泄压装置13在电池单体10热失控时能够通过薄弱区131及时泄压,降低电池单体10发生起火、爆炸的风险,提高电池单体10的安全性。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
以上实施例仅用以说明本申请的技术方案,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (23)

  1. 一种泄压装置,用于电池单体,所述泄压装置局部形成有薄弱区,所述薄弱区用于在所述电池单体泄放压力时破裂;
    其中,所述薄弱区的厚度为a,所述薄弱区的硬度为A,满足:5HBW/mm≤A/a≤10000HBW/mm。
  2. 根据权利要求1所述的泄压装置,其中,190HBW/mm≤A/a≤4000HBW/mm。
  3. 根据权利要求1或2所述的泄压装置,其中,8HBW≤A≤200HBW。
  4. 根据权利要求1-3任一项所述的泄压装置,其中,0.02mm≤a≤1.6mm。
  5. 根据权利要求1-4任一项所述的泄压装置,其中,所述泄压装置包括非薄弱区,所述非薄弱区连接于所述薄弱区的周围,所述非薄弱区的厚度为b,满足:a<b。
  6. 根据权利要求5所述的泄压装置,其中,0.05≤a/b≤0.95。
  7. 根据权利要求6所述的泄压装置,其中,0.12≤a/b≤0.8。
  8. 根据权利要求5-7任一项所述的泄压装置,其中,所述非薄弱区的硬度为B,满足:B<A。
  9. 根据权利要求8所述的泄压装置,其中,A/B≤3。
  10. 根据权利要求5-9任一项所述的泄压装置,其中,所述非薄弱区与所述薄弱区直接连接。
  11. 根据权利要求5-9任一项所述的泄压装置,其中,所述泄压装置设置有凹槽,所述泄压装置在设置所述凹槽的位置形成连接区,所述非薄弱区连接于所述连接区的周围,所述连接区局部形成所述薄弱区。
  12. 根据权利要求5-11任一项所述的泄压装置,其中,所述薄弱区与所述非薄弱区一体成型。
  13. 根据权利要求1-12任一项所述的泄压装置,其中,所述泄压装置包括泄压部,所述薄弱区沿着所述泄压部的边缘延伸,所述泄压部被配置为以所述薄弱区为边界打开。
  14. 根据权利要求1-13任一项所述的泄压装置,其中,所述泄压装置设置有泄压槽,所述泄压装置在设置所述泄压槽的位置形成所述薄弱区。
  15. 根据权利要求14所述的泄压装置,其中,所述泄压装置的表层形成有抗氧化层,所述抗氧化层在设置所述泄压槽的区域沿着所述泄压槽的槽壁面布置。
  16. 根据权利要求15所述的泄压装置,其中,所述泄压装置包括非薄弱区,所述非薄弱区连接于所述薄弱区的周围,所述抗氧化层在所述薄弱区的厚度为d,所述抗氧化层在所述非薄弱区的厚度为e,满足:d<e。
  17. 根据权利要求1-16任一项所述的泄压装置,其中,所述泄压装置包括多个壁,多个所述壁共同围合限定出容纳空间,所述容纳空间用于容纳所述电池单体的电极组件,至少一个所述壁形成有所述薄弱区。
  18. 根据权利要求17所述的泄压装置,其中,所述多个壁包括底壁和多个侧壁,多个所述侧壁围设于所述底壁的周围,多个所述侧壁与所述底壁共同围合限定出所述容纳空间,所述泄压装置在与所述底壁相对的一端形成开口;
    所述底壁形成有所述薄弱区;和/或,至少一个所述侧壁形成有所述薄弱区。
  19. 根据权利要求1-16任一项所述的泄压装置,其中,所述泄压装置为板状结构。
  20. 一种外壳,包括如权利要求1-19任一项所述的泄压装置。
  21. 一种电池单体,包括:
    如权利要求20所述的外壳;
    电极组件,所述电极组件容纳于所述外壳内。
  22. 一种电池,包括:
    箱体;
    如权利要求21所述的电池单体,所述电池单体容纳于所述箱体内。
  23. 一种用电设备,包括如权利要求22所述的电池。
PCT/CN2022/096957 2022-06-02 2022-06-02 泄压装置、外壳、电池单体、电池及用电设备 WO2023231014A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/CN2022/096957 WO2023231014A1 (zh) 2022-06-02 2022-06-02 泄压装置、外壳、电池单体、电池及用电设备
CN202280060588.2A CN117981153A (zh) 2022-06-02 2022-06-02 泄压装置、外壳、电池单体、电池及用电设备
KR1020247012035A KR20240055843A (ko) 2022-06-02 2022-06-02 감압 장치, 하우징, 전지 셀, 전지 및 전기 장치
PCT/CN2022/134419 WO2023231327A1 (zh) 2022-06-02 2022-11-25 外壳部件、电池单体、电池及用电设备
CN202280021334.XA CN117501526A (zh) 2022-06-02 2022-11-25 外壳部件、电池单体、电池及用电设备
CN202280021333.5A CN117501525A (zh) 2022-06-02 2022-11-25 外壳部件、电池单体、电池及用电设备
PCT/CN2022/134421 WO2023231328A1 (zh) 2022-06-02 2022-11-25 外壳部件、电池单体、电池及用电设备
CN202223593122.5U CN219226528U (zh) 2022-06-02 2022-12-29 泄压装置、外壳、电池单体、电池及用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/096957 WO2023231014A1 (zh) 2022-06-02 2022-06-02 泄压装置、外壳、电池单体、电池及用电设备

Publications (1)

Publication Number Publication Date
WO2023231014A1 true WO2023231014A1 (zh) 2023-12-07

Family

ID=86753587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096957 WO2023231014A1 (zh) 2022-06-02 2022-06-02 泄压装置、外壳、电池单体、电池及用电设备

Country Status (3)

Country Link
KR (1) KR20240055843A (zh)
CN (2) CN117981153A (zh)
WO (1) WO2023231014A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4842965A (en) * 1986-09-27 1989-06-27 Hitachi Maxell, Ltd. Non aqueous electrochemical battery with explosion proof arrangement and a method of the production thereof
CN1252170A (zh) * 1997-04-10 2000-05-03 杜拉塞尔公司 电化学电池用的断流器
US20070275295A1 (en) * 2006-05-24 2007-11-29 Ray Robert E Battery container having cruciform vent and cover
CN209169208U (zh) * 2018-12-12 2019-07-26 广州市金强工贸发展有限公司 一种可降低电池爆裂危害的电池壳
CN209169200U (zh) * 2018-12-12 2019-07-26 广州市金强工贸发展有限公司 一种防爆电池壳

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4842965A (en) * 1986-09-27 1989-06-27 Hitachi Maxell, Ltd. Non aqueous electrochemical battery with explosion proof arrangement and a method of the production thereof
CN1252170A (zh) * 1997-04-10 2000-05-03 杜拉塞尔公司 电化学电池用的断流器
US20070275295A1 (en) * 2006-05-24 2007-11-29 Ray Robert E Battery container having cruciform vent and cover
CN209169208U (zh) * 2018-12-12 2019-07-26 广州市金强工贸发展有限公司 一种可降低电池爆裂危害的电池壳
CN209169200U (zh) * 2018-12-12 2019-07-26 广州市金强工贸发展有限公司 一种防爆电池壳

Also Published As

Publication number Publication date
KR20240055843A (ko) 2024-04-29
CN219226528U (zh) 2023-06-20
CN117981153A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
CN217719870U (zh) 泄压装置、外壳、电池单体、电池及用电设备
WO2023098258A1 (zh) 电池单体、电池以及用电装置
US20230261312A1 (en) End cover assembly, battery cell, battery, and electrical apparatus
WO2024124688A1 (zh) 绝缘膜、电池单体、电池及用电装置
WO2023028864A1 (zh) 泄压装置、电池单体、电池及用电设备
JP2023534585A (ja) 電池単体およびその製造方法と製造システム、電池および電力使用装置
WO2023185327A1 (zh) 端盖、电池单体、电池及用电设备
US20230155262A1 (en) Housing, battery cell, battery and electric apparatus
WO2023216829A1 (zh) 电池单体、电池及用电装置
WO2024087381A1 (zh) 电池单体、电池及用电设备
WO2023141842A1 (zh) 泄压装置、电池单体、电池及用电设备
WO2023236220A1 (zh) 电池单体、电池及用电设备
WO2023220881A1 (zh) 端盖、电池单体、电池及用电设备
WO2023050098A1 (zh) 泄压装置、电池单体、电池及用电设备
WO2023231014A1 (zh) 泄压装置、外壳、电池单体、电池及用电设备
WO2023245430A1 (zh) 电池单体、电池及用电设备
WO2023220889A1 (zh) 外壳、电池单体、电池及用电设备
WO2023173416A1 (zh) 泄压机构、电池单体、电池及用电设备
WO2023206451A1 (zh) 电池单体、电池及用电设备
US20240213633A1 (en) Shell, Battery Cell, Battery, and Power Consumption Device
WO2023220882A1 (zh) 端盖、电池单体、电池及用电设备
US20230155233A1 (en) Battery cell, manufacturing method and manufacturing system thereof, battery, and powered device
WO2023184110A1 (zh) 外壳、电池单体、电池及用电设备
WO2024055257A1 (zh) 电池单体、电池及用电装置
WO2024040534A1 (zh) 电池单体的壳体、电池单体、电池和用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944342

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280060588.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247012035

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022944342

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022944342

Country of ref document: EP

Effective date: 20240412