WO2024055257A1 - 电池单体、电池及用电装置 - Google Patents

电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2024055257A1
WO2024055257A1 PCT/CN2022/119136 CN2022119136W WO2024055257A1 WO 2024055257 A1 WO2024055257 A1 WO 2024055257A1 CN 2022119136 W CN2022119136 W CN 2022119136W WO 2024055257 A1 WO2024055257 A1 WO 2024055257A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure relief
hole
annular groove
relief mechanism
battery cell
Prior art date
Application number
PCT/CN2022/119136
Other languages
English (en)
French (fr)
Inventor
柯海波
李全坤
黄守君
王鹏
金海族
邢承友
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280085977.0A priority Critical patent/CN118435443A/zh
Priority to PCT/CN2022/119136 priority patent/WO2024055257A1/zh
Publication of WO2024055257A1 publication Critical patent/WO2024055257A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, specifically, to a battery cell, a battery and an electrical device.
  • Embodiments of the present application provide a battery cell, a battery and a power device, which can effectively improve the safety and service life of the battery cell.
  • a battery cell including a casing and a pressure relief mechanism;
  • the casing has an accommodating space for accommodating an electrode assembly, and the casing is provided with a mounting hole connected to the accommodating space.
  • the mounting hole has a first hole wall extending along the circumferential direction of the mounting hole;
  • the pressure relief mechanism is disposed in the mounting hole, and the outer peripheral surface of the pressure relief mechanism is welded to the first hole wall ;
  • the housing is provided with a first annular groove, the first annular groove surrounds the outside of the first hole wall; and/or the pressure relief mechanism is provided with a second annular groove, the The first hole wall surrounds the outside of the second annular groove.
  • the housing is provided with a mounting hole for installing the pressure relief mechanism, and the outer peripheral surface of the pressure relief mechanism and the first wall surface of the mounting hole are welded to each other, so that the pressure relief mechanism can discharge the battery cells.
  • the effect of the internal pressure is achieved by arranging a first annular groove extending along the circumferential direction of the mounting hole on the shell, and the first annular groove is arranged around the wall of the first hole, and/or by arranging a first annular groove on the pressure relief mechanism along the circumferential direction of the mounting hole.
  • a second annular groove extending in a direction, and the first hole wall surface is arranged around the second annular groove, so that when the pressure relief mechanism and the first hole wall surface are welded to each other through the first annular groove and/or the second annular groove, one of the two can be provided.
  • the plastic deformation caused by welding in the welding area provides deformation space to release and absorb the welding stress between the pressure relief mechanism and the shell, thereby reducing the impact of welding stress on the pressure relief mechanism and improving the use of the pressure relief mechanism. life, which is beneficial to extending the service life of the battery cells.
  • the groove width of the first annular groove is W 1 , satisfying 0.2mm ⁇ W 1 ⁇ 3mm.
  • the groove width of the first annular groove between 0.2mm and 3mm, on the one hand, it can alleviate the problem of the first annular groove releasing the pressure relief mechanism and the shell due to the too small groove width of the first annular groove.
  • it can alleviate the phenomenon that the first annular groove takes up too much space in the casing due to the excessive width of the first annular groove, resulting in insufficient structural strength of the casing. It is helpful to ensure the structural strength of the shell itself.
  • the pressure relief mechanism includes a pressure relief part and a connection part; the pressure relief part is configured to relieve the internal pressure of the battery cell; the connection part is along the circumferential direction of the mounting hole. Surrounded by the pressure relief part, the outer peripheral surface of the connection part is welded to the first hole wall surface, and along the thickness direction of the pressure relief mechanism, the thickness of the connection part is greater than that of the pressure relief part. thickness.
  • the pressure relief mechanism is composed of a pressure relief part for releasing the internal pressure of the battery cell and a connection part surrounding the pressure relief part.
  • the connection part is used for welding to the outer casing. Setting the thickness of the connection part to be greater than the thickness of the pressure relief part can ensure the welding strength and welding quality between the connection part and the shell, and can reduce the impact on the pressure relief part when the connection part and the shell are welded to each other, thus helping to ensure The stability and reliability of the pressure relief mechanism.
  • the thickness of the connecting portion is H 1
  • the groove depth of the first annular groove is H 2 , satisfying 1.5 ⁇ H 1 /H 2 ⁇ 5 .
  • the thickness of the connecting part is 1.5 times the groove depth of the first annular groove. to 5 times, thereby on the one hand, it can alleviate the phenomenon that the first annular groove is not effective in releasing the welding stress between the pressure relief mechanism and the shell due to the too small groove depth of the first annular groove, and on the other hand, it can alleviate the problem.
  • the structural strength of the casing is insufficient.
  • the distance between the first annular groove and the first hole wall is D 1 , which satisfies 0.5mm ⁇ D 1 ⁇ 3mm.
  • the gap width between the first hole wall and the first annular groove is 0.5mm to 3mm, which on the one hand can alleviate the phenomenon that the gap width between the first hole wall and the first annular groove is too small and the area used for welding the shell and the pressure relief mechanism is too small, resulting in poor welding quality.
  • the first annular groove cannot effectively provide a deformation space for the plastic deformation caused by the mutual welding of the shell and the pressure relief mechanism due to the excessive gap width between the first hole wall surface and the first annular groove, so as to cause The first annular groove is not effective in relieving the welding stress between the pressure relief mechanism and the housing.
  • the outer peripheral surface of the pressure relief mechanism and the first hole wall surface are welded to form a soldering mark extending along the circumferential direction of the mounting hole, and the outer edge of the soldering mark is connected to the first hole wall.
  • the inner edges of the annular grooves are spaced apart.
  • the outer edge of the soldering portion formed by welding the pressure relief mechanism and the housing to each other is spaced apart from the inner edge of the first annular groove, that is, there is a gap between the soldering portion and the first annular groove, so that It can alleviate the mutual interference between the welding mark formed by welding the pressure relief mechanism and the casing and the first annular groove, so as to reduce the risk of explosion points when the pressure relief mechanism and the casing are welded to each other, thereby helping to improve the connection between the casing and the leakage mechanism.
  • the quality of the welding between the pressing mechanisms is provided.
  • the first annular groove is provided on a side of the housing facing away from the accommodation space.
  • the casing adopting this structure is easy to manufacture and process, and is conducive to reducing the first annular shape.
  • the difficulty of processing the groove is easy to manufacture and process, and is conducive to reducing the first annular shape.
  • the mounting hole is a stepped hole, and along the thickness direction of the pressure relief mechanism, the mounting hole includes a first hole section, a second hole section, and a third hole section arranged in sequence, and the third hole section
  • the apertures of a hole section, the second hole section and the third hole section gradually decrease, and the first hole section is located on the side of the second hole section away from the accommodation space; wherein, the At least part of the pressure relief mechanism is disposed in the second hole section and covers the third hole section.
  • the hole wall of the first hole section and the hole wall of the second hole section are connected through a connecting surface, so The hole wall of the second hole section includes the first hole wall surface, and the first annular groove is provided on the connecting surface.
  • the mounting hole has a stepped hole structure, and the mounting hole includes a first hole segment, a second hole segment, and a third hole segment arranged in sequence. That is to say, the mounting hole includes at least three hole segments, so that When assembling the pressure relief mechanism, the pressure relief mechanism is disposed in the second hole section so that the outer circumferential surface of the pressure relief mechanism and the hole wall of the second hole section are welded to each other, and the first annular groove is disposed connecting the first hole section.
  • the connection surface between the hole wall of the hole section and the hole wall of the second hole section is such that the first annular groove is adjacent to the hole wall of the second hole section, that is, the first annular groove is adjacent to the first annular groove for welding to the pressure relief mechanism. on the hole wall surface, which is beneficial to improving the effect of the first annular groove in releasing the welding stress between the pressure relief mechanism and the shell.
  • the mounting hole is a stepped hole.
  • the mounting hole includes a first hole segment and a second hole segment arranged in sequence.
  • the aperture of the first hole segment is is larger than the second hole section, and the first hole section penetrates the outer surface of the housing; wherein at least part of the pressure relief mechanism is disposed in the first hole section and covers the second hole section, the hole wall of the first hole section includes the first hole wall surface, and the first annular groove is provided on the outer surface of the housing.
  • the mounting hole has a stepped hole structure, and the mounting hole includes a first hole segment and a second hole segment arranged in sequence, and the first hole segment penetrates the outer surface of the housing. That is to say, the mounting hole includes at least two holes.
  • the first hole section is the hole section farthest from the accommodation space of the shell.
  • the first annular groove is close to the first hole section
  • the hole wall that is, the first annular groove is adjacent to the first hole wall for welding with the pressure relief mechanism, which is beneficial to improving the effect of the first annular groove in releasing the welding stress between the pressure relief mechanism and the shell.
  • the groove width of the second annular groove is W 2 , satisfying 0.2mm ⁇ W 2 ⁇ 3mm.
  • the distance between the second annular groove and the first hole wall is D 2 , which satisfies 0.5mm ⁇ D2 ⁇ 3mm .
  • the distance between the second annular groove and the first hole wall in the radial direction of the mounting hole at 0.5mm to 3mm, that is, the gap width between the first hole wall and the second annular groove It is 0.5mm to 3mm, which on the one hand can alleviate the phenomenon that the gap width between the first hole wall and the second annular groove is too small and the area used for welding the pressure relief mechanism to the shell is too small, resulting in poor welding quality.
  • the second annular groove cannot effectively provide deformation space for the plastic deformation caused by the mutual welding of the shell and the pressure relief mechanism due to the excessive gap width between the first hole wall surface and the second annular groove, so as to cause The second annular groove is not effective in relieving the welding stress between the pressure relief mechanism and the shell.
  • the outer peripheral surface of the pressure relief mechanism is welded to the first hole wall surface to form a soldering mark extending along the circumferential direction of the mounting hole, and the inner edge of the soldering mark is connected to the second hole wall.
  • the outer edges of the annular grooves are spaced apart.
  • the inner edge of the soldering portion formed by welding the pressure relief mechanism and the shell to each other is spaced apart from the outer edge of the second annular groove, that is, there is a gap between the soldering portion and the second annular groove, so that It can alleviate the mutual interference between the welding mark formed by welding the pressure relief mechanism and the casing and the second annular groove, so as to reduce the risk of explosion points when the pressure relief mechanism and the casing are welded to each other, thereby helping to improve the connection between the casing and the leakage mechanism.
  • the quality of the welding between the pressing mechanisms is provided.
  • the pressure relief mechanism includes a pressure relief part and a connection part; the pressure relief part is configured to relieve the internal pressure of the battery cell; the connection part is along the circumferential direction of the mounting hole. Surrounded by the pressure relief part, the outer peripheral surface of the connection part is welded to the first hole wall surface; wherein, along the thickness direction of the pressure relief mechanism, the thickness of the connection part is greater than the pressure relief part.
  • the second annular groove is provided on the connecting part, and the second annular groove surrounds the outside of the pressure relief part.
  • the pressure relief mechanism is provided with a pressure relief part and a connection part.
  • the connection part is used to weld the shell to each other, and the thickness of the connection part is greater than the thickness of the pressure relief part.
  • the thickness of the connecting portion is H 1
  • the groove depth of the second annular groove is H 3 , satisfying 1.5 ⁇ H 1 /H 3 ⁇ 5 .
  • the thickness of the connecting portion is 1.5 times the groove depth of the second annular groove. to 5 times, thus on the one hand, it can alleviate the phenomenon that the second annular groove is not effective in releasing the welding stress between the pressure relief mechanism and the shell due to the too small groove depth of the second annular groove, and on the other hand, it can alleviate the problem. Due to the excessive groove depth of the second annular groove, the structural strength of the connection part of the pressure relief mechanism is insufficient to ensure the stability and reliability of the connection between the pressure relief mechanism and the shell.
  • the pressure relief portion is provided with a score groove, and the pressure relief portion is configured to be split along the score groove to release the internal pressure of the battery cell; along the In the thickness direction of the pressure relief mechanism, the distance between the groove bottom surface of the second annular groove and the surface of the connecting portion facing away from the second annular groove is L 1 , and the groove bottom surface of the scored groove and the The distance between the surface of the pressure relief part and the scored groove is L 2 , which satisfies L 1 /L 2 ⁇ 1.2.
  • the distance between the groove bottom surface of the second annular groove and the surface of the connecting portion facing away from the second annular groove is separated from the groove bottom surface of the scored groove and the pressure relief portion.
  • the distance ratio between the surfaces of the scored grooves is set to be greater than or equal to 1.2, that is to say, the thickness of the connecting portion at the position where the second annular groove is provided is greater than or equal to the thickness of the pressure relief portion at the position where the scored groove is provided. 1.2 times, which can effectively ensure that the pressure relief mechanism opens the valve at the position with the notched groove to release the internal pressure of the battery cell, which in turn helps ensure the stability and reliability of the pressure relief mechanism to reduce leakage. There is a risk of valve opening in the pressure mechanism where the second annular groove is set.
  • the second annular groove is provided on a side of the pressure relief mechanism facing away from the accommodation space.
  • the pressure relief mechanism using this structure is easy to manufacture and process. It is beneficial to reduce the processing difficulty of the second annular groove.
  • embodiments of the present application further provide a battery including a plurality of the above battery cells.
  • embodiments of the present application further provide an electrical device, including the above-mentioned battery.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is an exploded view of the structure of a battery provided by some embodiments of the present application.
  • Figure 3 is an exploded view of the structure of a battery cell provided by some embodiments of the present application.
  • Figure 4 is a bottom view of a battery cell provided by some embodiments of the present application.
  • Figure 5 is a cross-sectional view of the casing of a battery cell provided by some embodiments of the present application.
  • Figure 6 is a partial enlarged view of position A of the housing shown in Figure 5;
  • Figure 7 is a partial cross-sectional view of the casing of a battery cell provided by some embodiments of the present application.
  • Figure 8 is a bottom view of a battery cell provided in some embodiments of the present application.
  • Figure 9 is a cross-sectional view of the casing of a battery cell provided in some embodiments of the present application.
  • Figure 10 is a partial enlarged view of B of the housing shown in Figure 9;
  • Figure 11 is a partial cross-sectional view of a pressure relief mechanism of a battery cell according to some further embodiments of the present application.
  • Icon 1000-vehicle; 100-battery; 10-box; 11-first box body; 12-second box body; 20-battery cell; 21-casing; 211-accommodating space; 212-mounting hole; 2121 -First hole wall surface; 2122-First hole section; 2123-Second hole section; 2124-Third hole section; 2125-Connecting surface; 213-First annular groove; 214-Casing; 2141-Opening; 2142- Bottom wall; 2143-side wall; 215-end cover; 22-pressure relief mechanism; 221-pressure relief part; 2211-scored groove; 222-connection part; 223-second annular groove; 23-soldering part; 24 -Electrode assembly; 25-positive electrode terminal; 26-negative electrode terminal; 200-controller; 300-motor; X-thickness direction of the pressure relief mechanism.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-ion batteries or magnesium-ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells or multiple battery modules. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes a casing, an electrode assembly and an electrolyte.
  • the casing is used to accommodate the electrode assembly and the electrolyte.
  • the electrode assembly consists of a positive electrode piece, a negative electrode piece and an isolation film. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the part of the positive electrode current collector that is not coated with the positive electrode active material layer serves as a positive electrode tab to realize the operation through the positive electrode tab.
  • the electrical energy input or output of the positive pole piece is a positive electrode current collector and a positive electrode active material layer.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the part of the negative electrode current collector that is not coated with the negative electrode active material layer serves as a negative electrode tab to realize the realization of the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon. In order to ensure that large currents can pass through without melting, the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be polypropylene (PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • Batteries have outstanding advantages such as high energy density, low environmental pollution, high power density, long service life, wide adaptability, and small self-discharge coefficient. They are an important part of the development of new energy today.
  • the battery cell is composed of a positive electrode plate, a negative electrode plate and a separator, which are assembled into an electrode assembly (bare battery cell) by winding or laminating, and then put into the casing, and finally injected with electrolyte.
  • higher requirements have been put forward for the safety performance and service life of batteries.
  • a mounting hole is usually opened on the casing, and an explosion-proof valve is installed at the mounting hole, so that when the battery cell experiences thermal runaway, the internal air pressure of the battery cell can break through the explosion-proof valve, so that the internal air pressure of the battery cell can be Release, thereby reducing the risk of fire and explosion in battery cells.
  • the explosion-proof valve is welded to the casing by welding to increase the stability of the connection between the explosion-proof valve and the casing, thereby reducing the risk of the explosion-proof valve falling off under the impact of the internal pressure of the battery cell.
  • plastic deformation will occur in the welding area between the explosion-proof valve and the shell, which will cause a large welding stress between the explosion-proof valve and the shell after the welding is completed.
  • the explosion-proof valve Affected by welding stress it is easy to shorten the service life of the explosion-proof valve, which is not conducive to improving the service life of the battery cell.
  • the battery cell includes a casing and a pressure relief mechanism.
  • the housing has an accommodating space for accommodating the electrode assembly inside.
  • the housing is provided with a mounting hole connected to the accommodating space.
  • the mounting hole has a first hole wall extending along the circumferential direction of the mounting hole.
  • the pressure relief mechanism is arranged in the installation hole, and the outer peripheral surface of the pressure relief mechanism is welded to the wall of the first hole.
  • the shell is provided with a first annular groove, and the first annular groove surrounds the outside of the first hole wall; and/or the pressure relief mechanism is provided with a second annular groove, and the first hole wall surrounds the second annular groove. outside.
  • the outer casing is provided with a mounting hole for installing the pressure relief mechanism, and the outer peripheral surface of the pressure relief mechanism and the first hole wall surface of the installation hole are welded to each other, so that the pressure relief mechanism can function as a pressure relief mechanism.
  • the internal pressure of the battery cell is discharged by arranging a first annular groove extending along the circumferential direction of the mounting hole on the casing, and the first annular groove is arranged around the wall of the first hole, and/or by arranging an edge along the pressure relief mechanism.
  • a second annular groove extending circumferentially of the mounting hole, and the first hole wall surface is arranged around the second annular groove, so that when the pressure relief mechanism and the first hole wall surface are welded to each other through the first annular groove and/or the second annular groove, Provide deformation space for the plastic deformation caused by welding in the welding area between the two to release and absorb the welding stress between the pressure relief mechanism and the shell, thereby reducing the impact of the welding stress on the pressure relief mechanism on the one hand to improve the pressure relief mechanism.
  • the service life of the pressure relief mechanism is thereby beneficial to extending the service life of the battery cells.
  • the battery cells disclosed in the embodiments of the present application can be used in, but are not limited to, electrical devices such as vehicles, ships, or aircrafts.
  • the power supply system of the electrical device can be composed of battery cells, batteries, etc. disclosed in this application. In this way, the welding stress between the pressure relief mechanism and the shell can be alleviated, thereby improving the service life and safety of the battery cells. .
  • Embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • an electric device 1000 according to an embodiment of the present application is used as an example.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is an exploded view of the structure of the battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a case 10 and battery cells 20 , and the battery cells 20 are used to be accommodated in the case 10 .
  • the box 10 is used to provide an assembly space for the battery cells 20, and the box 10 can adopt a variety of structures.
  • the box body 10 may include a first box body 11 and a second box body 12 .
  • the first box body 11 and the second box body 12 cover each other.
  • the first box body 11 and the second box body 12 share a common
  • An assembly space for accommodating the battery cells 20 is defined.
  • the second box body 12 can be a hollow structure with one end open, and the first box body 11 can be a plate-like structure.
  • the first box body 11 is covered with the open side of the second box body 12 so that the first box body 11 and the second box body 11 can be connected to each other.
  • the two box bodies 12 jointly define an assembly space; the first box body 11 and the second box body 12 can also be hollow structures with one side open, and the open side cover of the first box body 11 is closed with the second box body 12 Open side.
  • the box 10 formed by the first box body 11 and the second box body 12 can be in various shapes, such as a cylinder, a rectangular parallelepiped, etc.
  • the battery 100 there may be a plurality of battery cells 20, and the plurality of battery cells 20 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the plurality of battery cells 20 are connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 can be accommodated in the box 10 ; of course, the battery 100 can also be a plurality of battery cells 20 First, the battery modules are connected in series, parallel, or mixed to form a battery module, and then multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 10 .
  • the battery 100 may also include other structures.
  • the battery 100 may further include a bus component for realizing electrical connections between multiple battery cells 20 .
  • Each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes. For example, in FIG. 2 , the battery cell 20 has a rectangular parallelepiped structure.
  • Figure 3 is an exploded view of the structure of the battery cell 20 provided by some embodiments of the present application
  • Figure 4 is a bottom view of the battery cell 20 provided by some embodiments of the present application
  • 5 is a cross-sectional view of the casing 21 of the battery cell 20 provided by some embodiments of the present application
  • FIG. 6 is a partial enlarged view of the A position of the casing 21 shown in FIG. 5 .
  • This application provides a battery cell 20.
  • the battery cell 20 includes a housing 21 and a pressure relief mechanism 22.
  • the housing 21 has an accommodating space 211 inside for accommodating the electrode assembly 24.
  • the housing 21 is provided with a mounting hole 212 communicating with the accommodating space 211.
  • the mounting hole 212 has a first hole wall surface 2121 extending along the circumferential direction of the mounting hole 212.
  • the pressure relief mechanism 22 is disposed in the installation hole 212 , and the outer peripheral surface of the pressure relief mechanism 22 is welded to the first hole wall surface 2121 .
  • the housing 21 is provided with a first annular groove 213 , and the first annular groove 213 surrounds the outside of the first hole wall 2121 .
  • the housing 21 is provided with a mounting hole 212 that communicates with the accommodating space 211 . That is, the mounting hole 212 penetrates the inner surface of the housing 21 so that the mounting hole 212 and the accommodating space 211 of the housing 21 communicate with each other.
  • the mounting hole 212 has a first hole wall surface 2121 extending along the circumferential direction of the mounting hole 212 , that is, the first hole wall surface 2121 is a surface of the hole wall of the mounting hole 212 extending along the circumferential direction of the mounting hole 212 .
  • the structure of the mounting hole 212 can be various. If the mounting hole 212 is a through hole with a constant diameter, the first hole wall 2121 is the hole wall of the mounting hole 212; if the mounting hole 212 is a stepped hole, the first hole wall 2121 It is the hole wall of one hole segment among the plurality of hole segments of the mounting hole 212 .
  • the outer peripheral surface of the pressure relief mechanism 22 is welded to the first hole wall surface 2121, that is, the pressure relief mechanism 22 has an outer peripheral surface extending along the circumferential direction of the mounting hole 212, and the outer peripheral surface of the pressure relief mechanism 22 is connected to the first hole wall surface of the mounting hole 212.
  • 2121 are welded to each other, so that the portion of the outer peripheral surface of the pressure relief mechanism 22 and the portion of the first hole wall surface 2121 of the mounting hole 212 are fused to each other.
  • the outer peripheral surface of the pressure relief mechanism 22 and the first hole wall surface 2121 of the mounting hole 212 can be welded to each other in various ways, such as fusion welding, pressure welding, brazing or laser welding. In FIG.
  • the outer peripheral surface of the pressure relief mechanism 22 and the first hole wall surface 2121 of the mounting hole 212 are welded to each other to form a welding portion 23 , that is, the portion of the outer peripheral surface of the pressure relief mechanism 22 and the first hole of the mounting hole 212
  • the portion where portions of the wall surface 2121 are fused to each other is the welding portion 23 .
  • the mounting hole 212 may have various shapes.
  • the shape of the mounting hole 212 may be determined according to the shape of the pressure relief mechanism 22.
  • the shape of the pressure relief mechanism 22 may be circular, elliptical, rectangular, etc., correspondingly,
  • the shape of the mounting hole 212 can also be circular, elliptical or rectangular.
  • the first annular groove 213 can also have various shapes, such as a circular ring, an elliptical ring or a rectangular ring, etc.
  • the pressure relief mechanism 22 has an elliptical shape
  • the first annular groove 213 has an elliptical annular shape.
  • the circumferential direction of the mounting hole 212 is the direction extending along the shape trajectory of the mounting hole 212. If the shape of the mounting hole 212 is circular, the circumferential direction of the mounting hole 212 is the direction of the circular trajectory; 212 is an elliptical shape, then the circumferential direction of the mounting hole 212 is the direction of the elliptical trajectory.
  • the welding track between the outer circumferential surface of the pressure relief mechanism 22 and the first hole wall surface 2121 of the mounting hole 212 may be a continuous and closed track along the circumferential direction of the mounting hole 212 , or may be a welding track along the circumferential direction of the mounting hole 212 .
  • the circumferential discontinuous trajectory of the hole 212 that is, the welding trajectory between the outer circumferential surface of the pressure relief mechanism 22 and the first hole wall surface 2121 of the mounting hole 212 is discontinuous along the circumferential direction of the mounting hole 212 , that is, the pressure relief mechanism 22
  • the welding portion 23 formed by welding the outer peripheral surface of the mounting hole 212 to the first hole wall surface 2121 of the mounting hole 212 may be a continuous structure along the circumferential direction of the mounting hole 212 , or may be an intermittently discontinuous structure along the circumferential direction of the mounting hole 212 .
  • the first annular groove 213 may also be a continuous and closed structure extending along the circumferential direction of the mounting hole 212 , or may be a structure of multiple groove segments spaced apart along the circumferential direction of the mounting hole 212 .
  • the battery cell 20 may further include an electrode assembly 24 .
  • the accommodation space 211 of the housing 21 is used to accommodate the electrode assembly 24 .
  • the housing 21 may also be used to accommodate an electrolyte, such as an electrolyte.
  • the housing 21 can have various structural forms.
  • the housing 21 can also be made of various materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the housing 21 may include a housing 214 and an end cover 215 .
  • the housing 214 has an accommodation space 211 for accommodating the electrode assembly 24 , and an opening 2141 is formed at one end of the housing 214 .
  • the opening 2141 communicates with the accommodation space 211 , that is, the housing 214 is a hollow structure with one end open, and the end cover 215 covers the opening 2141 of the housing 214 and forms a sealed connection to form a sealed space for accommodating the electrode assembly 24 and the electrolyte.
  • the electrode assembly 24 When assembling the battery cell 20, the electrode assembly 24 can be first placed into the casing 214, the electrolyte is filled into the casing 214, and then the end cap 215 is closed with the opening 2141 of the casing 214 to form a sealed connection. A sealed space is formed for accommodating the electrode assembly 24 and the electrolyte.
  • the end cap 215 is welded to the housing 214 .
  • the housing 214 can be in various shapes, such as cylinder, cuboid, etc.
  • the shape of the housing 214 may be determined based on the specific shape of the electrode assembly 24 .
  • the housing 214 of the cylindrical structure can be used; if the electrode assembly 24 has a rectangular parallelepiped structure, the housing 214 of the rectangular parallelepiped structure can be used.
  • the electrode assembly 24 has a rectangular parallelepiped structure, and the housing 214 has a rectangular parallelepiped structure.
  • the end cap 215 can also have various structures.
  • the end cap 215 can be a plate-like structure or a hollow structure with one end open.
  • the housing 214 has a rectangular parallelepiped structure
  • the end cover 215 has a plate-like structure
  • the end cover 215 covers the opening 2141 of the housing 214 .
  • the mounting hole 212 can be provided on the housing 214 or the end cover 215. That is to say, the pressure relief mechanism 22 can be installed on the housing 214 or the end cover 215. If If the pressure relief mechanism 22 is installed on the housing 214, the first annular groove 213 is provided on the housing 214. If the pressure relief mechanism 22 is installed on the end cover 215, the second annular groove 223 is provided on the end cover 215.
  • the housing 214 has a bottom wall 2142 and a side wall 2143. The side wall 2143 is surrounded by the bottom wall 2142.
  • the mounting hole 212 is provided on the bottom wall 2142 of the housing 214, that is, the pressure relief mechanism 22 is installed on the bottom wall 2142 of the housing 214.
  • the corresponding , the first annular groove 213 is provided on the bottom wall 2142.
  • the mounting hole 212 may also be provided on the side wall 2143 of the housing 214 or on the end cover 215 .
  • the pressure relief mechanism 22 is used to release the pressure inside the battery cell 20 when the internal pressure or temperature of the battery cell 20 reaches a predetermined value.
  • the pressure relief mechanism 22 may be a component such as an explosion-proof valve, explosion-proof disk, air valve, pressure relief valve or safety valve.
  • the battery cell 20 may also include a positive electrode terminal 25 and a negative electrode terminal 26 .
  • the positive electrode terminal 25 and the negative electrode terminal 26 are both installed on the end cover 215 .
  • the positive electrode terminal 25 and negative electrode terminal 26 are used to electrically connect with the electrode assembly 24 to serve as the positive output electrode and the negative output electrode of the battery cell 20 .
  • the positive electrode terminal 25 and the negative electrode terminal 26 may both be installed on the housing 214, or may be installed on the housing 214 and the end cover 215 respectively.
  • the shell 21 is not limited to the above structure, and the shell 21 can also be of other structures.
  • the shell 21 includes a shell 214 and two end caps 215.
  • the shell 214 is a hollow structure with two opposite ends open.
  • An end cap 215 is correspondingly covered with one end of the housing 214 and forms a sealed connection to form a sealed space for accommodating the electrode assembly 24 and the electrolyte.
  • the positive electrode terminal 25 and the negative electrode terminal 26 can be installed on the same end cap 215 or on different end caps 215 .
  • the electrode assembly 24 is a component that causes an electrochemical reaction in the battery cell 20 .
  • the electrode assembly 24 may include a positive electrode plate, a negative electrode plate, and a separator.
  • the electrode assembly 24 may be a rolled structure formed by winding the positive electrode sheet, the isolation film and the negative electrode sheet, or may be a stacked structure formed by a stacked arrangement of the positive electrode sheet, the isolation film and the negative electrode sheet.
  • the housing 21 is provided with a mounting hole 212 for mounting the pressure relief mechanism 22, and the outer peripheral surface of the pressure relief mechanism 22 and the first hole wall surface 2121 of the mounting hole 212 are welded to each other, so that the pressure relief mechanism 22 can discharge the battery cells.
  • a first annular groove 213 extending along the circumferential direction of the mounting hole 212 is provided on the housing 21, and the first annular groove 213 is arranged around the first hole wall surface 2121, so that through the first annular groove 213
  • a deformation space can be provided for the plastic deformation of the welding area between the two to release and absorb the welding stress between the pressure relief mechanism 22 and the shell 21.
  • the impact of the welding stress on the pressure relief mechanism 22 can be reduced to extend the service life of the pressure relief mechanism 22, which in turn is beneficial to extending the service life of the battery cell 20.
  • leakage caused by the pulling of the welding stress can be reduced.
  • the phenomenon of cracks occurring in the welding area between the pressure relief mechanism 22 and the casing 21 is to reduce the risk of leakage of the battery cell 20 due to welding failure between the pressure relief mechanism 22 and the casing 21, which is beneficial to improving the battery cell 20. safety of use.
  • the groove width of the first annular groove 213 is W 1 , which satisfies 0.2mm ⁇ W 1 ⁇ 3mm.
  • the groove width of the first annular groove 213 is W 1 , that is, in the radial direction of the mounting hole 212
  • the maximum width of the first annular groove 213 is W 1 , that is, in the geometric center of the mounting hole 212 and with the leakage direction, the width of the first annular groove 213 is W 1 .
  • the maximum width of the first annular groove 213 is W 1 .
  • the radial direction of the mounting hole 212 is the direction from the edge of the mounting hole 212 to the geometric center of the mounting hole 212 or the direction from the geometric center of the mounting hole 212 to the edge of the mounting hole 212 .
  • the groove width W 1 of the first annular groove 213 may be 0.2 mm, 0.5 mm, 1 mm, 1.5 mm, 2 mm or 3 mm, etc.
  • the groove width of the first annular groove 213 By setting the groove width of the first annular groove 213 to 0.2 mm to 3 mm, on the one hand, it is possible to alleviate the problem of the first annular groove 213 releasing the space between the pressure relief mechanism 22 and the housing 21 due to the too small groove width of the first annular groove 213 On the other hand, it can alleviate the phenomenon that the first annular groove 213 occupies too much space of the housing 21 due to the excessive groove width of the first annular groove 213, resulting in insufficient structural strength of the housing 21. phenomenon, thus helping to ensure the structural strength of the shell 21 itself.
  • the pressure relief mechanism 22 includes a pressure relief part 221 and a connection part 222 .
  • the pressure relief part 221 is configured to relieve the internal pressure of the battery cell 20 .
  • the connecting portion 222 is arranged around the pressure relief portion 221 along the circumferential direction of the mounting hole 212.
  • the outer peripheral surface of the connecting portion 222 is welded to the first hole wall surface 2121. Along the thickness direction The thickness of the pressing portion 221.
  • the pressure relief part 221 plays a role in releasing the internal pressure of the battery cell 20 when the battery cell 20 is thermally runaway.
  • the pressure relief portion 221 is provided with a score groove 2211 , so that the pressure relief portion 221 forms a relatively weak area at the position where the score groove 2211 is provided, so that the pressure relief portion 221 is 221 is configured to split along the scored groove 2211 to release the internal pressure of the battery cell 20 when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the thickness of the connection part 222 is greater than the thickness of the pressure relief part 221 , that is, in the thickness direction X of the pressure relief mechanism, the minimum thickness of the connection part 222 is greater than the maximum thickness of the pressure relief part 221 .
  • the pressure relief mechanism 22 is composed of a pressure relief part 221 for releasing the internal pressure of the battery cell 20 and a connection part 222 surrounding the pressure relief part 221.
  • the connection part 222 is used for welding to the casing 21. Setting the thickness of the connection part 222 to be greater than the thickness of the pressure relief part 221 can ensure the welding strength and welding quality between the connection part 222 and the shell 21 , and can reduce the pressure on the pressure relief part 221 when the connection part 222 and the shell 21 are welded to each other.
  • the impact caused by the pressure relief mechanism 22 is beneficial to ensuring the stability and reliability of the pressure relief mechanism 22.
  • the groove depth of the first annular groove 213 is H 2 , that is, in the thickness direction
  • the distance between the faces of groove 213 is H 2 .
  • the ratio of the thickness of the connecting portion 222 to the groove depth of the first annular groove 213 may be 1.5, 2, 2.5, 3, 4 or 5, etc.
  • the thickness of the connecting portion 222 is 1.5 times to 5 times the groove depth of the first annular groove 213 times, thereby on the one hand, it can alleviate the phenomenon that the first annular groove 213 is ineffective in releasing the welding stress between the pressure relief mechanism 22 and the housing 21 due to the too small groove depth of the first annular groove 213.
  • This can alleviate the phenomenon that the structural strength of the housing 21 is insufficient due to the groove depth of the first annular groove 213 being too large, thereby reducing the risk of cracking of the housing 21 .
  • the distance between the first annular groove 213 and the first hole wall 2121 is D 1 , which satisfies 0.5mm ⁇ D 1 ⁇ 3mm. .
  • the distance between the first annular groove 213 and the first hole wall 2121 is D 1 , that is, in the radial direction of the mounting hole 212 , the first hole wall 2121 and the first annular groove 213 are close to the first
  • the distance between the groove sides of the hole wall surface 2121 is D 1 , that is to say, the distance between the inner edge of the first annular groove 213 in the radial direction of the mounting hole 212 and the first hole wall surface 2121 is D 1 , so that the There is a gap between a hole wall surface 2121 and the first annular groove 213, and the width of the gap is D 1 .
  • the distance D 1 between the first annular groove 213 and the first hole wall surface 2121 may be 0.5 mm, 0.8 mm, 1 mm, 1.5 mm, 2 mm or 3 mm, etc.
  • the gap width between the first hole wall surface 2121 and the first annular groove 213 is 0.5mm to 3mm, thus on the one hand, it can alleviate the problem that the gap width between the first hole wall surface 2121 and the first annular groove 213 is too small and the area for welding the shell 21 and the pressure relief mechanism 22 is too small, resulting in poor welding quality.
  • the first annular groove 213 cannot effectively weld the housing 21 and the pressure relief mechanism 22 to each other due to the excessive gap width between the first hole wall surface 2121 and the first annular groove 213.
  • Plastic deformation provides deformation space to cause the first annular groove 213 to be ineffective in releasing the welding stress between the pressure relief mechanism 22 and the housing 21 .
  • the outer peripheral surface of the pressure relief mechanism 22 and the first hole wall surface 2121 are welded to form a soldering mark 23 extending along the circumferential direction of the mounting hole 212 , and the outer edge of the soldering mark 23 It is spaced apart from the inner edge of the first annular groove 213 .
  • the outer edge of the soldering part 23 is spaced apart from the inner edge of the first annular groove 213 , that is, in the normal direction of the outer edge of the soldering part 23 , there is a gap between the soldering part 23 and the first annular groove 213 .
  • the outer edge of the soldering portion 23 formed by welding the pressure relief mechanism 22 and the housing 21 to each other is spaced apart from the inner edge of the first annular groove 213, that is, there is a gap between the soldering portion 23 and the first annular groove 213, so that It can alleviate the mutual interference between the welding mark 23 formed by welding the pressure relief mechanism 22 and the housing 21 and the first annular groove 213, so as to reduce the risk of explosion points when the pressure relief mechanism 22 and the housing 21 are welded to each other, and thus It is beneficial to improve the welding quality between the housing 21 and the pressure relief mechanism 22.
  • the first annular groove 213 is provided on a side of the housing 21 facing away from the accommodation space 211 .
  • the first annular groove 213 is disposed on the side of the housing 21 facing away from the accommodating space 211 . That is to say, the notch of the first annular groove 213 penetrates the side of the housing 21 facing away from the accommodating space 211 , so that the first annular groove 213 is located on the side of the housing 21 facing away from the accommodating space 211 . outside of housing 21.
  • the first annular groove 213 can also be provided on the side of the housing 21 facing the accommodating space 211 .
  • the housing 21 with this structure is easy to manufacture and process, and is beneficial to reducing the first annular shape.
  • the mounting hole 212 is a stepped hole.
  • the mounting hole 212 includes a first hole section 2122 , a second hole section 2123 and a third hole arranged in sequence. section 2124, the hole diameters of the first hole section 2122, the second hole section 2123 and the third hole section 2124 gradually decrease, and the first hole section 2122 is located on the side of the second hole section 2123 away from the accommodation space 211.
  • at least part of the pressure relief mechanism 22 is disposed in the second hole section 2123 and covers the third hole section 2124.
  • the hole wall of the first hole section 2122 and the hole wall of the second hole section 2123 are connected through the connecting surface 2125.
  • the hole wall of the two hole sections 2123 includes a first hole wall surface 2121, and the first annular groove 213 is provided on the connecting surface 2125.
  • the installation hole 212 includes a first hole section 2122, a second hole section 2123, and a third hole section 2124 arranged in sequence. That is, the installation hole 212 includes at least three hole sections, which are the first hole section 2122 and the second hole section arranged in sequence. Segment 2123 and third hole segment 2124.
  • the diameters of the first hole section 2122 , the second hole section 2123 and the third hole section 2124 gradually decrease, and the first hole section 2122 is located on the side of the second hole section 2123 away from the accommodation space 211 , that is, within the thickness of the pressure relief mechanism.
  • the projection of the two hole segments 2123 in the thickness direction X of the pressure relief mechanism is located in the first hole segment 2122, and the projection of the third hole segment 2124 in the thickness direction X of the pressure relief mechanism is located in the second hole segment 2123.
  • the mounting hole 212 is provided with only three hole sections, namely the first hole section 2122, the second hole section 2123 and the third hole section 2124.
  • the hole wall of the first hole section 2122 is in contact with the shell. 214 are connected to each other, and the hole wall of the third hole section 2124 is connected to the inner surface of the housing 214, that is, the first hole section 2122 penetrates the outer surface of the housing 214, and the third hole section 2124 penetrates the inner surface of the housing 214.
  • the mounting hole 212 may also have two, four, five or six hole segments, etc.
  • the first hole segment 2122 may be the one furthest away from the housing 21 among the plurality of hole segments.
  • the hole segment of the space 211 may also be a hole segment located between multiple hole segments.
  • the third hole segment 2124 may be the hole segment closest to the accommodation space 211 of the housing 21 among the multiple hole segments, or it may be It is a hole segment located between multiple hole segments.
  • At least part of the pressure relief mechanism 22 is disposed in the second hole section 2123 and covers the third hole section 2124. That is, the pressure relief mechanism 22 is disposed in the second hole section 2123 and blocks the third hole section 2124.
  • the pressure relief mechanism 22 can be fully accommodated in the second hole section 2123, or can be partially accommodated in the second hole section 2123. For example, in FIG. 6 , the pressure relief mechanism 22 is entirely accommodated in the second hole section 2123 .
  • the connecting surface 2125 is a surface that connects the hole wall of the first hole section 2122 and the hole wall of the second hole section 2123 , that is, it is connected as a step surface between the first hole section 2122 and the second hole section 2123 .
  • the hole wall of the second hole section 2123 includes the first hole wall surface 2121 , that is, at least part of the hole wall of the second hole section 2123 is welded to the outer peripheral surface of the pressure relief mechanism 22 .
  • the mounting hole 212 has a stepped hole structure, and the mounting hole 212 includes a first hole segment 2122, a second hole segment 2123, and a third hole segment 2124 arranged in sequence. That is to say, the mounting hole 212 includes at least three hole segments, so that When assembling the pressure relief mechanism 22, the pressure relief mechanism 22 is disposed in the second hole section 2123, so that the outer peripheral surface of the pressure relief mechanism 22 and the hole wall of the second hole section 2123 are welded to each other, and the first annular groove is 213 is disposed on the connecting surface 2125 connecting the hole wall of the first hole section 2122 and the hole wall of the second hole section 2123, so that the first annular groove 213 is closely adjacent to the hole wall of the second hole section 2123, that is, the first annular groove 213 It is adjacent to the first hole wall surface 2121 for welding with the pressure relief mechanism 22, thereby improving the effect of the first annular groove 213 in releasing the welding stress between the pressure relief mechanism 22 and the housing 21.
  • FIG. 7 is a partial cross-sectional view of the housing 21 of the battery cell 20 provided in some embodiments of the present application.
  • the mounting hole 212 is a stepped hole.
  • the first hole section 2122 penetrates the outer surface of the housing 21 .
  • at least part of the pressure relief mechanism 22 is disposed in the first hole section 2122 and covers the second hole section 2123.
  • the hole wall of the first hole section 2122 includes the first hole wall surface 2121, and the first annular groove 213 is provided in the shell. 21 on the outer surface.
  • the mounting hole 212 includes a first hole section 2122 and a second hole section 2123 arranged in sequence. That is, the mounting hole 212 includes at least two hole sections, which are the first hole section 2122 and the second hole section 2123 arranged in sequence.
  • the diameter of the first hole section 2122 is larger than that of the second hole section 2123, and the first hole section 2122 penetrates the outer surface of the housing 21, that is, the projection of the second hole section 2123 in the thickness direction X of the pressure relief mechanism is located on the first hole section 2122 inside, and the first hole section 2122 is the hole section farthest from the accommodation space 211 of the housing 21 among the multiple hole sections of the mounting hole 212 . That is to say, the second hole section 2123 is closer to the housing than the first hole section 2122 Accommodation space for 21 211.
  • the mounting hole 212 is provided with only two hole sections, namely the first hole section 2122 and the second hole section 2123.
  • the hole wall of the first hole section 2122 is connected to the outer surface of the housing 214.
  • the hole wall of the second hole section 2123 is connected to the inner surface of the housing 214 , that is, the first hole section 2122 penetrates the outer surface of the housing 214
  • the second hole section 2123 penetrates the inner surface of the housing 214 .
  • the mounting hole 212 may also have three, four, five or six hole segments, etc.
  • the second hole segment 2123 may be the one closest to the housing 21 among the multiple hole segments.
  • the hole segment of the space 211 may also be a hole segment located between multiple hole segments.
  • the hole wall of the first hole section 2122 includes the first hole wall surface 2121 , that is, at least part of the hole wall of the first hole section 2122 is welded to the outer peripheral surface of the pressure relief mechanism 22 .
  • the mounting hole 212 has a stepped hole structure.
  • the mounting hole 212 includes a first hole segment 2122 and a second hole segment 2123 arranged in sequence, and the first hole segment 2122 penetrates the outer surface of the housing 21 . That is to say, the mounting hole 212 includes at least There are two hole sections, and the first hole section 2122 is the hole section farthest from the accommodation space 211 of the housing 21 .
  • the pressure relief mechanism 22 By disposing the pressure relief mechanism 22 in the first hole section 2122 , the outer peripheral surface of the pressure relief mechanism 22 is in contact with the first hole section 2122 .
  • the hole walls of the hole sections 2122 are welded to each other, and the first annular groove 213 is provided on the outer surface of the housing 21.
  • the first annular groove 213 is closely adjacent to the hole wall of the first hole section 2122, that is, the first annular groove 213 is adjacent to the first hole wall 2121 for welding with the pressure relief mechanism 22, thereby facilitating the lifting of the first annular groove. 213 has the effect of releasing the welding stress between the pressure relief mechanism 22 and the housing 21 .
  • Figure 8 is a bottom view of a battery cell 20 provided in some further embodiments of the present application
  • Figure 9 is a battery cell provided in some further embodiments of the present application
  • 10 is a partial enlarged view of B of the housing 21 shown in FIG. 9 .
  • the pressure relief mechanism 22 may also be provided with a second annular groove 223, and the first hole wall surface 2121 surrounds the outside of the second annular groove 223.
  • the mounting hole 212 is a stepped hole.
  • the mounting hole 212 includes three hole segments, which are a first hole segment 2122 and a second hole segment 2122 that are sequentially arranged along the thickness direction X of the pressure relief mechanism.
  • the hole diameters of the hole section 2123 and the third hole section 2124, the first hole section 2122, the second hole section 2123 and the third hole section 2124 gradually decrease, and the first hole section 2122 penetrates the outer surface of the housing 214.
  • the mounting hole 212 may also be provided with two, four, five or six hole segments, etc.
  • the pressure relief mechanism 22 is disposed in the second hole section 2123 and covers the third hole section 2124.
  • the outer peripheral surface of the pressure relief mechanism 22 and the hole wall of the second hole section 2123 are welded to each other, that is, the hole wall of the second hole section 2123 includes the first hole wall surface 2121.
  • the pressure relief mechanism 22 has an elliptical shape
  • the second annular groove 223 has an elliptical annular shape.
  • the second annular groove 223 may also be in the shape of a circular ring or a rectangular ring.
  • the welding track between the outer peripheral surface of the pressure relief mechanism 22 and the first hole wall surface 2121 of the mounting hole 212 may be a continuous and closed track along the circumferential direction of the mounting hole 212 , or may be a welding track along the circumferential direction of the mounting hole 212 .
  • the welding track between the outer peripheral surface of the pressure relief mechanism 22 and the first hole wall surface 2121 of the mounting hole 212 is discontinuous along the circumferential direction of the mounting hole 212 , that is, the outer peripheral surface of the pressure relief mechanism 22 and the first hole wall surface 2121 of the mounting hole 212 are discontinuous.
  • the soldering portion 23 formed by welding the first hole wall surfaces 2121 of the mounting hole 212 to each other may be a continuous structure along the circumferential direction of the mounting hole 212 , or may be an intermittently discontinuous structure along the circumferential direction of the mounting hole 212 .
  • the second annular groove 223 may also be a continuous and closed structure extending along the circumferential direction of the mounting hole 212 , or may be a structure of multiple groove segments spaced apart along the circumferential direction of the mounting hole 212 .
  • the battery cell 20 is only provided with the first annular groove 213 on the housing 21.
  • the battery cell 20 is only provided on the pressure relief mechanism 22.
  • the battery cell 20 may also have a first annular groove 213 on the casing 21 and a second annular groove 223 on the pressure relief mechanism 22 .
  • the second annular groove 223 By providing a second annular groove 223 extending along the circumferential direction of the mounting hole 212 on the pressure relief mechanism 22, and the first hole wall surface 2121 being disposed around the second annular groove 223, the second annular groove 223 connects the pressure relief mechanism 22 and the pressure relief mechanism 22.
  • the first hole wall surfaces 2121 are welded to each other, they can provide deformation space for the plastic deformation of the welding area between the two to release and absorb the welding stress between the pressure relief mechanism 22 and the housing 21 , thereby reducing welding on the one hand.
  • the influence of stress on the pressure relief mechanism 22 can increase the service life of the pressure relief mechanism 22, which in turn is conducive to extending the service life of the battery cell 20.
  • FIG. 11 is a partial cross-sectional view of the pressure relief mechanism 22 of the battery cell 20 provided in further embodiments of the present application.
  • the groove width of the second annular groove 223 is W 2 , which satisfies 0.2mm ⁇ W 2 ⁇ 3mm.
  • the width of the second annular groove 223 is W 2 , that is, in the radial direction of the mounting hole 212
  • the maximum width of the second annular groove 223 is W 2 , that is, in the radial direction passing through the geometric center of the mounting hole 212 and adjacent to the leakage
  • the maximum width of the second annular groove 223 is W 2 .
  • the groove width W 2 of the second annular groove 223 may be 0.2 mm, 0.5 mm, 1 mm, 1.5 mm, 2 mm or 3 mm, etc.
  • the groove width of the second annular groove 223 By setting the groove width of the second annular groove 223 to 0.2 mm to 3 mm, on the one hand, it can alleviate the problem that the second annular groove 223 releases the gap between the pressure relief mechanism 22 and the housing 21 due to the too small groove width of the second annular groove 223 . On the other hand, it can alleviate the phenomenon that the second annular groove 223 occupies too much space of the pressure relief mechanism 22 due to the excessive groove width of the second annular groove 223, resulting in the failure of the pressure relief mechanism 22. If the structural strength is insufficient, the valve may open prematurely, which is beneficial to ensuring the stability of the pressure relief mechanism 22.
  • the distance between the second annular groove 223 and the first hole wall 2121 is D 2 , which satisfies 0.5 mm ⁇ D 2 ⁇ 3 mm.
  • the distance between the second annular groove 223 and the first hole wall surface 2121 is D 2 , that is, in the radial direction of the mounting hole 212, the first hole wall surface 2121 and the second annular groove 223 are close to the first hole wall surface 2121.
  • the distance between the groove sides of the hole wall surface 2121 is D 2 , that is to say, the distance between the inner edge of the second annular groove 223 in the radial direction of the mounting hole 212 and the first hole wall surface 2121 is D 2 , so that the There is a gap between the hole wall 2121 and the second annular groove 223, and the width of the gap is D 2 .
  • the distance D 2 between the second annular groove 223 and the first hole wall surface 2121 may be 0.5 mm, 0.8 mm, 1 mm, 1.5 mm, 2 mm or 3 mm, etc.
  • the gap width between the first hole wall surface 2121 and the second annular groove 223 is 0.5mm to 3mm, thus on the one hand, it can alleviate the problem that the gap width between the first hole wall surface 2121 and the second annular groove 223 is too small and the area for the pressure relief mechanism 22 to be welded to the shell 21 is too small, resulting in poor welding quality.
  • the outer peripheral surface of the pressure relief mechanism 22 and the first hole wall surface 2121 are welded to form a soldering mark 23 extending along the circumferential direction of the mounting hole 212 , and the inner edge of the soldering mark 23 It is spaced apart from the outer edge of the second annular groove 223 .
  • the outer edge of the soldering portion 23 is spaced apart from the inner edge of the second annular groove 223 , that is, there is a gap between the soldering portion 23 and the second annular groove 223 in the normal direction to the outer edge of the soldering portion 23 . .
  • the inner edge of the soldering portion 23 formed by welding the pressure relief mechanism 22 and the housing 21 to each other is spaced apart from the outer edge of the second annular groove 223, that is, there is a gap between the soldering portion 23 and the second annular groove 223, so that It can alleviate the mutual interference between the welding mark 23 formed by welding the pressure relief mechanism 22 and the housing 21 and the second annular groove 223, so as to reduce the risk of explosion points when the pressure relief mechanism 22 and the housing 21 are welded to each other, and thus It is beneficial to improve the welding quality between the housing 21 and the pressure relief mechanism 22.
  • the pressure relief mechanism 22 includes a pressure relief part 221 and a connection part 222 .
  • the pressure relief part 221 is configured to relieve the internal pressure of the battery cell 20 .
  • the connecting portion 222 is arranged around the pressure relief portion 221 along the circumferential direction of the mounting hole 212 , and the outer peripheral surface of the connecting portion 222 is welded to the first hole wall surface 2121 . Among them, along the thickness direction .
  • the second annular groove 223 surrounds the outside of the pressure relief portion 221 , that is, the second annular groove 223 extends along the circumferential direction of the mounting hole 212 and is provided on the connecting portion 222 of the pressure relief mechanism 22 , so that the second annular groove 223 It is provided around the pressure relief part 221 .
  • the pressure relief mechanism 22 is provided with a pressure relief part 221 and a connection part 222.
  • the connection part 222 is used for welding to the shell 21, and the thickness of the connection part 222 is greater than the thickness of the pressure relief part 221.
  • the groove depth of the second annular groove 223 is H 3 , that is, in the thickness direction
  • the distance between the faces of the annular groove 223 is H 3 .
  • the ratio of the thickness of the connecting portion 222 to the groove depth of the second annular groove 223 may be 1.5, 2, 2.5, 3, 4 or 5, etc.
  • the thickness of the connecting portion 222 is 1.5 times to 5 times the groove depth of the second annular groove 223 times, thereby on the one hand, it can alleviate the phenomenon that the second annular groove 223 is not effective in releasing the welding stress between the pressure relief mechanism 22 and the housing 21 due to the too small groove depth of the second annular groove 223.
  • This can alleviate the phenomenon that the structural strength of the connecting portion 222 of the pressure relief mechanism 22 is insufficient due to the excessive groove depth of the second annular groove 223, thereby ensuring the stability and reliability of the connection between the pressure relief mechanism 22 and the housing 21.
  • the pressure relief part 221 is provided with a scored groove 2211 , and the pressure relief part 221 is configured to be split along the scored groove 2211 to leak. Discharge the internal pressure of the battery cell 20. Along the thickness direction The distance between the surfaces of the scored grooves 2211 is L 2 , which satisfies L 1 /L 2 ⁇ 1.2.
  • the pressure relief portion 221 is provided with a notch groove 2211 , that is, the pressure relief portion 221 forms a relatively weak area at the position where the notch groove 2211 is provided, so that the pressure relief portion 221 can reduce the internal pressure of the battery cell 20 or the internal pressure of the battery cell 20 .
  • the temperature reaches a threshold value, it splits along the scored groove 2211 to release the internal pressure of the battery cell 20 .
  • the distance between the bottom surface of the second annular groove 223 and the surface of the connecting portion 222 away from the second annular groove 223 is L 1 , that is, in the thickness direction X of the pressure relief mechanism, the connecting portion 222 is provided with the second annular groove 223
  • the thickness of the position is L 1 , that is to say, in the thickness direction X of the pressure relief mechanism, the remaining thickness of the area where the second annular groove 223 is provided in the connecting part 222 is L 1 .
  • the distance between the bottom surface of the scored groove 2211 and the surface of the pressure relief portion 221 facing away from the scored groove 2211 is L 2 , that is, in the thickness direction X of the pressure relief mechanism, the position where the pressure relief portion 221 is provided with the scored groove 2211
  • the thickness of is L 2 , that is to say, in the thickness direction X of the pressure relief mechanism, the remaining thickness of the area where the score groove 2211 is provided in the pressure relief part 221 is L 2 .
  • the scored groove 2211 is provided on the surface of the pressure relief portion 221 facing away from the accommodating space 211 .
  • the score groove 2211 can also be provided on the surface of the pressure relief portion 221 facing the accommodating space 211 .
  • the distance ratio between the surfaces of the scored grooves 2211 is set to be greater than or equal to 1.2, that is to say, the thickness of the connecting portion 222 at the position where the second annular groove 223 is provided is greater than or equal to the pressure relief portion 221 provided with the scored grooves 2211 1.2 times the thickness of the position, thereby effectively ensuring that the pressure relief mechanism 22 opens the valve preferentially at the position where the notched groove 2211 is provided to release the internal pressure of the battery cell 20, thereby ensuring the use of the pressure relief mechanism 22 Stability and reliability to reduce the risk of valve opening of the pressure relief mechanism 22 at the position where the second annular groove 223 is provided.
  • the second annular groove 223 is provided on the side of the pressure relief mechanism 22 facing away from the accommodation space 211 .
  • the second annular groove 223 is provided on the side of the pressure relief mechanism 22 facing away from the accommodating space 211 , that is, the notch of the second annular groove 223 penetrates the side of the connecting portion 222 of the pressure relief mechanism 22 facing away from the accommodating space 211 , so that the second The second annular groove 223 is located outside the pressure relief mechanism 22 , that is to say, the second annular groove 223 and the scored groove 2211 are on the same side as the pressure relief mechanism 22 .
  • the second annular groove 223 can also be provided on the side of the pressure relief mechanism 22 facing the accommodation space 211 .
  • the pressure relief mechanism 22 with this structure is easy to manufacture and process. It is beneficial to reduce the processing difficulty of the second annular groove 223.
  • the present application also provides a battery 100 including a plurality of battery cells 20 of any of the above solutions.
  • the battery 100 may further include a case 10 in which a plurality of battery cells 20 are accommodated.
  • the present application also provides an electrical device, including the battery 100 of any of the above solutions, and the battery 100 is used to provide electrical energy for the electrical device.
  • the power-consuming device may be any of the aforementioned devices or systems using the battery 100 .
  • the present application provides a battery cell 20 .
  • the battery cell 20 includes a housing 21 and a pressure relief mechanism 22 .
  • the housing 21 has an accommodating space 211 inside for accommodating the electrode assembly 24 .
  • the housing 21 is provided with a mounting hole 212 communicating with the accommodating space 211 .
  • the mounting hole 212 has a first hole wall surface 2121 extending along the circumferential direction of the mounting hole 212 .
  • the pressure relief mechanism 22 is disposed in the mounting hole 212 , and the outer peripheral surface of the pressure relief mechanism 22 is welded to the first hole wall surface 2121 to form a welding portion 23 extending along the circumferential direction of the mounting hole 212 .
  • the housing 21 is provided with a first annular groove 213, and the first annular groove 213 surrounds the outside of the first hole wall surface 2121, and/or the pressure relief mechanism 22 is provided with a second annular groove 223, and the first hole wall surface 2121 surrounds the first hole wall surface 2121.
  • the pressure relief mechanism 22 includes a pressure relief part 221 and a connection part 222.
  • the pressure relief part 221 is configured to release the internal pressure of the battery cell 20.
  • the connection part 222 is surrounded by the pressure relief part 221 along the circumferential direction of the mounting hole 212.
  • the groove width of the first annular groove 213 is W 1 , which satisfies 0.2mm ⁇ W 1 ⁇ 3mm.
  • the thickness of the connecting portion 222 is H 1 and the groove depth of the first annular groove 213 is H. 2 , satisfying 1.5 ⁇ H 1 /H 2 ⁇ 5.
  • the distance between the first annular groove 213 and the first hole wall 2121 is D 1 , satisfying 0.5mm ⁇ D 1 ⁇ 3mm.
  • the groove width of the second annular groove 223 is W 2 , which satisfies 0.2 mm ⁇ W 2 ⁇ 3 mm.
  • D 2 the distance between the second annular groove 223 and the first hole wall 2121
  • D 2 the distance between the second annular groove 223 and the first hole wall 2121
  • the pressure relief portion 221 is provided with a score groove 2211, and the pressure relief portion 221 is configured to be split along the score groove 2211 to release the internal pressure of the battery cell 20, along the thickness direction X of the pressure release mechanism
  • the distance between the bottom surface of the second annular groove 223 and the surface of the connecting portion 222 facing away from the second annular groove 223 is L 1
  • the distance between the bottom surface of the scored groove 2211 and the surface of the pressure relief portion 221 facing away from the scored groove 2211 is L 1 .
  • the distance is L 2 , which satisfies L 1 /L 2 ⁇ 1.2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

本申请提供了一种电池单体、电池及用电装置,属于电池技术领域。其中,电池单体包括外壳和泄压机构。外壳内部具有用于容纳电极组件的容纳空间,外壳设置有与容纳空间连通的安装孔,安装孔具有沿安装孔的周向延伸的第一孔壁面。泄压机构设置于安装孔内,泄压机构的外周面焊接于第一孔壁面。外壳上设置有第一环形槽,第一环形槽环绕于第一孔壁面的外侧,和/或泄压机构上设置有第二环形槽,第一孔壁面环绕于第二环形槽的外侧。通过第一环形槽和/或第二环形槽在泄压机构与第一孔壁面焊接时能够释放泄压机构和外壳的焊接应力,以减少焊接应力对泄压机构的影响,且能够减少因焊接应力的拉扯而导致泄压机构与外壳的焊接区域产生裂纹的现象。

Description

电池单体、电池及用电装置 技术领域
本申请涉及电池技术领域,具体而言,涉及一种电池单体、电池及用电装置。
背景技术
近些年,新能源汽车有了飞跃式的发展,在电动汽车领域,动力电池作为电动汽车的动力源,起着不可替代的重要作用。随着新能源汽车的大力推广,对动力电池产品的需求也日益增长,其中,电池作为新能源汽车核心零部件在使用安全方面和使用寿命方面均有着较高的要求。电池的电池单体是由正极极片、负极极片和隔膜通过卷绕或者叠片等方式组装成电极组件(裸电芯),之后装入外壳,最后注入电解液后得到的,并在外壳上设置泄压机构,以在电池单体出现热失控时泄放电池单体的内部压力。但是,现有技术中的电池单体在使用过程中存在使用稳定性较差的问题,从而导致电池单体的使用安全性较低,且使用寿命较短。
发明内容
本申请实施例提供一种电池单体、电池及用电装置,能够有效提升电池单体的使用安全性和使用寿命。
第一方面,本申请实施例提供一种电池单体,包括外壳和泄压机构;所述外壳内部具有用于容纳电极组件的容纳空间,所述外壳设置有与所述容纳空间连通的安装孔,所述安装孔具有沿所述安装孔的周向延伸的第一孔壁面;所述泄压机构设置于所述安装孔内,所述泄压机构的外周面焊接于所述第一孔壁面;其中,所述外壳上设置有第一环形槽,所述第一环形槽环绕于所述第一孔壁面的外侧;和/或,所述泄压机构上设置有第二环形槽,所述第一孔壁面环绕于所述第二环形槽的外侧。
在上述技术方案中,外壳上设置有用于安装泄压机构的安装孔,且泄压机构的外周面与安装孔的第一孔壁面相互焊接,以使泄压机构能够起到泄放电池单体的内部压力的作用,通过在外壳上设置沿安装孔的周向延伸的第一环形槽,且第一环形槽环绕第一孔壁面设置,和/或在泄压机构上设置沿安装孔的周向延伸的第二环形槽,且第一孔壁面环绕第二环形槽设置,从而通过第一环形槽和/或第二环形槽在泄压机构与第一孔壁面相互焊接时能够为两者之间的焊接区域因焊接产生的塑性变形提供变形空间,以释放和吸收泄压机构和外壳之间的焊接应力,从而一方面能够减少焊接应力对泄压机构的影响,以提升泄压机构的使用寿命,进而有利于提升电池单体的使用寿命,另一方面能够减少因焊接应力的拉扯而导致泄压机构与外壳之间的焊接区域产生裂纹的现象,以降低泄压机构与外壳之间出现焊接失效而导致电池单体存在漏液的风险,进而有利于提升电池单体的使用安全性。
在一些实施例中,所述第一环形槽的槽宽为W 1,满足,0.2mm≤W 1≤3mm。
在上述技术方案中,通过将第一环形槽的槽宽设置在0.2mm到3mm,从而一方面能够缓解因第一环形槽的槽宽过小而造成第一环形槽释放泄压机构与外壳之间的焊接应力的效果不佳的现象,另一方面能够缓解因第一环形槽的槽宽过大而造成第一环形槽占用外壳过多的空间,以导致外壳的结构强度不足的现象,从而有利于保证外壳自身的结构强度。
在一些实施例中,所述泄压机构包括泄压部和连接部;所述泄压部被配置为泄放所述电池单体的内部压力;所述连接部沿所述安装孔的周向围设于所述泄压部的周围,所述连接部的外周面焊接于所述第一孔壁面,沿所述泄压机构的厚度方向,所述连接部的厚度大于所述泄压部的厚度。
在上述技术方案中,泄压机构是由用于泄放电池单体的内部压力的泄压部和围设于泄压部的周围的连接部构成,连接部用于与外壳相互焊接,通过将连接部的厚度设置为大于泄压部的厚度能够保证连接部与外壳之间的焊接强度和焊接质量,且能够在连接部与外壳相互焊接时降低对泄压部造成的影响,从而有利于保证泄压机构的使用稳定性和可靠性。
在一些实施例中,沿所述泄压机构的厚度方向,所述连接部的厚度为H 1,所述第一环形槽的槽深为H 2,满足,1.5≤H 1/H 2≤5。
在上述技术方案中,通过将连接部的厚度与第一环形槽的槽深的比值设置在1.5到5之间,也就是说,连接部的厚度是在第一环形槽的槽深的1.5倍到5倍之间,从而一方面能够缓解因第一环形槽的槽深过小而造成第一环形槽释放泄压机构与外壳之间的焊接应力的效果不佳的现象,另一方面能够缓解因第一环形槽的槽深过大而导致外壳的结构强度不足的现象,以降低外壳出现开裂的风险。
在一些实施例中,沿所述安装孔的径向,所述第一环形槽与所述第一孔壁面的间距为D 1,满足,0.5mm≤D 1≤3mm。
在上述技术方案中,通过将第一环形槽和第一孔壁面在安装孔的径向上的间距设置在0.5mm到3mm,也就是说,第一孔壁面与第一环形槽之间的间隙宽度为0.5mm到3mm,从而一方面能够缓解因第一孔壁面与第一环形槽之间的间隙宽度过小而造成外壳用于与泄压机构相互焊接的区域太小导致焊接质量不佳的现象,另一方面能够缓解因第一孔壁面与第一环形槽之间的间隙宽度过大而导致第一环形槽无法有效地为外壳与泄压机构相互焊接产生的塑性变形提供变形空间,以造成第一环形槽释放泄压机构与外壳之间的焊接应力的效果不佳的现象。
在一些实施例中,所述泄压机构的外周面与所述第一孔壁面焊接形成沿所述安装孔的周向延伸的焊印部,所述焊印部的外边缘与所述第一环形槽的内边缘间隔设置。
在上述技术方案中,通过将泄压机构与外壳相互焊接形成的焊印部的外边缘与第一环形槽的内边缘间隔设置,即焊印部与第一环形槽之间存在有间隙,从而能够缓解泄压机构与外壳焊接形成的焊印部与第一环形槽之间出现相互干涉的现象,以降低泄压机构与外壳在相互焊接时出现爆点的风险,进而有利于提高外壳与泄压机构之间的焊接质量。
在一些实施例中,所述第一环形槽设置于所述外壳背离所述容纳空间的一侧。
在上述技术方案中,通过将第一环形槽设置在外壳背离容纳空间的一侧,即第一环形槽设置在外壳的外侧,采用这种结构的外壳便于制造和加工,有利于降低第一环形槽的加工难度。
在一些实施例中,所述安装孔为阶梯孔,沿所述泄压机构的厚度方向,所述安装孔包括依次设置的第一孔段、第二孔段和第三孔段,所述第一孔段、所述第二孔段和所述第三孔段的孔径逐渐减小,且所述第一孔段位于所述第二孔段背离所述容纳空间的一侧;其中,所述泄压机构的至少部分设置于所述第二孔段内,并覆盖所述第三孔段,所述第一孔段的孔壁和所述第二孔段的孔壁通过连接面相连,所述第二孔段的孔壁包括所述第一孔壁面,且所述第一环形槽设置于所述连接面上。
在上述技术方案中,安装孔为阶梯孔的结构,且安装孔包括依次设置的第一孔段、第二孔段和第三孔段,也就是说,安装孔包括至少三个孔段,以便于对泄压机构进行装配,通过将泄压机构设置于第二孔段,以使泄压机构的外周面与第二孔段的孔壁相互焊接,并将第一环形槽设置于连接第一孔段的孔壁和第二孔段的孔壁的连接面上,以使第一环形槽紧邻第二孔段的孔壁,即第一环形槽紧邻用于与泄压机构相互焊接的第一孔壁面上,从而有利于提升第一环形槽释放泄压机构与外壳之间的焊接应力的效果。
在一些实施例中,所述安装孔为阶梯孔,沿所述泄压机构的厚度方向,所述安装孔包括依次设置的第一孔段和第二孔段,所述第一孔段的孔径大于所述第二孔段,且所述第一孔段贯穿所述外壳的外表面;其中,所述泄压机构的至少部分设置于所述第一孔段内,并覆盖所述第二孔段,所述第一孔段的孔壁包括所述第一孔壁面,且所述第一环形槽设置于所述外壳的外表面上。
在上述技术方案中,安装孔为阶梯孔的结构,安装孔包括依次设置的第一孔段和第二孔段,且第一孔段贯穿外壳的外表面,也就是说,安装孔包括至少两个孔段,且第一孔段为最远离外壳的容纳空间的孔段,通过将泄压机构设置于第一孔段,以使泄压机构的外周面与第一孔段的孔壁相互焊接,并将第一环形槽设置于外壳的外表面上,一方面便于对第一环形槽进行加工,有利于降低第一环形槽的加工难度,另一方面使得第一环形槽紧邻第一孔段的孔壁,即第一环形槽紧邻用于 与泄压机构相互焊接的第一孔壁面上,从而有利于提升第一环形槽释放泄压机构与外壳之间的焊接应力的效果。
在一些实施例中,所述第二环形槽的槽宽为W 2,满足,0.2mm≤W 2≤3mm。
在上述技术方案中,通过将第二环形槽的槽宽设置在0.2mm到3mm,从而一方面能够缓解因第二环形槽的槽宽过小而造成第二环形槽释放泄压机构与外壳之间的焊接应力的效果不佳的现象,另一方面能够缓解因第二环形槽的槽宽过大而造成第二环形槽占用泄压机构过多的空间,以导致泄压机构的结构强度不足二出现提前开阀的现象,进而有利于保证泄压机构的使用稳定性。
在一些实施例中,沿所述安装孔的径向,所述第二环形槽与所述第一孔壁面的间距为D 2,满足,0.5mm≤D 2≤3mm。
在上述技术方案中,通过将第二环形槽和第一孔壁面在安装孔的径向上的间距设置在0.5mm到3mm,也就是说,第一孔壁面与第二环形槽之间的间隙宽度为0.5mm到3mm,从而一方面能够缓解因第一孔壁面与第二环形槽之间的间隙宽度过小而造成泄压机构用于与外壳相互焊接的区域太小导致焊接质量不佳的现象,另一方面能够缓解因第一孔壁面与第二环形槽之间的间隙宽度过大而导致第二环形槽无法有效地为外壳与泄压机构相互焊接产生的塑性变形提供变形空间,以造成第二环形槽释放泄压机构与外壳之间的焊接应力的效果不佳的现象。
在一些实施例中,所述泄压机构的外周面与所述第一孔壁面焊接形成沿所述安装孔的周向延伸的焊印部,所述焊印部的内边缘与所述第二环形槽的外边缘间隔设置。
在上述技术方案中,通过将泄压机构与外壳相互焊接形成的焊印部的内边缘与第二环形槽的外边缘间隔设置,即焊印部与第二环形槽之间存在有间隙,从而能够缓解泄压机构与外壳焊接形成的焊印部与第二环形槽之间出现相互干涉的现象,以降低泄压机构与外壳在相互焊接时出现爆点的风险,进而有利于提高外壳与泄压机构之间的焊接质量。
在一些实施例中,所述泄压机构包括泄压部和连接部;所述泄压部被配置为泄放所述电池单体的内部压力;所述连接部沿所述安装孔的周向围设于所述泄压部的周围,所述连接部的外周面焊接于所述第一孔壁面;其中,沿所述泄压机构的厚度方向,所述连接部的厚度大于所述泄压部的厚度,所述第二环形槽设置于所述连接部上,且所述第二环形槽环绕于所述泄压部的外侧。
在上述技术方案中,泄压机构设置有泄压部和连接部,连接部用于与外壳相互焊接,且连接部的厚度大于泄压部的厚度,通过将第二环形槽设置于连接部上能够减少第二环形槽对泄压机构的整体结构强度带来的影响,且便于对第二环形槽进行加工,有利于降低第二环形槽的制造难度。
在一些实施例中,沿所述泄压机构的厚度方向,所述连接部的厚度为H 1,所述第二环形槽的槽深为H 3,满足,1.5≤H 1/H 3≤5。
在上述技术方案中,通过将连接部的厚度与第二环形槽的槽深的比值设置在1.5到5之间,也就是说,连接部的厚度是在第二环形槽的槽深的1.5倍到5倍之间,从而一方面能够缓解因第二环形槽的槽深过小而造成第二环形槽释放泄压机构与外壳之间的焊接应力的效果不佳的现象,另一方面能够缓解因第二环形槽的槽深过大而导致泄压机构的连接部的结构强度不足的现象,以保证泄压机构与外壳之间的连接稳定性和可靠性。
在一些实施例中,所述泄压部设置有刻痕槽,所述泄压部被配置为能够沿着所述刻痕槽裂开,以泄放所述电池单体的内部压力;沿所述泄压机构的厚度方向,所述第二环形槽的槽底面与所述连接部背离所述第二环形槽的表面之间的距离为L 1,所述刻痕槽的槽底面与所述泄压部背离所述刻痕槽的表面之间的距离为L 2,满足,L 1/L 2≥1.2。
在上述技术方案中,在泄压机构的厚度方向上,通过将第二环形槽的槽底面与连接部背离第二环形槽的表面之间的距离与刻痕槽的槽底面与泄压部背离刻痕槽的表面之间的距离比值设置为大于或等于1.2,也就是说,连接部在设置有第二环形槽的位置的厚度大于或等于泄压部设置有刻痕槽的位置的厚度的1.2倍,从而能够有效保证泄压机构优先在设置有刻痕槽的位置开阀,以泄放电池单体的内部压力,进而有利于保证泄压机构的使用稳定性和可靠性,以降低泄压机构在设置第二环形槽的位置出现开阀的风险。
在一些实施例中,所述第二环形槽设置于所述泄压机构背离所述容纳空间的一侧。
在上述技术方案中,通过将第二环形槽设置在泄压机构背离容纳空间的一侧,即第二环形槽设置在泄压机构的外侧,采用这种结构的泄压机构便于制造和加工,有利于降低第二环形槽的加工难度。
第二方面,本申请实施例还提供一种电池,包括多个上述的电池单体。
第三方面,本申请实施例还提供一种用电装置,包括上述的电池。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的结构爆炸图;
图3为本申请一些实施例提供的电池单体的结构爆炸图;
图4为本申请一些实施例提供的电池单体的仰视图;
图5为本申请一些实施例提供的电池单体的外壳的剖视图;
图6为图5所示的外壳的A处的局部放大图;
图7为本申请又一些实施例提供的电池单体的外壳的局部剖视图;
图8为本申请再一些实施例提供的电池单体的仰视图;
图9为本申请再一些实施例提供的电池单体的外壳的剖视图;
图10为图9所示的外壳的B处的局部放大图;
图11为本申请再一些实施例提供的电池单体的泄压机构的局部剖视图。
图标:1000-车辆;100-电池;10-箱体;11-第一箱本体;12-第二箱本体;20-电池单体;21-外壳;211-容纳空间;212-安装孔;2121-第一孔壁面;2122-第一孔段;2123-第二孔段;2124-第三孔段;2125-连接面;213-第一环形槽;214-壳体;2141-开口;2142-底壁;2143-侧壁;215-端盖;22-泄压机构;221-泄压部;2211-刻痕槽;222-连接部;223-第二环形槽;23-焊印部;24-电极组件;25-正极电极端子;26-负极电极端子;200-控制器;300-马达;X-泄压机构的厚度方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体或多个电池模块的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括外壳、电极组件和电解液,外壳用于容纳电极组件和电解液。电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体的部分作为正极极耳,以通过正极极耳实现正极极片的电能输入或输出。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体的部分作为负极极耳,以通过负极极耳实现负极极片的电能输入或输出。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。
隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池具有能量密度高、环境污染小、功率密度大、使用寿命长、适应范围广、自放电系数小等突出的优点,是现今新能源发展的重要组成部分。电池的电池单体是由正极极片、负极极片和隔离膜通过卷绕或者叠片等方式组装成电极组件(裸电芯),之后装入外壳,最后注入电解液后得到的。但是,随着电池技术的不断发展,对电池的安全性能和使用寿命等也提出了更高的要求。
对于一般的电池单体而言,当电池的电池单体发生短路或过充等现象时,电池单体极容易因内部热失控而造成内部气压骤升,从而导致电池发生起火爆炸等安全隐患,由此,在外壳上通常开设安装孔,并在安装孔处安装有防爆阀,使得在电池单体出现热失控时电池单体的内部气压能够冲破防爆阀,以使电池单体的内部气压得到释放,从而能够降低电池单体发生起火爆炸的风险。
发明人发现,在电池单体发生热失控时,电池单体内部冲击防爆阀的压力较大,为了保证防爆阀的使用稳定性,减少防爆阀出现脱落的现象,在现有技术中,通常采用焊接的方式将防爆阀焊接在外壳上,以增加防爆阀与外壳之间的连接稳定性,从而降低防爆阀在电池单体的内部压力冲击下出现脱落的风险。但是,在防爆阀与外壳相互焊接时会在防爆阀与外壳之间的焊接区域产生塑性变形,从而在焊接完成后会造成防爆阀与外壳之间存在较大的焊接应力,一方面使得防爆阀受到焊接应力的影响极容易导致防爆阀的使用寿命缩短,进而不利于提升电池单体的使用寿命,另一方面极容易导致防爆阀与外壳之间的焊接区域因焊接应力的拉扯而产生裂纹,以使防爆阀与外壳之间 出现焊接失效而造成电池单体存在漏液的风险,进而不利于提升电池单体的使用安全性。
基于以上考虑,为了解决电池单体的使用寿命较短且使用安全性较差的问题,发明人经过深入研究,设计了一种电池单体,电池单体包括外壳和泄压机构。外壳内部具有用于容纳电极组件的容纳空间,外壳设置有与容纳空间连通的安装孔,安装孔具有沿安装孔的周向延伸的第一孔壁面。泄压机构设置于安装孔内,泄压机构的外周面焊接于第一孔壁面。其中,外壳上设置有第一环形槽,第一环形槽环绕于第一孔壁面的外侧;和/或,泄压机构上设置有第二环形槽,第一孔壁面环绕于第二环形槽的外侧。
在这种结构的电池单体中,外壳上设置有用于安装泄压机构的安装孔,且泄压机构的外周面与安装孔的第一孔壁面相互焊接,以使泄压机构能够起到泄放电池单体的内部压力的作用,通过在外壳上设置沿安装孔的周向延伸的第一环形槽,且第一环形槽环绕第一孔壁面设置,和/或在泄压机构上设置沿安装孔的周向延伸的第二环形槽,且第一孔壁面环绕第二环形槽设置,从而通过第一环形槽和/或第二环形槽在泄压机构与第一孔壁面相互焊接时能够为两者之间的焊接区域因焊接产生的塑性变形提供变形空间,以释放和吸收泄压机构和外壳之间的焊接应力,从而一方面能够减少焊接应力对泄压机构的影响,以提升泄压机构的使用寿命,进而有利于提升电池单体的使用寿命,另一方面能够减少因焊接应力的拉扯而导致泄压机构与外壳之间的焊接区域产生裂纹的现象,以降低泄压机构与外壳之间出现焊接失效而导致电池单体存在漏液的风险,进而有利于提升电池单体的使用安全性。
本申请实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池单体、电池等组成该用电装置的电源系统,这样,有利于缓解泄压机构与外壳之间的焊接应力,以提升电池单体的使用寿命和使用安全性。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的结构爆炸图。电池100包括箱体10和电池单体20,电池单体20用于容纳于箱体10内。其中,箱体10用于为电池单体20提供装配空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一箱本体11和第二箱本体12,第一箱本体11与第二箱本体12相互盖合,第一箱本体11和第二箱本体12共同限定出用于容纳电池单体20的装配空间。第二箱本体12可以为一端开放的空心结构,第一箱本体11可以为板状结构,第一箱本体11盖合于第二箱本体12的开放侧,以使第一箱本体11与第二箱本体12共同限定出装配空间;第一箱本体11和第二箱本体12也可以是均为一侧开放的空心结构,第一箱本体11的开放侧盖合于第二箱本体12的开放侧。当然,第一箱本体11和第二箱本体12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体 20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。示例性的,在图2中,电池单体20为长方体结构。
根据本申请的一些实施例,参照图3-图6,图3为本申请一些实施例提供的电池单体20的结构爆炸图,图4为本申请一些实施例提供的电池单体20的仰视图,图5为本申请一些实施例提供的电池单体20的外壳21的剖视图,图6为图5所示的外壳21的A处的局部放大图。本申请提供了一种电池单体20,电池单体20包括外壳21和泄压机构22。外壳21内部具有用于容纳电极组件24的容纳空间211,外壳21设置有与容纳空间211连通的安装孔212,安装孔212具有沿安装孔212的周向延伸的第一孔壁面2121。泄压机构22设置于安装孔212内,泄压机构22的外周面焊接于第一孔壁面2121。其中,外壳21上设置有第一环形槽213,第一环形槽213环绕于第一孔壁面2121的外侧。
其中,外壳21设置有与容纳空间211连通的安装孔212,即安装孔212贯穿外壳21的内表面,以使安装孔212与外壳21的容纳空间211相互连通。
安装孔212具有沿安装孔212的周向延伸的第一孔壁面2121,即第一孔壁面2121为安装孔212的孔壁中沿安装孔212的周向延伸的面。安装孔212的结构可以是多种,若安装孔212为孔径不变的通孔,则第一孔壁面2121为安装孔212的孔壁;若安装孔212为阶梯孔,则第一孔壁面2121为安装孔212的多个孔段中的一个孔段的孔壁。
泄压机构22的外周面焊接于第一孔壁面2121,即泄压机构22具有沿安装孔212的周向延伸的外周面,且泄压机构22的外周面与安装孔212的第一孔壁面2121相互焊接,使得泄压机构22的外周面的部分与安装孔212的第一孔壁面2121的部分相互熔融为一体。泄压机构22的外周面与安装孔212的第一孔壁面2121相互焊接的方式可以是多种,比如,熔焊、压焊、钎焊或激光焊等。其中,在图4中,泄压机构22的外周面与安装孔212的第一孔壁面2121相互焊接形成焊印部23,即泄压机构22的外周面的部分与安装孔212的第一孔壁面2121的部分相互熔融的部分为焊印部23。
可选地,安装孔212的形状可以是多种,安装孔212的形状可以根据泄压机构22的形状而定,泄压机构22的形状可以是圆形、椭圆形或矩形等,对应的,安装孔212的形状也可以是圆形、椭圆形或矩形等,同样的,第一环形槽213的形状也可以是多种,比如,圆环状、椭圆环状或矩形环状等。示例性的,在图4中,泄压机构22的椭圆形,对应的,第一环形槽213为椭圆环状。需要说明的是,安装孔212的周向是沿安装孔212的形状轨迹延伸的方向,若安装孔212的形状为圆形,则安装孔212的周向为圆形轨迹的方向;若安装孔212的形状为椭圆形,则安装孔212的周向为椭圆形轨迹的方向。
当然,在一些实施例中,泄压机构22的外周面和安装孔212的第一孔壁面2121之间的焊接轨迹可以是沿安装孔212的周向连续且闭合的轨迹,也可以是沿安装孔212的周向间断的轨迹,即泄压机构22的外周面和安装孔212的第一孔壁面2121之间的焊接轨迹沿安装孔212的周向不连续,也就是说,泄压机构22的外周面与安装孔212的第一孔壁面2121相互焊接形成的焊印部23可以是沿安装孔212的周向连续的结构,也可以是沿安装孔212的周向间断不连续的结构。对应的,第一环形槽213也可以是沿安装孔212的周向延伸的连续且闭合的结构,也可以是沿安装孔212的周向间隔设置的多个槽段的结构。
参见图3所示,电池单体20还可以包括电极组件24,外壳21的容纳空间211用于容纳电极组件24,可选地,外壳21还可以用于容纳电解质,例如电解液。外壳21可以是多种结构形式。外壳21的材质也可以是多种,比如,铜、铁、铝、钢、铝合金等。
在图3中,外壳21可以包括壳体214和端盖215,壳体214具有用于容纳电极组件24的容纳空间211,且壳体214的一端形成有开口2141,开口2141与容纳空间211连通,即壳体214 为一端开放的空心结构,端盖215盖合于壳体214的开口2141并形成密封连接,以形成用于容纳电极组件24和电解液的密封空间。
在组装电池单体20时,可先将电极组件24放入壳体214内,并向壳体214内填充电解质,再将端盖215盖合于壳体214的开口2141并形成密封连接,以形成用于容纳电极组件24和电解质的密封空间。示例性的,端盖215焊接于壳体214。
壳体214可以是多种形状,比如,圆柱体、长方体等。壳体214的形状可根据电极组件24的具体形状来确定。比如,若电极组件24为圆柱体结构,则可选用为圆柱体结构的壳体214;若电极组件24为长方体结构,则可选用长方体结构的壳体214。示例性的,在图3中,电极组件24为长方体结构,则壳体214为长方体结构。当然,端盖215也可以是多种结构,比如,端盖215为板状结构或一端开放的空心结构等。示例性的,在图3中,壳体214为长方体结构,端盖215为板状结构,端盖215盖合于壳体214的开口2141。
可选地,安装孔212可以设置于壳体214上,也可以设置于端盖215上,也就是说,泄压机构22可以安装于壳体214上,也可以安装于端盖215上,若泄压机构22安装于壳体214上,则第一环形槽213设置于壳体214上,若泄压机构22安装于端盖215上,则第二环形槽223设置于端盖215上。示例性的,在图4和图5中,壳体214具有底壁2142和侧壁2143,侧壁2143围设于底壁2142的周围,沿泄压机构的厚度方向X,侧壁2143的一端与底壁2142相连,侧壁2143的另一端围合形成开口2141,安装孔212设置于壳体214的底壁2142上,即泄压机构22安装于壳体214的底壁2142上,对应的,第一环形槽213设置于底壁2142上。当然,在一些实施例中,安装孔212还可以设置于壳体214的侧壁2143上或设置于端盖215上。
其中,泄压机构22用于在电池单体20的内部压力或温度达到预定值时泄放电池单体20内部的压力。示例性的,泄压机构22可以是诸如防爆阀、防爆片、气阀、泄压阀或安全阀等部件。
在一些实施例中,参见图3所示,电池单体20还可以包括正极电极端子25和负极电极端子26,正极电极端子25和负极电极端子26均安装于端盖215上,正极电极端子25和负极电极端子26均用于与电极组件24电连接,以作为电池单体20的正输出极和负输出极。当然,在其他实施例中,正极电极端子25和负极电极端子26也可以均安装于壳体214上,还可以是分别安装于壳体214和端盖215上。
可理解的,外壳21并不仅仅局限于上述结构,外壳21也可以是其他结构,比如,外壳21包括壳体214和两个端盖215,壳体214为相对的两端开放的空心结构,一个端盖215对应盖合于壳体214的一端并形成密封连接,以形成用于容纳电极组件24和电解质的密封空间。在这种结构中,正极电极端子25和负极电极端子26可安装在同一个端盖215上,也可以安装在不同的端盖215上。
需要说明的是,电极组件24是电池单体20中发生电化学反应的部件。电极组件24可以包括正极极片、负极极片和隔离膜。电极组件24可以是由正极极片、隔离膜和负极极片通过卷绕形成的卷绕式结构,也可以是由正极极片、隔离膜和负极极片通过层叠布置形成的层叠式结构。
可选地,容纳于外壳21的容纳空间211内的电极组件24可以是一个,也可以是多个。示例性的,在图3中,电极组件24为两个,两个电极组件24层叠布置。
外壳21上设置有用于安装泄压机构22的安装孔212,且泄压机构22的外周面与安装孔212的第一孔壁面2121相互焊接,以使泄压机构22能够起到泄放电池单体20的内部压力的作用,通过在外壳21上设置沿安装孔212的周向延伸的第一环形槽213,且第一环形槽213环绕第一孔壁面2121设置,从而通过第一环形槽213在泄压机构22与第一孔壁面2121相互焊接时能够为两者之间的焊接区域因焊接产生的塑性变形提供变形空间,以释放和吸收泄压机构22和外壳21之间的焊接应力,从而一方面能够减少焊接应力对泄压机构22的影响,以提升泄压机构22的使用寿命,进而有利于提升电池单体20的使用寿命,另一方面能够减少因焊接应力的拉扯而导致泄压机构22与外壳21之间的焊接区域产生裂纹的现象,以降低泄压机构22与外壳21之间出现焊接失效而导致电池单体20存在漏液的风险,进而有利于提升电池单体20的使用安全性。
根据本申请的一些实施例,参见图6所示,第一环形槽213的槽宽为W 1,满足,0.2mm≤W 1≤3mm。
其中,第一环形槽213的槽宽为W 1,即在安装孔212的径向上,第一环形槽213的最大宽度为W 1,也就是说,在过安装孔212的几何中心且与泄压机构的厚度方向X相互平行的截面上,第一环形槽213的最大宽度为W 1。需要说明的是,安装孔212的径向为从安装孔212的边缘指向安装孔212的几何中心的方向或从安装孔212的几何中心指向安装孔212的边缘的方向。
示例性的,第一环形槽213的槽宽为W 1可以为0.2mm、0.5mm、1mm、1.5mm、2mm或3mm等。
通过将第一环形槽213的槽宽设置在0.2mm到3mm,从而一方面能够缓解因第一环形槽213的槽宽过小而造成第一环形槽213释放泄压机构22与外壳21之间的焊接应力的效果不佳的现象,另一方面能够缓解因第一环形槽213的槽宽过大而造成第一环形槽213占用外壳21过多的空间,以导致外壳21的结构强度不足的现象,从而有利于保证外壳21自身的结构强度。
根据本申请的一些实施例,参见图4和图6所示,泄压机构22包括泄压部221和连接部222。泄压部221被配置为泄放电池单体20的内部压力。连接部222沿安装孔212的周向围设于泄压部221的周围,连接部222的外周面焊接于第一孔壁面2121,沿泄压机构的厚度方向X,连接部222的厚度大于泄压部221的厚度。
其中,泄压部221起到在电池单体20热失控时泄放电池单体20的内部压力的作用。示例性的,在图4和图6中,泄压部221上设置有刻痕槽2211,以使泄压部221在设置有刻痕槽2211的位置形成相对薄弱的区域,从而使得泄压部221被配置为在电池单体20的内部压力或温度达到阈值时沿着刻痕槽2211裂开,以泄放电池单体20的内部压力。
连接部222的厚度大于泄压部221的厚度,即在泄压机构的厚度方向X上,连接部222的最小厚度大于泄压部221的最大厚度。
泄压机构22是由用于泄放电池单体20的内部压力的泄压部221和围设于泄压部221的周围的连接部222构成,连接部222用于与外壳21相互焊接,通过将连接部222的厚度设置为大于泄压部221的厚度能够保证连接部222与外壳21之间的焊接强度和焊接质量,且能够在连接部222与外壳21相互焊接时降低对泄压部221造成的影响,从而有利于保证泄压机构22的使用稳定性和可靠性。
在一些实施例中,参见图6所示,沿泄压机构的厚度方向X,连接部222的厚度为H 1,第一环形槽213的槽深为H 2,满足,1.5≤H 1/H 2≤5。
其中,沿泄压机构的厚度方向X,第一环形槽213的槽深为H 2,即在泄压机构的厚度方向X上,第一环形槽213的槽底面与壳体214设置第一环形槽213的面之间的距离为H 2
示例性的,连接部222的厚度与第一环形槽213的槽深的比值可以是1.5、2、2.5、3、4或5等。
通过将连接部222的厚度与第一环形槽213的槽深的比值设置在1.5到5之间,也就是说,连接部222的厚度是在第一环形槽213的槽深的1.5倍到5倍之间,从而一方面能够缓解因第一环形槽213的槽深过小而造成第一环形槽213释放泄压机构22与外壳21之间的焊接应力的效果不佳的现象,另一方面能够缓解因第一环形槽213的槽深过大而导致外壳21的结构强度不足的现象,以降低外壳21出现开裂的风险。
根据本申请的一些实施例,请继续参见图6所示,沿安装孔212的径向,第一环形槽213与第一孔壁面2121的间距为D 1,满足,0.5mm≤D 1≤3mm。
其中,沿安装孔212的径向,第一环形槽213与第一孔壁面2121的间距为D 1,即在安装孔212的径向上,第一孔壁面2121与第一环形槽213靠近第一孔壁面2121的槽侧面之间的间距为D 1,也就是说,第一环形槽213在安装孔212的径向上的内边缘与第一孔壁面2121之间的距离为D 1,以使第一孔壁面2121与第一环形槽213之间存在间隙,且该间隙的宽度为D 1
示例性的,第一环形槽213与第一孔壁面2121的间距D 1可以为0.5mm、0.8mm、1mm、1.5mm、2mm或3mm等。
通过将第一环形槽213和第一孔壁面2121在安装孔212的径向上的间距设置在0.5mm到3mm,也就是说,第一孔壁面2121与第一环形槽213之间的间隙宽度为0.5mm到3mm,从而一方面能够缓解因第一孔壁面2121与第一环形槽213之间的间隙宽度过小而造成外壳21用于与泄压机构22相互焊接的区域太小导致焊接质量不佳的现象,另一方面能够缓解因第一孔壁面2121与第一环形槽213之间的间隙宽度过大而导致第一环形槽213无法有效地为外壳21与泄压机构22相互焊接产生的塑性变形提供变形空间,以造成第一环形槽213释放泄压机构22与外壳21之间的焊接应力的效果不佳的现象。
在一些实施例中,请继续参见图6所示,泄压机构22的外周面与第一孔壁面2121焊接形成沿安装孔212的周向延伸的焊印部23,焊印部23的外边缘与第一环形槽213的内边缘间隔设置。
其中,焊印部23的外边缘与第一环形槽213的内边缘间隔设置,即在焊印部23的外边缘的法向方向上,焊印部23与第一环形槽213之间存在间隙。
通过将泄压机构22与外壳21相互焊接形成的焊印部23的外边缘与第一环形槽213的内边缘间隔设置,即焊印部23与第一环形槽213之间存在有间隙,从而能够缓解泄压机构22与外壳21焊接形成的焊印部23与第一环形槽213之间出现相互干涉的现象,以降低泄压机构22与外壳21在相互焊接时出现爆点的风险,进而有利于提高外壳21与泄压机构22之间的焊接质量。
根据本申请的一些实施例,参见图4和图6所示,第一环形槽213设置于外壳21背离容纳空间211的一侧。
其中,第一环形槽213设置于外壳21背离容纳空间211的一侧,也就是说,第一环形槽213的槽口贯穿外壳21背离容纳空间211的一侧,以使第一环形槽213位于外壳21的外部。当然,在其他实施例中,第一环形槽213也可以设置于外壳21面向容纳空间211的一侧。
通过将第一环形槽213设置在外壳21背离容纳空间211的一侧,即第一环形槽213设置在外壳21的外侧,采用这种结构的外壳21便于制造和加工,有利于降低第一环形槽213的加工难度。
在一些实施例中,参见图6所示,安装孔212为阶梯孔,沿泄压机构的厚度方向X,安装孔212包括依次设置的第一孔段2122、第二孔段2123和第三孔段2124,第一孔段2122、第二孔段2123和第三孔段2124的孔径逐渐减小,且第一孔段2122位于第二孔段2123背离容纳空间211的一侧。其中,泄压机构22的至少部分设置于第二孔段2123内,并覆盖第三孔段2124,第一孔段2122的孔壁和第二孔段2123的孔壁通过连接面2125相连,第二孔段2123的孔壁包括第一孔壁面2121,且第一环形槽213设置于连接面2125上。
安装孔212包括依次设置的第一孔段2122、第二孔段2123和第三孔段2124,即安装孔212包括至少三个孔段,分别为依次设置的第一孔段2122、第二孔段2123和第三孔段2124。
第一孔段2122、第二孔段2123和第三孔段2124的孔径逐渐减小,且第一孔段2122位于第二孔段2123背离容纳空间211的一侧,即在泄压机构的厚度方向X上,第二孔段2123相较于第一孔段2122更靠近外壳21的容纳空间211,第三孔段2124相较于第二孔段2123更靠近外壳21的容纳空间211,且第二孔段2123在泄压机构的厚度方向X上的投影位于第一孔段2122内,第三孔段2124在泄压机构的厚度方向X上的投影位于第二孔段2123内。
示例性的,在图6中,安装孔212只设置有三个孔段,分别为第一孔段2122、第二孔段2123和第三孔段2124,第一孔段2122的孔壁与壳体214的外表面相连,且第三孔段2124的孔壁与壳体214的内表面相连,即第一孔段2122贯穿壳体214的外表面,第三孔段2124贯穿壳体214的内表面。当然,在其他实施例中,安装孔212也可以具有两个、四个、五个或六个孔段等,同样的,第一孔段2122可以是多个孔段中最远离外壳21的容纳空间211的孔段,也可以是位于多个孔段之间的一个孔段,对应的,第三孔段2124可以是多个孔段中最靠近外壳21的容纳空间211的孔 段,也可以是位于多个孔段之间的一个孔段。
泄压机构22的至少部分设置于第二孔段2123内,并覆盖第三孔段2124,即泄压机构22设置于第二孔段2123内,并对第三孔段2124进行封堵。其中,泄压机构22可以整体容纳于第二孔段2123内,也可以是部分容纳于第二孔段2123内。示例性的,在图6中,泄压机构22整体容纳于第二孔段2123内。
连接面2125为连接第一孔段2122的孔壁和第二孔段2123的孔壁的面,即连接为第一孔段2122和第二孔段2123之间的台阶面。
第二孔段2123的孔壁包括第一孔壁面2121,即第二孔段2123的孔壁的至少部分与泄压机构22的外周面相互焊接。
安装孔212为阶梯孔的结构,且安装孔212包括依次设置的第一孔段2122、第二孔段2123和第三孔段2124,也就是说,安装孔212包括至少三个孔段,以便于对泄压机构22进行装配,通过将泄压机构22设置于第二孔段2123,以使泄压机构22的外周面与第二孔段2123的孔壁相互焊接,并将第一环形槽213设置于连接第一孔段2122的孔壁和第二孔段2123的孔壁的连接面2125上,以使第一环形槽213紧邻第二孔段2123的孔壁,即第一环形槽213紧邻用于与泄压机构22相互焊接的第一孔壁面2121上,从而有利于提升第一环形槽213释放泄压机构22与外壳21之间的焊接应力的效果。
在一些实施例中,参照图7,图7为本申请又一些实施例提供的电池单体20的外壳21的局部剖视图。安装孔212为阶梯孔,沿泄压机构的厚度方向X,安装孔212包括依次设置的第一孔段2122和第二孔段2123,第一孔段2122的孔径大于第二孔段2123,且第一孔段2122贯穿外壳21的外表面。其中,泄压机构22的至少部分设置于第一孔段2122内,并覆盖第二孔段2123,第一孔段2122的孔壁包括第一孔壁面2121,且第一环形槽213设置于外壳21的外表面上。
安装孔212包括依次设置的第一孔段2122和第二孔段2123,即安装孔212包括至少两个孔段,分别为依次设置的第一孔段2122和第二孔段2123。
第一孔段2122的孔径大于第二孔段2123,且第一孔段2122贯穿外壳21的外表面,即第二孔段2123在泄压机构的厚度方向X上的投影位于第一孔段2122内,且第一孔段2122为安装孔212的多个孔段中最远离外壳21的容纳空间211的孔段,也就是说,第二孔段2123相较于第一孔段2122更靠近外壳21的容纳空间211。
示例性的,在图7中,安装孔212只设置有两个孔段,分别为第一孔段2122和第二孔段2123,第一孔段2122的孔壁与壳体214的外表面相连,且第二孔段2123的孔壁与壳体214的内表面相连,即第一孔段2122贯穿壳体214的外表面,第二孔段2123贯穿壳体214的内表面。当然,在其他实施例中,安装孔212也可以具有三个、四个、五个或六个孔段等,同样的,第二孔段2123可以是多个孔段中最靠近外壳21的容纳空间211的孔段,也可以是位于多个孔段之间的一个孔段。
第一孔段2122的孔壁包括第一孔壁面2121,即第一孔段2122的孔壁的至少部分与泄压机构22的外周面相互焊接。
安装孔212为阶梯孔的结构,安装孔212包括依次设置的第一孔段2122和第二孔段2123,且第一孔段2122贯穿外壳21的外表面,也就是说,安装孔212包括至少两个孔段,且第一孔段2122为最远离外壳21的容纳空间211的孔段,通过将泄压机构22设置于第一孔段2122,以使泄压机构22的外周面与第一孔段2122的孔壁相互焊接,并将第一环形槽213设置于外壳21的外表面上,一方面便于对第一环形槽213进行加工,有利于降低第一环形槽213的加工难度,另一方面使得第一环形槽213紧邻第一孔段2122的孔壁,即第一环形槽213紧邻用于与泄压机构22相互焊接的第一孔壁面2121上,从而有利于提升第一环形槽213释放泄压机构22与外壳21之间的焊接应力的效果。
根据本申请的一些实施例,参照图8、图9和图10,图8为本申请再一些实施例提供的电池单体20的仰视图,图9为本申请再一些实施例提供的电池单体20的外壳21的剖视图,图10为 图9所示的外壳21的B处的局部放大图。泄压机构22上也可以设置有第二环形槽223,第一孔壁面2121环绕于第二环形槽223的外侧。
可选地,安装孔212为阶梯孔,示例性的,在图10中,安装孔212包括三个孔段,分别为沿泄压机构的厚度方向X依次设置的第一孔段2122、第二孔段2123和第三孔段2124,第一孔段2122、第二孔段2123和第三孔段2124的孔径逐渐减小,且第一孔段2122贯穿壳体214的外表面。当然,在其他实施例中,安装孔212也可以是设置有两个、四个、五个或六个孔段等。
其中,泄压机构22设置于第二孔段2123内,并覆盖第三孔段2124。泄压机构22的外周面与第二孔段2123的孔壁相互焊接,即第二孔段2123的孔壁包括第一孔壁面2121。
示例性的,在图8中,泄压机构22的椭圆形,对应的,第二环形槽223为椭圆环状。当然,在其他实施例中,第二环形槽223也可以为圆环状或矩形环状等。
可选地,泄压机构22的外周面和安装孔212的第一孔壁面2121之间的焊接轨迹可以是沿安装孔212的周向连续且闭合的轨迹,也可以是沿安装孔212的周向间断的轨迹,即泄压机构22的外周面和安装孔212的第一孔壁面2121之间的焊接轨迹沿安装孔212的周向不连续,也就是说,泄压机构22的外周面与安装孔212的第一孔壁面2121相互焊接形成的焊印部23可以是沿安装孔212的周向连续的结构,也可以是沿安装孔212的周向间断不连续的结构。对应的,第二环形槽223也可以是沿安装孔212的周向延伸的连续且闭合的结构,也可以是沿安装孔212的周向间隔设置的多个槽段的结构。
需要说明的是,在图4和图6中,电池单体20只在外壳21上设置有第一环形槽213,在图8和图10中,电池单体20只在泄压机构22上设置有第二环形槽223,在其他实施例中,电池单体20还可以是在外壳21上设置第一环形槽213的同时也在泄压机构22上设置第二环形槽223。
通过在泄压机构22上设置沿安装孔212的周向延伸的第二环形槽223,且第一孔壁面2121环绕第二环形槽223设置,从而通过第二环形槽223在泄压机构22与第一孔壁面2121相互焊接时能够为两者之间的焊接区域因焊接产生的塑性变形提供变形空间,以释放和吸收泄压机构22和外壳21之间的焊接应力,从而一方面能够减少焊接应力对泄压机构22的影响,以提升泄压机构22的使用寿命,进而有利于提升电池单体20的使用寿命,另一方面能够减少因焊接应力的拉扯而导致泄压机构22与外壳21之间的焊接区域产生裂纹的现象,以降低泄压机构22与外壳21之间出现焊接失效而导致电池单体20存在漏液的风险,进而有利于提升电池单体20的使用安全性。
根据本申请的一些实施例,参照图11,图11为本申请再一些实施例提供的电池单体20的泄压机构22的局部剖视图。第二环形槽223的槽宽为W 2,满足,0.2mm≤W 2≤3mm。
其中,第二环形槽223的槽宽为W 2,即在安装孔212的径向上,第二环形槽223的最大宽度为W 2,也就是说,在过安装孔212的几何中心且与泄压机构的厚度方向X相互平行的截面上,第二环形槽223的最大宽度为W 2
示例性的,第二环形槽223的槽宽为W 2可以为0.2mm、0.5mm、1mm、1.5mm、2mm或3mm等。
通过将第二环形槽223的槽宽设置在0.2mm到3mm,从而一方面能够缓解因第二环形槽223的槽宽过小而造成第二环形槽223释放泄压机构22与外壳21之间的焊接应力的效果不佳的现象,另一方面能够缓解因第二环形槽223的槽宽过大而造成第二环形槽223占用泄压机构22过多的空间,以导致泄压机构22的结构强度不足二出现提前开阀的现象,进而有利于保证泄压机构22的使用稳定性。
根据本申请的一些实施例,参见图10所示,沿安装孔212的径向,第二环形槽223与第一孔壁面2121的间距为D 2,满足,0.5mm≤D 2≤3mm。
其中,沿安装孔212的径向,第二环形槽223与第一孔壁面2121的间距为D 2,即在安装孔212的径向上,第一孔壁面2121与第二环形槽223靠近第一孔壁面2121的槽侧面之间的间距为D 2,也就是说,第二环形槽223在安装孔212的径向上的内边缘与第一孔壁面2121之间的距离为 D 2,以使第一孔壁面2121与第二环形槽223之间存在间隙,且该间隙的宽度为D 2
示例性的,第二环形槽223与第一孔壁面2121的间距D 2可以为0.5mm、0.8mm、1mm、1.5mm、2mm或3mm等。
通过将第二环形槽223和第一孔壁面2121在安装孔212的径向上的间距设置在0.5mm到3mm,也就是说,第一孔壁面2121与第二环形槽223之间的间隙宽度为0.5mm到3mm,从而一方面能够缓解因第一孔壁面2121与第二环形槽223之间的间隙宽度过小而造成泄压机构22用于与外壳21相互焊接的区域太小导致焊接质量不佳的现象,另一方面能够缓解因第一孔壁面2121与第二环形槽223之间的间隙宽度过大而导致第二环形槽223无法有效地为外壳21与泄压机构22相互焊接产生的塑性变形提供变形空间,以造成第二环形槽223释放泄压机构22与外壳21之间的焊接应力的效果不佳的现象。
在一些实施例中,请继续参见图10所示,泄压机构22的外周面与第一孔壁面2121焊接形成沿安装孔212的周向延伸的焊印部23,焊印部23的内边缘与第二环形槽223的外边缘间隔设置。
其中,焊印部23的外边缘与第二环形槽223的内边缘间隔设置,即在焊印部23的外边缘的法向方向上,焊印部23与第二环形槽223之间存在间隙。
通过将泄压机构22与外壳21相互焊接形成的焊印部23的内边缘与第二环形槽223的外边缘间隔设置,即焊印部23与第二环形槽223之间存在有间隙,从而能够缓解泄压机构22与外壳21焊接形成的焊印部23与第二环形槽223之间出现相互干涉的现象,以降低泄压机构22与外壳21在相互焊接时出现爆点的风险,进而有利于提高外壳21与泄压机构22之间的焊接质量。
根据本申请的一些实施例,参见图8和图10所示,泄压机构22包括泄压部221和连接部222。泄压部221被配置为泄放电池单体20的内部压力。连接部222沿安装孔212的周向围设于泄压部221的周围,连接部222的外周面焊接于第一孔壁面2121。其中,沿泄压机构的厚度方向X,连接部222的厚度大于泄压部221的厚度,第二环形槽223设置于连接部222上,且第二环形槽223环绕于泄压部221的外侧。
其中,第二环形槽223环绕于泄压部221的外侧,即第二环形槽223沿安装孔212的周向延伸并设置于泄压机构22的连接部222上,以使第二环形槽223环绕泄压部221设置。
泄压机构22设置有泄压部221和连接部222,连接部222用于与外壳21相互焊接,且连接部222的厚度大于泄压部221的厚度,通过将第二环形槽223设置于连接部222上能够减少第二环形槽223对泄压机构22的整体结构强度带来的影响,且便于对第二环形槽223进行加工,有利于降低第二环形槽223的制造难度。
在一些实施例中,请参见图10所示,沿泄压机构的厚度方向X,连接部222的厚度为H 1,第二环形槽223的槽深为H 3,满足,1.5≤H 1/H 3≤5。
其中,沿泄压机构的厚度方向X,第二环形槽223的槽深为H 3,即在泄压机构的厚度方向X上,第二环形槽223的槽底面与泄压部221设置第二环形槽223的面之间的距离为H 3
示例性的,连接部222的厚度与第二环形槽223的槽深的比值可以是1.5、2、2.5、3、4或5等。
通过将连接部222的厚度与第二环形槽223的槽深的比值设置在1.5到5之间,也就是说,连接部222的厚度是在第二环形槽223的槽深的1.5倍到5倍之间,从而一方面能够缓解因第二环形槽223的槽深过小而造成第二环形槽223释放泄压机构22与外壳21之间的焊接应力的效果不佳的现象,另一方面能够缓解因第二环形槽223的槽深过大而导致泄压机构22的连接部222的结构强度不足的现象,以保证泄压机构22与外壳21之间的连接稳定性和可靠性。
根据本申请的一些实施例,参见图8、图10和图11所示,泄压部221设置有刻痕槽2211,泄压部221被配置为能够沿着刻痕槽2211裂开,以泄放电池单体20的内部压力。沿泄压机构的厚度方向X,第二环形槽223的槽底面与连接部222背离第二环形槽223的表面之间的距离为 L 1,刻痕槽2211的槽底面与泄压部221背离刻痕槽2211的表面之间的距离为L 2,满足,L 1/L 2≥1.2。
其中,泄压部221上设置有刻痕槽2211,即泄压部221在设置有刻痕槽2211的位置形成相对薄弱的区域,从而使得泄压部221能够在电池单体20的内部压力或温度达到阈值时沿着刻痕槽2211裂开,以泄放电池单体20的内部压力。
第二环形槽223的槽底面与连接部222背离第二环形槽223的表面之间的距离为L 1,即在泄压机构的厚度方向X上,连接部222设置有第二环形槽223的位置的厚度为L 1,也就是说,在泄压机构的厚度方向X上,连接部222设置第二环形槽223的区域的剩余厚度为L 1
刻痕槽2211的槽底面与泄压部221背离刻痕槽2211的表面之间的距离为L 2,即在泄压机构的厚度方向X上,泄压部221设置有刻痕槽2211的位置的厚度为L 2,也就是说,在泄压机构的厚度方向X上,泄压部221设置刻痕槽2211的区域的剩余厚度为L 2
示例性的,在图10中,刻痕槽2211设置于泄压部221背离容纳空间211的表面上。当然,在其他实施例中,刻痕槽2211也可以设置于泄压部221面向容纳空间211的表面上。
在泄压机构的厚度方向X上,通过将第二环形槽223的槽底面与连接部222背离第二环形槽223的表面之间的距离与刻痕槽2211的槽底面与泄压部221背离刻痕槽2211的表面之间的距离比值设置为大于或等于1.2,也就是说,连接部222在设置有第二环形槽223的位置的厚度大于或等于泄压部221设置有刻痕槽2211的位置的厚度的1.2倍,从而能够有效保证泄压机构22优先在设置有刻痕槽2211的位置开阀,以泄放电池单体20的内部压力,进而有利于保证泄压机构22的使用稳定性和可靠性,以降低泄压机构22在设置第二环形槽223的位置出现开阀的风险。
根据本申请的一些实施例,请继续参见图8、图10和图11所示,第二环形槽223设置于泄压机构22背离容纳空间211的一侧。
其中,第二环形槽223设置于泄压机构22背离容纳空间211的一侧,即第二环形槽223的槽口贯穿泄压机构22的连接部222背离容纳空间211的一侧,以使第二环形槽223位于泄压机构22的外部,也就是说,第二环形槽223和刻痕槽2211均为与泄压机构22的同一侧。当然,在其他实施例中,第二环形槽223也可以设置于泄压机构22面向容纳空间211的一侧。
通过将第二环形槽223设置在泄压机构22背离容纳空间211的一侧,即第二环形槽223设置在泄压机构22的外侧,采用这种结构的泄压机构22便于制造和加工,有利于降低第二环形槽223的加工难度。
根据本申请的一些实施例,本申请还提供了一种电池100,包括多个以上任一方案的电池单体20。
其中,参见图2所示,电池100可以还包括箱体10,多个电池单体20容纳于箱体10内。
根据本申请的一些实施例,本申请还提供了一种用电装置,包括以上任一方案的电池100,并且电池100用于为用电装置提供电能。
用电装置可以是前述任一应用电池100的设备或系统。
根据本申请的一些实施例,参见图3至图11所示,本申请提供了一种电池单体20,电池单体20包括外壳21和泄压机构22。外壳21的内部具有用于容纳电极组件24的容纳空间211,外壳21设置有与容纳空间211连通的安装孔212,安装孔212具有沿安装孔212的周向延伸的第一孔壁面2121。泄压机构22设置于安装孔212内,泄压机构22的外周面焊接于第一孔壁面2121,以形成沿安装孔212的周向延伸的焊印部23。外壳21上设置有第一环形槽213,第一环形槽213环绕于第一孔壁面2121的外侧,和/或泄压机构22上设置有第二环形槽223,第一孔壁面2121环绕于第二环形槽223的外侧。其中,泄压机构22包括泄压部221和连接部222,泄压部221被配置为泄放电池单体20的内部压力,连接部222沿安装孔212的周向围设于泄压部221的周围,连接部222的外周面焊接于第一孔壁面2121,沿泄压机构的厚度方向X,连接部222的厚度大于泄压 部221的厚度,第二环形槽223设置于连接部222上,且第二环形槽223环绕于泄压部221的外侧。第一环形槽213的槽宽为W 1,满足,0.2mm≤W 1≤3mm,沿泄压机构的厚度方向X,连接部222的厚度为H 1,第一环形槽213的槽深为H 2,满足,1.5≤H 1/H 2≤5,沿安装孔212的径向,第一环形槽213与第一孔壁面2121的间距为D 1,满足,0.5mm≤D 1≤3mm。第二环形槽223的槽宽为W 2,满足,0.2mm≤W 2≤3mm,沿安装孔212的径向,第二环形槽223与第一孔壁面2121的间距为D 2,满足,0.5mm≤D 2≤3mm,沿泄压机构的厚度方向X,第二环形槽223的槽深为H 3,满足,1.5≤H 1/H 3≤5。此外,泄压部221设置有刻痕槽2211,泄压部221被配置为能够沿着刻痕槽2211裂开,以泄放电池单体20的内部压力,沿泄压机构的厚度方向X,第二环形槽223的槽底面与连接部222背离第二环形槽223的表面之间的距离为L 1,刻痕槽2211的槽底面与泄压部221背离刻痕槽2211的表面之间的距离为L 2,满足,L 1/L 2≥1.2。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种电池单体,包括:
    外壳,内部具有用于容纳电极组件的容纳空间,所述外壳设置有与所述容纳空间连通的安装孔,所述安装孔具有沿所述安装孔的周向延伸的第一孔壁面;以及
    泄压机构,设置于所述安装孔内,所述泄压机构的外周面焊接于所述第一孔壁面;
    其中,所述外壳上设置有第一环形槽,所述第一环形槽环绕于所述第一孔壁面的外侧;和/或
    所述泄压机构上设置有第二环形槽,所述第一孔壁面环绕于所述第二环形槽的外侧。
  2. 根据权利要求1所述的电池单体,其中,所述第一环形槽的槽宽为W 1,满足,0.2mm≤W 1≤3mm。
  3. 根据权利要求1或2所述的电池单体,其中,所述泄压机构包括:
    泄压部,被配置为泄放所述电池单体的内部压力;
    连接部,沿所述安装孔的周向围设于所述泄压部的周围,所述连接部的外周面焊接于所述第一孔壁面,沿所述泄压机构的厚度方向,所述连接部的厚度大于所述泄压部的厚度。
  4. 根据权利要求3所述的电池单体,其中,沿所述泄压机构的厚度方向,所述连接部的厚度为H 1,所述第一环形槽的槽深为H 2,满足,1.5≤H 1/H 2≤5。
  5. 根据权利要求1-4任一项所述的电池单体,其中,沿所述安装孔的径向,所述第一环形槽与所述第一孔壁面的间距为D 1,满足,0.5mm≤D 1≤3mm。
  6. 根据权利要求1-5任一项所述的电池单体,其中,所述泄压机构的外周面与所述第一孔壁面焊接形成沿所述安装孔的周向延伸的焊印部,所述焊印部的外边缘与所述第一环形槽的内边缘间隔设置。
  7. 根据权利要求1-6任一项所述的电池单体,其中,所述第一环形槽设置于所述外壳背离所述容纳空间的一侧。
  8. 根据权利要求7所述的电池单体,其中,所述安装孔为阶梯孔,沿所述泄压机构的厚度方向,所述安装孔包括依次设置的第一孔段、第二孔段和第三孔段,所述第一孔段、所述第二孔段和所述第三孔段的孔径逐渐减小,且所述第一孔段位于所述第二孔段背离所述容纳空间的一侧;
    其中,所述泄压机构的至少部分设置于所述第二孔段内,并覆盖所述第三孔段,所述第一孔段的孔壁和所述第二孔段的孔壁通过连接面相连,所述第二孔段的孔壁包括所述第一孔壁面,且所述第一环形槽设置于所述连接面上。
  9. 根据权利要求7所述的电池单体,其中,所述安装孔为阶梯孔,沿所述泄压机构的厚度方向,所述安装孔包括依次设置的第一孔段和第二孔段,所述第一孔段的孔径大于所述第二孔段,且所述第一孔段贯穿所述外壳的外表面;
    其中,所述泄压机构的至少部分设置于所述第一孔段内,并覆盖所述第二孔段,所述第一孔段的孔壁包括所述第一孔壁面,且所述第一环形槽设置于所述外壳的外表面上。
  10. 根据权利要求1-9任一项所述的电池单体,其中,所述第二环形槽的槽宽为W 2,满足,0.2mm≤W 2≤3mm。
  11. 根据权利要求1-10任一项所述的电池单体,其中,沿所述安装孔的径向,所述第二环形槽与所述第一孔壁面的间距为D 2,满足,0.5mm≤D 2≤3mm。
  12. 根据权利要求1-11任一项所述的电池单体,其中,所述泄压机构的外周面与所述第一孔壁面焊接形成沿所述安装孔的周向延伸的焊印部,所述焊印部的内边缘与所述第二环形槽的外边缘间隔设置。
  13. 根据权利要求1-12任一项所述的电池单体,其中,所述泄压机构包括:
    泄压部,被配置为泄放所述电池单体的内部压力;
    连接部,沿所述安装孔的周向围设于所述泄压部的周围,所述连接部的外周面焊接于所述第一孔壁面;
    其中,沿所述泄压机构的厚度方向,所述连接部的厚度大于所述泄压部的厚度,所述第二环形槽设置于所述连接部上,且所述第二环形槽环绕于所述泄压部的外侧。
  14. 根据权利要求13所述的电池单体,其中,沿所述泄压机构的厚度方向,所述连接部的厚度为H 1,所述第二环形槽的槽深为H 3,满足,1.5≤H 1/H 3≤5。
  15. 根据权利要求13或14所述的电池单体,其中,所述泄压部设置有刻痕槽,所述泄压部被配置为能够沿着所述刻痕槽裂开,以泄放所述电池单体的内部压力;
    沿所述泄压机构的厚度方向,所述第二环形槽的槽底面与所述连接部背离所述第二环形槽的表面之间的距离为L 1,所述刻痕槽的槽底面与所述泄压部背离所述刻痕槽的表面之间的距离为L 2,满足,L 1/L 2≥1.2。
  16. 根据权利要求1-15任一项所述的电池单体,其中,所述第二环形槽设置于所述泄压机构背离所述容纳空间的一侧。
  17. 一种电池,包括多个根据权利要求1-16任一项所述的电池单体。
  18. 一种用电装置,包括根据权利要求17所述的电池。
PCT/CN2022/119136 2022-09-15 2022-09-15 电池单体、电池及用电装置 WO2024055257A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280085977.0A CN118435443A (zh) 2022-09-15 2022-09-15 电池单体、电池及用电装置
PCT/CN2022/119136 WO2024055257A1 (zh) 2022-09-15 2022-09-15 电池单体、电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119136 WO2024055257A1 (zh) 2022-09-15 2022-09-15 电池单体、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024055257A1 true WO2024055257A1 (zh) 2024-03-21

Family

ID=90273960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119136 WO2024055257A1 (zh) 2022-09-15 2022-09-15 电池单体、电池及用电装置

Country Status (2)

Country Link
CN (1) CN118435443A (zh)
WO (1) WO2024055257A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149902A (ja) * 1998-09-03 2000-05-30 Sanyo Electric Co Ltd 二次電池
JP2009110808A (ja) * 2007-10-30 2009-05-21 Sanyo Electric Co Ltd 密閉型電池
JP2014049190A (ja) * 2012-08-29 2014-03-17 Toyota Industries Corp 蓄電装置
CN204809306U (zh) * 2015-07-15 2015-11-25 宁德时代新能源科技有限公司 二次电池的注液孔焊接组件
CN206040782U (zh) * 2016-07-29 2017-03-22 惠州比亚迪实业有限公司 一种防爆阀、盖板组件及电池
CN207459042U (zh) * 2017-11-28 2018-06-05 深圳市瑞德丰精密制造有限公司 电池的防爆片结构
CN217848223U (zh) * 2022-02-16 2022-11-18 华为数字能源技术有限公司 一种防爆阀、电池盖板、电池及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149902A (ja) * 1998-09-03 2000-05-30 Sanyo Electric Co Ltd 二次電池
JP2009110808A (ja) * 2007-10-30 2009-05-21 Sanyo Electric Co Ltd 密閉型電池
JP2014049190A (ja) * 2012-08-29 2014-03-17 Toyota Industries Corp 蓄電装置
CN204809306U (zh) * 2015-07-15 2015-11-25 宁德时代新能源科技有限公司 二次电池的注液孔焊接组件
CN206040782U (zh) * 2016-07-29 2017-03-22 惠州比亚迪实业有限公司 一种防爆阀、盖板组件及电池
CN207459042U (zh) * 2017-11-28 2018-06-05 深圳市瑞德丰精密制造有限公司 电池的防爆片结构
CN217848223U (zh) * 2022-02-16 2022-11-18 华为数字能源技术有限公司 一种防爆阀、电池盖板、电池及电子设备

Also Published As

Publication number Publication date
CN118435443A (zh) 2024-08-02

Similar Documents

Publication Publication Date Title
WO2023004723A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2022213400A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023279260A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2023004722A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023159847A1 (zh) 电池单体、电池及用电装置
WO2023142894A1 (zh) 电池单体、电池及用电装置
WO2024124688A1 (zh) 绝缘膜、电池单体、电池及用电装置
CA3227076A1 (en) Box of battery, battery, power consumption apparatus, and method and apparatus for producing battery
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023028864A1 (zh) 泄压装置、电池单体、电池及用电设备
US20240162558A1 (en) Battery cell, battery, electrical apparatus, and method and apparatus for manufacturing battery cell
WO2023216829A1 (zh) 电池单体、电池及用电装置
WO2024031254A1 (zh) 电极组件、电池单体、电池及用电装置
WO2023141842A1 (zh) 泄压装置、电池单体、电池及用电设备
WO2024055257A1 (zh) 电池单体、电池及用电装置
CN218414926U (zh) 电池单体、电池及用电装置
WO2024082096A1 (zh) 电池单体、电池、储能装置及用电装置
WO2023245673A1 (zh) 电池单体、电池及用电装置
WO2024178553A1 (zh) 电池单体、电池及用电装置
WO2023133904A1 (zh) 电池单体及其制造方法和制造设备、电池及用电装置
WO2024000153A1 (zh) 电极组件及其制造方法、电池单体、电池及用电装置
WO2023173414A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023178600A1 (zh) 集流构件、电池单体、电池及用电设备
WO2024031501A1 (zh) 电池单体、电池以及用电装置
WO2023231014A1 (zh) 泄压装置、外壳、电池单体、电池及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958449

Country of ref document: EP

Kind code of ref document: A1