WO2024031254A1 - 电极组件、电池单体、电池及用电装置 - Google Patents

电极组件、电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2024031254A1
WO2024031254A1 PCT/CN2022/110918 CN2022110918W WO2024031254A1 WO 2024031254 A1 WO2024031254 A1 WO 2024031254A1 CN 2022110918 W CN2022110918 W CN 2022110918W WO 2024031254 A1 WO2024031254 A1 WO 2024031254A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
electrode assembly
recessed area
winding
along
Prior art date
Application number
PCT/CN2022/110918
Other languages
English (en)
French (fr)
Inventor
陈江
周建华
宋晋阳
吴凯
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280005695.5A priority Critical patent/CN117859232A/zh
Priority to PCT/CN2022/110918 priority patent/WO2024031254A1/zh
Publication of WO2024031254A1 publication Critical patent/WO2024031254A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof

Definitions

  • the present application relates to the field of battery technology, specifically, to an electrode assembly, a battery cell, a battery and an electrical device.
  • the battery cells of the battery are assembled into electrode assemblies (bare cells) by winding or laminating methods such as positive electrode plates, negative electrode plates and separators, and are then installed into the casing and injected with electrolyte.
  • the electrode assembly of the rolled structure has the advantages of easy assembly, low manufacturing difficulty, and high production efficiency. Therefore, the electrode assembly of the rolled structure has been widely used.
  • Embodiments of the present application provide an electrode assembly, a battery cell, a battery and an electrical device, which can effectively improve the safety of the battery cell.
  • embodiments of the present application provide an electrode assembly, including a first pole piece and a second pole piece with opposite polarities.
  • the first pole piece and the second pole piece are wound along a winding direction to form a In the electrode assembly, the first pole piece has a first winding end; wherein a first recessed area is provided on one side of the first pole piece and/or on one side of the second pole piece, along the In the radial direction of the electrode assembly, the projection of the first winding ending end is located in the first recessed area.
  • a first recessed area corresponding to the first winding ending end is provided on one side of the first pole piece and/or the second pole piece, and the first winding ending end is on the electrode assembly.
  • the projection in the radial direction falls into the first recessed area, so that when the electrode assembly expands during use, the first recessed area can provide sufficient space for the first winding ending end of the first pole piece in the radial direction of the electrode assembly.
  • the expansion space is to alleviate the phenomenon that the first winding end end squeezes the first pole piece or the second pole piece immediately adjacent to the electrode assembly, so as to release the impact of the first winding end end on the adjacent first pole piece or the second pole piece.
  • the shear stress caused by the diode piece can reduce the shear stress concentration at the end of the first winding, thereby reducing the shear stress caused by the first or second pole piece of the electrode assembly being squeezed by the end of the first winding.
  • the risk of local deformation or cracking is conducive to improving the safety of battery cells with such electrode components.
  • the width of the first recessed area is D 1 , satisfying D 1 ⁇ 10 mm.
  • the first winding end end will move along the winding direction due to the expansion of the electrode assembly during use. , and the movement is within 10 mm, so that the electrode assembly with this structure can still ensure that the projection of the first winding end end in the radial direction of the electrode assembly is located when the first winding end end moves along the winding direction. in the first recessed area, so that the first recessed area can stably provide expansion space for the first winding ending end.
  • the outermost ring of the electrode assembly is the first pole piece, and the second pole piece has a second winding end.
  • the first winding end The end exceeds the ending end of the second winding;
  • the first pole piece includes a first section and a second section connected to each other, and the connection position between the first section and the second section is located on the second winding end.
  • the first section extends along the winding direction from the connection position of the first section and the second section to the first winding end end, along the radial direction of the electrode assembly, The first recessed area is provided on the side of the first section facing the first winding ending end.
  • the position immediately adjacent to the first winding end end is the first section of the first pole piece.
  • a first recessed area is provided on a side of a section facing the first winding end end along the radial direction of the electrode assembly, so that the first winding end end can directly enter the first recessed area of the first section when the electrode assembly expands. within, so as to achieve a better avoidance effect, and thereby better alleviate the phenomenon that the first winding end end squeezes the adjacent first pole piece.
  • the first pole piece and the second pole piece are each provided with a plurality of first recessed areas, and the plurality of first recessed areas of the first pole piece and the third The plurality of first recessed areas of the diode sheet are arranged along the radial direction of the electrode assembly.
  • a plurality of first recessed areas are provided on both the first pole piece and the second pole piece, and the plurality of first recessed areas of the first pole piece and the multiple first recessed areas of the second pole piece are are arranged along the radial direction of the electrode assembly, so that the plurality of first recessed areas of the first pole piece and the plurality of first recessed areas of the second pole piece can provide the first winding ending end in the radial direction of the electrode assembly.
  • More expansion space enables the shear stress caused by the first winding end end to the adjacent first pole piece to be better released when the electrode assembly expands, so as to relieve the first winding end end from squeezing the adjacent first pole piece.
  • the phenomenon of the first pole piece can further reduce the risk of local deformation or cracking of the first pole piece due to being squeezed by the first winding ending end.
  • the first pole piece is a negative pole piece
  • the second pole piece is a positive pole piece
  • the second pole piece is provided with the first recessed area along the diameter of the electrode assembly. direction, the first recessed area of the second pole piece is located on the side where the first recessed area of the second pole piece faces the first pole piece, and all the recessed areas of the second pole piece are The first recessed area covers the first recessed area facing the first pole piece disposed.
  • the first recessed area is provided on the side where the first recessed areas of the second pole piece and the first pole piece are facing, and the first recessed area of the second pole piece covers the first recessed area of the first pole that is facing.
  • the first recessed area of the first pole piece that is to say, along the radial direction of the electrode assembly, the second pole piece adjacent to the first recessed area of the first pole piece is also provided with a corresponding first recessed area, and on both sides facing each other.
  • the area of the first recessed area provided on the second pole piece is larger than the area of the first recessed area provided on the first pole piece, that is, the area of the first recessed area provided on the positive electrode piece is larger than that provided on the first pole piece.
  • this structure can effectively alleviate the risk of lithium deposition in the electrode assembly while providing sufficient expansion space for the first winding end, thereby reducing the risk of lithium deposition in the electrode assembly during use. safety hazards.
  • the width of the first recessed area of the second pole piece is greater than the width of the first pole disposed facing the first recessed area of the second pole piece. The width of the first recessed area of the sheet.
  • the electrode assembly with this structure can further reduce the risk of lithium precipitation during the use of the electrode assembly to improve the safety of the electrode assembly.
  • it can alleviate the problem caused by the first recessed area of the first pole piece and the second pole.
  • the first depressed areas of the sheet overlap each other to form a new truncation area, resulting in local shear stress concentration.
  • the second pole piece has a second winding end, and a second recessed area is provided on one side of the first pole piece and/or on one side of the second pole piece. In the radial direction of the electrode assembly, the projection of the second winding ending end is located in the second recessed area.
  • a second recessed area corresponding to the second winding end end is provided on one side of the first pole piece and/or the second pole piece, and the second winding end end is on the electrode assembly.
  • the projection in the radial direction falls into the second recessed area, so that when the electrode assembly expands during use, the second recessed area can provide sufficient space for the second winding ending end of the second pole piece in the radial direction of the electrode assembly. Expansion space to alleviate the phenomenon that the second winding end end squeezes the first pole piece or the second pole piece immediately adjacent to the electrode assembly, thereby releasing the impact of the second winding end end on the adjacent first pole piece or second pole piece.
  • the shear stress caused by the diode piece can reduce the shear stress concentration at the end of the second winding, thereby reducing the shear stress caused by the first or second pole piece of the electrode assembly being squeezed by the end of the second winding. the risk of local deformation or cracking to improve the safety of the electrode assembly.
  • the width of the second recessed area is D 2 , satisfying D 2 ⁇ 10 mm.
  • the second winding end end will move along the winding direction due to the expansion of the electrode assembly during use. , and the movement is within 10 mm, so that the electrode assembly with this structure can still ensure that the projection of the second winding end end in the radial direction of the electrode assembly is located when the second winding end end moves along the winding direction. in the second recessed area, so that the second recessed area can stably provide expansion space for the second winding ending end.
  • the first pole piece is a negative pole piece
  • the second pole piece is a positive pole piece
  • the outermost ring of the electrode assembly is the first pole piece, along the winding direction , the first winding end end exceeds the second winding end end
  • the first pole piece includes a first section and a second section connected to each other, and the connection between the first section and the second section The position is located inside the second winding end end, and the first section extends along the winding direction from the connection position of the first section and the second section to the first winding end end; along the winding direction; In the radial direction of the electrode assembly, the second recessed area is provided on the side of the first section away from the second winding ending end.
  • the location immediately adjacent to the second winding end end is the first section and the first section of the first pole piece At the connection position with the second section, a second recessed area is provided on the side of the first section of the first pole piece away from the second winding ending end.
  • the pole piece is provided with a second recessed area for providing expansion space for the second winding end end, and while achieving a better avoidance effect for the second winding end end, it can also reduce the stress of the electrode assembly during use. Risk of lithium precipitation.
  • the first pole piece and the second pole piece are both provided with a plurality of second recessed areas, and the plurality of second recessed areas of the first pole piece and the third The plurality of second recessed areas of the diode sheet are arranged along the radial direction of the electrode assembly.
  • a plurality of second recessed areas are provided on both the first pole piece and the second pole piece, and the plurality of second recessed areas of the first pole piece and the plurality of second recessed areas of the second pole piece are are arranged along the radial direction of the electrode assembly, so that the plurality of second recessed areas of the first pole piece and the plurality of second recessed areas of the second pole piece can provide the second winding ending end in the radial direction of the electrode assembly.
  • More expansion space can better release the shear stress caused by the second winding end end on the adjacent first pole piece when the electrode assembly expands, so as to relieve the second winding end end from squeezing the adjacent first pole piece.
  • the phenomenon of the first pole piece can further reduce the risk of local deformation or cracking of the first pole piece due to being squeezed by the second winding ending end.
  • the second pole piece is provided with the second recessed area, and the second recessed area of the second pole piece is located on the second pole piece along the radial direction of the electrode assembly.
  • the second recessed area is provided on the side where the second recessed areas of the second pole piece and the first pole piece are facing, and the second recessed area of the second pole piece covers the side of the first pole that is facing.
  • the second recessed area of the pole piece that is to say, along the radial direction of the electrode assembly, the second pole piece adjacent to the second recessed area of the first pole piece is also provided with a corresponding second recessed area, and on both sides facing each other.
  • the area of the second recessed area provided on the second pole piece is larger than the area of the second recessed area provided on the first pole piece, that is, the area of the second recessed area provided on the positive electrode piece is larger than that provided on the first pole piece.
  • this structure can effectively alleviate the risk of lithium deposition in the electrode assembly while providing sufficient expansion space for the second winding end, thereby reducing the risk of lithium deposition in the electrode assembly during use. safety hazards.
  • the width of the second recessed area of the second pole piece is greater than the width of the first pole disposed facing the second recessed area of the second pole piece. The width of the second recessed area of the sheet.
  • the electrode assembly with this structure can further reduce the risk of lithium precipitation during use of the electrode assembly to improve the safety of the electrode assembly.
  • it can alleviate the risk of lithium precipitation in the second recessed area of the first pole piece and the second pole.
  • the second concave areas of the sheet overlap each other to form a new truncation area, resulting in local shear stress concentration.
  • the first pole piece includes a first current collector and a first active material layer coated on at least one side of the first current collector along a radial direction of the electrode assembly;
  • the second The pole piece includes a second current collector and a second active material layer coated on at least one side of the second current collector along the radial direction of the electrode assembly; wherein the first recess of the first pole piece
  • the area includes a groove provided on the first active material layer or an area on one side of the first current collector that is not coated with the first active material layer;
  • the first recessed area of the second pole piece includes The groove provided on the second active material layer or the area on one side of the second current collector that is not coated with the second active material layer.
  • the first recessed area provided on the first pole piece may be a groove provided on the first active material layer, or may be a side of the first current collector that is not coated with the first active material layer. area, when the first recessed area provided on the first pole piece is a groove provided on the first active material layer, the first recessed area of the first pole piece can provide expansion space for the first winding end end at the same time.
  • the energy density of the electrode assembly can also be ensured when the first recessed area provided on the first pole piece is an area on one side of the first current collector that is not coated with the first active material layer, so that the first recessed area of the first pole piece It can provide more expansion space for the first winding end and facilitate manufacturing.
  • the first recessed area provided on the second pole piece may be a groove provided on the second active material layer, or may be an area on one side of the second current collector that is not coated with the second active material layer.
  • the first recessed area of the second pole piece can provide expansion space for the first winding end end while also ensuring that The energy density of the electrode assembly, when the first recessed area provided on the second pole piece is an area on one side of the second current collector that is not coated with the second active material layer, enables the first recessed area of the second pole piece to be the first recessed area of the second current collector.
  • a rolled end provides more room for expansion and is easier to manufacture.
  • the first pole piece is a negative pole piece, and the second pole piece is a positive pole piece; along the radial direction of the electrode assembly, the first active material layer and the second active material layer are The material layer faces and is arranged, and the first active material layer covers the second active material layer.
  • the first active material layer and the second active material layer are arranged along the radial direction of the electrode assembly, and the first active material layer is arranged to cover the second active material layer, that is to say, the first active material layer
  • the area of the active material layer is larger than the area of the second active material layer.
  • the electrode assembly further includes an isolation film; the isolation film is disposed between the first pole piece and the second pole piece to separate the first pole piece and the second pole piece. Extreme piece.
  • the electrode assembly is also provided with an isolation film between the first pole piece and the second pole piece, so that the separation between the first pole piece and the second pole piece can be effectively realized to reduce the energy consumption of the first pole piece.
  • embodiments of the present application further provide a battery cell, including a casing and the above-mentioned electrode assembly, and the electrode assembly is accommodated in the casing.
  • embodiments of the present application further provide a battery, including a box and the above-mentioned battery cells, and the battery cells are accommodated in the box.
  • embodiments of the present application further provide an electrical device, which includes the above-mentioned battery cell, where the battery cell is used to provide electric energy; or the above-mentioned battery, where the battery is used to provide electric energy.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is an exploded view of the structure of a battery provided by some embodiments of the present application.
  • Figure 3 is an exploded view of the structure of a battery cell provided by some embodiments of the present application.
  • FIG. 4 is a schematic structural diagram of an electrode assembly provided by some embodiments of the present application.
  • FIG. 5 is a schematic structural diagram of an electrode assembly provided by some embodiments of the present application.
  • Figure 6 is a schematic structural diagram of an electrode assembly provided by some embodiments of the present application.
  • Figure 7 is a partial enlarged view of position A of the electrode assembly shown in Figure 6;
  • Figure 8 is a schematic structural diagram of an electrode assembly provided by other embodiments of the present application.
  • Figure 9 is a schematic structural diagram of an electrode assembly provided by some further embodiments of the present application.
  • Figure 10 is a partial enlarged view of B of the electrode assembly shown in Figure 9;
  • Figure 11 is a partial cross-sectional view of the first pole piece provided by some further embodiments of the present application.
  • Figure 12 is a partial cross-sectional view of the first pole piece provided in other embodiments of the present application.
  • Figure 13 is a partial cross-sectional view of the second pole piece provided by some further embodiments of the present application.
  • FIG. 14 is a partial cross-sectional view of the second pole piece provided in other embodiments of the present application.
  • Icon 1000-vehicle; 100-battery; 10-box; 11-first box body; 12-second box body; 20-battery cell; 21-outer shell; 211-casing; 2111-opening; 212- End cap; 22-electrode assembly; 221-first pole piece; 2211-first winding end; 2212-first section; 2213-second section; 2214-first current collector; 2215-first active material layer ; 222-second pole piece; 2221-second winding end; 2222-second current collector; 2223-second active material layer; 223-first recessed area; 224-second recessed area; 225-isolation film ; 200-controller; 300-motor; X-winding direction.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-ion batteries or magnesium-ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells or multiple battery modules. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes a casing, an electrode assembly and an electrolyte.
  • the casing is used to accommodate the electrode assembly and the electrolyte.
  • the electrode assembly consists of a positive electrode piece, a negative electrode piece and an isolation film. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the part of the positive electrode current collector that is not coated with the positive electrode active material layer serves as a positive electrode tab to realize the operation through the positive electrode tab.
  • the electrical energy input or output of the positive pole piece is a positive electrode current collector and a positive electrode active material layer.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the part of the negative electrode current collector that is not coated with the negative electrode active material layer serves as a negative electrode tab to realize the realization of the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon. In order to ensure that large currents can pass through without melting, the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • Batteries have outstanding advantages such as high energy density, low environmental pollution, high power density, long service life, wide adaptability, and small self-discharge coefficient. They are an important part of the development of new energy today.
  • the battery cell is composed of a positive electrode plate, a negative electrode plate and a separator, which are assembled into an electrode assembly (bare battery cell) by winding or laminating, and then put into the casing, and finally injected with electrolyte.
  • the electrode assembly of the rolled structure has the advantages of easy assembly, low manufacturing difficulty, and high production efficiency. Therefore, the electrode assembly of the rolled structure has been widely used.
  • higher requirements have been put forward for the safety of battery cells. Therefore, the safety of use of electrode components determines the safety of use of battery cells.
  • the positive electrode The thickness of the negative electrode piece and the negative electrode piece will increase, causing the expansion force of the electrode assembly to increase, so that the diameter of the electrode assembly becomes correspondingly larger, especially the expansion of the ending cutoff position of the negative electrode piece and the ending cutoff position of the positive electrode piece.
  • the phenomenon is the most obvious.
  • the expansion of the electrode assembly will be constrained by components such as the blue film or the shell, the ending cutoff position of the positive electrode piece or the ending cutoff position of the negative electrode piece can easily squeeze the electrode piece immediately adjacent to the electrode assembly.
  • the phenomenon of shear stress concentration causes the risk of deformation or cracking of adjacent positive electrode pieces or negative electrode pieces, especially the active material layer, causing the negative electrode piece and the positive electrode piece to short-circuit each other after deformation or cracking. , which in turn causes the risk of short circuit or fire and explosion of battery cells during use, which is not conducive to the safety of battery cells.
  • the electrode assembly includes a first pole piece with opposite polarity. and a second pole piece.
  • the first pole piece and the second pole piece are wound along the winding direction to form an electrode assembly.
  • the first pole piece has a first winding ending end, one side of the first pole piece and/or the second pole.
  • a first recessed area is provided on one side of the sheet. Along the radial direction of the electrode assembly, the projection of the first winding ending end is located in the first recessed area.
  • a first recessed area corresponding to the first winding ending end is provided on one side of the first pole piece and/or the second pole piece, and the first winding ending end is at The radial projection of the electrode assembly falls into the first recessed area, so that when the electrode assembly expands during use, the first recessed area can be the first winding ending end of the first pole piece in the radial direction of the electrode assembly.
  • the shear stress caused by the first winding end piece or the second pole piece can be reduced to reduce the shear stress concentration at the end of the first winding, thereby reducing the stress on the first pole piece or the second pole piece of the electrode assembly caused by the end end of the first winding.
  • the risk of local deformation or cracking due to pressure is conducive to improving the safety of battery cells with such electrode components.
  • the electrode assembly disclosed in the embodiment of the present application can be used in, but is not limited to, electrical devices such as vehicles, ships, or aircrafts.
  • a power supply system including the battery cells and batteries disclosed in this application can be used to form the electrical device. In this way, the potential safety hazards of the battery cells during use can be effectively reduced and the safety of the battery cells can be improved.
  • Embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • an electric device 1000 according to an embodiment of the present application is used as an example.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is an exploded view of the structure of the battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a case 10 and battery cells 20 , and the battery cells 20 are used to be accommodated in the case 10 .
  • the box 10 is used to provide an assembly space for the battery cells 20, and the box 10 can adopt a variety of structures.
  • the box body 10 may include a first box body 11 and a second box body 12 .
  • the first box body 11 and the second box body 12 cover each other.
  • the first box body 11 and the second box body 12 share a common
  • An assembly space for accommodating the battery cells 20 is defined.
  • the second box body 12 can be a hollow structure with one end open, and the first box body 11 can be a plate-like structure.
  • the first box body 11 is covered with the open side of the second box body 12 so that the first box body 11 and the second box body 11 can be connected to each other.
  • the two box bodies 12 jointly define an assembly space; the first box body 11 and the second box body 12 can also be hollow structures with one side open, and the open side cover of the first box body 11 is closed with the second box body 12 Open side.
  • the box 10 formed by the first box body 11 and the second box body 12 can be in various shapes, such as a cylinder, a rectangular parallelepiped, etc.
  • the battery 100 there may be a plurality of battery cells 20, and the plurality of battery cells 20 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the plurality of battery cells 20 are connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 can be accommodated in the box 10 ; of course, the battery 100 can also be a plurality of battery cells 20 First, the battery modules are connected in series, parallel, or mixed to form a battery module, and then multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 10 .
  • the battery 100 may also include other structures.
  • the battery 100 may further include a bus component for realizing electrical connections between multiple battery cells 20 .
  • Each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes. For example, in FIG. 2 , the battery cell 20 has a cylindrical structure.
  • FIG. 3 is an exploded view of the structure of the battery cell 20 provided in some embodiments of the present application.
  • the battery cell 20 includes a casing 21 and an electrode assembly 22.
  • the casing 21 is used to accommodate the electrode assembly 22.
  • the housing 21 can also be used to contain electrolyte, such as electrolyte.
  • the housing 21 can be of various structural forms.
  • the shell 21 can also be made of various materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the housing 21 may include a housing 211 and an end cover 212.
  • the housing 211 is a hollow structure with an opening 2111 on one side.
  • the end cover 212 covers the opening 2111 of the housing 211 and forms a sealed connection to form a A sealed space for housing the electrode assembly 22 and the electrolyte.
  • the electrode assembly 22 When assembling the battery cell 20 , the electrode assembly 22 can be first placed into the casing 211 , the electrolyte is filled into the casing 211 , and then the end cap 212 is closed with the opening 2111 of the casing 211 .
  • the housing 211 can be in various shapes, such as cylinder, cuboid, etc.
  • the shape of the housing 211 can be determined according to the specific shape of the electrode assembly 22 .
  • the end cap 212 can also have a variety of structures.
  • the end cap 212 has a plate-like structure, a hollow structure with an opening 2111 at one end, etc.
  • the electrode assembly 22 has a cylindrical structure
  • the housing 211 has a cylindrical structure
  • the end cover 212 has a cylindrical plate structure
  • the end cover 212 covers the opening 2111 of the housing 211. at.
  • the battery cell 20 may also include a positive electrode terminal and a negative electrode terminal, the positive electrode terminal is installed on the end cover 212, and the negative electrode terminal is installed on the end of the housing 211 opposite to the end cover 212.
  • the positive electrode terminal may also be installed on the end of the housing 211 opposite to the end cap 212
  • the negative electrode terminal may be installed on the end cap 212 .
  • Both the positive electrode terminal and the negative electrode terminal are used to electrically connect with the electrode assembly 22 to realize the input or output of electric energy of the battery cell 20 .
  • the positive electrode terminal and the negative electrode terminal may be directly connected to the electrode assembly 22 , for example, by welding or abutting, etc.
  • the positive electrode terminal and the negative electrode terminal may also be indirectly connected to the electrode assembly 22 , for example, the positive electrode terminal and the negative electrode
  • the electrode terminal is in contact with or welded to the electrode assembly 22 through the current collecting member.
  • the housing 21 is not limited to the above structure, and the housing 21 can also be of other structures.
  • the housing 21 includes a housing 211 and two end caps 212.
  • the housing 211 is a hollow structure with openings 2111 on opposite sides.
  • an end cap 212 correspondingly covers an opening 2111 of the housing 211 and forms a sealed connection to form a sealed space for accommodating the electrode assembly 22 and the electrolyte.
  • the battery cell 20 may also include a pressure relief mechanism, and the pressure relief mechanism may be installed on the end cover 212 or the housing 211 .
  • the pressure relief mechanism is used to release the pressure inside the battery cell 20 when the internal pressure or temperature of the battery cell 20 reaches a predetermined value.
  • the pressure relief mechanism may be a component such as an explosion-proof valve, explosion-proof disk, air valve, pressure relief valve or safety valve.
  • the electrode assembly 22 is a component that causes an electrochemical reaction in the battery cell 20 .
  • the electrode assembly 22 may be a rolled structure formed by winding two pole pieces with opposite polarities, or may be a laminated structure formed by stacking two pole pieces with opposite polarities.
  • the electrode assembly 22 is a rolled structure formed by winding two pole pieces with opposite polarities, and the electrode assembly 22 is a cylindrical structure.
  • Figure 3 is a schematic structural diagram of the electrode assembly 22 provided in some embodiments of the present application
  • Figure 5 is a schematic diagram of the electrode assembly 22 provided in some embodiments of the present application.
  • the present application provides an electrode assembly 22.
  • the electrode assembly 22 includes a first pole piece 221 and a second pole piece 222 with opposite polarities.
  • the first pole piece 221 and the second pole piece 222 are wound along the winding direction X to form an electrode.
  • the first pole piece 221 has a first winding end 2211.
  • a first recessed area 223 is provided on one side of the first pole piece 221 and/or on one side of the second pole piece 222.
  • the projection of the first winding end end 2211 is located in the first recess. Within zone 223.
  • the winding direction X is one direction, that is, the winding direction X is the direction in which the first pole piece 221 and the second pole piece 222 are continuously wound from the inside to the outside.
  • the first pole piece 221 and the second pole piece 222 may be respectively a negative pole piece and a positive pole piece, or may be respectively a positive pole piece and a negative pole piece.
  • the first pole piece 221 is a negative pole piece
  • the second pole piece 222 is a positive pole piece
  • the outermost ring of the electrode assembly 22 is the first pole piece 221 (negative pole piece).
  • the first pole piece 221 can also be a positive pole piece
  • the second pole piece 222 can be a negative pole piece
  • the outermost ring of the electrode assembly 22 is the second pole.
  • Piece 222 negative pole piece
  • the first winding ending end 2211 is the cutting position where the first pole piece 221 ends winding.
  • a first recessed area 223 is provided on one side of the first pole piece 221 and/or on one side of the second pole piece 222. That is, the first recessed area 223 may be provided on the first pole piece 221, or the second pole may be provided with the first recessed area 223.
  • the piece 222 is provided with a first recessed area 223, or both the first pole piece 221 and the second pole piece 222 are provided with the first recessed area 223.
  • a third pole piece 221 is provided on the side of the first pole piece 221 adjacent to the first winding end end 2211 facing the first winding end.
  • the first recessed area 223 can also be provided on the side of the second pole piece 222 corresponding to the first winding ending end 2211 along the radial direction of the electrode assembly 22.
  • a plurality of first recessed areas 223 arranged along the radial direction of the electrode assembly 22 may also be provided on both the first pole piece 221 and the second pole piece 222 .
  • the first pole piece 221 is a positive pole piece
  • the second pole piece 222 located outside the first winding end end 2211 is on the side away from the first winding end end 2211.
  • a first recessed area 223 is provided.
  • the first recessed area 223 can also be provided on the side of the first pole piece 221 corresponding to the first winding end end 2211 along the radial direction of the electrode assembly 22, Similarly, a plurality of first recessed areas 223 arranged along the radial direction of the electrode assembly 22 may also be provided on both the first pole piece 221 and the second pole piece 222 .
  • the projection of the first winding ending end 2211 is located in the first recessed area 223 , that is, in the direction from the center of the electrode assembly 22 to the edge of the electrode assembly 22 or from the edge of the electrode assembly 22 to the electrode assembly.
  • the first winding end 2211 is arranged corresponding to the first recessed area 223 . That is to say, in the radial direction of the electrode assembly 22 , the first recessed area 223 covers the first winding end 2211 .
  • first recessed area 223 corresponding to the first winding end end 2211 on one side of the first pole piece 221 and/or the second pole piece 222, and the first winding end end 2211 is on the electrode assembly 22
  • the projection in the radial direction falls into the first recessed area 223, so that when the electrode assembly 22 expands during use, the first recessed area 223 can provide the first winding of the first pole piece 221 in the radial direction of the electrode assembly 22.
  • the tail end 2211 provides enough expansion space to alleviate the phenomenon that the first winding tail end 2211 squeezes the first pole piece 221 or the second pole piece 222 in the immediate vicinity of the electrode assembly 22, thereby releasing the first winding tail end.
  • the 2211 causes shear stress to the adjacent first pole piece 221 or second pole piece 222 to reduce the shear stress concentration at the first winding end 2211, thereby reducing the shear stress of the first pole piece 221 or the second pole piece 222 of the electrode assembly 22.
  • the risk of local deformation or cracking of the second pole piece 222 due to being squeezed by the first winding ending end 2211 is beneficial to improving the use safety of the battery cell 20 having such an electrode assembly 22 .
  • the width of the first recessed area 223 is D 1 , which satisfies D 1 ⁇ 10 mm.
  • D 1 ⁇ 10 mm that is, the size of the first recessed area 223 in the winding direction X is greater than or equal to 10 mm.
  • the size D 1 of the first recessed area 223 in the winding direction X may be 10 mm, 12 mm, 15 mm, 18 mm or 20 mm, etc.
  • the electrode assembly 22 with this structure can still ensure that the first winding end end 2211 is within the diameter of the electrode assembly 22 when the first winding end end 2211 moves along the winding direction X.
  • the upward projection is located in the first recessed area 223, so that the first recessed area 223 can stably provide expansion space for the first winding end end 2211.
  • the outermost ring of the electrode assembly 22 is the first pole piece 221 , and the second pole piece 222 has a second winding ending end 2221 .
  • the first pole piece 221 includes a first section 2212 and a second section 2213 that are connected to each other.
  • the connection position of the first section 2212 and the second section 2213 is located inside the second winding ending end 2221.
  • the first section 2212 is along the winding direction.
  • the first pole piece 221 is a negative pole piece
  • the second pole piece 222 is a positive pole piece.
  • the first pole piece 221 (negative pole piece) of the outermost ring of the component 22 covers the second winding end 2221 of the second pole piece 222 (positive pole piece).
  • the second winding end 2221 is the second pole. The cutting position of the winding end of sheet 222.
  • the first section 2212 of the first pole piece 221 is a portion extending from the connection position of the first section 2212 and the second section 2213 to the first winding ending end 2211 along the winding direction X.
  • the second section of the first pole piece 221 2213 is the portion extending from the connection position of the first section 2212 and the second section 2213 to the center position of the electrode assembly 22 in the reverse direction of the winding direction
  • the radial direction of 22 is adjacent to the second winding end end 2221 and is located inside the second winding end end 2221.
  • a first recessed area 223 is provided on the side of the first section 2212 facing the first winding end 2211, that is, in the radial direction of the electrode assembly 22, adjacent to the first winding end 2211.
  • a first recessed area 223 is provided on the side of the first pole piece 221 facing the first winding end end 2211.
  • a first recessed area 223 is provided on the section 2212 along the radial direction of the electrode assembly 22 on the side facing the first winding ending end 2211, so that the first winding ending end 2211 can directly enter the first winding ending end 2211 when the electrode assembly 22 expands.
  • the first recessed area 223 of the section 2212 in order to achieve a better avoidance effect, it can better alleviate the phenomenon that the first winding end end 2211 squeezes the adjacent first pole piece 221.
  • FIG. 6 is a schematic structural diagram of an electrode assembly 22 provided in still further embodiments of the present application.
  • the first pole piece 221 and the second pole piece 222 are each provided with a plurality of first recessed areas 223.
  • the plurality of first recessed areas 223 of the first pole piece 221 and the plurality of first recessed areas 223 of the second pole piece 222 are both provided with a plurality of first recessed areas 223. arranged along the radial direction of the electrode assembly 22 .
  • first pole piece 221 and the second pole piece 222 are each provided with a plurality of first recessed areas 223. That is to say, the first pole piece 221 is provided with a plurality of first recessed areas 223 arranged along the radial direction of the electrode assembly 22. The second pole piece 222 is also provided with a plurality of first recessed areas 223 arranged along the radial direction of the electrode assembly 22 .
  • the plurality of first recessed areas 223 are all arranged along the radial direction of the electrode assembly 22 , so that the plurality of first recessed regions 223 of the first pole piece 221 and the plurality of first recessed regions 223 of the second pole piece 222 can be arranged in the radial direction of the electrode assembly 22 .
  • the shear stress caused by the first winding end 2211 on the adjacent first pole piece 221 can be better released, so as to This alleviates the phenomenon that the first winding end 2211 squeezes the adjacent first pole piece 221, thereby further reducing the risk of local deformation or cracking of the first pole piece 221 due to being squeezed by the first winding end 2211. .
  • FIG. 6 is a negative pole piece
  • the second pole piece 222 is a positive pole piece.
  • the second pole piece 222 is provided with a first recessed area 223.
  • the first recessed area 223 of the second pole piece 222 is located between the first recessed area 223 of the second pole piece 222 and the first pole piece 221. Facing the disposed side, the first recessed area 223 of the second pole piece 222 covers the first recessed area 223 of the first pole piece 221 facing the disposed side.
  • the first recessed area 223 of the second pole piece 222 is located on the side where the second pole piece 222 and the first recessed area 223 of the first pole piece 221 face each other, that is, on the side of the electrode assembly 22
  • the first recessed area 223 is provided on the side facing the first recessed area 223 of the second pole piece 222 and the first pole piece 221. That is to say, the first recessed area 223 is provided on the second pole piece 222.
  • the recessed area 223 and the first recessed area 223 provided on the first pole piece 221 are arranged along the radial direction of the electrode assembly 22 .
  • the first recessed area 223 of the second pole piece 222 covers the first recessed area 223 of the facing first pole piece 221 , that is to say, among the two first recessed areas 223 facing each other, the first recessed area 223 of the second pole piece 222 is
  • the area of the first recessed area 223 on 222 is larger than the area of the first recessed area 223 provided on the first pole piece 221, that is, the area of the first recessed area 223 provided on the positive electrode piece is larger than the area of the first recessed area 223 provided on the negative electrode piece.
  • the first recessed area 223 is provided on the side where the first recessed area 223 of the second pole piece 222 and the first pole piece 221 are facing, and the first recessed area 223 of the second pole piece 222 covers the first recessed area 223 of the second pole piece 221 which faces the first pole.
  • the first recessed area 223 of the sheet 221 adopts this structure to provide sufficient expansion space for the first winding end 2211 while effectively mitigating the risk of lithium precipitation in the electrode assembly 22, thereby reducing the risk of lithium deposition in the electrode assembly 22 during use. safety hazards.
  • the size of the first recessed area 223 provided on the second pole piece 222 in the winding direction X is larger than that provided on the first pole piece 222 .
  • the size of the first recessed area 223 on the piece 221 in the winding direction X is such that the two end walls of the first recessed area 223 provided on the first pole piece 221 in the winding direction
  • the two end walls of the first recessed area 223 on the pole piece 222 in the winding direction X are staggered from each other.
  • the electrode assembly 22 with this structure can, on the one hand, further reduce the risk of lithium precipitation during use of the electrode assembly 22 to improve the safety of use of the electrode assembly 22. On the other hand, it can alleviate the risk of lithium precipitation in the first recessed area of the first pole piece 221. 223 and the first recessed area 223 of the second pole piece 222 overlap each other to form a new truncation area, resulting in the phenomenon of local shear stress concentration.
  • FIG. 8 is a schematic structural diagram of an electrode assembly 22 provided by other embodiments of the present application.
  • the second pole piece 222 has a second winding ending end 2221.
  • a second recessed area 224 is provided on one side of the first pole piece 221 and/or on one side of the second pole piece 222.
  • the projection of the two winding ending ends 2221 is located in the second recessed area 224.
  • the first pole piece 221 and the second pole piece 222 may be respectively a negative pole piece and a positive pole piece, or may be respectively a positive pole piece and a negative pole piece.
  • the first pole piece 221 is a negative pole piece
  • the second pole piece 222 is a positive pole piece
  • the outermost ring of the electrode assembly 22 is the first pole piece 221 (negative pole piece).
  • the electrode assembly 22 can also have other structures, for example, the first pole piece 221 is a positive pole piece, and the second pole piece 222 is a negative pole piece.
  • the second winding ending end 2221 is the cutting position where the second pole piece 222 ends winding.
  • a second recessed area 224 is provided on one side of the first pole piece 221 and/or on one side of the second pole piece 222. That is, the second recessed area 224 may be provided on the first pole piece 221, or the second pole may be provided with the second recessed area 224.
  • the piece 222 is provided with a second recessed area 224, or both the first pole piece 221 and the second pole piece 222 are provided with a second recessed area 224.
  • a third pole piece 221 is provided on the side of the first pole piece 221 adjacent to the second winding end end 2221 away from the second winding end.
  • the second recessed area 224 of course, in other embodiments, the first recessed area 223 can also be provided on the side of the second pole piece 222 corresponding to the first winding end end 2211 along the radial direction of the electrode assembly 22. Similarly, A plurality of first recessed areas 223 arranged along the radial direction of the electrode assembly 22 may also be provided on both the first pole piece 221 and the second pole piece 222 .
  • the projection of the second winding ending end 2221 is located in the second recessed area 224 , that is, in the direction from the center of the electrode assembly 22 to the edge of the electrode assembly 22 or from the edge of the electrode assembly 22 to the electrode assembly.
  • the second winding end 2221 is arranged correspondingly to the second recessed area 224 . That is to say, in the radial direction of the electrode assembly 22 , the second recessed area 224 covers the second winding end 2221 .
  • the second recessed area 224 By providing a second recessed area 224 corresponding to the second winding end end 2221 on one side of the first pole piece 221 and/or the second pole piece 222, and the second winding end end 2221 is on the electrode assembly 22
  • the projection in the radial direction falls into the second recessed area 224, so that when the electrode assembly 22 expands during use, the second recessed area 224 can provide the second winding of the second pole piece 222 in the radial direction of the electrode assembly 22.
  • the tail end 2221 provides enough expansion space to alleviate the phenomenon that the second winding tail end 2221 squeezes the first pole piece 221 or the second pole piece 222 in the immediate vicinity of the electrode assembly 22, thereby releasing the second winding tail end.
  • the width of the second recessed area 224 is D 2 , which satisfies D 2 ⁇ 10 mm.
  • D 2 ⁇ 10 mm that is, the size of the second recessed area 224 in the winding direction X is greater than or equal to 10 mm.
  • the dimension D 2 of the second recessed area 224 in the winding direction X may be 10 mm, 12 mm, 15 mm, 18 mm or 20 mm, etc.
  • the electrode assembly 22 with this structure can still ensure that the second winding end 2221 is within the diameter of the electrode assembly 22 when the second winding end 2221 moves along the winding direction X.
  • the upward projection is located in the second recessed area 224, so that the second recessed area 224 can stably provide an expansion space for the second winding end end 2221.
  • the first pole piece 221 is a negative pole piece
  • the second pole piece 222 is a positive pole piece.
  • the outermost ring of the electrode assembly 22 is the first pole piece 221.
  • the first pole piece 221 includes a first section 2212 and a second section 2213 that are connected to each other.
  • the connection position of the first section 2212 and the second section 2213 is located inside the second winding ending end 2221.
  • the first section 2212 is along the winding direction.
  • X extends from the connection position of the first section 2212 and the second section 2213 to the first winding end end 2211.
  • a second recessed area 224 is provided on the side of the first section 2212 away from the second winding ending end 2221 .
  • the first section 2212 of the first pole piece 221 is a portion extending from the connection position of the first section 2212 and the second section 2213 to the first winding ending end 2211 along the winding direction X.
  • the second section of the first pole piece 221 2213 is the portion extending from the connection position of the first section 2212 and the second section 2213 to the center position of the electrode assembly 22 in the reverse direction of the winding direction
  • the radial direction of 22 is adjacent to the second winding end end 2221 and is located inside the second winding end end 2221.
  • a second recessed area 224 is provided on the side of the first section 2212 away from the second winding end end 2221, that is, in the radial direction of the electrode assembly 22, adjacent to the second winding end end 2221.
  • the first pole piece 221 located outside the second winding end end 2221 is provided with a second recessed area 224 on a side away from the second winding end end 2221.
  • first winding end end 2211 exceeds the second winding end end 2221 in the winding direction 2212 and the second section 2213 are connected by setting a second recessed area 224 on the side of the first section 2212 of the first pole piece 221 away from the second winding ending end 2221.
  • This structure makes the connection with the second winding
  • the first pole piece 221 adjacent to the ending end 2221 is provided with a second recessed area 224 for providing expansion space for the second winding ending end 2221, and has a better effect on the second winding ending end 2221.
  • the avoidance effect can also reduce the risk of lithium precipitation during use of the electrode assembly 22 .
  • FIG. 9 is a schematic structural diagram of an electrode assembly 22 provided by still further embodiments of the present application.
  • the first pole piece 221 and the second pole piece 222 are each provided with a plurality of second recessed areas 224.
  • the plurality of second recessed areas 224 of the first pole piece 221 and the plurality of second recessed areas 224 of the second pole piece 222 are both provided with a plurality of second recessed areas 224. arranged along the radial direction of the electrode assembly 22 .
  • both the first pole piece 221 and the second pole piece 222 are provided with a plurality of second recessed areas 224 , that is to say, the first pole piece 221 is provided with a plurality of second recessed areas 224 arranged along the radial direction of the electrode assembly 22 .
  • the second pole piece 222 is also provided with a plurality of second recessed areas 224 arranged along the radial direction of the electrode assembly 22 .
  • the plurality of second recessed areas 224 are arranged along the radial direction of the electrode assembly 22 , so that the plurality of second recessed regions 224 of the first pole piece 221 and the plurality of second recessed regions 224 of the second pole piece 222 can be arranged in the radial direction of the electrode assembly 22 .
  • FIG. 9 is a partial enlarged view of B of the electrode assembly 22 shown in FIG. 9 .
  • the second pole piece 222 is provided with a second recessed area 224.
  • the second recessed area 224 of the second pole piece 222 is located between the second recessed area 224 of the second pole piece 222 and the first pole piece 221. Facing the disposed side, the second recessed area 224 of the second pole piece 222 covers the second recessed area 224 of the first pole piece 221 facing the disposed side.
  • the second recessed area 224 of the second pole piece 222 is located on the side where the second recessed area 224 of the second pole piece 222 and the first pole piece 221 face each other, that is, on the side of the electrode assembly 22
  • a second recessed area 224 is provided on the side where the second recessed area 224 of the second pole piece 222 and the first pole piece 221 faces. That is to say, the second recessed area 224 is provided on the second pole piece 222.
  • the recessed area 224 and the second recessed area 224 provided on the first pole piece 221 are arranged along the radial direction of the electrode assembly 22 .
  • the second recessed area 224 of the second pole piece 222 covers the second recessed area 224 of the facing first pole piece 221 , that is to say, among the two second recessed areas 224 facing each other, the second recessed area 224 of the second pole piece 222 is
  • the area of the second recessed area 224 on 222 is larger than the area of the second recessed area 224 provided on the first pole piece 221, that is, the area of the second recessed area 224 provided on the positive electrode piece is larger than the area of the second recessed area 224 provided on the negative electrode piece.
  • the area of the second recessed area 224 is provided.
  • the second recessed area 224 is provided on the side where the second recessed area 224 of the second pole piece 222 and the first pole piece 221 are facing, and the second recessed area 224 of the second pole piece 222 covers the side of the first pole that is facing.
  • the second recessed area 224 of the sheet 221 adopts this structure to provide sufficient expansion space for the second winding end 2221 while effectively mitigating the risk of lithium precipitation in the electrode assembly 22, thereby reducing the risk of lithium deposition in the electrode assembly 22 during use. safety hazards.
  • the size of the second recessed area 224 provided on the second pole piece 222 in the winding direction X is larger than that provided on the first pole.
  • the size of the second recessed area 224 on the piece 221 in the winding direction X is such that the two end walls of the second recessed area 224 provided on the first pole piece 221 in the winding direction
  • the two end walls of the second recessed area 224 on the pole piece 222 in the winding direction X are offset from each other.
  • the electrode assembly 22 with this structure can, on the one hand, further reduce the risk of lithium precipitation during use of the electrode assembly 22 to improve the safety of use of the electrode assembly 22. On the other hand, it can alleviate the risk of lithium precipitation in the second recessed area of the first pole piece 221. 224 and the second recessed area 224 of the second pole piece 222 overlap each other to form a new truncation area, resulting in local shear stress concentration.
  • Figure 11 is a partial cross-sectional view of the first pole piece 221 provided in some further embodiments of the present application
  • Figure 12 is a first pole piece 221 provided in some further embodiments of the present application. Partial cross-sectional view of the pole piece 221 in other embodiments.
  • Figure 13 is a partial cross-sectional view of the second pole piece 222 provided in still further embodiments of the present application.
  • Figure 14 is a partial cross-sectional view of the second pole piece 222 provided in still further embodiments of the present application. Partial cross-section in other embodiments.
  • the first pole piece 221 includes a first current collector 2214 and a first active material layer 2215 coated on at least one side of the first current collector 2214 along the radial direction of the electrode assembly 22 .
  • the second pole piece 222 includes a second current collector 2222 and a second active material layer 2223 coated on at least one side of the second current collector 2222 along the radial direction of the electrode assembly 22 .
  • the first recessed area 223 of the first pole piece 221 includes a groove provided on the first active material layer 2215 (as shown in FIG. 12 ) or one side of the first current collector 2214 is not coated with the first active material layer. 2215 area (shown in Figure 11).
  • the first recessed area 223 of the second pole piece 222 includes a groove provided on the second active material layer 2223 (as shown in FIG. 14 ) or one side of the second current collector 2222 that is not coated with the second active material layer 2223 area (as shown in Figure 13).
  • the first pole piece 221 is a negative pole piece
  • the second pole piece 222 is a positive pole piece.
  • the first active material layer 2215 is a negative active material coated on the first current collector 2214 for electrochemical reaction.
  • the material of the first active material layer 2215 can be carbon or silicon, etc.
  • the first current collector 2214 is The material can be copper, etc.
  • the second active material layer 2223 is a positive active material coated on the second current collector 2222 for electrochemical reaction.
  • the material of the second active material layer 2223 can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or manganese. Lithium oxide, etc., and the material of the second current collector 2222 can be aluminum, etc.
  • the first recessed area 223 of the first pole piece 221 is an area on one side of the first current collector 2214 that is not coated with the first active material layer 2215 , that is, the first recessed area 223 of the first pole piece 221 is A blank area on the first current collector 2214, which area is not coated with the first active material layer 2215.
  • the first recessed area 223 of the first pole piece 221 is a groove provided on the first active material layer 2215 , that is, the first recessed area 223 of the first pole piece 221 is provided on the first active material layer.
  • the thickness of the first active material layer 2215 located in the weak area is smaller than the thickness of the first active material layer 2215 in other areas.
  • the thickness of the first active material layer 2215 located in the weak area is no greater than 60% of the thickness of the first active material layer 2215 in other areas.
  • the first recessed area 223 of the second pole piece 222 is an area on one side of the second current collector 2222 that is not coated with the second active material layer 2223 , that is, the first recessed area 223 of the second pole piece 222 is The blank area on the second current collector 2222 is not coated with the second active material layer 2223 .
  • the first recessed area 223 of the second pole piece 222 is a groove provided on the second active material layer 2223 , that is, the first recessed area 223 of the second pole piece 222 is provided on the second active material layer.
  • the thickness of the second active material layer 2223 located in the weak area is smaller than the thickness of the second active material layer 2223 in other areas.
  • the thickness of the second active material layer 2223 located in the weak area is no greater than 60% of the thickness of the second active material layer 2223 in other areas.
  • both sides of the first current collector 2214 of the first pole piece 221 are coated with the first active material layer 2215 .
  • the first current collector 2214 can be coated with the first active material layer 2215 .
  • One side of 2214 is coated with a first active material layer 2215.
  • both sides of the second current collector 2222 of the second pole piece 222 are coated with the second active material layer 2223 .
  • the second current collector 2222 can also be coated with the second active material layer 2223 on both sides.
  • One side of 2222 is coated with a second active material layer 2223.
  • the second recessed area 224 of the first pole piece 221 may also include a groove provided on the first active material layer 2215 or a side of the first current collector 2214 that is not coated with the first active material layer 2215. area.
  • the second recessed area 224 of the second pole piece 222 may also include a groove provided on the second active material layer 2223 or an area on one side of the second current collector 2222 that is not coated with the second active material layer 2223 .
  • the first recessed area 223 provided on the first pole piece 221 may be a groove provided on the first active material layer 2215, or may be a side of the first current collector 2214 that is not coated with the first active material layer 2215. area, when the first recessed area 223 provided on the first pole piece 221 is a groove provided on the first active material layer 2215, the first recessed area 223 of the first pole piece 221 can finish the first winding.
  • the end 2211 provides expansion space while also ensuring the energy density of the electrode assembly 22.
  • the first recessed area 223 provided on the first pole piece 221 is the side of the first current collector 2214 that is not coated with the first active material layer 2215
  • the first recessed area 223 of the first pole piece 221 can provide more expansion space for the first winding end end 2211 and facilitate manufacturing.
  • the first recessed area 223 provided on the second pole piece 222 may be a groove provided on the second active material layer 2223, or may be one side of the second current collector 2222 that is not coated with the second active material.
  • the area of layer 2223 when the first recessed area 223 provided on the second pole piece 222 is a groove provided on the second active material layer 2223, the first recessed area 223 of the second pole piece 222 can be the first recessed area 2223.
  • the winding end 2211 provides expansion space while also ensuring the energy density of the electrode assembly 22.
  • the first recessed area 223 provided on the second pole piece 222 is the side of the second current collector 2222 that is not coated with the second active
  • the area of the material layer 2223 enables the first recessed area 223 of the second pole piece 222 to provide more expansion space for the first winding end end 2211 and facilitates manufacturing.
  • the first pole piece 221 is a negative pole piece
  • the second pole piece 222 is a positive pole piece.
  • the first active material layer 2215 and the second active material layer 2223 are disposed facing each other, and the first active material layer 2215 covers the second active material layer 2223 .
  • the first active material layer 2215 covers the second active material layer 2223, that is, the area of the first active material layer 2215 of the first pole piece 221 is larger than the area of the second active material layer 2223 of the second pole piece 222.
  • the electrode assembly adopting this structure 22 can effectively reduce the risk of lithium precipitation during use of the electrode assembly 22 .
  • the electrode assembly 22 further includes an isolation film 225 .
  • the isolation film 225 is disposed between the first pole piece 221 and the second pole piece 222 to separate the first pole piece 221 and the second pole piece 222 .
  • Second pole piece 222 Second pole piece 222.
  • the isolation film 225 plays a role in insulating the first pole piece 221 and the second pole piece 222.
  • the isolation film 225 can be made of various materials.
  • the material of the isolation film 225 may be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), or the like.
  • the electrode assembly 22 is also provided with an isolation film 225 between the first pole piece 221 and the second pole piece 222, so that the separation between the first pole piece 221 and the second pole piece 222 can be effectively realized to reduce the impact of the first pole piece.
  • the piece 221 and the second pole piece 222 are short-circuited, which is beneficial to reducing the potential safety risks of the electrode assembly 22 during use.
  • embodiments of the present application also provide a battery cell 20, including a casing 21 and an electrode assembly 22 of any of the above solutions.
  • the electrode assembly 22 is accommodated in the casing 21.
  • embodiments of the present application also provide a battery 100.
  • the battery 100 includes a case 10 and a battery cell 20 of any of the above solutions.
  • the battery cell 20 is accommodated in the case 10.
  • the embodiments of the present application also provide an electrical device.
  • the electrical device includes the battery cell 20 of any of the above solutions, and the battery cell 20 is used to provide electrical energy to the electrical device; or , the electric device includes the battery 100 of any of the above solutions, and the battery 100 is used to provide electric energy to the electric device.
  • the power-consuming device may be any of the aforementioned devices or systems using the battery cell 20 or the battery 100 .
  • the present application provides an electrode assembly 22 .
  • the electrode assembly 22 includes a first pole piece 221 , a second pole piece 222 and an isolation film 225 .
  • the first pole piece 221 is a negative pole piece
  • the second pole piece 222 is a positive pole piece.
  • the isolation film 225 is disposed between the first pole piece 221 and the second pole piece 222 to separate the first pole piece 221 and the second pole piece.
  • Piece 222 is disposed between the first pole piece 221 and the second pole piece 222 to separate the first pole piece 221 and the second pole piece.
  • the first pole piece 221 and the second pole piece 222 are wound along the winding direction , the second pole piece 222 has a second winding end end 2221, and along the winding direction X, the first winding end end 2211 exceeds the second winding end end 2221.
  • the first pole piece 221 includes a first section 2212 and a second section 2213 that are connected to each other.
  • the connection position of the first section 2212 and the second section 2213 is located inside the second winding ending end 2221.
  • the first section 2212 is along the winding direction.
  • X extends from the connection position of the first section 2212 and the second section 2213 to the first winding end end 2211.
  • a first recessed area 223 is provided on the side of the first section 2212 facing the first winding end 2211 , and the projection of the first winding end 2211 is located in the first recessed area 223 .
  • a second recessed area 224 is provided on the side of the first section 2212 away from the second winding end 2221 , and the projection of the second winding end 2221 is located in the second recessed area 224 .
  • the first pole piece 221 and the second pole piece 222 are each provided with a plurality of first recessed areas 223.
  • the plurality of first recessed areas 223 of the first pole piece 221 and the plurality of first recessed areas 223 of the second pole piece 222 are both provided with a plurality of first recessed areas 223.
  • the first recessed area 223 of the second pole piece 222 is located facing the first recessed area 223 of the second pole piece 222 and the first pole piece 221 .
  • the first recessed area 223 of the second pole piece 222 covers the first recessed area 223 of the first pole piece 221 disposed facing.
  • the first pole piece 221 and the second pole piece 222 are each provided with a plurality of second recessed areas 224.
  • the plurality of second recessed areas 224 of the first pole piece 221 and the plurality of second recessed areas 224 of the second pole piece 222 are both provided with a plurality of second recessed areas 224.
  • the second recessed area 224 of the second pole piece 222 is located facing the second recessed area 224 of the second pole piece 222 and the first pole piece 221 .
  • the second recessed area 224 of the second pole piece 222 covers the second recessed area 224 of the first pole piece 221 disposed facing. Among them , along the winding direction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了一种电极组件、电池单体、电池及用电装置,属于电池技术领域。其中,电极组件包括极性相反的第一极片和第二极片,第一极片和第二极片沿卷绕方向卷绕形成电极组件,第一极片具有第一卷绕收尾端。第一极片的一侧和/或第二极片的一侧设置有第一凹陷区,沿电极组件的径向,第一卷绕收尾端的投影位于第一凹陷区内。通过第一凹陷区能够在电极组件的径向上为第一极片的第一卷绕收尾端提供膨胀空间,从而能够缓解第一卷绕收尾端挤压电极组件的紧邻部位的极片的现象,以减少第一卷绕收尾端出现剪应力集中的现象,进而能够降低电极组件的第一极片或第二极片因受到第一卷绕收尾端的挤压而出现变形或开裂的风险,以提升电极组件的使用安全性。

Description

电极组件、电池单体、电池及用电装置 技术领域
本申请涉及电池技术领域,具体而言,涉及一种电极组件、电池单体、电池及用电装置。
背景技术
近些年,新能源汽车有了飞跃式的发展,在电动汽车领域,动力电池作为电动汽车的动力源,起着不可替代的重要作用。随着新能源汽车的大力推广,对动力电池产品的需求也日益增长,电池作为新能源汽车核心零部件在使用安全性方面有着较高的要求。
电池的电池单体是由正极极片、负极极片和隔离膜通过卷绕或者叠片等方式组装成电极组件(裸电芯),之后装入外壳,再注入电解液后得到的。其中,卷绕式结构的电极组件具有便于装配,制造难度低,且生产效率高等优点,由此,卷绕式结构的电极组件得到了广泛应用。
对于一些相关技术中提及的卷绕式结构的电极组件,研究人员发现,在充放电使用过程后,由于某些不明原因,电极组件中的极片会发生开裂现象,极片开裂会导致电池单体内阻增大等一系列问题,进而导致电池单体在使用过程中存在较大的安全隐患。因此,亟需明确导致极片开裂的原因并制定改进方案,来缓解电极组件中的极片的开裂,以提升电池单体的使用安全性。
发明内容
本申请实施例提供一种电极组件、电池单体、电池及用电装置,能够有效提升电池单体的使用安全性。
第一方面,本申请实施例提供一种电极组件,包括极性相反的第一极片和第二极片,所述第一极片和所述第二极片沿卷绕方向卷绕形成所述电极组件,所述第一极片具有第一卷绕收尾端;其中,所述第一极片的一侧和/或所述第二极片的一侧设置有第一凹陷区,沿所述电极组件的径向,所述第一卷绕收尾端的投影位于所述第一凹陷区内。
在上述技术方案中,通过在第一极片和/或第二极片的一侧上设置与第一卷绕收尾端对应布置的第一凹陷区,且第一卷绕收尾端在电极组件的径向上的投影落入第一凹陷区内,使得在电极组件的使用过程中发生膨胀时,第一凹陷区能够在电极组件的径向上为第一极片的第一卷绕收尾端提供足够的膨胀空间,以缓解第一卷绕收尾端挤压电极组件的紧邻部位的第一极片或第二极片的现象,从而能够释放第一卷绕收尾端对相邻的第一极片或第二极片造成的剪应力,以减少第一卷绕收尾端出现剪应力集中的现象,进而能够降低电极组件的第一极片或第二极片因受到第一卷绕收尾端的挤压而出现局部变形或开裂的风险,有利于提升具有这种电极组件的电池单体的使用安全性。
在一些实施例中,沿所述卷绕方向,所述第一凹陷区的宽度为D 1,满足,D 1≥10mm。
在上述技术方案中,通过将第一凹陷区在卷绕方向上的宽度设置为不小于10mm,由于第一卷绕收尾端在使用过程中因电极组件的膨胀会沿卷绕方向出现窜动现象,且窜动在10mm以内,从而采用这种结构的电极组件使得在第一卷绕收尾端沿卷绕方向出现窜动时仍能够保证第一卷绕收尾端在电极组件的径向上的投影位于第一凹陷区内,以使第一凹陷区能够稳定地为第一卷绕收尾端提供膨胀空间。
在一些实施例中,所述电极组件的最外圈为所述第一极片,所述第二极片具有第二卷绕收尾端,沿所述卷绕方向,所述第一卷绕收尾端超出所述第二卷绕收尾端;所述第一极片包括相互连接的第一段和第二段,所述第一段与所述第二段的连接位置位于所述第二卷绕收尾端的内侧,所述第一段沿所述卷绕方向从所述第一段与所述第二段的连接位置延伸至所述第一卷绕收尾端,沿所述电极组件的径向,所述第一段面向所述第一卷绕收尾端的一侧设置有所述第一凹陷区。
在上述技术方案中,由于第一卷绕收尾端在卷绕方向上超出第二卷绕收尾端,使得与第一卷绕收尾端紧邻的部位为第一极片的第一段,通过在第一段沿电极组件的径向上面向第一卷绕收尾端的一侧上设置第一凹陷区,从而使得在电极组件出现膨胀时第一卷绕收尾端能够直接进入到第一段的第一凹陷区内,以起到较好的避让效果,进而能够较好地缓解第一卷绕收尾端挤压相邻的第一极片的现象。
在一些实施例中,所述第一极片和所述第二极片均设置有多个所述第一凹陷区,所述第一极片的多个所述第一凹陷区和所述第二极片的多个所述第一凹陷区均沿所述电极组件的径向排布。
在上述技术方案中,通过在第一极片和第二极片上均设置多个第一凹陷区,且第一极片的多个第一凹陷区和第二极片的多个第一凹陷区均沿电极组件的径向排布,从而使得第一极片的多个第一凹陷区和第二极片的多个第一凹陷区能够在电极组件的径向上为第一卷绕收尾端提供更多的膨胀空间,使得在电极组件出现膨胀时能够更好地释放第一卷绕收尾端对相邻的第一极片造成的剪应力,以缓解第一卷绕收尾端挤压相邻的第一极片的现象,进而能够进一步降低第一极片因受到第一卷绕收尾端的挤压而出现局部变形或开裂的风险。
在一些实施例中,所述第一极片为负极极片,所述第二极片为正极极片;所述第二极片设置有所述第一 凹陷区,沿所述电极组件的径向,所述第二极片的所述第一凹陷区位于所述第二极片与所述第一极片的所述第一凹陷区面向设置的一侧,所述第二极片的所述第一凹陷区覆盖面向设置的所述第一极片的所述第一凹陷区。
在上述技术方案中,通过在第二极片与第一极片的第一凹陷区面向设置的一侧设置第一凹陷区,且第二极片的第一凹陷区覆盖面向设置的第一极片的第一凹陷区,也就是说,沿电极组件的径向,与第一极片的第一凹陷区相邻的第二极片也对应设置有第一凹陷区,且在面向设置的两个第一凹陷区中,设置于第二极片上的第一凹陷区的面积大于设置于第一极片上的第一凹陷区的面积,即设置于正极极片上的第一凹陷区的面积大于设置于负极极片上的第一凹陷区的面积,采用这种结构在为第一卷绕收尾端提供足够的膨胀空间的同时能够有效缓解电极组件出现析锂的风险,以降低电极组件在使用过程中的安全隐患。
在一些实施例中,沿所述卷绕方向,所述第二极片的所述第一凹陷区的宽度大于面向所述第二极片的所述第一凹陷区设置的所述第一极片的所述第一凹陷区的宽度。
在上述技术方案中,通过将第二极片的第一凹陷区在卷绕方向上的宽度设置为大于与其面向设置的第一极片的第一凹陷区在卷绕方向上的宽度,采用这种结构的电极组件一方面能够进一步降低电极组件在使用过程中出现析锂的风险,以提升电极组件的使用安全性,另一方面能够缓解因第一极片的第一凹陷区和第二极片的第一凹陷区相互重叠后形成新的截断区域而出现局部剪应力集中的现象。
在一些实施例中,所述第二极片具有第二卷绕收尾端,所述第一极片的一侧和/或所述第二极片的一侧设置有第二凹陷区,沿所述电极组件的径向,所述第二卷绕收尾端的投影位于所述第二凹陷区内。
在上述技术方案中,通过在第一极片和/或第二极片的一侧上设置与第二卷绕收尾端对应布置的第二凹陷区,且第二卷绕收尾端在电极组件的径向上的投影落入第二凹陷区内,使得在电极组件的使用过程中发生膨胀时,第二凹陷区能够在电极组件的径向上为第二极片的第二卷绕收尾端提供足够的膨胀空间,以缓解第二卷绕收尾端挤压电极组件的紧邻部位的第一极片或第二极片的现象,从而能够释放第二卷绕收尾端对相邻的第一极片或第二极片造成的剪应力,以减少第二卷绕收尾端出现剪应力集中的现象,进而能够降低电极组件的第一极片或第二极片因受到第二卷绕收尾端的挤压而出现局部变形或开裂的风险,以提升电极组件的使用安全性。
在一些实施例中,沿所述卷绕方向,所述第二凹陷区的宽度为D 2,满足,D 2≥10mm。
在上述技术方案中,通过将第二凹陷区在卷绕方向上的宽度设置为不小于10mm,由于第二卷绕收尾端在使用过程中因电极组件的膨胀会沿卷绕方向出现窜动现象,且窜动在10mm以内,从而采用这种结构的电极组件使得在第二卷绕收尾端沿卷绕方向出现窜动时仍能够保证第二卷绕收尾端在电极组件的径向上的投影位于第二凹陷区内,以使第二凹陷区能够稳定地为第二卷绕收尾端提供膨胀空间。
在一些实施例中,所述第一极片为负极极片,所述第二极片为正极极片;所述电极组件的最外圈为所述第一极片,沿所述卷绕方向,所述第一卷绕收尾端超出所述第二卷绕收尾端;所述第一极片包括相互连接的第一段和第二段,所述第一段与所述第二段的连接位置位于所述第二卷绕收尾端的内侧,所述第一段沿所述卷绕方向从所述第一段与所述第二段的连接位置延伸至所述第一卷绕收尾端;沿所述电极组件的径向,所述第一段背离所述第二卷绕收尾端的一侧设置有所述第二凹陷区。
在上述技术方案中,由于第一卷绕收尾端在卷绕方向上超出第二卷绕收尾端,使得与第二卷绕收尾端紧邻的部位为第一极片的第一段以及第一段与第二段的连接位置,通过在第一极片的第一段背离第二卷绕收尾端的一侧设置第二凹陷区,采用这种结构使得与第二卷绕收尾端相邻的第一极片上便设置有用于为第二卷绕收尾端提供膨胀空间的第二凹陷区,且在实现对第二卷绕收尾端起到较好的避让效果的同时还能够降低电极组件在使用过程中出现析锂的风险。
在一些实施例中,所述第一极片和所述第二极片均设置有多个所述第二凹陷区,所述第一极片的多个所述第二凹陷区和所述第二极片的多个所述第二凹陷区均沿所述电极组件的径向排布。
在上述技术方案中,通过在第一极片和第二极片上均设置多个第二凹陷区,且第一极片的多个第二凹陷区和第二极片的多个第二凹陷区均沿电极组件的径向排布,从而使得第一极片的多个第二凹陷区和第二极片的多个第二凹陷区能够在电极组件的径向上为第二卷绕收尾端提供更多的膨胀空间,使得在电极组件出现膨胀时能够更好地释放第二卷绕收尾端对相邻的第一极片造成的剪应力,以缓解第二卷绕收尾端挤压相邻的第一极片的现象,进而能够进一步降低第一极片因受到第二卷绕收尾端的挤压而出现局部变形或开裂的风险。
在一些实施例中,所述第二极片设置有所述第二凹陷区,沿所述电极组件的径向,所述第二极片的所述第二凹陷区位于所述第二极片与所述第一极片的所述第二凹陷区面向设置的一侧,所述第二极片的所述第二凹陷区覆盖面向设置的所述第一极片的所述第二凹陷区。
在上述技术方案中,通过在第二极片与第一极片的第二凹陷区面向设置的一侧设置第二凹陷区,且第二极片的第二凹陷区覆盖面向设置的第一极片的第二凹陷区,也就是说,沿电极组件的径向,与第一极片的第二凹陷区相邻的第二极片也对应设置有第二凹陷区,且在面向设置的两个第二凹陷区中,设置于第二极片上的第二凹陷区的面积大于设置于第一极片上的第二凹陷区的面积,即设置于正极极片上的第二凹陷区的面积大于设置于负极极片上的第二凹陷区的面积,采用这种结构在为第二卷绕收尾端提供足够的膨胀空间的同时能够有效缓解电极组件出现 析锂的风险,以降低电极组件在使用过程中的安全隐患。
在一些实施例中,沿所述卷绕方向,所述第二极片的所述第二凹陷区的宽度大于面向所述第二极片的所述第二凹陷区设置的所述第一极片的所述第二凹陷区的宽度。
在上述技术方案中,通过将第二极片的第二凹陷区在卷绕方向上的宽度设置为大于与其面向设置的第一极片的第二凹陷区在卷绕方向上的宽度,采用这种结构的电极组件一方面能够进一步降低电极组件在使用过程中出现析锂的风险,以提升电极组件的使用安全性,另一方面能够缓解因第一极片的第二凹陷区和第二极片的第二凹陷区相互重叠后形成新的截断区域而出现局部剪应力集中的现象。
在一些实施例中,所述第一极片包括第一集流体和沿所述电极组件的径向涂覆于所述第一集流体的至少一侧的第一活性物质层;所述第二极片包括第二集流体和沿所述电极组件的径向涂覆于所述第二集流体的至少一侧的第二活性物质层;其中,所述第一极片的所述第一凹陷区包括设置于所述第一活性物质层上的凹槽或所述第一集流体的一侧未涂覆所述第一活性物质层的区域;所述第二极片的第一凹陷区包括设置于所述第二活性物质层上的凹槽或所述第二集流体的一侧未涂覆所述第二活性物质层的区域。
在上述技术方案中,设置于第一极片上的第一凹陷区可以是设置于第一活性物质层上的凹槽,也可以是第一集流体的一侧未涂覆第一活性物质层的区域,当设置于第一极片上的第一凹陷区为设置于第一活性物质层上的凹槽时使得第一极片的第一凹陷区能够为第一卷绕收尾端提供膨胀空间的同时还能够保证电极组件的能量密度,当设置于第一极片上的第一凹陷区为第一集流体的一侧未涂覆第一活性物质层的区域时使得第一极片的第一凹陷区能够为第一卷绕收尾端提供更多的膨胀空间,且便于制造。同样的,设置于第二极片上的第一凹陷区可以是设置于第二活性物质层上的凹槽,也可以是第二集流体的一侧未涂覆第二活性物质层的区域,当设置于第二极片上的第一凹陷区为设置于第二活性物质层上的凹槽时使得第二极片的第一凹陷区能够为第一卷绕收尾端提供膨胀空间的同时还能够保证电极组件的能量密度,当设置于第二极片上的第一凹陷区为第二集流体的一侧未涂覆第二活性物质层的区域时使得第二极片的第一凹陷区能够为第一卷绕收尾端提供更多的膨胀空间,且便于制造。
在一些实施例中,所述第一极片为负极极片,所述第二极片为正极极片;沿所述电极组件的径向,所述第一活性物质层与所述第二活性物质层面向设置,且所述第一活性物质层覆盖所述第二活性物质层。
在上述技术方案中,通过将第一活性物质层与第二活性物质层沿电极组件的径向面向设置,且将第一活性物质层设置为覆盖第二活性物质层,也就是说,第一活性物质层的面积大于第二活性物质层的面积,采用这种结构的电极组件能够有效降低电极组件在使用过程中出现析锂的风险。
在一些实施例中,所述电极组件还包括隔离膜;所述隔离膜设置于所述第一极片和所述第二极片之间,以分隔所述第一极片和所述第二极片。
在上述技术方案中,电极组件还设置有位于第一极片和第二极片之间的隔离膜,从而能够有效实现第一极片和第二极片之间的分隔,以降低第一极片和第二极片出现短接的现象,进而有利于降低电极组件在使用过程中的安全隐患。
第二方面,本申请实施例还提供一种电池单体,包括外壳和上述的电极组件,所述电极组件容纳于外壳内。
第三方面,本申请实施例还提供一种电池,包括箱体和上述的电池单体,所述电池单体容纳于箱体内。
第四方面,本申请实施例还提供一种用电装置,包括上述的电池单体,所述电池单体用于提供电能;或包括上述的电池,所述电池用于提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的结构爆炸图;
图3为本申请一些实施例提供的电池单体的结构爆炸图;
图4为本申请一些实施例提供的电极组件的结构示意图;
图5为本申请又一些实施例提供的电极组件的结构示意图;
图6为本申请再一些实施例提供的电极组件的结构示意图;
图7为图6所示的电极组件的A处的局部放大图;
图8为本申请另一些实施例提供的电极组件的结构示意图;
图9为本申请再又一些实施例提供的电极组件的结构示意图;
图10为图9所示的电极组件的B处的局部放大图;
图11为本申请再又一些实施例提供的第一极片的局部剖视图;
图12为本申请再又一些实施例提供的第一极片在其他实施例中的局部剖视图;
图13为本申请再又一些实施例提供的第二极片的局部剖视图;
图14为本申请再又一些实施例提供的第二极片在其他实施例中的局部剖视图。
图标:1000-车辆;100-电池;10-箱体;11-第一箱本体;12-第二箱本体;20-电池单体;21-外壳;211-壳体;2111-开口;212-端盖;22-电极组件;221-第一极片;2211-第一卷绕收尾端;2212-第一段;2213-第二段;2214-第一集流体;2215-第一活性物质层;222-第二极片;2221-第二卷绕收尾端;2222-第二集流体;2223-第二活性物质层;223-第一凹陷区;224-第二凹陷区;225-隔离膜;200-控制器;300-马达;X-卷绕方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体或多个电池模块的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括外壳、电极组件和电解液,外壳用于容纳电极组件和电解液。电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体的部分作为正极极耳,以通过正极极耳实现正极极片的电能输入或输出。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体的部分作为负极极耳,以通过负极极耳实现负极极片的电能输入或输出。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不 发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。
电池具有能量密度高、环境污染小、功率密度大、使用寿命长、适应范围广、自放电系数小等突出的优点,是现今新能源发展的重要组成部分。电池的电池单体是由正极极片、负极极片和隔离膜通过卷绕或者叠片等方式组装成电极组件(裸电芯),之后装入外壳,最后注入电解液后得到的。其中,卷绕式结构的电极组件具有便于装配,制造难度低,且生产效率高等优点,由此,卷绕式结构的电极组件得到了广泛应用。但是,随着电池技术的不断发展,对电池单体的使用安全性也提出了更高的要求。因此,电极组件的使用安全性决定了电池单体的使用安全性。
发明人发现,在卷绕式结构的电极组件中,通常采用负极极片和正极极片相互层叠后连续卷绕而成,但是,这种结构的电极组件在循环充放电的过程中,正极极片和负极极片的厚度会增大,导致电极组件的膨胀力会增加,以使电极组件的直径相应地变大,尤其是负极极片的收尾截断位置和正极极片的收尾截断位置的膨胀现象最为明显。然而,由于电极组件的膨胀会受到蓝膜或外壳等部件的约束影响,以使正极极片的收尾截断位置或负极极片的收尾截断位置极容易挤压电极组件的紧邻部位的极片,存在剪应力集中的现象,从而造成相邻的正极极片或负极极片尤其是活性物质层存在变形或开裂的风险,以导致负极极片和正极极片在变形或开裂后存在相互短接的现象,进而造成电池单体在使用过程中存在短路或起火爆炸等风险,不利于电池单体的使用安全性。
基于上述考虑,为了解决卷绕式结构的电极组件在使用过程中存在较大的安全隐患的问题,发明人经过深入研究,设计了一种电极组件,电极组件包括极性相反的第一极片和第二极片,第一极片和第二极片沿卷绕方向卷绕形成电极组件,第一极片具有第一卷绕收尾端,第一极片的一侧和/或第二极片的一侧设置有第一凹陷区,沿电极组件的径向,第一卷绕收尾端的投影位于第一凹陷区内。
在这种结构的电极组件中,通过在第一极片和/或第二极片的一侧上设置与第一卷绕收尾端对应布置的第一凹陷区,且第一卷绕收尾端在电极组件的径向上的投影落入第一凹陷区内,使得在电极组件的使用过程中发生膨胀时,第一凹陷区能够在电极组件的径向上为第一极片的第一卷绕收尾端提供足够的膨胀空间,以缓解第一卷绕收尾端挤压电极组件的紧邻部位的第一极片或第二极片的现象,从而能够释放第一卷绕收尾端对相邻的第一极片或第二极片造成的剪应力,以减少第一卷绕收尾端出现剪应力集中的现象,进而能够降低电极组件的第一极片或第二极片因受到第一卷绕收尾端的挤压而出现局部变形或开裂的风险,有利于提升具有这种电极组件的电池单体的使用安全性。
本申请实施例公开的电极组件可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池单体、电池等组成该用电装置的电源系统,这样,能够有效降低电池单体在使用过程中存在的安全隐患,以提升电池单体的使用安全性。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的结构爆炸图。电池100包括箱体10和电池单体20,电池单体20用于容纳于箱体10内。其中,箱体10用于为电池单体20提供装配空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一箱本体11和第二箱本体12,第一箱本体11与第二箱本体12相互盖合,第一箱本体11和第二箱本体12共同限定出用于容纳电池单体20的装配空间。第二箱本体12可以为一端开放的空心结构,第一箱本体11可以为板状结构,第一箱本体11盖合于第二箱本体12的开放侧,以使第一箱本体11与第二箱本体12共同限定出装配空间;第一箱本体11和第二箱本体12也可以是均为一侧开放的空心结构,第一箱本体11的开放侧盖合于第二箱本体12的开放侧。当然,第一箱本体11和第二箱本体12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。示例性的,在图2中,电池单体20为圆柱体结构。
请参照图3,图3为本申请一些实施例提供的电池单体20的结构爆炸图。电池单体20包括外壳21和电极组件22,外壳21用于容纳电极组件22。
其中,外壳21还可用于容纳电解质,例如电解液。外壳21可以是多种结构形式。外壳21的材质也可以是多种,比如,铜、铁、铝、钢、铝合金等。
在一些实施例中,外壳21可以包括壳体211和端盖212,壳体211为一侧开口2111的空心结构,端盖212盖合于壳体211的开口2111处并形成密封连接,以形成用于容纳电极组件22和电解质的密封空间。
在组装电池单体20时,可先将电极组件22放入壳体211内,并向壳体211内填充电解质,再将端盖212盖合于壳体211的开口2111。
壳体211可以是多种形状,比如,圆柱体、长方体等。壳体211的形状可根据电极组件22的具体形状来确定。比如,若电极组件22为圆柱体结构,则可选用为圆柱体壳体;若电极组件22为长方体结构,则可选用长方体壳体。当然,端盖212也可以是多种结构,比如,端盖212为板状结构、一端开口2111的空心结构等。示例性的,在图3中,电极组件22为圆柱体结构,对应的,壳体211为圆柱体结构,端盖212为圆柱形板状结构,端盖212盖合于壳体211的开口2111处。
在一些实施例中,电池单体20还可以包括正极电极端子和负极电极端子,正极电极端子安装于端盖212上,负极电极端子安装于壳体211与端盖212相对的一端上,当然,也可以是正极电极端子安装于壳体211与端盖212相对的一端上,负极电极端子安装于端盖212上。正极电极端子和负极电极端子均用于与电极组件22电连接,以实现电池单体20的电能的输入或输出。其中,正极电极端子和负极电极端子可以是与电极组件22直接相连,比如,焊接或抵接等,正极电极端子和负极电极端子也可以是与电极组件22间接相连,比如,正极电极端子和负极电极端子通过集流构件与电极组件22抵接或焊接等。
可理解的,外壳21并不仅仅局限于上述结构,外壳21也可以是其他结构,比如,外壳21包括壳体211和两个端盖212,壳体211为相对的两侧开口2111的空心结构,一个端盖212对应盖合于壳体211的一个开口2111处并形成密封连接,以形成用于容纳电极组件22和电解质的密封空间。
在一些实施例中,电池单体20还可以包括泄压机构,泄压机构安装于端盖212上,也可以安装于壳体211上。泄压机构用于在电池单体20的内部压力或温度达到预定值时泄放电池单体20内部的压力。
示例性的,泄压机构可以是诸如防爆阀、防爆片、气阀、泄压阀或安全阀等部件。
需要说明的是,电极组件22是电池单体20中发生电化学反应的部件。电极组件22可以是由极性相反的两个极片通过卷绕形成的卷绕式结构,也可以是由极性相反的两个极片通过层叠布置的叠片式结构。示例性的,在图3中,电极组件22为由极性相反的两个极片通过卷绕形成的卷绕式结构,且电极组件22为圆柱体结构。
根据本申请的一些实施例,参照图3,并请进一步参照图4和图5,图4为本申请一些实施例提供的电极组件22的结构示意图,图5为本申请又一些实施例提供的电极组件22的结构示意图。本申请提供了一种电极组件22,电极组件22包括极性相反的第一极片221和第二极片222,第一极片221和第二极片222沿卷绕方向X卷绕形成电极组件22,第一极片221具有第一卷绕收尾端2211。其中,第一极片221的一侧和/或第二极片222的一侧设置有第一凹陷区223,沿电极组件22的径向,第一卷绕收尾端2211的投影位于第一凹陷区223内。
其中,卷绕方向X为单向,即卷绕方向X为第一极片221和第二极片222从内至外连续卷绕的方向。
可选地,第一极片221和第二极片222可以分别是负极极片和正极极片,也可以分别是正极极片和负极极片。示例性的,在图4中,第一极片221为负极极片,第二极片222为正极极片,电极组件22的最外圈为第一极片221(负极极片)。当然,在一些实施例中,如图5所示,第一极片221也可以为正极极片,对应的,第二极片222为负极极片,电极组件22的最外圈为第二极片222(负极极片)。
第一卷绕收尾端2211即为第一极片221卷绕收尾的截断位置。
第一极片221的一侧和/或第二极片222的一侧设置有第一凹陷区223,即可以是第一极片221上设置有第一凹陷区223,也可以是第二极片222上设置有第一凹陷区223,还可以是第一极片221和第二极片222上均设置有第一凹陷区223。示例性的,在图4中,由于第一极片221为负极极片,因此,在与第一卷绕收尾端2211相邻的第一极片221面向第一卷绕端的一侧设置有第一凹陷区223,当然,在其他实施例中,也可以沿电极组件22的径向在第二极片222上对应第一卷绕收尾端2211的一侧设置第一凹陷区223,同样的,也可以在第一极片221和第二极片222上均设置沿电极组件22的径向排布的多个第一凹陷区223。示例性的,在图5中,由于第一极片221为正极极片,因此,在位于第一卷绕收尾端2211的外侧的第二极片222背离第一卷绕收尾端2211的一侧设置有第一凹陷区223,当然,在其他实施例中,也可以沿电极组件22的径向在第一极片221上对应第一卷绕收尾端2211的一侧设置第一凹陷区223,同样的,也可以在第一极片221和第二极片222上均设置沿电极组件22的径向排布的多个 第一凹陷区223。
沿电极组件22的径向,第一卷绕收尾端2211的投影位于第一凹陷区223内,即在电极组件22的中心指向电极组件22的边缘的方向或从电极组件22的边缘指向电极组件22的中心的方向上,第一卷绕收尾端2211与第一凹陷区223对应设置,也就是说,在电极组件22的径向上,第一凹陷区223覆盖第一卷绕收尾端2211。
通过在第一极片221和/或第二极片222的一侧上设置与第一卷绕收尾端2211对应布置的第一凹陷区223,且第一卷绕收尾端2211在电极组件22的径向上的投影落入第一凹陷区223内,使得在电极组件22的使用过程中发生膨胀时,第一凹陷区223能够在电极组件22的径向上为第一极片221的第一卷绕收尾端2211提供足够的膨胀空间,以缓解第一卷绕收尾端2211挤压电极组件22的紧邻部位的第一极片221或第二极片222的现象,从而能够释放第一卷绕收尾端2211对相邻的第一极片221或第二极片222造成的剪应力,以减少第一卷绕收尾端2211出现剪应力集中的现象,进而能够降低电极组件22的第一极片221或第二极片222因受到第一卷绕收尾端2211的挤压而出现局部变形或开裂的风险,有利于提升具有这种电极组件22的电池单体20的使用安全性。
根据本申请的一些实施例,参见图4所示,沿卷绕方向X,第一凹陷区223的宽度为D 1,满足,D 1≥10mm。
其中,D 1≥10mm,即第一凹陷区223在卷绕方向X上的尺寸大于或等于10mm。示例性的,第一凹陷区223在卷绕方向X上的尺寸D 1可以为10mm、12mm、15mm、18mm或20mm等。
通过将第一凹陷区223在卷绕方向X上的宽度设置为不小于10mm,由于第一卷绕收尾端2211在使用过程中因电极组件22的膨胀会沿卷绕方向X出现窜动现象,且窜动在10mm以内,从而采用这种结构的电极组件22使得在第一卷绕收尾端2211沿卷绕方向X出现窜动时仍能够保证第一卷绕收尾端2211在电极组件22的径向上的投影位于第一凹陷区223内,以使第一凹陷区223能够稳定地为第一卷绕收尾端2211提供膨胀空间。
根据本申请的一些实施例,请继续参见图4所示,电极组件22的最外圈为第一极片221,第二极片222具有第二卷绕收尾端2221,沿卷绕方向X,第一卷绕收尾端2211超出第二卷绕收尾端2221。第一极片221包括相互连接的第一段2212和第二段2213,第一段2212与第二段2213的连接位置位于第二卷绕收尾端2221的内侧,第一段2212沿卷绕方向X从第一段2212与第二段2213的连接位置延伸至第一卷绕收尾端2211,沿电极组件22的径向,第一段2212面向第一卷绕收尾端2211的一侧设置有第一凹陷区223。
其中,第一极片221为负极极片,第二极片222为正极极片,沿卷绕方向X,第一卷绕收尾端2211超出第二卷绕收尾端2221,也就是说,位于电极组件22的最外圈的第一极片221(负极极片)包覆第二极片222(正极极片)的第二卷绕收尾端2221,第二卷绕收尾端2221即为第二极片222卷绕收尾的截断位置。
第一极片221的第一段2212为沿卷绕方向X从第一段2212与第二段2213的连接位置延伸至第一卷绕收尾端2211的部分,第一极片221的第二段2213为沿卷绕方向X的反向从第一段2212与第二段2213的连接位置延伸至电极组件22的中心位置的部分,且第一段2212与第二段2213的连接位置沿电极组件22的径向与第二卷绕收尾端2221相邻,并位于第二卷绕收尾端2221的内侧。
沿电极组件22的径向,第一段2212面向第一卷绕收尾端2211的一侧设置有第一凹陷区223,即在电极组件22的径向上,与第一卷绕收尾端2211相邻的第一极片221面向第一卷绕收尾端2211的一侧设置有第一凹陷区223。
由于第一卷绕收尾端2211在卷绕方向X上超出第二卷绕收尾端2221,使得与第一卷绕收尾端2211紧邻的部位为第一极片221的第一段2212,通过在第一段2212沿电极组件22的径向上面向第一卷绕收尾端2211的一侧上设置第一凹陷区223,从而使得在电极组件22出现膨胀时第一卷绕收尾端2211能够直接进入到第一段2212的第一凹陷区223内,以起到较好的避让效果,进而能够较好地缓解第一卷绕收尾端2211挤压相邻的第一极片221的现象。
根据本申请的一些实施例,参照图6,图6为本申请再一些实施例提供的电极组件22的结构示意图。第一极片221和第二极片222均设置有多个第一凹陷区223,第一极片221的多个第一凹陷区223和第二极片222的多个第一凹陷区223均沿电极组件22的径向排布。
其中,第一极片221和第二极片222均设置有多个第一凹陷区223,也就是说,第一极片221上设置有沿电极组件22的径向排布的多个第一凹陷区223,且第二极片222上也设置有沿电极组件22的径向排布的多个第一凹陷区223。
通过在第一极片221和第二极片222上均设置多个第一凹陷区223,且第一极片221的多个第一凹陷区223和第二极片222的多个第一凹陷区223均沿电极组件22的径向排布,从而使得第一极片221的多个第一凹陷区223和第二极片222的多个第一凹陷区223能够在电极组件22的径向上为第一卷绕收尾端2211提供更多的膨胀空间,使得在电极组件22出现膨胀时能够更好地释放第一卷绕收尾端2211对相邻的第一极片221造成的剪应力,以缓解第一卷绕收尾端2211挤压相邻的第一极片221的现象,进而能够进一步降低第一极片221因受到第一卷绕收尾端2211的挤压而出现局部变形或开裂的风险。
根据本申请的一些实施例,参照图6,并请进一步参照图7,图7为图6所示的电极组件22的A处的局部放大图。第一极片221为负极极片,第二极片222为正极极片。第二极片222设置有第一凹陷区223,沿电极组件22的径向,第二极片222的第一凹陷区223位于第二极片222与第一极片221的第一凹陷区223面向设置的一侧,第二极片222的第一凹陷区223覆盖面向设置的第一极片221的第一凹陷区223。
其中,沿电极组件22的径向,第二极片222的第一凹陷区223位于第二极片222与第一极片221的第一凹陷区223面向设置的一侧,即在电极组件22的径向上,第二极片222与第一极片221的第一凹陷区223面向设置的一侧便设置有第一凹陷区223,也就是说,设置于第二极片222上的第一凹陷区223与设置于第一极片221上的第一凹陷区223沿电极组件22的径向面向设置。
第二极片222的第一凹陷区223覆盖面向设置的第一极片221的第一凹陷区223,也就是说,在面向设置的两个第一凹陷区223中,设置于第二极片222上的第一凹陷区223的面积大于设置于第一极片221上的第一凹陷区223的面积,即设置于正极极片上的第一凹陷区223的面积大于设置于负极极片上的第一凹陷区223的面积。
通过在第二极片222与第一极片221的第一凹陷区223面向设置的一侧设置第一凹陷区223,且第二极片222的第一凹陷区223覆盖面向设置的第一极片221的第一凹陷区223,采用这种结构在为第一卷绕收尾端2211提供足够的膨胀空间的同时能够有效缓解电极组件22出现析锂的风险,以降低电极组件22在使用过程中的安全隐患。
在一些实施例中,请继续参见图6和图7所示,沿卷绕方向X,第二极片222的第一凹陷区223的宽度大于面向第二极片222的第一凹陷区223设置的第一极片221的第一凹陷区223的宽度。
在上述描述中,也就是说,在面向设置的两个第一凹陷区223中,设置于第二极片222上的第一凹陷区223在卷绕方向X上的尺寸大于设置于第一极片221上的第一凹陷区223在卷绕方向X上的尺寸,以使设置于第一极片221上的第一凹陷区223在卷绕方向X上的两个端壁与设置于第二极片222上的第一凹陷区223在卷绕方向X上的两个端壁相互错开。
通过将第二极片222的第一凹陷区223在卷绕方向X上的宽度设置为大于与其面向设置的第一极片221的第一凹陷区223在卷绕方向X上的宽度,采用这种结构的电极组件22一方面能够进一步降低电极组件22在使用过程中出现析锂的风险,以提升电极组件22的使用安全性,另一方面能够缓解因第一极片221的第一凹陷区223和第二极片222的第一凹陷区223相互重叠后形成新的截断区域而出现局部剪应力集中的现象。
根据本申请的一些实施例,参照图8,图8为本申请另一些实施例提供的电极组件22的结构示意图。第二极片222具有第二卷绕收尾端2221,第一极片221的一侧和/或第二极片222的一侧设置有第二凹陷区224,沿电极组件22的径向,第二卷绕收尾端2221的投影位于第二凹陷区224内。
可选地,第一极片221和第二极片222可以分别是负极极片和正极极片,也可以分别是正极极片和负极极片。示例性的,在图8中,第一极片221为负极极片,第二极片222为正极极片,电极组件22的最外圈为第一极片221(负极极片)。当然,其他实施例中,电极组件22还可以是其他结构,比如,第一极片221为正极极片,第二极片222为负极极片。
第二卷绕收尾端2221即为第二极片222卷绕收尾的截断位置。
第一极片221的一侧和/或第二极片222的一侧设置有第二凹陷区224,即可以是第一极片221上设置有第二凹陷区224,也可以是第二极片222上设置有第二凹陷区224,还可以是第一极片221和第二极片222上均设置有第二凹陷区224。示例性的,在图8中,由于第一极片221为负极极片,因此,在与第二卷绕收尾端2221相邻的第一极片221背离第二卷绕端的一侧设置有第二凹陷区224,当然,在其他实施例中,也可以沿电极组件22的径向在第二极片222上对应第一卷绕收尾端2211的一侧设置第一凹陷区223,同样的,也可以在第一极片221和第二极片222上均设置沿电极组件22的径向排布的多个第一凹陷区223。
沿电极组件22的径向,第二卷绕收尾端2221的投影位于第二凹陷区224内,即在电极组件22的中心指向电极组件22的边缘的方向或从电极组件22的边缘指向电极组件22的中心的方向上,第二卷绕收尾端2221与第二凹陷区224对应设置,也就是说,在电极组件22的径向上,第二凹陷区224覆盖第二卷绕收尾端2221。
通过在第一极片221和/或第二极片222的一侧上设置与第二卷绕收尾端2221对应布置的第二凹陷区224,且第二卷绕收尾端2221在电极组件22的径向上的投影落入第二凹陷区224内,使得在电极组件22的使用过程中发生膨胀时,第二凹陷区224能够在电极组件22的径向上为第二极片222的第二卷绕收尾端2221提供足够的膨胀空间,以缓解第二卷绕收尾端2221挤压电极组件22的紧邻部位的第一极片221或第二极片222的现象,从而能够释放第二卷绕收尾端2221对相邻的第一极片221或第二极片222造成的剪应力,以减少第二卷绕收尾端2221出现剪应力集中的现象,进而能够降低电极组件22的第一极片221或第二极片222因受到第二卷绕收尾端2221的挤压而出现局部变形或开裂的风险,以提升电极组件22的使用安全性。
根据本申请的一些实施例,参见图8所示,沿卷绕方向X,第二凹陷区224的宽度为D 2,满足,D 2≥10mm。
其中,D 2≥10mm,即第二凹陷区224在卷绕方向X上的尺寸大于或等于10mm。示例性的,第二凹陷区224在卷绕方向X上的尺寸D 2可以为10mm、12mm、15mm、18mm或20mm等。
通过将第二凹陷区224在卷绕方向X上的宽度设置为不小于10mm,由于第二卷绕收尾端2221在使用过程中因电极组件22的膨胀会沿卷绕方向X出现窜动现象,且窜动在10mm以内,从而采用这种结构的电极组件22使得在第二卷绕收尾端2221沿卷绕方向X出现窜动时仍能够保证第二卷绕收尾端2221在电极组件22的径向上的投影位于第二凹陷区224内,以使第二凹陷区224能够稳定地为第二卷绕收尾端2221提供膨胀空间。
根据本申请的一些实施例,参见图8所示,第一极片221为负极极片,第二极片222为正极极片。电极组件22的最外圈为第一极片221,沿卷绕方向X,第一卷绕收尾端2211超出第二卷绕收尾端2221。第一极片221包括相互连接的第一段2212和第二段2213,第一段2212与第二段2213的连接位置位于第二卷绕收尾端2221的内侧,第一段2212沿卷绕方向X从第一段2212与第二段2213的连接位置延伸至第一卷绕收尾端2211。沿电极组件22的径向,第一段2212背离第二卷绕收尾端2221的一侧设置有第二凹陷区224。
其中,沿卷绕方向X,第一卷绕收尾端2211超出第二卷绕收尾端2221,也就是说,位于电极组件22的最外圈的第一极片221(负极极片)包覆第二极片222(正极极片)的第二卷绕收尾端2221。
第一极片221的第一段2212为沿卷绕方向X从第一段2212与第二段2213的连接位置延伸至第一卷绕收尾端2211的部分,第一极片221的第二段2213为沿卷绕方向X的反向从第一段2212与第二段2213的连接位置延伸至电极组件22的中心位置的部分,且第一段2212与第二段2213的连接位置沿电极组件22的径向与第二卷绕收尾端2221相邻,并位于第二卷绕收尾端2221的内侧。
沿电极组件22的径向,第一段2212背离第二卷绕收尾端2221的一侧设置有第二凹陷区224,即在电极组件22的径向上,与第二卷绕收尾端2221相邻且位于第二卷绕收尾端2221外侧的第一极片221背离第二卷绕收尾端2221的一侧设置有第二凹陷区224。
由于第一卷绕收尾端2211在卷绕方向X上超出第二卷绕收尾端2221,使得与第二卷绕收尾端2221紧邻的部位为第一极片221的第一段2212以及第一段2212与第二段2213的连接位置,通过在第一极片221的第一段2212背离第二卷绕收尾端2221的一侧设置第二凹陷区224,采用这种结构使得与第二卷绕收尾端2221相邻的第一极片221上便设置有用于为第二卷绕收尾端2221提供膨胀空间的第二凹陷区224,且在实现对第二卷绕收尾端2221起到较好的避让效果的同时还能够降低电极组件22在使用过程中出现析锂的风险。
根据本申请的一些实施例,参照图9,图9为本申请再又一些实施例提供的电极组件22的结构示意图。第一极片221和第二极片222均设置有多个第二凹陷区224,第一极片221的多个第二凹陷区224和第二极片222的多个第二凹陷区224均沿电极组件22的径向排布。
其中,第一极片221和第二极片222均设置有多个第二凹陷区224,也就是说,第一极片221上设置有沿电极组件22的径向排布的多个第二凹陷区224,且第二极片222上也设置有沿电极组件22的径向排布的多个第二凹陷区224。
通过在第一极片221和第二极片222上均设置多个第二凹陷区224,且第一极片221的多个第二凹陷区224和第二极片222的多个第二凹陷区224均沿电极组件22的径向排布,从而使得第一极片221的多个第二凹陷区224和第二极片222的多个第二凹陷区224能够在电极组件22的径向上为第二卷绕收尾端2221提供更多的膨胀空间,使得在电极组件22出现膨胀时能够更好地释放第二卷绕收尾端2221对相邻的第一极片221造成的剪应力,以缓解第二卷绕收尾端2221挤压相邻的第一极片221的现象,进而能够进一步降低第一极片221因受到第二卷绕收尾端2221的挤压而出现局部变形或开裂的风险。
根据本申请的一些实施例,参照图9,并请进一步参照图10,图10为图9所示的电极组件22的B处的局部放大图。第二极片222设置有第二凹陷区224,沿电极组件22的径向,第二极片222的第二凹陷区224位于第二极片222与第一极片221的第二凹陷区224面向设置的一侧,第二极片222的第二凹陷区224覆盖面向设置的第一极片221的第二凹陷区224。
其中,沿电极组件22的径向,第二极片222的第二凹陷区224位于第二极片222与第一极片221的第二凹陷区224面向设置的一侧,即在电极组件22的径向上,第二极片222与第一极片221的第二凹陷区224面向设置的一侧便设置有第二凹陷区224,也就是说,设置于第二极片222上的第二凹陷区224与设置于第一极片221上的第二凹陷区224沿电极组件22的径向面向设置。
第二极片222的第二凹陷区224覆盖面向设置的第一极片221的第二凹陷区224,也就是说,在面向设置的两个第二凹陷区224中,设置于第二极片222上的第二凹陷区224的面积大于设置于第一极片221上的第二凹陷区224的面积,即设置于正极极片上的第二凹陷区224的面积大于设置于负极极片上的第二凹陷区224的面积。
通过在第二极片222与第一极片221的第二凹陷区224面向设置的一侧设置第二凹陷区224,且第二极片222的第二凹陷区224覆盖面向设置的第一极片221的第二凹陷区224,采用这种结构在为第二卷绕收尾端2221提供足够的膨胀空间的同时能够有效缓解电极组件22出现析锂的风险,以降低电极组件22在使用过程中的安全隐患。
在一些实施例中,请继续参见图9和图10所示,沿卷绕方向X,第二极片222的第二凹陷区224的宽度大于面向第二极片222的第二凹陷区224设置的第一极片221的第二凹陷区224的宽度。
在上述描述中,也就是说,在面向设置的两个第二凹陷区224中,设置于第二极片222上的第二凹陷区224在卷绕方向X上的尺寸大于设置于第一极片221上的第二凹陷区224在卷绕方向X上的尺寸,以使设置于第一极片221上的第二凹陷区224在卷绕方向X上的两个端壁与设置于第二极片222上的第二凹陷区224在卷绕方向X上的两个端壁相互错开。
通过将第二极片222的第二凹陷区224在卷绕方向X上的宽度设置为大于与其面向设置的第一极片221的第二凹陷区224在卷绕方向X上的宽度,采用这种结构的电极组件22一方面能够进一步降低电极组件22在使用过程中出现析锂的风险,以提升电极组件22的使用安全性,另一方面能够缓解因第一极片221的第二凹陷区224和第二极片222的第二凹陷区224相互重叠后形成新的截断区域而出现局部剪应力集中的现象。
根据本申请的一些实施例,参照图11-图14,图11为本申请再又一些实施例提供的第一极片221的局部剖视图,图12为本申请再又一些实施例提供的第一极片221在其他实施例中的局部剖视图,图13为本申请再又一些实施例提供的第二极片222的局部剖视图,图14为本申请再又一些实施例提供的第二极片222在其他实施例中的局部剖视图。第一极片221包括第一集流体2214和沿电极组件22的径向涂覆于第一集流体2214的至少一侧的第一活性物质层2215。第二极片222包括第二集流体2222和沿电极组件22的径向涂覆于第二集流体2222的至少一侧的第二活性物质层2223。其中,第一极片221的第一凹陷区223包括设置于第一活性物质层2215上的凹槽(如图12所示)或第一集流体2214的一侧未涂覆第一活性物质层2215的区域(如图11所示)。第二极片222的第一凹陷区223包括设置于第二活性物质层2223上的凹槽(如图14所示)或第二集流体2222的一侧未涂覆第二活性物质层2223的区域(如图13所示)。
示例性的,第一极片221为负极极片,第二极片222为正极极片。其中,第一活性物质层2215为涂覆于第一集流体2214上的负极活性物质,用于电化学反应,第一活性物质层2215的材质可以为碳或硅等,第一集流体2214的材质可以为铜等。第二活性物质层2223为涂覆于第二集流体2222上的正极活性物质,用于电化学反应,第二活性物质层2223的材质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等,第二集流体2222的材质可以为铝等。
在图11中,第一极片221的第一凹陷区223为第一集流体2214的一侧未涂覆第一活性物质层2215的区域,即第一极片221的第一凹陷区223为第一集流体2214上的空白区,该区域未涂覆有第一活性物质层2215。
在图12中,第一极片221的第一凹陷区223为设置于第一活性物质层2215上的凹槽,即第一极片221的第一凹陷区223为设置于第一活性物质层2215上的薄弱区,位于薄弱区的第一活性物质层2215的厚度小于其他区域的第一活性物质层2215的厚度。优选地,位于薄弱区的第一活性物质层2215的厚度不大于其他区域的第一活性物质层2215的厚度的60%。
在图13中,第二极片222的第一凹陷区223为第二集流体2222的一侧未涂覆第二活性物质层2223的区域,即第二极片222的第一凹陷区223为第二集流体2222上的空白区,该区域未涂覆有第二活性物质层2223。
在图14中,第二极片222的第一凹陷区223为设置于第二活性物质层2223上的凹槽,即第二极片222的第一凹陷区223为设置于第二活性物质层2223上的薄弱区,位于薄弱区的第二活性物质层2223的厚度小于其他区域的第二活性物质层2223的厚度。优选地,位于薄弱区的第二活性物质层2223的厚度不大于其他区域的第二活性物质层2223的厚度的60%。
示例性的,在图11中,第一极片221的第一集流体2214的两侧均涂覆有第一活性物质层2215,当然,在其他实施例中,也可以只在第一集流体2214的一侧涂覆第一活性物质层2215。
示例性的,在图13中,第二极片222的第二集流体2222的两侧均涂覆有第二活性物质层2223,当然,在其他实施例中,也可以只在第二集流体2222的一侧涂覆第二活性物质层2223。
需要说明的是,第一极片221的第二凹陷区224也可以包括设置于第一活性物质层2215上的凹槽或第一集流体2214的一侧未涂覆第一活性物质层2215的区域。同样的,第二极片222的第二凹陷区224也可以包括设置于第二活性物质层2223上的凹槽或第二集流体2222的一侧未涂覆第二活性物质层2223的区域。
设置于第一极片221上的第一凹陷区223可以是设置于第一活性物质层2215上的凹槽,也可以是第一集流体2214的一侧未涂覆第一活性物质层2215的区域,当设置于第一极片221上的第一凹陷区223为设置于第一活性物质层2215上的凹槽时使得第一极片221的第一凹陷区223能够为第一卷绕收尾端2211提供膨胀空间的同时还能够保证电极组件22的能量密度,当设置于第一极片221上的第一凹陷区223为第一集流体2214的一侧未涂覆第一活性物质层2215的区域时使得第一极片221的第一凹陷区223能够为第一卷绕收尾端2211提供更多的膨胀空间,且便于制造。同样的,设置于第二极片222上的第一凹陷区223可以是设置于第二活性物质层2223上的凹槽,也可以是第二集流体2222的一侧未涂覆第二活性物质层2223的区域,当设置于第二极片222上的第一凹陷区223为设置于第二活性物质层2223上的凹槽时使得第二极片222的第一凹陷区223能够为第一卷绕收尾端2211提供膨胀空间的同时还能够保证电极组件22的能量密度,当设置于第二极片222上的第一凹陷区223为第二集流体2222的一侧未涂覆第二活性物质层2223的区域时使得第二极片222的第一凹陷区223能够为第一卷绕收尾端2211 提供更多的膨胀空间,且便于制造。
在一些实施例中,第一极片221为负极极片,第二极片222为正极极片。沿电极组件22的径向,第一活性物质层2215与第二活性物质层2223面向设置,且第一活性物质层2215覆盖第二活性物质层2223。
其中,第一活性物质层2215覆盖第二活性物质层2223,即第一极片221的第一活性物质层2215的面积大于第二极片222的第二活性物质层2223的面积。
通过将第一活性物质层2215与第二活性物质层2223沿电极组件22的径向面向设置,且将第一活性物质层2215设置为覆盖第二活性物质层2223,采用这种结构的电极组件22能够有效降低电极组件22在使用过程中出现析锂的风险。
根据本申请的一些实施例,参见图4所示,电极组件22还包括隔离膜225,隔离膜225设置于第一极片221和第二极片222之间,以分隔第一极片221和第二极片222。
其中,隔离膜225起到绝缘隔离第一极片221和第二极片222的作用,隔离膜225的材质可以是多种。示例性的,隔离膜225的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
电极组件22还设置有位于第一极片221和第二极片222之间的隔离膜225,从而能够有效实现第一极片221和第二极片222之间的分隔,以降低第一极片221和第二极片222出现短接的现象,进而有利于降低电极组件22在使用过程中的安全隐患。
根据本申请的一些实施例,本申请实施例还提供了一种电池单体20,包括外壳21和以上任一方案的电极组件22,电极组件22容纳于外壳21内。
根据本申请的一些实施例,本申请实施例还提供了一种电池100,电池100包括箱体10和以上任一方案的电池单体20,电池单体20容纳于箱体10内。
根据本申请的一些实施例,本申请实施例还提供了一种用电装置,用电装置包括以上任一方案的电池单体20,并且电池单体20用于为用电装置提供电能;或,用电装置包括以上任一方案的电池100,并且电池100用于为用电装置提供电能。
用电装置可以是前述任一应用电池单体20或电池100的设备或系统。
根据本申请的一些实施例,参见图9和图10所示,本申请提供了一种电极组件22,电极组件22包括第一极片221、第二极片222和隔离膜225。第一极片221为负极极片,第二极片222为正极极片,隔离膜225设置于第一极片221和第二极片222之间,以分隔第一极片221和第二极片222。第一极片221和第二极片222沿卷绕方向X卷绕形成电极组件22,电极组件22的最外圈为第一极片221,第一极片221具有第一卷绕收尾端2211,第二极片222具有第二卷绕收尾端2221,沿卷绕方向X,第一卷绕收尾端2211超出第二卷绕收尾端2221。第一极片221包括相互连接的第一段2212和第二段2213,第一段2212与第二段2213的连接位置位于第二卷绕收尾端2221的内侧,第一段2212沿卷绕方向X从第一段2212与第二段2213的连接位置延伸至第一卷绕收尾端2211。沿电极组件22的径向,第一段2212面向第一卷绕收尾端2211的一侧设置有第一凹陷区223,第一卷绕收尾端2211的投影位于第一凹陷区223内。沿电极组件22的径向,第一段2212背离第二卷绕收尾端2221的一侧设置有第二凹陷区224,第二卷绕收尾端2221的投影位于第二凹陷区224内。第一极片221和第二极片222均设置有多个第一凹陷区223,第一极片221的多个第一凹陷区223和第二极片222的多个第一凹陷区223均沿电极组件22的径向排布,沿电极组件22的径向,第二极片222的第一凹陷区223位于第二极片222与第一极片221的第一凹陷区223面向设置的一侧,第二极片222的第一凹陷区223覆盖面向设置的第一极片221的第一凹陷区223。第一极片221和第二极片222均设置有多个第二凹陷区224,第一极片221的多个第二凹陷区224和第二极片222的多个第二凹陷区224均沿电极组件22的径向排布,沿电极组件22的径向,第二极片222的第二凹陷区224位于第二极片222与第一极片221的第二凹陷区224面向设置的一侧,第二极片222的第二凹陷区224覆盖面向设置的第一极片221的第二凹陷区224。其中,沿卷绕方向X,第一凹陷区223的宽度为D 1,第二凹陷区224的宽度为D 2,满足,D 1≥10mm,D 2≥10mm。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种电极组件,包括极性相反的第一极片和第二极片,所述第一极片和所述第二极片沿卷绕方向卷绕形成所述电极组件,所述第一极片具有第一卷绕收尾端;
    其中,所述第一极片的一侧和/或所述第二极片的一侧设置有第一凹陷区,沿所述电极组件的径向,所述第一卷绕收尾端的投影位于所述第一凹陷区内。
  2. 根据权利要求1所述的电极组件,其中,沿所述卷绕方向,所述第一凹陷区的宽度为D 1,满足,D 1≥10mm。
  3. 根据权利要求1或2所述的电极组件,其中,所述电极组件的最外圈为所述第一极片,所述第二极片具有第二卷绕收尾端,沿所述卷绕方向,所述第一卷绕收尾端超出所述第二卷绕收尾端;
    所述第一极片包括相互连接的第一段和第二段,所述第一段与所述第二段的连接位置位于所述第二卷绕收尾端的内侧,所述第一段沿所述卷绕方向从所述第一段与所述第二段的连接位置延伸至所述第一卷绕收尾端,沿所述电极组件的径向,所述第一段面向所述第一卷绕收尾端的一侧设置有所述第一凹陷区。
  4. 根据权利要求3所述的电极组件,其中,所述第一极片和所述第二极片均设置有多个所述第一凹陷区,所述第一极片的多个所述第一凹陷区和所述第二极片的多个所述第一凹陷区均沿所述电极组件的径向排布。
  5. 根据权利要求3或4所述的电极组件,其中,所述第一极片为负极极片,所述第二极片为正极极片;
    所述第二极片设置有所述第一凹陷区,沿所述电极组件的径向,所述第二极片的所述第一凹陷区位于所述第二极片与所述第一极片的所述第一凹陷区面向设置的一侧,所述第二极片的所述第一凹陷区覆盖面向设置的所述第一极片的所述第一凹陷区。
  6. 根据权利要求5所述的电极组件,其中,沿所述卷绕方向,所述第二极片的所述第一凹陷区的宽度大于面向所述第二极片的所述第一凹陷区设置的所述第一极片的所述第一凹陷区的宽度。
  7. 根据权利要求1-6任一项所述的电极组件,其中,所述第二极片具有第二卷绕收尾端,所述第一极片的一侧和/或所述第二极片的一侧设置有第二凹陷区,沿所述电极组件的径向,所述第二卷绕收尾端的投影位于所述第二凹陷区内。
  8. 根据权利要求7所述的电极组件,其中,沿所述卷绕方向,所述第二凹陷区的宽度为D 2,满足,D 2≥10mm。
  9. 根据权利要求7或8所述的电极组件,其中,所述第一极片为负极极片,所述第二极片为正极极片;
    所述电极组件的最外圈为所述第一极片,沿所述卷绕方向,所述第一卷绕收尾端超出所述第二卷绕收尾端;
    所述第一极片包括相互连接的第一段和第二段,所述第一段与所述第二段的连接位置位于所述第二卷绕收尾端的内侧,所述第一段沿所述卷绕方向从所述第一段与所述第二段的连接位置延伸至所述第一卷绕收尾端;
    沿所述电极组件的径向,所述第一段背离所述第二卷绕收尾端的一侧设置有所述第二凹陷区。
  10. 根据权利要求9所述的电极组件,其中,所述第一极片和所述第二极片均设置有多个所述第二凹陷区,所述第一极片的多个所述第二凹陷区和所述第二极片的多个所述第二凹陷区均沿所述电极组件的径向排布。
  11. 根据权利要求9或10所述的电极组件,其中,所述第二极片设置有所述第二凹陷区,沿所述电极组件的径向,所述第二极片的所述第二凹陷区位于所述第二极片与所述第一极片的所述第二凹陷区面向设置的一侧,所述第二极片的所述第二凹陷区覆盖面向设置的所述第一极片的所述第二凹陷区。
  12. 根据权利要求11所述的电极组件,其中,沿所述卷绕方向,所述第二极片的所述第二凹陷区的宽度大于面向所述第二极片的所述第二凹陷区设置的所述第一极片的所述第二凹陷区的宽度。
  13. 根据权利要求1-12任一项所述的电极组件,其中,所述第一极片包括第一集流体和沿所述电极组件的径向涂覆于所述第一集流体的至少一侧的第一活性物质层;
    所述第二极片包括第二集流体和沿所述电极组件的径向涂覆于所述第二集流体的至少一侧的第二活性物质层;
    其中,所述第一极片的所述第一凹陷区包括设置于所述第一活性物质层上的凹槽或所述第一集流体的一侧未涂覆所述第一活性物质层的区域;
    所述第二极片的第一凹陷区包括设置于所述第二活性物质层上的凹槽或所述第二集流体的一侧未涂覆所述第二活性物质层的区域。
  14. 根据权利要求13所述的电极组件,其中,所述第一极片为负极极片,所述第二极片为正极极片;
    沿所述电极组件的径向,所述第一活性物质层与所述第二活性物质层面向设置,且所述第一活性物质层覆盖所述第二活性物质层。
  15. 根据权利要求1-14任一项所述的电极组件,其中,所述电极组件还包括:
    隔离膜,设置于所述第一极片和所述第二极片之间,以分隔所述第一极片和所述第二极片。
  16. 一种电池单体,包括:
    外壳;以及
    根据权利要求1-15任一项所述的电极组件,所述电极组件容纳于所述外壳内。
  17. 一种电池,包括:
    箱体;以及
    根据权利要求16所述的电池单体,所述电池单体容纳于所述箱体内。
  18. 一种用电装置,包括根据权利要求16所述的电池单体,所述电池单体用于提供电能;或
    包括根据权利要求17所述的电池,所述电池用于提供电能。
PCT/CN2022/110918 2022-08-08 2022-08-08 电极组件、电池单体、电池及用电装置 WO2024031254A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280005695.5A CN117859232A (zh) 2022-08-08 2022-08-08 电极组件、电池单体、电池及用电装置
PCT/CN2022/110918 WO2024031254A1 (zh) 2022-08-08 2022-08-08 电极组件、电池单体、电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110918 WO2024031254A1 (zh) 2022-08-08 2022-08-08 电极组件、电池单体、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024031254A1 true WO2024031254A1 (zh) 2024-02-15

Family

ID=89850240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110918 WO2024031254A1 (zh) 2022-08-08 2022-08-08 电极组件、电池单体、电池及用电装置

Country Status (2)

Country Link
CN (1) CN117859232A (zh)
WO (1) WO2024031254A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197267A (ja) * 1998-07-10 2003-07-11 Hitachi Maxell Ltd 非水二次電池
CN205355186U (zh) * 2015-12-29 2016-06-29 宁德新能源科技有限公司 一种卷绕结构的电池
CN207490009U (zh) * 2017-12-14 2018-06-12 宁德时代新能源科技股份有限公司 极片及二次电池
CN216872019U (zh) * 2022-01-18 2022-07-01 宁德时代新能源科技股份有限公司 正极片、卷绕式电芯、电池单体、电池及用电装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197267A (ja) * 1998-07-10 2003-07-11 Hitachi Maxell Ltd 非水二次電池
CN205355186U (zh) * 2015-12-29 2016-06-29 宁德新能源科技有限公司 一种卷绕结构的电池
CN207490009U (zh) * 2017-12-14 2018-06-12 宁德时代新能源科技股份有限公司 极片及二次电池
CN216872019U (zh) * 2022-01-18 2022-07-01 宁德时代新能源科技股份有限公司 正极片、卷绕式电芯、电池单体、电池及用电装置

Also Published As

Publication number Publication date
CN117859232A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
US11757161B2 (en) Battery cell, battery and electricity consuming device
WO2024027005A1 (zh) 转接构件、电池单体、电池以及用电装置
WO2023174266A1 (zh) 壳体、电池单体、电池及用电设备
US20240055646A1 (en) Wound electrode assembly, battery cell, battery, and electrical device
WO2023240749A1 (zh) 电极组件、电池单体、电池和用电设备
WO2023216829A1 (zh) 电池单体、电池及用电装置
US20230327275A1 (en) Pressure relief apparatus, battery cell, battery, and electrical device
WO2023168954A1 (zh) 电芯、电芯的制造方法、电池单体、电池及用电设备
WO2023045418A1 (zh) 一种电极组件、电池单体、电池及用电装置
WO2024031254A1 (zh) 电极组件、电池单体、电池及用电装置
WO2023245673A1 (zh) 电池单体、电池及用电装置
WO2023221606A1 (zh) 集流体、极片、电极组件、电池单体、电池及用电装置
WO2024044883A1 (zh) 电极组件、电池单体、电池及用电装置
WO2024055257A1 (zh) 电池单体、电池及用电装置
WO2024000153A1 (zh) 电极组件及其制造方法、电池单体、电池及用电装置
WO2024065205A1 (zh) 电池单体、电池及用电装置
WO2023173414A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2024045058A1 (zh) 电池单体、电池及用电设备
WO2024055308A1 (zh) 电池单体、电池及用电设备
WO2023216038A1 (zh) 电极组件、电池单体、电池及用电装置
WO2024031353A1 (zh) 极片、电极组件、电池单体、电池及用电设备
WO2024060093A1 (zh) 电池单体、电池及用电装置
WO2023245431A1 (zh) 电池单体、电池及用电设备
WO2024036487A1 (zh) 电池及用电装置
WO2024007115A1 (zh) 电池单体、电池以及用电装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280005695.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954234

Country of ref document: EP

Kind code of ref document: A1